
www.free-ebooks-download.org

Microsoft® ASP.NET 4
Step by Step

George Shepherd

Table of Contents
Acknowledgments . xvii

Introduction . . xix
Who This Book Is For . xx

Getting Started . xx

Finding Your Best Starting Point in This Book . .xxi

Conventions and Features in This Book . xxii

Conventions . xxii

Other Features .xxiii

Prerelease Software .xxiii

Hardware and Software Requirements .xxiii

Code Samples .xxiv

Digital Content for Digital Book Readers .xxiv

Installing the C# Code Samples . .xxiv

Using the Code Samples . .xxvi

Uninstalling the Code Samples . xxix

Support for This Book . xxix

We Want to Hear from You . xxix

Fundamentals

Web .Application .Basics . . 3
HTTP Requests . 4

HTTP Requests from a Browser . 5

Making HTTP Requests Without a Browser . 6

Hypertext Markup Language . 8

Dynamic Content . 9

HTML Forms . 10

Common Gateway Interface: Very Retro . 11

The Microsoft Environment as a Web Server . 12

Internet Information Services . 12

Internet Services Application Programming Interface DLLs 13

Running Internet Information Services . 14

Classic ASP: Putting ASP .NET into Perspective . 18

Web Development Concepts . 21

ASP .NET . 22

Chapter 1 Quick Reference . 23

ASP .NET .Application .Fundamentals . 25
The Canonical Hello World Application . 26

Mixing HTML with Executable Code . 31

Server-Side Executable Blocks . 33

The ASP .NET Compilation Model . 41

Coding Options . 43

ASP .NET 1 .x Style . 43

Modern ASP .NET Style . 44

The ASP .NET HTTP Pipeline . 46

The IIS 5 .x and IIS 6 .x Pipeline . 46

The IIS 7 .x Integrated Pipeline . 47

Tapping the Pipeline . 48

Visual Studio and ASP .NET . 50

Local IIS Web Sites . 50

File System–Based Web Sites . 50

www.free-ebooks-download.org

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2010925074

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCT 5 4 3 2 1 0

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, DirectX, Expression, Expression Blend, Hotmail, IntelliSense, Internet
Explorer, MS, MSDN, MS-DOS, MSN, SharePoint, Silverlight, SQL Server, Visual Basic, Visual C#, Visual Studio,
Win32, Windows, Windows Live, Windows NT, Windows Server and Windows Vista are either registered trademarks
or trademarks of the Microsoft group of companies. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Maria Gargiulo
Project Editor: Melissa von Tschudi-Sutton and Maria Gargiulo
Editorial Production: Waypoint Press, www.waypointpress.com
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
 CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-61997

www.free-ebooks-download.org

Dedicated to Sally Bronson Harrison and

Gene Harrison, my second mom and dad.

www.free-ebooks-download.org

 . . v

Contents at a Glance

Part I . Fundamentals
 . 1 Web Application Basics . 3
 . 2 ASP.NET Application Fundamentals . 25
 . 3 The Page Rendering Model. 59
 . 4 Custom Rendered Controls . 79
 . 5 Composite Controls . 101
 . 6 Control Potpourri . 119

Part II . Advanced .Features
 . 7 A Consistent Look and Feel . 143
 . 8 Configuration . 163
 . 9 Logging In . 181
 . 10 Data Binding . 207
 . 11 Web Site Navigation. 237
 . 12 Personalization . 257
 . 13 Web Parts. 267

Part III . Caching .and .State .Management
 . 14 Session State . 291
 . 15 Application Data Caching . 321
 . 16 Caching Output. 343

Part IV .Diagnostics .and .Plumbing
 . 17 Diagnostics and Debugging . 363
 . 18 The HttpApplication Class and HTTP Modules 385
 . 19 HTTP Handlers. 405

vi Contents at a Glance

Part V . Dynamic .Data, .XBAP, .MVC, .AJAX, .and .Silverlight
 . 20 Dynamic Data . 423
 . 21 ASP.NET and WPF Content . 433
 . 22 The ASP.NET MVC Framework . 449
 . 23 AJAX . 473
 . 24 Silverlight and ASP.NET . 513

Part VI .Services .and .Deployment
 . 25 Windows Communication Foundation . 555
 . 26 Deployment . 575

 . . vii

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I . Fundamentals

 . 1 Web Application Basics . 3
HTTP Requests . 4

HTTP Requests from a Browser . 5

Making HTTP Requests Without a Browser . 6

Hypertext Markup Language . 8

Dynamic Content . 9

HTML Forms . 10

Common Gateway Interface: Very Retro . 11

The Microsoft Environment as a Web Server . 12

Internet Information Services . 12

Internet Services Application Programming Interface DLLs 13

Running Internet Information Services . 14

Classic ASP: Putting ASP .NET into Perspective . 18

Web Development Concepts . 21

ASP .NET . 22

Chapter 1 Quick Reference . 23

 . 2 ASP.NET Application Fundamentals . 25
The Canonical Hello World Application . 26

Mixing HTML with Executable Code . 31

Server-Side Executable Blocks . 33

The ASP .NET Compilation Model . 41

Coding Options . 43

ASP .NET 1 .x Style . 43

Modern ASP .NET Style . 44

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

The ASP .NET HTTP Pipeline . 46

The IIS 5 .x and IIS 6 .x Pipeline . 46

The IIS 7 .x Integrated Pipeline . 47

Tapping the Pipeline . 48

Visual Studio and ASP .NET . 50

Local IIS Web Sites . 50

File System–Based Web Sites . 50

FTP Web Sites . 51

Remote Web Sites . 51

Hello World and Visual Studio . 52

Chapter 2 Quick Reference . 58

 . 3 The Page Rendering Model. 59
Rendering Controls as Tags . 59

Packaging the UI as Components . 62

The Page Using ASP .NET . 63

The Page’s Rendering Model . 64

The Page’s Control Tree . 66

Adding Controls Using Visual Studio . 67

Layout Considerations . 77

Chapter 3 Quick Reference . 78

 . 4 Custom Rendered Controls . 79
The Control Class . 79

Visual Studio and Custom Controls . 81

A Palindrome Checker . 88

Controls and Events . 92

HtmlTextWriter and Controls . 95

Controls and ViewState . 97

Chapter 4 Quick Reference . 100

 . 5 Composite Controls . 101
Composite Controls versus Rendered Controls . 101

Custom Composite Controls . 102

User Controls . 110

When to Use Each Type of Control . 117

Chapter 5 Quick Reference . 117

 Table of Contents ix

 . 6 Control Potpourri . 119
Validation . 119

How Page Validation Works . 125

Other Validators . 127

Validator Properties . 128

Image-Based Controls . 128

TreeView . 132

MultiView . 136

Chapter 6 Quick Reference . 139

Part II . Advanced .Features

 . 7 A Consistent Look and Feel . 143
Managing User Interface Consistency . 143

ASP .NET Master Pages . 145

Themes . 155

Skins . 159

Chapter 7 Quick Reference . 161

 . 8 Configuration . 163
Windows Configuration . 164

 .NET Configuration . 164

Machine .Config . 165

Configuration Section Handlers . 165

Web .Config . 167

Managing Configuration in ASP .NET 1 .x . 168

Managing Configuration in Later Versions of ASP .NET 169

Configuring ASP .NET from IIS . 174

Chapter 8 Quick Reference . 180

 . 9 Logging In . 181
Web-Based Security . 182

Securing IIS . 183

Basic Forms Authentication . 184

ASP .NET Authentication Services . 189

The FormsAuthentication Class . 190

An Optional Login Page . 191

Managing Users . 194

x Table of Contents

ASP .NET Login Controls . 200

Authorizing Users . 203

Chapter 9 Quick Reference . 206

 . 10 Data Binding . 207
Representing Collections Without Data Binding . 207

Representing Collections with Data Binding . 208

ListControl-Based Controls . 209

TreeView Control . 209

Menu Control . 209

FormView Control . 209

GridView Control . 209

DetailsView Control . 210

DataList Control . 210

Repeater Control . 210

Simple Data Binding . 210

Accessing Databases . 215

The .NET Database Story . 215

Connections . 215

Commands . 217

Managing Results . 218

ASP .NET Data Sources . 221

Other Data-Bound Controls . 226

LINQ . 234

Chapter 10 Quick Reference . 236

 . 11 Web Site Navigation. 237
ASP .NET Navigation Support . 237

Navigation Controls . 237

XML Site Maps . 239

The SiteMapProvider . 239

The SiteMap Class . 239

The SiteMapNode . 240

Using Navigation Controls . 241

The Menu and TreeView Controls . 241

The SiteMapPath Control . 241

Site Map Configuration . 242

Building Navigable Web Sites . 243

 Table of Contents xi

Trapping the SiteMapResolve Event . 247

Defining Custom Attributes for Each Node . 248

Security Trimming . 251

URL Mapping . 251

URL Rewriting . 255

Chapter 11 Quick Reference . 256

 . 12 Personalization . 257
Personalizing Web Visits . 257

Personalization in ASP .NET . 258

User Profiles . 258

Personalization Providers . 258

Using Personalization . 259

Defining Profiles in Web .Config . 259

Using Profile Information . 259

Saving Profile Changes . 260

Profiles and Users . 261

Chapter 12 Quick Reference . 266

 . 13 Web Parts. 267
A Brief History of Web Parts . 268

What Good Are Web Parts? . 268

Developing Web Parts Controls . 269

Web Parts Page Development . 269

Web Parts Application Development . 269

The Web Parts Architecture . 269

WebPartManager and WebZones . 270

Built-In Zones . 270

Built-In Web Parts . 271

Developing a Web Part . 280

Chapter 13 Quick Reference . 288

Part III . Caching .and .State .Management

 . 14 Session State . 291
Why Session State? . 292

ASP .NET and Session State . 292

Introduction to Session State . 293

Session State and More Complex Data . 299

xii Table of Contents

Configuring Session State . 306

Turning Off Session State . 307

Storing Session State InProc . 307

Storing Session State in a State Server . 307

Storing Session State in a Database . 308

Tracking Session State . 309

Tracking Session State with Cookies . 309

Tracking Session State with the URL . 310

Using AutoDetect . 310

Applying Device Profiles . 311

Session State Timeouts . 311

Other Session Configuration Settings . 311

The Wizard Control: An Alternative to Session State . 312

Chapter 14 Quick Reference . 320

 . 15 Application Data Caching . 321
Getting Started with Caching . 321

Using the Data Cache . 324

Impact of Caching . 325

Managing the Cache . 327

DataSets in Memory . 328

Cache Expirations . 331

Cache Dependencies . 334

The SQL Server Dependency . 336

Clearing the Cache . 338

Chapter 15 Quick Reference . 341

 . 16 Caching Output. 343
Caching Page Content . 343

Managing Cached Content . 346

Modifying the OutputCache Directive . 346

The HttpCachePolicy . 351

Caching Locations . 352

Output Cache Dependencies . 353

Caching Profiles . 353

Caching User Controls . 354

When Output Caching Makes Sense . 357

Other Cache Providers . 358

Chapter 16 Quick Reference . 359

 Table of Contents xiii

Part IV .Diagnostics .and .Plumbing

 . 17 Diagnostics and Debugging . 363
Page Tracing . 363

Tracing . 364

Trace Statements . 367

Application Tracing . 370

Enabling Tracing Programmatically . 373

The TraceFinished Event . 373

Piping Other Trace Messages . 374

Debugging with Visual Studio . 374

Error Pages . 378

Unhandled Exceptions . 381

Chapter 17 Quick Reference . 383

 . 18 The HttpApplication Class and HTTP Modules 385
The Application: A Rendezvous Point . 385

Overriding HttpApplication . 387

HttpModules . 394

Global .asax vs . HttpModules . .404

Chapter 18 Quick Reference . .404

 . 19 HTTP Handlers. 405
ASP .NET Request Handlers . 405

The Built-in Handlers . 407

Handlers and IHttpHandler . 410

Handlers and Session State . 416

Generic Handlers (ASHX Files) . 417

Chapter 19 Quick Reference . 419

Part V . Dynamic .Data, .XBAP, .MVC, .AJAX, .and .Silverlight

 . 20 Dynamic Data . 423
Dynamic Data Controls . 424

Dynamic Data Details . 428

Chapter 20 Quick Reference . 432

xiv Table of Contents

 . 21 ASP.NET and WPF Content . 433
Improving Perceived Performance by Reducing Round-Trips 433

What Is WPF? . 434

How Does WPF Relate to the Web? . 436

Loose XAML Files . 437

XBAP Applications . 438

WPF Content and Web Applications . 442

What About Silverlight? .448

Chapter 21 Quick Reference . .448

 . 22 The ASP.NET MVC Framework . 449
The Model-View-Controller (MVC) Architecture . 449

ASP .NET and MVC . 452

ASP .NET MVC vs . Web Forms . 453

MVC and Testing . 454

How MVC Plays with ASP .NET . 455

Following the Request Path . 455

Chapter 22 Quick Reference . 472

 . 23 AJAX . 473
Rich Internet Applications . 473

What Is AJAX? . 474

ASP .NET and AJAX . 475

Reasons to Use AJAX . 476

Real-World AJAX . 477

AJAX in Perspective . 478

ASP .NET Server-Side Support for AJAX . 478

ScriptManager Control . 479

ScriptManagerProxy Control . 479

UpdatePanel Control . 479

UpdateProgress Control . 480

Timer Control . 480

AJAX Client Support . 480

ASP .NET AJAX Control Toolkit . 480

AJAX Control Toolkit Potpourri . 481

Getting Familiar with AJAX . 484

The Timer . 490

Updating Progress . 497

 Table of Contents xv

Extender Controls . 501

The AutoComplete Extender . 501

A Modal Pop-up Dialog-Style Component . 508

Chapter 23 Quick Reference . 512

 . 24 Silverlight and ASP.NET . 513
Web Applications Mature . 514

What Is Silverlight? . 515

Creating a Silverlight Application . 517

Architecture . 521

XAML . 522

Constructing the Visual Tree . 522

XAML and Namespaces . 523

Compiling the Silverlight Application . 524

Adding Silverlight Content to a Web Page . 524

Using the Object Tag . 524

Using the ASP .NET Silverlight Server-Side Control 525

Using the JavaScript Function . 526

Controls and Events . 526

Routed Events . 526

Silverlight Controls and Class Members . 527

Silverlight and Layout . 528

Integrating with HTML . 533

Animations . 535

WCF Services and Silverlight . 542

Chapter 24 Quick Reference . 551

Part VI .Services .and .Deployment

 . 25 Windows Communication Foundation . 555
Distributed Computing Redux . 555

A Fragmented Communications API . 556

WCF for Connected Systems . 556

WCF Constituent Elements . 557

Endpoints . 557

Channels . 558

Behaviors . 558

Messages . 559

xvi Table of Contents

How WCF Plays with ASP .NET . 560

Side-by-Side Mode . 560

ASP .NET Compatibility Mode . 561

Writing a WCF Service . 561

Building a WCF Client . 567

Chapter 25 Quick Reference . 573

 . 26 Deployment . 575
Visual Studio Web Sites . 576

HTTP Web Sites . 576

FTP Web Sites . 576

File System Web Sites . 577

Precompiling . 577

Precompiling for Performance . 577

Precompiling for Deployment . 578

Visual Studio 2010 Deployment Support . 578

Chapter 26 Quick Reference . 585

 . Index . 587

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 . . xvii

Acknowledgments
The last time I wrote the acknowledgments for this book, I mentioned how my son, Ted, had
written a Father’s Day card for me in HTML . Ted is in college now, and I can remember his
searching out and applying for schools during the last couple of years of high school . He did
it almost entirely online, over the Web . How different that was from my experience applying
to schools!

The Web permeates our social infrastructure . Whether you’re a businessperson wanting to
increase the visibility of your business, an avid reader trying to find an out-of-print book, a
student fetching homework assignments from a school Web site, or any other producer or
consumer of information, you touch the Internet .

Publishing a book is a huge effort . My name is on the lower right corner of the cover as the
author, but I did only some of the work . I have so many people to thank for helping get this
book out .

Thank you, Claudette Moore, for hooking me up with Microsoft Press again . Claudette has
acted as my agent for all my work with Microsoft Press, handling the business issues so I can
be free to write . Thank you, Maria Gargiulo, for managing the project . It’s been great work-
ing with you . Thank you, Charlotte Twiss, for getting the code samples onto the CD . Thank
you, Steve Sagman, for composing the pages so beautifully . Thank you, Christina Yeager, for
copyediting the pages and making it appear that I can actually write coherent sentences,
as well as for indexing the project . You all did a wonderful job on the editing, production,
and layout . Thank you, Kenn Scribner, for providing the best technical objective eye I’ve ever
worked with . Thank you, Ben Ryan, for accepting the book proposal and hiring me to create
the book .

Thank you, Jeff Duntemann, for buying and publishing my first piece ever for PC Tech
Journal . Thank you, JD Hildebrand, for buying my second writing piece ever, and for the
 opportunity to work with you all at Oakley Publishing . Thank you, Sandy Daston, for your
support and guidance early in my writing career . Thank you to the folks at DevelopMentor
for being an excellent group of technical colleagues and a great place for learning new
 technology . Thanks to my buds at Schwab Performance Technologies .

Thanks to my evil Java twin, Pat Shepherd, and his family, Michelle, Belfie, and Bronson .
Thank you, Ted Shepherd, you’re the best son ever . Thank you, George Robbins Shepherd

xviii Acknowledgments

and Betsy Shepherd . As my parents, you guided me and encouraged me to always do my
best . I miss you both dearly .

Finally, thank you, reader, for going through this book and spending time learning ASP .NET .
May you continue to explore ASP .NET and always find new and interesting ways to handle
HTTP requests .

—George Shepherd
Chapel Hill, NC

March, 2010

 . . xix

Introduction
This book shows you how to write Web applications using Microsoft ASP .NET 4, the most
current version of the Microsoft HTTP request processing framework . Web development has
come a long way since the earliest sites began popping up on the Internet in the early 1990s .
The world of Web development offers several choices of development tools . During the past
few years, ASP .NET has evolved to become one of the most consistent, stable, and feature-
rich frameworks available for managing HTTP requests .

ASP .NET, together with Microsoft Visual Studio, includes a number of features to make your
life as a Web developer easier . For example, Visual Studio offers several project templates
that you can use to develop your site . Visual Studio also supports a number of development
modes, including using Microsoft Internet Information Services (IIS) directly to test your site
during development, using a built-in Web server, and developing your site over an FTP con-
nection . With the debugger in Visual Studio, you can run the site and step through the criti-
cal areas of your code to find problems . With the Visual Studio Designer, you can develop
effective user interfaces by dropping control elements onto a canvas to see how they appear
visually . And when you are ready to deploy your application, Visual Studio makes it easy to
create a deployment package . These are but a few of the features built into the ASP .NET
framework when paired with Visual Studio .

The purpose of this book is to tell the story of ASP .NET development . Each section presents
a specific ASP .NET feature in a digestible format with examples . The stepwise instructions
yield immediate working results . Most of the main features of ASP .NET are illustrated here
using succinct, easily duplicated examples . The examples are rich to illustrate features with-
out being overbearing . In addition to showing off ASP .NET features by example, this book
contains practical applications of each feature so that you can apply these techniques in the
real world . After reading this book and applying the exercises you’ll have a great head start
into building real Web sites that include such modern features as AJAX, WCF services, custom
controls, and master pages .

This book is organized so that you can read each chapter independently for the most part .
With the exception of Chapter 1, “Web Application Basics,” and the three chapters on server-
side controls (Chapters 3 to 5), which make sense to tackle together, each chapter serves as
a self-contained block of information about a particular ASP .NET feature . In addition, for
the sake of completeness, Chapter 1 also includes information about how IIS and ASP .NET
 interact together .

xx Introduction

Who .This .Book .Is .For
This book is targeted at several types of developers:

n Those starting out completely new to ASP.NET The text includes enough back
story to explain the Web development saga even if you’ve developed only desktop
applications .

n Those migrating from either ASP.NET 1.x, 2.0, 3.x, or even classic ASP The text
 explains how ASP .NET 4 is different from earlier versions of ASP .NET . It also includes
 references explaining differences between ASP .NET and classic ASP .

n Those who want to consume ASP.NET how-to knowledge in digestible pieces You
don’t have to read the chapters in any particular order to find the book valuable . Each
chapter stands more or less on its own (with the exception of the first chapter, which
details the fundamentals of Web applications—you might want to read it first if you’ve
never ventured beyond desktop application development) . You might find it useful to
study the chapters about server-side controls (Chapters 3 to 5) together, but it’s not
completely necessary to do so .

Getting Started
If you’ve gotten this far, you’re probably ready to begin writing some code .

Important Before beginning, make sure that:

n Visual Studio 2010 is installed on your computer .

As long as you’ve installed the development environment, you can be sure the .NET
 run-time support is installed as well .

n You have Administrator permissions on your computer .

See “Installing the C# Code Samples” later in this Introduction for more information .

n IIS is installed and running on your computer .

IIS is required to run the code samples for Chapters 1, 2, 9, and 26 . To install IIS in
Windows 7, click Start, and click Control Panel . In Control Panel, click Programs and
Features, and click Turn Windows Features On or Off . In the Windows Features dialog box,
expand Internet Information Services, select the checkboxes next to Web Management
Tools and World Wide Web Services, and click OK .

 Introduction xxi

If you attempt to install the code without IIS running, you might see an error message like
the following . To bypass this error message, click Ignore to continue installation .

The first few code examples require nothing but a text editor and a working installation of
IIS . To start, you can begin with some basic examples to illustrate the object-oriented nature
and compilation model of ASP .NET . In addition to seeing exactly how ASP .NET works when
handling a request, this is a good time to view the architecture of ASP .NET from a high level .
Next, you progress to Web form programming and begin using Visual Studio to write code—
which makes things much easier!

After learning the fundamentals of Web form development, you can see the rest of ASP .NET
through examples of ASP .NET features such as server-side controls, content caching, custom
handlers, output and data caching, and debugging and diagnostics, all the way to ASP .NET
support for Web Services .

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas . You can use this
book whether you are new to Web programming or you are switching from another Web
development platform . Use the following table to find your best starting point in this book .

If you are Follow these steps

New to Web
 development

1 . Install the code samples .

2 . Work through the examples in Chapters 1 and 2 sequentially . They
ground you in the ways of Web development . They also familiarize you
with ASP .NET and Visual Studio .

3 . Complete the rest of the book as your requirements dictate .

New to ASP .NET
and Visual Studio

1 . Install the code samples .

2 . Work through the examples in Chapter 2 . They provide a foundation
for working with ASP .NET and Visual Studio .

3 . Complete the rest of the book as your requirements dictate .

xxii Introduction

If you are Follow these steps

Migrating from earlier
versions of ASP .NET

1 . Install the code samples .

2 . Skim the first two chapters to get an overview of Web development in
the Microsoft environment and with Visual Studio 2010 .

3 . Concentrate on Chapters 3 through 26 as necessary . You might already
be familiar with some topics and might need only to see how a par-
ticular current feature differs from earlier versions of ASP .NET . In other
cases, you might need to explore a feature that is completely new in
ASP .NET 4 .

Referencing the
book after working
through the
exercises

1 . Use the index or the table of contents to find information about
 particular subjects .

2 . Read the Quick Reference section at the end of each chapter to find a
brief review of the syntax and techniques presented in the chapter .

Conventions .and .Features .in .This .Book
This book uses conventions designed to make the information readable and easy to follow .
Before you start the book, read the following list, which explains conventions you’ll see
throughout the book and points out helpful features in the book that you might want to use .

Conventions
n Each chapter includes a summary of objectives near the beginning .

n Each exercise is a series of tasks . Each task is presented as a series of steps to be
 followed sequentially .

n “Tips” provide additional information or alternative methods for completing a step
successfully .

n “Important” reader aids alert you to critical information for installing and using the
sample code on the companion CD .

n Text that you type appears in bold type, like so:

class foo
{
 System.Console.WriteLine(“HelloWorld”);
}

n The directions often include alternative ways of accomplishing a single result . For
 example, you can add a new item to a Visual Studio project from either the main menu
or by right-clicking in Solution Explorer .

n The examples in this book are written using C# .

 Introduction xxiii

Other Features
n Some text includes sidebars and notes to provide more in-depth information about the

particular topic . The sidebars might contain background information, design tips, or
features related to the information being discussed . They might also inform you about
how a particular feature differs in this version of ASP .NET from earlier versions .

n Each chapter ends with a Quick Reference section that contains concise reminders of
how to perform the tasks you learned in the chapter .

Prerelease .Software
This book was reviewed and tested against the Visual Studio 2010 release candidate one
week before the publication of this book . We reviewed and tested the examples against
the Visual Studio 2010 release candidate . You might find minor differences between the
 production release and the examples, text, and screenshots in this book . However, we expect
them to be minimal .

Hardware .and .Software .Requirements
You need the following hardware and software to complete the practice exercises in this
book:

Important The Visual Studio 2010 software is not included with this book! The CD-ROM
 packaged in the back of this book contains the code samples needed to complete the exercises .
The Visual Studio 2010 software must be purchased separately .

n Windows 7; Windows Server 2003; Windows Server 2008; or Windows Vista

n Internet Information Services (included with Windows) . You will need IIS 5 .1 or later .
IIS 7 .5 is the latest release at the time of this writing .

n Microsoft Visual Studio 2010 Ultimate, Visual Studio 2010 Premium, or Visual Studio
2010 Professional

n Microsoft SQL Server 2008 Express (included with Visual Studio 2010) or SQL Server
2008 (SQL Server 2008 R2 is the latest release at the time of this writing)

n 1 .6-GHz Pentium or compatible processor

n 1 GB RAM for x86

n 2 GB RAM for x64

n An additional 512 MB RAM if running in a virtual machine

xxiv Introduction

n DirectX 9–capable video card that runs at 1024 × 768 or higher display resolution

n 5400-RPM hard drive (with 3 GB of available hard disk space)

n DVD-ROM drive

n Microsoft mouse or compatible pointing device

n 5 MB of available hard disk space to install the code samples

You also need to have Administrator access to your computer to configure Microsoft SQL
Server 2008 Express .

Code .Samples
The companion CD inside this book contains the code samples, written in C#, that you use
as you perform the exercises in the book . By using the code samples, you won’t waste time
creating files that aren’t relevant to the exercise . The files and the step-by-step instructions
in the lessons also help you learn by doing, which is an easy and effective way to acquire and
remember new skills .

Digital Content for Digital Book Readers
If you bought a digital-only edition of this book, you can enjoy select content from the print
edition’s companion CD . Visit http://go.microsoft.com/fwlink/?LinkId=186954 and look for the
Examples link to get your downloadable content .

Installing the C# Code Samples
Follow the steps here to install the C# code samples on your computer so that you can use
them with the exercises in this book .

Important Before you begin, make sure that you have

n Administrator permissions on your computer .

n IIS installed and running on your computer .

Chapters 1, 2, 9, and 26 include information about using IIS, and their companion code samples
require IIS . The code sample installer modifies IIS . Working with IIS requires that you have admin-
istration privileges on your machine . If you are using your own computer at home, you probably
have Administrator rights . If you are using a computer in an organization and you do not have
Administrator rights, please consult your computer support or IT staff .

 Introduction xxv

To install IIS in Windows 7, click Start, and click Control Panel . In Control Panel, click
Programs and Features, and click Turn Windows Features On or Off . In the Windows
Features dialog box, expand Internet Information Services, select the checkboxes next to
Web Management Tools and World Wide Web Services, and click OK .

If you attempt to install the code without IIS running, you might see an error message like
the following . To bypass this error message, click Ignore to continue installation .

 . 1 . . Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive .

Note A menu screen for the CD should open automatically . If it does not appear, open
Computer on the desktop or the Start menu, double-click the icon for your CD-ROM drive,
and then double-click StartCD .exe .

 . 2 . . In the companion CD UI, select Code from the menu on the left . The InstallShield
Wizard will guide you through the installation process .

 . 3 . . Review the end-user license agreement . If you accept the terms, select the accept
 option, and then click Next .

 . 4 . . Accept the default settings to install the code .

The code samples are installed to the following location on your computer:

\C\Microsoft Press\ASP.NET 4 Step by Step\

Additionally, if you have IIS running and you open the Internet Information Services conole,
you will see that the installer creates a virtual directory named aspnet4sbs under the Default
Web Site . Below the aspnet4sbs virtual directory, various Web applications are created .

xxvi Introduction

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter .
When it’s time to use a code sample, the book lists the instructions for how to open the files .
Many chapters begin projects completely from scratch so that you can understand the entire
development process . Some examples borrow bits of code from previous examples .

Here’s a comprehensive list of the code sample projects:

Project Description

Chapter 1

HelloWorld .asp, Selectnoform .asp,
Selectfeature .htm, Selectfeature2 .htm,
Selectfeature .asp

Several Web resources illustrating different examples of
raw HTTP requests

WebRequestor A simple application that issues a raw HTTP request

Chapter 2

HelloWorld, HelloWorld2, HelloWorld3,
HelloWorld4, HelloWorld5, partial1 .cs,
partial2 .cs

Web resources illustrating compilation models and
 partial classes in ASP .NET

Chapter 3

BunchOfControls .htm,
BunchOfControls .asp,
BunchOfControls .aspx

Web resources illustrating rendering control tags

ControlsORama Visual Studio–based project illustrating Visual Studio
and server-side controls

Chapter 4

ControlsORama Extends the example begun in Chapter 3 . Illustrates
 creating and using rendered server-side controls

Chapter 5

ControlsORama Extends the example used in Chapter 4 . Illustrates
 creating and using composite server-side controls and
user controls

Chapter 6

ControlPotpourri Illustrates control validation, the TreeView, the Image,
the ImageButton, the ImageMap, and the MultiView/
View controls

Chapter 7

MasterPageSite Illustrates developing a common look and feel
 throughout multiple pages in a single Web application
using master pages, themes, and skins

 Introduction xxvii

Project Description

Chapter 8

ConfigORama Illustrates configuration in ASP .NET . Shows how
to manage the web .config file, how to add new
 configuration elements, and how to retrieve those
 configuration elements .

Chapter 9

SecureSite Illustrates Forms Authentication and authorization in a
Web site

Login .aspx, OptionalLogin .aspx,
Web .Config,
Web .ConfigForceAuthentication,
Web .ConfigForOptionalLogin

Web resources for illustrating Forms Authentication at
the very barest level

Chapter 10

DataBindORama Illustrates data binding to several different controls,
 including the GridView . Illustrates the DataSource
 controls . Also illustrates loading and saving data sets
as XML and XML schema

Chapter 11

NavigateMeSite Illustrates ASP .NET navigation features

Chapter 12

MakeItPersonal Illustrates ASP .NET personalization features

Chapter 13

UseWebParts Illustrates using Web Parts in a Web application

Chapter 14

SessionState Illustrates using session state in a Web application

Chapter 15

UseDataCaching Illustrates caching data to improve performance

Chapter 16

OutputCache Illustrates caching output to improve performance

Chapter 17

DebugORama Illustrates debugging and tracing Web applications

Chapter 18

UseApplication Illustrates using the global application object and HTTP
modules as a rendezvous point for the application .
Illustrates storing globally scoped data and handling
application-wide events

xxviii Introduction

Project Description

Chapter 19

CustomHandlers Illustrates custom HTTP handlers, both as separate
 assemblies and as ASHX files

Chapter 20

DynamicDataLinqToSQLSite Illustrates how ASP .NET Dynamic works to create
 data-driven sites

Chapter 21

XAMLORama Illustrates how to use loose XAML in a site

XBAPORama Illustrates how to create an XAML-based Browser
Application (XBAP)

Chapter 22

MVCORama Illustrates how to create and manage an MVC-based site,
complete with a database

Chapter 23

AJAXORama Illustrates using AJAX to improve the end user
 experience

Chapter 24

SilverlightSite Illustrates how to include Silverlight content in an
ASP .NET site

SilverlightLayout Shows how Silverlight layout panels work

SilverlightAnimations Illustrates using animations in Silverlight

SilverlightAndWCF Shows how a Silverlight component can communicate to
a Web site via WCF

Chapter 25

WCFQuotesService Illustrates how to create and consume an ASP .NET WCF
service

Chapter 26

DeployThisApplication Illustrates the new ASP .NET Packaging system, which
facilitates deployment

All these projects are available as complete solutions for the practice exercises (in case you
need any inspiration) .

 Introduction xxix

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer:

 . 1 . . In Control Panel, open Add Or Remove Programs .

 . 2 . . From the list of Currently Installed Programs, select Microsoft ASP .NET 4 Step by Step .

 . 3 . . Click Remove .

 . 4 . . Follow the instructions that appear to remove the code samples .

Support .for .This .Book
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD . As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article . Microsoft Press provides support for books and companion CDs at
the following Web site:

http://www.microsoft.com/learning/support/books/

If you have comments, questions, or ideas regarding the book or the companion CD, or
questions that are not answered by visiting the sites previously mentioned, please send them
to Microsoft Press by sending an e-mail message to mspinput@microsoft.com .

Please note that Microsoft software product support is not offered through the preceding
address .

We Want to Hear from You
We welcome your feedback about this book . Please share your comments and ideas through
the following short survey:

http://www.microsoft.com/learning/booksurvey

Your participation helps Microsoft Press create books that better meet your needs and your
standards .

Note We hope that you will give us detailed feedback in our survey . If you have questions
about our publishing program, upcoming titles, or Microsoft Press in general, we encourage you
to interact with us using Twitter at http://twitter.com/MicrosoftPress . For support issues, use only
the e-mail address shown earlier .

Microsoft ASP.NET 4 Step by Step

 . . 1

Part I

Fundamentals

In this part:

Web Application Basics . 3

ASP.NET Application Fundamentals . 25

The Page Rendering Model . 59

Custom Rendered Controls . 79

Composite Controls . 101

Control Potpourri . 119

 . . 3

Chapter 1

Web Application Basics
After completing this chapter, you will be able to

n Interpret HTTP requests .

n Use the Microsoft .NET Framework to make HTTP requests without a browser .

n Interpret HTML .

n Work with Internet Information Services (IIS) .

n Produce dynamic Web content without using Microsoft ASP .NET yet .

This chapter covers the fundamentals of building a Web-based application . Unlike the
 development of most desktop applications, in which many of the parts are available locally
(as components on the user’s hard disk drive), developing a Web application requires getting
software parts to work over a widely distributed network using a disconnected protocol . The
technologies underlying ASP .NET have been around for a long time, but ASP .NET puts them
together in a way that makes Web development very approachable .

This chapter covers three topics necessary for you to understand to work with ASP .NET:

n How HTTP requests work

n How HTML works

n How HTTP requests are handled on IIS, the Microsoft production Web server

Even though ASP .NET makes developing Web applications far easier than it was earlier,
 having a solid understanding of how the individual components actually work is important
and can help you make sense of all parts of Web application development . For example,
when you are tracking down a stray HTTP request or trying to figure out why a section of
your page is appearing in the wrong font in a client’s browser, it’s helpful to know how HTTP
and HTML work together to deliver the page to the client . And when you write a custom
control for a Web page, because custom controls often require that you write the rendering
code manually and ensure that the HTML tags emitted by the control occur in exactly the
right order, you need to understand HTML .

Understanding of the three technologies underlying ASP .NET frames the rest of the system .
As you study ASP .NET, these pieces will undoubtedly fall into place .

4 Part I Fundamentals

Important To install the code samples for this book, you must have Administrator rights on
your computer . If you are using your own computer, you probably have Administrator rights . If
you are using a computer in an organization and you do not have Administrator rights, please
consult your computer support or IT staff . See the “Code Samples” section in the Introduction for
more information .

Important The code samples for this chapter on the companion CD require IIS support to
 execute . See the “Code Samples” section in the Introduction for important information on
 running the examples for this chapter .

HTTP .Requests
The communication mechanism with which Web browsers talk to Web sites is named
Hypertext Transfer Protocol (HTTP) . The World Wide Web as we know it today began as a
research project at CERN in Switzerland . In those days, the notion of hypertext— documents
linked together arbitrarily—was becoming increasingly popular . Applications such as
Hypercard from Apple Computer introduced hypertext applications to a wider audience . If
documents could then be linked over a network, that would revolutionize publishing . That’s
the reason for the development of HTTP, which lies on top of TCP/IP as an application layer .

In its original form, HTTP was meant to transfer hypertext documents . That is, it was
 originally intended simply to link documents together without consideration for anything like
the Web-based user interfaces that are the staple of modern Web sites . The earliest versions
of HTTP supported a single GET request to fetch the named resource . It then was the server’s
job to send the file as a stream of text . After the response arrived at the client’s browser, the
connection terminated . The earliest versions of HTTP supported only transfer of text streams
and did not support any other sort of data transfer .

The first formal specification for HTTP was version 1 .0 and was published in the mid-1990s .
HTTP 1 .0 added support for more complex messaging beyond a simple text transfer pro-
tocol . HTTP grew to support different media (specified by the Multipurpose Internet Mail
Extensions) . The current version of HTTP is version 1 .1 .

As a connection protocol, HTTP is built around several basic commands . The most important
ones you see in developing ASP .NET applications are GET and POST, but other important
HTTP commands not as commonly used within ASP .NET include HEAD and PUT .

GET retrieves the information identified by the Uniform Resource Identifier (URI) specified
by the request . The HEAD command retrieves only the header information identified by the
URI specified by the request (that is, it does not return a message body) . You use the POST
method to make a request to the server that might cause side effects, such as when you send
information to the server for it to process . PUT is also used to send information to the server,

 Chapter 1 Web Application Basics 5

but in the sense of documents and records versus request parameters, as is typically the case
for POST when related to HTML page requests . You make most initial contacts to a page using
a GET command, and you commonly handle subsequent interactions using POST commands .

HTTP Requests from a Browser
For example, look at the request that is sent from a browser to fetch the helloworld .htm
 resource from the virtual directory aspnet4sbs running on localhost . (I cover the concept
of a virtual directory later; for now just imagine a virtual directory as the location of a Web
 application that everyone can access .) Here is a sample (fictitious) HTTP server request:

GET /aspnet4sbs/helloworld.htm HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ... , */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;NET CLR 3.0.04506.30)
Host: localhost:80
Connection: Keep-Alive

If you would like to see the actual data going back and forth, several TCP monitors are
 available . A good one is TcpTrace, found at http://www.pocketsoap.com/tcptrace/ . You can
find instructions for its use there as well .

To issue a request to a Web server, the browser creates the HTTP request using the URI along
with other information (such as header information and the requested file name) . The header
information in the request includes details about the operating environment of the browser
and some other information that is useful to the server . It then sends the request to the
server identified by the host HTTP header . When the server receives this request, it returns
the requested resource as a text stream . The browser then parses it and formats the con-
tents . The following code shows the response provided by the server when asked for a simple
HelloWorld .htm file . Typically, you don’t see all the header information when viewing the
resource through a browser, but a good TCP tracing utility such as TcpTrace shows it to you .
When you look at the tracing facilities of ASP .NET later on, this header information is visible .

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
X-Powered-By: ASP.NET
Date: Thu, 01 Nov 2007 23:44:04 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Mon, 22 Oct 2007 21:54:20 GMT
ETag: "04e9ace185fc51:bb6"
Content-Length: 130
<html>
 <body>
 <h1> Hello World </h1>
 Nothing really showing here yet, except some HTML...
 </body>
</html>

6 Part I Fundamentals

The first line indicates the protocol (HTTP version 1 .1) and the return code (200, meaning
“OK”) . The rest of the response (until the first <html> tag) is information about the time of
the request, the last time the file was modified, and what kind of content is provided . This
information is useful later when you examine such issues as page caching and detecting
browser capabilities . The content following the response header information is literally the
HTML file sent by the server .

Making HTTP Requests Without a Browser
In addition to being a framework for building Web applications, the .NET development
 environment includes classes for making HTTP requests in the raw . The WebRequest class
includes a member named GetResponse that sends a request to the address specified by the
Uniform Resource Locator (URL) . To get a feeling for how to make direct requests to a Web
server without a browser, try compiling and then running this short program that fetches the
home page for Microsoft .com .

Building a simple HTTP requestor

 . 1 . . Start Visual Studio .NET by clicking New, Project on the main menu . In the New Project
dialog box, click Console Application and name the application WebRequestorApp, as
shown in the following graphic:

Visual Studio generates a blank Console program for you .

 Chapter 1 Web Application Basics 7

 . 2 . . Add the code necessary to make a Web request to the program . Visual Studio places
the entry point of the Console application in a file named Program .cs . (This file is the
code that appears in the code window by default .) The code you add for making a Web
request is shown in bold type in the following lines of code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;
namespace WebRequestorApp
{
 class Program
 {
 static void Main(string[] args)
 {
 WebRequest req =
 WebRequest.Create
 ("http://www.microsoft.com");
 WebResponse resp = req.GetResponse();
 StreamReader reader =
 new StreamReader(resp.GetResponseStream(),
 Encoding.ASCII);
 Console.WriteLine(reader.ReadToEnd());
 }
 }
}

 . 3 . . Run the application by clicking Debug, Start Without Debugging on the main menu .
Visual Studio starts a Console for you and runs the program . After a couple of
 moments, you will see some HTML on your screen .

Of course, the HTML isn’t meant for human consumption . That’s what a browser is for .
However, this example does show the fundamentals of making a Web request—and you can
see exactly what comes back in the response .

In this case, the request sent to the server is much smaller than a POST request would be .
WebRequest.GetResponse doesn’t include as much information in the request—just the
 requisite GET followed by the URI, host information, and connection type:

GET /aspnet2sbs/helloworld.htm HTTP/1.1
Host: localhost:80
Connection: Keep-Alive

The fundamental jobs of most browsers are (1) to package a request and send it to the server
represented in the URI, and (2) to receive the response from the server and render it into a
useful form . The response usually comes back as a text stream marked up with HTML tags .
The next section discusses HTML .

8 Part I Fundamentals

Hypertext .Markup .Language
In the course of looking at ASP .NET, you see quite a bit of HTML . Most of it is generated by
the ASP .NET server-side controls . Some of it you write yourself just to create the basic page
you’re looking for . However, it’s also important to understand HTML because you might want
to write your own server-side control from scratch, and at other times you might need to
tweak or debug the output of your ASP .NET application .

Most HTTP requests result in a stream of text returning to the program issuing the request .
The world has pretty much agreed that HTML is the language to use for formatting
 documents, and all browsers understand HTML .

The first release of HTML worth using was version 2 .0 . Version 3 .2 introduced new features,
such as tables, text flow, applets, and superscripts and subscripts, while providing backward
compatibility with the existing HTML 2 .0 standard .

The bottom line is that a competent browser and well-structured HTML form the basis of a
user interface development technology . And because HTML is understood by browsers run-
ning on a variety of platforms, the door was open for implementing a worldwide interactive
computing platform . The other key besides a mature version of HTML that made this happen
was the ability of servers to adapt their output to accommodate the requests of specific users
at run time .

For example, the following HTML stream renders an HTML page containing a button and
a selection list filled with options . (This file is named SelectNoForm .htm in the collection of
 examples for this chapter .)

<html>
 <body>
 <h2>Hello there. What's your favorite .NET feature?</h2>
 <select name='Feature'>
 <option> Type-Safety</option>
 <option> Garbage collection</option>
 <option> Multiple syntaxes</option>
 <option> Code Access Security</option>
 <option> Simpler threading</option>
 <option> Versioning purgatory</option>
 </select>

 <input type=submit name='Lookup' value='Lookup'></input>

 </body>
</html>

Note You actually surf to an HTML file that you write in subsequent chapters . Getting to that
point is a bit involved, so for now, you can trust that the HTML renders in this fashion .

 Chapter 1 Web Application Basics 9

Figure 1-1 shows how the page looks when rendered by the browser .

FIGURE .1-1 . A simple HTML page showing a selection tag (rendered here as a Windows selection list) and a
submission button .

This is a static page . Even though it has a selection list and a button, they don’t do anything
worthwhile . You can pull down the selection list and work with it inside the browser . You can
click the button, but all the action happens locally . That’s because the server on the other
end needs to support dynamic content .

Dynamic .Content
The earliest Web sites were built primarily using static HTML pages . That is, you could surf to
some page somewhere and read the HTML document living there . Whereas at that time the
ability to do this was pretty amazing, HTML eventually evolved to be capable of much more
than simply formatting text .

For example, HTML includes tags such as <select>and </select> that browsers interpret as
a Windows selection list control, called a drop-down list in ASP .NET . The first tag, <select>,
is called the opening tag while the second, </select>, is called the closing tag . Tags can con-
tain other tags, as you saw earlier with the <option></option> tags that provide content
for the drop-down list . Tags also can have attributes, which are used to modify or tailor the
behavior of the tag . Various attributes applied to the <input></input> tags cause browsers
to draw text boxes and buttons . HTML provides a special tag, <form>, that groups other tags
 designed to return information to the server for processing .

10 Part I Fundamentals

HTML Forms
HTML includes the <form></form> opening and closing tags for notifying the browser that
a section of HTML includes tags representing controls the user will interact with to eventually
return information to the server . You use the <form> tag to specify how a Web document
will handle input from the end user (not just output) . The contents of the form, which is to
say the data contained in the input controls, are “posted back” to the server for processing .
This action is commonly called a postback . This is why the typical HTTP use case for an HTML
document is GET, which initially retrieves the document, and then POST (or a modified form
of GET), which returns data to the server, if necessary .

The <form> tag usually sandwiches a set of tags specifying user input controls . The
 following shows the same feature selection page you saw earlier but with the <form> tag
added (the code is from the file named SelectFeature2 .htm in sample code on the book’s
companion CD):

<html>
 <body>
 <form action="http://localhost/HttpHandlers/selectfeature2.htm"
 method="get">
 <h2>Hello there. What's your favorite .NET feature?</h2>
 <select name='Feature'>
 <option> Type-Safety</option>
 <option> Garbage collection</option>
 <option> Multiple syntaxes</option>
 <option> Code Access Security</option>
 <option> Simpler threading</option>
 <option> Versioning purgatory</option>
 </select>

 <input type=submit name='Lookup' value='Lookup'></input>

 </form>
 </body>
</html>

If you’d like to see this work right away, type this code into a file named SelectFeature2 .htm
and save it to the directory c:\inetpub\wwwroot . Surf to the file by typing http://localhost/
selectfeature2 .htm in your browser’s address bar .

The <form> tag includes several attributes that you can set to control how the page behaves .
In the preceding example, notice that the <form> tag sets the action attribute, which indi-
cates which server receives the form’s contents . In the absence of the action attribute, the
current document URL is used .

The other attribute used in the HTML is the method attribute . The method attribute specifies
the HTTP method used when submitting the form and therefore dictates how the form data

 Chapter 1 Web Application Basics 11

is returned to the server . The method employed in the example is GET because it’s the first
request to the server . If you select the last option (Versioning Purgatory), and then click
Lookup, the form’s GET method causes the form’s input control contents to be appended to
the URL, like so:

http://localhost/SelectFeature2.htm?Feature=Versioning+purgatory&Lookup=Lookup

This modified URL, often called a query string, is then sent to the server .

The form’s POST method causes the form contents to be sent to the server in the body of a
returned HTTP packet, as you see here:

POST /SelectFeature2.htm HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ... , */*
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;NET CLR 3.0.04506.30)
Host: localhost:80
Content-Length: 42
Connection: Keep-Alive
Cache-Control: no-cache

Feature=Versioning+purgatory&Lookup=Lookup

Adding the <form> tag to the body of the document gets you part of the way to having
an HTTP application that actually interacts with a user . Now you need a little more support
on the server end . When you click the Lookup button, the browser actually forces another
round-trip back to the server (although in this case, it only performs an HTTP GET command
to refetch the document because you specified this in the form’s method attribute) .

At this point, a normal HTTP GET command returns only the document . In a truly interactive
environment, the server on the other end modifies the content as requests go back and forth
between the browser and the server .

For example, imagine that the user makes an initial GET request for the resource, selects a
feature from the selection list, and then clicks the Lookup button . In an interactive applica-
tion, the browser must make a second round-trip to the server with a new request that in-
cludes for processing the user’s inputs . The server must examine the request coming from
the browser and figure out what to do about it . This is when the server begins to play a much
more active role . Depending on the platform involved, a server can handle the postback in
several different ways—through such programs as the Common Gateway Interface or IIS .

Common Gateway Interface: Very Retro
The earliest Web servers supporting dynamic Web content did so through the Common
Gateway Interface (CGI) . CGI was the earliest standard for building Web servers . CGI

12 Part I Fundamentals

 programs execute in real time and change their output based on the state of the application
and the requests coming in . Each request coming into a Web server running CGI runs a sepa-
rate instance of a program to respond . The application can run any sort of operation, includ-
ing looking up data in a database, accepting credit card numbers, and sending out formatted
information .

The Microsoft Environment as a Web Server
When using Microsoft operating systems to host Web content, it’s too expensive to start up
a new process for each request (as does CGI) . Microsoft’s solution is to have a single daemon
process (which in the Windows operating system is called a service) monitor port 80 for in-
coming network packets and load dynamic-link libraries (DLLs) to handle separate requests
when the content needs to change . Microsoft’s standard Web platform is based on Internet
Information Services (IIS) .

Note When you create and edit Web applications using Microsoft Visual Studio 2010, you can
load them from the file system and from IIS (as well as by a few other means) . If you load your
Web application using IIS, IIS acts as the Web server, as you’d expect . But when you load a Web
application from the file system, which application serves HTML (or ASP .NET) documents? As
it happens, starting with Visual Studio 2005, you can use a special development Web server to
simplify debugging and administration . Based on a Web server named Cassini, the develop-
ment server can serve HTML and ASP .NET pages just as effectively as IIS can for development
purposes . However, keep in mind that for robustness and security IIS is Microsoft’s professional-
grade Web server and is the intended target for your ASP .NET Web application . And although
the development Web server rather faithfully mimics IIS, it isn’t an exact duplicate and some dif-
ferences do arise when moving Web applications between the two . Most often those differences
are related to security and permissions .

Internet Information Services
Fundamentally, all Web application environments work the same way . No matter what
 hardware/software platform you use, some piece of software is required on the server to
monitor port 80 (typically) for incoming HTTP requests . When a request arrives, it’s the
 server’s job to somehow respond to the request in a meaningful way . In Microsoft operat-
ing systems, IIS is by far the most widely used watchdog intercepting HTTP requests on port
80, the usual inbound port for HTTP requests . Internet servers use other ports as well . For
 example, HTTPS (Secure HTTP) uses port 443 . However, right now you are mostly interested
in normal Internet traffic over port 80 .

 Chapter 1 Web Application Basics 13

When a browser makes a call to a server running on the Microsoft platform, IIS intercepts
that request and searches for the resource identified by the URL . IIS divides its directory
space into manageable chunks called virtual directories . For example, imagine someone tries
to get to a resource on your server using this URL:

http://www.northwind.com/products/showfeatures.htm

The domain northwind is fictitious and is used here for illustration . However, if there were
a server registered using this name, the URL would identify the entire resource . In this URL,
http://www.northwind.com identifies the server and directs the request through a maze of
routers . Once the request reaches the server, the server looks for the showfeatures .htm
 resource in some directory-type entity named products . If the server is running IIS, products
refers to a virtual directory .

IIS divides its working space into multiple virtual directories . Each virtual directory typically
refers to a single application and is used to map a physical directory on your server’s hard
drive to an Internet URL . Using virtual directories, one per application, IIS can serve multiple
applications . Each virtual directory includes various configuration properties, including such
items as security options, error-handling redirections, and application isolation options . The
configuration parameters also include mappings between file name extensions and op-
tionally configured IIS extension DLLs, called ISAPI DLLs (ISAPI stands for Internet Services
Application Programming Interface) . (In versions of IIS prior to version 7 .0, ASP .NET itself is
handled by one of these ISAPI DLLs!) Moving forward, ASP .NET becomes a first-class citizen
in IIS .

Although it’s not initially critical to writing ASP .NET applications, knowing a bit about how IIS
works is tremendously important when you need to debug, test, and deploy your Web appli-
cations fully . The built-in Visual Studio Web server (Cassini) is fine for most tasks, but it lacks
much that IIS offers . True ASP .NET developers understand this and often become quite adept
at administering IIS . If you want to get going writing applications straightaway, you can skip
the following section on IIS, but I discuss various aspects of IIS operations and administration
throughout the book . To begin, here‘s a brief look at ISAPI and how it extends IIS .

Internet Services Application Programming Interface DLLs
With Microsoft operating systems, creating a process space is an expensive proposition in
terms of system resources and clock cycles . Imagine trying to write a server that responds to
each request by starting a separate program . The poor server would be bogged down very
quickly, and your e-commerce site would stop making money .

14 Part I Fundamentals

In the Microsoft environment, DLLs are used to respond to requests . DLLs are relatively
 inexpensive to load, and running code in a DLL executes very quickly . Historically, the DLLs
handling Web requests were named ISAPI DLLs . Prior to IIS 7, IIS would intercept requests
and hand them off to specific ISAPI DLLs to process the request . ASP (before ASP .NET) was
actually handled by a single ISAPI DLL named ASP .DLL . In fact, earlier versions of ASP .NET
relied on an ISAPI DLL named ASPNET_ISAPI .DLL . However, the ASP .NET pipeline is now
 actually part of IIS .

Running Internet Information Services
The user interface to IIS is available in Control Panel . To get a feel for how to administer IIS,
take a short tour . It’s important to have some facility with IIS because ASP .NET relies on it to
service Web requests in real Web applications . IIS 7 .0 and earlier versions work similarly as
far as dividing the server’s application space into virtual directories . IIS 6 .0 and IIS 7 .0 include
many other features such as application isolation and recycling to help control runaway re-
quests and limit memory consumption if something untoward happens during a request .

Running IIS

 . 1 . . To get to IIS, first go to Administrative Tools . In the Windows 7 operating system, in
Control Panel, double-click Administrative Tools, and then select Internet Information
Services . You should see the IIS user interface on your screen . The following graphics
show the Features View and the Content View—both running under Windows 7 .

 Chapter 1 Web Application Basics 15

On the left side of the screen is an expandable tree showing the Web sites and virtual
directories available through IIS on your computer . IIS 5 .x and IIS 6 .0 show the virtual
directories in the left pane, with the directory contents on the right side . The IIS 7 man-
agement console (shown here) includes two views: the Features View and the Content
View . The Features View includes various icons for managing specific aspects of IIS for
the items in the list in the left pane . The Content View shows the files contained in the
selected item .

 . 2 . . View the configuration of a specific virtual directory . In the Features View, you can see
how a specific virtual directory is configured . To find out more about the directory’s
configuration, try clicking the various icons in the Features View . For example, to see
how IIS figures out the correct default file to show in the absence of a specific file name
extension, double-click the Default Document icon . The following figure shows the list
of default file names that IIS will try to load .

16 Part I Fundamentals

You can configure a number of features in IIS, and they are all represented by the icons
presented in the Features View . The feature set is fairly extensive, covering all aspects of
how the directory is accessed from the outside world . You need not spend a lot of time
here because ASP .NET takes care of most of these issues (rather than leaving them up
to IIS) .

 . 3 . . View module mappings for a virtual directory . Static file types such as .htm files are
transmitted directly back to the client . However, dynamic pages whose contents can
change between posts require further processing, so they are assigned to specific
handlers . As you’ll see in a moment, IIS 7 .0 prefers to handle most requests through
managed code, which is code that executes within the context of the .NET Common
Language Runtime (CLR) . For those developers who wish to write native code, IIS 7 .0 in-
cludes a new C++/native core server application programming interface (API) . This new
API works with IIS 7 .0 through the IsapiModule to expose classic ISAPI extension DLLs .
Another module, the IsapiFilterModule, replaces the traditional ISAPI filter API from
earlier versions of IIS . To view the IIS 7 .0 module mappings, double-click the Modules
icon in the Features View . You should see a listing of the IIS 7 .0 modules that intercept
requests .

 Chapter 1 Web Application Basics 17

 . 4 . . For those applications that handle requests using managed code, IIS pipes them
through the handlers listed on the Handler Mappings page . To view the file mappings
for a specific virtual directory, double-click the Handler Mappings .icon in the Features
View . IIS responds by listing the handler mappings for the directory:

18 Part I Fundamentals

These mappings tell IIS how to handle specific requests . As you can see, most requests
are handled through managed code by ASP .NET . Notice at the top of the list the han-
dler for classic ASP files named ASPClassic . This handler takes care of requests bearing
the .asp extension (earlier versions of IIS piped these requests directly to the ASP .DLL
handler) .

Note If for some reason you find yourself needing to run classic ASP, note that IIS 7 .0
does not install ASPClassic by default—you must add this feature deliberately .

 . 1 . . In Control Panel, double-click Programs And Features from the list .

 . 2 . . Select Turn Windows Features On And Off .

 . 3 . . Select Internet Information Services in the dialog box that appears .

 . 4 . . Expand the World Wide Web Services node, and then the Application Development
Features node .

 . 5 . . Click the ASP box to install classic ASP handling, as shown here:

Classic .ASP: .Putting .ASP .NET .into .Perspective
Although this book is really about ASP .NET, understanding classic ASP can be helpful . By
comparing classic ASP and ASP .NET, you get a good idea about why things are the way they
are in ASP .NET . You can also gain an appreciation for all that ASP .NET does for you .

Microsoft originally developed Active Server Pages (ASP) to encourage a larger number of
developers than just those using C++ to undertake Web development . When IIS became
available, it was certainly a feasible environment for developing Web sites in the Microsoft
environment compared to other environments . In fact, you can still see some sites today

 Chapter 1 Web Application Basics 19

deployed as pure ISAPI DLL sites (eBay for one); just look in the query strings going between
the browser and the server for clues . For example, you might see a file name such as
ACMEISAPI.DLL embedded in the query string .

However, writing an entire site using ISAPI DLLs can be daunting . Writing ISAPI DLLs in
C or C++ gives you complete control over how your site will perform and makes the site
work . However, along with that control comes an equal amount of responsibility because
 developing software using C or C++ presents numerous challenges .

So, in delivering ASP, Microsoft provides a single ISAPI DLL named ASP.DLL . ASP Web
 developers write their code into files tagged with the extension .asp (for example, somefile .
asp) . These files often contain a mixture of static HTML and executable sections (usually writ-
ten in a scripting language) that emit output at run time . For example, the code in Listing 1-1
shows an ASP program that renders the HelloWorld page, which contains both static HTML
and text generated at run time . (The file name is HelloWorld .asp in the book’s accompanying
examples .)

LISTING .1-1 . A classic ASP file

<%@ Language="javascript" %>
<html>
 <body>
 <form>
 <h3>Hello world!!! This is an ASP page.</h3>

 <% Response.Write("This content was generated ");%>
 <% Response.Write("as part of an execution block");%>
 </form>
 </body>
</html>

The code shown in Listing 1-1 renders the following page . IIS monitored port 80 for requests .
When a request for the file HelloWorld .asp came through, IIS recognized the .asp extension
and asked ASP .DLL to handle the request (that’s how the file mapping was set up) .
ASP .DLL simply rendered the static HTML as the string “Hello world!!! This is an ASP page .”
Then, when ASP .DLL encountered the funny-looking execution tags <% and %>, it executed
those blocks by running them through a JavaScript parser (note the language tag in the first
line of code) . Figure 1-2 shows how the page renders in Windows Internet Explorer .

20 Part I Fundamentals

FIGURE .1-2 . The results of a request made to the ASP program from Listing 1-1 .

This book is about developing ASP .NET software, so it focuses most of the attention there .
However, before leaving the topic of classic ASP, Listing 1-2 shows the SelectFeature .htm
page rewritten as a classic ASP page . This simple ASP application presents some of the core
issues in Web development and illustrates why Microsoft rewrote its Web server technology
as ASP .NET . (The accompanying file name is SelectFeature .asp.)

LISTING .1-2 . The SelectFeature .htm page rewritten as a classic ASP page

<%@ Language="javascript" %>
<html>
 <body>
 <form>
 <h2>HelloWorld<h2>

 <h3>What's your favorite .NET feature?</h3>
 <select name='Feature'>
 <option> Type-Safety</option>
 <option> Garbage collection</option>
 <option> Multiple syntaxes</option>
 <option> Code Access Security</option>
 <option> Simpler threading</option>
 <option> Versioning purgatory</option>
 </select>
 </br>
 <input type=submit name="Submit" value="Submit"></input>
 <p>
 Hi, you selected <%=Request("Feature") %>
 </p>
 </form>
 </body>
</html>

 Chapter 1 Web Application Basics 21

Much of the text in SelectFeature .asp looks very similar to SelectFeature .htm, doesn’t it? The
differences are mainly in the first line (that now specifies a syntax for executable blocks) and
the executable block marked by <% and %> . The rest of the static HTML renders a selection
control in a form .

Take note of the executable blocks and how the blocks use the Response object (managed by
the ASP infrastructure) to push text out to the browser . The executable block examines the
Feature control (specified by the <select> tag) and prints out the value selected by the user .

Figure 1-3 shows how SelectFeature .asp renders in Internet Explorer .

FIGURE .1-3 . The code from Listing 1-2 as viewed in Internet Explorer .

The screen in Figure 1-3 might look a bit odd because the drop-down list box shows
 “Type-Safety” whereas the rendered text shows “Simpler Threading .” Without doing anything
extra, the drop-down list box will always rerender with the first element as the selected ele-
ment . You can see how ASP .NET fixes this later in the discussion of server-side controls . That’s
enough background information to begin to look at specific Web development concepts
outlined in the next section .

Web .Development .Concepts
In the end, developing Web applications forces you to deal with two significant issues—
managing user interfaces (UIs) using HTML over a disconnected protocol and managing
the state of your application . These fundamental activities separate Web development from
other types of application development .

22 Part I Fundamentals

In many ways, the programming model has gone back to the form that dominated in the
mid-1970s, when large mainframes served output to terminals connected directly to them .
Users submitted jobs to the mainframe and got output to their terminals . So, what’s changed
here? First, the terminal is a lot fancier—it’s a powerful computer running a browser that
interprets HTML . The endpoint to which the browser connects is a Web server (or perhaps a
server farm) . Finally, the connection protocol used by the client and the server is indirect (and
a request can quite literally cross the globe before the user sees a result) .

In Web application development, the program’s primary job is to receive requests from “out
there” and provide meaningful responses to the requestors . That often means generating
complex HTML that renders in a form humans can read on the client’s browser . That can
be fairly involved, for example, in a modern commercial Web site supporting commerce .
Customers will undoubtedly ask about current pricing, request inventory levels, and per-
haps even order items or services from the Web site . The process of generating meaningful
HTML for the client suddenly means accomplishing such tasks as making database accesses,
authenticating the identity of the client, and keeping track of the client’s product order .
Imagine doing all this from scratch!

Although frameworks such as classic ASP go a long way toward making Web develop-
ment more approachable, developers are still left with many features to create on their own
(mostly related to the two issues mentioned at the beginning of this section) . For example,
building a secure but manageable Web site in classic ASP usually meant writing your own
security subsystem (or buying one) . Managing the state of the UI emitted by your Web site
was often a tedious chore as well .

ASP .NET
All of this brings us to ASP .NET . A common theme you’ll see throughout this book is that
ASP .NET takes features usually implemented (over and over again) by developers and rolls
them into the ASP .NET framework .

ASP .NET has been evolving steadily since it was first released . ASP .NET 1 .0 introduced a
 well-defined pipeline, a viable extensibility model, a server-side control rendering model,
and numerous other features to make developing Web sites very doable . ASP .NET 2 .0 took
ASP .NET 1 .x to the next level and pushed even more commonly implemented features into
the framework . For example, ASP .NET 2 .0 improved upon earlier versions of ASP .NET in the
area of authentication and authorization services . ASP .NET 1 .x included a reasonable and
easy-to-manage authentication model . However, developers were often left with the task
of creating their own authentication systems and manually incorporating those systems
into their Web sites . ASP .NET 2 .0 adds an authorization subsystem . (Chapter 9, “Logging In,”
 covers ASP .NET Forms Authentication and other security features in depth .)

 Chapter 1 Web Application Basics 23

ASP .NET 2 .0 has been in use for more than two years . Even with all the improvements
 provided by the release of version 2 .0, there’s still room for more . ASP .NET 3 .5 delivers a cou-
ple of significant new features . The first one is support for asynchronous Java and XML-style
programming (commonly known as AJAX) . The second main feature is support for Windows
Communication Foundation application hosting through IIS/ASP .NET . In the now available
version 4, you see features such as enhanced AJAX support, support for dynamic data, an
implementation of the Model-View-Controller pattern, and support for Microsoft Silverlight .

The following chapters in this book cover the most important ASP .NET features . By the end
of the last chapter, you will be well equipped to develop a Web site based on ASP .NET .

Chapter .1 .Quick .Reference
To Do This

Start Internet Information Services
management console

Go to Control Panel . Select Administrative Tools . Select Internet
Information Services .

Create a new virtual directory Open the IIS management console . Open the Web Sites node . Open
the Default Web Site node . Right-click the Default Web Site node and
select New Virtual Directory . Then, follow the wizard .

Surf to a resource from IIS Right-click the resource and click Browse .

See what file types are supported
in an IIS virtual directory

Select the virtual directory . Select the Features View . Browse the
Handler Mappings and the Module Mappings pages .

 . . 25

Chapter 2

ASP.NET Application Fundamentals
After completing this chapter, you will be able to

n Create Internet Information Services (IIS) virtual directories .

n Develop an HTML page into an ASP .NET application .

n Mix HTML with executable code and work with server-side script blocks .

n Locate and view the assembly compiled by ASP .NET from an .aspx file .

n Work with code-behind and code-beside execution models .

n Use Microsoft Visual Studio 2010 to create Web projects .

This chapter covers the fundamentals involved in building an ASP .NET application . From a
syntactical point of view, writing .NET code is similar to writing the classic ASP code that you
might have seen during the late dot-com era . Many of the key symbols remain the same, and
even some of the syntax survives directly . However, the entire underlying execution model
changed dramatically between classic ASP and ASP .NET . Whereas executing classic ASP pages
was primarily an exercise in rendering HTML, interpreting script code, and calling Component
Object Model (COM) code, ASP .NET introduces an entirely new object-oriented execution
model . ASP .NET execution centers around Common Language Runtime (CLR) classes that im-
plement an interface named IHttpHandler . ASP .NET includes a number of classes that already
implement IHttpHandler, and you can actually write your own implementation from scratch .
Typically, though, you’ll write ASP .NET pages that, under the covers, are generated by an ASP .
NET-provided IHttpHandler .

This chapter examines the ASP .NET execution model to see how ASP .NET enables its fea-
tures . It takes a bottom-up approach, showing how the simplest ASP .NET page executes .
Along the way, it introduces various ASP .NET programming techniques, including code
behind . You will see how ASP .NET’s compilation model works . Finally, you can observe how
ASP .NET’s Web Form architecture operates and how it’s all nicely wrapped up by Microsoft
Visual Studio 2010 .

You can start by studying a simple page to discover how you can evolve it using ASP .NET’s
programming techniques .

Important This chapter’s code samples on the companion CD require IIS support to execute .
See the “Code Samples” section in the Introduction for important information on running the
examples for this chapter .

26 Part I Fundamentals

The .Canonical .Hello .World .Application
Nearly all programming texts start by using the technology at hand to present the
 classic string “Hello World” to the end user . This time, your job is to send the statement
“Hello World” to the awaiting browser .

To see how ASP .NET works, you will take the simplest Web page and develop it into an
ASP .NET Web application . You won’t use Visual Studio quite yet . Visual Studio is such a rich
development environment that building and running Web applications with it seems al-
most like magic . This is a bare-bones example built from scratch so that you can see exactly
what’s going on before bringing Visual Studio’s full capabilities into the picture . You then can
 examine each iteration along the way to see what ASP .NET is doing .

Building the HelloWorld Web Application

 . 1 . . Create a directory to hold the Web application files . Using either a command shell or
Windows Explorer, create a new folder to hold the Web application files . Although
the name of the directory is unimportant to Internet Information Services (IIS), call it
 something meaningful . This example uses c:\aspnetstepbystepexamples .

 . 2 . . Create an application/virtual directory to hold the files . To start, you need a virtual
 directory in which to hold the source code . As you saw earlier when examining the Web
Application architecture imposed by the Microsoft Windows environment, IIS divides
the applications on your server using virtual directories . In addition to providing appli-
cation management features, IIS creates a mapping between requests coming in over
port 80 and some real directory on your computer . Virtual directories show IIS where to
find the code you want to execute in your application .

Open Control Panel, and then go to Administrative Tools and start Internet Information
Services . Expand the nodes in the tree on the left side to expose the Default Web Site
node under the Sites node, as shown in the following illustration:

 Chapter 2 ASP.NET Application Fundamentals 27

Then, right-click the Default Web Site node and click Add Application on the shortcut
menu . (The illustration shows how to perform this operation in IIS 7 .5 . If you’re using
earlier versions of IIS, the screen will look slightly different—though you can add new
virtual directories in the same way .) IIS will ask you to provide a name for the applica-
tion/virtual directory:

Name the Web site ASPNETStepByStep . This is the name by which your Web applica-
tion will be known to the world . For example, when Internet users surf to your Web site,
they’ll use the following URL:

http://www.contoso.com/ASPNETStepByStep

The name contoso.com is a fictitious site, only used here for illustration . When you surf
to this site on this computer, the server name will be localhost .

28 Part I Fundamentals

The wizard will ask you to provide a physical path for the virtual directory . Either
browse to the physical directory you just created or type the name of the directory .
Leave the IIS administration tool open; you use other features in the following steps .

Click OK to create the virtual directory .

 . 3 . . Start with a simple HTML page . The easiest way to do this is to store some text in an
HTML file and browse to it .

Notepad works fine for creating a simple HTML file, or you can use Visual Studio to
 create the HTML file . If you use Visual Studio, start Visual Studio and select File, New,
and then click File . Select Text File as the file type, and then click Open . A new, blank
file will open in the Visual Studio editor .

Type the following HTML text between the opening and closing <body> tags . Save the
file as HelloWorld .htm in your new physical directory (the one that you mapped to a
virtual directory in the previous step) .

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Untitled Page</title>
 </head>

 <body>
 <h1> Hello World </h1>
 Nothing really showing here yet, except some HTML...
 </body>
</html>

 . 4 . . Browse to the page . There are two ways to do this . First, you can browse to the page
by selecting the file from within IIS . Navigate to the directory in IIS (the IIS control
panel should still be open if you haven’t closed it) . Click the Content View tab near
the bottom of the main pane . You’ll see the files in the directory . Right-click the

 Chapter 2 ASP.NET Application Fundamentals 29

HelloWorld .htm file and click Browse . Alternatively, you can type the entire URL into the
browser navigation bar:

http://localhost/ASPNETStepByStep/helloworld.htm

The browser will send an HTTP request to the server . On the Microsoft platform, IIS
will see the HTM extension and simply return the contents of the file to the browser .
Because the text is marked using standard HTML tags, the browser understands it and
displays it correctly .

Here’s how the file appears to the end browser:

 . 5 . . Convert the HTML file to an ASP .NET application . Take the HelloWorld .htm file that
you were working on and convert it into a file type that will invoke the ASP .NET
runtime . Turning this file into an ASP .NET application involves two small steps: add-
ing a single line to the top of the file (the Page directive) and renaming the file
from HelloWorld .htm to HelloWorld .aspx . This text represents an implementation
of HelloWorld that works within the ASP .NET framework (be sure to save the file as
HelloWorld .aspx by clicking Save HelloWorld .htm As on the File menu):

<%@ Page Language="C#" %>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Untitled Page</title>
 </head>

 <body>
 <h1> Hello World </h1>
 Nothing really showing here yet, except some HTML...
 </body>
</html>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

30 Part I Fundamentals

When you fire up your browser and surf to this file in the virtual directory on your
 computer, you’ll see the following in your browser:

Admittedly, it might seem a small feat to simply show some text in a browser . However,
it shows how a simple ASP .NET application works when using IIS .

 . 6 . . View the HTML source that the browser is interpreting . While viewing the content from
the previous step in your browser, use the View, Source menu to show the HTML source
text being processed by the browser . It should look like this:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Untitled Page</title>
</head>
<body>
 <h1> Hello World </h1>
 Nothing really showing here yet, except some HTML...
</body>
</html>

Notice that this text is almost identical to the text in HelloWorld .aspx (without the
Page directive: <%@ Page Language=”C#” %>) . In this case, you can see that the page-
processing logic is fairly simple . That is, the ASP .NET runtime is simply spitting out the
text within the file .

The Page directive appearing at the top of the code is used by the ASP .NET runtime as it
compiles the code . The Page directive shown earlier is fairly simple—it tells the runtime to
compile this code and base it on the Page class and to treat any code syntax it encounters
as C# code . ASP .NET supports integrating .aspx files with assemblies, which you see shortly .

 Chapter 2 ASP.NET Application Fundamentals 31

In subsequent examples, you can see how ASP .NET compiles code on the fly and stores the
 assemblies in a temporary directory . There’s no C# code in HelloWorld .aspx, so you should
add some now .

A .Note .About .Application .Pools
In addition to mapping incoming HTTP requests to actual physical directories, IIS 6 .x
and IIS 7 .x support a feature called application pooling . One of the primary purposes
behind application pooling is to support application isolation . For example, imagine
you want to isolate the Web applications running in the same computer from other
software managed by IIS . By creating a separate application pool for each Web applica-
tion, you tell IIS to run each application in its own worker process . If anything bad hap-
pens in one application pool, the other applications can continue to run unaffected .

With application pooling, you also can govern the security aspects of a Web applica-
tion . Some applications might need a higher degree of security than do others .

IIS 5 .x runs the ASP .NET worker process as LocalSystem . LocalSystem has system admin-
istrator rights . This has interesting implications because the account can access virtually
any resource on the server . In IIS 6 .x and IIS 7 .x, you can set the identity of the worker
process to be the same as that of the application pool level . Application pools operate
under the NetworkService account by default—which does not have as many access
rights as LocalSystem does .

Mixing HTML with Executable Code
Classic ASP had an interesting way of marking code segments within a page . ASP always
 supported the classic script tags (<script> </script>) where anything found between the
<script> tags was treated as executable code . However, in classic ASP, the script blocks were
sent to the browser, and it became the browser’s job to run the script . In addition to client-
side script blocks, a classic ASP Web page could define script blocks to be interpreted on
the server . These methods often performed tasks such as database lookups . Causing code
to execute on the server involved marking executable segments with angle brackets and
 percent signs like this:

<% ExecuteMe() %>

ASP .NET also supports server-side code execution . To write code that executes inline,
 simply mark it with the <% %> tags as well . When ASP .NET parses the file to manufac-
ture the run-time class representing the page (more on that shortly), it will insert whatever
code it finds between the execution tags as executable code . The only requirement is that
the code between the execution tags is valid C# (because that’s the language specified in
the Page directive) .

32 Part I Fundamentals

Adding executable code inline

 . 1 . . Add executable code to the Web application . Create a new blank text file from within
Visual Studio . Type the following code into the text file and save it as HelloWorld2 .aspx .

<%@ Page Language="C#" Debug="true" %>
<html>
 <body>
 <h1>Hello World!!!</h1>
 <%
 // This block will execute in the Render_Control method
 Response.Write("Check out the family tree:

");
 Response.Write(this.GetType().ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());
 %>
 </body>
</html>

This code is almost exactly identical to code you see in a classic ASP application—
including references to the Response object . In classic ASP, the Response object was
one of those intrinsic objects, perennially available to the page’s execution block . For
the sake of a complete explanation, the Response object in classic ASP was a COM
 object that hung off the thread managed by the lower-level components (the Internet
Services Application Programming Interface DLL, or the ISAPI DLL) . Notice that ASP .NET
also has a Response object . However, this Response object is part of the HttpContext
managed by the ASP .NET pipeline and is in no way related to the classic ASP object
 except in name .

 Chapter 2 ASP.NET Application Fundamentals 33

 . 2 . . Browse to the ASP .NET page using Windows Internet Explorer . The page should look
like this in the browser:

The output produced by HelloWorld2 .aspx shows a very important aspect of the
ASP .NET execution model . Before moving on, take a look at the inline code listed in the
previous exercise and compare it to the output appearing in the browser . Notice that
the code includes statements such as

Response.Write(this.GetType().BaseType.ToString());

Of course, the C# this keyword specifies an instance of a class . The code that’s
 executing is clearly part of a member function of a class instance . The output shown
by the browser indicates the class rendering the HTML to the browser is named
ASP.helloworld2_aspx, and it derives from a class named System.Web.UI.Page . You
learn more about this later in the chapter .

Server-Side Executable Blocks
ASP .NET also supports server-side code blocks (not just inline execution tags) . ASP .NET adds
a new runat attribute to the script tag that tells ASP .NET to execute the code block at the
server end .

34 Part I Fundamentals

Adding executable code using a script block

 . 1 . . Add an executable script block to the page . Create a new text file in Visual Studio . Type
the following code into the Visual Studio editor . Note that the code separates rendered
HTML from the script block that runs at the server . Save the file as HelloWorld3 .aspx in
your virtual directory .

<%@ Page Language="C#" Debug="true" %>
<script runat="server">
 void ShowLineage()
 {
 Response.Write("Check out the family tree:

");
 Response.Write(this.GetType().ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());
 }
</script>
<html>
 <body>
 <h1>Hello World!!!</h1>
 <%
 ShowLineage();
 %>
 </body>
</html>

As with the inline execution blocks, the most important criterion for the contents of the
script block is for its syntax to match that of the language specified in the Page direc-
tive . The preceding example specifies a single method named ShowLineage(), which is
called from within the page .

 . 2 . . Surf to the page . Notice that the output of HelloWorld2 .aspx and HelloWorld3 .aspx is
identical .

 Chapter 2 ASP.NET Application Fundamentals 35

Marking the <script> tag containing the ShowLineage method with the runat=server
 attribute causes ASP .NET to execute the code on the server . But although classic ASP inter-
prets the script block using the designated script language, ASP .NET has an entirely differ-
ent execution model—the whole page is actually compiled into a class that runs under the
Common Language Runtime (CLR) . Here’s how the ASP .NET compilation model works .

A Trip Through the ASP.NET Architecture
When it arrives on the Web server, the HTTP request/response is routed through many
 server-side objects for processing . Once a request ends up at the server, it winds its way
through the IIS/ASP .NET pipeline . The best way to understand the path of an HTTP request
through ASP .NET is to follow a request as it originates in the browser and is intercepted by
Internet Information Services and your Web application .

When an end user presses the Return key after typing in a URL, the browser sends an HTTP
GET request to the target site . The request travels through a series of routers until it finally
hits your Web server and is picked up on port 80 . If your system has software listening to
port 80, the software can handle the request . On the Microsoft platform, the software most
often listening to port 80 is IIS . For the time being, ASP .NET works with three versions of IIS:
version 5 .x (if you are using the Windows XP Professional operating system), version 6 .x (if
you are using the Windows Server 2003 operating system), and version 7 .x (if you are using
the Windows Vista, Windows 7, or Windows Server 2008 operating systems) .

36 Part I Fundamentals

The general flow of the requests is the same, regardless of which version of IIS you choose .
IIS maintains a mapping between file extensions and binary components capable of inter-
preting the request (you see more about the binary components later) . When a request
comes in, IIS reads the file name identified in the request and routes the request to the
 appropriate component .

Earlier versions of IIS (prior to version 7 .x) implement such features as client authentication
and output caching independently of ASP .NET . That is, IIS and ASP .NET each implement their
own versions of these features . IIS 7 .x integrates the ASP .NET versions of these features (some
of which you see in future chapters) . As far as the ramifications of IIS 7 .x to ASP .NET develop-
ers, running in Integrated mode makes .NET functionality part of the core pipeline . Features
such as Forms Authentication can now be applied to a wide range of content—not just
ASP .NET forms . For example, this helps when trying to secure an entire Web site using a
 uniform authentication method .

For the purposes of illustration, the following graphics show how IIS 7 .x routes requests of
various types . The following shows the IIS 7 .x module mappings when running in Integrated
mode:

 Chapter 2 ASP.NET Application Fundamentals 37

Also for illustration purposes, the following shows IIS 7 .x handler mappings when running in
Integrated mode:

In addition to running in Integrated mode, IIS 7 .x also runs in Classic mode to support back-
ward compatibility . When running in Classic mode, IIS 7 .x uses the module and handler archi-
tecture to pass processing to specific traditional binary components (that is, ISAPI DLLs) .

To illustrate how mappings work in Classic mode, the following graphic shows IIS 7 .x module
mappings running in Classic mode:

38 Part I Fundamentals

The following graphic shows IIS 7 .x running in Classic mode and its handlers mappings:

Once IIS intercepts the request and maps it to the worker process, the request follows a very
specific path through the pipeline . Later sections in look at each part of the pipeline in more
detail . The outline of the request’s path through versions of IIS earlier than 7 .x is this:

 . 1 . . The request lands in IIS .

 . 2 . . IIS routes the request to aspnet_isapi .dll .

 . a . . If IIS 5 .x is running, IIS asp_isapi .dll routes the request through a pipe to
aspnet_wp .exe .

 . b . . If IIS 6 .x is running, the request is already in the worker process .

 . 3 . . ASP .NET packages the request context into an instance of HttpContext .

 . 4 . . ASP .NET pipes the request through an instance of an HttpApplication object (or an
HttpApplication-derived object) .

 . 5 . . If the application object is interested in receiving any of the request preprocessing
events, HttpApplication fires the events to the application object . Any HttpModules that
have subscribed to these events will receive the notifications as well .

 . 6 . . Runtime instantiates a handler and handles the request .

Figure 2-1 shows how IIS version 5 .x and ASP .NET work together to handle HTTP
 requests . Figure 2-2 shows how IIS version 6 .x works with ASP .NET to handle requests .

 Chapter 2 ASP.NET Application Fundamentals 39

GET/vdir/page.aspx HTTP/1.1 200 OK ...

another_isapi.dll
(ISAPI Extension)

asp.dll
(ISAPI Extension)

IHttpHandler

ASP.NET Worker Process
(aspnet_wp.exe)

INETINFO.EXE (IIS 5.0) IIS5.x

GET/vdir/page.asp HTTP/1.1 200 OK ...

aspnet_isapi.dll
(ISAPI Extension) named pipe Page

FIGURE .2-1 . IIS 5 .x working in concert with ASP .NET .

IIS 6.0

asp.dll
(ISAPI Extension)

IHttpHandler

Worker Process
(w3wp.exe)

Page

Worker Process
(w3wp.exe)

Page.asp

Kernel

GET/vdir/page.asp HTTP/1.1 200 OK ... HTTP/1.1 200 OK ...GET/vdir2/page.aspx

aspnet_isapi.dll
(ISAPI Extension)

http.sys

FIGURE .2-2 . IIS 6 .x working in concert with ASP .NET .

By contrast, the request path through IIS 7 .x is slightly different . Here’s a request’s path
through IIS 7 .x:

 . 1 . . The browser makes a request for a resource on the Web server .

 . 2 . . HTTP .SYS picks up the request on the server .

 . 3 . . HTTP .SYS uses the WAS to find configuration information to pass on to the
WWW Service .

40 Part I Fundamentals

 . 4 . . WAS passes the configuration information to the WWW Service, which configures
HTTP .SYS .

 . 5 . . WAS starts a worker process in the application pool for which the request was destined .

 . 6 . . The worker process processes the request and returns the response to HTTP .SYS .

 . 7 . . HTTP .SYS sends the response to the client .

Figure 2-3 shows the relationship between IIS 7 .x and ASP .NET .

Application PoolApplication Pool

ISAPI Module

Worker Process
(w3wp.exe)

Page.asp

asp.dll

IHttpHandler

Worker Process
(w3wp.exe)

Page

ISAPI Module

Page Handler
Factory

Authentication Module Execute HandlerModule Module Send Response

IIS Modules

HTTP/1.1 200 OK ... HTTP/1.1 200 OK ...

IIS 7.0

Kernel http.sys

GET/vdir/page.asp GET/vdir2/page.aspx

FIGURE .2-3 . ASP .NET and IIS 7 .x .

Throughout the forthcoming chapters, you follow a request through the ASP .NET pipeline .
You can plug into the ASP .NET pipeline at a number of distinct points to deal with vari-
ous aspects of handling the requests . For example, if you’d like to do any preprocessing,
you can either override event handlers in the HttpApplication class or you can write HTTP
modules and plug them into the pipeline . Whereas the System.Web.UI.Page class provides a
great amount of functionality for building Web-based user interfaces, the pipeline is flexible
enough that you can easily write your own custom handlers .

 Chapter 2 ASP.NET Application Fundamentals 41

The .ASP .NET .Compilation .Model
One of the most important improvements Microsoft has made to the ASP development
 environment is to build the Web request handling framework out of classes . Pushing request
processing into a class-based architecture allows for a Web-handling framework that’s com-
piled . When ASP .NET pages are first accessed, they are compiled into assemblies .

This is advantageous because subsequent access loads the page directly from the assembly .
Whereas classic ASP interpreted the same script code over and over, ASP .NET applications
are compiled into .NET assemblies and ultimately perform better and are safer . Because the
code is compiled, it runs more quickly because it doesn’t have to be interpreted . In addition,
the managed runtime is a type-safe environment; you won’t see the same sorts of errors and
anomalies that you’d encounter in a scripting environment (as was the case for classic ASP) .

In addition, compiling the Web request framework allows for more robust and consistent
 debugging . Whenever you run an ASP .NET application from Visual Studio, you can debug it
as though it were a normal desktop application .

ASP .NET compiles .aspx files automatically . To get an .aspx page to compile, you simply need
to surf to the .aspx file containing the code . When you do so, ASP .NET compiles the page into
a class . However, you won’t see that assembly containing the class anywhere near your virtual
directory . ASP .NET copies the resulting assemblies to a temporary directory .

The .NET versions of Visual Studio have always included a tool named Intermediate Language
Disassembler (ILDASM) that uses reflection to reverse compile an assembly so that you can
view its contents . The result is an easily negotiated tree view you can use to drill down to
the contents of the assembly . Right now, that’s the important thing . (If you want to peer any
more deeply into the assembly and see the actual Intermediate Language, ILDASM will show
you that as well .)

Here’s how to view the assemblies generated by ASP .NET .

Viewing the ASP.NET assemblies

 . 1 . . To run ILDASM, open the Visual Studio .NET 2010 command prompt and type ILDASM .

 . 2 . . Select File, Open .

 . 3 . . Find the assembly compiled by the ASP .NET runtime . Go to C:\WINDOWS\
Microsoft .NET\Framework\v2 .0 .50727\Temporary ASP .NET Files\aspnetstepbystep4\ (on
a 64-bit computer, the subdirectory will be “Framework64”) . The subdirectory is named
v2 .0 .50727 at the time of this writing . The final subdirectory might be slightly different .
You’ll see some oddly named directories underneath . For example, on my computer,
the subdirectory names generated by ASP .NET are 4076b23e and ac422a67 . The direc-
tory name(s) will most likely be different on your computer . There’s no easy way to
figure out which directories have the code that just executed (though looking at the

42 Part I Fundamentals

dates and times of the file creation might help), so you need to follow the path into the
directories until you unearth some .dll files . Depending on how many times you’ve run
the application, you might see several files . Open the files one at a time until ILDASM
displays something similar to what’s shown in Figure 2-4 .

FIGURE .2-4 . ILDASM showing the contents of the assembly generated by ASP .NET after surfing to
HelloWorld .aspx .

ASP .NET has used this temporary directory strategy since version 1 .0 . The reason ASP .NET
copies these files to a temporary directory is to solve a long-standing problem that plagued
classic ASP . Classic ASP Web sites often depended on COM objects to do complex operations
such as database lookups and transactions . When you deploy a classic ASP site and clients
begin accessing it, those files become locked . Of course, that’s not really a problem—until
you decide to upgrade or modify part of the Web site .

Classic ASP locked files during execution, meaning you couldn’t copy new files into the virtual
directory without shutting down the Web site . For many Web deployment scenarios, this is
a bad option . Because ASP .NET copies the files and the components to the temporary direc-
tory and runs them from there, they’re not locked . When it is time to update a component,
you can simply copy the new assembly into the virtual directory . You can do that because it’s
not locked .

 Chapter 2 ASP.NET Application Fundamentals 43

Coding .Options
In addition to supporting inline code (that is, including executable code directly inside a
 server-side script block), modern ASP .NET offers two other distinct options for managing
code: ASP .NET 1 .x code behind, and modern ASP .NET code beside . ASP .NET supports code
behind for backward compatibility . Code beside is the style employed by Visual Studio 2010 .
The following subsections look at these .

ASP.NET 1.x Style
ASP .NET continues to support ASP .NET 1 .x style code behind . This can be important to
 understand if you ever run into any legacy code from that era . Using the code-behind direc-
tives in the .aspx file, you provide the code to run behind the page in a separate class and use
the Page directive to tell ASP .NET which class to apply to the page . Then, you tell ASP .NET the
name of the file containing the source code for the class . For example, imagine this code is
placed in a file named HelloWorld4Code .cs:

using System.Web;
public class HelloWorld4Code : System.Web.UI.Page
{
 public void ShowLineage()
 {
 Response.Write("Check out the family tree:

");
 Response.Write(this.GetType().ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());
 }
}

An ASP .NET page that uses the HelloWorld4Code class to drive the page might then look like
this:

<%@ Page Language="C#" Inherits="HelloWorld4Code"
 Src="HelloWorld4Code.cs" Debug="true" %>
<html>
 <body>
 <h1>Hello World!!!</h1>
 <%
 this.ShowLineage();
 %>
 </body>
</html>

44 Part I Fundamentals

With the ASP .NET 1 .x style of code behind, ASP .NET sees the Src attribute in the directives
and compiles that file . ASP .NET reads the Inherits attribute to figure out how to base the class
that runs the page . In the previous example, ASP .NET uses the HelloWorld4Code class to drive
the page .

By using the Src attribute, you tell the ASP .NET runtime to compile the file named by
the Src attribute value . The ASP .NET runtime will compile it into the temporary direc-
tory . Alternatively, you can also precompile the file into an assembly containing the
HelloWorld4Code class . For this to work, the precompiled assembly must appear in the bin
directory of your virtual directory . If you precompile the page class and put the assembly in
the bin directory, you don’t even need to mention the source code file . In the absence of an
Src attribute, the ASP .NET runtime will search the assemblies in the bin directory looking for
the class specified in the Inherits attribute .

Modern ASP.NET Style
The other coding option for ASP .NET is new starting with version 2 .0 . This model is
 sometimes referred to as code beside . Consider the following ASP .NET page:

<%@ Page Language="C#" CodeFile="HelloWorld5Code.cs"
 Inherits="HelloWorld5Code" %>
<html>
 <body>
 <h1>Hello World!!!</h1>
 <%
 // This block will execute in the RenderControl method
 ShowLineage();
 %>
 </body>
</html>

It references the code found in the HelloWorld5Code .cs file:

using System.Web;
public partial class HelloWorld5Code : System.Web.UI.Page
{
 public void ShowLineage()
 {
 Response.Write("Check out the family tree:

");
 Response.Write(this.GetType().ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.ToString());

 Chapter 2 ASP.NET Application Fundamentals 45

 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());
 }
}

In this case, ASP .NET looks to the CodeFile directive to figure out what code to compile .
ASP .NET expects to find a partial class to implement the page’s logic . Partial classes let you
split the definition of a type (class, struct, or interface) between multiple source files, with
a portion of the class definition living in each file . Compiling the source code files gener-
ates the entire class . This is especially useful when working with generated code, such as
that generated by Visual Studio . You can augment a class without going back and chang-
ing the original code . Visual Studio .NET 2010 prefers the code-beside/partial class code
representation .

The following short listings, Listing 2-1 and Listing 2-2, show two files that implement a
 singular class named SplitMe .

LISTING .2-1 . Partial1 .cs

// Partial1.cs
using System;

public partial class SplitMe
{

 public void Method1()
 {
 Console.WriteLine("SplitMe Method1");
 }
}

LISTING .2-2 . Partial2 .cs

// Partial2.CS
using System;

public partial class SplitMe
{
 public static void Main()
 {
 SplitMe splitMe = new SplitMe();
 splitMe.Method1();
 splitMe.Method2();
 }

 public void Method2()
 {
 Console.WriteLine("SplitMe Method2");
 }
}

46 Part I Fundamentals

To compile the code you see in Listings 2-1 and 2-2, you build the project with Visual Studio,
or you can use the following command line in the Visual Studio Command Prompt (if these
are just loose files):

csc /t:exe Partial1.cs Partial2.cs

This generates an executable file named Partial2 .exe .

After working with ASP .NET source code in the raw, it’s time to look at how Visual Studio and
ASP .NET work together . Visual Studio .NET 2010 brings many new features for creating and
developing Web applications, as you can see when working through subsequent examples .

The .ASP .NET .HTTP .Pipeline
As soon as ASP .NET 1 .0 was released, it offered a huge improvement over classic ASP by
introducing well-defined code processing modules that together form the ASP.NET HTTP
pipeline . Classic ASP was patched together from several disparate components (IIS, the Web
Application Manager, and the ASP ISAPI DLL) . The Request and Response objects were COM
objects hanging off the threads owned by IIS . If you wanted to do any processing outside the
context of ASP, you needed to write an ISAPI filter . If you wanted to write code to execute
during processing, it had to occur within a COM object implementing IDispatch (severely lim-
iting the available types of data you could use and negatively affecting performance) . If you
wanted to write any request-handling code (outside the context of ASP), you had to write a
separate ISAPI DLL . The ASP .NET HTTP pipeline includes the facilities to do these things, but
in a much more manageable way .

In ASP .NET, your application has the opportunity to perform preprocessing and postprocess-
ing within HttpModules . If you use IIS 5.x or IIS 6 .x as your Web server, the ASP .NET pipeline
stands by itself, and requests are processed completely by ASP .NET as soon as aspnet_isapi .
dll hands control off to the ASP .NET worker process . If you’re using IIS 7 .x as your Web server,
the ASP .NET pipeline is integrated into the server so that you can apply most ASP .NET ser-
vices to non-ASP .NET content . In any case, your application also has the opportunity to
process application-wide events using the HttpApplication object . Because of the ASP .NET
object model, the need for separate COM-based scripting objects on the server disappears .
The endpoint of all requests is an implementation of IHttpHandler . ASP .NET already includes
some useful implementations of IHttpHandler (that is, System.Web.UI.Page and System.Web.
Services.WebService) . However, you can easily write your own (as you see later) .

The IIS 5.x and IIS 6.x Pipeline
Once a request comes into the AppDomain managed by the ASP .NET runtime, ASP .NET uses
the HttpWorkerRequest class to store the request information . Following that, the runtime
wraps the request’s information in a class named HttpContext . The HttpContext class includes
all the information you’d ever want to know about a request, including references to the

 Chapter 2 ASP.NET Application Fundamentals 47

current request’s HttpRequest and HttpResponse objects . The runtime produces an instance
of HttpApplication (if one is not already available), and then fires a number of application-
wide events (such as BeginRequest and AuthenticateRequest) . These events are also pumped
through any HttpModules attached to the pipeline . Finally, ASP .NET figures out what kind of
handler is required to handle the request, creates one, and asks the handler to process the
request . After the handler deals with the request, ASP .NET fires a number of postprocessing
events (such as EndRequest) through the HttpApplication object and the HttpModules .

Figure 2-5 illustrates the structure of the ASP .NET pipeline inside the ASP .NET worker process
using IIS 6 .x (the only difference from IIS 5 .x is the name of the worker process) .

HttpRuntime HttpApplicationFactory

HttpWorkerRequest

HttpContext

HttpRequest

HttpResponse

HttpSessionState

HttpApplicationState
HttpApplication

HttpModule

HttpModule

HttpModule

HandlerFactoryHandler

AppDomain

W3WP.EXE

FIGURE .2-5 . Main components of the HTTP pipeline in ASP .NET .

The IIS 7.x Integrated Pipeline
The integrated IIS 7 .x pipeline is very similar to the ASP .NET HTTP pipeline that’s been
around since ASP .NET was first released (shown in Figure 2-5) . As you can see from earlier
investigations using the IIS 7 .x management console, the IIS 7 .x integrated pipeline employs
modules and handlers just like earlier versions of the ASP .NET HTTP pipeline did . However,
whereas the ASP .NET HTTP pipeline runs entirely within the ASP .NET worker process, IIS 7 .x
runs the pipeline as directed by IIS . The integrated pipeline in IIS 7 .x works in very much
the same way as the ASP .NET pipeline, so the application-wide events exposed through the
HttpApplication events work just as before (application-wide events are discussed in detail
later) . When running your application through IIS 7 .x in Integrated mode, your request no
longer passes through aspnet_isapi .dll . IIS 7 .x pushes the request through the modules and
handlers directly .

48 Part I Fundamentals

Tapping the Pipeline
Although some of the parts in the pipeline are unavailable to you as a developer, several
parts are available directly and provide a useful means of managing your request as it goes
through the pipeline . The most important parts of the pipeline that you can touch include
the HttpApplication, the HttpContext, the HttpModule, and the HttpHandler .

The following sections supply some details about these critical sections in the HTTP request
path .

The HttpApplication
At this point, you understand the nature of a Web application as being very different from
that of a normal desktop application . The code that you’re writing is responsible for return-
ing some HTML response to a client . In many ways, the model relates back to the terminal–
mainframe model prevalent during the mid-1970s . In ASP .NET, the endpoint of a request is
an implementation of IHttpHandler (even if that handler ultimately forms a Web page based
on your ASP .NET Web Forms code) .

HTTP handlers live for a very short period of time . They stick around long enough to handle
a request, and then they disappear . For very simple applications, this model might be just
fine . However, imagine the requirements of even a modest commercial-grade application . If
all you had to work with was these ephemeral handlers, you’d have no way to achieve appli-
cation-wide functionality . For example, imagine you want to cache data to avoid round-trips
to the database . You’d need to store that data in a place where all the HTTP handlers could
get to it .

The HttpApplication class exists for that purpose—to act as a rendezvous point for your
 request processing . During the lifetime of a Web application, the HttpApplication objects
serve as places to hold application-wide data and handle application-side events .

The HttpContext
The HttpContext class acts as a central location in which you can access parts of the current
request as it travels through the pipeline . In fact, every aspect of the current request is avail-
able through HttpContext . Even though the HttpContext components are really just refer-
ences to other parts of the pipeline, having them available in a single place makes it much
easier to manage the request .

Here is an abbreviated listing of HttpContext, showing the parts you’ll use most frequently in
developing Web applications . The members are exposed as properties .

class HttpContext
{
 public static HttpContext Current {...};
 public HttpRequest Request {...};
 public HttpResponse Response {...};

 Chapter 2 ASP.NET Application Fundamentals 49

 public HttpSessionState Session {...};
 public HttpServerUtility Server {...};
 public HttpApplicationState Application {...};
 public HttpApplication ApplicationInstance {...};
 public IDictionary Items {...};
 public IPrincipal User {...};
 public IHttpHandler CurrentHandler {...};
 public Cache Cache {...};
 ...
}

The static Current property gives you a means of getting to the current request at any
time . Many times, the HttpContext is passed as a method parameter (as in the method
IHttpHandler.RequestProcess(HttpContext ctx)); however, there might be times when you
need the context even though it hasn’t been passed as a parameter . With the Current prop-
erty, you can grab the current process out of thin air . For example, this is how you might use
HttpContext.Current:

public void DealWithRequest()
{
 HttpContext thisRequest = HttpContext.Current;
 thisRequest.Response.Write("<h3> Hello World</h3>");
}

As you can see from the previous snippet of the HttpContext object, the properties within
HttpContext include such nuggets as these:

n A reference to the context’s Response object (so that you can send output to the client)

n A reference to the Request object (so that you can find information about the request
itself)

n A reference to the central application itself (so that you can get to the application state)

n A reference to a per-request dictionary (for storing items for the duration of a request)

n A reference to the application-wide cache (to store data and avoid round-trips to the
database)

You’ll see a lot more of the context—especially when you write a custom HttpHandler .

HttpModules
Although the Application object is suitable for handling application-wide events and data on
a small scale, sometimes application-wide tasks need a little heavier machinery . HttpModules
serve that purpose .

ASP .NET includes a number of predefined HttpModules . For example, session state,
 authentication, and authorization are handled by HttpModules . Writing HttpModules is
pretty straightforward and is a great way to handle complex application-wide operations . For
 example, if you want to write some custom processing that occurs before each request, using
HttpModules is a good way to do it . You can see HttpModules up close later .

50 Part I Fundamentals

HttpHandlers
The last stop a request makes in the pipeline is at an HttpHandler . Any class implementing
the interface IHttpHandler qualifies as a handler . When a request finally reaches the end of
the pipeline, ASP .NET consults the configuration file to see whether the particular file name
extension is mapped to an HttpHandler . If it is, ASP .NET loads the handler and calls the han-
dler’s IHttpHandler.ProcessRequest method to execute the request .

Visual .Studio .and .ASP .NET
Visual Studio .NET 2010 expands your options for locating your Web sites during
 development . The Visual Studio .NET 2010 wizards define eight separate Web site project
deployment locations: local IIS Web sites, file system–based Web sites, FTP Web sites, and
remote Web sites .

Here’s a rundown of the different types of Web sites available using the Project Wizard . Each
is useful for a particular scenario, and having these options makes it much easier to develop
and deploy an ASP .NET application with Visual Studio 2010 than it was to do with earlier
versions .

Local IIS Web Sites
Creating a local IIS Web site is much like creating a Web site using the older versions of Visual
Studio .NET specifying a local virtual directory . This option creates sites that run using IIS
installed on your local computer . Local IIS Web sites store the pages and folders in the IIS de-
fault directory structure (that is, \Inetpub\wwwroot) . By default, Visual Studio creates a virtual
directory under IIS . However, you can create a virtual directory ahead of time and store the
code for your Web site in any folder . The virtual directory just needs to point to that location .

One reason to create a local Web site is to test your application against a local version of
IIS, for example, if you need to test such features as application pooling, ISAPI filters, or
HTTP-based authentication . Even though a site is accessible from other computers, it’s often
much easier to test these aspects of your application when you can see it interact with IIS on
your computer . To create a local Web site, you need to have administrative rights . For most
 developers, this is not an issue .

File System–Based Web Sites
File system–based Web sites live in any folder you specify . The folder can be on your lo-
cal computer or on another computer sharing that folder . File system–based Web sites do
not require IIS running on your computer . Instead, you run pages by using the Visual Studio
Web server .

 Chapter 2 ASP.NET Application Fundamentals 51

Visual .Studio .Web .Server
Until Visual Studio 2005, the development environment used IIS directly to serve up
pages . That meant that developers needed to have IIS fully enabled on their computers
to be able to develop effectively . This created a possible security compromise . Visual
Studio 2010 includes its own built-in Web server . This lets you develop Web applica-
tions effectively even if you don’t have IIS installed on your development computer .

File-system Web sites are useful for testing your site locally but independently of IIS . The
most common approach is to create, develop, and test a file-system Web site . Then, when
it is time to deploy your site, simply create an IIS virtual directory on the deployment server
and move the pages to that directory .

Because file-system Web sites employ the Visual Studio Web server rather than IIS, you can
develop your Web site on your computer even when logged on as a user without administra-
tive rights .

This scenario is useful for developing and testing application-specific features of your site .
Because IIS is out of the picture, you won’t be able to work with (or have to deal with) such
IIS features as ISAPI filters, application pooling, or authentication (though in many cases you
won’t need to worry about that sort of thing during development) .

FTP Web Sites
In addition to creating HTTP-based sites, you can use Visual Studio to manage Web sites
available through an FTP server . For example, if you use a remote hosting company to host
your Web site, an FTP server offers a convenient way to move files back and forth between
your development location and the hosting location .

Visual Studio connects to any FTP server for which you have read and write access . Once
 connected, you then use Visual Studio to manage the content on the remote FTP server .

You would use this option to deploy your Web site to a server that lacks Microsoft FrontPage
2002 Server Extensions .

Remote Web Sites
The final option for developing and managing Web sites through Visual Studio is to use the
remote Web sites option . Remote Web sites use IIS on another computer that is accessible
over a network . In addition to running IIS, the remote computer must have IIS installed and
needs to have FrontPage 2002 Server Extensions installed . Pages and folders on a remote site
become stored under the default IIS folder on the remote computer .

52 Part I Fundamentals

This option is useful if you decide you want to move the Web site to its actual deployment
server . In addition, the entire development team can work on the site simultaneously . The
downside of this approach is that debugging and configuring a Web site remotely can
 sometimes be tricky because the process is slow and it’s hard to control the site as a whole .

Hello World and Visual Studio
To get started, use Visual Studio to generate the HelloWorld Web application .

Generating the HelloWorld Web application

 . 1 . . Start Visual Studio in Administrative mode by clicking the Windows Start button and
typing Visual .Studio in the Search box . When Visual Studio appears in the list of pro-
grams, right-click the menu and click Run As Administrator . Create a new Web site by
clicking File, New, and then Web Site . Visual Studio will display a dialog box like this
one:

So that you can compare this site to the previous IIS-based examples in this chapter,
make this an HTTP site . Select HTTP from the Web Location drop-down list . Give the
Web site a useful name such as ASPNETStepByStepExamples . Even though this is the
same directory name used for the previous IIS examples, you can use it because
Visual Studio will create the subdirectory under the IIS default subdirectory
\inetpub\wwwroot .

Notice that several different kinds of sites are showing in the dialog box . Select Empty
Web Site for this example, which causes Visual Studio to generate an ASP .NET solution
file in a directory named Visual Studio 2010\Projects in your normal My Documents
directory . Visual Studio also creates a new directory in your inetpub\wwwroot directory

 Chapter 2 ASP.NET Application Fundamentals 53

and maps it as an IIS virtual directory . However, the virtual directory is devoid of any
files .

One of the other project templates available is ASP .NET Web Site . By contrast, selecting
ASP .NET Web Site causes Visual Studio to generate a directory structure similar to the
one generated by Empty Web Site . However, Visual Studio includes a default Web form
and source code (default .aspx and default .aspx .cs) . You also get an App_Data directory
that might contain data pertinent to your site (for example, a database file containing
ASP .NET security information could be contained here) .

 . 2 . . Choose the language syntax . At this point, you have the option of choosing a syntax to
use within your code . Choose among Visual Basic, C#, and J# . For this example, select
C# .

 . 3 . . Create a local Web site . For this example, select HTTP from the Location combo box to
run this Web site locally on your computer . The Visual Studio default option is to create
a Web site on your local computer’s file system . By using the HTTP project type, clients
trying to access your Web site will have their requests directed through IIS . This is the
best option to choose when learning how ASP .NET works with IIS because it gives you
the chance to work with your Web site as an entire system, and you can use tracing
and debugging on your local computer . Later examples that focus on specific ASP .NET
 features use the more convenient file system–style project .

 . 4 . . Add a HelloWorld page by selecting Website, Add New Item to open the Add New
Item dialog box:

This dialog box lists all the various pieces you can add to your Web site . Topping the list
is an item named Web Form . Select this option, and then type HelloWorld .aspx into
the Name text box . Leave the other defaults the same .

54 Part I Fundamentals

Visual Studio will provide you with the pure ASP .NET code from the HelloWorld .aspx
file .

Notice that the code generated by Visual Studio includes directives near the top of the
markup file connecting HelloWorld .aspx to the accompanying source file HelloWorld .
aspx .cs (using the CodeFile and Inherits attributes in the Page directive) . Following the
directive is some initial HTML produced by Visual Studio:

At this point, take a moment to explore the layout of Visual Studio . Along the top of
the window, you can see a number of toolbar buttons and menu options . You visit most
of them throughout the course of this text . Directly beneath the code window, you can
see three tabs labeled Design, Split, and Source (the Source tab is selected by default) .
If you click the Design tab, you can see what the page will look like in a browser . Right
now, the page has no visible HTML tags or ASP .NET Web Forms controls, so the design
view is blank .

To the right of the Source window, you’ll see Solution Explorer, which lists the compo-
nents of your application that Visual Studio will compile into an executable code base .
Along the top of Solution Explorer, you’ll find a number of buttons . By resting your
mouse pointer on the buttons, you can see what they do . The following graphic shows
how each button functions when an .aspx file is selected .

 Chapter 2 ASP.NET Application Fundamentals 55

Properties

Nest Related Files

Refresh

View Code

ASP.NET Configuration

View Designer

Copy Web Site

 . 5 . . Write some code into the page . Select the HelloWorld .aspx file in Solution Explorer, and
then click the View Code button . This shows the C# code in the Source code window,
like so:

56 Part I Fundamentals

Add the following code to show the page’s lineage (it’s the same code from HelloWorld5
shown previously) . The code you add should follow the Page_Load method:

public void ShowLineage()
{
 Response.Write("Check out the family tree:

");
 Response.Write(this.GetType().ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(this.GetType().BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.ToString());
 Response.Write(" which derives from:
 ");
 Response.Write(
 this.GetType().BaseType.BaseType.BaseType.BaseType.ToString());
}

The HelloWorld .aspx .cs file should look like the following:

 . 6 . . Call the ShowLineage method from the .aspx file . Click the HelloWorld .aspx tab at the
top of the editor window to return to the visual designer, and then click the Source tab
near the bottom of the screen . With the HTML content showing, insert the following
markup in the page . It should be placed between the opening and closing <div> tags:

<h2> Hello World!!!</h2>
<%
ShowLineage();
%>

 Chapter 2 ASP.NET Application Fundamentals 57

The HelloWorld .aspx markup then would appear like the following:

 . 7 . . Now build the project and run the Web site from Visual Studio . To build the applica-
tion, select Build, Solution from the main menu . If the source code has any errors,
they’ll appear in the Errors window in the bottom pane .

To run the application, select Debug, Start Without Debugging (or press Ctrl+F5) . Visual
Studio will start up a copy of an Internet browser (Internet Explorer by default) and
browse the page . You should see a page like this (make sure the HelloWorld .aspx page
is highlighted in Solution Explorer):

58 Part I Fundamentals

When you run this application, Visual Studio compiles the HelloWorld .aspx and its
code-beside file, HelloWorld .aspx .cs, and moves them to the temporary ASP .NET direc-
tory . IIS is then called to activate the ASP .NET HTTP pipeline, which loads the compiled
files (DLLs) and renders the page you just created .

Chapter .2 .Quick .Reference

To Do This

Create an FTP Web site in Visual
Studio 2010

Select File, New, Web Site from the main menu . Select FTP in the
Locations combo box .

This option is useful for creating sites that will eventually be deployed by
sending the bits to the site’s host over FTP .

Create an HTTP Web site in Visual
Studio 2010

Select File, New, Web Site from the main menu . Select HTTP in the
Locations combo box .

This option is useful for creating sites that use IIS as the Web server
throughout the entire development cycle .

Create a file-system Web site in
Visual Studio 2010

Select File, New, Web Site from the main menu . Select File System in the
Locations combo box .

This option creates sites that use Visual Studio’s built-in Web server . That
way, you can develop your own site even if you don’t have IIS available
on your computer .

 . . 59

Chapter 3

The Page Rendering Model
After completing this chapter, you will be able to

n Work directly with server-side control tags .

n Work with Web Forms and server-side controls using Microsoft Visual Studio .

n Work with postback events using Visual Studio .

n Understand the ASP .NET page rendering model .

This chapter covers the heart of the ASP .NET Web Forms rendering model: controls . As you
will see here, System.Web.UI.Page works by partitioning the rendering process into small
components known as server-side controls .

The entire tour of the ASP .NET control model includes the fundamental control architecture .
This chapter starts by looking at the HTML required to render controls in the browser . Then,
it examines the classic Active Server Pages (ASP) approach to displaying controls . Although
you might never use classic ASP in your career, seeing it in this context can help you appre-
ciate some of the problems ASP .NET has solved . This lays the groundwork for subsequent
chapters that look at how controls can provide custom rendering, user controls, some of the
standard user interface (UI) controls, and some of the modern, more complex controls . This
chapter starts with the ASP .NET rendering model .

Rendering .Controls .as .Tags
As you saw in basic HTML Web Forms, developing a Web-based UI is all about getting the
right tags out to the browser . For example, imagine you want to have your application’s UI
appear in the client’s browser as shown in Figure 3-1 .

Getting this to appear in a client’s browser means populating an HTML stream with the
correct tags so that the browser renders the screen using client-side controls . Listing 3-1
shows some HTML that does the job . If you would like to run this page, the file is named
BunchOfControls .htm and is included in the sample code for this chapter . To run the page,
save the file in a virtual directory and browse to it .

60 Part I Fundamentals

FIGURE .3-1 . Some HTML tags rendered as controls in Internet Explorer .

LISTING .3-1 . Initial HTML markup from BunchOfControls .htm

<html>
<body>
<h2> Page in HTML </h2>
<form method="post" action="BunchOfControls.htm" id="Form1">
 <label>Type in me</label>
 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option value="Item 4">Item 4</option>

 </select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />
</form>
</body>
</html>

Of course, using controls on a page usually implies dynamic content, so getting this HTML
to the browser should happen dynamically, in a programmatic way . Classic ASP has facili-
ties for rendering dynamic content . However, classic ASP generally relies on raw HTML for
 rendering its content . For example, a page like the BunchOfControls .htm page shown in
Listing 3-1 might look something like Listing 3-2 in classic ASP . Figure 3-2 shows how the ASP
page renders in Windows Internet Explorer .

 Chapter 3 The Page Rendering Model 61

LISTING .3-2 . Source for BunchOfControls page using classic ASP

<%@ Language="javascript" %>
<h2> Page in Classic ASP </h2>
<form>

 <label>Type in me</label>
 <input name="textinfo" type="text" id="textinfo" />

 <select name="selectitems" id="ddl">
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option value="Item 4">Item 4</option>

</select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />
<p>
 <% if (Request("textinfo") != "") { %>
 This was in the text box: <%=Request("textinfo") %>

 And this was in the selection control: <%=Request("selectitems") %>
 <% } %>
</p>

</form>

FIGURE .3-2 . The ASP page in Listing 3-2 appears like this in Internet Explorer .

When you select an item from the selection control, notice that the page responds by telling
you what you selected . This demonstrates ASP support for dynamic content .

62 Part I Fundamentals

Notice that even though classic ASP offers a way to decide your page’s content at run time,
you still have to create much of the content using raw HTML . Also, the state of the controls
is always reset between posts . (I discuss this topic later in the examination of the ASP .NET
ViewState .) ASP .NET adds a layer of indirection between the raw HTML and the rendered
page—that layer of indirection is provided by the collection of ASP .NET server-side controls .
Server-side controls eliminate much of the tedium necessary to develop a Web-based UI in
classic ASP .

Packaging .the .UI .as .Components
Being able to assemble the UI from component parts is one of the most-cited benefits of
producing components . The earliest methods for building components in the Windows op-
erating system were to write custom Windows procedures, to use the owner draw capabili-
ties of controls such as list boxes or buttons, and to subclass an existing window . In the early
1990s, Windows employed Microsoft Visual Basic Controls (VBXs) as a viable UI technology .
Of course, that was more than a decade ago . Throughout the mid- and late 1990s and early
2000s, ActiveX controls represented the graphical user interface (GUI) componentization
technology of the day . Windows Forms controls are the current standard for modular GUIs
for writing rich client applications .

In the late 1990s, ActiveX controls also emerged as a way to render a Web-based GUI as
components . The idea was that by using an ActiveX control in a page, the control would be
downloaded as users surfed to the page . During the mid-1990s, Java applets also gained
some popularity as a way to package GUI components for distribution over the Web .
However, both of these techniques depend on some fairly extensive infrastructure on the
client computer (the Component Object Model infrastructure to support ActiveX and a Java
Virtual Machine to support Java applets) . When you’re developing a Web site, you might
not be able to count on a specific infrastructure being available on the client computer to
support your GUI . To support the greatest number of clients, represent your GUI using only
HTML . That means GUI componentization must happen on the server side .

Now that modern client platforms are becoming more homogeneous, Web UIs are
 beginning to lean increasingly toward the Asynchronous Java and XML programming model
(AJAX) . You see how AJAX works a bit later in this book . AJAX tends to push more intel-
ligence back up to the browser . However, AJAX applications still have plenty of rendering to
do . The ASP .NET UI componentization model makes developing AJAX applications very ap-
proachable . The AJAX programming model includes a lot of underlying plumbing code that
fits perfectly in the server-side control architecture of ASP .NET .

As you saw earlier, ASP .NET introduces an entirely new model for managing Web pages .
The infrastructure of ASP .NET includes a well-defined pipeline through which a request flows .
When a request ends up at the server, ASP .NET instantiates a handler (an implementation

 Chapter 3 The Page Rendering Model 63

of IHttpHandler) to deal with the request . As you see in Chapter 19, “HTTP Handlers,” the
 handling architecture is extraordinarily flexible . You can write any code you wish to handle
the request . The System.Web.UI.Page class implements IHttpHandler by introducing an ob-
ject-oriented approach to rendering . That is, every element you see on a Web page emitted
by an ASP .NET page is somehow generated by a server-side control . Let’s see how this works .

The Page Using ASP.NET
Try turning the previous Web page into an ASP .NET application . Doing so introduces some
canonical features of ASP .NET, including server-side controls and server-side script blocks .

 . 1 . . Create a file named BunchOfControls.aspx. Follow the steps from Chapter 2, “ASP .NET
Application Fundamentals,” to create a basic text file . Because all of the code will be in
a single file, do not create a full-fledged ASP .NET file for this step using the wizard .

 . 2 . . Add the source code in Listing 3-3 to the file .

LISTING .3-3 Source code for the BunchOfControls page using ASP .NET

<%@ Page Language="C#" %>

<script runat="server">
 protected void Page_Load(object sender, EventArgs ea)
 {
 ddl.Items.Add("Item 1");
 ddl.Items.Add("Item 2");
 ddl.Items.Add("Item 3");
 ddl.Items.Add("Item 4");
 }
</script >
<h2> Page in ASP.NET </h2>

<form id="Form1" runat="server" >
 <asp:Label Text="Type in me" runat="server" />
 <asp:TextBox id="textinfo" runat="server" />

 <asp:DropDownList id="ddl" runat="server" />

 <asp:Button id="clickme" Text="Click Me!" runat="server" />
</form>

 . 3 . . Save the file in a virtual directory (either create one or use the one from Chapter 2) .

Many of the same elements in the classic ASP page also appear here; for example, there is a
top-level Page directive . The Language attribute is new for ASP .NET, stipulating that any code
encountered by the ASP .NET runtime should be interpreted as C# code . There’s a server-side
script block that handles the Page_Load event . Following the script block is an HTML <form>
tag . Notice that the <form> tag has an attribute named runat, and the attribute is set to
server . The runat=server attribute tells the ASP .NET runtime to generate a server-side control

64 Part I Fundamentals

to handle that UI element at the server . You see this in detail throughout the rest of this
chapter .

When the runat=server attribute is included in page control tags, the ASP .NET runtime
 implicitly creates an instance of the control in memory . The resulting assembly includes a
member variable of the same type and name (tied to the control’s ID value) as the control
listed on the page . Notice that the ASP .NET code specifies the DropDownList named ddl to
run at the server . To access the control programmatically, the code block (expressed inline in
this case) simply needs to refer to the DropDownList as ddl . The preceding example accesses
the member variable to add items to the drop-down list .

If you need to access the control using code beside, you can explicitly declare the
DropDownList variable as ddl in the associated code file . This is required because ASP .NET
derives the code-beside class from System.Web.UI.Page . Microsoft Visual Studio does this for
you automatically, as you see shortly .

Farther down the ASP .NET code, you can see that the other elements (the label, the text box,
the selection control, and the button) are also represented as server-side controls . The job
of each of these controls is to add a little bit of HTML to the response . Each time you add a
server-side control to the page, ASP .NET adds an instance of the control to a control tree that
the page maintains in memory . The control tree acts as a container that collects every single
element encapsulated by one of these server-side controls—including the title text that
seems to be floating near the top of the page even though there is no explicit runat=server
attribute associated with the <h2> tag .

The Page’s Rendering Model
To get a good idea of how the ASP .NET Page model works, you can run the page again, but
this time turn on the tracing mechanism . (You examine tracing in more detail later when you
look at the diagnostic features of ASP .NET .) For now, you simply need to know that ASP .NET
dumps the entire context of a request and a response if you set the page’s Trace attribute to
true . Here’s the Page directive with tracing turned on:

<%@ Page Language="C#" Trace="true" %>

Figure 3-3 shows what the page looks like with tracing turned on .

 Chapter 3 The Page Rendering Model 65

FIGURE .3-3 . The .aspx file from Listing 3-3 rendered in Internet Explorer with tracing turned on .

If you look at the raw text of the response (click Page, View Source in Internet Explorer), you
can see that ASP .NET responds with pretty straightforward, ordinary HTML . There’s a bit ex-
tra near the top—the hidden __VIEWSTATE field, which is covered later in Chapter 4, “Custom
Rendered Controls .” After that, the rest is familiar HTML describing a form . Listing 3-4 shows
the raw HTML emitted by the ASP .NET code from Listing 3-3 . Be sure to turn tracing off first
before surfing to the page!

LISTING .3-4 Raw HTML produced by the BunchOfControls .aspx file

<h2> Page in ASP.NET </h2>
<form method="post" action="BunchOfControls.aspx" id="Form1">
<div>
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUJODQ1ODEz ... " />
</div>

 Type in me
 <input name="textinfo" type="text" id="textinfo" />

 <select name="ddl" id="ddl">
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option value="Item 4">Item 4</option>

</select>

 <input type="submit" name="clickme" value="Click Me!" id="clickme" />
</form>

66 Part I Fundamentals

You don’t see any of the runat=server attributes anywhere in the rendered page . That’s
 because the runat=server attributes are there to instruct ASP .NET how to construct the page’s
control tree .

The Page’s Control Tree
After you set the page’s Trace property to true, ASP .NET spews a ton of information your way
in the form of a page trace . If you scroll down just a bit in the trace information, you can see
that part of the ASP .NET page trace includes the page’s control tree . Figure 3-4 shows what
the BunchOfControls .aspx page’s trace looks like, with the focus on the control tree .

FIGURE .3-4 . The BunchOfControls .aspx page’s control tree shown in the page trace .

The first line in the page’s control tree trace is an item named __Page . This is in fact the
System.Web.UI.Page object running in memory . Beneath that is a whole host of other items .
You might recognize some of their names because they are named in the ASP .NET source
code . Notice the Form1, textinfo, and clickme items . Those names come from the tags in the
original .aspx file .

What’s happening here is that ASP .NET is breaking down the page rendering architecture
into small, easily managed pieces . Every item in the control tree shown in Figure 3-4 derives

 Chapter 3 The Page Rendering Model 67

from the System.Web.UI.Control class . Every time the System.Web.UI.Page needs to render the
page, it simply walks the control tree, asking each control to render itself . For example, when
the ASP .NET runtime asks the TextBox server-side control to render itself, the TextBox control
adds the following HTML to the output stream heading for the browser:

<input name="textinfo" type="text" id="textinfo" />

This works similarly for the other controls . For example, the DropDownList is responsible
for emitting the <select> and <option> tags (the <option> tags represent the collection of
items held by the DropDownList control) .

<select name="ddl" id="ddl">
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option value="Item 4">Item 4</option>
</select>

Now that you see how these tags work, you can learn how to manage them in Visual Studio .

Adding .Controls .Using .Visual .Studio
Visual Studio (in concert with ASP .NET) can easily fool you about the real nature of Web-
based development . As you saw in earlier chapters, Web-based development dates back to
the old terminal–mainframe days of the mid-1970s . However, now the terminal is a sophis-
ticated browser, the computing platform is a Web server (or perhaps a Web farm), and the
audience is worldwide . When a client browser makes a round-trip to the server, it’s really get-
ting only a snapshot of the state of the server . That’s because Web user interfaces are built
using a markup language over a disconnected protocol .

When you build Web applications in Visual Studio, it’s almost as if you are developing a desk-
top application . With Visual Studio, you don’t have to spend all your time typing ASP-style
code . The Designer is a great environment in which to design a Web-based UI visually .

To learn how to work with Visual Studio, you can develop a simple page that uses server-side
controls . The page will look roughly like the ones you have seen so far in this chapter .

68 Part I Fundamentals

Building a page with Visual Studio

 . 1 . . In Visual Studio, create a new Empty ASP .NET Web site project to experiment with
 controls . Call the Web site ControlsORama, as shown here:

 . 2 . . Add a default page by right-clicking the project node, and selecting Add, New Item .
Select WebForm from the available templates shown by Visual Studio, and make sure
the form is named Default .aspx . Visual Studio starts you off editing the markup in the
Default .aspx file . If you don’t see the page layout in Design mode, switch to the Design
view as shown here by clicking the Design tab near the bottom of the editing window:

 Chapter 3 The Page Rendering Model 69

The ASP .NET code generated by Visual Studio includes an HTML <div> tag in the body
of the page . To see the code generated by Visual Studio as you modify elements in the
Designer, click the Source tab near the bottom of the design window . Visual Studio also
now includes a handy Split tab that you can use to see both the Design and Source
views at the same time .

If you simply start typing text into the Design view pane, you will see some text at the
top of the page . The following graphic illustrates the Design view with some text insert-
ed . To insert the text, click inside the box with the dashed blue border and type Page .
in .Visual .Studio .

 . 3 . . To edit the format of the text on the page, you need to view the page’s properties .
Highlight the text, right-click the text, and click Properties . Then, highlight the Style
property in the Properties pane . A small button with an ellipsis (. . .) appears in the
Property field . Click the button to open the Modify Style dialog box . The Modify Style
 dialog box is where you can set the attributes for the <div> tag including the font style
and size . The following graphic shows the Modify Style dialog box . Select the Font-
Family, Font-Size, and Font-Weight values that you see in the graphic, and then click OK .

70 Part I Fundamentals

 . 4 . . Click the Toolbox tab on the far left side of the Visual Studio window to open the
Toolbox, as shown in the following graphic:

 . 5 . . Insert a line break tag (
), drag a label from the Toolbox onto the page, and then
select it as shown in the following graphic . (Notice how the Visual Studio 2010 Designer
adorns the label with a small tag right above it, which helps you identify the label in the
Designer when you select it .)

 Chapter 3 The Page Rendering Model 71

 . 6 . . To edit the content of the label, you need to view the properties of the control . If the
properties aren’t showing, right-click the label and click Properties on the shortcut
menu . The following graphic shows the Properties pane:

You can now manipulate the appearance of the label to your liking . The example label
here uses a small Times New Roman font, and the text in the label is Type .in .me: .

 . 7 . . Add a text box .next by dragging a TextBox from the Toolbox and positioning it next to
the Label . After the TextBox, insert a line break tag (
) .

72 Part I Fundamentals

 . 8 . . Next, add a DropDownList box by dragging it out of the Toolbox and placing it on
the page . The following graphic illustrates the drop-down list as it appears in the
Designer:

As soon as you drop the control on the page, Visual Studio offers you the opportunity
to add items to the DropDownList by using the shortcut menu that appears . Click Edit
Items on the DropDownList Tasks menu to open the ListItem Collection Editor dialog box,
as shown in the following graphic:

Each time you click the Add button, the ListItem Collection Editor adds a new item to
the DropDownList item collection . After adding and selecting an item, you can edit the
display name (the Text property) . You can add a corresponding value to associate with

 Chapter 3 The Page Rendering Model 73

the text as well . For example, in an inventory-tracking application, you might include
a product name as the Text property and an enterprise-specific product code in the
Value field . You can retrieve either or both aspects of the item at run time .

Add several of these items to the DropDownList, as shown in the following graphic .
After you have added several, click OK .

 . 9 . . Add a button to the page . First, add a line break (
) after the DropDownList .
Then, drag a Button from the Toolbox onto the page . The following graphic shows the
c ontrols in place:

Add some meaningful text to the button by modifying its Text property .

74 Part I Fundamentals

Before moving on, take a minute to look at the source code generated by Visual Studio .
For a Label control, a TextBox control, a DropDownList control, and a Button control,
Visual Studio adds four new member variables to your code (implied through the
runat=server attributes placed in the control tags) . At this point, the contents of the
 .aspx file (starting with the <form> tag) look something like the code in Listing 3-5 .

LISTING .3-5 Final Default .aspx markup

<form id="form1" runat="server">
<div style=
 "font-family: 'Times New Roman', Times, serif; font-size: 14pt; font-weight: bold">
 Page in Visual Studio

 <asp:Label ID="Label1" runat="server" Text="Type in me:"></asp:Label>
 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

 <asp:DropDownList ID="DropDownList1" runat="server">
 <asp:ListItem>Item 1</asp:ListItem>
 <asp:ListItem>Item 2</asp:ListItem>
 <asp:ListItem>Item 3</asp:ListItem>
 <asp:ListItem>Item 4</asp:ListItem>
 <asp:ListItem>Item 5</asp:ListItem>
 <asp:ListItem>Item 6</asp:ListItem>
 </asp:DropDownList>

 <asp:Button ID="Button1" runat="server" Text="Click Me" />
 </div>
\</form>

Notice that each ASP .NET tag that runs at the server has an ID attribute . This is the
identifier by which the control is known at run time . You use it shortly .

 . 10 . . Finally, to make the button do something, you need to add an event handler to the
page so that it responds when the button is clicked . The easiest way to add an event
handler is to double-click the button in Design view . Visual Studio generates a han-
dler function for the button click, and then shows that code in the Source view . At this
point, you can add some code to respond to the button click .

 . 11 . . Add the source code in Listing 3-6 to the file .

LISTING .3-6 Button handling code

protected void Button1_Click(object sender, EventArgs e)
{
 Response.Write("Hello. Here's what you typed into the text box:
");
 Response.Write(this.TextBox1.Text);

 Response.Write("
");
 Response.Write("And the selected item is:
");
 Response.Write(this.DropDownList1.SelectedItem.Text);
}

 Chapter 3 The Page Rendering Model 75

The code shown here responds to the button click by sending some text to the output
stream using the Response object . The text coming through Response.Write is the first
text the client browser sees, so it appears at the top of the page .

Notice that the response code uses the TextBox1 member variable in the page’s class,
showing that the controls are available programmatically at run time . Here’s how the
page appears to the client browser . Notice how the text emitted by Response.Write is
inserted before any of the controls are .

To test the controls on the page, browse to the page by clicking the Debug menu, and
then clicking Start Without Debugging . To see the HTML generated by all the server-side
controls, you can view the source sent to the browser . (If your browser is Internet Explorer,
click Page, View Source .) When you view the source, you should see something like that
shown in Listing 3-7 . Notice how the text emitted by Response.Write appears at the very top
of the listing .

76 Part I Fundamentals

LISTING .3-7 . HTML resulting from running Default .aspx

Hello. Here's what you typed into the text box:
Hello world

And the selected item is:
Item 4

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
</title></head>
<body>
 <form name="form1" method="post" action="Default.aspx" id="form1">
<div>
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwUKMTc0ODY5OTM3N2RkvlciIj/EgelYYjZ7ti51iSLFZ6g=" />
</div>
<div>
 <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"
value="/wEWCQLi6ca/AgLs0bLrBgKTmtqTCAKTmsaTCAGBhPVvUl6OSn5X9GuTKtorQF1aF3r" />
</div>
<div style="font-family: 'Times New Roman', Times, serif; font-size: 14pt; font-
weight: bold">
Page in Visual Studio

Type in me:
<input name="TextBox1" type="text" value="Hello world" id="TextBox1" />

 <select name="DropDownList1" id="DropDownList1">
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option selected="selected" value="Item 4">Item 4</option>
 <option value="Item 5">Item 5</option>
 <option value="Item 6">Item 6</option>
 </select>

 <input type="submit" name="Button1" value="Click Me" id="Button1" />
 </div>
</form>
</body>
</html>

Notice that the browser displays just pure HTML—ASP .NET generated it using its page
 rendering model, but the browser is none the wiser .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 Chapter 3 The Page Rendering Model 77

Layout Considerations
You might have noticed when building the last page that the layout of the page flowed . That
is, every time you dropped a control onto the page, the Designer forced it up against the
placement of the previous control . If you’ve worked with earlier versions of Visual Studio,
you know that this is different default behavior . Visual Studio 2003 uses absolute positioning
for elements on a page (which is what you’re used to if you’ve done rich client or standard
Windows development) .

Although today Visual Studio 2010 does not let you set positioning styles directly in the
Designer, you can apply different positioning options using a style that applies to the whole
page or to single elements in the page . To add a new style to the page, make sure the
Designer is showing in the window and click Format, New Style from the main Visual Studio
menu . The New Style dialog box opens:

To change the layout options using the style, select Position in the Category list on the left
side of the dialog box . Notice the combo selection for setting positions . Once you’ve set
up a style, you can apply it to various elements on the page by referring to the class name
through the element’s CssClass property .

By changing the positioning options, you can apply various kinds of layout assignments
to the page . Play around with them a bit because that’s the only way to get a feel for how
they work . You explore styles in greater depth later in the discussion of master pages in
Chapter 7, “A Consistent Look and Feel .”

78 Part I Fundamentals

Chapter .3 .Quick .Reference
To Do This

Switch between ASPX Source code mode and
Designer mode

Click the Design or Source tab, which both usually appear near
the bottom left side of the editor window . You can also use the
Split tab to see both the Source and Design views at once .

Add a server-side control to a page Open the Toolbox if it’s not already showing by clicking View,
Toolbox on the main menu . (You can use the key combinations
Ctrl+W and Ctrl+X also .) Click the control in the Toolbox . Drag
the control onto the page .

Change the properties of controls on a page Make sure the page editor is in Design mode . Highlight the
control whose property you want to change . Select the prop-
erty to edit in the Properties pane .

Turn on tracing In Source code editing mode, edit the Page directive to include
the attribute Trace=”true”.

Or

Select the Document element from the combo box near the top
of the Properties pane . Set the Trace property to true .

Change the size of a server-side control Click the control to highlight it . Click one of the handles ap-
pearing on the border of the control and drag the mouse until
the control is the correct size .

Add a handler for a control’s default event Double-click the control for which you want to handle the
event . The code editor will appear, allowing you to add the
code necessary to handle the specific event .

Change the layout characteristics of a page Add a new style to the page by clicking Format, New Style on
the main menu . Click Layout on the main menu and develop
a style (defining a style also includes other elements in addi-
tion to the layout options, such as font face, size, and margins) .
Apply the style to the page or to single elements .

 . . 79

Chapter 4

Custom Rendered Controls
After completing this chapter, you will be able to

n Add a new project to the existing project in a Microsoft Visual Studio solution file .

n Create a server-side control that renders custom HTML .

n Add a server-side control to the Visual Studio Toolbox .

n Place a server-side control on a Web Form .

n Manage events in the control .

n Use ASP .NET to detect differences in client browsers and apply that information .

Chapter 3, “The Page Rendering Model,” describes the fundamental architecture behind the
ASP .NET rendering model . System.Web.UI.Page manages a list of server-side controls, and
it’s the job of each server-side control to render a particular portion of the page . ASP .NET
broadly classifies server-side controls into two categories:

n Rendering controls (controls that completely manage the rendering process)

n Composite controls (multiple server-side controls bundled into a single unit)

This chapter focuses on the first type: custom rendered controls . In this chapter, you will see
how the control works once it’s part of a Web page . Along the way, the chapter covers topics
such as how controls manage events and how they detect the differences in client browsers .

First, start by looking at the heart of the ASP .NET server-side control architecture—the
System.Web.UI.Control class .

The .Control .Class
ASP .NET server-side controls derive from a class named System.Web.UI.Control . In fact, the
Control class is the core of almost every user interface (UI) element in ASP .NET . Even
System.Web.UI.Page is derived from the Control class . Table 4-1 shows a small sampling of
the System.Web.UI.Page class .

80 Part I Fundamentals

TABLE .4-1 . Sampling .of .the .Page’s .Properties, .Methods, .and .Events

Member Description

Application Reference to the HttpApplicationState object associated with the current
request

Cache Reference to the application’s cache—an in-memory dictionary of
 application-wide state (usually for optimization)

Controls The control collection maintained by Page

CreateChildControls Virtual method during which the page constructs its control tree

Init Event indicating the page has initialized

IsPostBack Distinguishes the request as either a new request or a POST

Load Event indicating the page has been loaded

RenderControl Virtual method during which the page renders its contents

Request Reference to a stateful object representing the incoming request

Response Reference to a stateful object representing the outgoing response

Session Reference to a stateful object representing information specific to the
 current request

Unload Event indicating the page has unloaded

The entries in Table 4-1 show a small cross section of the functionality available in
System.Web.UI.Control . Later you visit all these members while investigating ASP .NET Web
Forms . Remember from the last chapter that ASP .NET Web Forms manage a collection of
controls as part of their internal structure . As you add controls to a Web page, they’re placed
in the collection . When it comes time for a page to render its content back to the client,
System.Web.UI.Page iterates the collection of controls and asks each one to render itself . If
a control contains subcontrols (just as a page includes controls), ASP .NET walks down those
collections as well . You can see the RenderContents method in Table 4-1 . RenderContents
takes a single argument of type HtmlTextWriter . You examine that class later in this chapter .
Right now, think of it as the conduit through which you send the page’s response back to
the client .

Other elements of the Control class include items such as the following:

n Properties for managing the control’s view state

n Properties for managing skins (to accommodate a consistent look and feel across
 multiple pages in a site)

n Properties for getting the parent control (in the case of composite controls) and the
parent page

n Event handlers for the Init, Load, PreRender, and Unload events

 Chapter 4 Custom Rendered Controls 81

n Methods for raising the Init, Load, PreRender, and Unload events

n Methods for managing child controls

In this chapter, you visit the most important topics while examining both rendered controls
and composite controls . Although the Page class is sizable, it uses straightforward logic and
unfolds nicely in practice . The easiest way to start is to jump into building a custom control .

Visual .Studio .and .Custom .Controls
In this section, you build a simple control (the default control Visual Studio generates for
you) and see how it fits on a Web Form . Visual Studio creates a simple control that contains a
single Text property, and it renders that Text property to the end browser . It’s a good way to
discover how server-side controls work .

Creating a custom control

 . 1 . . Begin by opening the ControlsORama project from Chapter 3, as shown in the
 following graphic . Note: If you want to preserve the current state of ControlsORama,
make a copy of the whole project directory and work on the copy . This example is built
over this chapter and the next chapter to demonstrate the different approaches to
 developing controls .

82 Part I Fundamentals

 . 2 . . Add a new project to ControlsORama by right-clicking the Solution node in Solution
Explorer, and clicking Add, New Project .on the shortcut menu . Name the new project
CustomControlLib . Select ASP .NET Server Control as the template, as shown here:

Visual Studio gives you a simple Web control named ServerControl1 to start with .
Listing 4-1 shows the default code generated by Visual Studio for a Web Control
Library .

LISTING .4-1 Default custom control implementation

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace CustomControlLib
{
 [DefaultProperty("Text")]
 [ToolboxData("<{0}:ServerControl1 runat=server></{0}:ServerControl1>")]

 public class ServerControl1 : WebControl
 {
 [Bindable(true)]
 [Category("Appearance")]
 [DefaultValue("")]
 [Localizable(true)]
 public string Text
 {
 get
 {
 String s = (String)ViewState["Text"];

 Chapter 4 Custom Rendered Controls 83

 return ((s == null) ? "[" + this.ID + "]" : s);
 }
 set
 {
 ViewState["Text"] = value;
 }
 }

 protected override void RenderContents(HtmlTextWriter output)
 {
 output.Write(Text);
 }
 }
}

The code generated by Visual Studio includes a simple class derived from
System.Web.UI.WebControl .WebControl (which derives from the standard Control class)
with some standard properties added along the way . Notice that the code has a single
property named Text that overrides the Control RenderContents method . This is a real,
 functioning control (although all it really does is act very much like a Label) .

 . 3 . . Build the project by selecting Build, Build Solution on the main menu .

 . 4 . . Visual Studio makes the control available to your main project as soon as you compile
it . You can also see that it has been added to your project another way: On the Tools
menu, click Choose Toolbox Items, click the Browse button in the Choose Toolbox
Items dialog box, navigate to the ControlsORama project directory, and then go to the
CustomControlLib directory . Next, open the Bin\Debug directory . (Visual Studio builds
debug versions by default .) Select the CustomControlLib.DLL assembly and click the
Open button .

SeverControl1 appears in the Choose Toolbox Items dialog box . The check box shows it
as selected .

84 Part I Fundamentals

As soon as you click the OK button in the Choose Toolbox Items dialog box, the
new ServerControl1 will appear in the Toolbox . To make it easier to find the control,
 right-click the Toolbox and click Sort Items Alphabetically . Here is the ServerControl1 as
it appears in the Toolbox:

 . 5 . . To see how the control works, you need to give it a home . Add a new page to the Web
site . Select the ControlsORama project in Solution Explorer . Select Web Site, Add New
Item, and add a Web Form . Name the Web Form UseCustomControl.aspx .

To place the control on the page, switch to Design mode . Drag the ServerControl1
from the Toolbox onto the UseCustomControl Design view . You can see it appear as a
 rectangle in the upper left corner of the design surface:

 Chapter 4 Custom Rendered Controls 85

Some text in the control identifies it . Also, some text right above the control identi-
fies the entire class name . Although the control is already selected, you might need
to select it later whenever you switch to another page and then back to this one . You
can select the new control using the drop-down list in the Properties pane in the lower
right corner of the Visual Studio window . Change the Text property in the control and
watch it show up in the Designer .

The Text property is rendered by
the control. You can modify it here.

Take a look at the source code for the control again—specifically, look at the
RenderContents method . Notice that the method simply uses the parameter (an
HtmlTextWriter) to send the Text property to the browser . That’s why the Text property
shows after you change it in the Designer .

The following lines of code are what Visual Studio adds to the .aspx file to accommo-
date the control . You can see it by clicking the Source tab at the bottom of the code
window in Visual Studio . The Register directive tells the ASP .NET runtime where to find
the custom control (which assembly) and maps it to a tag prefix .

<%@ Register
Assembly="CustomControlLib, Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=null"
Namespace="CustomControlLib" TagPrefix="cc1" %>

Listing 4-2 shows how the control is declared on the page when you set the control’s
Text property to the string value “When you set the control’s property, it shows up in
the designer .”

86 Part I Fundamentals

LISTING .4-2 UseCustomControl .aspx markup with the custom Web control

<form id=form1 runat=server>
<div>
<cc1:ServerControl1 ID="ServerControl11"
 runat="server"
 Text="When you set the control's property,
 it shows up in the designer..." />

</div>
</form>

Now take a moment to change a few of the control’s properties and see what happens
in the Designer (for example, changing the font is always very noticeable) . The prop-
erties you see in the Properties pane are all standard, and they show up because the
 control is derived from System.Web.UI.WebControl .

 . 6 . . Now add a text box and a button to the Web page, separated by breaks (
) . After
you drop them on the page, Visual Studio adds the code shown in Listing 4-3 .

LISTING .4-3 Revised UseCustomControl .aspx markup

 <form id=form1 runat=server>
 <div>
<cc1:ServerControl1 ID="ServerControl11"
 runat="server"
 Text="When you set the controls property,
 it shows up in the designer..." />

 <asp:Label ID="Label1"
 runat="server"
 Text="Type something here:">
 </asp:Label>
 <asp:TextBox ID="TextBox1" runat="server">
 </asp:TextBox>

 <asp:Button ID="Button1"
 runat="server" Text="Set Control Text" />
 </div>
 </form>

Notice that the standard ASP .NET controls (the button, the text box, and the label)
all begin with the asp: prefix whereas the new custom control uses the prefix cc1: .
Visual Studio made up the tag cc1: when you dropped the control into the Designer,
although you could change this for this page by modifying the TagPrefix attribute in
the Register directive .

 Chapter 4 Custom Rendered Controls 87

 . 7 . . Add an event handler for the button by double-clicking the button in the Designer .
After Visual Studio adds the event handler for you, have the button pull the text from
the TextBox and use it to set your custom control’s Text property . To do this, type in the
code you see in boldface type:

protected void Button1_Click(object sender, EventArgs e)
{
 this.ServerControl11.Text = this.TextBox1.Text;
}

Now press Ctrl+F5 to surf to the new page with the control . When you type something
into the text box and click the button, the browser sends your request to the server .
The server responds by taking the text from the TextBox and using it to set the Text
property of the ServerControl1 .

Notice how the new control appears in the control tree with tracing turned on .
(You can turn on page tracing by setting the page’s Trace property to true, as you did
in Chapter 3 .)

88 Part I Fundamentals

You have now built a simple control . The control framework is pretty flexible, and you can
send out anything you want using the RenderContents method . Next, you develop a more
sophisticated control that demonstrates more advanced control rendering .

A .Palindrome .Checker
The preceding exercise shows the fundamentals of writing a simple server-side control that
renders client-side markup . However, ASP .NET already delivers a perfectly good Label control .
Do you really need another one? To further illustrate rendered server-side controls, here’s
a simple control that checks to see whether the string typed by the client is a palindrome .
In this exercise, you can observe some more advanced rendering techniques as well as how
control events work .

Creating the Palindrome Checker control

 . 1 . . To create the Palindrome Checker control, in Solution Explorer, right-click the
CustomControlLib node, and click Add, New Item on the shortcut menu . Under
Installed Templates, be sure the Web category is selected, and then highlight the
ASP .NET Server Control node . Enter PalindromeCheckerRenderedControl .in the
Name text box, and click Add to generate the code .

 Chapter 4 Custom Rendered Controls 89

 . 2 . . Add a method to the PalindromeCheckerRenderedControl class to test for a palindrome .
A palindrome is a word, sentence, or phrase that reads the same forward as it does
backward (for example, “radar”) . Add a method to the control that checks to see
whether the internal text is a palindrome . This is a simple test for a palindrome that
converts the text to uppercase, reverses it, and then compares the result to the original
text . You should also strip out nonalphanumeric characters . Listing 4-4 shows some
code that does the trick . (This example uses some outdated font tags; you will replace
them with modern style font tags shortly .)

LISTING .4-4 Stripping alphanumerics

protected string StripNonAlphanumerics(string str)
{
 string strStripped = (String)str.Clone();
 if (str != null)
 {
 char[] rgc = strStripped.ToCharArray();
 int i = 0;
 foreach (char c in rgc)
 {
 if (char.IsLetterOrDigit(c))
 {
 i++;
 }
 else
 {
 strStripped = strStripped.Remove(i, 1);
 }
 }
 }
 return strStripped;
}

90 Part I Fundamentals

protected bool CheckForPalindrome()

{
 if (this.Text != null)
 {
 String strControlText = this.Text;
 String strTextToUpper = null;
 strTextToUpper = Text.ToUpper();
 strControlText =
 this.StripNonAlphanumerics(strTextToUpper);
 char[] rgcReverse = strControlText.ToCharArray();
 Array.Reverse(rgcReverse);
 String strReverse = new string(rgcReverse);
 if (strControlText == strReverse)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 else
 {
 return false;
 }
}

 . 3 . . Change the rendering method to print palindromes in blue and nonpalindromes in red .
The RenderContent method takes a single parameter of type HtmlTextWriter . In addi-
tion to allowing you to stream text to the browser, HtmlTextWriter is full of other very
useful features you will see shortly . For now, you can treat it very much like Response.
Write . Whatever you send through the Write method ends up at the client’s browser .

protected override void RenderContent(HtmlTextWriter output)
{

 if (this.CheckForPalindrome())
 {
 output.Write("This is a palindrome:
");
 output.Write("");
 output.Write("");
 output.Write(this.Text);
 output.Write("");
 output.Write("");
 } else {
 output.Write("This is NOT a palindrome
");
 output.Write("");
 output.Write("");
 output.Write(this.Text);
 output.Write("");
 output.Write("");
 }}

 Chapter 4 Custom Rendered Controls 91

 . 4 . . Build the project by selecting Build, Build Solution on the main menu .

 . 5 . . Visual Studio should add the PalindromeCheckerRenderedControl to the Toolbox . If not,
you can add it manually by right-clicking the Toolbox and clicking Choose Item . Use
the Browse button to find the CustomControlLib.DLL assembly, and then select it . Visual
Studio loads the new control in the Toolbox .

 . 6 . . Add a page to use the palindrome checker control by adding a new Web Form to the
ControlsORama project and naming it UsePalindromeCheckerControls .aspx . Drag the
PalindromeCheckerRenderedControl to the page . Add a TextBox and a button so that
you can add a palindrome to the control and check it .

 . 7 . . Add a handler for the button by double-clicking the button . Visual Studio
will add a handler to the page . In the handler, set the Text property of the
PalindromeCheckerRenderedControl to the TextBox.Text property .

public partial class UsePalindromeCheckerControls : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 this.PalindromeCheckerRenderedControl1.Text = this.TextBox1.Text;
 }

}

 . 8 . . Run the page and test for a palindrome . Palindromes should appear in blue and
 nonpalindromes in red .

92 Part I Fundamentals

Controls .and .Events
The PalindromeCheckerRenderedControl shows how to render control content depending on
the state of the Text property . Although that’s useful in itself, it’s often helpful to alert the
host page to the fact that a palindrome was found by exposing an event from the control .

Most of the ASP .NET standard server-side controls already support events . You’ve already
seen how the Button control sends an event to the host page when it is clicked . You can ac-
tually do this type of thing with any control . Next, you add a PalindromeFound event to the
PalindromeCheckerRenderedControl .

Adding a PalindromeFound event

 . 1 . . Open the PalindromeCheckerRenderedControl .cs file . To add a PalindromeFound event,
type in the following line:

public class PalindromeCheckerRenderedControl : WebControl
{
 public event EventHandler PalindromeFound;
 // Other palindrome control code goes here
}

 . 2 . . Once hosts have subscribed to the event, they’ll want to know when the event fires . To
do this, fire an event on detecting a palindrome . The best place to do this is in the Text
property’s setter . Add the following bold type lines of code to the palindrome’s Text
property and rebuild the project:

[Bindable(true)]
[Category(Appearance)]
[DefaultValue("")]

 Chapter 4 Custom Rendered Controls 93

[Localizable(true)]
public string Text
{
 get
 {
 string s = (string)ViewState[Text];
 return ((s == null) ? String.Empty : s);
 }

 set
 {
 ViewState[Text] = value;
 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }
 }
 }
}

Notice that the code generated by Visual Studio 2010 stores the value found in the Text
property in the control’s ViewState . That way, the property retains its value between
posts . You examine ViewState more closely later in this chapter .

 . 3 . . Now wire the event in the host page by remove the current instance of the
PalindromeCheckerRenderedControl from the page and drop a new instance on the
page . This refreshes the CustomControlLib.DLL assembly so that the changes (the new
event) appear in Visual Studio . Select the PalindromeCheckerRenderedControl on the
page and click the Events button (the little lightning bolt) in the Properties pane in
Visual Studio . Double-click the text box next to the PalindromeFound event . Visual
Studio creates an event handler for you .

94 Part I Fundamentals

 . 4 . . Respond to the PalindromeFound event . The example here simply prints some text out
to the browser using Response.Write .

public partial class UsePalindromeCheckerControls : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 this.PalindromeCheckerRenderedControl1.Text =
 this.TextBox1.Text;
 }
 protected void PalindromeCheckerControl1_PalindromeFound(
 object sender, EventArgs e)
 {
 Response.Write("The page detected a PalindromeFound event");
 }
}

Run the page . You should see something like the following when you type a palindrome:

Now that the control renders palindromes correctly and has an event, look more closely at
the parameter passed in during the call to Render: HtmlTextWriter .

 Chapter 4 Custom Rendered Controls 95

HtmlTextWriter .and .Controls
Go back and briefly review the control’s RenderContents method . Notice that the
RenderContents method places literal font tags to change the color of the palindrome text .
Although this is certainly effective, this technique has a couple of downsides . For example,
HTML is defined by multiple standards . That is, browsers running both HTML version 3 .2 and
version 4 .0 occur in nature . Certain HTML elements have changed between version 3 .2 and
version 4 .0 . If you render all your HTML directly expecting requests from a certain kind of
browser, your users might be surprised if they browse to your page with a new browser that
interprets HTML differently .

Note The .NET Framework includes multiple versions of the HtmlTextWriter class:
Html32TextWriter, HtmlTextWriter, XhtmlTextWriter, and ChtmlTextWriter . When a request comes
from a browser, it always includes some header information indicating what kind of browser
made the request . These days, most browsers are capable of interpreting the current version of
HTML . In this case, ASP .NET passes in a normal HtmlTextWriter to the RenderControl method .
However, if you happen to get a request from a browser that understands only HTML 3 .2,
ASP .NET passes in an Html32TextWriter . The classes are similar as far as their use and they can
be interchanged . Html32TextWriter emits certain tags (such as table tags) in HTML 3 .2 format,
whereas HtmlTextWriter emits the same tags in HTML 4 .0 format . Information in machine.config
and the browser capabilities configuration help ASP .NET figure out what kind of HtmlTextWriter
to use . The browser capability information deduced by the ASP .NET runtime can be used for
more than simply selecting the correct HtmlTextWriter . The Request property (available as part of
the HttpContext and the Page) includes a reference to the Browser object . This object includes a
number of flags indicating various pieces of information, such as the type of browser making the
request, whether the browser supports scripting, and the name of the platform the browser is
running on . This information comes down as part of the headers included with each request . The
ASP .NET runtime runs the headers against some well-known regular expressions in the configu-
ration files to figure out the capabilities . For example, here’s a short listing that illustrates how
ASP .NET figures out whether the browser making the request supports frames:

public class TestForFramesControl : Control
{
 protected override void RenderContents(HtmlTextWriter output)
 {
 if (Page.Request.Browser.Frames)
 {
 output.Write(
 This browser supports Frames);
 }
 else
 {
 output.Write(No Frames here);
 }
 }
}

96 Part I Fundamentals

To get a feel for using the more advanced capabilities of HtmlTextWriter, replace the hard-
coded font tags in the RenderContents method of the PalindromeCheckerRenderedControl
with code that uses the HtmlTextWriter facilities .

Using the HtmlTextWriter

 . 1 . . Open the PalindromeCheckerRenderedControl .cs file .

 . 2 . . Update the RenderContents method to use the HtmlTextWriter methods . Use
HtmlTextWriter.RenderBeginTag to start a font tag and a bold tag . Use HtmlTextWriter
.AddStyleAttribute to change the color of the font to blue .

protected override void RenderContents(HtmlTextWriter output)
{
 if (this.CheckForPalindrome())
 {
 output.Write("This is a palindrome:
");
 output.RenderBeginTag(HtmlTextWriterTag.Font);
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");
 output.RenderBeginTag(HtmlTextWriterTag.B);
 output.Write(Text);
 output.RenderEndTag(); // bold
 output.RenderEndTag(); // font
 } else {
 output.Write("This is not a palindrome:
");
 output.RenderBeginTag(HtmlTextWriterTag.Font);
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "red");
 output.RenderBeginTag(HtmlTextWriterTag.B);
 output.RenderBeginTag(HtmlTextWriterTag.B);
 output.Write(Text);
 output.RenderEndTag(); // bold
 output.RenderEndTag(); // font
 }
}

The HtmlTextWriter class and the enumerations include support to hide all the oddities of
switching between HTML 3 .2 and 4 .0 . Listing 4-5 shows how a table would be rendered using
an HTML 4 .0–compliant response . Listing 4-6 shows how a table would be rendered using an
HTML 3 .2–compliant response .

LISTING .4-5 . HTML 4 .0 rendered control

This is a palindrome:

<b style="color:blue;">Radar

LISTING .4-6 . HTML 3 .2 rendered control

This is a palindrome:

Radar

 Chapter 4 Custom Rendered Controls 97

Controls .and .ViewState
Before leaving the topic of rendered controls, take a look at the issue of view state man-
aged by controls . If you go back to some of the classic Active Server Pages (ASP) examples in
earlier chapters, you might notice something disconcerting about the way some of the con-
trols rendered after posting back . After you select something in the combo box and make a
round-trip to the server, by the time the response gets back, the controls (especially selec-
tion controls) have lost their state . Recall that the basic Web programming model is all about
making snapshots of the server’s state and displaying them using a browser . It essentially
tries to perform stateful user interface (UI) development over a disconnected protocol .

ASP .NET server-side controls include a facility for holding onto a page’s visual state—it’s a
property in the Page named ViewState, and you can easily access it any time you need it .
ViewState is a dictionary (a name/value collection) that stores any serializable object .

Most ASP .NET server-side controls manage their visual state by storing and retrieving items
in the ViewState . For example, a selection control might maintain the index of the selected
item between posts so that the control knows which item has its selected attribute assigned
and can render the appropriate markup to show that item as selected in the user’s browser .

The entire state of a page is encoded in a hidden field between posts . For example, if you
browse to an .aspx page and view the source code coming from the server, you’ll see the
ViewState come through as a BASE 64–encoded byte stream .

To get a feel for how ViewState works, add some code to keep track of the palindromes that
have been viewed through the control .

Using ViewState

 . 1 . . Open the PalindromeCheckerRenderedControl .cs file .

 . 2 . . Add System.Collections to the list of using directives .

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Collections

 . 3 . . Add an ArrayList to the control to hold the viewed palindromes . Update the Text
 property’s setter to store text in the view state if the text is a palindrome:

public class PalindromeCheckerRenderedControl : WebControl

{
 public event EventHandler PalindromeFound; // public event
 ArrayList alPalindromes = new ArrayList();

98 Part I Fundamentals

 [Bindable(true)]
 [Category(Appearance)]
 [DefaultValue("")]
 [Localizable(true)]
 public string Text
 {
 get
 {
 String s = (String)ViewState[Text];
 return ((s == null) ? String.Empty : s);
 }
 set
 {
 ViewState[Text] = value;
 string text = value;
 this.alPalindromes =
 (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes == null)
 {
 this.alPalindromes = new ArrayList();
 }
 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }
 alPalindromes.Add(text);
 }
 ViewState.Add("palindromes", alPalindromes);
 }
 }
}

 . 4 . . Add a method to render the palindrome collection as a table, and update the
RenderContents method to render the viewed palindromes:

protected void RenderPalindromesInTable(HtmlTextWriter output)
{
 output.AddAttribute(HtmlTextWriterAttribute.Width, "50%");
 output.AddAttribute(HtmlTextWriterAttribute.Border, "1");
 output.RenderBeginTag(HtmlTextWriterTag.Table); //<table>

 foreach (string s in this.alPalindromes)
 {
 output.RenderBeginTag(HtmlTextWriterTag.Tr); // <tr>
 output.AddAttribute(HtmlTextWriterAttribute.Align, "left");
 output.AddStyleAttribute(HtmlTextWriterStyle.FontSize, "medium");
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, "blue");
 output.RenderBeginTag(HtmlTextWriterTag.Td); // <td>
 output.Write(s);
 output.RenderEndTag(); // </td>
 output.RenderEndTag(); // </tr>

 }

 Chapter 4 Custom Rendered Controls 99

 output.RenderEndTag(); // </table>
}

protected override void RenderContents (HtmlTextWriter output)
{
 if (this.CheckForPalindrome())
 {
 output.Write(This is a palindrome:
);
 output.RenderBeginTag(HtmlTextWriterTag.Font);
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, blue);
 output.RenderBeginTag(HtmlTextWriterTag.B);
 output.Write(Text);
 output.RenderEndTag(); // bold
 output.RenderEndTag(); // font
 } else {
 output.Write(This is NOT a palindrome:
);
 output.RenderBeginTag(HtmlTextWriterTag.Font);
 output.AddStyleAttribute(HtmlTextWriterStyle.Color, red);
 output.RenderBeginTag(HtmlTextWriterTag.B);
 output.Write(Text);
 output.RenderEndTag(); // bold
 output.RenderEndTag(); // font
 }

 output.Write("
");
 RenderPalindromesInTable(output);
}

 . 5 . . Build and run the application . When you surf to the page holding the palindrome
checker, you should see the previously found palindromes in the table .

100 Part I Fundamentals

Now that the control stores more information in the ViewState, the HTML response result-
ing from postbacks increases in size as the _VIEWSTATE field in the response grows . Add a
few more palindromes to the page and view the source that’s sent to the browser each time .
You’ll see the VIEWSTATE hidden field grow in size with each postback . The caveat here is
that introducing controls that use view state increases the size of the HTTP payload coming
back to the browser . Use the view state judiciously because overuse can bog down a site’s
performance .

Chapter .4 .Quick .Reference

To Do This

Create a custom control that takes
over the rendering process

Derive a class from System.Web.UI.Control. Override the
RenderContents method . Visual Studio includes a project type,
ASP .NET ServerControl, that fits the bill .

Add a custom control to the Toolbox Open the Toolbox if it’s not already showing by selecting View,
Toolbox on the main menu . Right-click anywhere in the Toolbox,
and click Choose Items on the shortcut menu . Choose a control
from the list, or browse to the assembly containing the control .

Change the properties of controls on
a page

Make sure the page editor is in Design mode . Highlight the control
whose property you want to change . Select the property to edit in
the Properties pane .

Manage events fired by controls on
a page

Make sure the page editor is in Design mode . Highlight the con-
trol containing the event you want your page to handle . Select
the event in the event window (you can highlight it by clicking the
lightning bolt button in the Properties pane) . Double-click in the
combo box next to the event to have Visual Studio insert the given
handler for you, or insert your own event handler name in the field
next to the event name .

Store view state information that lives
 beyond the scope of the page

Use the ViewState property of the control (a name/value dictionary)
that contains serializable types . Just be sure to use the same index
to retrieve the information as you do to store the information .

Write browser version–independent
 rendering code

Use the HtmlTextWriter tag-rendering methods for specific tags
instead of hard-coding them . The RenderContents method uses the
correct HtmlTextWriter based on header information coming down
from the browser .

 . . 101

Chapter 5

Composite Controls
After completing this chapter, you will be able to

n Create a binary composite custom control .

n Create a composite User control .

n Use both kinds of controls in an application .

n Recognize when each kind of control is appropriate .

Chapter 4, “Custom Rendered Controls,” covers the details of controls that do custom
 rendering, whereas this chapter covers the other kind of control: composite controls .
ASP .NET defines two broad categories of composite controls—binary custom controls and
user custom controls . Each type of composite control has advantages and disadvantages,
which this chapter discusses . First, we’ll explore the primary differences between rendered
 controls and composite-style controls .

Composite .Controls .versus .Rendered .Controls
Recall that custom rendered controls completely form and tailor the HTML returned to the
client by using the System.Web.UI.Control.RenderControl method . Custom rendered controls
take over the entire rendering process . With custom rendered controls, you have extraordi-
nary flexibility and power over the HTML emitted by your Web site—all the way down to the
individual HTML tag level .

However, with that power and flexibility also comes the need to keep track of an enormous
amount of detail . For example, if you were to add an input button to a custom rendered
control, you’d need to insert the correct HTML to describe the button in the response
stream heading back to the client . Things get even more difficult when you decide to add
more complex controls such as selection controls that might need to track collections of
items . Even though input buttons and selection controls are easy to describe in HTML, you
have seen that ASP .NET already includes server-side control classes that render the correct
tags . The standard ASP .NET controls greatly simplify user interface (UI) programming for
Web Forms .

102 Part I Fundamentals

Composite controls take advantage of these server-side controls that have already been
 written . Composite controls are composed from other controls . To illustrate the utility of
composite controls, imagine you’re working on a number of projects with login screens that
require a similar look and feel . On the one hand, you know that it’s fairly easy to build Web
Forms in Microsoft Visual Studio . However, if you run into a situation that requires the same
group of controls to appear together in several instances, it’s pretty tedious to re-create
those pages repeatedly . ASP .NET solves this problem with composite controls .

If you need common login functionality to span several Web sites, you might group user
name/password labels and text boxes together in a single control . Then, when you want to
use the login page on a site, you simply drop the controls en masse on the new form . The
controls (and the execution logic) instantly combine, so you don’t need to keep writing the
same HTML over and over .

Note Beginning with version 2 .0, ASP .NET includes a set of login composite controls, so you
don’t need to write new ones from scratch . However, they are mentioned here because they
 represent an excellent illustration of the power of composite controls .

We’ll begin by looking at custom composite controls .

Custom .Composite .Controls
Chapter 4 shows how binary custom controls render custom HTML to the browser . The fac-
tor most distinguishing this kind of control is that these controls override the RenderContents
method . Remember, the System.Web.UI.Page class manages a list of server-side controls .
When ASP .NET asks the whole page to render, it goes to each control on the page and asks
it to render . In the case of a rendering control, the control simply pushes some text into the
stream bound for the browser . Likewise, when the page rendering mechanism encounters a
composite-style control, the composite control walks its list of child controls, asking each one
to render—just as the Page walks its own list of controls .

Composite controls can contain an arbitrary collection of controls (as many children as mem-
ory will accommodate), and the controls can be nested as deeply as necessary . Of course,
there’s a practical limit to the number and depth of the child controls . Adding too many
controls or nesting them too deeply adds complexity to a page, and it can become unsightly .
In addition, adding too many nested controls can greatly inhibit the performance of the ap-
plication—it takes time to walk the control collection and have each one render .

In Chapter 4, you created a control that checks for palindromes . When the control’s Text
property is set to a palindrome, the control renders the palindrome in blue text, adds it to an
ArrayList, and then renders the contents of the palindrome collection as a table . Here, you
build a similar control; however, this time it is a composite control .

 Chapter 5 Composite Controls 103

Building the palindrome checker as a composite custom control

 . 1 . . Open the ControlsORama project . Highlight the CustomControlLib project in Solution
Explorer . Right-click the project node and click Add, New Item . Create an ASP .NET
Server Control and name it PalindromeCheckerCompositeControl.cs . Use the ASP .NET
Server Control template (as you did with the PalindromeCheckerRenderedControl in
Chapter 4) .

 . 2 . . After Visual Studio creates the code, do the following:

 . a . . Edit the code to change the derivation from WebControl to CompositeControl .
Deriving from the CompositeControl also adds the INamingContainer interface to
the derivation list . (INamingContainer is useful to help ASP .NET manage unique
IDs for the control’s children .)

 . b . . Add the PalindromeFound event that the host page can use to listen for
 palindrome detections (just as you did in the last chapter) .

 . c . . Remove the RenderContents method .

 . d . . Add four fields to the control—a TextBox, a Button, a Label, and a LiteralControl .

The code should look something like this when you’re finished:

public class PalindromeCheckerCompositeControl :
 CompositeControl
{
 protected TextBox textboxPalindrome;
 protected Button buttonCheckForPalindrome;
 protected Label labelForTextBox;
 protected LiteralControl literalcontrolPalindromeStatus;
 public event EventHandler PalindromeFound;
...
// RenderContents method removed.
}

Leave the Text property intact . You still need it in this control .

The control is very much like the one in Chapter 4 . However, this version includes the
palindrome TextBox and the Button to invoke palindrome checking, and it contains a
literal control to display whether the current property is a palindrome .

 . 3 . . Borrow the StripNonAlphanumerics and CheckForPalindrome methods from the
PalindromeCheckerRenderedControl:

protected string StripNonAlphanumerics(string str)
{
 string strStripped = (String)str.Clone();

 if (str != null)
 {
 char[] rgc = strStripped.ToCharArray();

104 Part I Fundamentals

 int i = 0;

 foreach (char c in rgc)
 {
 if (char.IsLetterOrDigit(c))
 {
 i++;
 }

 else
 {
 strStripped = strStripped.Remove(i, 1);
 }
 }
 }

 return strStripped;
}

protected bool CheckForPalindrome()
{
 if (this.Text != null)
 {
 String strControlText = this.Text;
 String strTextToUpper = null;

 strTextToUpper = Text.ToUpper();

 strControlText = this.StripNonAlphanumerics(strTextToUpper);

 char[] rgcReverse = strControlText.ToCharArray();
 Array.Reverse(rgcReverse);
 String strReverse = new string(rgcReverse);
 if (strControlText == strReverse)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 else
 {
 return false;
 }
}

 . 4 . . Add an event handler to be applied to the Button (which you install on the page soon) .
Because this is a binary control without Designer support, you need to add the event
handler using the text wizard (that is, you need to type it by hand) .

 Chapter 5 Composite Controls 105

public void OnCheckPalindrome(Object o, System.EventArgs ea)
{
 this.Text = this.textboxPalindrome.Text;
 this.CheckForPalindrome();
}

 . 5 . . Add an override for the CreateChildControls method . Overriding the
CreateChildControls method is what really distinguishes composite controls from ren-
dered controls . In the method, you need to create each UI element by hand, set the
properties you want to appear in the control, and add the individual control to the
composite control’s list of controls .

protected override void CreateChildControls()
{
 labelForTextBox = new Label();
 labelForTextBox.Text = "Enter a palindrome: ";
 this.Controls.Add(labelForTextBox);

 textboxPalindrome = new TextBox();
 this.Controls.Add(textboxPalindrome);

 Controls.Add(new LiteralControl("
"));

 buttonCheckForPalindrome = new Button();
 buttonCheckForPalindrome.Text = "Check for Palindrome";
 buttonCheckForPalindrome.Click += new EventHandler(OnCheckPalindrome);
 this.Controls.Add(buttonCheckForPalindrome);

 Controls.Add(new LiteralControl("
"));

 literalcontrolPalindromeStatus = new LiteralControl();
 Controls.Add(literalcontrolPalindromeStatus);

 Controls.Add(new LiteralControl("
"));

 this.ChildControlsCreated = true;
}

Although the preceding code is pretty straightforward, a couple of lines deserve special
note . First is the use of the LiteralControl to render the line breaks . Remember, every
element on the page (or in this case, the control) is rendered using a server-side con-
trol . If you want any literal text rendered as part of your control, or if you need HTML
markup that isn’t included as a provided ASP .NET control (such as the
 element),
you need to package it in a server-side control . The job of a LiteralControl is to take the
contents (the Text property) and simply render it to the outgoing stream .

The second item to notice is how the event handler is hooked to the Button using a
delegate . When you use Visual Studio Designer support, you can usually wire up event
handlers by clicking a UI element in the Designer—at which point Visual Studio adds
the code automatically . However, because there’s no Designer support here, you need
to handle the event hookup manually .

106 Part I Fundamentals

 . 6 . . Show the palindrome status whenever the Text property is set by modifying the Text
property to match the following bit of code . The Text property’s setter checks for a
palindrome and renders the result in the LiteralControl you added in step 2 . The setter
should instantiate the palindrome list if it is not in the view state . It should also raise the
PalindromeFound event .

private string text;

public string Text
{

 get
 {
 return text;
 }
 set
 {
 text = value;
 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes == null)
 {
 this.alPalindromes = new ArrayList();
 }

 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }

 literalcontrolPalindromeStatus.Text =
 String.Format(
 "This is a palindrome
{0}</
FONT>",
 text);
 }
 else
 {
 literalcontrolPalindromeStatus.Text =
 String.Format(
 "This is NOT a palindrome
{0}</
FONT>",
 text);
 }
 }
}

 Chapter 5 Composite Controls 107

 . 7 . . Show the palindromes in a table, just as the rendered version of this control did, by first
adding an ArrayList and a Table control to the PalindromeCheckerCompositeControl
class .

using System.Collections;

public class PalindromeCheckerCompositeControl :
CompositeControl
{

 protected Table tablePalindromes;
 protected ArrayList alPalindromes;

}

 . 8 . . Add a method to build the palindrome table based on the contents of the ArrayList .
Check to see whether the array list is stored in the ViewState (it is created within the
property setter) . If it’s not, populate it . Iterate through the palindrome collection and
add a TableRow and a TableCell to the table for each palindrome found:

protected void BuildPalindromesTable()
{
 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes != null)

 {
 foreach (string s in this.alPalindromes)
 {
 TableCell tableCell = new TableCell();
 tableCell.BorderStyle = BorderStyle.Double;
 tableCell.BorderWidth = 3;
 tableCell.Text = s;
 TableRow tableRow = new TableRow();
 tableRow.Cells.Add(tableCell);
 this.tablePalindromes.Rows.Add(tableRow);
 }
 }
}

 . 9 . . Update the Text property’s setter to manage the table . Add palindromes to the
ArrayList as they’re found, and build the palindrome table each time the text is
changed:

public string Text
{
 get
 {
 return text;
 }
 set
 {
 text = value;

108 Part I Fundamentals

 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes == null)
 {
 this.alPalindromes = new ArrayList();
 }

 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }

 alPalindromes.Add(text);

 literalcontrolPalindromeStatus.Text =
 String.Format(
 "This is a palindrome
{0}</
FONT>",
 text);
 }
 else
 {
 literalcontrolPalindromeStatus.Text =
 String.Format(
 "This is NOT a palindrome
{0}</
FONT>",
 text);
 }

 this.ViewState.Add("palindromes", alPalindromes);
 this.BuildPalindromesTable();

 }
}

 . 10 . . Build the project and add the PalindromeCheckerCompositeControl control to the
ControlsORama UsePalindromeCheckerControls .aspx page . If you are extending the
example from the last chapter, add a line break (
) after the rendered control from
the last chapter . Add a label or some text preceding the control to indicate that the
next control is the composite control and add one more line break . Then, drag the
PalindromeCheckerCompositeControl control directly from the Toolbox to the page .
When you run the page, this control checks for palindromes and keeps a record of
the palindromes that have been found, as shown in the following graphic . (Tracing
is turned on in this example so that you can see the control tree later .) Note that this
example extends the previous chapter’s example and the page includes the controls
added from the previous chapter .

 Chapter 5 Composite Controls 109

With tracing turned on, you can look farther down and see the control tree .
Notice how the PalindromeCheckerCompositeControl acts as a main node on
the tree and that the composite control’s child controls are shown under the
PalindromeCheckerCompositeControl node .

When you type palindromes and click the button, the control detects them . The control
displays the current Text property in red if the entered text is not a palindrome and in

110 Part I Fundamentals

blue if it is a palindrome . You can also see the table rendering, showing the currently
found palindromes:

The palindrome checker is a good example of a binary composite control . The com-
posite control lives entirely within the CustomControlLib assembly and does not have
any Designer support at present . (You could add code to support high-quality design
time support, but that’s beyond the scope of this chapter .) The next section discusses
an alternative to coding a composite control entirely by hand: The second way to create
composite controls is by using a User control .

User .Controls
User controls are composite controls that contain child controls very much like binary com-
posite controls do . However, instead of deriving from System.Web.UI.CompositeControl, they
derive from System.Web.UI.UserControl . Perhaps a better description is that they’re very much
like miniature Web Forms . They have a UI component (an .ascx file) that works with the Visual
Studio Designer, and they employ a matching class to manage the execution . However, unlike
a Web Form, you can drag them onto the Toolbox and drop them into a Web Form .

To get a good idea of how Web User controls work, you can build the palindrome checker as
a User control .

Building the palindrome checker as a User control

 . 1 . . Open the ControlsORama project (if it’s not already open) . Highlight the
ControlsORama Web site in Solution Explorer (not the CustomControlLib project as in

 Chapter 5 Composite Controls 111

earlier steps) . Right-click the site and click Add New Item . Select the Web User Control
template and name the control PalindromeCheckerUserControl.ascx, as shown in the
following graphic:

 . 2 . . In this step, you add new controls . Notice that Visual Studio might drop you into the
Designer . (If instead you are in code view, switch to the Design view by clicking the
Design tab .) User controls are Designer friendly . Drag a Label, a TextBox, a Button, and
another Label from the Toolbox onto the User control . Delete the Text property from
the second label so that it shows its identifier . Format them as shown in the following
graphic:

112 Part I Fundamentals

Name the second label labelPalindromeStatus to make it easier to use from within the
code beside .

 . 3 . . Borrow the StripNonAlphanumerics and CheckForPalindrome methods from the
PalindromeCheckerCompositeControl class by opening the source code file
PalindromeCheckerCompositeControl .cs and copying these methods into the
PalindromeCheckerUserControl class in the PalindromeCheckerUserControl .ascx .cs file .
Note that this code depends on a Text property, which you’ve not added quite yet . The
program will compile after step 5 .

protected string StripNonAlphanumerics(string str)
{
 string strStripped = (String)str.Clone();
 if (str != null)
 {
 char[] rgc = strStripped.ToCharArray();
 int i = 0;
 foreach (char c in rgc)
 {
 if (char.IsLetterOrDigit(c))
 {
 i++;
 }
 else

 {
 strStripped = strStripped.Remove(i, 1);
 }
 }
 }

 return strStripped;
}

protected bool CheckForPalindrome()
{
 if (this.Text != null)
 {
 String strControlText = this.Text;
 String strTextToUpper = null;

 strTextToUpper = Text.ToUpper();

 strControlText = this.StripNonAlphanumerics(strTextToUpper);

 char[] rgcReverse = strControlText.ToCharArray();
 Array.Reverse(rgcReverse);
 String strReverse = new string(rgcReverse);
 if (strControlText == strReverse)
 {
 return true;
 }
 else
 {
 return false;

 Chapter 5 Composite Controls 113

 }
 }
 else
 {
 return false;
 }
}

 . 4 . . Add the PalindromeFound event to the control class:

public event EventHandler PalindromeFound; // public event

 . 5 . . Open the code file and add a text member variable and a Text property, very much
like the other composite control implemented . Unlike binary composite controls, User
controls aren’t generated with default properties . (There are some minor changes, such
as the use of a Label control instead of the Literal control for accepting the palindrome
status, so be sure to make the necessary adjustments if you copy and paste code from
the previous control .)

private String text;

public string Text
{
 get
 {

 return text;
 }
 set
 {
 text = value;

 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }

 this.labelPalindromeStatus.Text =
 String.Format(
 "This is a palindrome
{0}</
FONT>",
 text);
 }
 else
 {
 this.labelPalindromeStatus.Text =
 String.Format(
 "This is NOT a palindrome
{0}</
FONT>",
 text);
 }
 }
}

114 Part I Fundamentals

 . 6 . . Now add support for keeping track of palindromes by adding an ArrayList to the
 control class (be sure to include a using statement for System.Collections at the top of
the PalindromeCheckerUserControl .ascx .cs file to resolve the ArrayList):

ArrayList alPalindromes;

 . 7 . . Add a Table to the control by switching to the PalindromeCheckerUserControl Design
view and dragging a Table onto the form .

 . 8 . . Add a method to build the table of palindromes . It’s very much like the one in the
PalindromeCheckerCompositeControl, except the name of the table is different: Visual
Studio automatically names the table Table1 in this case .

protected void BuildPalindromesTable()
{
 this.alPalindromes = (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes != null)
 {
 foreach (string s in this.alPalindromes)
 {
 TableCell tableCell = new TableCell();
 tableCell.BorderStyle = BorderStyle.Double;
 tableCell.BorderWidth = 3;
 tableCell.Text = s;
 TableRow tableRow = new TableRow();
 tableRow.Cells.Add(tableCell);
 this.Table1.Rows.Add(tableRow);
 }
 }
}

 . 9 . . Add support for keeping track of the palindromes in the Text property’s setter and call
BuildPalindromesTable:

public string Text
{
 get
 {
 return text;
 }

 set
 {
 text = value;

 this.alPalindromes =
 (ArrayList)this.ViewState["palindromes"];
 if (this.alPalindromes == null)

 Chapter 5 Composite Controls 115

 {
 this.alPalindromes = new ArrayList();
 }

 if (this.CheckForPalindrome())
 {
 if (PalindromeFound != null)
 {
 PalindromeFound(this, EventArgs.Empty);
 }

 alPalindromes.Add(text);

 this.labelPalindromeStatus.Text =
 String.Format(
 "This is a palindrome
{0}</
FONT>",
 text);
 }
 else
 {
 this.labelPalindromeStatus.Text =
 String.Format(
 "This is NOT a palindrome
{0}</
FONT>",
 text);
 }

 this.ViewState.Add("palindromes", alPalindromes);
 this.BuildPalindromesTable();

 }
}

 . 10 . . Add a Click handler to the button by double-clicking the button in the Designer . This
generates a handler in the associated code file . In the handler, grab the control’s Text
property from the TextBox.Text property and call the method CheckForPalindrome . This
sets the control’s Text property and builds the table of palindromes:

protected void Button1_Click(object sender, EventArgs e)
{
 this.Text = this.TextBox1.Text;
 CheckForPalindrome();
}

 . 11 . . Now add the control to the page by dragging the .ascx file from Solution Explorer onto
the UsePalindromeCheckerControls .aspx page . Alternatively, you could drag the control
onto the Toolbox, and then drag it into the page from there . Finally, you can add a line
break between the last control on the page and this one to improve the layout .

116 Part I Fundamentals

 . 12 . . Build and run the project . When you type palindromes into the
PalindromeCheckerUserControl, it should look something like this:

Before leaving this project, run the page by pressing F5 from within Visual Studio . Take a look
at the page with tracing turned on . Here, you can see how the page/control hierarchy is laid
out in memory:

 Chapter 5 Composite Controls 117

Notice how similar the User control is to the binary composite control . Both composite-style
controls nest multiple single controls . They’re very convenient ways of grouping rich Web-
based user interface functionality into single units .

When .to .Use .Each .Type .of .Control
Binary composite controls and User controls are similar, so there seems to be some
 redundancy in the framework . Because User controls have such an affinity for the Designer,
perhaps it seems you don’t need custom composite controls at all . However, each style of
composite control has distinct advantages and disadvantages .

The major advantage of binary composite controls is that they are deployed as individual
assemblies . Because binary composite controls are packaged in distinct assemblies, you can
sign them and deploy them across the enterprise . You also can install them in the global as-
sembly cache . Signing and deploying global assemblies is an advanced topic—but I mention
it here because this is one of the main reasons to choose a binary control over a User con-
trol . The primary downside to using binary composite controls is that they require you to
pay more attention to detail in the coding process (there’s no Designer support as you write
them because they are created entirely from code) .

The primary advantage of User controls is that they do include Designer support, which
makes them very easy to design visually . However, User controls have a downside in their
 deployment: They go with the project in which they were created, and they are deployed
that way . You can include them as part of other projects, but that requires copying the .ascx
and the .cs files to the new project . They are not deployed as signed, secure assemblies .

Chapter .5 .Quick .Reference
To Do This

Create a binary control composed of other
server-side controls that lives in its own
 assembly

Derive a class from System.Web.UI.Control. Override the
CreateChildControls method . Visual Studio includes a project
type, ASP .NET Server Control, that meets your requirements .

Add controls to a binary composite control Instantiate the child control . Add the child control to the
 composite control’s Control collection .

Add a custom control to the Toolbox Show the Toolbox if it’s not already showing by selecting
View, Toolbox on the main menu . Right-click anywhere in the
Toolbox . Click Choose Items from the shortcut menu and

choose a control from the list .

OR

Browse to the assembly containing the control .

118 Part I Fundamentals

To Do This

Tell ASP .NET to assign unique IDs to the child
controls in either type of composite control

Derive the binary composite control from the ASP .NET
CompositeControl class . If you’re creating a User control, this
functionality is built in .

Raise events in either type of composite
 control

Expose the (public) events using the event keyword .

Create composite (User) controls using the
Visual Studio Designer

In a Visual Studio Web Site project, select Web Site, Add
New Item from the main menu . Select the Web User Control
 template .

 . . 119

Chapter 6

Control Potpourri
After completing this chapter, you will be able to

n Use ASP .NET validation controls .

n Use the Image, ImageButton, and ImageMap controls .

n Use the TreeView control .

n Use the MultiView control .

ASP .NET has evolved with the goal of reducing the effort developers must expend to get
their Web sites up and running . One theme you might notice as you tour ASP .NET is that
Microsoft has done a great job of anticipating what the developer needs and putting it in
the framework . The three previous chapters describe the architecture behind ASP .NET Web
Forms and controls . With an understanding of this architecture, you can easily extend the
framework to do almost anything you want it to do .

ASP .NET versions 1 .0 and 1 .1 took over much of the functionality developers were building
into their sites with classic ASP . For example, server-side controls handled much of the ardu-
ous coding that went into developing Web sites displaying consistent user interfaces (such as
selection lists that always showed the last selection that was chosen) .

Later versions of ASP .NET extend that theme by introducing new server-side controls that
insert commonly desired functionality into the framework . This chapter discusses support
provided by ASP .NET for validating the data represented by controls . It also examines a
few other controls that are very useful: various flavors of the Image control, the MultiView
 control, and the TreeView control .

First, start with the validation controls .

Validation
One of the primary goals of ASP .NET is to provide functionality to cover the most used
 scenarios . For example, later you will see that authorization and authentication are commonly
required on Web sites . Most sites won’t let visitors get to the real goodies until the visitors
authenticate as valid users . ASP .NET now includes some login controls and an entire secu-
rity infrastructure with which those controls work to make authorization and authentication
easier .

Another scenario you often find when surfing Web sites is that most sites include a page
onto which users are to enter various types of information . For example, to enter a Web site,

120 Part I Fundamentals

a user might need to enter a user name and password . If the user wants to have something
e-mailed to him or her, the user might have to enter an e-mail address .

When the owner of a Web site requests information from visitors, the Web site program logic
needs to ensure that it receives valid information . Although it can’t guarantee that user input
is 100 percent accurate, it can at least have a fighting chance of getting useful information
by validating the fields the user enters . For example, some fields might be required, and the
Web site ensures that data is entered in them . The site might require users to enter a phone
number in a certain format, and then it applies a regular expression to validate that the infor-
mation entered is at least formatted correctly . If the user is asked to change a password, the
site might require the user to enter the new password twice for validation purposes .

ASP .NET includes a host of validation controls that accompany standard controls (such as a
TextBox) on a Web Form . The validation controls work in concert with the standard controls
and emit error messages (and alerts if configured to do so) if the user enters information that
might be incorrect .

ASP .NET includes six validator controls:

n RequiredFieldValidator Ensures that a field is filled in

n RangeValidator Ensures that the value represented by a control falls within a certain
range

n RegularExpressionValidator Validates that data in a control matches a specific regular
expression

n CompareValidator Ensures that the data represented by a control compares to a
 specific value or another control

n CustomValidator Provides an opportunity to specify server-side and client-side
 validation functions

n ValidationSummary Shows a summary of all the validation errors on a page

All the validation controls work the same way . First, you define a regular control on the page .
Then, you place the accompanying validators wherever you want the error messages to ap-
pear on the page . The validator controls include a property named ControlToValidate, which
you point to the control that needs validation, and the rest works automatically . Of course,
the validator controls have a number of properties you can use to customize the appearance
of the error messages coming from the controls .

The ASP .NET validator controls work with the following server-side controls:

n TextBox

n ListBox

n DropDownList

 Chapter 6 Control Potpourri 121

n RadioButtonList

n HtmlInputText

n HtmlInputFile

n HtmlSelect

n HtmlTextArea

n FileUpload

To see how they work, follow the next example, which applies validation controls to a
Web Form .

Creating a page that employs validation controls

 . 1 . . Begin by creating a new Web site named ControlPotpourri .

 . 2 . . Add a new Web Form named ValidateMe .aspx . This form will hold the regular server-
side controls and their accompanying validation controls . The form will resemble a
sign-in form such as is common on Web sites . It’s the canonical example for employing
user input validation .

 . 3 . . Add a TextBox to hold the user’s first name . Name the control TextBoxFirstName . It’s
important to give the controls meaningful names because they are attached to the
validators by their names . If you use the defaults produced by Microsoft Visual Studio
(that is, TextBox1, TextBox2, TextBox3, and so forth), you’ll have a difficult time remem-
bering what the validators represent . For each of the following steps, “adding a text
box” also means adding an associated label and a
 element to make the form
look nice . In this case, the label that precedes the TextBoxFirstName should be First
Name: . The other labels should be self-evident . Note that you should also set the label’s
ControlToAssociate property to the text box the label precedes . This ties the label and
text box together (actually the label renders using the <label> element rather than as
simple text) .

 . 4 . . Add a last name TextBox . Name the control TextBoxLastName .

 . 5 . . Add an address TextBox . Name the control TextBoxAddress .

 . 6 . . Add a postal code TextBox . Name the control TextBoxPostalCode .

 . 7 . . Add a phone number TextBox . Name the control TextBoxPhone .

 . 8 . . Add two more TextBox controls to hold a password and a password confirmation .
Name them TextBoxPassword and TextBoxPasswordAgain, respectively . Set the
TextMode property for both of them to Password so that they don’t display the text
 being typed by the user . Using a secondary (or confirmative) TextBox ensures that
the user types the password correctly two times . (Setting the TextMode property to
Password on the TextBox prevents the user from seeing the characters as they are
keyed .)

122 Part I Fundamentals

 . 9 . . Add a TextBox to hold the user’s age . Name the control TextBoxAge .

 . 10 . . Add a Button to submit the form . Add the text Submit .Information .

The form should look something like this when you’re done:

 . 11 . . Now start adding validators . Add a RequiredFieldValidator control for the first name
by dragging an instance of RequiredFieldValidator on the page just to the right of
the TextBoxFirstName . In the properties for the first name validator control, find
the ControlToValidate property and select the TextBoxFirstName control . Set the
ErrorMessage property to a useful error message such as Please give your first name .

 . 12 . . As with the first name text box, add a RequiredFieldValidator control for the last name .
In the properties for the last name validator control, again find the ControlToValidate
property and select the TextBoxLastName control . Set the ErrorMessage property to a
useful error message such as Please give your last name .

 . 13 . . Add RequiredFieldValidator controls for the address, postal code, the phone number,
the password, and the age text boxes .

 . 14 . . In the properties for the postal code validator control, and as before, find the
ControlToValidate property and select the TextBoxPostalCode control . Set the
ErrorMessage property to a useful error message such as Please give your postal code .

 Chapter 6 Control Potpourri 123

 . 15 . . In the properties for the phone validator control, click the combo box in the
ControlToValidate property and select the TextBoxPhone control . Set the ErrorMessage
property to a useful error message such as Please give your phone number so that we
can call you at dinner time .

 . 16 . . In the properties for the first password validator control, click the combo box in
the ControlToValidate property and select the TextBoxPassword control . Set the
ErrorMessage property to a useful error message such as Please make up a password .

 . 17 . . In the properties for the second password validator control, click the combo box in
the ControlToValidate property and select the TextBoxPasswordAgain control . Set the
ErrorMessage property to a useful error message such as Please confirm your password .

 . 18 . . In the properties for the age required field validator control, click the combo box in the
ControlToValidate property and select the TextBoxAge control . Set the ErrorMessage
property to a useful error message such as Please give your age .

 . 19 . . Add a ValidationSummary to the form . This shows any errors occurring at once . If you
want an alert to appear, set the ValidationSummary .ShowMessageBox property to true .
After you have added all the validators, the page in the Designer should look some-
thing like the following graphic . The example here uses absolute positioning for the
controls so that they can be moved around freely:

124 Part I Fundamentals

 . 20 . . Compile the site and view the page . At first, all you can see is a collection of input
boxes . Before entering any fields, click the Submit Information button . Watch the error
messages appear, as shown in the following graphic:

 . 21 . . Type a first name, and then press the Enter key . This invokes the client-side JavaScript
validation script . Watch what happens . The ASP .NET validator controls have inserted
some JavaScript into the HTML sent to the browser (if the browser understands
JavaScript, which the majority today do) . With the client-side script in place, required
field validators can manage their error messages without a round-trip to the server, as
shown in the following graphic:

 Chapter 6 Control Potpourri 125

Before adding more validation controls, take a look at how ASP .NET user input validation
works .

How Page Validation Works
ASP .NET page validation is very clever—and it’s all based on the page server-side control ar-
chitecture . As with many other features in ASP .NET, the validation mechanism solves the most
common use cases you encounter during Web site development . Most sites include both
client-side and server-side validation . By supporting client-side validation, users are spared a
round-trip when validating data input to the page . In addition to client-side validation, most
sites also support server-side validation for two reasons: to make sure no data is garbled or
modified during transmission and to support clients unable to support client-side scripting
(perhaps the client browser doesn’t support JavaScript) . First, consider client-side validation .

Client-Side Validation
If you looked at the ASPX source code generated by Visual Studio as you placed controls
on the page, you probably noticed the page became littered with tags, such as server-side
control tags to support text boxes and selection controls . In addition, each validator control
placed on the page corresponds to a separate tag . Validators are server-side controls, too .
They render standard browser-interpretable code—similar to regular server-side controls .

ASP .NET validator controls support client-side validation by including references to JavaScript
utilities that are included with the HTML sent to the browser . The file contains the client-side
validation functions necessary to support client-side validation .

When the validation controls render to the browser, they add to the rendered HTML span
elements with custom attributes . The validation handlers are hooked up when the HTML
document is loaded in the browser .

Because client-side validation requires JavaScript support in the client, clients without
JavaScript support must rely on server-side validation . If you want, you can disable the client-
side script for each control by setting the EnableClientScript property on the validator to false .

Server-Side Validation
After the client passes the client-side validation tests, the request is posted back to the
server and the server-side validation starts . Server-side validation is managed by infrastruc-
ture in the Page class . As you add validator controls to the page, they’re added to a collec-
tion of validators managed by the page . Each validation control implements an interface
named IValidator . The IValidator interface specifies a Validate method, an ErrorMessage
property, and an IsValid property . Of course, each validator has its own custom logic to
determine the validity of the data held in the control it is validating . For example, the
RequiredFieldValidator checks to see that data is entered in the control it is associated
with . The RegularExpressionValidator compares the data in a control to a specific regular
expression .

126 Part I Fundamentals

During the postback sequence for a page, validation occurs just after the Page_Load event
fires . The page checks each validator against its associated control . If validation fails, the
 server-side validation controls that failed render themselves as visible span elements .

The page itself has a property named IsValid that you can check to increase your confidence
in the data passed in from the client before you actually start using the data in the controls .
In addition, the Page class implements a method named Validate() . Validate walks the list of
validation controls, running each control’s Validate method .

After you ensure that users fill the required fields, it’s important to make sure that the data
coming from users is likely to be correct . For example, you might not be able to ensure the
veracity of the user’s phone number, but at least you can make sure it is in the right format
and doesn’t contain garbage characters that could not possibly form a phone number . In the
following procedure, you add a validator that uses regular expressions to validate patterns .
Then, you add a couple of new validators to the page .

Adding finer-grained validation

 . 1 . . Close the browser and go back to the Designer window in Visual Studio . Now that you
have controls that show error messages when the user forgets to type something, you
can add some finer-grained validation . The fields present on the form offer a couple
more opportunities for the user to enter bad data .

 . 2 . . There’s not much you can do for the first name, last name, and address fields
except hope that the users type what they really mean to type . However, you
might want to ensure that users type only numbers into the Postal Code field
by using a RegularExpressionValidator for the TextBoxPostalCode control . Drop a
RegularExpressionValidator on the page . Set the ControlToValidate property so that it
points to the postal code control . For an error message, set the ErrorMessage prop-
erty to The postal code you provided is invalid . Click the button associated with its
ValidationExpression property, and in the Regular Expression Editor, select U .S . ZIP
Code .as the validation expression, as shown in the following graphic:

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 Chapter 6 Control Potpourri 127

 . 3 . . Add a regular expression validator for the TextBoxPhone control by setting the
ControlToValidate property to TextBoxPhone . Assign its ErrorMessage property to be
The phone number you typed is invalid . Open the Regular Expression Editor, and select
U .S . Phone Number as the regular expression to validate, as shown in the following
graphic:

 . 4 . . Add a CompareValidator for the TextBoxPasswordAgain control . In the properties for
the password confirmation validator control, look for the ControlToValidate property
and select the TextBoxPasswordAgain control . Set the ControlToCompare property to
TextBoxPassword . Set the ErrorMessage property to a useful error message such as The
passwords provided do not match .

 . 5 . . Add another CompareValidator for the TextBoxAge control . Enter 30 for
ValueToCompare and Integer as the data type to compare (the Type property) . A
 possible error message here could be You must be younger than 30 to submit data . The
operator property should be LessThanEqual .

 . 6 . . Build and run the program . Enter some erroneous data . See what happens . You should
see the error messages emitted by the validator controls . For example, if you type
33 as the age, the CompareValidator for the TextBoxAge control should emit an error
 message because the validator is looking for values less than or equal to 30 .

Other Validators
In addition to the validators mentioned previously, ASP .NET includes three other validators:
the RangeValidator, the CustomValidator, and the DynamicValidator . This section takes a quick
look at each .

The RangeValidator is similar to the CompareValidator in that you can use it to check the data
in a control against a value . However, the purpose of the RangeValidator is to report an error
if the data held in a control is out of a range . The validator specifies a minimum and a maxi-
mum value and reports an error if the value in the control falls outside these thresholds .

You can try to fit any other kind of validation you might encounter into the CustomValidator .
The CustomValidator fits on the page in the same way the other validators do . However,

128 Part I Fundamentals

rather than predefining validation methods (on the server and in the client script), these
pieces are left open . When you put a CustomValidator on a page, you assign it an associ-
ated control . Then, you refer to a validation function (that you write into the page) . You can
also specify a validation script block to be shipped to the client and run along with the other
client-side validation script .

Finally, ASP .NET includes a new validator to support its Dynamic Data model: the
DynamicValidator . You learn more about Dynamic Data in Chapter 20, “Dynamic Data .“
The ASP .NET Dynamic Data model supports data-driven application development . The
DynamicValidator control catches any exceptions thrown during data binding and validation,
forwarding the exception as a validation event on the Web page .

Validator Properties
You can see that validator controls contain the standard properties available to the other
standard ASP .NET controls . For example, there’s a Text property, a Font property, and various
coloring properties . In addition, a couple of other properties useful for managing the error
output sent to the browser are available .

The value of the Display property can be either static or dynamic . This property manages the
client-side rendering of the error message . Static (the default value) causes the span element
emitted by the control to take up layout space in the HTML bound for the client, even when
hidden . When the Display property is Dynamic, the span element emitted by the control
changes the layout and dynamically expands when displayed .

ASP .NET has the ability to group validation controls . That is, each validation control can
 belong to a named group . The ValidationGroup property controls the name of the group .
When a control belongs to a group, controls in that group validate only when one of the
other validators in the group fires . This gives you a “multiple forms” effect in a single page .

The following sections look at a few other interesting controls: the Image control and
 image-based controls, the TreeView control, and the MultiView control .

Image-Based .Controls
Graphic images are often used in Web pages . HTML includes an image tag that tells the
browser to fetch an image file (for example, a .gif, .jpg, or .png file) and display it . When you
need to set an image on a page, the HTML tag is the one to use . Naturally, ASP .NET
wraps the tag using a server-side control—the Image control .

Using the Image control is fairly straightforward . You select it in the Toolbox like any other
control and drop it on the page . The ASP .NET Image control generates an tag
 complete with the correct src attribute .

 Chapter 6 Control Potpourri 129

In addition to the normal Image control, ASP .NET includes an ImageButton control and an
ImageMap control . The ImageButton control wraps the <input type=image /> tag so that
you can use an image as the background of a button . The ImageMap control shows a bitmap
with hot spots on it that users can click .

The following exercise illustrates how the various ASP .NET image-based controls work .

Using image controls in a page

 . 1 . . Add a new Web Form to the project to hold some image controls . Call the page
UseImageControls .aspx.

 . 2 . . Drag an Image control from the Toolbox to the page .

 . 3 . . Go to the Properties pane and add a valid path to an image to the ImageUrl property .
The image file can be on your own computer, or you can point the ImageUrl property
to a valid URL for an image on the Web . To use an image on the Web, right-click an im-
age in the browser and click Properties . Then, copy the URL from the Properties pane
and paste it in the ImageUrl in the property explorer . If the file is on your computer,
you need to add it to your Web project by dragging the image file from your local
drive to the ControlPotpourri solution in Solution Explorer . If you’d like to organize your
images in separate folders, simply create a new folder and drag the images there . If you
want to use an image from the Web, you need to edit the ImageUrl property manually
in Source view . Needless to say, no matter which image URL you use, if the image can-
not be found (with a resulting error in the tag), you’ll get the standard “image
not found” message in your browser . In Microsoft Internet Explorer, this message takes
the form of a box with a red X in the center .

 . 4 . . Run the site and see what the ASP .NET Image control produces . (Note that your image
URL will undoubtedly differ from the example that follows .)

 . 5 . . Now add an ImageButton to the page . With ImageButton, you can decorate a normal
input button so that it shows a graphic . You can direct your application to react to an
ImageButton in one of three ways . First, the ImageButton can behave like a typical but-
ton to which you can attach a typical Click event handler on the server . Second, you can
define a client-side script block and point the ImageButton OnClientClick property to
the script . When you click the button, the button press runs the script on the browser .
Finally, you can tell the ImageButton to redirect the next request to a specific page by
using the ImageButton PostBackUrl property .

 . 6 . . Run the page and examine the HTML produced by the ImageButton . It should look
something like this (keep in mind that your image URL will be different):

<input type="image" name="ImageButton1" id="ImageButton1"
src="Images/goldengatebridge.jpg" style="border-width:0px;" />

130 Part I Fundamentals

 . 7 . . Finally, add an ImageMap to the page . The ImageMap is useful for defining clickable
areas on a bitmap . Pick an image available to you (download one from somewhere,
or use one you have floating around on your hard drive) . Set the ImageMap ImageUrl
property to the image file .

 . 8 . . Open the image that you have decided to use for the ImageMap using a picture editor
such as Microsoft Paintbrush or the Visual Studio bitmap editor . The ImageMap in this
example defines a hot spot that can be used to zoom in to a portion of the image used
in the map . Mark out a rectangular portion of the picture and make a new graphic file
using the selected portion . Make a note of the coordinates defining the section of the
graphic you cut out . Enlarge the new image and save it to a new file .

 . 9 . . Next, you can define some hot spots on the ImageMap . Among the ImageMap
 properties is one named HotSpots . Click the button in the property field to open the
HotSpot Collection Editor, as shown in the following graphic:

 . 10 . . Add a hot spot to the collection by clicking the Add button . Notice that you can define
circular, rectangular, or polygonal hot spots by clicking the drop-down list on the Add
button . Create a rectangular hot spot using the coordinates of the portion of the im-
age you just defined . Add some text to the AlternateText property—this is the text
that shows in the tooltip . Set the HotSpotMode property to Navigate, and use the
NavigateUrl editor to set the NavigateUrl property to point to the new image file you
just created (you might have to add the new image file to the project explicitly using
the Add Existing Item menu after right-clicking the project node in Solution Explorer) .
The following graphic shows a hot spot being edited:

 Chapter 6 Control Potpourri 131

 . 11 . . After adding the hot spot, run the new page . You should see something similar to the
following graphic—the example here shows the Grand Canyon, and the hot spot is out-
lined in the image with a rectangle . (Note that the rectangle was added to the image
manually—the hot spot doesn’t draw the rectangle for you .) Notice how the tooltip
appears .

132 Part I Fundamentals

 . 12 . . Click the hot spot and notice how the application redirects to the “enlarged” image,
as shown in the next graphic:

This section only scratches the surface of working with the image controls . However, you can
see that you have much flexibility in defining how images look and behave .

TreeView
One of the most common user interface conventions in modern software is a hierarchy
 represented by expandable nodes . For example, whenever you browse for a file using
Windows Explorer, you need to expand and collapse various folders (subdirectories) to see
what’s inside . This type of control is generically known as a tree control .

With tree controls, users can navigate hierarchies represented by expandable and collapsible
nodes . For example, when you explore your C drive using Windows Explorer and the Classic
Windows theme, the directories appear as closed folders with small plus signs next to them .
When you click a plus sign, Windows Explorer displays an open folder and then shows the
subdirectories listed under that folder . If there are nested subdirectories, you can open them
the same way . Other themes use slightly different means of expanding and collapsing nodes .

ASP .NET provides this functionality through the TreeView . It’s useful any time you want to
represent a nested data structure and have a way of drilling down into it .

 Chapter 6 Control Potpourri 133

The following exercise explains the TreeView control by showing a hierarchical, expandable
list of 1970s bands that are still around today . The example illustrates the hierarchical nature
of the bands by showing the name of the band followed by a list of roles performed by each
particular member .

Using the TreeView control

 . 1 . . Begin by adding a new Web Form to the ControlPotpourri Web site . Name it
UseTreeView .

 . 2 . . Drag a TreeView from the Toolbox to the default page . You can find it under the
Navigation controls .

 . 3 . . Format your tree view by using the options Visual Studio presents . Right-click the
TreeView control, and under TreeView Tasks, click the Auto Format option . A dialog box
showing a number of styles for the TreeView opens . Browse through a few of them,
highlighting them to see what the styles look like . The following graphic shows the
TreeView Tasks menu with the Auto Format link:

 . 4 . . You can edit the nodes by right-clicking the TreeView control and clicking the Edit
Nodes link . In the TreeView Node Editor, you can edit each of the nodes . The leftmost
button adds new root nodes . In this example, the bands are represented as root nodes .
The next button to the right is for adding child nodes . You can nest nodes as deeply
as necessary . In this example, the second layer of nodes represents the members of

134 Part I Fundamentals

the bands, and the third layer represents their roles . The following graphic shows the
TreeView Node Editor:

 . 5 . . Add a border around the TreeView using the BorderStyle and BorderColor properties .
Set the style to solid and the color to black . Of course, this is for visual aesthetics .

 . 6 . . Build the project and browse to the page . If you selected a theme such as the Arrow
theme, you should be able to expand and collapse the nodes . After running the page,
take a quick look at the ASPX source code to see how the TreeView manages its nodes .
The following graphic shows how the TreeView appears in the browser:

 . 7 . . To make it a bit more interesting, add some functionality to handle some of the
tree node events . First, add a label to show the selected node . Name the label
LabelSelectedNode so that you have programmatic access to it . Add a TextBox to show
information about the selected node . Name it TextBoxInfo . Make the TextBox multiline .

 Chapter 6 Control Potpourri 135

Then, add an event handler for the TreeView SelectedNodeChanged event . Add the
 following code to interrogate the selected node to list information about the child
nodes . Don’t forget to add a using statement for System.Text (to identify StringBuilder):

protected void TreeView1_SelectedNodeChanged(object sender, EventArgs e)
{

 this.LabelSelectedNode.Text = String.Format("Selected Node changed to: {0}",
 this.TreeView1.SelectedNode.Text);
 TreeNodeCollection childNodes = this.TreeView1.SelectedNode.ChildNodes;
 if (childNodes != null)

 {
 this.TextBoxInfo.Text = String.Empty;
 StringBuilder sb = new StringBuilder();
 foreach(TreeNode childNode in childNodes)
 {
 sb.AppendFormat("{0}\n", childNode.Value);
 }
 this.TextBoxInfo.Text = sb.ToString();
 }

}

The following graphic shows how the selected details appear in the ListBox:

This is just a small illustration of what TreeView is capable of doing . In addition to building
nodes using the Designer, you can build them programmatically . You can expand and
 collapse nodes as well . Finally, TreeView supports data binding so that you can throw a
 hierarchical data structure at the control so that it renders properly for you .

Finally, take a look at the ASP .NET MultiView and View controls .

136 Part I Fundamentals

MultiView
From time to time, it’s useful to gather controls together in several panes and give the user
the opportunity to page through the panes . During the lifetime of ASP .NET 1 .0, Microsoft
released several rich dynamic (though officially unsupported) controls that emitted dynamic
HTML (DHTML) instead of regular HTML . A trio of these controls—TabStrip, MultiView (an
older version), and PageView—worked together to form essentially a set of tabbed panes .

These exact controls aren’t available in later versions of ASP .NET; however, two controls—
MultiView and View—go a long way toward providing similar functionality . MultiView acts as
a container for Panel-like controls (View controls) and includes support for paging through
the various Views held within it . The MultiView shows a single View at a time .

The following exercise provides an example that shows how the MultiView and the View
 controls work together .

Using the MultiView and View controls

 . 1 . . Add a new Web Form to the ControlPotpourri site . Name it UseMultiview.aspx .

 . 2 . . Add a MultiView control to this Web Form .

 . 3 . . The main purpose of the MultiView is to manage a set of Views . To add a View to a
MultiView, drag a View instance from the Toolbox and drop it inside the MultiView . Add
three Views to the Web Form like so . You might need to tweak the size of the container
manually to get the views to fit:

 Chapter 6 Control Potpourri 137

 . 4 . . Add some content to each of the Views . You can think of the Views very much like
panes . In this example, the views include labels that distinguish them . The following
graphic illustrates how the Views look in the Designer:

 . 5 . . Activate the first pane . .To cause the MultiView and the first View to show up, set the
MultiView ActiveViewIndex property to 0 to show the first pane .

 . 6 . . Add some controls to navigate between the Views in MultiView by adding two buttons
to the bottom of the form . Call them ButtonPrev and ButtonNext—they’ll be used to
page through the Views .

 . 7 . . Add event handlers for the buttons by double-clicking each of them .

 . 8 . . Add code to the page through the Views . This code responds to the button clicks by
changing the index of the current View .

protected void ButtonPrev_Click(object sender, EventArgs e)
{
 if (MultiView1.ActiveViewIndex == 0)
 {
 MultiView1.ActiveViewIndex = 2;
 }
 else
 {
 MultiView1.ActiveViewIndex -= 1;
 }
}
protected void ButtonNext_Click(object sender, EventArgs e)
{
 if (MultiView1.ActiveViewIndex == 2)

138 Part I Fundamentals

 {
 MultiView1.ActiveViewIndex = 0;
 }
 else
 {
 MultiView1.ActiveViewIndex += 1;
 }
}

 . 9 . . Compile the project and browse to the Web page . Clicking the navigator buttons
causes postbacks to the server, which render the individual views . The following graphic
shows how the MultiView and View number 2 appear in a browser:

As you can see, the MultiView and the View classes act as panes that you can swap in and
out . They are a great way to manage the surface area involved in collecting large amounts of
data . Another version of this kind of control is the Wizard control used in conjunction with
the session state .

 Chapter 6 Control Potpourri 139

Chapter .6 .Quick .Reference

To Do This

Validate form input ASP .NET includes a number of validator controls that check
data entered via server-side controls . These controls include

CompareValidator

RangeValidator

RequiredFieldValidator

RegularExpressionValidator

ValidationSummary

CustomValidator

To validate the input of a server-side control, drag the
 appropriate validator control onto the page and set the
ControlToValidate property to the target control .

Set the other validator properties appropriately .

Display hierarchical data sets in an
intuitive way

Use the TreeView control .

Either add items by hand or bind the TreeView control to a
 hierarchical data source . We’ll see TreeViews again when we
look at navigation controls in Chapter 12 .

Swap between several pages of
information on the same Web page

Use the MultiView and View controls .

You can think of the View control as a miniature page
 managing controls .

The MultiView manages a collection of Views.

The MultiView supports swapping between Views.

Add an image to a Web page Drop an Image control onto the Web page .

Set the Image control’s ImageUrl property to the URL of the
image you’d like to show .

Add an image with clickable regions
to the Web page

Drop an ImageMap onto the Web page .

Use the hot spot editor to define clickable regions .

Microsoft ASP.NET 4 Step by Step

 . . 141

Part II

Advanced Features

In this part:

A Consistent Look and Feel . 143

Configuration. 163

Logging In . 181

Data Binding . 207

Web Site Navigation . 237

Personalization . 256

Web Parts . 267

 . . 143

Chapter 7

A Consistent Look and Feel
After completing this chapter, you will be able to

n Use master pages to develop a consistent look and feel for your entire Web site .

n Use themes to apply styles to controls and pages across an entire Web site .

n Use skins to apply styles to custom controls .

A distinguishing characteristic of most well-designed modern Web sites is the consistent look
and feel of each page in a site . For example, many sites incorporate a specific color scheme
and font set . Also, the way a well-designed site frames information and provides navigation
tools is consistent from one page to the next . Can you imagine visiting a site where each
page was radically different in appearance from the previous page? At the very least, you’d
be confused . At the very worst, you might even be repulsed .

This chapter covers one of the most useful features of ASP .NET for developing a consistent
look and feel across a site—master pages . Master pages help you make the appearance of
your site consistent for visitors . ASP .NET also provides a way you can apply specific styles to
controls . This chapter examines how these features work .

Important To install the code samples for this book, you must have Administrator rights on
your computer . If you are using your own computer, you probably have Administrator rights . If
you are using a computer in an organization and you do not have Administrator rights, please
consult your computer support or IT staff . See the “Code Samples” section in the Introduction for
more information .

Managing .User .Interface .Consistency
Getting to the point where Web development tools support creating a common look and
feel for all the pages in a site has been a long process . Classic ASP provided a very crude way
of applying a common look and feel to a site through a file inclusion mechanism that pulled
one .asp file into another wholesale . It was brute force to say the least . Although it worked to
a certain degree, you had very little control over the nuances of your site while clumping files
together .

ASP .NET 1 .0 went quite a bit further by composing the whole page-rendering mechanism
out of smaller server-side controls and user controls . You saw this in Chapter 2, “ASP .NET
Application Fundamentals,” and Chapter 3, “The Page Rendering Model .” However, even
though you could package portions of a Web application’s user interface (UI) into separate

144 Part II Advanced Features

modules, you still had some work to do to implement a common look and feel among the
pages in your application . For example, user controls could be made to support developing
a common look and feel . You can create a user control with specific navigation controls and
links and use it in the same place on every page in your site . That in itself creates a common
look and feel, but it’s up to you to write that functionality into your site as well as make sure
the control’s use is consistent for each and every page in your Web application .

Although using the custom control/user control approach to break apart a site’s user
 interface is useful for developing a consistent UI, it falls short of being an ideal solution in a
couple of ways . First, all the pages in an application need to include the surrounding code .
That means that you have to apply the controls in the same way to each page as just men-
tioned . If you decide to change the placement of the controls (or some other aspect not
governed by the controls), you have to change each page . Second, every page using a cus-
tom control needs a Register directive—and more code that needs to be copied . As a reuse
model it went much further than earlier approaches (that is, classic ASP) . But what you really
want is a single place in the site where you can lay out the look and feel of the page once and
have it propagate across the site .

One way to accomplish this goal and avoid building pages one at a time is to build a primary
class from which all the pages in your application derive . Because ASP .NET is built on an
object model based on the Page class, why not simply add a new layer to your application?
Figure 7-1 is a diagram illustrating how you might build a set of pages from a single base
page .

System.Web.UI.Page

Primary Page

Page 1 Page 2 Page 3

FIGURE .7-1 . A base class to implement functionality common among several pages .

All the .aspx pages inherit from the same code-behind class deriving from the primary
class (which in turn derives from System.Web.UI.Page) . The primary class takes responsibility
for loading the controls necessary for the site’s look and feel . Then, each separate page is
 responsible for managing the rest .

This approach works, as long as you don’t mind doing a lot of coding . In addition, there was
no design support in ASP .NET 1 .x for this sort of thing, and changing the Page class hierarchy
in Microsoft Visual Studio sometimes would break the project .

ASP .NET 2 .0 introduced master pages to support developing a common look and feel across
your entire site, and now they are a staple among many developers for keeping Web sites
consistent across all the different pages .

 Chapter 7 A Consistent Look and Feel 145

ASP .NET .Master .Pages
Master pages represent a sort of metapage . They have much the same structure as typi-
cal pages . However, they live in files that use the .master extension . A master page serves
as a template that renders a common appearance to all pages based on it . Master pages
use XHTML document tags (such as <html>, <head>, and <body>), which apply only to the
master page . When a visitor surfs to a page that has a master page applied to it, the request
and response are filtered through the master page . The master page cannot be served by
itself . Instead, it ensures that each page has a common look and feel by (logically) acting as
the “primary page” shown in Figure 7-1 . ASP .NET merges the master page and the .aspx page
(the content page) into a single class . At that point, the class processes requests and renders
output like any other System.Web.UI.Page-derived class .

Because master pages are similar to typical .aspx pages, they can contain the same sort of
content and functionality as typical pages . That is, they can contain server-side controls,
user controls, and markup . In addition to markup and controls, a master page can contain
instances of the System.Web.UI.WebControls.ContentPlaceHolder control . As its name implies,
the content placeholder stands in place of the real content that will eventually appear in
pages based on the master page . A master page renders all the elements it contains—that
is, those elements not contained within a System.Web.UI.WebControls.ContentPlaceHolder
control .

Because master pages play a part in how the final page handler is synthesized, they work a
bit differently from the straight inheritance technique described previously (that is, writing a
base class to implement common functionality through inheritance) . As the page executes,
the master page injects its own content into the .aspx page . Specifically, the master content
ends up being represented by a control that is added to the .aspx page’s Controls collection,
where it is rendered in the same way as all other controls are rendered .

Like usual page attributes and functionality, master pages can contain the following
 attributes in their MasterPage directive:

n AutoEventWireup

n ClassName

n CompilerOptions

n Debug Description

n EnableViewState Explicit

n Inherits

n Language

n Strict

146 Part II Advanced Features

n Src

n WarningLevel

n Master

The following exercise illustrates developing a site around a master page .

Using a master page

 . 1 . . Create a new Empty Web site named MasterPageSite. Typically, you’d simply create a
new site project . However, in this case be sure to use the “empty” Web site template
so that you can add the master and derived pages by hand . This will give you a little
more experience using master pages by creating one from scratch instead of using one
 created by Visual Studio .

 . 2 . . Add a new item to the page . Select Master Page from the available templates . Name
the page MasterPage.master . The following graphic shows how to add a master page
template:

Visual Studio pumps out code like the following in a file named MasterPage .master .
Notice the ContentPlaceholder controls generated by Visual Studio .

<%@ Master Language="C#"
AutoEventWireup="true"
CodeFile="MasterPage.master.cs"
Inherits="MasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head runat="server">

 Chapter 7 A Consistent Look and Feel 147

 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
 </head>
 <body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

This is what the master page looks like in Design mode:

Notice how the master page looks similar to a typical .aspx page . In fact, you can work
with a master page in very much the same way you work with a typical .aspx page .

 . 3 . . Look for the <body> tag in the MasterPage .master file . Edit the background color of
the body to show a different color:

<body style="background-color: #bbbbbb;">
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>

The example here uses light gray . By updating the background color, you can see that
the master page is really used in subsequent .aspx files .

148 Part II Advanced Features

 . 4 . . Right-click the project node and click Add New Item . Create a new form using the
Web Form Using Master Page template, as shown in the following graphic . Name it
UseMasterPage.aspx . Be sure to select the Select Master Page option .

Visual Studio will ask you to select a master page, as shown in this graphic:

When you view UseMasterPage .aspx in the Designer, it looks like the MasterPage .
master file . Notice the grayish hue applied to the page, as shown in the following
graphic . This lets you know the master page is really being applied here .

 Chapter 7 A Consistent Look and Feel 149

This is the page-specific code generated by Visual Studio to support using the
master page:

<%@ Page Title="" Language="C#"
MasterPageFile="~/MasterPage.master"
AutoEventWireup="true" CodeFile="UseMasterPage.aspx.cs"
Inherits="UseMasterPage" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="head" Runat="Server">
</asp:Content>

<asp:Content ID="Content2"
 ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
</asp:Content>

 . 5 . . Now add some content to UseMasterPage .aspx . Add a label to the content placeholder
and type in text so that you can distinguish this as a separate page .

150 Part II Advanced Features

 . 6 . . Add two more pages to the site . The example here includes a page describing the
chapter content of this book and a second page describing the projects . You can use
these or add your own content . Add some content to the two pages in the content
placeholders so that you can distinguish the pages (you add navigation support later) .

The important point is to add two more pages and apply the master page to them
(that is, create the Web Forms with the Select Master Page option selected) .

The following two graphics show the example site’s pages containing a ListBox to select
the topic and a TextBox to hold information about the topic . Setting the positioning of
the items to absolute can make it easier to arrange items on the page . The examples
here use absolute positioning . In addition, the examples here populate the ListBox with
project names (on the Projects page) and chapter names (on the Chapters page) . Each
page has a ListBox selection change handler that fills the TextBox with information
about the projects and chapters . This is so that you can actually see that the pages have
functionality in addition to the consistent look and feel from the master page .

Here’s how to add elements to the ListBox by hand . (You see another technique—data
binding—in Chapter 10, “Data Binding .”) First, select the ListBox in the Designer . Click
the small arrow on the right side of the ListBox to open a dialog box in which you
can add item/value pairs . The example here uses two ListBoxes—one holds project
 information for this book and the other holds chapter information for this book . Here’s
what the Chapters page might look like:

 Chapter 7 A Consistent Look and Feel 151

Here’s what the Projects page might look like:

 . 7 . . Go back to the MasterPage .master page and update it so that it includes a bit more
content . Click Table, Insert Table to insert a table immediately above the content pane

152 Part II Advanced Features

on the master page . Give the table one row and two columns . Size it so that the left cell
is narrow and the right cell is wide . It should look something like this:

 . 8 . . Add a menu to the leftmost cell in the table . To customize the menu, add an
AutoFormat style to it . The example here uses the Classic style . Add three items to the
menu for navigating to the three pages in this site—the Home page, the Chapters
page, and the Projects page . To add the menu items, select the menu in the Designer,
click the small arrow in the control, and click Edit Menu Items . The following dialog box
appears . Add the menu items here .

 Chapter 7 A Consistent Look and Feel 153

Set up the appropriate navigation for each menu option . That is, set the Home menu
item to navigate to the UseMasterPage .aspx page . Set the Chapters menu item to
navigate to the Chapters .aspx file . Finally, set the Projects menu item to navigate to the
Projects .aspx file . You can set up the navigation URLs individually here by clicking the
navigation button in the NavigateUrl field of the Property page . (You look at using
ASP .NET site map support shortly .)

Open one of the master pages (for example, UseMasterPage .aspx) . You should
end up with something like this:

 . 9 . . Finally, add a banner . In my opinion, no master page is complete without a banner .
Use the bitmap editor (or Paintbrush—mspaint .exe) to draw a banner . The one in this

154 Part II Advanced Features

example is approximately 1000 pixels wide by 90 pixels high . Drop the banner into the
table cell on the right . Your master page should look something like this now:

Because you created the UseMaster .aspx, Chapters .aspx, and Projects .aspx files using
the master page, they have the menu and banner built in automatically . Surf to the
UseMaster .aspx file and browse through the menu items . You should see that each
page has a common look and feel, and includes the correct content . Here is the
Chapters page:

 Chapter 7 A Consistent Look and Feel 155

And here is the Projects page:

Master pages offer significant improvements over earlier versions of classic ASP and ASP .NET
for developing a common look and feel across all the pages in your application . Of course,
you can use multiple master pages in a project, and you can also nest them .

A second way to help manage the look and feel of your application is by using ASP .NET
themes .

Themes
Master pages control the general layout of a series of pages in an application . However, you
might like other elements (such as those that are subject to change between pages) to re-
main constant . Themes provide a means of applying common styles to the elements on each
page in your site .

If you’re familiar with Cascading Style Sheets (CSS), you will feel very at home with themes .
The two techniques are similar because with both you can define the visual styles for your
Web pages . Themes go a step beyond CSS, however . You can use themes to specify styles,
graphics, and even CSS files in the pages of your applications . When available, you can apply
ASP .NET themes at the application, page, or server control level .

Themes are represented as text-based style definitions in ASP .NET . Straight out of the box
ASP .NET includes a number of themes . You can find them at C:\WINDOWS\Microsoft .NET\
Framework\vxxxxx\ASP .NETClientFiles\Themes (where vxxxxx indicates the version of the
 .NET Framework you’re using) . ASP .NET includes some predefined themes . In addition, you
can define and use your own themes .

156 Part II Advanced Features

The following exercise shows how to create and use a theme .

Creating and using a theme

 . 1 . . Add a new form to the MasterPagesSite project . Make this a regular form that doesn’t
use master pages . Name the page UseThemes.aspx .

 . 2 . . Add a theme folder to your project by right-clicking the Web Site node in Solution
Explorer, and clicking Add ASP .NET Folder . Select Theme . This creates an App_Themes
directory for you .

 . 3 . . Right-click the App_Themes folder, click Add Folder, and then click Theme Folder .
Rename the Theme1 folder Default .

 . 4 . . Add a new style sheet to the Default folder . Right-click the project node in Solution
Explorer and click Add New Item . Select the style sheet Template, as shown in the fol-
lowing graphic, and name the style sheet Default .css . Drag the Default .css file into the
Themes\Default folder . This is now the style sheet that will apply when the page uses
the style named Default .

 . 5 . . Build the style sheet . The default style sheet includes only a body tag . When the style
sheet is open in Visual Studio, select Add Style Rule from the Styles menu . You can
right-click the Elements node to modify the style for the node . For example, if you
want to change the style of the <h1> tag, right-click the Elements node and click Add
Style Rule . To add a style for the <h1> tag, select the style from the list of elements
and move it into the Style Rule Hierarchy area by clicking the > button, as shown in the
 following graphic . Then, click OK .

 Chapter 7 A Consistent Look and Feel 157

To modify the style, click the H1 node in the CSS outline page and select Style in the
Properties pane . Click the ellipsis button (…) to open the Modify Style dialog box,
shown in the following graphic, and change the size and weight of the font (or any
other aspects) . Then, click OK .

The sample application included on this book’s accompanying CD sets the font to Arial
Black, xx-large, bold, and with an underscore .

If you look in the CSS file, you’ll see that the style has been modified:

body
{
}
h1
{
 font-family: Arial, Helvetica, sans-serif;
 font-size: xx-large;
 font-weight: bold;
 text-decoration: underline;
}

158 Part II Advanced Features

 . 6 . . Now test the theme by declaring it in the page by adding the Theme directive and then
by typing a heading with <h1> tags:

<%@ Page Language="C#" AutoEventWireup="true"
 Theme="Default"
CodeFile="UseThemes.aspx.cs"
Inherits="UseThemes" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title></title>
</head>
<body>
<form id="form1" runat="server">
<div>
 <h1> How does this look? </h1>
</div>
</form>
</body>

</html>

Here’s how the themed page appears in the browser with the new theme applied (the
<h1> tag set to the new font and to use underlining in this example):

 Chapter 7 A Consistent Look and Feel 159

 . 7 . . Add another theme to the project and name the theme SeeingRed . That is, create a new
theme folder and add a new style sheet called SeeingRed . Set the <h1> tag font color
to red this time . Then, change the theme used by the page to SeeingRed (you can also
set the theme in the Properties pane in Visual Studio):

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="UseThemes.aspx.cs"
Theme="SeeingRed"
trace="false" Inherits="UseThemes" %>

Surf to the page to see the <h1> tag printed in red .

This is just a taste of the kinds of things you can do by using themes in a page . Once you
have defined a theme, you can apply it by declaring it as part of the Page declaration or by
intercepting the PreInit event and changing the Theme property in the page to a valid theme .

Skins, described in the next section, go hand in hand with themes .

Skins
Skins complement master pages and themes as a way to manage the style of your Web site .
Using skins is almost like combining WebControl-based controls with CSS . You can also think
of skins as a way of setting certain properties of a control as a group . For example, you might
want to define different color schemes for a particular control, for example, the TextBox con-
trol or the Calendar control, which has extensive capabilities and customizable properties . By
providing skins for controls, you can make available a number of different appearance op-
tions for various controls without having to go into detail and manage the control properties
one by one for each instance of the control used in your site .

Actually, you have used skins already . Many server-side controls support style templates . For
example, when you worked with the TreeView in an earlier chapter, you saw that you could
apply one of several styles to it . Earlier in this chapter, you applied a set of color attributes
to the Menu control when you chose the “classic” style from the AutoFormat control option
menu . This section discusses how skins work and how to apply them .

Skin files define specific controls and the attributes that apply to them . That is, a .skin file
contains server-side control declarations . The skin file’s job is to preset the style properties
for the control . Skin files reside in named theme folders for an application, accompanied by
any necessary CSS files .

The following exercise illustrates how to create skins for some controls on your Web site .

160 Part II Advanced Features

Creating a skin

 . 1 . . Create a skin file by right-clicking the SeeingRed folder in the App_Theme node in
Solution Explorer and clicking Add New Item . Choose Skin File from the templates .
Name the file SeeingRed.skin .

 . 2 . . In the SeeingRed .skin file, predeclare some controls for which you’d like to have de-
fault property values set . For example, the following SeeingRed .skin file declares de-
fault properties for some controls . These controls have their various colors default to
 assorted shades of red .

<asp:Label runat="server" ForeColor="red"
Font-Size="14pt" Font-Names="Verdana" />

<asp:button runat="server" borderstyle="Solid"
borderwidth="2px" bordercolor="#ff0000" backcolor="#cc0000"/>

<asp:CheckBoxList runat=server ForeColor="#ff0000" />

<asp:RadioButtonList runat=server ForeColor="#ff9999" />

 . 3 . . Add the controls for which you’ve predeclared attributes in the skin file to the
UseThemes .aspx page to see how the SeeingRed .skin file applies . In the following
graphic, the red colored controls appear as a lighter gray color . You can see this effect
when you run the sample application .

 Chapter 7 A Consistent Look and Feel 161

You can automatically apply the SeeingRed .skin file by declaring the SeeingRed theme
within the page . You can also prescribe different skins at run time in the page’s PreInit
handler, and you can apply separate skins to each control .

Chapter .7 .Quick .Reference

To Do This

Enable a Web page to use WebPart
controls

Add a WebPartManager to the page on which you wish to use
WebPart controls .

Add various editing capabilities to a
Web Parts page

Add an EditorZone to the page .

Add a place in which to position
server-side controls to be managed
by the Web Part architecture

Add a WebZone to the page .

Allow users to dynamically add
controls from a collection of controls

Add CatalogZone to the page .

Add controls to the catalog while in Edit Templates mode .

Create a Web Part Derive a class from System.Web.UI.WebControls.WebParts.
WebPart and

Render some HTML in the Web Part’s Render method

or

Create ASP .NET child controls and add them to the Web Part’s
Controls collection for automatic rendering .

 . . 163

Chapter 8

Configuration
After completing this chapter, you will be able to

n Understand the way the Microsoft .NET Framework handles configuration .

n Apply configuration settings to ASP .NET applications .

n Manage ASP .NET configuration using the ASP .NET Administration tool .

n Manage ASP .NET configuration using the Microsoft Management Console (MMC)
snap-in .

This chapter introduces how ASP .NET manages its configuration information . It gives a taste
of how ASP .NET configuration works . You revisit ASP .NET configuration in later chapters .
ASP .NET is a feature-rich system for developing and deploying Web sites . The features you
see in more detail as you examine ASP .NET further include some of the following:

n Session state

n Caching content to help optimize your Web site’s responses

n Tracing requests

n Mapping specific file extensions to custom handlers

n Authenticating users

Each of these features is controlled by a number of separate configurable parameters . For
example, when you enable session state for your application, you can choose where to locate
your application’s session state (in process, on a separate computer using a Windows Service,
or using Microsoft SQL Server) . You can also configure the lifetime of your session state and
how your application tracks the session state (using a cookie or some other method) .

A second feature the configuration file controls is caching output . When you cache the
 content of your site, you can vary the lifetime of your cached content and where it is cached
(on the server, on the client, or on the proxy) .

For both these features (and others), the configuration options are governed by configuration
files . This chapter first examines the nature of Windows configuration and then looks spe-
cifically at how ASP .NET handles configuration . In ASP .NET 1 .x, modifying the configuration
of your application meant editing the XML-based configuration file by hand . Fortunately,
more recent versions of ASP .NET (2 .0 and later) offer two tools that make configura-
tion a much easier task . One tool is the ASP .NET Configuration tab available through the
Internet Information Services (IIS) 7 .x configuration panel . The second tool is the Web
Site Administration Tool, available through the Web Site, ASP .NET Configuration menu in
Microsoft Visual Studio . This chapter discusses both these tools as well .

164 Part II Advanced Features

Windows .Configuration
Every computing environment needs a configuration mechanism to control its behavior . A
number of parameters can govern how the operating system and programs operate . You
often need to modify the parameters, perhaps to tune performance or tailor security or even
just to control typical operation . For example, the Windows operating system provides an
environment variable named PATH that controls the search path for executable programs .
Other environment variables include TEMP (controls the location of temporary files) and
USERPROFILE (identifies the location of the current user’s profile information) .

In addition to operating system variables, individual applications might require different
settings specific to that program . For example, many applications require a specific version
of the Windows operating system or that specific dynamic-link libraries (DLLs) be avail-
able . These actions vary from one installation to the next, and it’s not a good idea to hard-
code the settings into your application . Instead, you store values in a secondary file that
 accompanies the application .

During the early days of Windows, you could use initialization files (.ini files) to config-
ure individual applications and the Windows operating system itself; there is even a set of
Windows application programming interface (API) functions for managing configuration
parameters . The files contain a name/value pair that dictates a property and its associ-
ated setting . For example, the name/value pair in Win .INI that turns on Object Linking and
Embedding (OLE) messaging looks like

OLEMessaging=1

Now, in this new millennium, XML is the way to go . .NET depends on XML files
(machine . config< web .config, and various trust alternatives) for its configuration .

Note In the past, the other way that you could configure applications was through the registry .
The registry is a centralized database that applications can use to store name/value pairs . The
reason ASP .NET doesn’t use the registry for configuration information is because the global
nature of the registry is in direct conflict with the need for ASP .NET to be flexible during deploy-
ment . Settings stored in the registry would need to be copied through the Registry API, whereas
configuration files can simply be copied . In addition, the account that runs most ASP .NET sites is
specifically configured to be opted out of the registry to secure the site from hacks and attacks .

 .NET .Configuration
 .NET configuration files are well-formed XML files whose vocabulary is understood by
the .NET runtime . You can see a list of all the configuration files by looking in the
 configuration directory (which you explore just a little later) .

 Chapter 8 Configuration 165

The .NET runtime reads these configuration files into memory as necessary to set the various
 .NET run-time parameters, and these parameters are cumulative . For example, web .config
is loaded when ASP .NET applications are started, but the first configuration file the server
 examines is machine .config .

Machine.Config
The default .NET configuration for your computer is declared in a file named machine .config .
You can find machine .config in the directory C:\Windows\Microsoft .NET\Framework\vxxxxx\
Config (where xxxxx is the .NET version; the current release at the time of this writing is 4
and the directory name of the beta version at the time of this writing is v4 .0 .21006) .
Machine .config sets the default .NET application behaviors for the entire computer .

Recent .NET versions have improved the machine .config arrangement . Versions 1 .x of .NET
lumped all of machine .config into a single file—even comments and configuration informa-
tion for systems not in use on the specific computer (browser information, for example, even
though the computer might not have been hosting ASP .NET) . With version 2 .0, machine .
config was trimmed down substantially . The comments were moved to a separate file named
machine .config .comments, and separate browser definition capability files were moved to
separate configuration files . This is important to know because the machine .config comments
are sometimes more useful as documentation for configuring .NET than the regular online
documentation is . As you configure various ASP .NET applications, the machine .config com-
ments should be the first place you look for information . Version 4 .0 of the machine .config
file is only a little bit larger than its 3 .0 predecessor .

Configuration Section Handlers
At the top of machine .config you can see a number of configuration section handlers . Each
handler understands a specific vocabulary for configuring .NET (and ultimately ASP .NET) .
Whereas machine .config controls the settings for the entire computer, ASP .NET applica-
tions rely on files named web .config to manage configuration . You see much more about
 web . config shortly . However, for now here is an example of what you might find in a
web .config file for a specific application:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <authentication mode="Forms" />
 <sessionState mode="SQLServer" cookieless="UseUri" timeout="25" />
 </system.web>
</configuration>

This small segment tells the ASP .NET runtime to use Forms Authentication (one of the
ASP .NET authentication options) to authenticate users of this site . The configuration

166 Part II Advanced Features

 information also tells ASP .NET to use SQL Server to manage session state, to allow session
state information to expire after 25 minutes, and to track session information using a ses-
sion ID embedded in the request Uniform Resource Identifier (URI) . Chapter 14, “Session
State,” examines session state in detail—for now, it’s a good example to illustrate some of the
 parameters ASP .NET configuration manages .

You can see from this example that configuring ASP .NET relies on the ability of the runtime
to understand some keywords . In this case, the keywords authentication, mode, and Forms
tell ASP .NET how to manage authentication . ASP .NET must correctly interpret sessionState,
mode, SQLServer, cookieless, UseURI, and timeout to know how to manage an application’s
session state .

The .NET components that understand these vocabularies are listed near the top of
machine .config .

<configuration>
 <configSections>
 <section name="appSettings"
 type="{entire strong assembly name here...}"
 restartOnExternalChanges="false" />
 <section name="connectionStrings"
 type="{entire strong assembly name here...}" />
 ...
 <sectionGroup name="system.web"
 type="{entire strong assembly name here...}">
 <section name="authentication"
 type="{entire strong assembly name here...}"
 allowDefinition="MachineToApplication" />
 <section name="sessionState"
 type="{entire strong assembly name here...}"
 allowDefinition="MachineToApplication" />
 ...
 </sectionGroup>
 </configSections>
</configuration>

The preceding code is necessarily abbreviated . Go ahead and take a look at machine .config
and you’ll see the section handlers in their full glory . (On most computers, machine .config
is located at C:\Windows\Microsoft .NET\Framework\vxxxxx\Config .) When you look at the
 configuration handlers, you can see that the sessionState configuration settings are inter-
preted by an assembly with the strong name System.Web.Configuration.SessionStateSection,
System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a . A
strong name fully specifies the name of an assembly, including a version (to ensure version
 compatibility) and a public token (to ensure the assembly has not been tampered with) .

 Chapter 8 Configuration 167

Web.Config
Machine .config lays out the default settings for your computer (and ultimately for your
 applications) . The default settings are generally targeted toward the most common use cases
you will encounter rather than some special configuration you might need to apply to a spe-
cific application . For example, sessionState is configured to be handled in process by default .
That’s fine when you’re developing but almost certainly is not appropriate for a commercial-
grade application that services many diverse clients .

Because all your .NET applications depend on machine .config to configure them, making
changes to machine .config could potentially affect multiple applications . It’s a bad idea to
update machine .config directly .

To configure themselves, stand-alone .NET applications depend on configuration files named
after the application . For example, an application named MyApp .EXE would have a con-
figuration file named MyApp .EXE .config . Of course, ASP .NET applications do not follow that
naming convention . Instead, the ASP .NET runtime expects configuration information to be
declared in a file named web .config .

Microsoft Visual Studio 2010 introduces a new feature: separate configurations for debug
and release versions of your application . Earlier versions of Visual Studio provided only a
single web .config file, and the debug and release versions of the application shared the same
settings . In Visual Studio 2010, when you generate a Web application, Visual Studio provides
three configuration files: web .config, web .debug .config, and web .release .config . Settings
shared by the debug and release versions go in web .config . Settings specific to the debug or
release version (such as the Trace setting) go in the respective web .config files .

To override the default settings, you simply need to include a file named web .config in the
application’s virtual directory . For example, the following code sets up the Web application
to which it applies . The configuration file turns on Forms Authentication and tracing, for
example .

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <authentication mode="Forms" />
 <trace enable=true/>
 </system.web>
</configuration>

The configuration settings your application actually sees have been inherited from a
(potentially) long line of other web .config files . The machine .config file sets up the default
 .NET configuration settings . The top-level web .config file (in the .NET configuration directory)
sets up the initial ASP .NET configuration . Then, you can use subsequent child web .config files
in the request path to tweak folder-specific settings for a single application .

168 Part II Advanced Features

This way of managing configuration information works well . Many of the usual defaults apply
in most situations, and you sometimes need to tweak only a few items . When you do, you
just drop a web .config in your virtual directory and/or subdirectory .

However, managing settings by littering your hard disk with web .config files can get a bit
unwieldy if many separate configurations are necessary . The ASP .NET configuration schema
includes a location element for specifying different settings for different directories—but all
the settings can all go in a master configuration file for your application .

For example, the following configuration section removes the ability of the AppSubDir
 directory to process standard ASP .NET Web Services . The remove instruction causes ASP .NET
to have amnesia about all files with the extension .asmx .

<configuration>
 <location path="AppSubDir">
 <system.web>
 <httpHandlers>
 <remove verb="*" path="*.asmx" />
 </httpHandlers>
 </system.web>
 </location>
</configuration>

You could also apply other specific settings to the subdirectory, such as for security pur-
poses . (Chapter 9, “Logging In,” explores security in depth .) You might not find it surprising
that ASP .NET configuration files include terms to manage authorization and authentica-
tion . This is a perfect use for the location element . The following configuration code allows
all users into the main (virtual) directory but requires that users who want to access the
PagesRequiringAuth subdirectory be authenticated:

<configuration>
 <system.web>
 <authorization>
 <allow users="*" />
 </authorization>
 </system.web>
 <location path="PagesRequiringAuth">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

Managing Configuration in ASP.NET 1.x
In ASP .NET 1 .x, you configured settings manually by typing changes into a target web .config
file . For example, if you wanted your application to use SQLServer as a session state database,

 Chapter 8 Configuration 169

you had to insert the correct verbiage into the application’s web .config file, keystroke by
 keystroke . Unfortunately, there was no configuration compiler to help ensure that the syntax
was correct . If you typed something wrong, you usually wouldn’t know about it until you ran
the application, at which point ASP .NET would display a cryptic error message .

Managing Configuration in Later Versions of ASP.NET
ASP .NET 2 .0 introduced some major improvements to the process of managing ASP .NET
applications, and these improvements carry through to the current version of ASP .NET .
Although you can still type configuration information into the web .config file manually,
ASP .NET 2 .0 and later versions provide some new configuration utilities, including the Web
Site Administration Tool (WSAT) available in Visual Studio and the ASP .NET configuration
 facilities available through IIS 7 .x .

In this exercise, you change settings in an application’s configuration and see how they are
reflected in web .config .

Configuring your application

 . 1 . . Begin by creating a new Visual Studio ASP .NET Web Application project named
ConfigORama .

 . 2 . . After Visual Studio generates the application, click Project, ASP .NET Configuration
to open the ASP .NET Web Site Administration Tool, which is shown in the following
graphic:

170 Part II Advanced Features

The .Other .Administration .Tabs
Notice that the Web Site Administration Tool includes four tabs: Home, Security,
Application, and Provider . The Security tab manages authentication and authorization
settings . That is, you can use the Security tab to add users and assign roles to them .
You explore that process in detail in the next chapter .

The Application tab is for maintaining various settings related to your application . You
can control basic configuration settings here, including maintaining key/value pairs
specific to your application, Simple Mail Transfer Protocol (SMTP) settings for defining
how the site manages e-mail, and turning debugging and tracing on and off . You can
also use the Application tab to take an application offline to perform maintenance .

Finally, you can use the Provider tab to manage various data providers . In ASP .NET
2 .0, Microsoft introduced the concept of a provider designed to make data access for
a given ASP .NET subsystem easier and more standardized . For example, users might
have personalized settings, and the Membership provider retrieves them for your code
to display to the user or otherwise manage . The Roles provider provides the roles your
user might be assigned when using your Web application . You can configure the vari-
ous providers individually using the Provider tab . Although you will most likely use the
built-in ASP .NET providers that access a database for data archival and retrieval, you
could use custom providers that you create, third-party providers, or mix and match
the two types . Provider configuration in the Provider tab includes which provider to
use (if you have more than one available) and database connection string settings if a
 database is to be used .

With the Web Site Administration Tool, you can manage parts of web .config without
having to type settings manually . The tool is accessible from Visual Studio . Visual Studio
2010 creates a web .config file by default . But if for some reason one is not created, the
Web Site Administration Tool can create a web .config file for you . When you manage
authentication and roles, the tool also creates a database suitable for consumption by
SQL Server Express in the App_Data folder of your Web site for storing application data .
(You see more about that later in the discussion of ASP .NET features such as personal-
ization and authorization .)

 . 3 . . Click the Application tab and add a couple of application settings by clicking the
Create Application Settings link . Add a setting named Copyright and one named
CompanyName, as shown in the following graphics . In this exercise, it doesn’t matter
what you type as the corresponding value . First, go to the Application tab .

 Chapter 8 Configuration 171

Then, click the Create Application Settings link to add some settings:

172 Part II Advanced Features

When you return to the Application tab, it shows how many application settings there
are in the config file:

 . 4 . . Open the application’s web .config file . You should see entries for Copyright and
CompanyName .

Web .config should look like this now (some entries inserted by Visual Studio have been
omitted):

<?xml version="1.0" ?>
<configuration >

 <appSettings>
 <add key="Copyright" value="Copyright © 2009 " />
 <add key="Company" value="ThisIsACompanyName" />

 </appSettings>

 <connectionStrings/>
</configuration>

 Chapter 8 Configuration 173

 . 5 . . Now write some code to access the application settings you just added, which
are available through a class named ConfigurationManager . Add a drop-down
list to the Default .aspx form to hold the application settings keys (with an ID of
DropDownListApplicationSettings) and a label to display the values (with the ID
LabelSetting) . Add a button with the ID ButtonLookupSetting so that users can look
up the value associated with the application settings key . In the Page_Load handler,
 interrogate the ConfigurationManager for all the application settings:

using System.Configuration

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 if (!this.IsPostBack)
 {
 foreach (String strKey
 in ConfigurationManager.AppSettings.AllKeys)
 {
 this.
 DropDownListApplicationSettings.
 Items.Add(strKey);
 }
 }

 }
 protected void ButtonLookupSetting_Click(object sender, EventArgs e)
 {

 string strSetting;
 strSetting =
 ConfigurationManager.AppSettings[this.
 DropDownListApplicationSettings.
 SelectedItem.Text];
 this.LabelSetting.Text = strSetting;

 }
}

174 Part II Advanced Features

 . 6 . . Compile the program and run the site . When you start the page, it loads the drop-
down list so that it contains all the keys from the ConfigurationManager.AppSettings
collection . When you select application settings by clicking a key in the drop-down list,
the code you inserted in the previous step looks up the value of the application setting
and displays it in the label:

In ASP .NET, you can also manage application settings using the Configuration tab for your
site when it is hosted in IIS .

Configuring .ASP .NET .from .IIS
If your site is running from within a virtual directory (through IIS), you can use the features
view in IIS to edit configuration information . To do so, your site must be managed by IIS .

Although you can configure ASP .NET applications from IIS only on the computer that hosts
the site, the level of configuration you control is much more extensive than it is when using
the Web Site Administration Tool from within Visual Studio . Your configuration changes also
have an immediate operational effect on your Web application .

Following is an exercise to help you become familiar with the ASP .NET Configuration tab in IIS .

 Chapter 8 Configuration 175

Using IIS to configure ASP.NET

 . 1 . . Before creating this new Web site, be sure to execute Visual Studio as an administrator
(that is, right-click Visual Studio on the Start menu and select Run As Administrator . This
is necessary when creating (or editing) Web sites hosted directly by IIS . Create a new
Web site called ConfigORamaIIS .

 . . To host the Web site directly within IIS, click the Browse button to open the dialog box
that lets you choose the location . Choose your own computer (localhost) . Visual Studio
will create a virtual directory for you and point itself to the virtual directory:

Create New Web Application button

176 Part II Advanced Features

 . 2 . . Open the IIS management console . To do so, open Control Panel and then
Administrative Tools . If you are using Windows Vista or Windows 7, you can
 access Administrative Tools through the System And Security settings option . There,
you should be able to open the Internet Information Services (IIS) Manager . Look for
the ConfigORamaIIS site in the Connections pane . Click the ConfigORamaIIS virtual
 directory, and you’ll see the ASP .NET-related settings appear in the Features View pane:

 . 3 . . Double-click one or two of the features to view their configuration screens . For
 example, click the Connection Strings icon to open the Connection Strings pane:

 Chapter 8 Configuration 177

 . 4 . . Right-click the Connection Strings pane, and then click Add to add a new connection
string using the Add Connection String dialog box . The Add Connection String dia-
log box is a user-friendly place in which to enter connection string information (the
 following entry is a fictitious database name):

In addition to managing connection strings from the Features View, you can also
 manage application settings . In the Features View pane, click Application Settings to
view the Application Settings pane, as shown in the following graphic:

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

178 Part II Advanced Features

In the Application Settings pane, right-click in the middle of the pane, and then click
Add to open the Add Application Setting dialog box where you can add application
settings—just as you did using the ASP .NET Web Site Administration Tool . Add a
key/value pair like so:

 . 5 . . Open web .config in your application . It should now include an entry for Copyright .

<?xml version="1.0" encoding="UTF-8"?>
<configuration >
 <appSettings>
 <add key="Copyright" value="Copyright © 2009" />
 </appSettings>
</configuration>

 . 6 . . Use the IIS ASP .NET configuration editor to add a setting named BackgroundColor with
a value of #00FF00 . This exposes a setting that administrators can use to change the
background color of Default .aspx (after support for changing the background color is
built into the code) . That is, anyone having access to the web .config file will be able to
modify the background color .

 . 7 . . Return to Visual Studio and add a property to the Default page (Default .aspx .cs) to
retrieve the background color . (If you created a site using a master page, do this in the
master page code file rather than in Default .aspx .cs .) It should be available from the
ConfigurationManager.AppSettings collection .

using System.Configuration;

public partial class SiteMaster : System.Web.UI.MasterPage
{
 protected string BackgroundColor {
 get { return
 ConfigurationManager.AppSettings["BackgroundColor"]; }
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 }
}

 Chapter 8 Configuration 179

 . 8 . . By default, Visual Studio will include a master page with your application . Open the
Site .master page in Source view and update the <p> tag to retrieve the background
color from the application settings . Use the <% and %> braces to mark executable
code . Also add a line to the .aspx file to display the background color value .

<%@ Master Language="C#" AutoEventWireup="true"
 CodeFile="Site.master.cs" Inherits="SiteMaster" %>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

 <head runat="server">
 <title></title>
 <link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="HeadContent" runat="server">
 </asp:ContentPlaceHolder>
 </head>
 <body style="background-color: <%=BackgroundColor%>">

 <!-- other content is here... -->
 </body>
</html>

 . 9 . . Compile the program and run the page . The value #00FF00 translates to a bright
green, so the background for the master page should now appear bright green:

180 Part II Advanced Features

 . 10 . . Browse through some of the other icons in the ASP .NET Configuration Settings pane
in IIS . You will encounter many of these settings as you explore ASP .NET in the coming
chapters:

n The Authentication page is for setting up users and assigning them roles in your
application .

n The .NET Globalization page manages globalization issues .

n The Session State management feature is for managing session state . You can
tell ASP .NET to store session state in any of a number of places, including in pro-
cess on the host computer, out of process using a dedicated state server, or in a
 dedicated SQL Server database .

n The Pages And Controls page allows you to manage the UI of your application
such as themes and master pages .

ASP .NET relies on web .config for almost all of its settings . The configuration story doesn’t end
here, however . This chapter describes only a couple of settings, and you will see most of them
as well as many others throughout the book . You revisit configuration when you encounter
features such as security, session state, error messages, and HttpHandlers/HttpModules .

Chapter .8 .Quick .Reference
To Do This

View global configuration files Look in the Windows directory under Microsoft .NET\Framework\vxxxxx\
config, where xxxxx is the version of .NET your ASP .NET site uses .

Change configuration settings in
a specific ASP .NET application

Place a web .config file in the application’s directory and modify the
 settings .

Change configuration settings for
a specific subdirectory under a
 virtual directory

Place a separate web .config file in the subdirectory

OR

Use the location element in the virtual directory’s web .config file .

Modify a Web application’s
settings using the Web Site
Administration Tool (WSAT)

In Visual Studio, click Web Site, ASP .NET Configuration from the main
menu .

Modify a Web application’s
 settings using the IIS ASP .NET
Configuration tool

Open the IIS control panel . Highlight the virtual directory for your Web
application . In the Features View pane for the virtual directory, double-
click the icon that represents the settings you want to view/modify .

Retrieve settings from the
 configuration file

Use the ASP .NET ConfigurationManager class .

 . . 181

Chapter 9

Logging In
After completing this chapter, you will be able to

n Manage Web-based security .

n Implement Forms Authentication .

n Work with Forms Authentication in the raw .

n Work with ASP .NET login controls to make writing login pages painless .

n Work with ASP .NET role-based authorization .

This chapter covers managing access to your ASP .NET application . Web site security is a
 major concern for most enterprises . Without any means of securing a site, a Web site can ex-
pose areas of your enterprise that you might not want exposed to the general public . In this
chapter, you take a quick look at what security means in relation to Web applications . Then,
you look at various services available in ASP .NET for authenticating and authorizing users .

Note Authenticating users means determining that users really are who they say they are
(verifying the identity of a user) . This is often accomplished by using a shared secret such as a
password . Authorizing users means allowing or restricting access for specific users who have
identified themselves based on permissions or roles assigned to them . For example, clients in an
administrative role are often granted more access than are clients in simple user roles .

This chapter also describes the new login controls, which greatly reduce the amount of
 development effort you might otherwise expend securing your site . Finally, the chapter
 examines ASP .NET support for authorization (assigning users to roles) .

Important This chapter’s code samples on the companion CD require IIS support to execute .
See the “Code Samples” section in the Introduction for important information on running the
examples for this chapter .

182 Part II Advanced Features

Web-Based .Security
Software security is a prominent topic these days, especially with ever increasing public
awareness of security issues such as privacy . When a Web application runs in the Microsoft
environment, several security issues arise immediately: (1) the security context of Internet
Information Services (IIS), (2) being sure your clients are who they say they are, and
(3) specifying what those clients may and may not do with your application .

Managing Web-based security is similar to managing typical network security in that you still
need to manage the authentication and authorization of users . However, Web-based security
involves managing clients running different platforms in an open system . That is, program-
ming for a Web-based platform involves servicing requests from a client browser over which
you have much less control in a closed network (such as a Windows operating system–based
office network) .

Although not quite a trivial problem, Windows security is at least a solved problem . Anyone
who has configured a Windows network knows there are myriad issues involved in setting
up all users appropriately . But a Windows network is a closed system, and everyone on the
network is connected and has a baseline level of trust among them (that is, they’re all on the
network) . When you log on to a Windows network, you prove who you are (you authenticate)
by providing your user name and password . If the security subsystem believes you are who
you say you are, it issues a security token to your Windows session, and every application you
start runs using that security token .

The resources (files, folders, drives, applications, and so forth) on your computer and on your
network are associated with discretionary access control lists (DACLs) . If the security context
under which your application runs belongs to a resource’s DACL, you can use it . Otherwise,
the system prevents you from using the resource . This is known as authorization .

In a closed system such as a Windows network, an administrator can effectively survey the
whole system and grant users access to various resources . Because it’s a closed system, the
system can determine very easily whether a user belongs in the system and what that user
may do .

Contrast this with a Web application: The range of users of your application is quite wide and
users are not necessarily part of your local network . This means that you need another way
(outside of the Windows infrastructure) to authenticate and authorize the users of your Web
application . Or, put another way, Windows authentication doesn’t scale well to the general
Internet .

 Chapter 9 Logging In 183

Securing IIS
The first security issue you encounter in programming Web applications in the Windows
 environment is understanding the security context of IIS . Virtually all access to your Web site
is directed through IIS . As with all Windows applications, IIS runs under a specific context .
When you install IIS on your computer, the install process creates a separate security identity
specifically for IIS .

You can see the identity under which your version of IIS runs by starting IIS in Control Panel,
opening Internet Information Services (IIS) Manager, selecting a virtual directory, viewing
the Features pane, double-clicking the Authentication item to open the Authentication page,
right-clicking Anonymous Authentication, and then clicking Edit . On my computer, the name
of the user is IUSR, as shown in Figure 9-1 .

FIGURE .9-1 . Managing authentication settings in IIS .

By default, IIS runs the virtual directories using Anonymous Authentication . When this mode
is specified, IIS uses the principal identified in the Specific User field as its security principal .
That is, IIS runs with access to the resources available to IUSR .

IIS supports other types of authentication, including Windows authentication . In this case,
you need to give all potential clients a Windows user name and password . This only works
when the clients are running on Windows-based platforms . Users logging on to your site
are challenged, meaning they are asked to authenticate themselves . They will see a Windows
login dialog box when they log on to your Web site (perhaps you’ve run into this type of
site before) . Windows authentication does work well for enterprise-wide sites when you can
count on your audience running Windows-based browsers . However, for a Web site with a
wider audience that uses operating systems other than Windows, you’ll want to use other
means of authentication because the underlying security mechanism available to Windows
users is not present in other operating systems, so those users could not authenticate .

184 Part II Advanced Features

Fortunately, ASP .NET includes Forms Authentication, a straightforward means of
 authenticating clients . The Forms Authentication subsystem in ASP .NET 1 .0 and 1 .1 was
a huge improvement over having to write your own authentication subsystem . Later
 versions of ASP .NET include and improve on the Forms Authentication model by adding an
Authorization subsystem as well .

First, look at Forms Authentication in the raw .

Basic Forms Authentication
ASP .NET 1 .0 and 1 .1 introduced a straightforward means of authenticating users . Forms
Authentication is driven by an application’s web .config file . In addition to controlling such
aspects as session state, tracing and debugging, and application key/value pairs, web .config
includes authentication and authorization nodes .

To require users of your site to authenticate, you simply need to place some instructions in
the web .config file . You can edit the file directly, or you can use a tool such as the Web Site
Administration Tool available through Microsoft Visual Studio . (Chapter 8, “Configuration,”
discusses the Web Site Administration Tool in some detail .)

Web .config includes a section for specifying how your site should deal with authentication
and authorization . In the absence of the authentication and authorization elements, ASP .NET
allows unrestricted access to your site . However, once you add these elements to your web .
config file, ASP .NET forces a redirect to a URI dedicated to authentication . Most of the time,
the file is some sort of login page in your Web application where users must do something to
authenticate, such as type in a user name and password .

Before you look at the code, look at Figure 9-2, which illustrates how control flows on your
Web site when you turn on Forms Authentication using web .config .

 Chapter 9 Logging In 185

POST /MyWebsite/login.aspx
Username='john'
Password='rt45!kw'

Web.Config
<configuration>
 <system.web>
 <authentication mode="Forms">
 </authentication>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

Is request authenticated
(using either a cookie or
a mangled URL)?

YES: Allow access to default.aspx.

NO: Redirect to login.aspx.

GET /MyWebsite/content.aspx

Authenticate john.

Grant a cookie.

Redirect to default.aspx.

Is there an authentication cookie?

YES: Allow access to content.aspx.

GET /MyWebsite/default.aspx

Client Website

FIGURE .9-2 . The control flow for a site with Forms Authentication turned on .

This book’s accompanying CD includes this login page . To see an example of the most basic
authentication you can use in your application, look at the files Login .aspx and web .config .
The web .config file includes the Authentication and Authorization elements to support Forms
Authentication for the site . Listing 9-1 shows the web .config settings necessary to force
authentication .

186 Part II Advanced Features

LISTING .9-1 . A basic web .config file requiring authentication

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="login.aspx" />
 </authentication>

 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</configuration>

The login page that goes with it is shown in Listing 9-2 .

LISTING .9-2 . A basic ASP .NET login page

<%@ Page language="C#" %>
<%@ Import namespace="System.Web.Security" %>

<html>
 <script runat="server">

 protected bool AuthenticateUser(String strUserName,
 String strPassword) {
 if (strUserName == "Gary") {
 if(strPassword== "K4T-YYY") {
 return true;
 }
 }
 else if(strUserName == "Jay") {
 if(strPassword== "RTY!333") {
 return true;
 }
 }
 else if(strUserName == "Susan") {
 if(strPassword== "erw3#54d") {
 return true;
 }
 }
 return false;
 }

 public void OnLogin(Object src, EventArgs e) {
 if (AuthenticateUser(m_textboxUserName.Text,
 m_textboxPassword.Text)) {

 FormsAuthentication.RedirectFromLoginPage(
 m_textboxUserName.Text, m_bPersistCookie.Checked);
 } else {
 Response.Write("Invalid login: You don't belong here...");
 }
 }
 </script>

 Chapter 9 Logging In 187

 <head>
 <title>Login Page</title>
 </head>
 <body>
 <form runat="server">
 <h2>A most basic login page</h2>
 User name:
 <asp:TextBox id="m_textboxUserName" runat="server"/>

 Password:
 <asp:TextBox id="m_textboxPassword"
 TextMode="password" runat="server"/>

 Remember password and weaken security?:
 <asp:CheckBox id="m_bPersistCookie" runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"
 runat="server"/>

 </form>
 </body>
</html>

This is a simple login page that keeps track of three users—Gary, Jay, and Susan .

In this scenario, when users try to surf to any page in the virtual directory, ASP .NET stops
them and forces them to pass the login page shown in Figure 9-3 .

FIGURE .9-3 . A simple login page for obtaining a user name and password from a client .

188 Part II Advanced Features

This simple login page authenticates the user (out of a group of three possible users) . In a
real Web site, the authentication algorithm would probably use a database lookup to see
whether the user is included in the database and whether the password matches . Later
in this chapter, you see the ASP .NET authentication services . The login page then issues
an authentication cookie using the FormsAuthentication utility class, which is found in the
System.Web.Security namespace .

Figure 9-4 shows what the Web page looks like in the browser with tracing turned on . Here,
you can see the value of the authentication cookie in the Request Cookies Collection .

FIGURE .9-4 . Tracing turned on reveals the authentication cookie for a page using Forms Authentication .

The following example shows how to employ Forms Authentication on your site .

Running the Forms Authentication example

 . 1 . . To run the Forms Authentication example, create an IIS application to hold the site . This
example is intended to be simple—ASP .NET requires some target and version info—
so this site is configured for ASP .NET version 2 .0 . Right-click the directory in the IIS
Connections window, and click Manage Application, Advanced Settings . Select A Classic
Mode Application Pool for the application pool property . Add an HTML file to the di-
rectory that simply displays a banner text of “Hello World .” Name the file Default .htm .
You must have a target file to surf to for Forms Authentication to work .

 . 2 . . Copy the Login .aspx page from the Chapter 9 examples on the accompanying CD into
the virtual directory for which you want to apply Forms Authentication .

 Chapter 9 Logging In 189

 . 3 . . Copy the Web .ConfigForceAuthentication file from the Chapter 9 examples on the
accompanying CD into the virtual directory for which you want to apply Forms
Authentication . Make sure to rename the configuration file web.config after you copy it .

 . 4 . . Try to surf to a page in that virtual directory . ASP .NET should force you to complete the
Login .aspx page before moving on .

 . 5 . . Type in a valid user name and password . (You can find valid user names and passwords
by examining the Login .aspx page from step 2 .) Subsequent access to that virtual direc-
tory should work just fine because now there’s an Authentication ticket associated with
the request and response .

Although you might build your own authentication algorithms, ASP .NET includes a number
of new features that make authenticating users a straightforward and standard process . You
examine those in a moment .

Briefly, ASP .NET allows two other types of authentication: Passport authentication and
Windows authentication . There’s not much talk about Passport anymore . Passport authen-
tication has evolved into Windows Live ID and requires a centralized authentication service
provided by Microsoft . If you’ve ever used Hotmail .com, you’ve used Windows Live ID . The
advantage of Windows Live ID authentication is that it centralizes login and personalization
information at one source . Although this is not a free service, your users can use a single user
ID to log in to many Web sites, providing convenience and easing your own development
efforts because you don’t need to manage user authentication yourself .

The other type of authentication supported by ASP .NET is Windows authentication . If you
specify Windows authentication, ASP .NET relies on IIS and Windows authentication to man-
age users . Any user making his or her way through IIS authentication (using basic, digest, or
Integrated Windows Authentication as configured in IIS) is authenticated for the Web site .
These other forms of authentication are available when configuring IIS . However, for most
ASP .NET Web sites, you bypass IIS authentication in favor of ASP .NET authentication even if
only for scalability reasons . ASP .NET uses the authenticated identity to manage authorization .

ASP .NET .Authentication .Services
ASP .NET includes a great deal of support for authenticating users (outside of IIS support) .
Most of it comes from the FormsAuthentication class . The class includes support for hash-
ing passwords for secure storage, encrypting and decrypting strings, creating authentica-
tion cookies, redirecting request following authentication, and managing authentication
 parameters (such as expiration times) .

190 Part II Advanced Features

The FormsAuthentication Class
Many ASP .NET authentication services center around the FormsAuthentication class . The
examples shown in Listings 9-1 and 9-2 show how the rudimentary authentication works
by installing an authentication cookie in the response and redirecting the processing back
to the originally requested page . This is the primary purpose of FormsAuthentication.
RedirectFromLoginPage . Some other interesting methods in the FormsAuthentication class
allow for finer-grained control over the authentication process . For example, you can authen-
ticate users manually, without forcing a redirect, which is useful for creating optional login
pages that vary in content based on the authentication level of the client .

FormsAuthentication includes a number of other services as well . Table 9-1 shows some of the
useful members of the FormsAuthentication class .

TABLE .9-1 . Useful .FormsAuthentication .Class .Members

FormsAuthentication Method Description

CookiesSupported Property indicating whether cookies are supported for
 authentication

FormsCookieName Property representing the Forms Authentication cookie
name

FormsCookiePath Property representing the Forms Authentication cookie
path

LoginUrl Redirects URL for logging in

RequireSSL Property representing whether Secure Sockets Layer is
required

SlidingExpiration Property indicating whether sliding expiration is set

Authenticate Authenticates the user

Encrypt Generates an encrypted string representing a Forms
Authentication ticket suitable for use in an HTTP cookie

Decrypt Creates a Forms Authentication ticket from an encrypted
Forms Authentication ticket

GetAuthCookie Creates an authentication cookie for a specific user

GetRedirectUrl Gets the original URL to which the client was surfing

HashPasswordForStoringInConfigFile Creates a hashed password suitable for storing in a
 credential store

RedirectFromLoginPage Authenticates the user and redirects to the originally
 requested page

SignOut Invalidates the authentication ticket

 Chapter 9 Logging In 191

An Optional Login Page
The CD accompanying this book includes an example showing how to authenticate
 separately . The page in Listing 9-3 uses the same authentication algorithm: three users—
Gary, Jay, and Susan—with hard-coded passwords . However, the page authenticates users,
and then redirects them back to the same page (OptionalLogin .aspx) .

LISTING .9-3 . OptionalLogin .aspx

<%@ Page language=C# trace="false"%>
<html>
 <script runat=server>

 protected bool AuthenticateUser(String strUserName,
 String strPassword)
 {
 if (strUserName == "Gary")
 {
 if(strPassword== "K4T-YYY")
 {
 return true;
 }
 }
 else if(strUserName == "Jay")
 {
 if(strPassword== "RTY!333")
 {
 return true;
 }
 }
 else if(strUserName == "Susan")
 {
 if(strPassword== "erw3#54d")
 {
 return true;
 }
 }
 return false;
 }

 public void OnLogin(Object src, EventArgs e) {
 if (AuthenticateUser(m_textboxUserName.Text,
 m_textboxPassword.Text))
 {
 FormsAuthentication.SetAuthCookie(
 m_textboxUserName.Text,
 m_bPersistCookie.Checked);
 Response.Redirect("optionallogin.aspx");
 } else {
 Response.Write("Invalid login: You don't belong here...");
 }
 }

192 Part II Advanced Features

 protected void ShowContent()
 {
 if(Request.IsAuthenticated)
 {
 Response.Write("Hi, you are authenticated.
");
 Response.Write("You get special content...
");
 }
 else
 {
 Response.Write("You're anonymous. Nothing special for you... ");
 }
 }
 </script>
 <body><form runat=server>

 <h2>Optional Login Page</h2>

 User name:
 <asp:TextBox id="m_textboxUserName" runat=server/>

 Password:
 <asp:TextBox id="m_textboxPassword"
 TextMode="password" runat=server/>

 Remember password and weaken security?:
 <asp:CheckBox id=m_bPersistCookie runat="server"/>

 <asp:Button text="Login" OnClick="OnLogin"
 runat=server/>

 <%ShowContent(); %>
 </form></body>
</html>

Notice that the page sets the authentication cookie manually by calling FormsAuthenticati
on .SetAuthCookie, and then redirects the processing back to the page . Each time the page
shows, it calls the ShowContent method, which checks the authentication property in the
page to decide whether to display content specialized for an authenticated user . Because
the page redirects manually after authenticating, the web .config file needs to look a bit dif-
ferent . To make it work, the authentication node should remain, but the authorization node
that denies anonymous users needs to be removed . That way, any user can log in to the
OptionalLogin .aspx page—they won’t be denied—and they can proceed after they are au-
thenticated . The new web .config file is shown in Listing 9-4 . The file on the accompanying CD
is named Web .ConfigForOptionalLogin . To make it apply to the application, copy the file and
name it web.config .

 Chapter 9 Logging In 193

LISTING .9-4 . A web .config file supporting optional login

<configuration>
 <system.web>
 <authentication mode="Forms">
 </authentication>
 </system.web>
</configuration>

Figure 9-5 shows how the optional login page appears before the user has been
authenticated .

FIGURE .9-5 . The optional login page before an authenticated user logs in .

This example shows how to run the optional login page .

Running the optional login page

 . 1 . . To run the optional login page, create a virtual directory to hold the site . Alternatively,
you can use an already existing site and try the optional login page from there .

 . 2 . . Copy the OptionalLogin .aspx page from the Chapter 9 examples on the accompanying
CD into the virtual directory .

 . 3 . . Copy the Web .ConfigForOptionalLogin from the Chapter 9 examples on the accompa-
nying CD into the virtual directory . Be sure to rename the configuration file web.config
so that ASP .NET loads the appropriate configuration settings .

 . 4 . . Try to surf to a page in that virtual directory . ASP .NET should allow you to see the page,
but as an unauthenticated user .

194 Part II Advanced Features

 . 5 . . Type in a valid user name and password . You should see the content tailored for
 authenticated users . Subsequent requests/responses to and from the site will include
an authentication token, so you would always see the special authenticated content .

After the user has been authenticated, the optional login page shows the content tailored
to the specific authenticated user . Figure 9-6 shows the page after an authenticated user
logs in .

FIGURE .9-6 . The optional login page after an authenticated user has logged in .

Managing .Users
So far, you can see that the fundamentals of Forms Authentication are easy to manage . In the
previous examples, the pages are inaccessible until users prove their identity . The preceding
example shows raw authentication for which the user names and passwords are hard-coded
into the ASPX file . This is useful for illustration purposes; however, in a production application
you’ll undoubtedly want to assign identities to the authorized users visiting your site .

ASP .NET and Visual Studio include facilities for managing user identities and roles . The
 following exercise shows how to set up a secure site in which users are allowed access only
after they identify themselves correctly .

 Chapter 9 Logging In 195

Managing user access

 . 1 . . Create a new Web site named SecureSite .

 . 2 . . Add a label to the Default .aspx page with the text “Congratulations . You made it in .”
That way, when you get to the default page after logging in, you’ll know which page
you are looking at in the browser .

 . 3 . . Open the ASP .NET Web Site Administration Tool by clicking Web Site, ASP .NET
Configuration on the main menu . Click the Provider tab . Click the Select A Single
Provider For All Site Management Data link . You can click the Test link to test
the provider to make sure the connection is working .

Tip As you recall from Chapter 8, IIS includes ASP .NET configuration facilities as well . If
your site has a virtual directory, you can get to the facilities by opening IIS, selecting the
virtual directory of interest, and navigating among the Features icons .

 . 4 . . To ensure that the database is working, click the Security tab and add a user directly
from there . This creates the SQL Express database for you . Alternatively, you can run
the program aspnet_regsql .exe to create a data store to hold membership information .
You can find aspnet_regsql .exe in C:\Windows\Microsoft .NET\Framework\v4 .0 .20506> .

 . 5 . . You can change the authentication type by clicking the Security tab . You will see the
page shown in the following graphic . Click the Select Authentication Type link . (Visual
Studio should have set you up with Forms Authentication .)

196 Part II Advanced Features

 . 6 . . Make sure the From The Internet option is selected as the as the access method, as
shown in the following graphic . Then, click the Done button . This causes the site to use
Forms Authentication .

 . 7 . . Select Enable Roles, and then select Create Or Manage Roles . Add some roles to the
site . The example here includes three roles: Admin, JoeUser, and PowerUser . Add these
roles now . You assign real users to them shortly .

 Chapter 9 Logging In 197

As you create roles, you’ll see each new role on the page:

 . 8 . . In the main Security tab, click the Create User link and add some users . You can assign
them to roles now if you wish .

After you’ve worked with the configuration a bit, web .config should be able to find the
authentication settings . (You set up the Authorization node later .)

198 Part II Advanced Features

<?xml version="1.0"?>
<configuration >
 <!-- other config info -->
 <system.web>

 <!-- other config info -->
 <authentication mode="Forms">
 <forms loginUrl="~/Account/Login.aspx" timeout="2880" />
 </authentication>
 <membership>
 <providers>
 <clear/>
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="ApplicationServices"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false" requiresUniqueEmail="false"
 maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0" passwordAttemptWindow="10"
 applicationName="/" />
 </providers>
 </membership></system.web>
</configuration>

 . 9 . . At this point, you can authenticate users to your site . However, you would probably
like to control which parts of your site they may access . To manage authorization, cre-
ate some access rules by clicking the Create Access Rules link in the Security .tab . Deny
 access for anonymous users, as shown in the following graphic:

 Chapter 9 Logging In 199

Denying access for anonymous users causes the following changes in web .config .
Notice the authorization element .

<?xml version="1.0" encoding="utf-8"?>
<configuration
>

 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 <!-- more config info here -->
 </system.web>
</configuration>

 . 10 . . Now try running the site . ASP .NET should deny you access to the site and direct you to
the login page, as shown here:

ASP .NET is looking for a way to authenticate the user . Because this is a fresh session with an
anonymous user . The Forms Authentication setting is set to true and anonymous users are
denied access . By default, Visual Studio generates a project that points to a prebuilt login
page named login .aspx in the Account folder .

The next section looks at ASP .NET login controls used by the login page created by
Visual Studio .

200 Part II Advanced Features

ASP .NET .Login .Controls
Earlier in this chapter, you handcrafted a couple of different login pages . During the heyday
of ASP .NET 1 .1, that’s exactly what you had to do to get Forms Authentication to work . Later
versions of ASP .NET add a number of login controls that perform the most common login
scenarios you might need for your site .

These controls include the Login, LoginView, PasswordRecovery, LoginStatus, LoginName,
ChangePassword, and CreateUserWizard controls . Here’s a summary of what each control
does:

n Login The Login control is the simplest login control and supports the most common
login scenario—signing in using a user name and password . The control includes user
name and password text boxes and a check box for users who want to compromise
password security by saving their passwords on the computer . The control exposes
properties through which you can change its text and appearance . You can also add
links to manage registration and password recovery . The Login control interacts with
the ASP .NET membership component for authentication by default . If you want to
manage authentication yourself, you can do so by handling the control’s Authenticate
event .

n LoginView The LoginView control is very similar to the optional login page discussed
earlier . It’s useful for managing the content you display for authenticated versus unau-
thenticated users . The LoginView displays the login status through the display templates
AnonymousTemplate and LoggedInTemplate . The control renders a different template
depending on the status of the user . With the LoginView control, you can also manage
text and links in each template .

n PasswordRecovery The PasswordRecovery control supports Web sites that send user
passwords to clients when users forget their passwords . The control collects the user’s
account name and then follows up with a security question (provided that functionality
is set up correctly) . The control either e-mails the current password to the user or
creates a new one .

n LoginStatus The LoginStatus control displays whether the current user is logged on .
Users who are not logged in are prompted to log in, whereas logged-in users are
prompted to log out .

n LoginName The LoginName control displays the user’s login name .

n ChangePassword The ChangePassword control gives users a chance to change their
passwords . An authenticated user can change his or her password by supplying the
original password and a new password along with a confirmation of the new password .

 Chapter 9 Logging In 201

n CreateUserWizard The CreateUserWizard control collects information from users
so that it can set up an ASP .NET membership account for them . Out of the box, the
control gathers a user name, a password, an e-mail address, a security question, and
a security answer . The CreateUserWizard can collect different information from users
 depending on the membership provider your application uses .

The following exercise illustrates how to write a login page using the login controls .

Working with the login page

 . 1 . . Visual Studio creates a login page for you by default . So that you can see how the login
controls work, create a new login page . Remove the login page from the Accounts
folder, and then create a new one by right-clicking the Account folder, clicking New,
Add New Item, and selecting Web Form From Master Page . Name it login.aspx . Drop a
Login control into the Content area:

 . 2 . . Visual Studio generates a site that uses Forms Authentication by default . (Or you can
turn on Forms Authentication by selecting Internet access through the ASP .NET Web
Site Administration Tool .) The login URL specified in web .config is ~/Account/Login .aspx
(which now points to your new login page) .

 . 3 . . Now try to surf to the default page . ASP .NET presents you with the login page . Try
 typing in a user name and password that you provided in the last example .

202 Part II Advanced Features

Provided you log in successfully, you next see the default page:

Authentication is an important step in managing the security of your site . The second half of
the equation is managing access to your site after users have authenticated themselves . This
is known as authorization .

 Chapter 9 Logging In 203

Table 9-2 shows the users’ names and their passwords for the example included in this
chapter .

TABLE .9-2 . User .Names .and .Passwords .for .the .Example .
Code .in .This .Chapter

User Name Password

George abc!123

Joe abc!123

Frodo abc!123

Authorizing .Users
When you authenticate a user, you establish his or her identity . Although that information is
sometimes useful by itself, a system becomes more secure when authentication is combined
with authorization . Authentication establishes identity, whereas authorization establishes
what users can do when they’re logged in to your site .

In the previous example, you added user roles to the site . The following example illustrates
how to limit access to certain areas of your site based on the user’s identity .

Managing authorization

 . 1 . . Add a folder named Administrators for administrators to access by right-clicking the
project node and clicking New Folder . Name the folder Admin . Add a Web Form to the
folder that contains the label “Administrators Only .” Similarly, create a JoeUsers folder
and a Web Form for JoeUsers, and create a PowerUsers folder . Add a single default file
to each of these directories so that you have something to surf to in each directory .
Insert labels on each of the pages with unique text so that you can distinguish each
page .

 . 2 . . Now set up associations between the roles you’ve defined and these new resources .
In the Web Site Administration Tool, add some more users and assign each a role .
For example, the example on the CD includes a user named George assigned to the
Administrator role, a user named Joe assigned to the JoeUser role, and a user named
Frodo assigned to the PowerUser role .

 . 3 . . After you add the new roles, set up new access roles by clicking the Manage Access
Rules link, and then clicking the Add New Access Rule link . You can selectively allow or
deny various users or classes of users, as shown in the following graphic . For example,
users assigned the Administrators role are given access to the Administrators folder .

204 Part II Advanced Features

After you make these changes, you should see the changes in the web .config file in
the Authentication and Authorization nodes in web .config files created for each folder .
When you apply access rules, the administration tool will put a Web .config file into the
directory for which you’re modifying the access rules . The tool should also put a
<deny users=”*”> node following the allow node:

 . 4 . . So that clients can try to navigate to the various restricted pages, drag three Hyperlink
controls onto the master page—one for the Administrator page, one for the JoeUser
page, and one for the PowerUsers page that you created in step 1 . Set the Text prop-
erty of each Hyperlink to some meaningful text (for example, the Text property for the
Administrator .aspx file might be “Go to Administrator Page”) . Use the Property pane to
set the NavigationUrl for each Hyperlink to the appropriate page .

 . 5 . . Run the page . After logging in, you should see the default page, which displays the
text “Congratulations . You made it in . This is the default page” and three hyperlinks .
Depending on your identity, ASP .NET does or does not allow you to view the pages in
the subdirectories . Click the various links to see how ASP .NET permits or restricts page
viewing based on roles .

 Chapter 9 Logging In 205

If you logged in successfully as a user assigned the JoeUser role, ASP .NET lets you view
the pages in that subdirectory, as shown in the following graphic:

206 Part II Advanced Features

This example only touches on the utility the login controls provide . There is much more
to managing a Web site than simply filtering users . For even more robust login scenarios,
 including password recovery and optional logins, experiment with some of the other login
controls .

Chapter .9 .Quick .Reference

To Do This

Use Forms Authentication in your application 1 . Use the ASP .NET Web Site Administration tool (click
Web Site, ASP .NET Configuration) .

2 . Click the ASP .NET tab in IIS . Note that the
 authentication type must be FormsAuthentication .

Configure the security aspects of your Web site 1 . Use the ASP .NET Web Site Administration Tool (click
Web Site, ASP .NET Configuration) .

2 . Click the ASP .NET tab in IIS . From there you can
 administer users and roles, and assign users to
 specific roles .

Authenticate a request manually Use the Set Auth cookie in the FormsAuthentication class .

Invalidate an authentication cookie Call the SignOut method in the FormsAuthentication class .

Verify the presence of the authentication cookie Turn on tracing .

 . . 207

Chapter 10

Data Binding
After completing this chapter, you will be able to

n Represent collections using data-bound controls .

n Talk to database providers in ASP .NET .

n Customize data-bound controls .

This chapter covers one of the most useful features of ASP .NET: data binding . A number of
controls in ASP .NET have the capability to understand the form and content of a collection
and to render the correct tags to represent such user elements as list boxes, radio button
lists, and combo boxes . This chapter examines how these controls work and how you can use
them on a Web page .

Representing .Collections .Without .Data .Binding
One of the most common problems encountered in building any software (and Web sites in
particular) is representing collections as user interface (UI) elements . Think about some of
the sites you have recently visited . If you ordered something from a commercial site, you no
doubt hit a page that asked you to enter your address . What happened when you reached
the State field? Most Web sites display a drop-down list box from which you could choose a
state abbreviation .

How was that drop-down list filled? In HTML, the <select> tag nests several <option> tags
that represent the elements to be listed . The state abbreviations probably came from a
 database or some other well-established source . Somewhere (most likely at the server), some
piece of code had to go through the collection of states and render <select> and <option>
tags for this hypothetical state selection control .

ASP .NET server-side controls, such as the ListBox and the DropDownList, include Items collec-
tions . For example, one way to render a collection as a drop-down list is to declare a drop-
down list on your ASP .NET page and add the items individually using the Items.Add method
like so (of course, this assumes this object’s ToString method returns something meaningful—
not the type, but the contents of the object):

protected void BuildDropDownList(IList techList)
{
 for(int i = 0; i < techList.Count; i++)
 {
 this.DropDownList2.Items.Add(techList[i]);
 }
}

208 Part II Advanced Features

Because representing collections as UI elements is such a prevalent programming task, it
makes a lot of sense to push that down into the framework if possible . ASP .NET includes a
number of data-bound controls that are capable of taking collections and rendering the
 correct tags for you . The following sections describe how this works .

Representing .Collections .with .Data .Binding
Each of the data-bound controls in ASP .NET includes properties to attach it to a data source .
For simple data binding, these controls include a DataSource property to which you can
attach any collection that implements the IEnumerable, ICollection, or the IListSource inter-
faces (which include the DataSet and DataTable classes that you see shortly) . After attaching
the collection to the control, you call DataBind on the page (or the control) to instruct the
 control to iterate through the collection .

For more complex data binding, some controls include a property named DataSourceID .
This new style of data binding is named declarative data binding . Instead of simply iterating
through a collection, the declarative data binding classes use a separate DataSource control
to manage data for the data-bound control . You can think of the DataSource controls as
preconfigured database commands . Instead of littering your code with database commands
and queries, the DataSource controls perform the commands on your behalf . These data
managers support the data-bound controls in implementing standard functionality such as
sorting, paging, and editing . Declarative binding greatly simplifies the process of render-
ing collections . It works by referencing the ID of a DataSource control on the page . The
 .NET Framework includes several of these DataSource controls—including one for Microsoft
Access databases, one for Microsoft SQL Server, one for wrapping ad hoc collections (the
ObjectDataSource), one for supporting Language Integrated Query (LinqDataSource), and
one for supporting XML data access (the XmlDataSource) . Chapter 11, “Web Site Navigation,”
looks at the SiteMapDataSource . With declarative data binding, calling DataBind is optional .
The control calls DataBind during the PreRendering event for you .

ASP .NET includes a number of controls that support at least simple data binding, whereas
others support declarative data binding as well . These controls include those based on the
ListControl, the CheckBoxList, the RadioButtonList, the DropDownList, and the ListBox . In
 addition, the more advanced controls include the TreeView, the Menu, the GridView, the
DataGrid, the Repeater, the FormView, and the DetailsView .

Here’s a rundown of how each control works .

 Chapter 10 Data Binding 209

ListControl-Based Controls
The most common data-bound controls are those based on the ListControl base class . These
controls include the ListBox, the BulletedList, the RadioButtonList, the CheckBoxList, and the
DropDownList . You see these controls in detail in a moment . The names are self-explanatory
for the most part . They all have direct analogs in Windows desktop programming as well as
standard HTML control tags . The ListBox displays a list of strings . The DropDownList is similar
to a ComboBox . The RadioButtonList displays a group of mutually exclusive radio buttons . The
CheckBoxList displays a column of check box controls .

TreeView Control
You saw an example of the TreeView in Chapter 6, “Control Potpourri .” The TreeView control
represents hierarchical data . It’s perfect for matching up with XML data sources . The TreeView
features collapsible nodes that users can use to move from abstract data elements to more
detailed ones . The TreeView supports declarative data binding .

Menu Control
The Menu control also handles hierarchical data binding . With the Menu control, users can
navigate the site in much the same way that they can in desktop applications using menus .
The Menu supports declarative data binding .

FormView Control
The FormView control supports free-form layout for individual controls (such as a TextBox or
a ListBox) that render data from a data source . The FormView also supports editing of data in
the data source through the controls . The FormView supports declarative data binding .

GridView Control
Whereas ASP .NET 1 .x supported only the DataGrid control, later versions of ASP .NET support
a DataGrid on steroids—the GridView . The GridView control is what it says it is: It renders
collections in a grid with individual columns and rows . Each row in the grid represents an
individual record in a collection . Each column in a row represents an individual field in the
record . Moreover, the original DataGrid required you as a developer to manage paging and
sorting of data . The GridView control, on the other hand, supports automatic paging and
sorting . The GridView also supports editing (something that requires hand coding in the
DataGrid) and declarative data binding .

210 Part II Advanced Features

DetailsView Control
If the GridView gives you the whole gestalt of a data source, the DetailsView control is for
focusing in to display one record at a time . The DetailsView is often paired with controls such
as the ListBox, the DropDownList, and the GridView . Users select the row using one of these
controls and the DetailsView shows the associated data . The DetailsView supports declarative
data binding .

DataList Control
The DataGrid and the GridView controls display the data in a data source using regular
rows and columns, and that is that . However, if you want a little more control over the final
 rendered format, the DataList control displays the records in a data source in a format you
determine using template controls .

Repeater Control
The Repeater control also displays data from a data source in a format you specify (rather
than forcing it into rows and columns) . The Repeater control uses both raw HTML and
 server-side controls to display the rows . The Repeater control repeats the format you define
for each row .

Simple .Data .Binding
The simplest data binding entails attaching a simple collection to the DataSource property
of one of the ListControl-based controls . If you have a collection, you can simply assign
it to the DataSource property of one of these controls and it will render the correct tags
automatically .

The following example shows how to use some of the data-bound controls by hooking up a
List to several of the ListControl-based controls .

Data binding with a collection

 . 1 . . Start a new Web site named DataBindORama . Make it an empty Web site .

 . 2 . . Add an App_Code directory to the project by right-clicking the project node in
Solution Explorer and clicking Add ASP .NET Folder, and then App_Code . Right-click
the App_Code node in the project in Solution Explorer, click Add New Item, and then
add a class named TechnologyDescriptor . Add two implicit string properties named
TechnologyName and Description . This class will represent a technology name and an
accompanying description .

 Chapter 10 Data Binding 211

Tip In versions earlier than .NET 3 .5 you would have had to create private or protected
fields to store the string-based information, and then create public properties to expose
the string values for public consumption . .NET 3 .5 simplifies this by allowing you to use
implicit properties . Implicit properties are really nothing more than shortcuts, saving time
and unnecessary lines of code when your property is doing nothing more than providing
access to private (or protected) fields .

Important Exposing the member variables as properties is important so that the controls
will work correctly with data binding . When a control binds to a collection composed of
classes, it will look for the fields to expose through their property names . Using the data-
binding controls, you can specify a display name (that is, the value that will appear in the
control), and you can specify a second hidden value to be associated with the item that
was selected . In the case of rendering collections of managed objects, the binding archi-
tecture depends on these fields being exposed as properties .

Listing 10-1 shows the TechnologyDescriptor that exposes a technology name and
 description as properties . The class also has a static method that creates a collection of
TechnologyDescriptors .

LISTING .10-1 Code for the TechnologyDescriptor

public class TechnologyDescriptor
{
 public string TechnologyName { get; set; }
 public string Description { get; set; }

 public TechnologyDescriptor(string strTechnologyName,
 string strDescription)
 {
 this. TechnologyName = strTechnologyName;
 this. Description = strDescription;
 }

 public static List<TechnologyDescriptor> CreateTechnologyList()
 {

 List<TechnologyDescriptor> lTechnologies =
 new List<TechnologyDescriptor>();

 TechnologyDescriptor technologyDescriptor;

 technologyDescriptor =
 new TechnologyDescriptor("ASP.NET",
 "Handle HTTP Requests");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor("Windows Forms",
 "Local Client UI technology");
 lTechnologies.Add(technologyDescriptor);

212 Part II Advanced Features

 technologyDescriptor =
 new TechnologyDescriptor("ADO.NET and Linq",
 "Talk to the database");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor(".NET CLR",
 "Modern runtime environment for manage code");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor(".NET IL",
 "Intermediary representation for .NET applications");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor("WPF",
 "Advanced rendering technology");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor("Silverlight",
 "Advanced rendering on the Web");
 lTechnologies.Add(technologyDescriptor);

 technologyDescriptor =
 new TechnologyDescriptor(".NET Compact Framework",
 "Modern runtime environment for small devices");
 lTechnologies.Add(technologyDescriptor);

 return lTechnologies;
 }
}

 . 3 . . Add a new Web Form to the project and name it Default.aspx . Be sure the Place
Code In Separate File check box is selected . Add four data-bound controls to the
 default page in the content area: a ListBox, a DropDownList, a RadioButtonList, and a
CheckBoxList . This example uses absolute positioning to lay out the controls .

 . 4 . . Underneath each of these controls, place a Label . You will use the label to show the
value associated with each selected item . Give the labels names so that you can re-
fer to them in the code file . This example uses the names LabelListBoxSelectedValue,
LabelDropDownListSelectedValue, LabelRadioButtonListSelectedValue, and
LabelCheckBoxListSelectedValue .

 . 5 . . Set the AutoPostBack property for the ListBox, the DropDownList, and the CheckBoxList
to true (the RadioButtonList will already be set for you) . That way, selecting an item in
each of the controls will cause a postback during which the selected item might be
interrogated .

 Chapter 10 Data Binding 213

 . 6 . . Now update the page to instantiate a list of TechnologyDescriptors and to attach
the collection of TechnologyDescriptors to each control . For each control, set the
DataTextField property to TechnologyName (to map it to the TechnologyName prop-
erty of the TechnologyDescriptor) . This ensures that the technology name appears in
the control . Then, set the DataValueField for each control to Description to map the
Description property to be the associated value . Listing 10-2 shows how to create a
 collection of TechnologyDescriptors and attach the collection to each of the controls .

 . 7 . . Add selection handlers for each of the controls by double-clicking them . On receiving
the selection events, interrogate the control for the selected item’s value . Listing 10-2
also shows the handlers . Except for the labels, the listing uses the default control names
generated by Microsoft Visual Studio .

LISTING .10-2 Modifications to Default .aspx .cs to support data binding and control events

using System.Collections.Generic;

protected void Page_Load(object sender, EventArgs e)
{

 if (!this.IsPostBack)
 {
 List<TechnologyDescriptor> techList =
 TechnologyDescriptor.CreateTechnologyList();
 this.ListBox1.DataSource = techList;
 this.ListBox1.DataTextField = "TechnologyName";

 this.DropDownList1.DataSource = techList;
 this.DropDownList1.DataTextField = "TechnologyName";

 this.RadioButtonList1.DataSource = techList;
 this.RadioButtonList1.DataTextField = "TechnologyName";

214 Part II Advanced Features

 this.CheckBoxList1.DataSource = techList;
 this.CheckBoxList1.DataTextField = "TechnologyName";

 this.DataBind();
 }
}
protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 this.LabelListBoxSelectedValue.Text = this.ListBox1.SelectedValue;
 }
protected void DropDownList1_SelectedIndexChanged(object sender,
 EventArgs e)
{
 this.LabelDropDownListSelectedValue.Text =
 this.DropDownList1.SelectedValue;
}
protected void RadioButtonList1_SelectedIndexChanged(object sender,
 EventArgs e)
{
 this.LabelRadioButtonListSelectedValue.Text =
 this.RadioButtonList1.SelectedValue;
}
protected void CheckBoxList1_SelectedIndexChanged(object sender,
 EventArgs e)

{
 this.LabelCheckboxListSelectedValue.Text =
 this.CheckBoxList1.SelectedValue;
}

 . 8 . . Compile the site and browse to the page:

 Chapter 10 Data Binding 215

In this example, selecting one of the items in the data-bound controls reveals the related
value in the label beneath the control .

In certain programming situations, you might find yourself doing this kind of data binding .
For example, simple collections such as states in the United States or short lists (perhaps of
employee or contact names) work great with these ListControl-based controls . However,
very often you’ll find yourself dealing with data in a more complex format—beyond a simple
standard collection . A number of controls can deal with more complex DataSets . However,
you first need to understand ADO .NET because it provides the easiest way to reach these
more complex data compositions .

Accessing .Databases
The previous example shows how to attach an in-memory collection (such as an ArrayList
and List) to a server-side control and have it render the correct tags on the client . Although
this is useful, the server-side controls are capable of working with other collections—includ-
ing ones that come from databases . Before seeing how to render database queries using UI
elements, take a quick look at the .NET database story . This chapter covers the fundamentals
of using SQL Server with ASP .NET . Chapter 22, “The ASP .NET MVC Framework,” demonstrates
the new entity framework for creating object models . Later, this chapter discusses Language
Integrated Query, or LINQ, as it relates to database access .

The . .NET .Database .Story
Just as .NET includes a library of classes for managing rich client UI (Windows Forms) and for
handling HTTP requests (ASP .NET), .NET includes a library for connecting to a wide range of
databases . That library is named ADO.NET .

ADO .NET is similar to the previous Microsoft database technology named simply ADO . ADO
stands for Active Data Objects . Although Microsoft has dropped “Active” from its marketing
lexicon, it kept the name ADO and appended “ .NET” to name the managed database tech-
nology (surely for brand name recognition) . ADO represents a set of managed providers that
is very similar in function and form to classic ADO . ADO .NET centers around three main units
of functionality: connecting to a database, commanding the database, and using the results .

Connections
When you want to talk to a specific database, you usually need to connect to it . At the very
least, most of the time this involves specifying the location of the database . For many sce-
narios, connecting also requires managing security (with user names and passwords) . More
advanced scenarios might also require dealing with such issues as connection pooling and

216 Part II Advanced Features

transactions . These are all handled as part of the process of connecting to the database . The
connection information is usually passed in with a string, the contents of which are used to
set various connection parameters when the ADO .NET internals interpret the string .

ADO .NET has classes for making connections to a database . ADO .NET 1 .x included only two:
a connection for Microsoft SQL Server and another for connecting to more generic OLEDB
databases . Later versions of ADO .NET add classes specialized for more database types and
include a new set of database services using the provider pattern .

Working with ADO .NET 1 .x involved writing most of the data access code using the ADO
interfaces (rather than directly instantiating the database classes) . By doing so, you could iso-
late the vendor-specific details in a single place in the code—in the spot where the connec-
tion is managed . After that, getting the other parts required for making queries (for example,
getting the correct command object) was a matter of asking the connection for it . Although
you can still write code to connect to the database using ADO .NET 1 .x–style code, there’s
now a better way: using the ADO .NET database provider factories .

The ADO .NET provider pattern offers an improvement in connecting to and using databases .
By using the provider pattern, you limit exposing the kind of database you’re using to a sin-
gle call to a provider factory . You choose the kind of database in one place and the provider
takes care of making sure the correct connection and command objects are used . This was
less important in ADO .NET 1 .x, when ADO .NET divided the database world into two kinds
of databases: SQL Server and OLEDB databases . However, with its support of new database
types, the provider pattern is a welcome addition .

If you look in machine .config, you’ll see providers for the following database technologies:

n ODBC Data Provider

n OLE DB Data Provider

n OracleClient Data Provider

n SqlClient Data Provider

n SQL Server CE Data Provider

The first four of these providers factories are handled by a DbProviderConfigurationHandler,
while the SQL Server CE provider is handled as a separate component . Listing 10-3 shows
a snippet from machine .config illustrating how the provider keys are mapped to provider
factories .

LISTING .10-3 . Default provider factories defined in machine .config

<configuration>
 <configSections>
 <section name="system.data.odbc"
 type="System.Data.Common.DbProviderConfigurationHandler, ..."/>
 <section name="system.data.oledb"

 Chapter 10 Data Binding 217

 type="System.Data.Common.DbProviderConfigurationHandler, ..."/>
 <section name="system.data.oracleclient"
 type="System.Data.Common.DbProviderConfigurationHandler, ..."/>
 <section name="system.data.sqlclient"
 type="System.Data.Common.DbProviderConfigurationHandler, ... "/>
 <configSections />
 <system.data>
 <DbProviderFactories>

 <add name="Microsoft SQL Server Compact Data Provider"
 invariant="System.Data.SqlServerCe.3.5"
 type=" System.Data.SqlServerCe.SqlCeProviderFactory ... " />
 </DbProviderFactories>
 </system.data>
</configuration>>

To get a connection to a database, you ask the runtime for a reference to the right factory,
and then get a connection from the factory, as shown in Listing 10-4 . You use the name of
the database type (System.Data.SqlClient or System.Data.SqlServerCe.3.5, for example) . After
getting the right kind of factory, you ask it to create a connection for you .

LISTING .10-4 . Obtaining a database provider factory

DbConnection GetConnectionUsingFactory()
{
 DbProviderFactory dbProviderFactory =
 DbProviderFactories.GetFactory("System.Data.SqlClient")
 return dbProviderFactory.CreateConnection();
}

Once you have a connection, you can use it to connect to the database . Given a SQL Server
database named AspDotNetStepByStep is available on your computer, you’d insert a connec-
tion string in your web .config . Listing 10-5 shows how this might appear in a web .config file:

LISTING .10-5 . Example web .config connection string settings

<configuration>
 <connectionStrings>
 <add name="AspDotNetStepByStep"
 connectionString=
 "server=(local);integrated security=sspi;database=AspDotNetStepByStepDB "/>
 </connectionStrings>
</configuration>

Once you have a reference to the database connection, you can open the connection and
start commanding the database .

Commands
Once connected, the database is waiting for you to send database commands . These
 commands usually include querying the database, updating existing data, inserting new
data, and deleting data . Most databases support Structured Query Language (SQL) to

218 Part II Advanced Features

 manage these commands . (Some databases support specialized variations of SQL, so the
actual command text might differ from one implementation to another .) Commanding the
 database usually entails writing SQL statements such as

SELECT * FROM DotNetReferences WHERE AuthorLastName = 'Smith'

For example, to connect to an SQL database named AspDotNetStepByStepDB and query the
DotNetReferences table for all the references by someone with the last name “Smith,” you
could use code as shown in Listing 10-6 .

LISTING .10-6 . Example database query using a data reader

class UseDBApp {
 static void Main()
 {
 DbProviderFactory dbProviderFactory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
 using(DbConnection conn = dbProviderFactory.CreateConnection())
 {
 string s =
 ConfigurationManager.ConnectionStrings["AspDotNetStepByStep"].ConnectionString;
 conn.ConnectionString = s;
 conn.Open();

 DbCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "SELECT * FROM DotNetReferences WHERE AuthorLastName='Smith'";

 DbDataReader reader = cmd.ExecuteReader();
 // do something with the reader
 }
 }
}

Executing the command using ExecuteReader sends a query to the database . The results
come back by way of an instance of the IDataReader interface . The preceding code stops
short of using the results . But take a look at how that works in the following section .

Managing Results
Once you’ve connected to the database and issued a query, you probably need to sift
through the data to use it . ADO .NET supports two broad approaches to managing result sets:
the IDataReader interface and the DataSet class .

IDataReader
The preceding example retrieves an IDataReader from the query operation . The IDataReader
interface is useful for iterating through the results of the query . Listing 10-7 shows part of the
IDataReader interface .

 Chapter 10 Data Binding 219

LISTING .10-7 . Part of the IDataReader interface

public interface IDataReader
{
 bool IsClosed {get;}
 int RecordsAffected {get;}
 void Close();
 bool NextResult();
 bool Read();
 //...
}

When iterating through the results of a query, Read fetches the next row . NextResult fetches
the next result set .

Accessing data through IDataReader is often termed “fire hose mode” because you have
to work your way through the data one row at a time going forward only . There’s no way to
revert back to a previous row except by resetting the reader and starting again . Also, the
data rows the reader returns to you are read-only . You can retrieve the data for whatever
purpose you need it for, but you can’t update the database (insert, update, or delete) using
IDataReader . An alternative to accessing data through the IDataReader interface is to use a
DataSet .

DataSet
In addition to the IDataReader, ADO .NET supports the notion of a disconnected record set—
the DataSet class in ADO .NET . ADO .NET is primarily designed to help you write large, highly
scalable applications . One of the biggest hindrances to scalability is the limits of database
connectivity . Databases usually have a limit on the number of active connections available at
one time, and if all the connections are in use at any particular time, any piece of code want-
ing a database connection must wait . If the number of users of a system is about the same as
the number of connections available, perhaps that’s not a problem . However, if the number
of users of a system is greater than the number of database connections, system perfor-
mance will likely be affected greatly .

To encourage scalability, ADO .NET includes a class named DataSet that is designed to give
you an easily navigable snapshot of your application’s database . The idea behind a database
is to get in and get out quickly with a copy of the data . The really good news is that you can
insert rows, update columns, and even delete rows using the DataSet and later have those
changes propagated to the database .

The DataSet class is usually filled with data using a DataAdapter . A DataSet includes a
DataTable array—one for each selection statement in the query . Once the DataAdapter
comes back from fetching the data for the DataSet, you have the latest snapshot of the que-
ried data in memory . The DataSet contains a DataTable collection and contains a DataTable
element for each SELECT statement in the query . You can access the Tables collection using
either ordinal or String-type indexes . Once you get to a table, iterating through the rows

220 Part II Advanced Features

and columns is a matter of indexing into the table using ordinal indexes for the rows and
ordinal or String-type indexes for the columns . Listing 10-8 shows an example of using the
SqlDataAdapter to get a DataSet .

LISTING .10-8 . Example database query using a DataSet and DataAdapter

class UseDBApp2
{
 static void Main()
 {
 DataSet ds = new DataSet();
 DbProviderFactory dbProviderFactory =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
 using (DbConnection conn = dbProviderFactory.CreateConnection())
 {
 string s =
 ConfigurationManager.ConnectionStrings["AspDotNetStepByStep"].ConnectionString;
 conn.ConnectionString = s;
 conn.Open();

 DbCommand cmd = conn.CreateCommand();
 cmd.CommandText =
 "SELECT * FROM customer; SELECT * FROM country";

 DbDataAdapter adapter = dbProviderFactory.CreateDataAdapter();
 adapter.SelectCommand = cmd;
 adapter.Fill(ds);
 }

 foreach (DataTable t in ds.Tables)
 {
 Console.WriteLine("Table " + t.TableName + " is in dataset");
 Console.WriteLine("Row 0, column 1: " + t.Rows[0][1]);
 Console.WriteLine("Row 1, column 1: " + t.Rows[1][1]);
 Console.WriteLine("Row 2, column 1: " + t.Rows[2][1]);
 }
 ds.WriteXml("dataset.xml");
 ds.WriteXmlSchema("dataset.xsd");

 // Also—may bind to the tables here:
 ;
 }}

The code in Listing 10-8 illustrates using a DataAdapter and a DataSet . The code prints out
the second column (that is, column 1) of the first three rows of each table in the DataSet . The
example in Listing 10-8 indicates that a DataTable is valid as a DataSource for data-bound
controls . The example also shows that the DataSet objects also serialize as XML . Both the
table schema and the contents can be serialized this way—making it useful for transferring
data between systems . Although the DataSet is useful for transferring data, it is also heavy-
weight . With it, you can transfer the data and the scheme to another system, but with some
increase in bandwidth consumption or transfer time . Therefore, use it wisely .

 Chapter 10 Data Binding 221

Here’s one final note about items in the DataSet class: They’re disconnected and are not
restricted to the “fire hose mode” of data access . You have complete random access to any
table, any column, and/or any row in the DataSet . In fact, objects in the DataSet class are also
smart enough to keep track of any data you change inside of them . You can flush the data
back to the physical database by using the CommandBuilder to prepare the DataSet for an
Update through the DataAdapter . A CommandBuilder constructs SQL statements on your
behalf . This is useful for simple commands and provides a quick and convenient approach for
updating a database through a DataAdapter .

Given either an IDataReader or a DataSet, the data-bound controls automatically render
themselves appropriately to show the control on the browser . Although you can always
connect to the database and fetch the data manually through the standard connection/
command architecture, ASP .NET and Visual Studio support an even easier way to render
data—declarative data binding .

ASP .NET .Data .Sources
You just saw how to access data in the raw using ADO .NET, so now look at an easier way .
ASP .NET includes some new classes that hide the complexity of managing connections and of
gathering data: They’re the DataSource controls .

DataSource controls abstract the entire connection and command mechanism so that all you
need to do is decide on a data source, point the control to that data source, and provide
an appropriate query . Visual Studio provides a wizard that guides you through this process .
When you have a DataSource, you can attach it to a data-bound control that uses it .

The following exercise shows how to make a query and populate controls with the results of
the query .

Using a DataSource to populate controls with a DataReader

 . 1 . . Add a new form to DataBindORama named DataBindingWithDB .

 . 2 . . The example for this chapter (named DataBindORama), available on the accompany-
ing CD, includes a SQL Server Express database named ASPNETStepByStep4 .mdf . First
create an App_Data folder by right-clicking the Project node in Solution Explorer and
clicking Add, Add ASP .NET Folder, App_Data . Add the database to your project by
right-clicking the App_Data node in the project and clicking Add, Existing Item . Locate
the ASPNETStepByStep4 .mdf file from the CD . Set up a data source control for the
 database .

Go to the Data controls in the Toolbox . Drag a SqlDataSource onto the form . Click
Configure Data Source on the context menu displayed by Visual Studio . You’ll see a

222 Part II Advanced Features

combo box with a list of available databases; the new SQL Server database is the one
that will appear, as shown in the following graphic . Click the ASPStepByStep4 .mdf file
in the combo box to create a connection to the database . Click Next to move to the
connection string wizard page . Click Next and accept the connection string that Visual
Studio creates for you .

 . 3 . . Select all the columns and all the rows from the DotNetReferences table when
 configuring the query; that is, select the asterisk (*) to query for all the columns .
Click Next .

 Chapter 10 Data Binding 223

 . 4 . . If you want to, test the query by clicking the Test Query button, or click Finish:

 . 5 . . Set the DataSourceMode property of the data source to DataReader . You can do this
by clicking the data source control in the Designer, and then modifying the property in
the Properties pane .

 . 6 . . Drag a ListBox onto the page . Set the AutoPostBack property to true by selecting the
check box in the Tasks pane . You could also click Choose Data Source in the ListBox
Tasks pane . In practice, this is what you would do most likely . However, here add the
code to perform the data binding by hand so that you see how it’s done in code . In the
code view, locate the Page_Load method and attach the ListBox DataSource property
to SqlDataSource1 like so:

protected void Page_Load(object sender, EventArgs e)
{

 if (!this.IsPostBack)
 {
 this.ListBox1.DataSource = this.SqlDataSource1;
 this.ListBox1.DataTextField = "AuthorLastName";
 this.ListBox1.DataValueField = "Title";
 this.ListBox1.DataBind();
 }

}

 . 7 . . Insert a label below the ListBox to hold the selected value from the ListBox .

 . 8 . . Double-click ListBox1 to insert an item changed event handler in your code . In the
event handler, set the Label1 text property to the value field of the selected item .

protected void ListBox1_SelectedIndexChanged(object sender,
 EventArgs e)
{
 this.Label1.Text = this. ListBox1.SelectedItem.Value;
}

224 Part II Advanced Features

 . 9 . . Drag a RadioButtonList onto the form, as shown in the following graphic . Visual Studio
will ask you if you want to configure the control . First, select the Enable AutoPostBack
check box . Then, click Choose Data Source .

 . 10 . . Configure the control to use SqlDataSource1 that you just added:

 . 11 . . Configure the control to use the AuthorLastName column for the text field and the Title
column for the value field . Click OK .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 Chapter 10 Data Binding 225

 . 12 . . Double-click the RadioButtonList1 object on the form to create a handler for the radio
button selection . Handle the selection by updating the Label1 object with the value
 associated with the current radio button selection .

protected void RadioButtonList1_SelectedIndexChanged(object sender,
 EventArgs e)
{
 this.Label1.Text = this.RadioButtonList1.SelectedItem.Value;
}

 . 13 . . Run the program . The ListBox and the RadioButton list should show the
AuthorLastName field, as shown in the following graphic . Selecting one name out of
either list will cause a postback and show the title (the associated value) in the label .

226 Part II Advanced Features

This exercise gives you a taste of how binding to the simple controls works . Although using
these controls is common in many scenarios, the utility of data-bound controls doesn’t end
there . ASP .NET includes other, more complex controls that render data such as complex UI
elements as grids and control combinations .

Other .Data-Bound .Controls
In addition to the simple bound controls, ASP .NET includes several more complex controls .
They work very much like the simple bound controls in that you attach a data source to them
and they render automatically . However, these controls differ by displaying the data in more
elaborate ways . These controls include the GridView, the FormView, the DetailsView, and the
DataList .

The best way to understand the nature of these controls is to work through a couple of
 examples . First, the GridView .

Using the GridView

 . 1 . . Add a new Web Form to the DataBindORama site . Type in UseGridView for the name .

 . 2 . . Drag a GridView from the Toolbox (it’s under the Data controls) onto the form . Visual
Studio will ask you to configure the GridView . Under the Choose Data Source option,
select New Data Source . Choose a SQL Server database from the options and click OK
(it’ll use the default name of SqlDataSource1) . Visual Studio will ask you to specify a
connection string . You can use the connection string created in the last exercise (it’s
in the configuration file) . This creates a SqlDataSource and puts it on the page for you .

 Chapter 10 Data Binding 227

When specifying the query, choose the DotNetReferences table and select the asterisk
(*) to query for all the columns . Finally, enable paging, sorting, and selection on the
GridView Configuration menu . After configuring the GridView, Visual Studio will show
you a design-time representation of the format the query will use when it is rendered
to the browser:

 . 3 . . Run the program . Try the various options such as paging through the data and sorting
to get a feel for how the GridView works .

228 Part II Advanced Features

 . 4 . . Go back to Visual Studio and try formatting the GridView to change its appearance .
As with all the other ASP .NET controls, the GridView includes a number of configu-
rable properties such as the foreground and background colors . Some of the other
specialized properties in the GridView include AlternateRowStyle, PagerSettings, and
PagerStyle . You can, if you like, choose to apply an auto-formatted style, which some
ASP .NET controls (including GridView) provide for . The following graphic illustrates the
UseGridView .aspx page with the Classic formatting style applied:

The GridView is useful for displaying tables in a format in which you can see all the rows and
columns at once . Although the classic DataGrid is still available, the GridView handles tasks
such as selecting rows and sorting by column .

Here’s a look at another complex control: the FormView .

Using the FormView

 . 1 . . Add a new Web Form to the DataBindORama site named UseFormView .

 . 2 . . Drag a FormView from the Toolbox (it’s under the Data controls) onto the form . Visual
Studio will ask you to configure the FormView . Under the Choose Data Source option,
select New Data Source, make it an SQL database, and click OK . Use the connection
that’s already available (it’ll be listed as “ConnectionString” in the drop-down list) and
click Next . When specifying the query, select the asterisk (*) from the DotNetReferences
table to query for all the columns . Click Next to accept the query and Finish when
asked to test the query .

 Chapter 10 Data Binding 229

 . 3 . . Select the AutoFormat option on the Configuration menu . Here you have the
 opportunity to apply a couple of predefined styles to the FormView . The example
 accompanying this text uses the Classic formatting style .

 . 4 . . Enable paging by selecting Enable Paging on the FormView Configuration menu . Set
the HeaderText property (in the Visual Studio Properties pane) to give the FormView a
title (perhaps something like “ .NET Reference Authors and Titles”) .

 . 5 . . After configuring the FormView, Visual Studio will show you a representation of the
 format the query will use when it is rendered to the browser:

 . 6 . . Run the program . Try the various options such as paging through the data to get a feel
for how the FormView works .

230 Part II Advanced Features

The FormView is useful for gathering the information for singular rows in one place . The user
navigates between each row, but the focus is always on the current row .

A similar ASP .NET control is the DetailsView control . The DetailsView control allows you to
present row data in a tabular format rather than using the more customizable format that
FormView allows .

Using the DetailsView

 . 1 . . Add a new Web Form to the DataBindORama site named UseDetailsView .

 . 2 . . Drag a DetailView from the Toolbox (it’s under the Data controls) onto the form . Visual
Studio will ask you to configure the DetailsView . Under the Choose Data Source option,
select New Data Source and configure it similarly to the previous pages . For example,
use the same connection string created earlier by Visual Studio . When specifying the
query, select the asterisk (*) to select all the columns from the DotNetReferences table .

 . 3 . . Select the AutoFormat option on the Configuration menu . As with the previous
 controls, you have the same opportunity here to apply a couple of predefined styles to
the DetailsView . The example accompanying this text uses the Classic formatting style .
In addition, use the HeaderText property to give the control a title (I used the header
“ .NET References”) .

 . 4 . . Select the Edit Fields option in the DetailsView Tasks pane . Select Auto-Generate Fields
in the dialog box if it isn’t already selected .

 . 5 . . Enable paging in the DetailsView Tasks pane .

 Chapter 10 Data Binding 231

 . 6 . . After configuring the DetailsView, Visual Studio will show you a representation of the
format the query will use when it is rendered to the browser:

 . 7 . . Run the program . Try the various options such as paging through the data to get a feel
for how the DetailsView works .

232 Part II Advanced Features

Now for the DataList . The DataList control has been available since ASP .NET 1 .x . It’s been
updated with later versions of ASP .NET to support declarative data binding . Here’s a look
at the DataList . Like the DetailsView, the DataList renders the data in a tabular form . Unlike
DetailsView, DataList has no built-in paging capability .

Using the DataList

 . 1 . . Add a new Web Form to the DataBindORama site named UseDataList .

 . 2 . . Drag a DataList from the Toolbox (it’s under the Data controls) onto the form . Visual
Studio will ask you to configure the DataList . Under the Choose Data Source option,
select New Data Source and prepare the data source as in the previous exercises . Use
the same connection string created earlier by Visual Studio . When specifying the query,
select the asterisk (*) to select all the columns from the DotNetReferences table .

 . 3 . . Select the AutoFormat option in the DataList Tasks pane . As with the other examples,
here you also have the opportunity to apply a couple of predefined styles to the
DataList . The example accompanying this text uses the Slate formatting style .

 . 4 . . Open the DataList Properties dialog box in the DataList Tasks pane by selecting
Property Builder . If they are not already selected, make sure the Show Header and the
Show Footer check boxes are selected:

 . 5 . . Set the Caption property to give the DataList a title (perhaps something like
” .NET References and Titles”) .

 Chapter 10 Data Binding 233

 . 6 . . After configuring the DataList, Visual Studio will show you a representation of the
 format the query will use when it is rendered to the browser:

 . 7 . . Run the program to see how the DataList renders itself .

Although the classic data access technologies are here to stay, .NET version 3 .0 and later
bring a new way to access and manage data—Language Integrated Query . The following
section takes a look .

234 Part II Advanced Features

LINQ
New with .NET 3 .0 is a database technology named Language Integrated Query (LINQ) . LINQ
is a set of extensions to the .NET Framework for performing data queries inline . LINQ ex-
tends the C# and Visual Basic syntaxes to enable inline queries in the native language syntax
(versus SQL or XPath) . LINQ doesn’t replace existing data access technologies . Instead, LINQ
augments existing data query technologies, which makes it easier to perform streamlined
queries .

This new technology for making queries is called “language integrated” because you can
build queries and use C# (or Visual Basic) language constructs to make selection statements .
The following example shows how to develop some queries using LINQ .

Using LINQ

 . 1 . . Add a new page to the DataBindORama site . Name the page UseLinq.

 . 2 . . Drop a GridView onto the page . This will hold the information returned from the LINQ
queries .

 . 3 . . Update the Page_Load method to make a LINQ query . Use the TechnologyDescriptor
collection mentioned earlier in the chapter as the data source for making the query .
Set the DataSource property of the DataGrid to the results of a LINQ query against
the TechnologyDescriptor collection . The format of the LINQ statement should be as
follows:

 from <variable of type held in collection> in <the collection> where <criteria> orderby
<criteria> select <property from selected item>

Select TechnologyDescriptors that include “ .NET” in the name and order them by length
of the TechnologyName property . Here is the code that does just that:

public partial class UseLinq : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if(!this.IsPostBack)
 {
 List<TechnologyDescriptor> techList =
 TechnologyDescriptor.CreateTechnologyList();

 GridView1.DataSource = from technologyDescriptor in techList

 where
 technologyDescriptor.TechnologyName.Contains(".NET") == true

 orderby technologyDescriptor.TechnologyName.Length

 Chapter 10 Data Binding 235

 select technologyDescriptor.TechnologyName.ToUpper();
 GridView1.DataBind();
 }
 }
}

 . 4 . . Run the UseLinq .aspx page to see how the query looks in the GridView:

 . 5 . . Notice how the GridView shows only the single property grabbed from each
TechnologyDescriptor . Now update the query statement to include the whole
TechnologyDescriptor structure . It should look like this:

public partial class UseLinq : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if(!this.IsPostBack)
 {
 List<TechnologyDescriptor> techList =
 TechnologyDescriptor.CreateTechnologyList();

 GridView1.DataSource = from technologyDescriptor in techList

 where
 technologyDescriptor.TechnologyName.Contains(".NET") == true

 orderby technologyDescriptor.TechnologyName.Length

 select technologyDescriptor;
 GridView1.DataBind();
 }
 }
}

236 Part II Advanced Features

 . 6 . . Run the page and see how the GridView now shows the entire TechnologyDescriptor .

This example only scratches the surface of the power of LINQ . LINQ introduces a very
 streamlined way to make queries on demand from within your project using the language
of your project (Visual Basic, C#, and so forth) . You can use the data returned from the
 queries in any context . In this case, the example shows using the results of a LINQ query
in a GridView .

Chapter .10 .Quick .Reference
To Do This

Bind a collection to a control Set the control’s DataSource property to the collection .

Choose a column to display in the control Set the control’s TextTextField property to the column
name for controls that sopport this feature .

Choose a column to use programmatically (that’s
not displayed in the control)

Set the control’s TextValueField property to the column
name for controls that sopport this feature .

Display a DataTable as a grid Use the DataGrid or (preferably) the GridView controls .

Display a DataTable as a formatted, repeating list Use the DataList .

Make a class’s member variables available as
DataTextFields and DataValueFields in a control

Expose the members as properties .

Represent data using Master/Detail style
 presentations

Use the FormView control .

 . . 237

Chapter 11

Web Site Navigation
After completing this chapter, you will be able to

n Understand ASP .NET support for navigation and site maps .

n Implement a site map using an XML data source .

n Use the site map to power the ASP .NET navigation controls .

n Capture and respond to site map navigation events .

One of the major issues facing Web site users is figuring out how to move around sites
 effectively . Web sites are often hierarchical in nature, and pages are sometimes nested
 several layers deep . Users can find themselves asking such questions as, “Where am I now?”
and “Where can I go from here?” This chapter covers the support that ASP .NET provides for
addressing the issue of Web site navigation .

The art of Web site design has progressed far enough that some common navigation idioms
are beginning to appear ubiquitously . If you browse a few Web sites hosted on various plat-
forms, you might notice that the sites support a number of different ways to navigate their
content . For example, many Web sites include a menu bar across the top of the page that
contains links to separate areas on the site . Certain sites include some sort of tree structure to
navigate the site . Still others include a “breadcrumb” trail showing users where they are and
how to get back to previous pages . ASP .NET supports all these idioms .

ASP .NET .Navigation .Support
ASP .NET navigation support comes in three parts: navigation controls, site map data source,
and site map provider architecture . The navigation controls (the Menu, the TreeView, and the
SiteMapPath) all can resolve human-readable display names to real URLs to which HTTP re-
quests are sent . The site map data source stores information about a site’s hierarchical orga-
nization . The site map provider interprets physical data (often in the form of an XML file) and
implements a kind of database cursor representing the current position in a site’s hierarchy .

Navigation Controls
ASP .NET includes three server-side controls devoted specifically to site navigation:
SiteMapPath, Menu, and TreeView . The Menu and TreeView controls both maintain collec-
tions of display name/URL mappings . You can edit these collections by hand . In addition,
these controls can build hierarchical collections of display name/URL mappings based on

238 Part II Advanced Features

 information in a site map data source . The SiteMapPath builds its collection of display name/
URL mappings solely through a site map data source . Table 11-1 summarizes the ASP .NET
navigation controls .

TABLE .11-1 . The .ASP .NET .Navigation .Controls

Navigation Control Description

Menu Interprets the site navigational information contained in the site map XML
file and presents it in a menu format . Top-level XML nodes become top-level
menu items, with child XML nodes becoming child menu items .

TreeView Interprets the site navigational information contained in the site map XML
file and presents it in a tree format . The top-level site map XML nodes in this
case become higher-level branches in the tree, with child nodes represented
as child tree nodes .

SiteMapPath Interprets the site navigational information contained in the site map XML
file and presents it in a “breadcrumb” format . In this case, only the current
XML node’s path is displayed (from the root node to the current child node) .

All three controls are useful for navigation, but Menu and TreeView are useful outside the
context of site navigation . SiteMapPath is designed strictly for navigating the Web site’s site
map XML file . The Menu control displays items hierarchically and fires events back to the
server as the items are selected . The items in the Menu control can also be assigned navi-
gation URLs . TreeView is useful for displaying any hierarchical data source that implements
either the IHierarchicalDataSource or the IHierarchicalEnumerable interface, and it also can
cause redirects to other URLs (that is, it is useful for site navigation) . And, as mentioned
 earlier, SiteMapPath is meant specifically to be used for Web site navigation .

For shallow Web sites that will probably change very little over time, building a navigation
infrastructure from scratch is easy . However, as the complexity of a site increases, so does the
difficulty of managing a navigation structure .

When you organize your site and determine the layout of your pages, it’s easy to formal-
ize the layout with a master page that includes a menu linking to other pages . (This is de-
scribed in Chapter 7, “A Consistent Look and Feel,” which discusses master pages .) The work
involves creating the menu and adding the links (through the NavigateUrl property of the
menu item) . Implementing the navigation infrastructure by hand is easy enough the first
time around . However, as your site grows and becomes more complex, having to update the
 navigation support repeatedly becomes a problem .

Enter ASP .NET navigation and site map support . The main advantage of using ASP .NET
 navigation support is that you can establish the layout of the site and then represent it
 using a hierarchical data structure (such as an XML file or even a database table) . The Menu,
TreeView, and SiteMapPath controls can all point to a site map data source and use the data
source to populate themselves . When you plug the site map data source into the navigation
controls, the navigation controls use the data source to create the individual links .

 Chapter 11 Web Site Navigation 239

After you have established the site map, updating the navigation links simply requires
updating the site map . All controls using the site map data source reflect the changes
automatically .

XML Site Maps
ASP .NET includes built-in support for navigation using XML files that describe the layout of
the site . These are called XML site maps . The ASP .NET default site map support consists of
an XML file describing the site layout and the SiteMapProvider that reads the XML file and
generates SiteMap nodes to whatever components are listening (for example, a Menu or a
TreeView control) .

The SiteMapProvider
The SiteMapProvider establishes the base class used by the navigation controls . The
ASP .NET default implementation is the XmlSiteMapProvider, which reads the XML file named
(by default) web.sitemap .

Although the default XML site map generally works very well, the ASP .NET navigation con-
trols are perfectly happy using data sources generated from other places (rather than the
XML data source) . For example, you might decide to implement your own site map provider
based on data in a database . The XML site map provides basic raw functionality for navigat-
ing a site . However, if you want to do something like manage the site map using a schema
different from the default XML schema, that calls for designing a custom provider .

This chapter looks at the default XML site map provider—which is plenty powerful for most
circumstances .

The SiteMap Class
The main rendezvous point for the ASP .NET navigation infrastructure is the SiteMap class .
To support the navigation infrastructure, the SiteMap class has a set of static methods for
managing site navigation . The SiteMap class serves as an in-memory representation of the
navigation structure for a site, and its functionality is implemented by one or more site map
providers . It’s an abstract class, so it must be inherited .

The SiteMap class performs several functions . First, it serves as the root node of the site
 navigation hierarchy . Second, it establishes the principal site map provider . Finally, it keeps
track of all the provider objects that comprise the site map .

The SiteMap contains a hierarchical collection of SiteMapNode objects . Regardless of how
the site map data is maintained, the SiteMap is the interface for accessing a site’s navigation
information .

240 Part II Advanced Features

The ASP .NET default configuration specifies a default site map . However, as with all things
configurable in ASP .NET, you can easily override the default configuration to establish a
 different provider .

The SiteMap class offers only static members . By being static, they enhance performance . In
addition, the site map functionality can be accessed at any time in a Web application from a
page or even from within a server-side control .

Table 11-2 describes the properties and sole event the SiteMap class exhibits .

TABLE .11-2 . SiteMap .Events .and .Properties

Name Type Description

SiteMapResolve Event The SiteMapResolve event fires when the CurrentNode property is
accessed . This enables you to implement custom logic when creat-
ing a SiteMapNode representation of the currently executing page
without requiring a custom provider implementation .

CurrentNode Property A SiteMapNode instance that represents the currently requested
page in the navigational hierarchy . If there is no node in the XML
site map file, the returned value is null .

Enabled Property Returns a Boolean value indicating whether a site map provider is
both specified and enabled in the web .config file .

Provider Property Returns the default SiteMapProvider for the current site map .

Providers Property Returns a read-only collection of named SiteMapProvider objects
that are available to the SiteMap class as specified in the web .config
file (because you can specify more than one if you wish) . Note that
only the default provider is used during initialization, however .

RootNode Property Returns the SiteMapNode that represents the top-level page of the
navigation hierarchy for the site .

The SiteMapNode
The SiteMapNode represents the hierarchical elements of the site map, which is to say, each
instance of a SiteMapNode represents a page in your Web site . Each node represents an indi-
vidual page that is located somewhere in the overall Web site navigation hierarchy . When a
Web application starts, the SiteMap loads the collection of SiteMapNodes based on the pro-
viders that have been configured in your web .config file for that site .

The SiteMapNode includes several useful properties: ChildNodes, Description, HasChildNodes,
Key, NextSibling, ParentNode, PreviousSibling, Provider, ReadOnly, ResourceKey,
Roles, RootNode, Title, and Url . It also includes several useful methods: GetAllNodes,
GetDataSourceView, GetHierarchicalDataSourceView, IsAccessibleToUsers, and IsDescendentOf .
You see some of these properties being used in later examples . For instance, you will
use many of these properties in the example for this chapter when you handle the
SiteMapResolve event and modify the navigation functionality on the fly .

 Chapter 11 Web Site Navigation 241

Using .Navigation .Controls
When you run Microsoft Visual Studio 2010 and look in the Designer’s Toolbox, you can
see that ASP .NET includes three controls in the navigation category: Menu, TreeView, and
SiteMapPath . This section looks at each in a bit more detail before diving into an example .

The Menu and TreeView Controls
The Menu and TreeView controls can bind to hierarchical data sources implementing
IHierarchicalDataSource or IHierarchicalEnumerable . Although they are tailor-made to sup-
port site maps, they also work with other data sources . Figure 11-1 shows the Menu control
in action, and Figure 11-2 shows TreeView in action . Both are reading the data from the site
map data source to populate themselves .

FIGURE .11-1 . Menu in action .

FIGURE .11-2 . TreeView in action .

The SiteMapPath Control
You might have seen user interface (UI) elements similar to the SiteMapPath control on other
sites—especially online forms that go several layers deep . The SiteMapPath control shows a

242 Part II Advanced Features

trail indicating where the user is in the Web page hierarchy and shows a path back to the top
node (kind of like a trail of breadcrumbs) . The SiteMapPath is most useful in sites that main-
tain a very deep hierarchy for which a Menu or a TreeView control would be overwhelmed .

Although the SiteMapPath control is like the Menu and the TreeView controls (the
SiteMapPath control reflects the state of the SiteMap object), it does deserve special atten-
tion . The SiteMapPath control and the site map data in the provider are tightly coupled .
For example, if you leave a page out of your site map and the user somehow ends up
on the page (perhaps through some other navigation method), the user will not see the
SiteMapPath control on the page . (For this reason, in many cases you find the control em-
bedded in a master page .) Figure 11-3 shows the SiteMapPath control in action . The Menu
underneath the SiteMapPath shown in the figure is there so that the user can navigate the
page in detail . (The user would not be able to descend the hierarchy without a Menu or a
TreeView.)

FIGURE .11-3 . SiteMapPath in action .

Site Map Configuration
The global configuration settings configure ASP .NET sites to use the default
XmlSiteMapProvider . Listing 11-1 shows the configuration information that is part of the
default web .config . Of course, as with all things configurable, you can swap in a different
site map provider in your own site by modifying the web .config that goes along with your
application .

LISTING .11-1 . Default configuration for the site map data

<siteMap>
 <providers>
 <add siteMapFile="web.sitemap" name="AspNetXmlSiteMapProvider"
 type="System.Web.XmlSiteMapProvider, System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
</siteMap>

 Chapter 11 Web Site Navigation 243

In addition to adding the configuration information to web .config, Visual Studio 2010 adds a
blank top-level node in the site map, as shown in Listing 11-2 .

LISTING .11-2 . The default site map that is added by Visual Studio 2010

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="" description="">
 <siteMapNode url="" title="" description="" />
 <siteMapNode url="" title="" description="" />
 </siteMapNode>
</siteMap>

Once the site map is added, it’s easy to update—for example, to add a few new nodes to the
site map, simply edit the file as (XML) text . Listing 11-3 shows an XML site map file with a few
extra nodes added .

LISTING .11-3 . Site map data in XML

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url=""
 title="Navigation Menu" description="">
 <siteMapNode url="~/Default.aspx"
 title="Home" description="" />
 <siteMapNode url="~/Products.aspx"
 title="Products" description="" />
 <siteMapNode url="~/Support.aspx"
 title="Support" description="" />
 <siteMapNode url="~/Contact.aspx"
 title="Contacts" description="" />
 </siteMapNode>
</siteMap>

Building .Navigable .Web .Sites
Adding navigation support to a Web site is pretty straightforward . Once you establish the
hierarchical layout of the site, use the site map XML file to describe the structure . When that’s
done, just point any navigation controls you put on the page to the new XML site map file .
The navigation controls will then populate themselves and render a navigable Web site . The
following example shows how to add navigation support to a Web site and use the ASP .NET
navigation controls in the application .

Creating a site map

 . 1 . . Start Visual Studio and create a new ASP .NET Web application project . The example
here is called NavigateMeSite .

244 Part II Advanced Features

 . 2 . . Notice that Visual Studio creates a new Web site complete with a master page ready
to populate with controls . In this case, you place some navigation controls on it . Visual
Studio also gives you a Default .aspx page and an About .aspx page .

 . 3 . . The styles created by Visual Studio make it a bit difficult to read the menu and naviga-
tion controls . Open the file Site .css and modify the hideSkiplink so that the background
color is a light gray rather than the dark blue one created by Visual Studio . This exam-
ple uses #C0C0C0 as the background color for the hideSkiplink style, which is used as
the style for the menu background on the master page .

 . 4 . . Add four pages based on the master page: a Default page, a products page, a support
page, and a contact page . Visual Studio includes a template for creating a form based
on a master page . For each page you add, right-click the project node, click Add New
Item, and then click Web Form from the available templates . Be sure the Select Master
Page option is selected and click Add . Populate the pages with content so that you
know what you’re looking at when you run the site (simple text placed directly on the
page is fine) .

 . 5 . . Add a new site map to the project by right-clicking the project in Solution Explorer
and selecting Add New Item and then choosing Site Map from the available templates .
Keep the name Web .sitemap . The following graphic shows the Visual Studio templates
with the site navigation template highlighted:

 Chapter 11 Web Site Navigation 245

 . 6 . . Add the following data to the site map (you can change the URLs if the names of the
page files are different) . Simply edit (or overwrite) the two blank nodes Visual Studio
inserted for you:

<?xml version="1.0" encoding="utf-8" ?>
 <siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Default.aspx" title="Home"
 description="This is the home page">
 <siteMapNode url="~/Products.aspx" title="Products"
 description="This is the products page" />
 <siteMapNode url="~/Support.aspx" title="Support"
 description="This is the support page" />
 <siteMapNode url="~/Contact.aspx" title="Contacts"
 description="This is the contacts page" />
</siteMapNode>

</siteMap>

 . 7 . . To see how the site map data works with the site, hook up the main menu to the new
site map . Open the Site .master file in the Designer and select the navigation menu
control (currently it will have links to the Home and About pages) . Click the arrow in the
upper right-hand corner of the menu to open the menu tasks . Open the drop-down list
associated with Choose Data Source, and then click New Data Source . This activates the
Data Source Configuration dialog box . There, set the Menu data source to the default
site map file, and then click OK . The following graphic shows how to select a site map
data source for the Menu control:

 . 8 . . Run the site so that you can see the Menu in action . Click some pages on the Menu and
notice how your selections navigate you to the correct places .

246 Part II Advanced Features

 . 9 . . Next add a TreeView to the master page by dragging one from the Toolbox and placing
it on the master page . Point the TreeView to the default site map data source . Run the
application and see what happens .

 . 10 . . Now add a SiteMapPath control to the master page . Apply the XML site map data
source to the DataSource property of the SiteMapPath control .

 . 11 . . Add two more pages to the project to display two ways to contact the business
 running this site—one to display the physical address of the business and the other
to display other contact information such as e-mail addresses and phone numbers .
First, create two new folders, one for each page . Name the folders ContactAddress
and ContactEmailPhone . Add the new pages, one per folder . Name the pages
ContactAddress .aspx and ContactEmailPhone .aspx . Be sure these pages use the master
page . As before, to each page add labels or text describing the page so that you can
identify it when the Web application runs .

 . 12 . . Add two more elements to the site map XML file (web .sitemap) to reflect these new
pages . Nest them so that their parent node is the Contact node:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="Default.aspx" title="Home"
 description="This is the home page" >
 <siteMapNode url="Products.aspx" title="Products"
 description="This is the products page" />
 <siteMapNode url="Support.aspx" title="Support"
 description="This is the support page"
 ImageURL="supportimage.jpg"/>
 <siteMapNode url="Contact.aspx" title="Contacts"
 description="This is the contacts page" >
 <siteMapNode url="~/ContactAddress/ContactAddress.aspx"
 title="Contact using physical address"
 description="This is the first contact page" />
 <siteMapNode url="~/ContactEmailPhone/ContactEmailPhone.aspx"
 title="Contact by email or phone"
 description="This is the second contact page" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

 . 13 . . Run the Web site and see what effect the changes have . You should see new navigation
options appear in the Menu and the TreeView, and the new pages should also be
 reflected in the SiteMapPath control .

 . 14 . . Experiment with the SiteMapDataSource properties to see how the Menu and TreeView
are affected . For example, SiteMapDataSource.ShowStartingNode turns off the root
node (often the “home” page node) . SiteMapDataSource.StartFromCurrentNode deter-
mines the hierarchical position at which the data source begins producing data .

 . 15 . . Experiment with the Menu properties to see how the Menu is affected . For example,
the Menu.StaticDisplayLevels and MaximumDynamicDisplayLevels determine how much
of the data from SiteMapDataSource the Menu displays .

 Chapter 11 Web Site Navigation 247

 . 16 . . Notice how easy it is to add navigation capability to your Web site . By using the site
map file (and underlying provider-based architecture), you limit the number of places
you need to modify to update site navigation .

Trapping .the .SiteMapResolve .Event
ASP .NET is full of extensibility points . They’re all over the place—and the navigation archi-
tecture is no exception . ASP .NET site map support includes an application-wide event that
informs listeners (usually the application object) whenever the end user is navigating through
the Web site using a control connected to the site map data . Here’s an example that shows
how to handle that event .

Handling the SiteMapResolve event

 . 1 . . You can add the SiteMapResolve handler anywhere in the project . In this example, you
add it to the global application object . Open the file Global .asax, which Visual Studio
has created for you already .

 . 2 . . Add a SiteMapResolve event handler to the Global .asax file you just added . The handler
can do whatever you want it to do . The example here clones the SiteMapNode object
that’s passed in by the event arguments . (By cloning the node, the handler avoids mod-
ifying the underlying data structure .) Then, the handler modifies the node’s Title field to
add the phrase “(you are here) .” (Note that you see this only if the Title field is displayed
by your navigation control . The SiteMapPath control displays it by default .) After finish-
ing the handler, update Application_Start to connect the handler to the SiteMapResolve
event in the Application_Start handler of Global .asax:

<%@ Application Language="C#" %>

<script runat="server">

 void Application_Start(object sender, EventArgs e)
 {
 SiteMap.SiteMapResolve +=
 new SiteMapResolveEventHandler(ResolveNode);
 }

 SiteMapNode ResolveNode(object sender,
 SiteMapResolveEventArgs e)
 {
 SiteMapNode n = e.Provider.CurrentNode.Clone();
 n.Title = n.Title + " (you are here)";
 return n;
 }

 ...
</script>

248 Part II Advanced Features

 . 3 . . Now run the site and navigate through the pages . You should see the title of each
SiteMapNode change as you page through the site . This is reflected by the display
name in the SiteMapPath control . The following graphic shows the site map path
 control with the modified title:

Defining .Custom .Attributes .for .Each .Node
Another way to extend your Web application’s navigation is to define custom attributes for
the site nodes in web .sitemap and retrieve them at run time . Imagine that you want to as-
sociate a specific image with each page in your site . To accomplish this, just create a new
 attribute and specify it in the siteMapNode element in the site map data .

ASP .NET site map navigation support makes it very easy to add arbitrary attributes to each
node . In this example, you add JPEG URLs to the site map nodes . As each page is loaded, the
master page shows the JPEG in an Image control . The following example shows how to add
custom attributes to the site map nodes .

Adding custom attributes to the site map

 . 1 . . Add six new JPEGs to the project—one to represent each kind of page . For example,
produce separate JPEGs for the home page, the products page, the three contact
 pages, and the support page . Update the web .sitemap file to include an ImageURL
property in each siteMapNode element, like so:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

 Chapter 11 Web Site Navigation 249

 <siteMapNode url="~/Default.aspx" title="Home"
 description="This is the home page"
 ImageURL="~/homeimage.jpg">
 <siteMapNode url="~/Products.aspx" title="Products"
 description="This is the products page"
 ImageURL="~/productsimage.jpg" />
 <siteMapNode url="~/Support.aspx" title="Support"
 description="This is the support page"
 ImageURL="~/supportimage.jpg"/>
 <siteMapNode url="~/Contact.aspx" title="Contacts"
 description="This is the contacts page"
 ImageURL="/contactimage.jpg">
 <siteMapNode url="~/ContactAddress/ContactAddress.aspx"
 title="Contact using physical address"
 description="This is the first contact page"
 ImageURL="~/contactPhysicalAddressimage.jpg"/>
 <siteMapNode url="~/ContactEmailPhone/ContactEmailPhone.aspx"
 title="Contact by email or phone"
 description="This is the second contact page"
 ImageURL="~/contactPhoneimage.jpg" />
 </siteMapNode>

 </siteMapNode>
</siteMap>

 . 2 . . Programmatically, the ImageURL custom attribute appears as a property of the node
when the nodes are accessed . There are many ways to use the new property . Probably
the easiest way is to add an Image control to the master page and update the Image
control’s ImageUrl property with the value from the node in the master page’s
Page_Load method .

public partial class SiteMaster: System.Web.UI.MasterPage
{
 protected void Page_Load(object sender, EventArgs e)
 {
 SiteMapNode current = SiteMap.CurrentNode;
 string strImageURL = current["ImageURL"];
 if (strImageURL != null)
 {
 this.Image1.ImageUrl = strImageURL;
 }
 }
}

 . 3 . . Although setting an image during the master page’s Page_Load method is pretty
straightforward, it’s not the only way to change the UI based on specific SiteMapNode
information . For example, you might handle the OnMenuItemDataBound event and set

250 Part II Advanced Features

any custom properties there . The following two graphics illustrate how the master page
plugs in a new image URL each time a postback is issued:

 . . The following graphic shows the products page:

 Chapter 11 Web Site Navigation 251

Security .Trimming
The ASP .NET navigation support works with the authentication and authorization mecha-
nisms to support security trimming . Security trimming means showing only part of the menu
based on the role of the current user . Of course, this means that the Web site must somehow
authenticate the user . (See Chapter 9, “Logging In .”)

To make security trimming work, turn the securityTrimmingEnabled attribute on in
web .config . The list of roles for which the navigation option is available is a property for each
SiteMapNode .

For more information about security trimming, see http://msdn.microsoft.com/en-us/library/
ms178428.aspx .

URL .Mapping
Finally, the ASP .NET navigation architecture supports URL mapping . URL mapping is
 mapping a virtual (or nonexistent) URL to an existing ASPX file in the web .config file using
the urlMappings element . Setting up URL mappings causes ASP .NET to read the request-
ed URL and uses the handler for the mapped URL . This is done in HttpApplication using
HttpContext.RewritePath.

For example, imagine your Web site includes a single products page containing both CDs
and DVDs . However, your UI model requires you to build a menu structure that separates the
CD products and the DVD products into two options that appear separately on the menu .
URL mapping provides a way of handling this situation .

Here’s an exercise showing how to use URL mapping to represent a single page as two
 separate menu items . In this case, the page’s content is distinguished by a URL parameter .

Implementing URL mapping

 . 1 . . Update the Products page so that it shows different content when the ID parameter
is 1 or 2 . This example divides the products into CDs and DVDs . The page displays dif-
ferent content based on the value of the ID parameter (whether it’s 1 or 2 or some-
thing else) . Place a Label control on the Products page and assign its ID property the
value LabelProductType . Then, drop a ListBox on the page and assign its ID the value

252 Part II Advanced Features

ListBoxProducts . The code-beside file then implements the URL mapping functionality
in the Page_Load handler, as shown here:

public partial class Products : System.Web.UI.Page
{
 protected void AddCDsToListBox()
 {
 this.ListBoxProducts.Items.Add("CD- Snakes and Arrows");
 this.ListBoxProducts.Items.Add("CD- A Farewell To Kings");
 this.ListBoxProducts.Items.Add("CD- Moving Pictures");
 this.ListBoxProducts.Items.Add("CD- Hemispheres");

 this.ListBoxProducts.Items.Add("CD- Permanent Waves");
 this.ListBoxProducts.Items.Add("CD- Counterparts");
 this.ListBoxProducts.Items.Add("CD- Roll the Bones");
 this.ListBoxProducts.Items.Add("CD- Fly By Night");
 this.ListBoxProducts.Items.Add("CD- 2112");
 }

 protected void AddDVDsToListBox()
 {
 this.ListBoxProducts.Items.Add("DVD- A Show Of Hands");
 this.ListBoxProducts.Items.Add("DVD- Exit Stage Left");
 this.ListBoxProducts.Items.Add("DVD- Rush In Rio");
 this.ListBoxProducts.Items.Add("DVD- R30");
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 if (this.Request.Params["ID"] == "1")
 {
 this.LabelProductType.Text = "CDs";
 AddCDsToListBox();
 }
 else if (this.Request.Params["ID"] == "2")
 {
 this.LabelProductType.Text = "DVDs";
 AddDVDsToListBox();
 }
 else
 {
 this.LabelProductType.Text = "All CDs and DVDs";
 AddCDsToListBox();
 AddDVDsToListBox();
 }
 }
}

 Chapter 11 Web Site Navigation 253

 . 2 . . Update the web .sitemap file to include the new menu items mapped to virtual files (for
example, CDs .aspx and DVDs .aspx) . Add this to the Web .site file:

<?xml version="1.0" encoding="utf-8" ?>
 <siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Default.aspx" title="Home"
 description="This is the home page"
 ImageURL="~/homeimage.jpg">
 <siteMapNode url="~/Products.aspx" title="Products"
 description="This is the products page"
 ImageURL="~/productsimage.jpg">
 <siteMapNode url="~/CDs.aspx" title="CDs"
 description="This is the CDs page"
 ImageURL="~/productsimage.jpg"/>
 <siteMapNode url="~/DVDs.aspx" title="DVDs"
 description="This is the DVDs page"
 ImageURL="~/productsimage.jpg"/>
 </siteMapNode>
 <siteMapNode url="~/Support.aspx" title="Support"
 description="This is the support page"
 ImageURL="~/supportimage.jpg"/>
 <siteMapNode url="~/Contact.aspx" title="Contacts"
 description="This is the contacts page"
 ImageURL="~/contactimage.jpg">
 <siteMapNode url="~/ContactAddress/ContactAddress.aspx"
 title="Contact using physical address"
 description="This is the first contact page"
 ImageURL="~/contactPhysicalAddressimage.jpg"/>
 <siteMapNode url="~/ContactEmailPhone/ContactEmailPhone.aspx"
 title="Contact by email or phone"
 description="This is the second contact page"
 ImageURL="~/contactPhoneimage.jpg" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

 . 3 . . Add this to the web .config file:

<configuration>
 <system.web>
 <urlMappings enabled="true">
 <add url="~/CDs.aspx" mappedUrl="~/Products.aspx?ID=1"/>
 <add url="~/DVDs.aspx" mappedUrl="~/Products.aspx?ID=2"/>
 </urlMappings>
 </system.web>
</configuration>

 . 4 . . Run the page . Notice that changes occurred and two new items now appear on the
Products menu . The site map points these two items to the CDs .aspx file and the DVDs .
aspx file . Although the application does not include files with these names, users still
see a page that works when they redirect using one of these menu items . The web .con-
fig file remaps the request back to the Products .aspx page, passing a URL parameter
with a specific value . When the Products .aspx page is loaded and the ID parameter is 1
or 2, the page loads the list box with CD titles or DVD titles .

254 Part II Advanced Features

The following graphic shows the CDs Products page being selected from the
site map data:

The next graphic shows the DVDs Products page being selected from the
site map data:

 Chapter 11 Web Site Navigation 255

This graphic shows the main Products page being selected from the site map data:

URL mapping is useful in all kinds of situations when you need to represent pages in a
 navigation control, even when there might not be a physical page to support it .

URL .Rewriting
Microsoft Internet Information Services (IIS) 7 .0 now includes a URL Rewrite Module that
supports the more contemporary technique of URL rewriting . URL rewriting is a much more
dynamic technique for redirecting requests than is the simple configuration file urlMappings
technique used in the last example . For example, you can use URL rewriting to redirect based
on various run-time criteria, such as server variables or HTTP headers . You can also set up
redirects based on URL rewriting rules .

256 Part II Advanced Features

Chapter .11 .Quick .Reference
To Do This

Add an XML site map to the
 application

Right-click the project name in Solution Explorer . Click Add New Item .
Select Site Map from the templates . This is useful for adding an XML-based
site map to your site .

Add a navigation control to a
page in your site

Open the Navigation controls node in the Toolbox . Select the Menu, the
TreeView, or the SiteMapPath control and place it on the page .

When you place the navigation control on the page, you’ll see a small task
window asking you to choose the data source . If you already have the
appropriate data source on your page, select it . If you’ve created an XML-
based site map for your page, select New Data Source and select SiteMap
or XML File, depending on how your navigation data is packaged .

Intercept navigation requests
as they occur

Write a handler for the SiteMapResolve event in the Global .asax file .

Map virtual nonexistent URLs
to real URLs

Add a urlMappings section to web .config to map the virtual URLs . Add the
virtual URLs to your site map data so that the user can more easily navigate
to the given page . (Better yet, look into IIS 7 .0 URL rewriting .)

 . . 257

Chapter 12

Personalization
After completing this chapter, you will be able to

n Use ASP .NET personalization .

n Apply personalization to a Web site .

This chapter covers the built-in personalization features of ASP .NET . A major theme
 throughout ASP .NET is to provide frameworks and support for implementing features most
Web sites need . For example, ASP .NET provides support for applying a common look and
feel to a site through master pages and themes, as described in Chapter 7, “A Consistent Look
and Feel .” Chapter 9, “Logging In,” describes the new login controls, which are there so that
you don’t have to hash out yet one more login control . Then, there are authentication and
authorization, site maps, and on and on . ASP .NET today is just packed with features to make
your site development task easier and faster .

Personalization is another feature that often makes for great Web sites . Prior to ASP .NET 2 .0,
you had to provide any personalization support for your site . Now these features are rolled
into ASP .NET .

This chapter looks at Web personalization .

Personalizing .Web .Visits
When the Internet and the Web first began gaining popularity, most sites contained only
static content . That is, they offered only text, graphics, and perhaps links to other pages . The
early Web-surfing community consisted of only the few folks who knew how to use browsers
to peer into the contents of those early Web servers .

Until the Web began exploding with interactive sites, there was really no need for Web sites
to provide anything but generalized content . However, savvy businesspeople know that
 tailoring and targeting content to specific individuals are good for business .

For example, the next time you go online to shop or visit a subscription-type site, take note
of how much the site knows about you . Very often, if at some point you provided login infor-
mation, the site will greet you by name . It might even point you to information or products
that might interest you . These are examples of how a Web site can be personalized .

In the early days, any personalization of a site resulted from code you wrote, such as code to
manage user preferences in cookies or code to store personal information in databases . In

258 Part II Advanced Features

addition to simply storing and managing the personal information, you had to integrate the
personal information management with the authentication and authorization scheme you
decided to use . That is, once you authenticated the user, you then could tailor your pages
according to his or her personal information .

ASP .NET now includes services for personalizing a Web site to suit a particular client’s taste .
There’s no reason you can’t write your own database and services to provide this functional-
ity . However, as with other services, ASP .NET provides a way to do this with consistency and
so that you do not have to write all the code yourself .

Personalization .in .ASP .NET
Although it might not be surprising to find that the ASP .NET personalization services fol-
low the same provider pattern as do authentication and site mapping, defining a Web site’s
 personalization facilities begins by defining user profiles . This section starts there .

User Profiles
The heart of the new ASP .NET personalization service is the user profile . A user profile defines
what kind of personal information your Web site needs . For example, you might want to
know personal data about users of your Web site, such as name, gender, number of visits to
the site, and so forth . User profiles are also handy for storing user preferences for your site .
For example, you might include a theme as part of a personal profile so that users can tailor
the pages to their particular tastes .

Once the personalization properties are defined in web .config, a component in ASP .NET
has to be able to read them and use them . That job is handled by ASP .NET personalization
providers .

Personalization Providers
Chapter 8, “Configuration,” describes how .NET includes a provider pattern . Providers hide
the infrastructural code necessary to support the service, yet they allow you to choose dif-
ferent underlying storage media with little impact on your site . Perhaps you start your site
using XML files for storing data but later move to Microsoft SQL Server or you have legacy
authentication databases you want to connect to your ASP .NET site . ASP .NET personalization
is no different . In fact, ASP .NET includes two personalization providers out of the box: a pro-
file provider for custom user data, and a personalization provider for Web Parts . (Chapter 13,
“Web Parts,” describes Web Parts in more detail .)

ASP .NET defines the fundamental provider capabilities in an abstract class named
PersonalizationProvider . Those capabilities include loading and saving personalization

 Chapter 12 Personalization 259

properties and managing their relationship to any Web Parts used in a site . ASP .NET
provides a default implementation of these capabilities in a concrete class named
SqlPersonalizationProvider, which is derived from PersonalizationProvider .

Using .Personalization
Using personalization is straightforward . You define personalization properties in web .config .
ASP .NET synthesizes a class for you to use to manage personalization settings . Then, profile
information is available in much the same way as session state is available .

Defining Profiles in Web.Config
Your site’s profile schema is defined in web .config as name/type pairs . Imagine that in the
course of designing your site, you decide you would like to track the following information
about a particular user:

n User name (a string)

n Gender (a Boolean value)

n Visit count (an integer)

n Birthday (a date)

Defining these properties is a matter of specifying them in web .config . A definition for the
properties just mentioned might look like the following in web .config:

<system.web>
 <profile automaticSaveEnabled="true" >
 <properties>
 <add name="NumVisits" type="System.Int32"/>
 <add name="UserName" type="System.String"/>
 <add name="Gender" type="System.Boolean">
 <add name="Birthday" type="System.DateTime">
 </properties>
 </profile>
</system.web

Once defined in the web .config file, you can use the profile in the site through the Profile
property found in the current HttpContext (and also through the Page base class) .

Using Profile Information
To use the profile in your Web site, you access it in much the same way you might ac-
cess session state . You see how session state works in Chapter 14, “Session State”—right
now it’s enough to say that you can access data tied to a specific session by accessing the

260 Part II Advanced Features

page’s Session member . The Session member is a name/value dictionary that holds arbitrary
 information tied to a particular session . Versions 2, 3, and 3 .5 of the ASP .NET compiler actu-
ally synthesize a profile class based on the schema defined in the web .config file . This is no
longer available in ASP .NET 4, where accessing profile state information is done through the
ProfileBase class using name/value pairs .

The ASP .NET class representing the profile information defined in web .config is named
ProfileBase . You can access the profile properties using the GetPropertyValue and
SetPropertyValue methods like so:

protected void Page_Load(object sender, EventArgs e)
{
 ProfileBase profile = HttpContext.Current.Profile;
 string name = (string)profile.GetPropertyValue("Name");
 if (name != null)
 {
 Response.Write("Hello " + name);
 DateTime dateTime = (DateTime)profile.GetPropertyValue("Birthday");
 Response.Write("Your birthday is " +
dateTime);
 }
}

Saving Profile Changes
The preceding code snippet assumes that there is already personalization information associ-
ated with the user . To insert profile data for a particular user, simply set the properties of the
Profile object . For example, imagine a page that includes a handler for saving the profile . It
might look something like this:

protected void ProfileSaveClicked(object sender, EventArgs e)
{ ProfileBase profile = HttpContext.Current.Profile;
 profile.SetPropertyValue("Name", this.TextBoxName.Text);

 profile.Save();

}

The easiest way to ensure that the personalization properties persist is to set
 automaticSaveEnabled to true . Personal profile data is then saved automatically by
the provider .

Alternatively, you can call Profile.Save as necessary to save the personalization properties
manually . In addition to saving and loading profiles, you can also delete the profile for a
 specific user by calling Profile.DeleteProfile .

 Chapter 12 Personalization 261

Profiles and Users
Profile information is associated with the current user based on the identity of the user . By
default, ASP .NET uses the User.Identity.Name in the current HttpContext as the key to store
data . Because of this, profiles are generally available only for authenticated users .

However, ASP .NET supports anonymous profiles as well . As you might expect, this is also con-
figured in web .config . The default tracking mechanism for anonymous profiles is to use cook-
ies . However, you can direct ASP .NET to use a mangled URL . A mangled URL is one in which a
key identifying the particular client is embedded in the URL used to post requests back to the
server .

The following exercise illustrates using personalization profiles based on the user’s login ID .

Using profiles

 . 1 . . Create a new Web Application project . Name the project MakeItPersonal .

 . 2 . . Microsoft Visual Studio creates a local database including the proper tables to make
personalization work .

 . 3 . . Update web .config to include some profile properties, which should be placed in the
existing <profile> element . The example here includes a user name, a theme, and a
birth date . The following example shows that you can group and nest profile structures
in a profile declaration using the group element . Visual Studio adds a <profile> section
to the web .config file . Add the configuration information between the <properties> be-
ginning and ending node .

<system.web>

 <profile>
 <providers>
 <clear/>
 <add name="AspNetSqlProfileProvider" ... />
 </providers>
 <properties >
 <add name="Theme" type="System.String"/>
 <add name="Name" type="System.String"/>
 <add name="Birthdate" type="System.DateTime"/>
 <group name="Address">
 <add name="StreetAddress" type="System.String"/>
 <add name="City" type="System.String"/>
 <add name="State" type="System.String"/>
 <add name="ZipCode" type="System.String"/>
 </group>
 </properties>
 </profile>

</system.web>

262 Part II Advanced Features

Note This example uses the authenticated user name as the key for locating
 personalization information . However, ASP .NET supports anonymous personalization . That
is, ASP .NET supports personalization information for anonymous users—but tracks the us-
ers with a cookie . You can add support for anonymous personalization tracking by setting
the anonymousIdentification element to true and specifying cookie parameters like this:

<anonymousIdentification enabled="true"
 cookieName=".ASPXANONYMOUSUSER"
 cookieTimeout="120000"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"
 cookieProtection="Encryption"
 cookieless="UseDeviceProfile" />

In addition to setting up anonymous access in web .config, you need to set the
 [allowAnonymous] attribute for the properties .

By configuring the site this way and adding the allowAnonymous attribute to properties in
the profile information, ASP .NET will store the personalization settings based on a cookie it
generates when a user first hits the site .

 . 4 . . Borrow the Default and SeeingRed themes from the MasterPageSite project
(Chapter 7) . This allows the user to pick the theme . First, add Default and SeeingRed
folders to the application’s Themes directory . Then, right-click each of the theme
 folders and click Add Existing Item . Use the file navigation dialog box to navigate to the
Chapter 7 directory and select the theme files .

 . 5 . . Borrow the UseThemes .aspx and .cs files from the MasterPageSite project . If you place
them in a separate folder (for example, perhaps a folder named Secured), you can
 manage access rights to the folder .

 . 6 . . Update the Default .aspx page . This is where users will enter profile information .

Add text boxes for the name, address, city, state, and zip code .

Add a drop-down list box populated with Default and SeeingRed items to be used for
selecting the theme .

Also add a calendar control to pick the birth date .

 . 7 . . Add a button that the user can click to submit profile information . Add a handler to
input these values into the profile . Double-click the button to add the handler .

 Chapter 12 Personalization 263

The input screen should look something like this:

Note This example uses the authenticated user name as the key for storing personaliza-
tion values . Use the ASP .NET Configuration Utility to apply Forms Authentication to this
application (as described in Chapter 8) . Also add at least one user so that you have one to
personalize . The generated project will give you a login page under the Accounts folder .
Add a Login .aspx screen to the site and modify the site’s access rules to enforce authenti-
cation so that you can see the personalization information being stored and retrieved .

 . 8 . . Update Page_Load to display profile information (if it’s there) . Grab the profile object
and set each of the text boxes and the calendar control .

using System.Web.Profile;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 ProfileBase profile = HttpContext.Current.Profile;
 string theme = (string)profile.GetPropertyValue("Theme");
 this.TextBoxName.Text = (string)profile.GetPropertyValue("Name");
 this.TextBoxAddress.Text =
 (string)profile.GetPropertyValue("Address.StreetAddress");
 this.TextBoxCity.Text = (string)profile.GetPropertyValue("Address.City");

264 Part II Advanced Features

 this.TextBoxState.Text =
 (string)profile.GetPropertyValue("Address.State");
 this.TextBoxZipCode.Text = (string)profile.GetPropertyValue("Address.ZipCode");
 this.DropDownList1.SelectedValue =
 (string)profile.GetPropertyValue("Theme");
 this.Calendar1.SelectedDate = (DateTime)profile.GetPropertyValue("Birthdate");
 }
 }
}

 . 9 . . Update the profile submission handler to store the profile information:

public partial class _Default : System.Web.UI.Page
{
 //...
 protected void ButtonSubmitProfile_Click(object sender, EventArgs e)
 {
 if (this.User.Identity.IsAuthenticated)
 {
 ProfileBase profile = HttpContext.Current.Profile;
 profile.SetPropertyValue("Theme", "SeeingRed");
 profile.SetPropertyValue("Name", this.TextBoxName.Text);
 profile.SetPropertyValue("Address.StreetAddress", this.TextBoxAddress.Text);
 profile.SetPropertyValue("Address.City", this.TextBoxCity.Text);
 profile.SetPropertyValue("Address.State", this.TextBoxState.Text);
 profile.SetPropertyValue("Address.ZipCode", this.TextBoxZipCode.Text);
 profile.SetPropertyValue("Theme", this.DropDownList1.SelectedValue);
 profile.SetPropertyValue("Birthdate", this.Calendar1.SelectedDate);
 profile.Save();
 }
 }
}

 . 10 . . Finally, update the UseThemes .aspx page to use the theme . Override the page’s
OnPreInit method . Have the code apply the theme as specified by the profile:

protected override void OnPreInit(EventArgs e)
{
 ProfileBase profile = HttpContext.Current.Profile;
 if (profile != null)
 {
 String strTheme = (string)profile.GetPropertyValue("Theme");
 if (strTheme != null &&
 strTheme.Length > 0)
 {
 this.Theme = strTheme;
 }
 }
 base.OnPreInit(e);
}

 . 11 . . Add a Hyperlink control to the Default .aspx page . Set the Text property to View Themes
and set the NavigateURL property to point to the UseThemes .aspx page . When users
surf to the page, they should be able to enter the profile information and submit it .

 Chapter 12 Personalization 265

After their initial visit, the profile is available whenever they hit the site . The following
graphic shows the profile information being displayed in the default page:

 . 12 . . When users visit the UseThemes .aspx page, the page should use the theme that each
user selected in the profile . The following graphic shows the UseThemes .aspx page
 using the SeeingRed theme pulled from the profile:

266 Part II Advanced Features

Chapter .12 .Quick .Reference

To Do This

Define personalization profile settings Use the <profile> element in web .config . Define
name/type pairs to create the profile schema .

Access the profile properties Profile properties are available through the current
HttpContext . Use the GetPropertyValue and
SetPropertyValue methods .

Track anonymous profiles with cookies Enable anonymousIdentification in web .config and
add the allowAnonymous attribute to the profile
 properties .

 . . 267

Chapter 13

Web Parts
After completing this chapter, you will be able to

n Understand ASP .NET Web Parts .

n Use standard Web Parts in a Web page .

n Create a custom Web Part .

n Use the custom Web Part in a Web page .

Earlier chapters discuss rendered and composite controls and controls available in
Microsoft ASP .NET . Because rendering an ASP .NET Web Form is broken down into small,
manageable chunks, arbitrarily extending the framework by adding new controls is a
straightforward affair . Server-side controls offer very fine-grained control over the HTML
 rendered by your application .

In this chapter, you get acquainted with Web Parts . The topic of Web Parts could take up an
entire book—they represent a whole new level of interaction with Web sites . Web Parts are
in many ways like custom controls . They give you a way to customize the HTML coming out
of your Web site without requiring you to hard-code the output of your page .

Whereas custom controls derive either from System.Web.UI.Control or from System.Web.
UI.WebControl, Web Parts derive from Microsoft.SharePoint.WebPartPages.WebPart . Although
WebPart does inherit from System.Web.UI.Control, it goes beyond the regular control func-
tionality by handling interactions with WebPartPage and WebPartZone classes to support
adding, deleting, customizing, connecting, and personalizing Web Parts on a page .

Probably the largest difference between ASP .NET server-side controls and Web Parts is that
Web Parts provide a way for end users to configure your site to their liking . By contrast,
ASP .NET server-side controls are targeted to ASP .NET developers . In ASP .NET, lower-level
 developers can build interactive Web pages easily, whereas with Web Parts users of a Web
site gain a certain degree of flexibility in managing their view of the site .

Another way to get a good idea of the effectiveness of Web Parts is to consider the wave of
social networking sites, such as Windows Live Spaces, that has emerged during the past few
years . Although the main thrust of the site is governed at the server, end users can create
their own accounts and completely customize the presentation appearing on their screen .
End users can add friends and associates, and they can build in links to other sites .

268 Part II Advanced Features

In addition to creating Web sites that are customizable by end users, Web Parts can be very
useful to lower-level site developers . Web Parts combine the flexibility of rendered custom
controls with the drag-and-drop manageability of user controls . As a developer, you can
drag completed Web Parts from Web Parts galleries onto Web Parts zones . You can modify
the shared properties of a group of Web Parts and make them persistent . In addition to be-
ing a useful way to package user interface (UI) components, Web Parts can connect with
each other through standard interfaces .

Web Parts technology is very useful in building portals and collaboration sites . Microsoft
SharePoint is an excellent example of this type of site . Rather than building document col-
laboration and sharing facilities into an application from the ground up, SharePoint already
has high-level components that handle those sorts of features . Setting up a portal is about
assembling high-level parts into an application .

A .Brief .History .of .Web .Parts
In the early 2000s, SharePoint emerged as a highly leveraged way for organizations to build
portals and collaboration environments . For example, coordinating large teams toward a
common goal is an excellent reason for creating a portal . Team endeavors such as software
development require systems such as version control and bug tracking . If the team is distrib-
uted geographically or is in some other way not part of the office network, the next logical
step is to share information over the Web .

Without a framework such as SharePoint, developers would likely duplicate much effort
between them . SharePoint introduces some prefabricated components to ease building
 collaboration sites (rather than building them from scratch) . SharePoint Web pages are based
on a type of component named Web Parts . Web Parts are a way to package information and
functionality for users .

Whereas SharePoint is a stand-alone framework dedicated to building collaboration portals,
modern ASP .NET represents a broad-spectrum Web development framework that happens
to have a built-in portal framework . That is, SharePoint represents a dedicated means to
build portals, and ASP .NET includes some classes useful for building portal-like applications .
However, even though they’re different development environments, they do share a principal
concept between them—Web Parts . Although ASP .NET Web Parts and SharePoint Web Parts
aren’t exactly the same animal, they operate similarly .

What .Good .Are .Web .Parts?
WebPart controls are useful for developing portal-type Web sites . Work flow and
 collaboration management is quickly becoming one of the most important application areas
for Web site development . Because portals often have much of the same functionality from

 Chapter 13 Web Parts 269

one to another, it makes more sense to build portals from a framework than to build them
completely from scratch . Much of this functionality includes such items as file transfers,
 implementing user profiles, and user administration .

ASP .NET offers three distinct Web Parts development scenarios:

n Building regular pages to consume Web Parts controls

n Developing Web Parts controls

n Implementing Web Parts pages and Web Parts in a portal-type application .

Developing .Web .Parts .Controls
Web Parts controls represent a superset of the existing ASP .NET server-side controls
(including custom rendered controls, user controls, and composite controls), regardless
of who wrote them . For maximum programmatic control of your environment, you
can also create custom Web Parts controls that derive from the
System.Web.UI.WebControls.WebParts.WebPart class .

Web Parts Page Development
Regular Web pages can use Web Parts . Microsoft Visual Studio includes support for
 creating pages to host WebPart controls . Developing a WebPart page involves introduc-
ing a WebPartManager to the page, specifying a number of zones on the page, and then
 populating them with WebPart controls .

Web Parts Application Development
Finally, you can develop entire applications out of WebPart controls . For example, you might
decide to build a portal . With WebPart controls, you can write personalized pages that are
customizable . Web Parts are also ideal for building a commonly used application (such as
sharing records or documentation) and shipping it as a unit so that it can be deployed on
another company’s Web site wholesale .

The .Web .Parts .Architecture
The Web Parts architecture serves multiple purposes . Given that the job of Web Parts is to
behave as a bigger UI lever, the functional components have been broken down into overall
page management and zone management . WebPart controls need to be coordinated to-
gether . In addition, the different functional areas of a page often need to be handled as a
group of controls (for managing layout, for example) .

270 Part II Advanced Features

In terms of framework classes, Web Parts are nested in zones, which are managed by a
 singular WebPartManager (or the ProxyPartManager) that talks to the application data store .
Figure 13-1 illustrates how the parts are related .

DeclarativeCatalogPart

ImportCatalogPart

PageCatalogPart

AppearanceEditorPart

BehaviorEditorPart

LayoutEditorPart

PropertyGridEditorPart

WebPart

WebPartZoneEditorZoneCatalogZoneConnectionZone

WebPartManager

Data Store

FIGURE .13-1 . How Web Parts are managed in zones, which in turn are managed by an instance of
WebPartManager.

WebPartManager and WebZones
As Figure 13-1 illustrates, WebPartManager manages each WebPartZone, which in turn
 manages each individual WebPart . Any page using at least one WebPart needs an instance
of WebPartManager . The WebPartManager is responsible for managing and coordinating the
zone(s) and the controls in it . The WebPartZone also manages any extra UI elements that go
with the group of controls .

In the zone, the ZoneTemplate contains all Web Parts . If a regular ASP .NET control is in a
ZoneTemplate, ASP .NET wraps it as a Web Part .

Built-In Zones
Web Parts zones manage the layout for a group of controls . Out of the box, ASP .NET includes
four built-in zones . These are as follows:

n WebPartZone The WebPartZone class represents basic functionality for managing
server-side controls in zones on a page . WebPartZone controls are responsible for
hosting both typical server-side controls and WebPart controls . Typical controls are
wrapped by the GenericWebPart control at run time to add WebPart qualities to them .

 Chapter 13 Web Parts 271

n CatalogZone The CatalogZone zone hosts CatalogPart controls . Catalogs generally
manage the visibility of parts on a page . The CatalogZone control shows and hides
its contents based on the catalog display mode . Web Parts catalogs are named such
 because they act as catalogs of controls from which the end user can select .

n EditorZone The EditorZone control represents the means through which end users can
modify and personalize Web pages according to their preferences . Personalizing a Web
site includes such things as setting up personal information, such as birthdays, gender-
specific addressing, number of visits to the site, and so forth . Other kinds of personal-
ization involve setting up color schemes and layouts . The EditorZone helps manage this
functionality as well as saves and loads those settings so that they are available the next
time the user logs on .

n ConnectionZone Web Parts are often more useful when they’re connected and
 communicate dynamically . The ConnectionZone manages this functionality .

Built-In Web Parts
In addition to including several zones straight out of the box, ASP .NET provides some
 ready-to-use WebPart controls . The WebPart controls fit into various functional categories .
Some are for managing catalogs, whereas others are for managing editing . Each specific
kind of WebPart fits in a particular zone . Here’s a rundown of the currently available WebPart
Toolbox:

n DeclarativeCatalogPart When building a WebPart page, you can add parts
 dynamically or declaratively . Adding parts to a page dynamically means executing
code that adds parts to the page at run time . For example, imagine you have a
Web Part represented as a class named MyWebPart (ultimately derived from
System.Web.UI.Controls.WebParts) . You can add the part to the page by creating an
instance of the part and adding it to the WebPartManager using WebPartManager.
AddWebPart . Adding parts to a page declaratively means including tag declarations in
the ASPX file representing the WebPart page . The DeclarativeCatalogPart control man-
ages server-side controls added declaratively to a catalog on a Web page .

n PageCatalogPart One way end users will probably want to customize a site is
by opening and closing controls . The PageCatalogPart represents a page catalog
for holding controls that were previously added to a page that are now closed . By
 managing the controls in a PageCatalogPart, you can make it so that users can add
controls back to the page .

n ImportCatalogPart With the ImportCatalogPart, users can import a Web Part
 description from XML data .

n AppearanceEditorPart The AppearanceEditorPart is used to edit the appearance
properties of an associated WebPart or GenericWebPart .

272 Part II Advanced Features

n BehaviorEditorPart To support editing the behavior of a WebPart or GenericWebPart,
ASP .NET provides the BehaviorEditorPart.

n LayoutEditorPart The LayoutEditorPart is for editing the layout properties and
 associated WebPart (or GenericWebPart control) .

n PropertyGridEditorPart To support users in editing custom properties of WebPart
controls, ASP .NET provides the PropertyGridEditorPart (the other EditorPart controls
only support editing existing properties from the WebPart class, however) .

To get a feel for how to use WebPart controls, try this example . The following exercise shows
how to build a Web page from WebPart controls .

Note Web Parts require personalization to be turned on to work . That is, make sure the
 database is set up with personalization, as was done in Chapter 12, “Personalization .” Also, Web
Parts require the users be authenticated . Be sure to add at least one user to the site by going to
the ASP .NET configuration page and adding a user .

Using Web Parts

 . 1 . . Create a new Visual Studio Web Application project . Name it UseWebParts.

 . 2 . . In the default page, add a WebPartManager by dragging an instance from the Toolbox
onto the page.

 . 3 . . Drag a WebPartZone onto the page . Set the ID to WebPartZoneLinks . Set the
HeaderText to Try .These .Links . Set the HeaderStyle font ForeColor to Blue (so that you
can see it better later during editing mode) . Using the AutoFormat editor of the control
itself, set the style to Professional . (To access AutoFormat, click the caret to the right of
the control in the Designer .)

 . 4 . . Add some HyperLinks to the WebPartZone, as shown here . Feel free to add any
 hyperlink you like (these are just examples) .

 Chapter 13 Web Parts 273

 . 5 . . Run the page . You should see the links appear on the left side of the page .

 . 6 . . Add a Label to the page . The text should be Switch .Display .Mode . Add a
DropDownList to the page . Name it DropDownListDisplayModes, and set its
AutoPostBack property to true . This is used to switch the display mode back and forth .

274 Part II Advanced Features

ASP .NET Web Parts support five separate display modes . You add code to support
(some of) these display modes in the next step:

n BrowseDisplayMode This is normal mode . No personalization or editing is
 available here .

n DesignDisplayMode This mode turns on drag-and-drop layout personalization .

n EditDisplayMode This option turns on personalization or customization of
WebPart properties and permits a user to delete Web Parts that have been added
to the page dynamically .

n ConnectDisplayMode This mode allows a user to connect Web Parts at run time .

n CatalogDisplayMode This mode allows a user to add Web Parts into a
WebPartZone at run time .

 . 7 . . Update the _Default class to support switching modes . Visual Studio added a
WebPartManager to the page . Update the Page_Init method to attach an event handler
to the page’s InitializationComplete event . In the InitializationComplete handler, get the
current WebPartManager and stash the reference in the WebPartManager1 member, as
shown in the following code .

 Chapter 13 Web Parts 275

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 String browseModeName = WebPartManager.BrowseDisplayMode.Name;
 foreach (WebPartDisplayMode mode in
 this.WebPartManager1.SupportedDisplayModes)
 {
 String modeName = mode.Name;
 // Make sure a mode is enabled before adding it.
 if (mode.IsEnabled(this.WebPartManager1))
 {
 ListItem item = new ListItem(modeName, modeName);
 DropDownListDisplayModes.Items.Add(item);
 }
 }
 }
 }
}

The code listed in the InitializationComplete handler interrogates the current
WebPartManager for the supported display modes and puts them in the DropDownList .

 . 8 . . Add a handler for the DropDownListDisplayModes drop-down list when the
SelectedIndexChanged event occurs . Have the handler switch the WebPart page into
the selected mode . The following code shows how:

protected void
 DropDownListDisplayModes_SelectedIndexChanged(
 object sender, EventArgs e)
{
 string selectedMode = DropDownListDisplayModes.SelectedValue;
 WebPartDisplayMode mode =
 this.WebPartManager1.SupportedDisplayModes[selectedMode];
 if (mode != null)
 {
 this.WebPartManager1.DisplayMode = mode;
 }
}

 . 9 . . Run the site . Make sure at least one user is registered with the site (by using the
ASP .NET Configuration utility on the Project menu) . Make sure a user is logged in by
going to the Login page .

276 Part II Advanced Features

 . 10 . . You can enter Browse mode and Design mode, as shown in the following graphic:

You’ll see more modes later as you add more zones . Notice how the title now shows up .
You can pick up items on the page and move them around now . For example, you can
pick up one of the links and move it around in the Links WebPartZone .

 . 11 . . Now add some more functionality . Add an EditorZone to the page . Then, in the
EditorZone, add an AppearanceEditorPart, as shown in the following graphic (the
Designer’s default layout is to lay out components one after the other—this example
shows the EditorZone part with an absolute layout style set so that it can be placed
 anywhere on the form):

 Chapter 13 Web Parts 277

 . 12 . . Now run the site and log in as a user . You’ll see a new option in the Switch Display
Mode drop-down list—the Edit mode .

 . 13 . . Now go back and add a CatalogZone . Drop a DeclarativeCatalogPart into the new
WebPartZone and select Edit Templates .

278 Part II Advanced Features

 . 14 . . While in Template Editing mode, pick up a TextBox control from the Toolbox and drop
it into the DeclarativeCatalogPart . Then, access the page’s source view and update the
actual markup to add a Title attribute, as shown:

<ZoneTemplate>
 <asp:DeclarativeCatalogPart
 ID="DeclarativeCatalogPart1" runat="server">
 <WebPartsTemplate>
 <asp:TextBox ID="TextBox1"
 Title="A TextBox"
 runat="server">
 </asp:TextBox>
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
</ZoneTemplate>

 . 15 . . Now run the page again . Switch to Catalog mode . Select the A TextBox check box, and
click Add .to add a TextBox to the Try These Links zone . (This might not seem too inter-
esting yet . However, in the next exercise, you write a hyperlink Web Part that you can
add to the links page from the catalog—and then update it with your own links and
display names .)

 Chapter 13 Web Parts 279

Here is the page with a new TextBox added from the catalog:

280 Part II Advanced Features

 . 16 . . Run the page and shift to Edit mode . Select a local menu from one of the hyperlink
Web Parts in the Links zone . (You can get to the local “verb” menu by clicking the
 arrow in the upper right-hand corner of each Web Part .) Select Edit . You should see a
 collection of controls for editing the Web Part appearing in the Editor Zone, like so:

So, there’s an example of adding Web Parts zones to a page and then using normal ASP .NET
server-side controls as if they were Web Parts (the HyperLink controls) . Next, take a look at
how to develop a real Web Part .

Developing .a .Web .Part
The previous example shows how to use Web Parts in a page and how to switch the page
among various modes at run time . The catalog built into the page includes a TextBox control
that you can add to a WebPartZone on the page . The example delivers a glimpse of the flexi-
bility and power of Web Parts . However, simply dropping a TextBox onto a WebPartZone isn’t
very interesting . In this example, you build a hyperlink Web Part that you can use to augment
the Links WebPartZone.

Developing a Web Part is actually fairly straightforward and quite similar to
 developing a custom control (like the ones in Chapter 4, “Custom Rendered Controls,”
and Chapter 5, “Composite Controls”) . Instead of deriving a class from
System.Web.UI.Controls.WebControl or System.Web.UI.Controls.CompositeControl, you derive
a class from System.Web.UI.WebControls.WebParts.WebPart . From that point, you have the
choice of either rendering HTML or composing a Web Part from other ASP .NET controls . The
WebPart includes considerable functionality for integrating with the Web Part architecture .

 Chapter 13 Web Parts 281

For example, in the next example, the navigation URL and display name properties of the
hyperlink Web Part are exposed as properties that the end user can modify through the
PropertyGridEditorPart .

The following example illustrates how to create a hyperlink Web Part that you can add to the
Links WebPartZone in the UseWebParts project . Although you could add a regular HyperLink
control to the catalog, typical controls don’t provide the same support for the user to modify
the links . For example, when you edited the HyperLink controls in the previous example, all
you could do was move them around in the Links Web Part . To provide your Web application
users with additional properties they can configure, the links need to be represented as Web
Parts in their own right .

Developing the HyperLinkWebPart

 . 1 . . Add a new project to the UseWebParts solution . Make it a class library and name
the library WebPartLib . Visual Studio asks you to name the file, and the name you
choose also becomes the name of the first class placed in the library . Name the file
HyperLinkWebPart.cs . (Visual Studio will name the class HyperLinkWebPart .)

 . 2 . . Make a reference to the System.Web assembly in the new child project . Right-click the
WebPartLib node in Solution Explorer and click the Add Reference option to add the
System.Web assembly .

 . 3 . . Derive the new class from System.Web.UI.WebControls.WebParts.WebPart by adding it
to the inheritance list, as shown here:

using System;
using System.Collections.Generic;

using System.Linq;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WebPartLib
{

 public class HyperLinkWebPart : WebPart
 {

 }
}

 . 4 . . Add two string member variables to the HyperLinkWebPart class—one to represent the
display name of the Web Part and the other to represent the actual URL . Initialize them
with reasonable values:

using System;
using System.Collections.Generic;

282 Part II Advanced Features

using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WebPartLib
{

 public class HyperLinkWebPart :
 WebPart
 {

 string _strURL = "http://www.microsoft.com";
 string _strDisplayName = "This is a link";
 }
}

 . 5 . . Add a field of type HyperLink to the class . The Web Part uses the existing function-
ality of the HyperLink control . Override CreateChildControls to create an instance
of HyperLink and add it to the HyperLinkWebPart controls collection . Initialize the
HyperLink.Text property to the member variable representing the display name .
Initialize the HyperLink.NavigateUrl property to the member variable representing
the URL:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WebPartLib
{

 public class HyperLinkWebPart : WebPart
 {

 HyperLink _hyperLink;

 string _strURL = "http://www.microsoft.com";
 string _strDisplayName = "This is a link";
 protected override void CreateChildControls()
 {
 _hyperLink = new HyperLink();
 _hyperLink.NavigateUrl = this._strURL;

 _hyperLink.Text = this._strDisplayName;
 this.Controls.Add(_hyperLink);
 base.CreateChildControls();
 }
 }
}

 Chapter 13 Web Parts 283

 . 6 . . Finally, expose the URL and the display name as properties so that the Web Parts
 architecture can understand and work with them . To allow the exposed properties to
work with the Web Parts architecture through the PropertyGridEditorPart that you add
later, be sure to adorn the properties with the attributes Personalizable, WebBrowsable,
and WebDisplayName, as shown here:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace WebPartLib
{

 public class HyperLinkWebPart :
 System.Web.UI.WebControls.WebParts.WebPart
 {

 HyperLink _hyperLink;

 string _strURL = "http://www.microsoft.com";
 string _strDisplayName = "This is a link";
 [Personalizable(), WebBrowsable, WebDisplayName("Display Name")]
 public string DisplayName
 {
 get
 {
 return this._strDisplayName;
 }
 set
 {
 this._strDisplayName = value;
 if (_hyperLink != null)
 {
 _hyperLink.Text = this.DisplayName;
 }
 }
 }
 [Personalizable(), WebBrowsable, WebDisplayName("URL")]
 public string URL
 {
 get
 {
 return this._strURL;
 }

 set
 {
 this._strURL = value;

284 Part II Advanced Features

 if (_hyperLink != null)
 {
 _hyperLink.NavigateUrl = this.URL;
 }

 }
 }

 protected override void CreateChildControls()
 {
 _hyperLink = new HyperLink();
 _hyperLink.NavigateUrl = this._strURL;
 _hyperLink.Text = this._strDisplayName;
 this.Controls.Add(_hyperLink);
 base.CreateChildControls();
 }
 }
}

 . 7 . . Compile the WebPartLib project . Note that this adds the new HyperLinkWebPart
Web Part to the Toolbox . You need that in the next step .

 . 8 . . Now add the HyperLinkWebPart to the catalog . The Web Part should already be in
the Toolbox .

 . 9 . . Put the CatalogZone into Edit Templates mode by clicking the small arrow in the Web
Template . Then, drag the HyperLinkWebPart into the CatalogZone, just as you did
 earlier with the TextBox, as shown here:

 Chapter 13 Web Parts 285

 . 10 . . Add a title to the new catalog item . .Switch to the source code window in Visual Studio .
In the markup (in the Source view), add a title to the new control:

<ZoneTemplate>
 <asp:DeclarativeCatalogPart
 ID="DeclarativeCatalogPart1" runat="server">
 <WebPartsTemplate>
 <cc1:HyperLinkWebPart
 Title="A HyperLink"
 ID="HyperLinkWebPart1"
 runat="server" />
 <asp:TextBox ID="TextBox1"
 Title="A TextBox"
 runat="server">
 </asp:TextBox>
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
</ZoneTemplate>

The HyperLinkWebPart should now appear in the catalog with a title, as shown here:

286 Part II Advanced Features

 . 11 . . Add a PropertyGridEditorPart to the EditorZone on the page . Just pick one out of the
Toolbox and drop it onto the EditorZone, as shown in the following graphic:

 . 12 . . Surf to the Web site . .Put the page in Catalog mode by selecting Catalog from the
Switch Display Mode drop-down list .

 . 13 . . Select A Hyper Link in the Catalog Zone, and add it to the Links Web Part Zone .

 . 14 . . Put the Web Parts Page into Edit mode by selecting Edit from the Switch Display Mode
drop-down list . Click the arrow in the upper-right corner of the newly added link .

 Chapter 13 Web Parts 287

 . 15 . . Select Edit to edit this link . You should see the Editor Zone appear, along with the new
Property Grid showing text boxes for editing the DisplayName and URL. The default
DisplayName and URL appear in the text boxes—just type in new values .

 . 16 . . Type in a new DisplayName and a new URL . (The example points to www.asp.net .)
Select OK . The browser should now show the new properties for the HyperLinkWebPart .

You should be able to surf to the site represented by the link .

288 Part II Advanced Features

Chapter .13 .Quick .Reference

To Do This

Enable a Web site to use Web Parts Run aspnet_regsql against your application’s database to make
sure Personalization and roles are enabled for the site .

Enable a Web page to use WebPart
controls

Add a WebPartManager to the page on which you wish to use
WebPart controls .

Add various editing capabilities to a
Web Parts page

Add an EditorZone to the page .

Add a place in which to position
server-side controls to be managed
by the Web Part architecture

Add a WebZone to the page .

Allow users to dynamically add
controls from a collection of controls

Add CatalogZone to the page . Add controls to the catalog
while in Edit Templates mode .

Create a Web Part Derive a class from System.Web.UI.WebControls.WebParts.
WebPart, and then do one of the following:
o Render some HTML in the Web Part Render method
o Create ASP .NET child controls, and add them to the Web

Part Controls collection for automatic rendering

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Microsoft ASP.NET 4 Step by Step

 . . 289

Part III

Caching and State Management

In this part:

Session State . 291

Application Data Caching . 321

Caching Output . 343

 . . 291

Chapter 14

Session State
After completing this chapter, you will be able to

n Understand the importance of managing session state in a Web application .

n Use the session state manager (the Session object) .

n Configure session state .

n Be aware of the different possibilities for storing session state with ASP .NET .

This chapter covers managing session state in your ASP .NET application . Programming Web
applications requires that you to be very mindful of how the state of your application is dis-
tributed at any moment . One of the most important types of state in a Web application is
session state—the state associated with a single particular session . Because Web applications
are distributed by nature, and because the nature of the HTTP protocol is stateless, keeping
track of any single client has to be done deliberately .

ASP .NET session state support is extensive, reliable, and flexible—offering many advantages
over the session state support available in other Web platforms such as classic ASP . For
starters, ASP .NET session state is handled by the Session object, an object dictionary that’s
automatically created with each new session (if you have session state enabled) . The Session
object is easily accessible through the HttpContext object, which you can reference at any
point during the request . The process of associating user state with a particular user’s session
is handled automatically by ASP .NET . Whenever you want to access session state, you just
grab it from the context (it’s also mapped into a member variable living on the page) . You
can choose how ASP .NET tracks session state, and you can even tell ASP .NET where to store
session state .

This chapter begins with a look at how various pieces of state are managed by ASP .NET and
the gap filled by the session state manager .

Important To install the code samples for this book, you must have Administrator rights on
your computer . If you are using your own computer, you probably have Administrator rights . If
you are using a computer in an organization and you do not have Administrator rights, please
consult your computer support or IT staff . See the “Code Samples” section in the Introduction for
more information .

292 Part III Caching and State Management

Why .Session .State?
After you have worked with ASP .NET in the previous chapters, one theme should be
 emerging . Web-based programming distinguishes itself as a programming idiom in which
you try to manage an application serving multiple users distributed over a wide area .
What’s more, you’re doing it over a disconnected (and stateless) protocol .

For example, imagine you’re writing some sort of shopping portal . Certain types
of application data—such items as inventory and supplier lists—can be kept in a
central database .

You know that System.Web.UI.Page and server-side controls manage view state . However,
when you think about the nature of data in a user’s shopping cart, you see that the data
clearly belongs elsewhere .

You don’t really want to store the data in the page’s ViewState . Although it’s possible for
 simple applications, storing large chunks of data in view state bogs down your users’ experi-
ence of the site (the site is much slower) and it poses a security risk by having items travel
back and forth with each request . In addition, only serializable types can be stored in view
state . Finally, you lose the view state if you redirect to another page .

Unfortunately, a single user’s session data doesn’t really belong in the application database
either . Perhaps if you expected only one user over the lifetime of your application, that might
work . However, remember the nature of a Web application is to make your application avail-
able to as many clients as possible . Suddenly, it becomes clear that you want to be able to
carve out a small data-holding area that persists for the lifetime of a single user’s session .
This type of data is known as session state .

ASP .NET .and .Session .State
Since its inception, ASP .NET has supported session state . When session state is turned on,
ASP .NET creates a new Session object for each new request . The Session object becomes part
of the context (and is available through the page) . ASP .NET stamps the Session object with an
identifier (more on that later), and the Session object is reconstituted when a request comes
through containing a valid session identifier . The Session object follows the page around and
becomes a convenient repository for storing information that has to survive throughout the
session, not simply for the duration of the page .

The Session object is a dictionary of name/value pairs . You can associate any Common
Language Runtime (CLR)-based object with a key of your choosing and place it in the
Session object so that it will be there when the next request belonging to that session comes
through . Then, you can access that piece of data using the key under which it was stored . For

 Chapter 14 Session State 293

example, if you want to store some information provided by the user in the Session object,
you can write code like this:

void StoreInfoInSession()
{
 String strFromUser = TextBox1.Text;
 Session["strFromUser"] = strFromUser;
}

To retrieve the string during the next request, use code like this:

void GetInfoFromSession()
{
 String strFromUser = Session["strFromUser"] ; // NOTE: may be null
 TextBox1.Text = strFromUser;
}

The brackets on the Session object indicate an indexer . The indexer is a convenient syntax for
expressing keys—both when inserting data into and retrieving data from the Session object .
Do note, however, that if the key you provide doesn’t map to a piece of data in the session
dictionary, the Session object will return null . In production code, it’s always wise to check for
a null value and react accordingly .

Managing session state in ASP .NET is extraordinarily convenient . In ASP .NET, session state can
live in a number of places, including (1) “in proc”—in the ASP .NET worker process, (2) on a
separate state server running a Windows Service process, and (3) in a Microsoft SQL Server
database . Because session management follows the provider pattern you saw in earlier chap-
ters, you can replace relatively easily the ASP .NET built-in session state management with an
implementation of your own .

First, start by getting a taste of using session state right now .

Introduction .to .Session .State
To understand how session state works, this exercise involves creating a Web site with a page
that stores a value as a member variable and as an element of session state . It illustrates the
difference between page state during a request and session data that persists beyond a
request .

Trying session state

 . 1 . . Create a new Empty ASP .NET Web Application . Name it SessionState .

294 Part III Caching and State Management

 . 2 . . In the default page (Default .aspx), drag a text box to enter a value that will be stored in
session state . Add a label to identify the TextBox, too, as shown here:

 . 3 . . Drag two buttons and a label onto the form . The first button is for adding data to
the session string . The second is to show the session state . Set the Text property of
the first button to Add .String .To .Session .State . Then, give the button the value
AddStringToSessionState as an ID and double-click it in the Designer to insert an event
handler in the code-behind file . This button ultimately adds the string from the text
box to the page’s session state . Doing so can help you distinguish the buttons later
on . It doesn’t matter what you name the second button (I used the text “Just Submit”
and kept the default ID) . The first button submits the string to the server to be saved
in a local field (for now), and the other button simply performs a postback . This
way, you can see the ephemeral nature of page member variables . Name the label
LabelShowString . You use it to display the value of the string .

 . 4 . . Add a string variable member to the page named sessionString . In the Page_Load
handler, set the text box on the page to the value of the string . Then, turn your atten-
tion to the event handler for the SubmitString button . Have the handler take the Text
property from the TextBox1 and store it in the page member variable . Then, set the
LabelShowString label text to the value of the string like so:

public partial class _Default : System.Web.UI.Page
{
 string sessionString;
 protected void Page_Load(object sender, EventArgs e)

 Chapter 14 Session State 295

 {
 this.LabelShowString.Text = this.sessionString;
 }
 protected void AddStringToSessionState_Click(object sender, EventArgs e)
 {
 this.sessionString = this.TextBox1.Text;
 this.LabelShowString.Text = this.sessionString;
 }
}

 }

 . 5 . . Now run the program . Type a string into the text box and click Add String To Session
State . When the post goes to the page, the page will show the string in the label
like this:

 . 6 . . Now click the Just Submit button . What happens? Remember, Page_Load simply
looks at the value of the sessionString member variable and stuffs it into the label .
Pages (and HTTP handlers in general) are very short-lived objects . They live for the
duration of the request and then are destroyed—along with all the data they hold .

296 Part III Caching and State Management

The sessionString member variable evaporated as soon as the last request finished .
A new sessionString member variable (which was empty) was instantiated as soon as
the page was re-created:

Chapter 4, “Custom Rendered Controls,” describes how controls manage their own
state . But in this case, you take the data from the text box and store it in a member
variable in the Page class . The lifetime of the page is very short . The page lives long
enough to generate a response, and then it disappears . Any state you store as data
members in the page disappears too . That’s why, when you click the Just Submit but-
ton, you don’t see the string displayed . You do see the string when you click Add String
To Session State because the member variable survives long enough to support the
button’s Click event handler .

 . 7 . . Using session state is a way to solve this issue . To show this, add a new label named
LabelShowStringAsSessionState to the page . This one will show the data as retrieved
from the Session object:

 Chapter 14 Session State 297

 . 8 . . Write code to store the string in session state . Have the AddStringToSessionState take
the text from TextBox1 and store it in the Session object . Then, update the Page_Load
method to display the value as it came from session state, as shown in bold type in the
following code:

public partial class _Default : System.Web.UI.Page
{
 string sessionString;

 protected void Page_Load(object sender, EventArgs e)
 {
 this.LabelShowString.Text = this.sessionString;
 this.LabelShowStringAsSessionState.Text =
 (string)this.Session["sessionString"];
 }

 protected void AddStringToSessionState_Click(object sender, EventArgs e)
 {
 // store in member variable
 this.sessionString = this.TextBox1.Text;

 // store in session state
 this.Session["sessionString"] = this.TextBox1.Text;

 // show member variable
 this.LabelShowString.Text = this.sessionString;

 // show session state
 this.LabelShowStringAsSessionState.Text =
 (string)this.Session["sessionString"];
 }
}

 }

 . 9 . . Run the program . Type in a string and click the Add String To Session State .
 .button . Both labels should contain data . The LabelShowString label holds data

298 Part III Caching and State Management

because the SubmitString handler made the member variable assignment . The
LabelShowStringAsSessionState label also shows data because the handler stored that
text in session state:

 . 10 . . Now click the Just Submit button and see what happens:

In this case, the page was simply submitted, causing only the Page_Load to be
 executed . Page_Load displays both the sessionString member variable (which is empty
because it lives and dies with the page) and the data from the Session object (which
lives independently of the page) .

As you can see, session state is pretty convenient . However, you wouldn’t get very far if all
you could do was store simple strings and scalars . Fortunately, the session dictionary stores
all manner of CLR objects .

 Chapter 14 Session State 299

Session .State .and .More .Complex .Data
The ASP .NET Session object can store any (serializable) object running in the CLR . That goes
for larger data—not just small strings or other scalar types . One of the most common uses
for the Session object is for implementing features such as shopping carts or any other data
that has to go with a particular client . For example, in a commerce-oriented site where
customers can purchase products, you would probably implement a central database rep-
resenting your inventory . Then, as users sign on, they have the opportunity to select items
from your inventory and place them in a temporary holding area associated with the session
they’re running . In ASP .NET, that holding area is typically the Session object .

A number of different collections are useful for managing shopping cart–like scenarios .
Probably the easiest to use is the good ole ArrayList, an automatically sizing array that sup-
ports both random access and the IList interface . However, for other scenarios you might use
a small DataTable, a DataSet, or some other more complex type . Keep in mind that DataTable
and DataSet have more features than necessary for some situations, which could lead to
bloated session state if you’re not careful .

Chapter 10, “Data Binding,” takes a quick look at ADO and data access . The next example
 revisits data-bound controls (the DataList and the GridView) . You also work with the
DataTable in depth . The example illustrates using ADO .NET objects, data-bound controls, and
session state to transfer items from an inventory (represented as a DataList) to a collection of
selected items (represented as a GridView) .

Using session state, ADO.NET objects, and data-bound controls

 . 1 . . Create a new page on the SessionState site named UseDataList .aspx.

Add DataList to the page by copying the following code between the <div> tags on
the generated page . The DataList will display the elements in the .NET References table
from the database shown in Chapter 10 .

<asp:DataList ID="DataList1"
 runat="server" BackColor="White" BorderColor="#E7E7FF"
 BorderStyle="None" BorderWidth="1px" CellPadding="3"
 GridLines="Horizontal"
 Style="z-index: 100; left: 8px; position: absolute; top: 16px"
 OnItemCommand="DataList1_ItemCommand" Caption="Items in Inventory" >
<FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />
<SelectedItemStyle BackColor="#738A9C"
 Font-Bold="True" ForeColor="#F7F7F7" />
<AlternatingItemStyle BackColor="#F7F7F7" />
<ItemStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
 <ItemTemplate>
 ID:
 <asp:Label ID="IDLabel"
 runat="server" Text='<%# Eval("ID") %>'></asp:Label>

 Title:

300 Part III Caching and State Management

 <asp:Label ID="TitleLabel"
 runat="server" Text='<%# Eval("Title") %>'></asp:Label>

 AuthorLastName:
 <asp:Label ID="AuthorLastNameLabel"
 runat="server" Text='<%# Eval("AuthorLastName")
 %>'></asp:Label>

 AuthorFirstName:
 <asp:Label ID="AuthorFirstNameLabel"
 runat="server" Text='<%# Eval("AuthorFirstName")
 %>'></asp:Label>

 Topic:
 <asp:Label ID="TopicLabel" runat="server"
 Text='<%# Eval("Topic") %>'></asp:Label>

 Publisher:
 <asp:Label ID="PublisherLabel"
 runat="server"

 Text='<%# Eval("Publisher") %>'></asp:Label>

 <asp:Button ID="SelectItem"

 runat="server" Text="Select Item" />

 </ItemTemplate>
 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True"
 ForeColor="#F7F7F7" />
</asp:DataList>

The Microsoft Visual Studio Designer should appear like this when you finish:

 Chapter 14 Session State 301

 . 2 . . Stub out a shell for the Select Item button on the ItemCommand handler . Select
DataList1 on the page . Look at the Properties pane in Visual Studio . Click the lightning
bolt button to view the available events you can handle . In the edit box next to the
ItemCommand event, notice the name of the command: DataList1_ItemCommand .
Double-click inside the edit box and Visual Studio will produce an item command han-
dler . The button’s handler will be named DataList1_ItemCommand to match the identi-
fier in the DataList1 . You use it shortly to move items from the inventory to the selected
items table .

public partial class UseDataList : System.Web.UI.Page
{

 protected void DataList1_ItemCommand(object source,
 DataListCommandEventArgs e)
 {
 }

}

 . 3 . . Go back to the code for the page and add some code to open a database and populate
the DataList . Name the function GetInventory . The example that comes with this book
includes a SQL Server database named AspNetStepByStep4 that will work . Add the
 database from the Chapter 10 example to the App_Data folder of this project . You can
obtain the connection string by viewing the database in Server Explorer after you have
added it to the project . You can find the connection string in the Properties pane after
you select the database in Server Explorer .

using System.Data;
Using System.Data.Common;

public partial class UseDataList : System.Web.UI.Page
{

 protected DataTable GetInventory()
 {
 string strConnection =
 @"Data Source=
 .\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\ASPNETStepByStep4.mdf;
 Integrated Security=True;
 User Instance=True";

 DbProviderFactory f =
 DbProviderFactories.GetFactory("System.Data.SqlClient");

 DataTable dt = new DataTable();
 using (DbConnection connection = f.CreateConnection())
 {
 connection.ConnectionString = strConnection;
 connection.Open();
 DbCommand command = f.CreateCommand();

302 Part III Caching and State Management

 command.CommandText = "Select * from DotNetReferences";
 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();
 dt.Load(reader);
 reader.Close();
 connection.Close();
 }
 return dt;
 }

 protected DataTable BindToinventory()
 {
 DataTable dt;
 dt = this.GetInventory();
 this.DataList1.DataSource = dt;
 this.DataBind();
 return dt;
 }

 // More goes here...
}

 . 4 . . Now add a method named CreateSelectedItemsData . This is a table into which selected
items are placed . The method takes a DataTable object that describes the schema of
the data in the live database (you see how to get that soon) . You can create an empty
DataTable by constructing it and then adding Columns to the column collection . The
schema coming from the database will have the column name and the data type .

public partial class UseDataList : System.Web.UI.Page
{

 protected DataTable CreateSelectedItemsTable(DataTable tableSchema)
 {

 DataTable tableSelectedItemsData = new DataTable();

 foreach(DataColumn dc in tableSchema.Columns)
 {
 tableSelectedItemsData.Columns.Add(dc.ColumnName,
 dc.DataType);
 }
 return tableSelectedItemsData;

 }
}

 Chapter 14 Session State 303

 . 5 . . Add code to the Page_Load handler . When the initial request to a page is made (that
is, if the request is not a postback), Page_Load should call BindToInventory, which re-
turns the DataTable snapshot of the DotNetReferences table . Use the DataTable as
the schema on which to base the selected items table . That is, declare an instance of
a DataTable and assign it the result of CreateSelectedItemsTable . Then, store the (now
empty) table in the Session object using the key tableSelectedItems .

public partial class UseDataList : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 DataTable dt = BindToinventory();
 DataTable tableSelectedItems =
 this.CreateSelectedItemsTable(dt);
 Session["tableSelectedItems"] = tableSelectedItems;
 }
 }
}

Browse to the Web site to make sure that the database connects . It should look
 something like this:

 . 6 . . Now add a GridView to the page . It represents the table of selected items held in
 session state . Don’t bother to give it a data source . You add that shortly . Make sure the

304 Part III Caching and State Management

AutoGenerateColumns property is set to true . The page appears this way because it’s
using absolute positioning:

 . 7 . . Finally, complete the handler for the SelectItem button . This method should move items
from the inventory to the selected items table . You can get the selected item index
from the DataListCommandEventArgs coming into the handler . Call BindToInventory to
set up the DataList data source so that you can fetch the selected item . You can access
the columns in the selected row using ordinal indices . From the values in each column,
construct a new DataRow and add it to the selected items table . Store the modified
 table back in session state . Finally, apply the new selected items table to the DataSource
in the GridView1 and bind the GridView1 .

public partial class UseDataList : System.Web.UI.Page
{
 protected void DataList1_ItemCommand(object source,
 DataListCommandEventArgs e)
 {
 int nItemIndex = e.Item.ItemIndex;
 this.DataList1.SelectedIndex = nItemIndex;

 BindToinventory();

 // Order of the columns is:
 // ID, Title, FirstName, LastName, Topic, Publisher

 DataTable dt = (DataTable)DataList1.DataSource;
 String strID = (dt.Rows[nItemIndex][0]).ToString();
 String strTitle = (dt.Rows[nItemIndex][1]).ToString();
 String strAuthorLastName = (dt.Rows[nItemIndex][2]).ToString();
 String strAuthorFirstName = (dt.Rows[nItemIndex][3]).ToString();

 Chapter 14 Session State 305

 String strTopic = (dt.Rows[nItemIndex][4]).ToString();
 String strPublisher = (dt.Rows[nItemIndex][5]).ToString();

 DataTable tableSelectedItems;
 tableSelectedItems = (DataTable)Session["tableSelectedItems"];

 DataRow dr = tableSelectedItems.NewRow();
 dr[0] = strID;
 dr[1] = strTitle;
 dr[2] = strAuthorLastName;
 dr[3] = strAuthorFirstName;
 dr[4] = strTopic;
 dr[5] = strPublisher;

 tableSelectedItems.Rows.Add(dr);

 Session["tableSelectedItems"] = tableSelectedItems;

 this.GridView1.DataSource = tableSelectedItems;
 this.GridView1.DataBind();
 }
}

 . 8 . . Run the site . When the page first appears, you should see only the inventory list on the
left side of the page . Click the Select Item button on some of the items . You should see
your browser post back to the server and render the DataList and the GridView with
each newly added selected item .

Now you have a working application that uses session state . Next, look at the different ways
in which you can configure ASP .NET session state .

306 Part III Caching and State Management

Configuring .Session .State
ASP .NET gives you several choices for managing session state . You can turn it off completely,
you can run session state in the ASP .NET worker process, you can run it on a separate state
server, or you can run it from a SQL Server database . Here’s a rundown of the options
available:

n Don’t .use .it .at .all . By disabling session state, your application performance will in-
crease because the page doesn’t need to load the session when starting, and neither
does it need to store session state when it’s going away . On the other hand, you won’t
be able to associate any data with a particular user between page invocations .

n Store .session .state .“in .proc .” This is how session state is handled by default . In this
case, the session dictionaries (the Session objects) are managed in the same process as
the page and handler code . The advantage of using session state in process is that it’s
very fast and convenient . However, it’s not durable . For example, if you restart Internet
Information Services (IIS) or somehow knock the server down, all session state is lost . In
some cases, this might not be a big deal . However, if the shopping cart contains sizable
orders, losing that might be a big deal . In addition, the in-process session manager is
confined to a single computer, meaning you can’t use it in a Web farm . (A Web farm is
a group of servers tied together to serve Web pages as a single application .)

n Store .session .state .in .a .state .server . This option tells the ASP .NET runtime to direct
all session management activities to a separate Windows Service process running on a
particular computer . With this option, you have the advantage of running your server
in a Web farm . The ASP .NET session state facilities support Web farms explicitly . To
run in a Web farm, you direct all your applications to go to the same place to retrieve
session information . The downside of this approach is that it does impede performance
somewhat—applications need to make a network round-trip to the state server when
loading or saving session information . To reduce the overall size of the stored informa-
tion, when storing session data in the state server, with ASP .NET 4 you now have the
option of using compression to reduce the amount of data being transferred . Just in-
clude the compressionEnabled=true setting in the sessionState section of web .config .

n Store .session .state .in .a .database .  Configuring your application to use a SQL Server
database for state management causes ASP .NET to store session information in a SQL
Server database somewhere on your network . Use this option when you want to run
your server from in a Web farm when you want session state to be durable and safe .
As with the state server approach, when storing session data in the SQL Server data-
base, you have the option of using compression to reduce the amount of data being
transferred . Again just include the compressionEnabled=true setting in the sessionState
 section of web .config .

 Chapter 14 Session State 307

When you configure ASP .NET session state during development, you can edit the
 configuration file directly . After your site is deployed, you might prefer to configure session
state through the session state configuration page in IIS:

Turning Off Session State
The ASP .NET session state configuration tool available through IIS touches your Web site’s
web .config file and inserts the right configuration strings to enforce the settings you choose .
To turn off session state completely, select Off from the session state mode control .

Storing Session State InProc
To store session state in the ASP .NET worker process, select InProc from the session state
mode control . Your application will retrieve and store session information very quickly, but
the session state information is available to your application only on the particular server on
which the session information was originally stored . (That is, the session information is not
available to other servers that might be working together on a Web farm .)

Storing Session State in a State Server
To have ASP .NET store session state on another server on your network, select StateServer
from the SessionState mode control . When you select this item, the Connection String text

308 Part III Caching and State Management

box and the network Timeout text box become available . Insert the protocol, IP address, and
port for the state server in the Connection String text box . For example, the string

tcpip=loopback:42424

will store the session state on the local computer over port 42424 . If you want to store the
session state on a computer other than your local server, simply provide its IP address in
place of loopback . Before session state is stored on a server, you need to make sure the
ASP .NET state service is running on that computer . You can get to it using the Services icon in
Control Panel and Administration Tools, as shown in the following graphic, which shows the
Services control panel:

Storing Session State in a Database
The final option for storing session state is to use a SQL Server database . Select SQLServer
from the ASP .NET session state mode combo box . You are asked to enter the connection
string to the SQL Server state database . Here’s the string provided by default:

data source=localhost;Integrated Security=SSPI

You can configure ASP .NET so that it references a database on another server . Of course, you
need to have SQL Server installed on the target server to make this work . In addition, you can
find some SQL scripts to create the state databases in your .NET system directory
(C:\WINDOWS\Microsoft .NET\Framework\v2 .0 .50727 on my computer at the time of this
writing) . The aspnet_regsql .exe tool sets up the databases for you .

 Chapter 14 Session State 309

Tracking .Session .State
Because Web-based applications rely on HTTP to connect browsers to servers and HTML
to represent the state of the application, ASP .NET is essentially a disconnected architecture .
When an application needs to use session state, the runtime needs a way of tracking the
origin of the requests it receives so that it can associate data with a particular client . ASP .NET
offers three options for tracking the session ID—by cookies, the URL, or device profiles .

Tracking Session State with Cookies
This is the default option for an ASP .NET Web site . In this scenario, ASP .NET generates a
 hard-to-guess identifier and uses it to store a new Session object . You can see the session
identifier come through the cookie collection if you have tracing turned on . Notice how
ASP .NET stores the session ID in a request cookie . The tracing information also reveals the
names and the values of the session variables . The following graphic shows the session ID in
the request details section of the trace:

310 Part III Caching and State Management

The following graphic shows tracing information, indicating the session ID is just
another cookie:

Tracking Session State with the URL
The other main option is to track session state by embedding the session ID as part of the
request string . This is useful if you think your clients will turn off cookies (thereby disabling
cookie-based session state tracking) . Notice that the navigation URL has the session ID
 embedded in it:

Using AutoDetect
When you use AutoDetect, the ASP .NET runtime determines whether the client browser
has cookies turned on . If cookies are turned on, the session identifier is passed around as a
 cookie . If not, the session identifier is stored in the URL .

 Chapter 14 Session State 311

Applying Device Profiles
The UseDeviceProfile option tells ASP .NET to determine whether the browser supports
 cookies based on the SupportsRedirectWithCookie property of the HttpBrowserCapabilities
object set up for the request . Requests that flip this bit to true cause session identifier val-
ues to be passed as cookies . Requests that flip this bit to false cause session identifiers to be
passed in the URL .

Session State Timeouts
The timeout configuration setting manages the lifetime of the session . The lifetime of the
 session is the length of time in minutes a session can remain idle before ASP .NET abandons it
and renders the session ID invalid . The maximum value is 525,601 minutes (one year), and the
default is 20 .

Other .Session .Configuration .Settings
ASP .NET supports some other configuration settings not available through the IIS
 configuration utility . These are values you need to type into the web .config file directly .

If you don’t like the rather obvious name of the session ID cookie made up by ASP .NET (the
default is SessionID), you can change it using the cookieName setting . You might want to
rename the cookie as a security measure to hamper hackers in their attempts to hijack a
 session ID key .

If you want to replace an expired session ID with a new one, set the
 regenerateExpiredSessionId setting to true . This is only for cookieless sessions .

If you don’t like the SQL Server database already provided by ASP .NET to support session
state, you can use your own database . The allowCustomSqlDatabase setting turns this
feature on .

When you use SQL Server to store session data, ASP .NET has to act as a client of SQL Server .
Usually, the ASP .NET process identity is impersonated . You can instruct ASP .NET to use the
user credentials supplied to the identity configuration element in web .config by setting the
mode attribute to Custom . By setting the mode attribute to SQLServer, you tell ASP .NET to
use a trusted connection .

Use the stateNetworkTimeout for setting the number of seconds for the idle time limits of
the TCP/IP network connection between the Web server and the state server, or between the
SQL Server and the Web server . The default is 10 .

Finally, you can instruct ASP .NET to use a custom provider by setting the name of the
 provider in the custom element . For this to work, the provider must be specified elsewhere
in web .config (specifically in the providers element) .

312 Part III Caching and State Management

The .Wizard .Control: .An .Alternative .to .Session .State
One of the most common uses for session state is to keep track of information coming from
a user even though the information is posted back through several pages . For example, sce-
narios such as collecting mailing addresses, applying for security credentials, or purchasing
something on a Web site introduce this issue .

Sometimes the information to be gathered is minimal and can be done through only one
page . However, when collecting data from users requires several pages of forms, you need
to keep track of that information between posts . For example, most commercial Web sites
employ a multistage checkout process . After a users places a bunch of items in the shopping
cart, he or she clicks Check Out and the site redirects to a checkout page . From there, the
user is usually required to perform several distinct steps: set up a payment method, confirm
the order, and receive an order confirmation .

Although you could code something like this in ASP .NET 1.x, later versions of ASP .NET include
a Wizard control to deal with multistage data collection .

If you were to develop a multistage input sequence, you’d need to build in the navigation
logic and keep track of the state of the transaction . The Wizard control provides a template
that performs the basic tasks of navigating through multiple input pages while you provide
the specifics . The Wizard control logic is built around specific steps and includes facilities for
managing these steps . The Wizard control supports both linear and nonlinear navigation .

This example shows how to use the Wizard control to gather several different pieces of
 information from the client: a name and address, what kinds of software he or she uses, and
the kind of hardware he or she uses . For example, this might be used to qualify users for
 entry into a certain part of the Web site or perhaps to qualify them for a subscription .

Using the Wizard control

 . 1 . . Create a new page in the SessionState project named UseWizard .aspx .

 . 2 . . Drop a WizardControl from the Toolbox onto the page .

 . 3 . . When the Wizard Tasks window appears in the Designer, click the small arrow near the
top right corner of the Wizard . Click Auto Format to style the Wizard . The example here
uses the Professional style .

The example here also uses a StartNavigationTemplate and a SidebarTemplate so that
you have greater control over the look of these aspects of the Wizard . Although they
are not used explicitly in the example, they are shown here to illustrate how they fit
into the Wizard control . Using these templates, you can define how these parts of the
Wizard look by introducing controls to them . To convert these areas to templates,
click the small arrow in the upper right corner of the Wizard and select Convert To

 Chapter 14 Session State 313

StartNavigationTemplate . Then, click the small arrow in the upper right corner of the
Wizard again, and click Convert To SideBarTemplate .

Click the arrow again and select Add/Remove Wizard Steps to open the WizardStep
Collection Editor dialog box . Visual Studio adds two samples steps for you . Delete
them, as the following graphic shows:

 . 4 . . Add an Intro step, a Name and Address step, a Software step, a Hardware step, and
a Submit information step . That is, click the Add button to open the dialog box
where you can enter steps . “Name,” “Address,” “Software,” “Hardware,” and “Submit
Information” are the Titles for these pages . Make sure Intro uses a StepType of Start .

 . 5 . . Make sure the Submit information step has its StepType set to Finish, as shown in the
following graphic . With all of the steps in place, click OK .

314 Part III Caching and State Management

 . 6 . . Add controls to the steps . First, select the Wizard in the Designer, and then select Set
Position on the Format menu . Select Absolute . Now you can resize the Wizard . Set the
Height to 240 px and the Width to 650 px . Navigate to the step by selecting the small
arrow that appears on the upper right corner of the Wizard control . Select the Intro
step . The Intro step gets a label that describes what the user is entering:

 . 7 . . The Name and Address step should include labels and text boxes to get personal
 information . As you add these controls, select Absolute positioning for each one by
selecting Set Position on the Format menu . This lets you change the height and width .
Drop the name Label onto the pane on the right side of the Wizard . Below that, add the
name TextBox . Below that, drop the address Label on the pane followed below by the
address TextBox . Underneath that, add the city Label followed by the city TextBox . Drop
the state and postal code Labels next, followed by the state and postal code TextBoxes
on that line . Be sure to give usable IDs to the text boxes . The name TextBox should
have the ID TextBoxName . The address TextBox should have the ID TextBoxAddress .
The city TextBox should have the ID TextBoxCity . The state TextBox should have the ID
TextBoxState, and the postal code TextBox should have the ID TextBoxPostalCode . You’ll
need them during the submission step:

 Chapter 14 Session State 315

 . 8 . . Select the Software step and modify it . The Software step should include several
check boxes listing common software types . Add a CheckBoxList with the ID
CheckBoxListSoftware and fill it with the values you see here:

316 Part III Caching and State Management

 . 9 . . The Hardware step should include several check boxes listing common hardware types .
Add a CheckBoxList with the ID CheckBoxListHardware and fill it with the values you
see here:

 . 10 . . The Submit Information step (which you can use to show information before
 submitting) should include a multiline TextBox that summarizes the information
 collected . Give the TextBox the ID TextBoxSummary so that you can use it to display
the summary:

 Chapter 14 Session State 317

 . 11 . . Finally, edit the Page_Load method as shown in the following snippet to collect the
information from each of the controls in the Wizard . The controls are actually available
as member variables on the page . This information is loaded every time the page is
loaded . However, it is hidden from view until the user selects the step . Double-click the
Wizard control to add a handler for the Finish button that you can use to harvest the
information gathered by the wizard .

protected void Page_Load(object sender, EventArgs e)
{
 StringBuilder sb = new StringBuilder();
 sb.Append("You are about to submit. \n");

 sb.Append(" Personal: \n");
 sb.AppendFormat(" {0}\n", this.TextBoxName.Text);
 sb.AppendFormat(" {0}\n", this.TextBoxAddress.Text);
 sb.AppendFormat(" {0}\n", this.TextBoxCity.Text);
 sb.AppendFormat(" {0}\n", this.TextBoxState.Text);
 sb.AppendFormat(" {0}\n", this.TextBoxPostalCode.Text);
 sb.Append("\n Software: \n");
 foreach (ListItem listItem in CheckBoxListSoftware.Items)
 {
 if (listItem.Selected)
 {
 sb.AppendFormat(" {0}\n", listItem.Text);
 }
 }

 sb.Append("\n Hardware: \n");
 foreach (ListItem listItem in CheckBoxListHardware.Items)
 {
 if (listItem.Selected)
 {
 sb.AppendFormat(" {0}\n", listItem.Text);
 }
 }
 this.TextBoxSummary.Text = sb.ToString();
}
protected void Wizard1_FinishButtonClick(object sender,
 WizardNavigationEventArgs e)
{
 // Do something with the data here
}

 . 12 . . Now run the page and go through the steps . You should see each step along the way
and then finally a summary of the information collected . If the wizard on your page
doesn’t start with the first step (Intro), it’s probably because you’re running the page
in the debugger and a wizard step other than Intro is selected in the Designer . Simply

318 Part III Caching and State Management

select Intro in the Designer and rerun the page . The following graphic shows the intro
step in the Designer:

Here’s the name and address step .

 Chapter 14 Session State 319

Here’s the software step:

Here’s the hardware step .

320 Part III Caching and State Management

Here’s the final step .

Chapter .14 .Quick .Reference

To Do This

Access the current client’s session
state

Use the Page.Session property .

Use the current context’s HttpContext.Session property .

Access a specific value in the current
client’s session state

Session state is a set of key/value pairs . Access the data with the
string-based key originally used to insert the data in the cache .

Store session state in proc Edit the sessionState attributes in web .config . Set mode to InProc .

Store session state in a state server Edit the sessionState attributes in web .config . Set mode to
StateServer . Be sure to include a stateConnectionString .

Store session state in SQL Server Set the sessionState attributes in web .config . Set mode to SQLServer .
Be sure to include a sqlConnectionString .

Disable session state Set the sessionState attributes in web .config . Set mode to Off .

Use cookies to track session state Set the sessionState attributes in web .config . Set cookieless to false .

Use URL to track session state Set the sessionState attributes in web .config . Set cookieless to true .

Set session state timeout Set the sessionState attributes in web .config . Set timeout to a value
(representing minutes) .

 . . 321

Chapter 15

Application Data Caching
After completing this chapter, you will be able to

n Improve the performance of your application by using the application data cache .

n Avoid unnecessary round-trips to the database .

n Manage items in the application data cache .

This chapter covers built-in data-caching features in ASP .NET . Caching is a long-standing
means of improving the performance of any software system . The idea is to place frequently
used data in quickly accessed media . Even though access times for mass storage continue
to improve, accessing data from a standard hard disk is much slower than accessing it in
 memory . By taking often-used data and making it available quickly, you can improve the
performance of your application dramatically .

The ASP .NET runtime includes a dictionary (key/value map) of Common Language Runtime
(CLR) objects . The Cache lives with the application and is available through the HttpContext
and System.Web.UI.Page . Using the cache is very much like using the Session object . You can
access items in the cache using an indexer . In addition, you can control the lifetime of ob-
jects in the cache and even set up links between the cached objects and their physical data
 sources . This chapter starts by examining a case in which using the cache is justified .

Getting .Started .with .Caching
ASP .NET’s caching facility is extremely easy to use . In addition, it’s also configurable in the
sense that you can tell ASP .NET to apply expirations to cached items and you can set up
callback methods so that your application knows when items have been removed from the
cache . The following exercise shows how using the cache can benefit your application .

Making an application that benefits from caching

 . 1 . . Create a new project . Make it an Empty ASP .NET Web Application . Call it
UseDataCaching . (If you prefer, you can use the project from Chapter 14, “Session
State,” because this project uses the same database .)

 . 2 . . Look at the UseDataList page . If you created a new Web site, borrow the UseDataList
code from the example in Chapter 14 . To bring it into your new project, right-click the
project in Solution Explorer and click Add Existing Item . Navigate to the location of the
code from Chapter 14 . Grab the UseDataList .aspx, UseDataList .aspx .cs, and UseDataList .
aspx .designer .cs files from Chapter 14 . Click Add to copy them into this new project .

322 Part III Caching and State Management

The code you imported refers to the database in the SessionState example . That’s okay .
If you want to, you can change it to the database in this application’s App_Data
directory, but that is not strictly necessary as long as the path points to an available
 database somewhere on your system .

 . 3 . . Examine in particular the GetInventory, the BindToInventory, and the Page_Load
 methods . Listing 15-1 shows the code .

LISTING .15-1 Inventory binding code

protected DataTable CreateSelectedItemsTable(DataTable tableSchema)
{
 DataTable tableSelectedItemsData = new DataTable();

 foreach (DataColumn dc in tableSchema.Columns)
 {
 tableSelectedItemsData.Columns.Add(dc.ColumnName,
 dc.DataType);
 }
 return tableSelectedItemsData;
}

protected DataTable GetInventory()
{
 DataTable dt = null;

 dt = new DataTable();
 string strConnection =
 @"Data Source=
 .\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\ASPNETStepByStep4.mdf;
 Integrated Security=True;
 User Instance=True";
 DbProviderFactory f =
 DbProviderFactories.GetFactory("System.Data.SqlClient");
 using (DbConnection connection = f.CreateConnection())
 {
 connection.ConnectionString = strConnection;
 connection.Open();
 DbCommand command = f.CreateCommand();
 command.CommandText = "Select * from DotNetReferences";
 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();
 dt.Load(reader);
 reader.Close();
 connection.Close();
 }
 return dt;
 }
protected DataTable BindToInventory()
{

 Chapter 15 Application Data Caching 323

 DataTable dt;
 dt = this.GetInventory();
 this.DataList1.DataSource = dt;
 this.DataBind();
 return dt;
}
protected void Page_Load(object sender, EventArgs e)
{ if (!IsPostBack)

 {
 DataTable dt = BindToInventory();
 DataTable tableSelectedItems =
 this.CreateSelectedItemsTable(dt);
 Session["tableSelectedItems"] = tableSelectedItems;
 }
}

 . 4 . . Run the application to make sure it works . That is, it should connect to the
DotNetReferences table and bind the DataList to the table from the database .

The GetInventory and BindToInventory methods are called by the Page_Load method . How
often is Page_Load called? Every time a new page is created—which happens for every single
HTTP request destined for the UseDataList page . In the case of running this application on a
single computer with one client (in a testing situation), perhaps connecting to the database
for every request isn’t a big deal . However, for applications that are expected to serve thou-
sands of users making frequent requests, repeated database access actually becomes a very
big deal . Accessing a database is a very expensive operation . As you see shortly, it can take a
long time (on the computer time scale) simply to connect to this database and read the sev-
eral rows contained in the DotNetReferences table . Data access can only get more expensive
as the size of the tables in the database grows . A half second in the computer processing
time scale is eons to the program .

Now think about the nature of the inventory table . Does it change often? Of course, not in
the case of this simple application . However, think about how this might work in a real ap-
plication . The items carried in an inventory might not change as often as other data sets
might (and such changes might occur at regular, predictable intervals) . If that’s the case,
why does the application need to hit the database each time a page is loaded? Doing so is
certainly overkill . If you could take those data elements and store them in a medium that of-
fers quicker access than the database does (for example, the computer’s internal memory),
your site could potentially serve many more requests than if it had to make a round-trip
to the database every time it loads a page . This is a perfect opportunity to cache the data .
(The caveat here is that if the inventory data set begins fluctuating quickly, for example,
 every 5 seconds, it becomes a poor candidate for caching .)

324 Part III Caching and State Management

Using .the .Data .Cache
Using the data cache in the simplest and most naive way supported by ASP .NET is very much
like accessing the Session object . Remember, accessing the Session object involves using an
indexer (the square bracket syntax) and a consistent index to store and retrieve data . The
data cache works in exactly the same way (although it has some other features for managing
items in the cache) .

The strategy for caching a piece of data usually involves these steps:

 . 1 . . Look in the cache for the data element .

 . 2 . . If it’s there, use it (bypassing the expensive database round-trip) .

 . 3 . . If the data element is unavailable in the cache, make a round-trip to the database to
fetch it .

 . 4 . . If you had to fetch the data, cache the data element so that it is available next time
around .

The next example modifies the UseDataList page so that it stores the data item in the cache
after acquiring it for the first time . Although the first time Page_Load is called it might take a
while (on a computer’s time scale), subsequent calls are much faster .

Using the cache

 . 1 . . Open the UseDataList .aspx .cs file and go to the GetInventory method .

 . 2 . . Modifying the method to use the cache is fairly straightforward . The following listing
highlights the changes . First, check to see whether the item is in the cache . If search-
ing the cache for the DataSet turns up a valid object reference, you can bypass the
database lookup code and return the referenced DataSet . If searching the cache turns
up a null object reference, go ahead and make the round-trip to the database . When
the database lookup finishes, you’ll have a good DataSet (provided the query suc-
ceeds) . Cache it before returning the reference to the caller . If you include the Trace
statements, you can see exactly how big an impact caching can make . The changes you
need to make are shown in bold type:

protected DataTable GetInventory()
{
 DataTable dt = null;

 Trace.Warn("Page_Load", "looking in cache");
 dt = (DataTable)Cache["InventoryDataTable"];
 Trace.Warn("Page_Load", "done looking in cache");
 if (dt == null)
 {
 Trace.Warn("Page_Load", "Performing DB lookup");
 dt = new DataTable();

 Chapter 15 Application Data Caching 325

 string strConnection =
 @"Data Source=
 .\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|ASPNETStepByStep4.mdf;
 Integrated Security=True;
 User Instance=True";
 DbProviderFactory f =
 DbProviderFactories.GetFactory("System.Data.SqlClient");

 using (DbConnection connection = f.CreateConnection())
 {
 connection.ConnectionString = strConnection;
 connection.Open();
 DbCommand command = f.CreateCommand();
 command.CommandText = "Select * from DotNetReferences";
 command.Connection = connection;

 IDataReader reader = command.ExecuteReader();
 dt.Load(reader);
 reader.Close();
 connection.Close();
 }
 Cache["InventoryDataTable"] = dt;
 Trace.Warn("Page_Load", "Done performing DB lookup");
 }
 return dt;
}

This code significantly reduces the cost of loading the page (after the data is loaded in
the cache, of course) . Next time the page is loaded, it uses the cached version—avail-
able through Cache at a tremendously reduced cost . How much is the cost savings? It’s
huge, as you can see by looking at the trace pages for the application, as described in
the following section .

Impact .of .Caching
If you included the Trace statements in the GetInventory method, you can surf to the trace
page to see the effect of caching . The UseDataCaching application included here has the
Trace attribute turned off in the page but has application tracing turned on . That is, the
web .config includes the following section:

<configuration>
 <system.web>
 <trace enabled="true" />
 <system.web>
</configuration>

You can see the trace information by surfing to the virtual directory with a file name of
Trace .axd . Instead of surfing to the UseDataList .aspx file, surf to the Trace .axd file in the
same directory .

326 Part III Caching and State Management

Figure 15-1 shows the trace statements produced by accessing the page for the first time .
The column farthest to the right indicates the time elapsed since the previous trace state-
ment . The trace statement shows that more than 0 .016 seconds has elapsed during the page
loading time .

FIGURE .15-1 . Hitting the database takes more than half a second in this scenario .

Make a few more posts to the page (for example, add some items from the inventory to the
selected items grid) . Then, go back and look at the tracing information for the subsequent
postbacks . Figure 15-2 shows some examples of trace statements . Fetching from the Cache
is dramatically faster than hitting the database—by several orders of magnitude! Again, you
might not notice the difference with just one client surfing the page every once in a while .
However, when multiple clients are surfing to the same page simultaneously, they’ll get their
responses much more quickly than if the page had to make a round-trip to the database .

 Chapter 15 Application Data Caching 327

FIGURE .15-2 . Fetching data from the cache takes 0 .000040 seconds .

Managing .the .Cache
The last example cached items in the most naive way possible . They were simply placed in
the cache and given an index . However, at times you might need a bit more control over the
items in the cache . For example, what if the physical source backing one of the items you
cache changes? If getting accurate information out to your users is important, you might
want to know about the change so that you can handle it (perhaps by reloading the new
 information into the cache) . As another example, what if you knew that the data in your
cache would become invalid after a certain period of time or on a certain date? You’d want to
make sure that the data in the cache is invalidated and the cache is appropriately refreshed
with new data .

In addition to placing items in the cache using the indexer, the Cache object implements a
parameterized method named Insert that you can use to control many aspects of the cached
item . The ways in which you can control cache entries include the following:

n Setting up an absolute expiration time

n Setting up a sliding expiration time

n Setting up dependencies between cached items and their backing sources (for
 example, database, file, or directory dependencies, or even dependencies on other
cache entries)

n Managing a relative invalidation priority of cached items

n Setting up callback functions to be called when items are removed

328 Part III Caching and State Management

The Cache’s insert method includes four overloads . Table 15-1 enumerates them .

TABLE .15-1 . Overloads .for .the .Cache .Insert .Method

Insert Overload Description

Insert (String, Object) Directly corresponds to the indexer version . Blindly
places the object in the Cache using the string key in
the first parameter .

Insert (String, Object, CacheDependency) Inserts an object into the Cache and associates it with
a dependency .

Insert (String, Object, CacheDependency,
DateTime, TimeSpan)

Inserts an object into the Cache, associating it with a
dependency and an expiration policy .

Insert (String, Object, CacheDependency,
DateTime, TimeSpan, CacheItemPriority,
CacheItemRemovedCallback)

Inserts an object into the Cache . Associates a
 dependency and expiration and priority policies .
Also associates the Cache entry with a delegate for
a callback to notify the application when the item is
 removed from the cache .

The following example illustrates some of these settings and how they work . In addition,
the forthcoming examples illustrate another way to get DataTables and DataSets . You can
actually create them programmatically . The next few examples use a DataTable that is cre-
ated in memory rather than being fetched from a database . Although the impact of cach-
ing isn’t quite as dramatic when using the in-memory DataTable, it is still appreciable—and
you can see this other approach to managing data . The following section also shows how
the DataTable serializes as XML as well (which is useful for examining cached items with file
dependencies) .

DataSets in Memory
Chapter 10, “Data Binding,” looks at making a round-trip to the database to gather data
 suitable to bind to a control . The previous chapter looks at maintaining data between
 requests by using the Session object . The Session object holds any serializable .NET CLR
 object—even a DataReader . However, it’s not a good idea to hold on to a DataReader for
long periods of time because that means holding a connection open . Having too many open
connections ultimately slows your site to a crawl . A better approach is to make single round-
trips to the database and hold on to a DataTable or a DataSet .

In addition to fetching them from databases, you can synthesize a DataTable program-
matically . Doing so involves constructing a DataTable and adding DataRows to describe
the schema . After constructing a DataTable, you can use it to create columns with the cor-
rect “shape,” populate them, and then add them to the table’s columns collection . Listing
15-2 shows an example of creating a DataTable in memory . (Note that you also saw basic
table creation in Listing 15-1 and in the previous chapter, but I didn’t call your attention to

 Chapter 15 Application Data Caching 329

it at the time so that I could save the discussion for this section .) The table is a collection of
 famous quotes and their originators that will be useful in the next examples .

LISTING .15-2 . The QuotesCollection object

public class QuotesCollection : DataTable
{
 public QuotesCollection()
 {

 //
 // TODO: Add constructor logic here
 //
 }

 public void Synthesize()
 {
 // Be sure to give a name so that it will serialize as XML
 this.TableName = "Quotations";
 DataRow dr;

 Columns.Add(new DataColumn("Quote", typeof(string)));
 Columns.Add(new DataColumn("OriginatorLastName",
 typeof(string)));
 Columns.Add(new DataColumn("OriginatorFirstName",
 typeof(string)));

 dr = this.NewRow();
 dr[0] = "Imagination is more important than knowledge.";
 dr[1] = "Einstein";
 dr[2] = "Albert";
 Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = "Assume a virtue, if you have it not";
 dr[1] = "Shakespeare";
 dr[2] = "William";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = @"A banker is a fellow who lends you his umbrella
 when the sun is shining, but wants it back the
 minute it begins to rain.";
 dr[1] = "Twain";
 dr[2] = "Mark";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = @"A man cannot be comfortable without his own
 approval.";
 dr[1] = "Twain";
 dr[2] = "Mark";
 this.Rows.Add(dr);

330 Part III Caching and State Management

 dr = this.NewRow();
 dr[0] = "Beware the young doctor and the old barber";
 dr[1] = "Franklin";
 dr[2] = "Benjamin";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = @"Reality is merely an illusion, albeit a
 very persistent one.";
 dr[1] = "Einstein";
 dr[2] = "Albert";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = "Beer has food value, but food has no beer value";
 dr[1] = "Sticker";
 dr[2] = "Bumper";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = @"Research is what I'm doing when I don't know
 what I'm doing";
 dr[1] = "Von Braun";
 dr[2] = "Wernher";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = "Whatever is begun in anger ends in shame";
 dr[1] = "Franklin";
 dr[2] = "Benjamin";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = "We think in generalities, but we live in details";
 dr[1] = "Whitehead";
 dr[2] = "Alfred North";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = "Every really new idea looks crazy at first.";
 dr[1] = "Whitehead";
 dr[2] = "Alfred North";
 this.Rows.Add(dr);

 dr = this.NewRow();
 dr[0] = @"The illiterate of the 21st century will not be
 those who cannot read and write, but
 those who cannot learn,
 unlearn, and relearn.";
 dr[1] = "Whitehead";
 dr[2] = "Alfred North";
 this.Rows.Add(dr);

 }
}

 Chapter 15 Application Data Caching 331

Building a DataTable in memory is straightforward—it’s mostly a matter of defining the
 column schema and adding rows to the table . This class is available on the CD accompany-
ing this book, so you don’t need to type the whole thing . You can just import it into the next
examples .

The next section looks at managing items in the cache .

Cache Expirations
The first way to manage cached items is to give them expiration thresholds . In some cases,
you might be aware of certain aspects of your cached data that allow you to place expiration
times on it . The Cache supports both absolute expirations and sliding expirations .

Placing absolute expirations

 . 1 . . To try out absolute expirations, add a new page to the UseDataCaching site named
CacheExpirations .aspx .

 . 2 . . Use Website, Add Existing Item to bring the QuoteCollection .cs file from the CD
 accompanying this book and make it part of this project .

 . 3 . . Drag a GridView onto the CacheExpirations page, as shown in the following graphic .
Don’t bind it to a data source yet . You handle that in the Page_Load method .

 . 4 . . In the Page_Load method of the CacheExpirations page, check the cache to see
whether there’s already an instance of the QuotesCollection object (just as in the previ-
ous example) . If the data set is not available from the cache, create an instance of the

332 Part III Caching and State Management

QuotesCollection class and call the Synthesize method to populate the table . Finally, add
it to the cache using the overloaded Insert method . You can use the DateTime class to
generate an absolute expiration . Bind the QuotesCollection object to the GridView . The
caching policy should be Cache.NoSlidingExpiration . Set up some trace statements so
that you can see how the expiration times affect the lifetime of the cached object .

protected void Page_Load(object sender, EventArgs e)
{
 QuotesCollection quotesCollection;

 DateTime dtCurrent = DateTime.Now;
 Trace.Warn("Page_Load",
 "Testing cache at: " +
 dtCurrent.ToString());
 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)
 { quotesCollection = new QuotesCollection();
 quotesCollection.Synthesize();

 DateTime dtExpires = new DateTime(2008, 5, 31, 23, 59, 59);
 dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",
 "Caching at: " +
 dtCurrent.ToString());
 Trace.Warn("Page_Load",
 "This entry will expire at: " +
 dtExpires);
 Cache.Insert("QuotesCollection",
 quotesCollection,
 null,
 dtExpires,
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Default,
 null);
 }

 this.GridView1.DataSource = quotesCollection;
 this.DataBind();

}

 . 5 . . Experiment with changing the dates and times to see how setting the expiration time
forces a reload of the cache .

An absolute expiration time applied to the cached item tells ASP .NET to flush the item from
the cache at a certain time . Now try using a different kind of expiration technique—the
 sliding expiration . Using a sliding expiration tells ASP .NET to keep the data in the cache
as long as it has been accessed within a certain period of time . Items that have not been
 accessed within that time frame are subject to expiration .

 Chapter 15 Application Data Caching 333

Placing sliding expirations

 . 1 . . To set a sliding expiration for the cached data, modify the Page_Load method in the
CacheExpirations page . Getting a sliding expiration to work is simply a matter of chang-
ing the parameters of the Insert method . Make up a time span after which you want the
cached items to expire . Pass DateTime.MaxValue as the absolute expiration date and
the TimeSpan as the final parameter like so:

protected void Page_Load(object sender, EventArgs e)
{
 QuotesCollection quotesCollection;

 DateTime dtCurrent = DateTime.Now;
 Trace.Warn("Page_Load",
 "Testing cache: " + dtCurrent.ToString());

 quotesCollection =
 (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)
 {
 quotesCollection = new QuotesCollection();
 quotesCollection.Synthesize();

 TimeSpan tsExpires = new TimeSpan(0, 0, 15);
 dtCurrent = DateTime.Now;

 Trace.Warn("Page_Load",
 "Caching at: " + dtCurrent.ToString());
 Trace.Warn("Page_Load",
 "This entry will expire in: " +
 tsExpires.ToString());
 Cache.Insert("QuotesCollection",
 quotesCollection,
 null,
 DateTime.MaxValue,
 tsExpires);
 }

 this.GridView1.DataSource = quotesCollection;
 this.DataBind();
}

 . 2 . . Surf to the page . You should see the cache reloading if you haven’t accessed the
cached item within the designated time frame .

Cache dependencies represent another way to manage cached items . Look at how they
work next .

334 Part III Caching and State Management

Cache Dependencies
In addition to allowing objects in the cache to expire by duration, you can set up dependen-
cies for the cached items . For example, imagine your program loads some data from a file
and places it into the cache . The backing file (that is, the source of the cached information)
might change, making the data in the cache invalid . ASP .NET supports setting up a depen-
dency between the cached item and the file so that changing the file invalidates the cached
item . The conditions under which the cached items may be flushed include when a file
changes, a directory changes, another cache entry is removed, or data in a table in Microsoft
SQL Server changes (this is an often requested feature available since ASP .NET 2 .0) .

Here’s an example that illustrates setting up cache dependencies .

Setting up cache dependencies

 . 1 . . Add a new page to the UseDataCache site . Name it CacheDependencies .aspx .

 . 2 . . Place a button on the page that you can use to post a request to the page to generate
an XML file from the QuotesCollection . Use ButtonSaveAsXML as its ID . Also, drag a
GridView onto the page like so:

 . 3 . . Double-click the button to generate a handler for the button that will save the
XML Schema and the XML from the DataTable to XML and XSD files in the
App_Data directory .

 Chapter 15 Application Data Caching 335

 . 4 . . In the handler, instantiate a QuotesCollection object and call Synthesize to generate the
data . In the page, you have a reference to the Server object . Call the MapPath method
in the Server object to get the physical path for saving the file . Then, use that path to
create an XML file and a schema file . The DataTable will do this for you automatically by
calling the WriteXmlSchema and WriteXml methods, respectively .

protected void ButtonSaveAsXML_Click(object sender, EventArgs e)
{
 QuotesCollection quotesCollection = new QuotesCollection();
 quotesCollection.Synthesize();
 String strFilePathXml =

 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xml");
 String strFilePathSchema =
 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xsd");
 quotesCollection.WriteXmlSchema(strFilePathSchema);
 quotesCollection.WriteXml(strFilePathXml);
}

 . 5 . . Now write a method to load the XML into the QuotesCollection object and cache the
data . You can use the file path to the XML file to create a dependency on the file . When
it changes, ASP .NET will empty the cache . Turn off the absolute expiration and the slid-
ing expiration by passing in Cache.NoAbsoluteExpiration and Cache.NoSlidingExpiration .
If you put trace statements in, you can see the effect of updating the file after it’s been
loaded in the cache . Finally, make sure to bind the GridView to the QuotesCollection .

protected void CacheWithFileDependency()
{
 QuotesCollection quotesCollection;

 Trace.Warn("Page_Load", "Testing cache ");
 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)
 {
 Trace.Warn("Page_Load", "Not found in cache");
 quotesCollection = new QuotesCollection();

 String strFilePathXml =
 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xml");
 String strFilePathSchema =
 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xsd");

 quotesCollection.ReadXmlSchema(strFilePathSchema);
 quotesCollection.ReadXml(strFilePathXml);

336 Part III Caching and State Management

 System.Web.Caching.CacheDependency cacheDependency =
 new System.Web.Caching.CacheDependency(strFilePathXml);

 Cache.Insert("QuotesCollection",
 quotesCollection,
 new
 System.Web.Caching.CacheDependency(strFilePathXml),
 System.Web.Caching.Cache.NoAbsoluteExpiration,
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Default,
 null);
 }

 this.GridView1.DataSource = quotesCollection;
 this.DataBind();
}

 . 6 . . Call the CacheWithFileDependency() in the Page_Load method .

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 ButtonSaveAsXML_Click(null, null);
 }
 CacheWithFileDependency();
}

 . 7 . . Now run the page . It should load the XML and schema into the QuotesCollection, save
the QuotesCollection in the cache, and then show the data in the grid . Clicking the Save
Table As XML button refreshes the XML file (on which a cache dependency was made) .
Because the file on the disk changes, ASP .NET will flush the cache . Next time you load
the page, the cache will need to be reloaded .

Next, look at the final cache dependency: the SQL Server dependency .

The SQL Server Dependency
ASP .NET 1 .0 had a huge gap in its cache dependency functionality . The most useful type of
dependency was completely missing—that is, a dependency between a cached item coming
from SQL Server and the physical database . Because so many sites use data provided by SQL
Server to back their DataGrids and other controls, establishing this dependency is definitely a
most useful way to manage cached data .

For the SQL Server dependency to work, you first configure SQL Server using the program
aspnet_regsql .exe . The dependency is described in the configuration file, whose name is
passed into the SqlCacheDependency constructor . The SqlCacheDependency class monitors

 Chapter 15 Application Data Caching 337

the table . When something causes the table to change, ASP .NET will remove the item from
the Cache .

Listing 15-3 shows a configuration file with a dependency on SQL Server .

LISTING .15-3 . Configuration settings for SQL Server cache dependency

<caching>
 <sqlCacheDependency enabled="true" >
 <databases >
 <add name="DBName" pollTime="500"
 connectionStringName="connectionString"/>
 </databases>
 </sqlCacheDependency>
</caching>

Listing 15-4 shows an ASP .NET page that loads the data from the SQL Server database and
establishes a dependency between the database and the cached item .

LISTING .15-4 . Page using SqlCacheDependency

<%@ Page Language="C#" %>
<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>
<script runat="server">
 protected void Page_Load(Object sender, EventArgs e)
 {
 DataSet ds = null;
 ds = (DataSet)Cache["SomeData"];
 if (ds == null)
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings["connectionString"].
 ConnectionString;
 SqlDataAdapter da =
 new SqlDataAdapter("select * from DBName.tableName",
 connectionString);
 ds = new DataSet();
 da.Fill(ds);
 SqlCacheDependency sqlCacheDependency =
 new SqlCacheDependency("DBName", "tableName");
 Cache.Insert("SomeData",
 ds,
 sqlCacheDependency);
 }
 GridView1.DataSource = ds;
 DataBind();
 }
</script>
<html><body>
 <form id="form1" runat="server">
 <asp:GridView ID="GridView1" runat="server">
 </asp:GridView>
 </form>
</body></html>

338 Part III Caching and State Management

Once items are in the cache and their lifetimes are established through expirations and
cached item dependencies, one other cache administrative task remains—reacting when
items are removed .

Clearing the Cache
As you can see from the previous examples, ASP .NET clears the cache on several occasions, as
follows:

n Removing items explicitly by calling Cache.Remove

n Removing low-priority items because of memory consumption

n Removing items that have expired

One of the parameters to one of the Insert overloaded methods is a callback delegate so that
ASP .NET can tell you that something’s been removed from the cache . To receive callbacks,
you simply need to implement a method that matches the signature, wrap it in a delegate,
and then pass it when calling the Insert method . When the object is removed, ASP .NET will
call the method you supply .

The next example illustrates setting up a removal callback function .

Setting up a removal callback

 . 1 . . One of the main tricks to getting the removal callback to work is finding an appropri-
ate place to put the callback . What happens if you make the callback a normal instance
member of your Page class? It won’t work . The callback will become disconnected after
the first page has come and gone . The callback has to live in a place that sticks around .
(You could make the callback a static method, however .) The perfect class for establish-
ing the callback is in the global application class . Chapter 18, “The HttpApplication Class
and HTTP Modules,” describes the application class and its services in more detail . For
now, add a global application class to your application . Select Website, Add New Item .
Select the Global Application Class template, and click Add to insert it into the project .
Microsoft Visual Studio adds a new file named Global .asax to your application .

 . 2 . . Global .asax .cs includes application-wide code . Write a method to handle the callback
in the Global .asax .cs file . In this case, the response will be to set a flag indicating the
cache is dirty . Then, the code will simply place the data back into the cache during the
Application_BeginRequest handler . The code for doing so looks very much like the code
in the CacheWithFileDependency method shown earlier . You can get a reference to the
cache through the current HttpContext .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

 Chapter 15 Application Data Caching 339

using System.Web.Security;
using System.Web.SessionState;
using System.Web.Caching;

namespace UseDataCaching
{
 public class Global : System.Web.HttpApplication
 {
 bool _bReloadQuotations = false;
 public void OnRemoveQuotesCollection(string key, object val,
 CacheItemRemovedReason r)
 {
 // Do something about the dependency Change
 if (r == CacheItemRemovedReason.DependencyChanged)
 {
 _bReloadQuotations = true;
 }
 }

 protected void ReloadQuotations()
 {
 QuotesCollection quotesCollection = new QuotesCollection();
 String strFilePathXml =
 Server.MapPath(HttpContext.Current.Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xml");
 String strFilePathSchema =
 Server.MapPath(HttpContext.Current.Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xsd");
 quotesCollection.ReadXmlSchema(strFilePathSchema);
 quotesCollection.ReadXml(strFilePathXml);

 System.Web.Caching.CacheDependency
 cacheDependency =
 new System.Web.Caching.CacheDependency(strFilePathXml);

 HttpContext.Current.Cache.Insert("QuotesCollection",
 quotesCollection,
 cacheDependency,
 System.Web.Caching.Cache.NoAbsoluteExpiration,
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Default,
 this.OnRemoveQuotesCollection);

 }

 protected void Application_BeginRequest(object sender, EventArgs e)
 {
 if (_bReloadQuotations == true)
 {
 ReloadQuotations();
 _bReloadQuotations = false;
 }
 }
 // VS-provided code
 }

}

340 Part III Caching and State Management

 . 3 . . Update the CacheWithFileDependency method to use the callback method when
 establishing the QuotesServer in the cache . You can access the callback method
through the page’s Application member .

protected void CacheWithFileDependency()
{
 QuotesCollection quotesCollection;
 Trace.Warn("Page_Load", "Testing cache ");
 quotesCollection = (QuotesCollection)Cache["QuotesCollection"];

 if (quotesCollection == null)
 {
 Trace.Warn("Page_Load", "Not found in cache");
 quotesCollection = new QuotesCollection();

 string strFilePathXml =
 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xml");
 string strFilePathSchema =
 Server.MapPath(Request.ApplicationPath +
 "\\App_Data\\QuotesCollection.xsd");
 quotesCollection.ReadXmlSchema(strFilePathSchema);
 quotesCollection.ReadXml(strFilePathXml);

 System.Web.Caching.CacheDependency cacheDependency =
 new System.Web.Caching.CacheDependency(strFilePathXml);

 Global global = HttpContext.Current.ApplicationInstance as Global;
 Cache.Insert("QuotesCollection",
 quotesCollection,
 cacheDependency,
 System.Web.Caching.Cache.NoAbsoluteExpiration,
 System.Web.Caching.Cache.NoSlidingExpiration,
 System.Web.Caching.CacheItemPriority.Default,
 global.OnRemoveQuotesCollection);
 }
 this.GridView1.DataSource = quotesCollection;
 this.DataBind();
}

When you surf to the page, you should never see the Page_Load method refreshing the
cache . That’s because when the XML file is overwritten, ASP .NET immediately calls the
ReloadQuotations method—which loads the cache again .

 Chapter 15 Application Data Caching 341

Chapter .15 .Quick .Reference

To Do This

Access the data cache The data cache is available as
o the Cache property in the page
o the Cache proper in the current HttpContext

Insert an item in the cache Use the indexer notation to add an object and a value
to the cache .

Insert an item in the cache with a dependency Create a CacheDependency object and add the object
to the cache using the overloaded Cache.Insert
 method .

Insert an item in the cache with an expiration
time

Create a DateTime object and add the object to the
cache using the overloaded Cache.Insert method .

Delete an item from the cache Call the cache’s Cache.Remove method .

Be notified that an item is being removed from
the cache

Include a callback delegate when inserting an item in
the cache .

 . . 343

Chapter 16

Caching Output
After completing this chapter, you will be able to

n Cache page content .

n Improve the performance of Web applications by using output caching .

n Manage the cached content through the OutputCache directive .

n Manage the cached content through the HttpCachePolicy class .

This chapter covers ASP .NET support for caching output . Chapter 15, “Application Data
Caching,” demonstrates what an impact data caching could make on your application . By
avoiding round-trips to the database, you can make parts of your Web site run much faster
than they otherwise would . In addition to data caching, however, ASP .NET supports output
caching .

Now, after spending a bit of time watching the entire page-rendering process, you know it
can be pretty involved . A lot happens between the time a page loads and the time when
the final closing tag is sent to the browser . For example, the page might require database
 access . It might have a number of controls declared on it . Furthermore, perhaps some of
those controls are the more complex controls such as the DataList or the GridView whose
rendering process is expensive . All of these items usually take time to process .

Just as you can bypass recurring round-trips to a database by caching data in memory, you
can configure ASP .NET to bypass the entire page-rendering process and send back content
that’s already been rendered once . This is called output caching .

Caching .Page .Content
As you surf the Web, you see all manner of pages . Some sites update their content very
 often, whereas others change much less often . Some pages have portions that change while
other portions of the page remain static . If you have a page whose content changes infre-
quently, you can cache the output instead of regenerating it every time a request comes in .

At the outset, turning on output caching is easy . To set up caching, place the OutputCache
directive on the page . It’s a separate directive, like the Page directive, that enables cach-
ing and provides certain control over caching behavior . The following exercise introduces
 caching output .

344 Part III Caching and State Management

Creating a cacheable page

 . 1 . . Create a new project . Make it an Empty ASP .NET Web Application named
OutputCaching .

 . 2 . . Add a new Web Form to the project . Name it Default .aspx . Microsoft Visual Studio
opens the file for you after you create it . Insert the OutputCache directive near the
top, immediately after the Page directive . For now, set the Trace attribute to false. (You
turn it on later when you cache user controls .) At the very least, the OutputCache di-
rective needs two things: (1) the Duration attribute to be set and (2) the VaryByParam
attribute set to none . The Duration attribute specifies how long the content should be
cached . The VaryByParam attribute is for managing the caching of multiple versions of
the page . You learn more about these attributes shortly . The following code shows the
syntax of the OutputCache directive . This example caches the page’s content for
15 seconds . The code following the output directive was generated by Visual Studio:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" Trace="false"%>
<%@ OutputCache Duration="15" VaryByParam="none" %>

<!DOCTYPE html PUBLIC
"...">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 </div>
 </form>
</body>
</html>

 . 3 . . Update the Page_Load method to print the date and time that this page was
 generated, like so:

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Write("This page was generated and cached at: " +
 DateTime.Now.ToString());
 }
}

 Chapter 16 Caching Output 345

The first time the content is produced, the Page_Load method runs and produces
the following output:

No matter how many times you refresh the browser (you can do this by pressing F5
while running Windows Internet Explorer within 15 seconds of first accessing the
page), ASP .NET will grab the cached content and display that . When 15 seconds has
expired, ASP .NET runs the page in the usual way, calling Page_Load, regenerating the
content, and caching it again . The following graphic illustrates the new page accessed
just moments (no longer than 15 seconds) after the first hit . The date and time are the
same as the previous page, even though it’s a completely new request (I promise these
are two separate requests):

 . 4 . . To get an idea about how caching content might improve performance, add a small
amount of code to the Page_Load method to put the executing thread to sleep for
 perhaps 10 seconds (this is to simulate an expensive content-generating routine) . Use
the System.Threading namespace to access the threading functions:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

346 Part III Caching and State Management

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Threading;

namespace OutputCache
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Thread.Sleep(10000);
 Response.Write("This page was generated and cached at: " +
 DateTime.Now.ToString());
 }
 }
}

 . 5 . . Surf to the page . Notice how long the page takes to load (about 10 seconds) .
Immediately refresh the page . Notice that the browser displays the content right
away—without the long wait time . Most pages don’t take quite as long to load, but you
get the idea of how caching content might improve the performance of your Web ap-
plication . For pages that are expensive to generate and that don’t change very often,
caching the content represents an enormous performance boost for your Web site,
 especially as the number of clients increases .

Managing .Cached .Content
In some cases, it’s enough to blindly cache the content of certain pages by simply putting
the OutputCache directive in the page . However, sometimes you need a bit more control
over what’s happening in the output cache . ASP .NET supports a number of parameters
you can use to manage the way the cache functions . You can control the output caching
behavior by either changing the parameters in the OutputCache directive or tweaking the
HttpCachePolicy property available through the Response object .

Modifying the OutputCache Directive
It’s often very useful to be able to govern output caching . For example, some pages present
exactly the same content to all the users who access the page . In that case, caching a single
version of the content is just fine . However, there are other circumstances in which sending
the same content to everyone is inappropriate . The easiest way to control the behavior of
output caching is to modify the OutputCache directive .

One obvious case in which controlling the cache is important is while caching differ-
ent versions of content for different browsers making requests . Different browsers often
have different capabilities . If you send content that requires a feature not supported by all
 browsers, some browsers making requests will get a response that they’re unable to handle

 Chapter 16 Caching Output 347

adequately . With the VaryByCustom parameter in the OutputCache directive, you can cache
different content based on different browsers .

Controlling the output caching is also important when your page renders content based
on the parameters that are sent in the query string . For example, imagine you have a page
through which a user has identified him- or herself by typing a name in a text box . The
browser inserts that name in a parameter inside the query list . You can instruct the output
cache to cache different versions based on parameters in the query string . For example, users
who identify themselves as “John Doe” can get a different version of cached content than
can users who identify themselves as “Jane Smith .” The VaryByParam attribute controls this
behavior .

Table 16-1 shows a summary of these parameters .

TABLE .16-1 . Summary .of .OutputCache .Parameters

Attribute Option Description

CacheProfile A string Name of a profile (found in web .config) to
control output cache settings . Default is an
empty string .

Duration number Number of seconds the page or control is
cached (required) .

NoStore true

false

Specifies that the “no store” cache control
header is sent (or not) . Not available to
user controls . Default value is false .

Location Any

Client

Downstream

Server

None

Manages which header and metatags are
sent to clients to support caching; here are
their meanings:

Any—page can be cached anywhere
(default) .

Client—cached content remains at browser .

Downstream—cached content is stored
both downstream and on the client .

Server—content cached on the server only .

None—disables caching .

Shared true

false

Determines whether user control output
can be shared with multiple pages .

SqlDependency A string representing
a database/table name
pair

Identifies a set of database and table name
pairs on which a page’s or control’s output
cache depends .

VaryByContentEncoding encodings Specifies a list of encoding strings
 separated by commas used to vary the
output cache .

348 Part III Caching and State Management

Attribute Option Description

VaryByCustom browser

custom string

Tells ASP .NET to vary the output cache by
browser name and version or by a custom
string; must be handled by an override of
GetVaryByCustomString in Global .asax .

VaryByHeader *

header names

A semicolon-delimited list of strings
 specifying headers that might be
 submitted by a client . Not available to user
controls . Default value is an empty string
(no headers) .

VaryByParam None

*

param name

A semicolon-delimited list of strings
 specifying query string values in a GET
request or variables in a POST request
(required) .

The following exercise illustrates creating separate versions of cached content based on how
the user identifies himself or herself .

Varying cached content by query string parameters

 . 1 . . Returning to the OutputCache Web application, add a TextBox and a Button to the
default .aspx page . Give the TextBox an ID of TextBoxName and the Button an ID of
ButtonSubmitName . The TextBox will hold the client’s name and will serve as the
 parameter controlling the number of cached versions of the page .

 . 2 . . Double-click the button to add a Click event handler . In the handler, respond to the
user’s request by displaying a greeting using the contents of the text box . Also, modify
the processing time of the page loading by reducing the amount of time the current
thread sleeps (or by commenting out that line):

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Thread.Sleep(0);
 Response.Write("This page was generated and cached at: " +
 DateTime.Now.ToString());

 }
 protected void ButtonSubmitName_Click(object sender, EventArgs e)
 {
 Response.Write("

");
 Response.Write("<h2> Hello there, " +
 this.TextBoxName.Text + "</h2>");
 }
}

 Chapter 16 Caching Output 349

 . 3 . . Increase the time that the content will be cached (this example uses 1 minute) so
that you have time to change the contents of the TextBox to view the effects of cach-
ing . Also, include TextBoxName as the parameter by which to vary the content in the
OutputCache directive .

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default"
Trace="false"%>

<%@ OutputCache Duration="60" VaryByParam="TextBoxName" %>

 . 4 . . Add a Substitution control to the page following the TextBox and the Button . You can
just drag one from the Toolbox onto the page . Use the Substitution control to display
the time of the request to compare it with the time displayed by the cached page .
Substitution controls call back to a method on the code beside that displays arbitrary
strings . Write a method in the code-beside class to handle the substitution .

public partial class _Default : System.Web.UI.Page
{
 // Existing code ...
 protected static string SubstituteDateAndTime(HttpContext c)
 {
 return "Request occurred at :" + DateTime.Now;
 }
}

 . 5 . . Set the MethodName attribute of the Substitution control to the SubstituteDateAndTime
method in the ASPX file, like this:

<asp:Substitution ID="Substitution1" MethodName="SubstituteDateAndTime"
 runat="server" />

 . 6 . . Surf to the page and type in a name . Click the button to submit the form and note the
time stamp of the page . Type a second name in the TextBox and click the button to
submit the form . Note the time stamp . Then, type the same name you typed the first
time . Click the button to submit the form . If you do all of this within the 60-second
 window, you should see the cached versions of the page, which you can discern using
the time stamp displayed as part of each page . The following three graphics illustrate
the caching varying by the value of the TextBoxName parameter . The first graphic
shows the original request using a particular name in the TextBox . Notice that the
 request time shown by the Substitution and the time shown by the Page_Load method
are the same .

350 Part III Caching and State Management

The second graphic shows a request with a new value for the TextBoxName parameter .
Notice that the request time shown by the Substitution and the time shown by the
Page_Load method are the same this time as well:

The third graphic shows making a request to the page using the same name as the
original request . Notice that the request time shown by the Substitution and the time
shown by the Page_Load method are different . The request time is earlier than the
time shown during the Page_Load method, meaning the page content was cached:

 Chapter 16 Caching Output 351

There are other ways to modify the VaryByParam attribute . One way is to use the word none,
which means ASP .NET will cache only one version of the page for each type of request (for
example, GET, POST, and HEAD) . Using an asterisk (*) for VaryByParam tells ASP .NET to cache
as many different versions of the page as there are query string or POST body requests . The
previous example caches as many different versions of the page as there are unique names
typed by users into the name text box .

Using VaryByHeader in the OutputCache directive tells ASP .NET to generate a separate
cache entry for each new header string that comes down . (For example, UserAgent and
UserLanguage represent HTTP headers that can be sent by the client .)

You will cache a user control shortly . With the VaryByControl attribute, you can cache
 separate content versions for each page that has a user control with unique properties .

Finally, VaryByCustom tells ASP .NET to manage separate cache entries dependent on a
couple of factors . The first factor is the browser types and versions . Alternatively, you can
provide a custom GetVaryByCustomString method in Global .asax that tells ASP .NET to create
separate cached versions of a page based on a custom defined string .

The HttpCachePolicy
The second way to manage the output cache is through the HttpCachePolicy, which is
 available from the Response class . Table 16-2 shows a portion of the HttpCachePolicy class .

TABLE .16-2 . The .HttpCachePolicy .Class

Member Description

AppendCacheExtension Appends specified text to the Cache-Control HTTP header

SetCacheability Sets the Cache-Control HTTP header, which controls how documents
are to be cached on the network

SetETag Sets the ETag HTTP header to the specified string

SetExpires Sets the Expires HTTP header to an absolute date and time

SetLastModified Sets the Last-Modified HTTP header to a specific date and time

SetMaxAge Sets the Cache-Control: max-age HTTP header to a specific duration

SetRevalidation Sets the Cache-Control HTTP header to either the must-revalidate or
the proxy-revalidate directives

SetValidUntilExpires Determines whether the ASP .NET cache should ignore HTTP
 Cache-Control headers sent by the client for invalidating the cache

SetVaryByCustom Specifies a custom text string for managing varying cached output
 responses

VaryByHeaders Parameter list of all HTTP headers that will be used to vary cache output

VaryByParam Parameter list received by a GET (query string) or POST (in the body of
the HTTP request) that affects caching

352 Part III Caching and State Management

When you set up an OutputCache directive, you tell ASP .NET to populate this class during the
Page class’s InitOutputCache method . The Response object makes the HttpCachePolicy avail-
able through its Cache property . The name Cache is unfortunate because you might easily
confuse it with the application data cache . Perhaps CachePolicy would have been a better
name for the property to avoid such confusion . In any case, you can use the HttpCachePolicy
class to control the behavior of server-side output caching as well as the headers used for
content caching . You can also use the OutputCache directive to control some of the same
aspects as the HttpCachePolicy class . However, some features, such as sliding the expira-
tion date or changing the “last modified” stamp for a page, are available only through the
HttpCachePolicy class .

For example, Listing 16-1 shows a page fragment ensuring that all origin-server caching for
the current response is stopped . It also sets the last modified date to the current date and
time .

LISTING .16-1 . Manipulating the output cache policy

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)

 {
 Thread.Sleep(0);
 Response.Write("This page was generated and cached at: " +
 DateTime.Now.ToString());

 Response.Cache.SetNoServerCaching();
 Response.Cache.SetLastModified(DateTime.Now);
 }
}

Caching Locations
In addition to varying the number of cached versions of a page, you can tell ASP .NET
where to cache the content . This is controlled through either the Location attribute in the
OutputCache directive or by using the HttpCachePolicy class’s SetCacheability method .

ASP .NET supports several output caching locations that you can specify using the
OutputCache directive:

n Any Page can be cached by the browser, a downstream server, or on the server .

n Client Page should be cached on the client browser only .

n Downstream Page should be cached on a downstream server and the client .

n Server Page will be cached on the server only .

n None Disable caching .

 Chapter 16 Caching Output 353

With the HttpCachePolicy, you can also determine the location of the cached content
 programmatically . This is done through the HttpCachePolicy.SetCacheability method (or
the HttpResponse.CacheControl property), which takes a parameter of the HttpCacheability
 enumeration . The enumeration is a bit easier to read than the attributes used in the
OutputCache directive are . They include the following:

n NoCache Disable caching .

n Private Only cache on the client .

n Public Cache on the client and the shared proxy .

n Server Cache on the server .

n ServerAndNoCache Specify that the content is cached at the server but all others are
explicitly denied the ability to cache the response .

n ServerAndPrivate Specify that the response is cached at the server and at the client
but nowhere else; proxy servers are not allowed to cache the response .

Output Cache Dependencies
Chapter 15 explains how ASP .NET supports data caching . The contents of the application
data cache in ASP .NET can be flushed because of various dependencies . The same is true
of ASP .NET output caching . The response object has a number of methods for setting up
dependencies based on cached content . For example, you might want to set up a page that
renders data from a text file . You can set up a CacheDependency on that text file so that
when the text file is changed, the cached output is invalidated and reloaded .

Caching Profiles
One of the problems associated with using the OutputCache directive directly is that the
 values become hard-coded . Changing the caching behavior means going in and changing
the source code of the page . A feature added to ASP .NET 2 .0 and later versions is the ability
to add caching profiles . That way, setting the caching behavior variables is offloaded to the
configuration file, and output caching becomes an administration issue and not a program-
ming issue (as it should be) .

The web .config file can include an outputCacheSettings section that contains a list of
 outputCacheProfiles . The outputCacheProfiles are simply key/value pairs whose keys are
the output caching variables (such as Duration) . When you mention the profile name in the
OutputCache directive, ASP .NET simply reads the values out of the configuration file and
 applies them to the OutputCache directive .

The following exercise illustrates how to set up a cache profile instead of hard coding the
 values into the page .

354 Part III Caching and State Management

Setting up a cache profile

 . 1 . . Add a cache profile to the site’s web .config file . If web .config isn’t already there, go
ahead and add one to the project . Then, add a cache profile to web .config nested
 between the system .web opening and closing tags . Name the cache profile profile .

<configuration>
 <system.web>
 <caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="profile"
 duration="60"
 varyByParam="TextBoxName" />
 </outputCacheProfiles>
 </outputCacheSettings>
 </caching>
 </system.web>
</configuration>

 . 2 . . Change the OutputCache directive in the Default .aspx page to use the new profile:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default"
trace="false"%>

<%@ OutputCache CacheProfile="profile" %>

 . 3 . . Surf to the page . It should work exactly as it did before when the caching values were
hard-coded . That is, run the page, type a name, and note the date and time stamp .
Type a new name and note the date and time stamp . Type the original name, submit it,
and you should see the original cached page appear (as long as you complete the post
within the specified time window) .

Caching .User .Controls
Just as whole pages can be cached, ASP .NET supports caching UserControls as well . Imagine
your job is to create a sizable Web site that allows users to navigate through information
using various navigation controls (menus, hyperlinks, and so forth) . For example, imagine a
part of your page shows links or other navigation controls that lead users to the most recent
news, summary information, and other places . The actual content might change, but the links
probably don’t . If the links don’t change very often and the cost of generating that section of
the page is expensive, it makes sense to move the functionality into a UserControl and apply
the OutputCache directive to the UserControl . Doing so causes ASP .NET to cache the portion
of the page represented by the control .

The OutputDirective can be applied to the ASCX file that makes up a UserControl . The
OutputDirective for a UserControl can also use the Shared property to tell ASP .NET to cache
one version of the control for all pages that use it, resulting in potentially even higher
 performance over the span of many hits (the default is false) .

 Chapter 16 Caching Output 355

The following exercise illustrates how to cache the output of a UserControl .

Caching the output of user controls

 . 1 . . Create a simple UserControl for the OutputCaching project . Navigation controls are
perfect for caching, so create a control that has a menu . Name the control
SiteMenu.ascx . Drag a Menu control onto the UserControl, as shown here:

Add some menu items, as shown in this graphic:

356 Part III Caching and State Management

 . 2 . . Add the OutputCache directive with the following parameters in the control source,
like so:

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="SiteMenu.ascx.cs" Inherits="SiteMenu" %>
<%@ OutputCache Duration="60" VaryByParam="none" %>

 . 3 . . Create a new page in the project . Name it UseSiteMenuControl.aspx .

 . 4 . . Drag the SiteMenu UserControl from Solution Explorer onto the UseSiteMenuControl
page . When ASP .NET loads and runs your Web page, ASP .NET caches the UserControl
because the UserControl mentions the OutputDirective .

 . 5 . . Make sure tracing is turned on in the UseSiteMenuControl .aspx file . (That is, set the
Trace=”true” attribute in the Page directive .) Surf to the page . The first time you surf to
the page, you’ll see the following information in the control tree section of the Trace
output:

Notice that the entire control tree was rendered . Press the refresh key (F5 in Internet
Explorer) while looking at UseSiteMenuControl .aspx . Examine the control tree por-
tion of the Trace output again . Notice that ASP .NET uses the cached control instead of
 rerendering the entire SiteMenu control .

 Chapter 16 Caching Output 357

When .Output .Caching .Makes .Sense
As with other caching techniques, one of the most effective strategies is to turn on output
caching for those pages that are accessed frequently but yet are expensive to generate . Also,
be sure to cache only those pages that don’t change frequently (otherwise, you might be
better off simply not using output caching) .

For example, pages full of controls that render a great deal of HTML are probably expensive .
Imagine a page including a DataGrid displaying an employee directory . This is a perfect can-
didate for caching for several reasons . First, a database access (or even an in-memory cache
hit) is required . Second, a DataGrid is pretty expensive to render—especially if it needs to
figure out the schema of the employee directory table on the fly . Finally, an employee direc-
tory probably doesn’t change very often . By caching it once, you can avoid spending a great
deal of unnecessary cycles .

A related issue here is to be careful when typing asterisks into the output caching parameters
such as VaryByParam . Using VaryByParam=* tells ASP .NET to generate a new page for every
single request in which any query string parameter has changed . That’s almost the same as
not caching altogether—with the added cost of the memory consumed by the output cache .
However, this might make sense for Web sites with limited audiences where the parameter
variance between requests remains limited .

In addition, be wary of how caching might affect the appearance of your page on different
browsers . Much of the time, content will appear the same regardless of the browser .
However, if you cache some content that depends on a specific browser feature (such as

358 Part III Caching and State Management

dynamic HTML), clients whose browsers don’t understand the feature might see some very
weird behavior in the browser .

Tuning the behavior of the output cache is also important . Effective caching is always a
 matter of balance . Although you can potentially speed up your site by employing output
caching, the cost is memory consumption . Using instrumentation tools can help you balance
performance against cost .

Finally, user controls often represent a prime output caching opportunity—especially if they
don’t change frequently . Wrapping the portion of a page that doesn’t change in an output-
cached user control usually enhances the perceived performance of your application at a
minimal cost because only the user control content is cached .

Other .Cache .Providers
ASP .NET 4 now includes a new feature for output caching: the ability to store output in
places other than memory . You can now specify alternate providers through which ASP .NET
manages page output caching . This is especially useful for implementing alternate scaling
strategies such as cloud computing .

Custom output cache providers derive from OutputCacheProvider . At the very least, the
 provider must override Add, Get, Remove, and Set . Add is called by ASP .NET to insert a new
item into the cache . Get is called by ASP .NET to retrieve a specific entry from the cache .
ASP .NET calls Remove to delete an item from the cache . Finally, ASP .NET calls Set to replace
an already-existing item in the cache .

After writing the custom cache provider, just mention it in the cache section of the
web .config file . The following listing specifies a custom cache provider class named
CacheWithFileBackingProvider found in an assembly named MyCacheLibrary .

<caching>
 <outputCache defaultProvider="CacheWithFileBacking">
 <providers>
 <add name="CacheWithFileBacking"
 type=
 "MyCacheLibrary,
 CacheWithFileBackingProvider"/>
 </providers>
 </outputCache>
</caching>

Once the cache provider is available through the web .config file, ASP .NET uses the new
 provider when you decide to cache a specific page .

 Chapter 16 Caching Output 359

Chapter .16 .Quick .Reference

To Do This

Cache a page’s output Add the OutputCache directive to the page .

Store multiple versions of a page based on
varying query string parameters

Use the VaryByParam attribute of the OutputCache directive .

Store multiple versions of a page based on
varying headers

Use the VaryByHeader attribute of the OutputCache directive .

Store multiple versions of a page based on
varying browsers

Use the VaryByCustom attribute of the OutputCache directive,
selecting browser as the value .

Specify the location of the cached content Specify the Location attribute in the OutputCache directive .

Access caching attributes programmatically Use the Cache property of the Response object, which is an
instance of the HttpCachePolicy class .

Offload output caching configuration to the
web .config file

Add outputCacheProfile elements to your web .config file . Use
them as necessary .

Cache a user control Apply the OutputCache directive to the control’s .ascx file .

Microsoft ASP.NET 4 Step by Step

 . . 361

Part IV

Diagnostics and Plumbing

In this part:

Diagnostics and Debugging . 363

The HttpApplication Class and HTTP Modules . 385

HTTP Handlers . 405

 . . 363

Chapter 17

Diagnostics and Debugging
After completing this chapter, you will be able to

n Turn on page tracing .

n Insert custom trace messages in the page trace .

n Turn tracing on for an entire application .

n Manage custom error pages .

n Manage exceptions in your applications .

Even with all the software architecture methodologies and development practices available
these days, software development is still very much a craft . Software libraries such as
ASP .NET and Windows Forms go a long way toward making development more standardized
and predictable (good things in software practice) . However, inevitably there are times when
you need to figure out what’s wrong with an application that decides to behave differently
from how you expect it to act .

This chapter covers the support provided by ASP .NET for troubleshooting your ASP .NET
 applications . As you can imagine, debugging Web applications introduces a whole new set
of challenges . Remember, HTTP is basically connectionless, and the only output the client
really gets to see is a snapshot of the application . This chapter shows you how to watch your
applications as they run and how to trace the state of any particular request . It also covers
managing error pages and trapping application exceptions in ASP .NET .

Page .Tracing
The first place to start with debugging is to examine ASP .NET page tracing . The Page class
has a property named Trace . When Trace is turned on, it tells the ASP .NET runtime to insert a
rendering of the entire context of the request and response at the end of the HTML sent to
the client .

You have already seen page tracing to some extent . When you examined the ASP .NET server-
side control architecture, the page trace was invaluable in understanding the structure of the
page . Remember, a rendered page is composed of a number of server-side controls collected
in a hierarchical tree . A Page nests several controls, and the controls themselves might nest
other controls (they can be nested several levels deep, as a matter of fact) . The page trace
includes a section displaying the composition of the page in terms of server-side controls .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

364 Part IV Diagnostics and Plumbing

Tracing
Turning on tracing is easy . Simply set the Trace property of the page to true . You can turn on
tracing either by modifying the ASPX code directly or by setting the Trace property using the
Properties window in the Visual Studio Designer . Here’s the Trace property being turned on
directly in the ASPX code as part of the page directive:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TraceMe.aspx.cs"
Inherits="TraceMe" Trace="true" %>

As soon as you turn on tracing and surf to the page, you’ll see tracing information appear at
the end of the HTML stream . Listing 17-1 shows some code from the DebugORama example
that is included on the CD accompanying this book . The TraceMe .aspx page builds a table of
strings as they’re entered on the site . The list of strings is kept in session state and refreshes
the table every time a new string is submitted .

LISTING .17-1 . Code that builds a table on loading

public partial class TraceMe : System.Web.UI.Page
{
 ArrayList alTableEntries = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 alTableEntries = (ArrayList)this.Session["TableEntries"];
 if (alTableEntries == null)
 {
 alTableEntries = new ArrayList();
 }
 AssembleTable();
 }

 protected void AssembleTable()
 {
 this.Table1.Rows.Clear();
 foreach (string s in alTableEntries)
 {
 TableRow row = new TableRow();
 TableCell cell = new TableCell();
 cell.Text = s;
 row.Cells.Add(cell);
 this.Table1.Rows.Add(row);
 }
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 alTableEntries.Add(this.TextBox1.Text);
 this.Session["TableEntries"] = alTableEntries;
 AssembleTable();
 }
}

 Chapter 17 Diagnostics and Debugging 365

Figure 17-1 shows how the page appears with tracing turned on .

FIGURE .17-1 . Tracing turned on for the application in Listing 17-1 .

A bit farther down the tracing output, you can see the control tree (as shown in earlier
 chapters) . The control tree for this page is shown in Figure 17-2 .

FIGURE .17-2 . Tracing turned on for the application in Listing 17-1 . Notice the control tree .

366 Part IV Diagnostics and Plumbing

Finally, scroll down a bit more and you start seeing some of the context information
 associated with the request . Figures 17-3 and 17-4 show some of this context information .
This application uses session state to save the array of strings . Notice that the session state
tracing shows the contents of the session state dictionary . You also get to see other context
information . For example, the tracing section shows the session ID and the URL used to surf
to this page .

FIGURE .17-3 . Tracing turned on for the application in Listing 17-1 . Note the detailed information about the
context of the request .

Of course, much of this information becomes more useful when there’s a problem with your
Web site . For example, the table might stop building itself because you somehow removed
the session state item holding the list of strings . You could detect that by examining the page
trace . If users begin to complain about layout issues with your site, you can look at the user
agent coming down with the request and learn that the client is using a browser that your
application does not accommodate .

 Chapter 17 Diagnostics and Debugging 367

FIGURE .17-4 . Tracing turned on for the application in Listing 17-1 . This figure shows the page a bit farther
down where there are even more details .

Trace Statements
In addition to all the request context information included with the HTML stream, the page
trace also includes specific statements printed out during execution . If you scroll to the Trace
Information block on the page, you can see these trace statements, as shown in Figure 17-5 .

FIGURE .17-5 . Tracing turned on for the application in Listing 17-1 . These Trace Information statements track
the execution of the page .

368 Part IV Diagnostics and Plumbing

The ASP .NET framework produces the statements that appear in Figure 17-5 . You can see the
execution of the page progressing through the various events such as PreInit, Init, LoadState,
and so forth .

Not only do you get tracing information from ASP .NET itself, but you can also insert your
own tracing information . The Page class’s Trace object provides a means of tracing page
 execution . Here’s an exercise that shows you how to do this .

Important To install the code samples for this book, you must have Administrator rights on
your computer . If you are using your own computer, you probably have Administrator rights . If
you are using a computer in an organization and you do not have Administrator rights, please
consult your computer support or IT staff . See the “Code Samples” section in the Introduction for
more information .

Adding tracing statements

 . 1 . . Create a new Web site called DebugORama (it can be a File System–based Web site) .
Add a new page called TraceMe.aspx .

 . 2 . . Open the TraceMe .aspx page and add the Label (which says “Type something in here:”),
the TextBox, the Button, and the Table as they appear in the previous figures . Double-
click the Button to add a handler for the Click event . Add the code from Listing 17-1
(the code that builds the table during the Page’s Load event) . Enable tracing by includ-
ing Trace=”true” in the Page directive . Run the page to ensure that page tracing occurs .

 . 3 . . Add tracing statements in strategic places through the page’s Trace object . For
 example, you might want to monitor the table as it’s being built . Do this by calling
either Trace.Write or Trace.Warn in the page . Trace.Write renders the string in black,
whereas Trace.Warn renders the tracing string in red . The first parameter is a category
string you can use to help distinguish the statements you write when they finally
 render . You can add whatever you want to the category string .

public partial class TraceMe : System.Web.UI.Page
{
 ArrayList alTableEntries = null;

 protected void Page_Load(object sender, EventArgs e)
 {
 alTableEntries = (ArrayList)this.Session["TableEntries"];
 if (alTableEntries == null)
 {
 Trace.Warn("Page_Load", "alTableEntries is null");
 alTableEntries = new ArrayList();
 }
 AssembleTable();

 Chapter 17 Diagnostics and Debugging 369

 }

 protected void AssembleTable()
 {
 this.Table1.Rows.Clear();

 foreach (String s in alTableEntries)
 {
 Trace.Write("AssembleTable", "String found: " + s);
 TableRow row = new TableRow();
 TableCell cell = new TableCell();
 cell.Text = s;
 row.Cells.Add(cell);
 this.Table1.Rows.Add(row);
 }
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 Trace.Write("Button1_Click", "Adding string: " + this.TextBox1.Text);
 alTableEntries.Add(this.TextBox1.Text);
 this.Session["TableEntries"] = alTableEntries;
 AssembleTable();
 }
}

 . 4 . . Compile the program and run the Web site . You should see your trace statements
 appearing in the output (as long as tracing is turned on) . The tracing will appear red on
your computer screen—although it appears as gray in the following graphics . The first
graphic shows the string indicating alTableEntries is null .

370 Part IV Diagnostics and Plumbing

The second graphic shows the tracing statement indicating when a string is added to
the table .

Application .Tracing
Although single page tracing is useful (especially for quick spot checks for problems), it has
a major downside in that it litters the page with lots of garbage at the end . You can use ap-
plication tracing to get around that . Application tracing shows you exactly the same details
as page tracing, except they’re held in memory and made available rendered as a different
page and through a special HTTP handler that ASP .NET provides .

To turn on tracing, you need to enable tracing in web .config like so:

<configuration>
 <system.web>
 <trace enabled="true"/>
 </system.web>
</configuration>

This simply turns on tracing . You can actually control several aspects of page tracing . For
 example, you could have tracing available on the host computer only (in case you don’t want
clients getting to your trace information) . You might also want to control the number of
 responses that are held in memory .

 Chapter 17 Diagnostics and Debugging 371

Table 17-1 shows the possible values that can go in the configuration file to support tracing .

TABLE .17-1 . Web .config .Settings .Supporting .Tracing

Key Possible Values Meaning

Enabled true

false

Enable or disable application-level tracing .

localOnly true

false

Specify whether to show trace output only on local
host or everywhere .

mostRecent true

false

Specify whether to recycle traces once requestLimit
is met or to keep the first N (up to the requestLimit
threshold) .

pageOutput true

false

Specify whether to display trace output on individual
pages in addition to caching application-level traces .

requestLimit Decimal number Specify how many traces to store in memory before
 removing earlier traces (default is 10) .

traceMode SortByTime

SortByCategory

Specify the order in which to display trace
 information .

writeToDiagnosticsTrace true

false

Specify whether the trace data is also piped to
System.Diagnostics.Trace.

The following exercise demonstrates how application-level tracing works and how to
 navigate around the results .

Using application-level tracing

 . 1 . . Open the DebugORama project . Open the TraceMe .aspx page . Turn off tracing in the
page by ensuring the Page class’s Trace property is set to false .

 . 2 . . Ensure that application-level tracing is turned on in web .config . That is, open
web .config and add a trace element, as shown earlier . If the application doesn’t yet
have a configuration file, you can add one by selecting Add New Item from the local
project menu .

 . 3 . . Surf to the TraceMe .aspx page a few times by pressing Ctrl+F5, and then adding a few
strings to the table .

 . 4 . . In the URL that appears in the address box, make the endpoint Trace.axd, as shown in
the following graphic . This name in the URL redirects request processing through a
special handler that renders the tracing results being kept in memory .

372 Part IV Diagnostics and Plumbing

 . 5 . . You should be able to see a list of requests . You can see individual requests and the
 request details, as shown in the following graphic, by clicking the View Details link .

Notice how the output is exactly the same as the output of the earlier page tracing
example . However, now the tracing information stands alone without cluttering up the
Web page .

 Chapter 17 Diagnostics and Debugging 373

Enabling Tracing Programmatically
Although much of the time you will enable tracing through the Designer, at times you might
find it useful to manage tracing during run time (programmatically) . For example, you might
have regular clients receive normal content; however, when someone with specific creden-
tials appears, you might want to enable tracing for that individual . You might also decide to
modify tracing when a certain parameter comes through the request .

The DebugORama site includes a page named EnableTracing .aspx that illustrates how to
 control the tracing programmatically . If the user types the correct password, the tracing is
turned on . The page also shows how to enable and disable tracing programmatically .

public partial class EnableTracing : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 protected void Button1_Click(object sender, EventArgs e)
 {

 if (this.TextBoxSecretCode.Text == "password")
 {
 this.Trace.IsEnabled = true;
 }
 }
 protected void Button2_Click(object sender, EventArgs e)
 {
 this.Trace.IsEnabled = false;
 }
}

The TraceFinished Event
The tracing context includes an interesting event named TraceFinished that gives you a last
chance opportunity to log the tracing information or deal with it in some other way . The
TraceFinished event is raised by the Trace object after all request information is gathered .

To subscribe to the event, simply set up the handler during the Page_Load event . The
DebugORama example includes a page named TraceFinished .aspx that shows how the trace
information was gathered and written to the debug console using System.Diagnostics.Debug .

public partial class TraceFinished : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 Trace.TraceFinished +=
 new TraceContextEventHandler(TracingFinished);
 }

374 Part IV Diagnostics and Plumbing

 void TracingFinished(object sender, TraceContextEventArgs e)
 {
 foreach (TraceContextRecord traceContextRecord in e.TraceRecords)
 {
 System.Diagnostics.Debug.WriteLine(traceContextRecord.Message);
 }
 }
}

Piping Other Trace Messages
In the last example, tracing messages were logged manually to the debug console by setting
up the TraceFinished event handler in the Trace context . System.Diagnostics.Debug is a
 standard .NET type that’s helpful for managing tracing and debugging information . Since
version 2 .0, ASP .NET has had the ability to plug in the WebPageTraceListener type so that
calls to System.Diagnostics.Trace are also inserted into the ASP .NET trace . Setting it up is
simply a matter of inserting a line in web .config (note the writeToDiagnosticsTrace option in
Table 17-1) . A case in which this is useful is for logging compiler output . To do this, set the
writeToDiagnosticsTrace option to true, and then turn on compiler tracing . Compiler trac-
ing is another setting you can set in web .config, but notice that this lies outside the typical
System.web section of web .config .

<system.codedom>
 <compilers>
 <compiler compilerOptions="/d:TRACE" />
 </compilers>
</system.codedom>

Debugging .with .Visual .Studio
The tracing support built into ASP .NET works really well and is a great way to debug your
application—especially once it is deployed . However, when you’re in development mode,
having to plant tracing messages in your page and then run it to see what happens is cum-
bersome and sometimes not the most efficient way of debugging . Microsoft Visual Studio
provides excellent debugging support through the environment, and you can use it to
watch your code execute and to step through the code one line at a time . In fact, you have
access to all of the Visual Studio debugging facilities, even though you’re developing Web
applications .

Remember, ASP .NET and Visual Studio work in concert to make you feel like you’re doing
desktop application development, even though you are developing Web applications . That
goes for the debugger as well . The following exercise familiarizes you with the Visual Studio
debugging environment .

 Chapter 17 Diagnostics and Debugging 375

Debugging an application

 . 1 . . Open the DebugORama Web site . To support debugging, web .config needs to include
the correct setting . You can type the debugger setting manually if you wish; however,
Visual Studio will insert it for you once you start debugging .

<system.web>
 <compilation debug="true"/>
</system.web>

 . 2 . . Open the TraceMe .aspx page and insert breakpoints in Page_Load, AssembleTable, and
Button1_Click . You can insert breakpoints by highlighting a line in the editor window
and pressing the F9 key . You can also click Debug, .Toggle Breakpoint on the main
menu or simply click the light gray ribbon to the left of the text in the code editor
(where the breakpoints are indicated) . Visual Studio will show a big red dot to the left
of the breakpoint lines, as shown in the following graphic:

Red dots

 . 3 . . Start debugging by pressing the F5 key . You can also debug by clicking Debug, .Start
Debugging on the main menu . If debugging is not turned on in the web .config file,
Visual Studio will ask you before it sets the debugging attribute . Visual Studio will start
running the site . When it comes to your breakpoints, Visual Studio will stop execution
and highlight the current line in yellow in the window, as shown here:

376 Part IV Diagnostics and Plumbing

Code line background is yellow

 . 4 . . In this example, Page_Load is the first breakpoint Visual Studio encounters . At this
point, you can start stepping through the code . Press F10 to step over methods, and
press F11 to step into methods . Alternatively, you can click Debug, .Step Over and
Debug, .Step Into on the main menu or use the corresponding toolbar buttons .

 . 5 . . Rest the mouse pointer on any variables you see . Notice how Visual Studio displays the
value of the variable in a tooltip .

 . 6 . . Press F5 to resume the program . Visual Studio runs until it hits another breakpoint . Run
through all the breakpoints .

 . 7 . . Next, post back to the server using the button . Notice the breakpoints are hit again .
Also notice that first the Page_Load is hit, and then the Button_Click handler . This
 highlights the ephemeral nature of a Web page . A new page is being created for each
request that comes in .

 . 8 . . Finally, try out a couple of the debug windows . You can monitor various aspects of your
program by clicking Debug, Window on the main menu and selecting the window .
Here is the Locals window, showing those variables in local scope:

 Chapter 17 Diagnostics and Debugging 377

 . 9 . . The Call Stack window, as depicted in the following graphic, shows how execution
 finally arrives at this spot . You can trace through and follow the entire program
 execution up to this point .

Other notable windows include the Watch window, where you can examine any
 variable you want, and the Threads window, where you can see how many threads are
running, what their thread IDs are, and so forth .

378 Part IV Diagnostics and Plumbing

Error .Pages
As you have seen throughout the tour of ASP .NET, one of the main goals is to incorporate
as much of the management of Web development as possible in ASP .NET . At this point,
Microsoft Internet Information Services (IIS) is really only a middle manager in the overall
scheme . ASP .NET now handles many facilities previously handled exclusively by IIS (although
IIS brings many ASP .NET features under its auspices with version 7 .0 running in Integrated
mode) . One of those facilities is managing custom error pages . In ASP .NET, you can intro-
duce custom error pages instead of allowing the client to be bombarded with ASP .NET error
messages .

You can tell ASP .NET, on encountering errors anywhere in your application, to display a
 particular page by tweaking the web .config file . Table 17-2 shows the custom error attributes
for web .config .

TABLE .17-2 . Web .config .Values .for .Setting .Error .Pages

Attribute Description

defaultRedirect Direct users here in the event of an exception .

on/off on = Display custom pages .

off = Display ASP .NET error pages .

remoteOnly Display custom errors to client, display ASP .NET errors
 locally .

The following example illustrates how to work with custom error pages . In this example, you
add some error pages to your application and see what conditions cause them to appear .

Working with error pages

 . 1 . . Open the DebugORama project .

 . 2 . . Add a new Web Form named ThrowErrors.aspx to the DebugORama application .

 . 3 . . Add two buttons: one to throw 404 errors (the nearly ubiquitous “object not found”
 error) and one to throw other exceptions . Set the 404 button’s ID to ButtonThrow404
and set the other button’s ID to ButtonThrowOther .

 . 4 . . Add two HTML pages to your application to act as custom error pages . Name one page
404Error.htm and the other SomethingBadHappened.htm . (This example uses straight

 Chapter 17 Diagnostics and Debugging 379

HTML pages, although you can use ASPX files here .) The following graphic shows the
404Error .htm file being added to the Web solution .

Here is the SomethingBadHappened .htm page being added:

 . 5 . . Add some content to the error pages . The 404 error handler here displays an error
message in haiku . The other error page simply displays a label saying “Something bad
happened .”

 . 6 . . Tell ASP .NET to use the error pages by adding the customErrors section to web .config,
like so:

<configuration>
 <system.web>
 <customErrors
 defaultRedirect="SomethingBadHappened.htm" mode="On">
 <error statusCode="404"
 redirect="404Error.htm"/>
 </customErrors>
 </system.web>
</configuration>

380 Part IV Diagnostics and Plumbing

This tells ASP .NET to show the 404Error .htm page when a file isn’t found . ASP .NET will
show SomethingBadHappened .htm for any other type of error .

 . 7 . . Now add handlers to generate the errors . Handle the 404 error button by directing the
client to a nonexistent page: In this example, there is no page named NonExistent .aspx,
so redirecting to it will cause a 404 error . Handle the second error generator by throw-
ing a random exception .

public partial class ThrowErrors : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void ButtonThrow404_Click(object sender, EventArgs e)
 {
 this.Response.Redirect("NonExistent.aspx");
 }

 protected void ButtonThrowOther_Click(object sender, EventArgs e)

 {
 throw new Exception();
 }
}

When you try to redirect to a nonexistent file, the “object not found” error page shows:

 Chapter 17 Diagnostics and Debugging 381

Throwing a generic exception causes the other page to show:

If you’re running the example in the debugger, the debugger breaks as soon as it encounters
an exception . To continue and show the error page after Visual Studio reports the exception,
press F5 .

In this example, the error pages don’t really help the end user because the pages do not
provide any detailed information about the exception . Your own error pages should provide
a bit more information, perhaps even a way to contact someone for assistance . Before leav-
ing debugging and diagnostics, take a look at how you can trap unhandled exceptions more
gracefully .

Unhandled .Exceptions
In the last example page that threw an exception, ASP .NET responded by redirecting to the
default error page . In ASP .NET, you also can trap exceptions by setting up a handler for Error
events fired by HttpApplication so that you can handle them more appropriately .

The easiest way to accomplish this is to define a handler in your HttpApplication-derived class
in Global .asax .cs . With the handler connected to the event, your application will receive noti-
fications whenever something bad happens, and you can deal with it gracefully . For example,

382 Part IV Diagnostics and Plumbing

you might log the error or show it on the debug console before redirecting the user to an
error page . The following example redirects the exception to an error page:

public class Global : System.Web.HttpApplication
{
 protected void Application_Error(object sender, EventArgs e)
 {
 Exception ex = Server.GetLastError();
 // display the exception
 System.Diagnostics.Debug.WriteLine("Error in app: " + ex);
 // display the exception
 System.Diagnostics.Debug.WriteLine("Error in app: " + ex);
 if (ex is HttpUnhandledException)
 {
 Context.ClearError();
 Server.Transfer("somethingbadhappened.htm");
 }
 else
 {}
 }
}

The preceding code traps the exception before the redirection happens . This gives
you the opportunity to log the exception (or, as in this example, to show it in the
System.Diagnostics.Debug context) . The following graphic shows the exception details
 listed in the Output tab in Visual Studio .

You can also redirect users to a different page if you want to hijack the exception
 handling before ASP .NET redirects to the page specified in web .config . Be sure to call
Context.ClearError first to clear the error so that ASP .NET won’t generate its standard
error page .

 Chapter 17 Diagnostics and Debugging 383

Chapter .17 .Quick .Reference

To Do This

Prepare a Web site for
debugging

Include the following in web .config:

<system.web>
 <compilation debug="true"/>
</system.web>

Enable tracing for an entire
 application

Include the following in web .config:

<system.web>
 <trace enabled="true"/>
</system.web>

Enable tracing for your page Set the Page class’s trace attribute to true either by using the Properties
pane in Visual Studio or declaring Trace=”true” in the page directive .

Debug a Web application in
Visual Studio

Ensure that the debug attribute is turned on in web .config . Start the
 program running in debug mode by

1 .  Clicking Debug, Start Debugging on the main menu

    or

2 .  Pressing the F5 key .

Set up breakpoints in an
application in Visual Studio

Place the cursor on the line where you’d like to stop execution and

1 .  Click Debug, Toggle Breakpoint

    or

2 .  Press the F9 key

    or

3 .  Toggle the breakpoint by clicking the gray ribbon to the left of the text
in the code editor .

Execute a line of source code
in the Visual Studio debugger

While the debugger is running and execution has stopped at the line you’d
like to execute,

1 .  Click Debug, Step Over on the main menu

    or

2 .  Press the F10 key .

Step into a line of source code
in the Visual Studio debugger

While the debugger is running and execution has stopped at the line you’d
like to execute,

1 .  Click Debug, Step Into on the main menu

    or

2 .  Press the F11 key .

Instruct ASP .NET to show a
particular page when a specific
HTTP error occurs

Assign the error-handling page to the specific error in the <customErrors>
section of web .config .

Trap specific .NET exceptions
or deal with general unhandled
 exceptions in ASP .NET

Handle exceptions, including otherwise uncaught exceptions, within the
Application_Error handler in Global .asax . Usually, you can then redirect to a
specific page . (Note that specific errors are assigned as the InnerException
of the HttpUnhandledException!)

 . . 385

Chapter 18

The HttpApplication Class and
HTTP Modules

After completing this chapter, you will be able to

n Use HttpApplication as a rendezvous point for your application .

n Manage data in the HttpApplication object .

n Manage events in the HttpApplication object .

n Work with HTTP modules .

This chapter covers working with application state and application-wide events in your
ASP .NET application . In typical desktop applications, the notion of a global meeting place
for various parts of an application is well understood . For example, Microsoft Foundation
Class (MFC), a C++ class library supporting low-level Windows development, includes a
class named CWinApp that holds state that is useful throughout the program . This state in-
cludes such items as a handle to the current instance of the application, a handle to the main
 window, and the parameters that were passed in when the application started . The CWinApp
class also runs the message loop—something that can be done only within the global scope
of a Windows application . A running Windows application contains one and only one in-
stance of the CWinApp class, and it is universally available from anywhere in the application .

Both Windows Forms and the Windows Presentation Foundation—the .NET libraries that
support Windows desktop applications—have a similar class named Application . Each in-
cludes the same sort of state: access to command-line parameters, a top-level window, other
state required by the program . Their Application classes also run the message loop . In fact,
Microsoft Silverlight employs a model to WPF by including an Application object .

Web development also requires the same sort of “global space” that a desktop application
requires . Having a global space in a Web application makes implementing features such as
data caching and session state possible . This chapter looks at how ASP .NET implements a
global space for Web applications .

The .Application: .A .Rendezvous .Point
As you have seen so far, one of the most distinctive aspects of Web-based development is
the requirement that you must be very mindful of the state of your application . By itself,
raw Web application development includes no support for dealing with state . After all,

386 Part 18 Diagnostics and Plumbing

Web requests are made over a disconnected protocol and much of the state of a request
 evaporates as soon as it hits an endpoint .

Chapter 4, “Custom Rendered Controls,” examines the notion of view state in an ASP .NET
Web Forms application . ASP .NET server-side controls have the option of supporting view
state . View state is embedded in the data transmitted between the browser and the server
and is used (most of the time) to keep the user interface (UI) appearing as though the
browser and the server are connected continually . For example, without view state (or some
special coding in the server application), UI elements such as drop-down lists lose their state
between posts, causing the first item in the list always to show as the selected item—even if
it is not really the item selected .

As its title indicates, Chapter 14, “Session State,” discusses session state, the data accompany-
ing a specific session . Session state is useful for items such as shopping carts for which the
application has to associate data with a particular client .

Finally, Chapter 15, “Application Data Caching,” discusses how you can cache state to avoid
unnecessary round-trips to a data source . Loading data from memory is usually much faster
than is loading it from a database or regenerating it . To store data that all parts of your ap-
plication can access, the data must be stored somewhere else besides view state and ses-
sion state . The cache is available from virtually anywhere in the application by way of the
HttpContext object . HttpContext includes a reference to an instance of the HttpApplication
object . In addition to being a holding place for the cache, the application object has its own
dictionary that serves as a useful place to hold data . It works in very much the same way
that the Cache does . However, there are some subtle yet important differences between the
Cache and the dictionary held by HttpApplication .

Keeping a dictionary and a data cache available for the rest of the application isn’t the only
good reason to implement a central application object . Another reason is to have a mecha-
nism for handling application-wide events . You know that the Page class handles events
for a request specifically . However, think about how the entire ASP .NET pipeline works .
Some useful events aren’t part of the page processing or request processing mechanism .
Implementing those involves code working outside the usual page processing mechanism .

For example, as mentioned, Chapter 14 looks at session state . When a request first comes
through a site where session state is enabled, when should the session object be set up?
Certainly, you want it set up before the page-specific processing begins . Chapter 9, “Logging
In,” discusses the ASP .NET security model . When should authentication and authorization be
handled? You want those things to happen outside the context of the typical request pro-
cessing, too . A final example is output caching, as discussed in Chapter 16, “Caching Output .”
For output caching to work, ASP .NET needs to intercept the request when it first enters
the pipeline so that it can bypass the whole page creation process and render the cached
 content instead .

 Chapter 18 The HttpApplication Class and HTTP Modules 387

The ASP .NET HttpApplication object can manage these sorts of operations . When running,
the HttpApplication object represents a rendezvous point for all the parts of your entire Web
application . The HttpApplication most closely represents the singleton software pattern in
ASP .NET . You treat it as a single instance of an object in your application . A reference to it is
accessible at any point in time through the HttpContext class using the Current property .

Overriding .HttpApplication
Overriding the HttpApplication to include your own state and event handling is a matter of
adding a global application object to your site . If you ask Microsoft Visual Studio to create a
normal Web site for you (that is, click File, New, Website, ASP .NET Web Site in Visual Studio),
Visual Studio throws a singular global .asax file into your project . Global .asax includes a
 server-side script block to hold any code you want to add to the application object .

If you ask Visual Studio to create an ASP .NET Web Application Project (that is, click File,
New Project, ASP .NET Web Application in Visual Studio), Visual Studio adds a pair of files,
Global .asax and Global .asax .cs, to your application . Global .asax and Global .asax .cs have the
same relationship to each other as an ASPX file and its accompanying CS file have . In fact,
you can use Visual Studio to add the global application object to your application if it wasn’t
precreated for you . When you add a Global .asax/Global .asax .cs file pair to your application,
the application is set up and ready to handle a few application-wide events . Remember that
the Page files include the Page directive at the top of the file . The Global .asax file includes a
similar directive . The Application directive tells the runtime compiling machinery that this file
is meant to serve as the application object . Unlike pages, there can be only one Global .asax
file in your application .

Listing 18-1 shows an example of the Global .asax .cs file deriving from HttpApplication that
Visual Studio generates for you when you click File, New, Project, ASP .NET Web Application .
The Global .asax .cs provided by Visual Studio handles the Application_Start, Application_End,
Application_Error, Begin_Request, Authenticate_Request, Session_Start, and Session_End
events .

LISTING .18-1 . Global .asax .cs file and stubbed-out application event handlers

public class Global : System.Web.HttpApplication
{
 protected void Application_Start(object sender, EventArgs e){}
 protected void Session_Start(object sender, EventArgs e){}
 protected void Application_BeginRequest(object sender, EventArgs e){}
 protected void Application_AuthenticateRequest(object sender, EventArgs e){}
 protected void Application_Error(object sender, EventArgs e){}
 protected void Session_End(object sender, EventArgs e){}
 protected void Application_End(object sender, EventArgs e){}
}

388 Part 18 Diagnostics and Plumbing

To get an idea of how these events work, the following exercise illustrates placing a piece of
data in the application’s dictionary and retrieving it later when the page loads .

Managing application state

 . 1 . . Create a new Web application project named UseApplication (that is, click File, New,
Project, Empty ASP .NET Web Application in Visual Studio) .

 . 2 . . Drag a GridView onto the default page . Don’t assign a data source to it yet . In later
steps, you populate it with data that is stored with the application .

 . 3 . . Add a Global .asax/Global .asax .cs file pair to the site by right-clicking the project in
Project Explorer (or clicking Web Site, Add New Item on the main menu) . Select the
Global Application Class template, as shown here:

 . 4 . . After you add the two files, Global .asax and Global .asax .cs, to your application, you can
see that the Application_Start event is already handled (although it does nothing right
now) .

 . 5 . . To have some data to store with the application object, import the QuotesCollection
data and code files from Chapter 15 . The project name is UseDataCaching . If you
haven’t generated the XML and XSD files, you do so by running the UseDataCaching
project . The XML and schema files are generated when you click the Generate XML
File button on the CacheDependencies .aspx page . Click Web Site, Add Existing Item
on the main menu and find the file QuotesCollection .cs. In addition to importing the
QuotesCollection .cs file, grab the QuotesCollection .xml and QuotesCollection .xsd files
from the UseDataCaching\App_Data directory .

 Chapter 18 The HttpApplication Class and HTTP Modules 389

 . 6 . . Add some code to the Application_Start event to load the quotes data and place it in
the application dictionary . Server.MapPath gives you the path from which the applica-
tion is executing so that you can load the XML and XSD files . Storing the data in the
dictionary is very much like adding it to the cache:

void Application_Start(Object sender, EventArgs e) {
 QuotesCollection quotesCollection = new QuotesCollection();

 String strAppPath = Server.MapPath("");

 String strFilePathXml =
 strAppPath + "\\app_data\\QuotesCollection.xml";
 String strFilePathSchema = strAppPath +
 "\\app_data\\QuotesCollection.xsd";
 quotesCollection.ReadXmlSchema(strFilePathSchema);
 quotesCollection.ReadXml(strFilePathXml);

 Application["quotesCollection"] = quotesCollection;
}

 . 7 . . Update the Page_Load method in the Default .aspx page to load the data from the
 application’s dictionary . The application state is available through the page’s reference
to the Application object . Accessing data in the dictionary is a matter of indexing it
 correctly . After loading the data from the dictionary, apply it to the DataSource prop-
erty in the GridView and bind the DataGrid:

protected void Page_Load(object sender, EventArgs e)
{
 QuotesCollection quotesCollection =
 (QuotesCollection)Application["quotesCollection"];

 GridView1.DataSource = quotesCollection;
 GridView1.DataBind();
}

Application .State .Caveats
As you can see, the application state and the application data cache seem to overlap in
functionality . Indeed, they’re both available from similar scopes (from any point in the
 application), and getting the data in and out involves using the right indexer . However,
the application state and the cache are different in a couple of significant ways .

First, items that go into the application state stay there until you remove them explicitly . The
application data cache implements more flexibility in terms of setting expirations and other
removal/refresh conditions .

In addition, putting many items into the application state dictionary inhibits the scalability of
your application . To make the application state thread safe, the HttpApplicationState class in-
cludes a Lock method that you can use to make the global state thread safe . Although using

390 Part 18 Diagnostics and Plumbing

the Lock method ensures that the data is not corrupted, locking the application frequently
greatly reduces the number of requests it can handle .

Ideally, data going into the application state should be read only once when it is loaded
and should be changed very infrequently, if at all . As long as you’re aware of these issues,
the application state can be a useful place to store information required by all parts of your
application .

Handling .Events
The other useful aspect of the application object is its ability to handle application-wide
events . As you can see in the previous example, the Global .asax .cs file is the place to in-
sert global event handlers . Visual Studio will insert a few for you when you simply add
one to your application . The events for which Visual Studio generates stub handlers inside
Global .asax .cs include Application_Start, Application_End, Application_Error, Application_
BeginRequest, Application_AuthenticateRequest, Session_Start, and Session_End . A rundown of
these events follows .

Application_Start
Application_Start happens when the application is first initialized—that is, when the first
 request comes through . Because Application_Start happens first (and only once) during the
lifetime of an application, the most common response for the event is to load and initialize
data at the start of the application (as with the previous example) .

Application_End
The ASP .NET runtime raises Application_End as the application is shutting down . This is a
 useful place to clean up any resources that require special attention for disposal .

Application_Error
Unfortunately, bad things sometimes happen inside Web applications . If something bad has
happened in one of your existing applications, you might already have seen the standard
pale yellow and red ASP .NET error page . Once you deploy your application, you probably
don’t want clients to see this sort of page . Intercept this event (Application_Error) to handle
the error . Sometimes, an exception can be managed locally . Exceptions that cannot be
 handled locally can be handled here .

 Chapter 18 The HttpApplication Class and HTTP Modules 391

Application_BeginRequest
The Application_BeginRequest event occurs every time a user makes a request to the applica-
tion . This is a good place to handle anything that needs to occur before the request starts in
earnest .

Application_AuthenticateRequest
The Application_AuthenticateRequest event occurs after ASP .NET confirms the identity of the
user making a request . You know who is making the request after this event is fired .

Session_Start
The Session_Start event occurs when a user makes an initial request to the application, which
initializes a new session . This is a good place to initialize session variables (if you want to ini-
tialize them before the page loads) .

Session_End
This event occurs when a session is released . Sessions end when they time out or when the
Abandon method is called explicitly . This event happens only for applications whose session
state is being held in-process .

HttpApplication .Events
The events listed previously are implemented in the Visual Studio default HttpApplication
override (either Global .asax or Global .asax/Global .asax .cs depending on the project type) .
The application object can fire a number of other events . Table 18-1 shows a summary of all
the events pumped through the application object . Some of these events are handled only
through Global .asax, whereas the others are handled in HttpModules .

TABLE .18-1 . Application-wide .Events

Event Reason Order
Only in
Global.asax?

Application_Start Application is starting up . Start of app Yes

Application_End Application is ending . End of app Yes

Session_Start Session is starting . Yes

Session_End Session is ending . Yes

BeginRequest A new request has been received . 1 No

AuthenticateRequest/

PostAuthenticateRequest

The user has been authenticated—
that is, the security identity of the
user has been established .

2 No

392 Part 18 Diagnostics and Plumbing

Event Reason Order
Only in
Global.asax?

AuthorizeRequest/

PostAuthorizeRequest

The user has been authorized to use
the requested resource .

3 No

ResolveRequestCache/

PostResolveRequestCache

Occurs between authorizing the user
and invoking the handler . This is where
output caching is handled . If content is
cached, the application can bypass the
entire page-rendering process .

4 No

AcquireRequestState/

PostAcquireRequestState

Occurs when session state needs to be
initialized .

5 No

PreRequestHandlerExecute Occurs immediately before request is
sent to the handler . This is a last-
minute chance to modify the output
before it heads off to the client .

6 No

PostRequestHandlerExecute Occurs following the content being
sent to the client .

7 No

ReleaseRequestState/

PostReleaseRequestState

Occurs following request handling .
This event occurs so that the system
can save state used if necessary .

8 No

UpdateRequestCache/

PostUpdateRequestCache

Occurs following handler execution .
This is used by caching modules to
cache responses .

9 No

EndRequest Fires after the request is processed . 10 No

Disposed Occurs before the application shuts
down .

End of app No

Error Fires when an unhandled application
error occurs .

When an ex-
ception occurs

No

PreSendRequestContent Fires before content is sent to the cli-
ent .

No

PreSendRequestHeaders Fires before HTTP headers are sent to
the client .

No

The following example shows how to time requests by intercepting the BeginRequest and the
EndRequest events in Global .asax .

 Chapter 18 The HttpApplication Class and HTTP Modules 393

Timing requests

 . 1 . . Open Global .asax .cs in the UseApplication Web application .

 . 2 . . Look for the Application_BeginRequest handler . Notice that Visual Studio includes one .
However, Application_EndRequest is not stubbed out, so you need to type that one in:

protected void Application_BeginRequest(object sender, EventArgs e)
{

}protected void Application_EndRequest(object sender, EventArgs e)
{

}

 . 3 . . Implement the Application_BeginRequest handler by getting the current date and time
and storing them in the Items property of the current HttpContext . The Items property
is a name/value collection that you can index in the same way that you index the cache,
the session state, and the HttpApplication dictionary . Implement the EndRequest han-
dler by comparing the time stamp obtained from the beginning of the request to the
current date and time . Print out the amount of time taken to process the request using
Response.Write .

protected void Application_BeginRequest(object sender, EventArgs e)
{
 DateTime dateTimeBeginRequest = DateTime.Now;

 HttpContext ctx = HttpContext.Current;
 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;
}

protected void Application_EndRequest(object sender, EventArgs e)
{
 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx = HttpContext.Current;
 DateTime dateTimeBeginRequest =
 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration = dateTimeEndRequest - dateTimeBeginRequest;

 Response.Write("From Global.asax: This request took " +
 duration.ToString() + "</br>");
}

You should see the duration printed in the response returned to the browser .

394 Part 18 Diagnostics and Plumbing

HttpModules
Managing global events in Global .asax .cs is a very convenient way to manage data and
events in an application . Visual Studio generates a Global .asax .cs and even stubs out the
more important events for you . However, using Global .asax .cs isn’t the only way to store state
and handle application-wide events . The other way is to write an HTTP module .

HTTP modules serve very much the same purpose that Internet Server Application
Programming Interface (ISAPI) filters served for classic ASP—as a place to insert functionality
in the request processing . HTTP modules plug into the ASP .NET processing chain to handle
application-wide events in the same way that Global .asax handles application-wide events .
In fact, many ASP .NET features are implemented through HTTP modules . One thing to keep
in mind as a caveat before we proceed is that plugging too much into the request chain can
start to reduce performance . However, with that in mind modules are a great place to take
advantage of the flexibility of ASP .NET .

Existing .Modules
ASP .NET employs HTTP modules to enable features such as output caching and session state .
To get an idea of which features are implemented through HTTP modules, take a look at the
master configuration file for your computer (that is, go to the Windows directory, look in the
Microsoft .NET directory, and navigate to the configuration directory for the most current
release) . The master web .config file mentions several modules in the httpModules section of
the configuration, as shown in Listing 18-2 . For brevity, this list does not include entire strong
names of the assemblies, but it gives you an idea of which modules are already part of the
ASP .NET pipeline .

LISTING .18-2 . Excerpt from the master web .config file indicating configured HttpModules

<httpModules>
 <add name="OutputCache" type="System.Web.Caching.OutputCacheModule" />
 <add name="Session" type="System.Web.SessionState.SessionStateModule" />
 <add name="WindowsAuthentication" type="System.Web.Security.WindowsAuthenticationModule"
/>
 <add name="FormsAuthentication" type="System.Web.Security.FormsAuthenticationModule" />
 <add name="PassportAuthentication" type="System.Web.Security.PassportAuthenticationModule"
/>
 <add name="RoleManager" type="System.Web.Security.RoleManagerModule" />
 <add name="UrlAuthorization" type="System.Web.Security.UrlAuthorizationModule" />
 <add name="FileAuthorization" type="System.Web.Security.FileAuthorizationModule" />
 <add name="AnonymousIdentification" type="System.Web.Security.
AnonymousIdentificationModule" />
 <add name="Profile" type="System.Web.Profile.ProfileModule" />
 <add name="ErrorHandlerModule"
 type="System.Web.Mobile.ErrorHandlerModule, System.Web.Mobile, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 <add name="ServiceModel"
 type="System.ServiceModel.Activation.HttpModule, System.ServiceModel.Activation,

 Chapter 18 The HttpApplication Class and HTTP Modules 395

Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 <add name="UrlRoutingModule-4.0" type="System.Web.Routing.UrlRoutingModule" />
 <add name="ScriptModule-4.0"
 type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

</httpModules>

The httpModules section mentions the name of a module, followed by a fully specified type
that implements the feature . The following features are handled by modules:

n Output caching

n Session state

n Windows authentication

n Forms authentication

n Passport authentication

n Role manager

n URL authorization

n File authorization

n Anonymous identification

n Profile

n ErrorHandlerModule

n ServiceModule-4 .0

n ScriptModule-4 .0

Chapter 2, “ASP .NET Application Fundamentals,” includes a short summary of the ASP .NET
pipeline . The modules fit into the processing chain and take effect prior to being processed
by the HttpApplication object . In fact, Microsoft Internet Information Services (IIS) 7 .0 uses
modules extensively—especially when running in Integrated mode . Although the features
themselves can require extensive code to implement (for example, imagine all the work
that went into the session state manager), the basic formula for hooking a module into your
 application is pretty straightforward . Creating a module involves the following four steps:

 . 1 . . Writing a class implementing IHttpModule

 . 2 . . Writing handlers for the events you want handled

 . 3 . . Subscribing to the events

 . 4 . . Configuring the module in web .config

396 Part 18 Diagnostics and Plumbing

Implementing .a .Module
Here’s an example illustrating how HTTP modules work . The previous example in this
 chapter demonstrates how to time requests by handling events in Global .asax . It shows time
stamping the beginning of a request, storing the time stamp in the current HttpContext, and
 examining the time stamp as the request finishes .

The following example performs the same functionality . However, this example uses an HTTP
module to handle the events .

Using a timing module

 . 1 . . To implement a timing module, open the Web application solution file for this
 chapter—UseApplication . To work, the module needs to exist in an assembly . It’s easiest
to write a completely separate assembly for the module . Add a project to the solution
by clicking File, Add, New Project on the main menu . Make the project a Class Library
and name the project TimingModule .

 . 2 . . Visual Studio will add a class to the library named Class1 . (The name of the file gener-
ated by Visual Studio is Class1.cs and the name of the class generated by Visual Studio
is Class1 .) Change the name of the file to Timer.cs and the name of the class to Timer .
Place the code in the TimingModule namespace .

 . 3 . . The module as generated by Visual Studio doesn’t understand the ASP .NET types . Add
a reference to System.Web to make the ASP .NET types available .

 . 4 . . Add handlers for the beginning and ending of the request . You can borrow the code
from Global .asax if you want . The signatures for the event’s handlers are such that
the methods have the return type of void and accept two arguments: an object and
EventArgs .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web;

/// <summary>
/// Summary description for Timer
/// </summary>
namespace TimingModule {
 public class Timer
 {
 public Timer()
 {
 }

 Chapter 18 The HttpApplication Class and HTTP Modules 397

 public void OnBeginRequest(object o, EventArgs ea)
 {
 DateTime dateTimeBeginRequest = DateTime.Now;

 HttpContext ctx;
 ctx = HttpContext.Current;
 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;
 }

 public void OnEndRequest(object o, EventArgs ea)
 {
 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx;
 ctx = HttpContext.Current;
 DateTime dateTimeBeginRequest =
 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration = dateTimeEndRequest - dateTimeBeginRequest;

 ctx.Response.Write("From the TimingModule: This request took " +
 duration.ToString() + "</br>");
 }
 }
}

 . 5 . . Add IHttpModule to the class’s inheritance list . Add implementations for the methods
Init and Dispose by right-clicking IHttpModule in the editor and clicking Implement
Interface . The job performed by Init is to subscribe to events . The job performed by
Dispose is to release any resources used by the module . (Dispose doesn’t need to do
anything in this example .)

public class Timer
 : IHttpModule
{
 public Timer()
 {
 }

 public void Init(HttpApplication httpApp)
 {
 httpApp.BeginRequest +=
 new EventHandler(this.OnBeginRequest);

 httpApp.EndRequest +=
 new EventHandler(this.OnEndRequest);
 }
 public void Dispose() { }

// ...
}

398 Part 18 Diagnostics and Plumbing

 . 6 . . The Web site needs to know about the new module . Add a project-level reference (a
reference to the new module) to the UseApplication Web application project so that
you can use it from the page code . Right-click the UseApplication node in Solution
Explorer and click Add Reference . In the Add Reference dialog box, click the Project tab
and select TimingModule from the list, and then click OK . The following graphic shows
the Add Reference dialog box:

 . 7 . . Finally, mention the TimingModule in the web .config file . It needs to appear in the
httpModules section, nested within the system.web section, like so:

<configuration>
 <system.web>
 <httpModules>
 <add name="TimingModule"
 type="TimingModule.Timer, TimingModule" />
 </httpModules>
</system.web>
</configuration>

As long as the TimingModule assembly is available to your application (that is, it’s in the Bin
subdirectory of your virtual directory), it will be linked into the processing chain . When you
run the page, you’ll see the timing information coming from both the Global .asax .cs file and
the timing module .

Seeing .Active .Modules
Many ASP .NET features are implemented through modules . Although you can see the
 modules listed in the master configuration file, you can also see the list of available modules
at run time . They’re available through the current application instance . The following exercise
illustrates how to view the active modules .

 Chapter 18 The HttpApplication Class and HTTP Modules 399

Listing the modules

 . 1 . . Add a button to the Default .aspx page of the UseApplication solution, as shown in the
following graphic . Assign its ID to be ButtonShowmodules . This button will list the at-
tached modules, so set its Text property to Show Modules . Also, add a list box to the
page that will show the modules .

 . 2 . . Double-click the button to add a Click event handler to the page .

 . 3 . . Handle the button event by grabbing the list of modules from the application instance .
The list comes back as a collection that you can apply to the list box’s DataSource
property . Calling DataBind on the ListBox will put the names of all the modules in the
ListBox .

protected void ButtonShowmodules_Click(object sender, EventArgs e)
{
 HttpApplication httpApp = HttpContext.Current.ApplicationInstance;
 HttpModuleCollection httpModuleColl = httpApp.Modules;

 Response.Write("
");
 String[] rgstrModuleNames;
 rgstrModuleNames = httpModuleColl.AllKeys;

 this.ListBox1.DataSource = rgstrModuleNames;
 this.ListBox1.DataBind();
}

Run the page and click the Show Module button to fill the list box with a list of modules
plugged into the application, as shown in the following graphic . Check out the TimingModule
entry in the list .

400 Part 18 Diagnostics and Plumbing

Storing .State .in .Modules
HTTP modules are also very handy places to store global state for your application . The
 following example shows how to track the average request duration, which requires storing
the duration of each request as part of application state .

Tracking average request duration

 . 1 . . Before inserting the functionality into the module, think about how to use the
 information about the average request duration . You might use it to profile and to
find bottlenecks in your application . Although sending the information out to the
client browser is always useful, there might be times when you want to use the infor-
mation programmatically . To retrieve the information from the module, you need to
add one or more methods (above and beyond the Init and Dispose methods) to the
TimingModule . The best way to do that is to define an interface that has functions you
can use to talk to the module . The following code defines an interface for retrieving
the average request duration . Create a file named ITimingModule.cs and add it to the
TimerModule subproject:

public interface ITimingModule
{
 TimeSpan GetAverageLengthOfRequest();
}

 Chapter 18 The HttpApplication Class and HTTP Modules 401

 . 2 . . Implement the ITimingModule interface in the Timer class . Include an ArrayList in
the Timer class to hold on to durations of the requests . (You need to add the
System.Collections namespace to the list of using directives .) Store the duration of the
request at the end of each request in the OnEndRequest handler . Use clock ticks as the
measurement to make it easier to compute the average duration . Finally, implement
GetAverageLengthOfRequest (the method defined by the ITimingModule interface) by
adding all the elements in the ArrayList and dividing that number by the size of the
ArrayList . Create a TimeSpan using the result of the calculation and return that to the
client .

using System.Collections;

public class Timer : IHttpModule, ITimingModule
{
 public Timer()
 {
 }

 protected ArrayList _alRequestDurations = new ArrayList();
 public void Init(HttpApplication httpApp)
 {
 httpApp.BeginRequest +=
 new EventHandler(this.OnBeginRequest);
 httpApp.EndRequest +=
 new EventHandler(this.OnEndRequest);
 }
 public void Dispose() { }

 public void OnBeginRequest(object o, EventArgs ea)
 {
 DateTime dateTimeBeginRequest = DateTime.Now;

 HttpContext ctx;
 ctx = HttpContext.Current;
 ctx.Items["dateTimeBeginRequest"] = dateTimeBeginRequest;
 }

 public void OnEndRequest(object o, EventArgs ea)
 {
 DateTime dateTimeEndRequest = DateTime.Now;

 HttpContext ctx;
 ctx = HttpContext.Current;
 DateTime dateTimeBeginRequest =
 (DateTime)ctx.Items["dateTimeBeginRequest"];

 TimeSpan duration =
 dateTimeEndRequest - dateTimeBeginRequest;

 ctx.Response.Write(" From the TimingModule: this request took " +
 duration.Duration().ToString() + "</br>");
 _alRequestDurations.Add(duration);
 }

402 Part 18 Diagnostics and Plumbing

 public TimeSpan GetAverageLengthOfRequest()
 {
 long lTicks = 0;
 foreach (TimeSpan timespanDuration in this._alRequestDurations)
 {
 lTicks += timespanDuration.Ticks;
 }

 long lAverageTicks = lTicks / _alRequestDurations.Count;
 TimeSpan timespanAverageDuration = new TimeSpan(lAverageTicks);
 return timespanAverageDuration;
 }
}

 . 3 . . Now add some code in the Default .aspx page to examine the average time taken
to process each request . Add a button to fetch the average duration, and add
a label to display the average duration . Give the button the Text value Show
Average Duration Of Requests, as shown in the following graphic, and the ID
ButtonShowAverageDurationOfRequests . The label should have an empty Text value and
the ID LabelAverageDurationOfRequests . Also, include a reference to the TimingModule
in the Default .aspx page so that the page code has access to the interface .

 . 4 . . Double-click the Show Average Duration Of Requests button in Visual Studio to add a
Click event handler . Handle the event by fetching the TimingModule from the collec-
tion of modules . You can fetch it by name because the collection is indexed by module
name (as specified in web .config) .

 Chapter 18 The HttpApplication Class and HTTP Modules 403

using TimingModule;

...

protected void
 ButtonShowAverageDurationOfRequests_Click(
 object sender,
 EventArgs e)
{
 HttpApplication httpApp =
 HttpContext.Current.ApplicationInstance;

 HttpModuleCollection httpModuleColl = httpApp.Modules;
 IHttpModule httpModule =
 httpModuleColl.Get("TimingModule");
 ITimingModule TimingModule =
 (ITimingModule)httpModule;

 TimeSpan timeSpanAverageDurationOfRequest =
 TimingModule.GetAverageLengthOfRequest();
 LabelAverageDurationOfRequests.Text =
 timeSpanAverageDurationOfRequest.ToString();
}

The object you get back by accessing the module collection is an HttpModule . To be
able to talk to it using the ITimingModule interface, you need to cast the reference to
the module . After you do that, you can call GetAverageLengthOfRequest and display it
in the label, as shown in the following graphic:

404 Part 18 Diagnostics and Plumbing

Global .asax .vs . .HttpModules
The application object expressed through Global .asax and the one offered through HTTP
modules offer a rendezvous point for your application . You can use both of them to store
global state between requests as well as to respond to application-wide events . When
 choosing one over the other, remember that Global .asax really goes with your applica-
tion; Global .asax is intended to manage state and events specific to your application . HTTP
 modules exist as completely separate assemblies; they’re not necessarily tied to a particular
application, and they might even be signed and deployed in the global assembly cache . That
makes modules an ideal vehicle for implementing generic functionality that’s useful between
different applications .

Chapter .18 .Quick .Reference

To Do This

Create a custom module assembly Create a new class implementing IHttpModule. Implement
Init. Implement Dispose.

Insert the module into the processing
chain

Configure the module in the httpModule node of the
 application’s web .config file .

Handle application events in the module Write a handler (in the module) for every event you want to
handle . During the Init method, subscribe to the events by
 attaching the event handlers to the events .

Override the application object in the
Global .asax file

Click Web site, Add New Item . Select Global Application Class
from the templates . Insert your own code for responding to
the application-wide events .

Use the application’s dictionary Access the application object (it’s always available from the
current HttpContext) . Use the indexer notation to access the
dictionary .

 . . 405

Chapter 19

HTTP Handlers
After completing this chapter, you will be able to

n Recognize the role of custom handlers in ASP .NET .

n Write custom handlers .

n Write just-in-time compiled custom handlers .

n Configure your site to include your custom handler .

This chapter covers writing custom HTTP handlers . Chapter 2, “ASP .NET Application
Fundamentals,” describes the ASP .NET pipeline . Remember that the endpoint of all requests
handled by ASP .NET is always an implementation of IHttpHandler .

ASP .NET includes several classes capable of handling requests in the most common ways .
For example, the Page class handles requests by interpreting the query strings and returning
meaningful user interface (UI)-oriented HTML . The Service class interprets incoming query
strings as method calls and processes them accordingly . So far, this book has focused on a
single handler—System.Web.UI.Page . However, at other times it is appropriate to tweak the
processing or even handle it in a completely different way . You might find yourself needing
to handle a request in a way not already provided through the System.Web.UI.Page or the
System.Web.Services.Service classes . What do you do then? ASP .NET supports custom HTTP
handlers for just such occasions .

ASP .NET .Request .Handlers
So far, most attention has focused on the Page class . The Page class is responsible primarily
for managing the UI aspects of an application . Because UI processing is very involved (and
much of it is boilerplate-type code), the Page class has a great deal of functionality built into
it . The Page class can solve the majority of user interface needs that require UI processing .

Although you haven’t come across Web services yet, the WebService class implements the
details required to interpret HTTP requests as method calls . Clients call Web services by
packaging method calls in an XML format formalized as SOAP .

Note Formerly, the acronym SOAP stood for Simple Object Access Protocol, but as of SOAP 1 .2
the spelled-out version has been dropped to avoid confusion—SOAP isn’t about objects and it
isn’t necessarily simple, at least to implement .

406 Part IV Diagnostics and Plumbing

Clients call Web services in the same way they make HTTP requests for Web pages—through
the HTTP GET and POST requests . When the request reaches the server, it becomes the serv-
er’s job to unpack the parameters, place them on a real or virtual call stack, and finally invoke
the correct method . Most of the work required to make a method call through HTTP is well
understood and consistent and can be pushed down into the WebService class .

As discussed in Chapter 2, the endpoint for all HTTP requests destined for ASP .NET is a class
implementing IHttpHandler . IHttpHandler is a simple interface, including a mere two meth-
ods . However, any class implementing that interface qualifies to participate in the HTTP
 pipeline as an HTTP handler . This chapter describes the interface in detail shortly .

HTTP handlers are simply classes that implement IHttpHandler (just as HTTP modules are
classes implementing IHttpModule) . Handlers are listed inside web .config . As with the HTTP
modules, ASP .NET comes out of the box with several HTTP handlers (for implementing fea-
tures such as tracing and preventing access to sensitive files on the site) . ASP .NET comes with
these HTTP handlers already registered in the master web .config configuration file, which
resides alongside machine .config in the main configuration directory .

So far, ASPX, ASAX, and ASCX files have seemed to work magically in ASP .NET . For example,
you saw earlier that simply surfing to an ASPX file causes ASP .NET to compile the file just in
time and to synthesize a class based on System.Web.UI.Page . The reason the ASPX files work
that way is that ASP .NET includes handlers for that functionality .

ASP .NET HTTP handlers are specified in web .config in much the same way as HTTP modules .
The format of the handler elements includes four items . First, they include a file name and/
or extension to which the handler applies . This is done through the add attribute . Remember,
all HTTP requests come to the server as resource requests—the HTTP protocol is built around
the idea that requests contain resource names . The second part of the handler specifica-
tion, verb, is a list of verbs to which this handler applies . These verbs correspond to the HTTP
specification . For example, you might want a handler to apply only to GET and not to POST
requests . Or you might wish to have a handler apply to all requests . The third element,
type, is the name of the .NET type assigned to handle the request . Finally, the last attribute,
 validate, specifies whether ASP .NET should load the class at startup immediately or wait until
a matching request is received .

Listing 19-1 includes a smattering of the HTTP handlers already installed as part of the
ASP .NET master web .config file .

LISTING .19-1 . Excerpt from the master web .config file

<httpHandlers>
 <add path="trace.axd" verb="*"
 type="System.Web.Handlers.TraceHandler" validate="True" />
 <add path="WebResource.axd" verb="GET"
 type="System.Web.Handlers.AssemblyResourceLoader" validate="True" />
 <add verb="*" path="*_AppService.axd"
 type="System.Web.Script.Services.ScriptHandlerFactory,

 Chapter 19 HTTP Handlers 407

 System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" validate="False" />
 <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.
ScriptResourceHandler,
 System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" validate="False"/>
 <add path="*.axd" verb="*" type="System.Web.HttpNotFoundHandler" validate="True" />
 <add path="*.aspx" verb="*" type="System.Web.UI.PageHandlerFactory" validate="True" />
 <add path="*.ashx" verb="*" type="System.Web.UI.SimpleHandlerFactory" validate="True" />
 <add path="*.asmx" verb="*"
 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" validate="False" />
 <add path="*.rem" verb="*"
 type="System.Runtime.Remoting.Channels.Http.HttpRemotingHandlerFactory,
 System.Runtime.Remoting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" validate="False" />
 <add path="*.soap" verb="*"
 type="System.Runtime.Remoting.Channels.Http.HttpRemotingHandlerFactory,
 System.Runtime.Remoting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" validate="False" />
 <add path="*.asax" verb="*" type="System.Web.HttpForbiddenHandler"
 validate="True" />
 <add path="*.ascx" verb="*" type="System.Web.HttpForbiddenHandler" validate="True" />
 <add path="*.master" verb="*" type="System.Web.HttpForbiddenHandler" validate="True" />
 <add path="*.skin" verb="*" type="System.Web.HttpForbiddenHandler" validate="True" />
 <add path="*.browser" verb="*" type="System.Web.HttpForbiddenHandler" validate="True" />
 <add path="*.sitemap" verb="*" type="System.Web.HttpForbiddenHandler" validate="True" />
 <add path="*.dll.config" verb="GET,HEAD" type="System.Web.StaticFileHandler"
validate="True" />
<!—More handlers follow... -->
</httpHandlers>

The following sections look at a couple of specific handlers—the Trace handler and the
Forbidden handler—to show how having a separate request handling facility (that is, one that
is not tied specifically to UI or to Web services) can be useful .

The .Built-in .Handlers
One of the best examples of custom handling is the Trace handler built into ASP .NET .
Chapter 17, “Diagnostics and Debugging,“ describes tracing . You turn tracing on in the
web .config file by inserting the trace element, <trace enabled=true /> . This instructs the
ASP .NET runtime to store summaries of the requests going through the site so that they can
be viewed for diagnostic purposes .

ASP .NET caches the tracing output in memory . To view the trace results, you surf to the
 virtual directory managing the site and ask for a specific resource: Trace .axd . Take a look at
Listing 19-1 and you’ll see the first entry among all the standard HTTP handlers is for a re-
source named Trace.axd . The tracing functionality behind ASP .NET falls outside of normal UI
processing, so it makes sense that tracing is handled by a custom handler .

408 Part IV Diagnostics and Plumbing

When you surf to the Trace .axd resource, the handler renders HTML that looks like the
 output shown in Figure 19-1 . The processing for this handler is very specific—the handler’s
job is to render the results of the last few requests .

FIGURE .19-1 . The output of the Trace .axd handler .

As shown in Figure 19-2, clicking the View Details link resubmits the request with a parame-
ter id=3 in the query string . This causes the handler to render the details of the third request .

FIGURE .19-2 . The output of the Trace .axd handler focused on a specific request summary .

 Chapter 19 HTTP Handlers 409

Figure 19-3 shows the Microsoft Internet Information Services (IIS) file mapping for files with
the .axd extension . Although you won’t really see this aspect until deployment time, it’s in-
teresting to observe because it shows how ASP .NET is very versatile in the kinds of requests
it can handle . IIS handles Trace .axd requests the same way as any other ASP .NET request .
That means IIS will pass requests for resources with an extension of .axd on to ASP .NET . Once
inside the ASP .NET pipeline, the web .config file tells ASP .NET to handle the request with the
Trace handler .

FIGURE .19-3 . IIS has a handler mapping for Trace .axd .

If you look through the default web .config file a bit more, you’ll see some other critical
ASP .NET handlers . As you might expect, source code is banned explicitly from normal cli-
ents by default . Notice that files such as * .cs, * .config, and * .vb are handled by the Forbidden
 handler . If you try to look at source code in a Web browser, ASP .NET returns the page shown
in Figure 19-4 by default .

410 Part IV Diagnostics and Plumbing

FIGURE .19-4 . What happens when you try to view forbidden content .

Remember that ASP .NET’s configuration is very malleable and that you can choose to let
 clients see your source code by one of two means . You can remove the source code exten-
sion to ASP .NET mappings in IIS . Alternatively, you can write your own source code viewer
handlers and declare them in your application’s web .config file .

These handlers plug into the pipeline by implementing IHttpHandler . The next section
 describes this key interface .

Handlers .and .IHttpHandler
Here it is . Shield your eyes while you look at Listing 19-2 (just kidding—it’s not a very big
interface) .

LISTING .19-2 . The IHttpHandler interface

public interface IHttpHandler
{
 void ProcessRequest(HttpContext ctx);
 bool IsReusable {get;}
}

There’s really not much to it, is there? The interface includes a method named ProcessRequest
and a property named IsReusable . If the handler instance can be used multiple times,

 Chapter 19 HTTP Handlers 411

IsReusable should return true . If the handler generally returns static content, it’s probably
reusable . If the content is dynamic, it’s probably not reusable . The heart of the handler is the
ProcessRequest method that includes a single parameter: the current HttpContext .

When a request finally arrives at the handler (through the ProcessRequest method),
ProcessRequest can literally do anything to respond to the request . The Trace .axd handler
 responds to a GET request by listing the requests being tracked by the runtime . The forbid-
den handler responds by tossing a roadblock in the processing pipeline so that the client
can’t see the forbidden resource . A custom Web service might respond to the request by
parsing the XML payload, constructing a call stack, and making a call to an internal method .

Implementing IHttpHandler is simple—at least from the architectural standpoint . The
ProcessRequest method takes a single parameter—the current HttpContext . However, the
code inside ProcessRequest is free to do just about anything, possibly making the internal
processing quite complex! The following example illustrates taking over the entire form-
rendering process to display a list of choices in a combo box, allowing the end client to select
from the choices, and finally rendering the chosen item .

Writing a custom handler

 . 1 . . Create a new, empty Web project named CustomHandlers .

 . 2 . . Add a new class library subproject to the CustomHandlers solution (just as you did
when you created an HTTP module) . Name the project CustomFormHandlerLib . The
name of the class it generates for you is Class1 . Rename the file CustomFormHandler.cs
and the class CustomFormHandler .

 . 3 . . The library generated by Microsoft Visual Studio comes without any knowledge of the
ASP .NET framework and classes . Add a reference to the System.Web assembly .

 . 4 . . To turn the CustomFormHandler class into an eligible handler, add the IHttpHandler
interface to the inheritance list and implement ProcessRequest . Add a method named
ManageForm that takes a parameter of type HttpContext . ManageForm should write
out <html>, <body>, and <form> tags through Response.Write . Write the question
“Hello there . What’s cool about .NET?” followed by a line break . Next, write a <select>
tag and set the name attribute to “Feature .” Then, write several .NET features surround-
ed by <option> tags . This will produce a drop-down list box on the client’s browser .
Write out an <input> tag . The tag’s type attribute should be submit, its name attribute
should be “Lookup,” and its value attribute should be “Lookup .” Next, look up the new
value for the “Feature” selection tag in the HttpContext Request.Params collection . If
the value is not null, the end user selected something . Write the value provided by the

412 Part IV Diagnostics and Plumbing

“Feature” selection tag . Finally, write out closing tags . That is, </form>, </body>, and
</html> tags .

Have the ProcessRequest method call the ManageForm method like so:

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
public class CustomFormHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext ctx)
 {
 ManageForm(ctx);
 }

 public void ManageForm(HttpContext context)
 {
 context.Response.Write("<html><body><form>");

 context.Response.Write(
 "<h2>Hello there. What's cool about .NET?</h2>");

 context.Response.Write(
 "<select name='Feature'>");
 context.Response.Write(
 "<option> Strong typing</option>");
 context.Response.Write(
 "<option> Managed code</option>");
 context.Response.Write(
 "<option> Language agnosticism</option>");

 context.Response.Write(
 "<option> Better security model</option>");
 context.Response.Write(
 "<option> Threading and async delegates</option>");
 context.Response.Write(
 "<option> XCOPY deployment</option>");
 context.Response.Write(
 "<option> Reasonable HTTP handling framework</option>");
 context.Response.Write("</select>");
 context.Response.Write("</br>");

 context.Response.Write(
 "<input type=submit name='Lookup' value='Lookup'></input>");
 context.Response.Write("</br>");

 if (context.Request.Params["Feature"] != null)
 {
 context.Response.Write("Hi, you picked: ");
 context.Response.Write(
 context.Request.Params["Feature"]);

 Chapter 19 HTTP Handlers 413

 context.Response.Write(
 " as your favorite feature.</br>");
 }

 context.Response.Write("</form></body></html>");
 }

 public bool IsReusable {
 get
 {
 return true;
 }
 }
}

The code in the ProcessRequest will render a form element and a select element that
render a form that can be submitted by the browser . When the form is submitted back
to the server, the parameter collection will contain a Features element . The code exam-
ines the parameter collection to see whether it references a feature, and it displays the
feature if it’s been selected .

 . 5 . . The class library you just created deposits its output in the project directory . For
ASP .NET to use the page, the resulting executable needs to live in the application direc-
tory’s bin subdirectory . You can do this by adding the CustomHandlerLib .dll as a project
reference to the Web site . Right-click the Web site project in Solution Explorer and add
a new project reference . Select the CustomFormHandlerLib project and click OK .

 . 6 . . Now update web .config so that it uses the handler when clients request the
CustomFormHandler resource . If you don’t already have a web .config in the
 project, add one . Then, insert an httpHandlers section that points requests for the
CustomFormHandler to the new CustomFormHandler class .

<configuration >
<system.web>
 <httpHandlers>
 <add path="*.cstm" verb="*"
 type="CustomFormHandlerLib.CustomFormHandler, CustomFormHandlerLib"
 validate="true" />
 </httpHandlers>
</system.web>
</configuration>

414 Part IV Diagnostics and Plumbing

Note If this site were running under IIS, you would need to tell IIS about the new file types to be
handled by the CustomFormHandler . If you decide to run this application under IIS (instead of the
Visual Studio Web server), you can configure IIS to run your handler by editing config .sys directly,
if you know the correct settings, or by doing the following:

 . 1 . . Open IIS and navigate to the virtual directory for the site .

 . 2 . . Open the Features View and locate the Handler Mappings icon, as shown in the following
graphic .

 . 3 . . Double-click the Handler Mappings icon to open the Handler Mappings page:

 . 4 . . Right-click in the middle of the Handler Mappings page, and click Add Managed Handler .

 . 5 . . Type in an extension you’d like to have mapped to the custom handler, as shown in the
following graphic . Then, assign a handler . IIS will look at all the handlers available to your

 Chapter 19 HTTP Handlers 415

application (including the ones local to your application) . Select the handler from the
drop-down list, give the handler an alias, and you’ll be able to surf to that file type to
 invoke the handler .

 . 6 . . Finally, add a blank text file named CustomHandler.cstm to your project . You can use
the file with that extension to surf to the handler .

 . 7 . . Surf to the customhandler .cstm resource, and ASP .NET will invoke the custom handler
you just created, as shown in this graphic:

Of course, most of this processing could be handled more easily by setting up a Web Form .
However, this example shows the flexibility of the ASP .NET handler architecture . It should also
give you more appreciation for the Web Form and custom controls machinery in ASP .NET .

416 Part IV Diagnostics and Plumbing

Handlers .and .Session .State
Chapter 14, “Session State,” discusses, as its title implies, session state . Session state works
automatically in the context of System.Web.UI.Page . However, custom handlers need to turn
on the ability to use session state deliberately .

The .NET architecture uses an interesting idiom known as marker interfaces . Marker inter-
faces are empty interfaces (without any methods or properties defined) . Their sole purpose
is to signal the runtime about various aspects of the application . For example, the ASP .NET
runtime often uses them to turn on and off various features . When the runtime detects a
marker interface as part of an object’s class hierarchy, the runtime can bring into play certain
features .

For a handler to use session state, it must have the System.Web.SessionState.IRequiresSessionState
interface in its inheritance list . That way the runtime will know to load and store session state
at the beginning and end of each request .

Listing 19-3 shows a handler with session state enabled .

LISTING .19-3 . Example HTTP handler that accesses session state

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Web.SessionState;

public class HandlerWithSessionState : IHttpHandler, IRequiresSessionState
{
 public void ProcessRequest(HttpContext ctx)
 {
 string strData = (string)ctx.Session["SomeSessionData"];

 if (String.IsNullOrEmpty(strData))
 {
 strData = "This goes in session state";
 ctx.Session["SomeSessionData"] = strData;
 }
 ctx.Response.Write("This was in session state: " + strData);
 }

 public bool IsReusable {
 get
 {
 return true;
 }
 }
}

 Chapter 19 HTTP Handlers 417

Generic .Handlers .(ASHX .Files)
Just as ASPX files can be compiled on the fly (“just in time”), so can handlers . Generic
 handlers have an extension of ASHX . They’re equivalent to custom handlers written in C# or
Visual Basic in that they contain classes that fully implement IHttpHandler . They’re convenient
in the same way ASPX files are convenient . You simply surf to them and they’re compiled
automatically .

The following example illustrates the CustomFormHandler implemented as a “generic
handler .”

Writing a generic handler

 . 1 . . Add a “generic” handler to the Web site . In Solution Explorer, right-click the
CustomHandler Web site node and click Add New Item . Select Generic Handler from
the templates . Name the handler CustomFormHandler.ashx .

 . 2 . . Visual Studio generates a handler that includes a stubbed-out ProcessRequest method
and a completed IsReusable property . Open the handler’s code-beside file (named
CustomFormHandler .ashx .cs) and write a function to emit the form-handling code
(you can borrow it from the last exercise) . Call the method from inside ProcessRequest .
Replace the stubbed-out method and property with real implementations .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

418 Part IV Diagnostics and Plumbing

namespace CustomHandlers
{
 public class CustomFormHandler : IHttpHandler
 {
 public void ProcessRequest(HttpContext context)
 {
 ManageForm(context);
 }

 public void ManageForm(HttpContext context)
 {
 context.Response.Write("<html><body><form>");
 context.Response.Write(
 "<h2>Hello there. What's cool about .NET?</h2>");
 context.Response.Write("<select name='Feature'>");
 context.Response.Write("<option> Strong typing</option>");
 context.Response.Write("<option> Managed code</option>");
 context.Response.Write("<option> Language agnosticism</option>");
 context.Response.Write("<option> Better security model</option>");
 context.Response.Write(
 "<option> Threading and async delegates</option>");
 context.Response.Write("<option> XCOPY deployment</option>");
 context.Response.Write(
 "<option> Reasonable HTTP handling framework</option>");
 context.Response.Write("</select>");
 context.Response.Write("</br>");
 context.Response.Write(
 "<input type=submit name='Lookup' value='Lookup'></input>");
 context.Response.Write("</br>");
 if (context.Request.Params["Feature"] != null)
 {
 context.Response.Write("Hi, you picked: ");
 context.Response.Write(context.Request.Params["Feature"]);
 context.Response.Write(" as your favorite feature.</br>");
 }

 context.Response.Write("</form></body></html>");
 }

 public bool IsReusable
 {
 get {return true; }
 }
 }

}

 . 3 . . Browse to the CustomFormHandler .ashx file . It should work in just the same way as
the handler implemented in the CustomFormHandler class that you wrote in the first
example .

 Chapter 19 HTTP Handlers 419

The advantage of using the generic handler is twofold . First, it’s usually much more conve-
nient to generate a simple handler than it is to create a whole new assembly to handle the
request . Second, you don’t need to configure either web .config or IIS (when it comes time to
deploy) . That is, ASP .NET and IIS already understand what to do when encountering resource
requests with the extension of .ashx . Installing ASP .NET places those when mapping to IIS .

However, ASHX files have the same limitations as ASPX and ASCX files in terms of their place
in an ASP .NET project . Simple generic handlers go with the project . That is, for the handler to
work, it must accompany the whole project . Alternatively, custom handlers deployed as sepa-
rate assemblies you can deploy and share throughout the enterprise as global assemblies
(that is, strongly named assemblies placed in the global assembly cache) .

Chapter .19 .Quick .Reference

To Do This

Create a custom handler assembly Create a new class implementing IHttpHandler .

Implement the IsReusable property .

Implement ProcessRequest .

Assign a file mapping to the handler
in ASP .NET

Configure the handler in the httpHandler segment of the application’s
web .config file .

Assign a file mapping to the handler
in IIS

Right-click the virtual directory . Select Properties . Click the Configure
button . Click the Add button . Add a new extension and map it to
aspnet_isapi .dll .

Create a simple handler Select Web site, Add New Item .

Select Generic Handler from the templates .

Insert your own code for responding to the request .

Microsoft ASP.NET 4 Step by Step

 . . 421

Part V

Dynamic Data, XBAP, MVC,
AJAX, and Silverlight

In this part:

Dynamic Data . 423

ASP.NET and WPF Content . 433

The ASP.NET MVC Framework . 449

AJAX . 473

Silverlight and ASP.NET . 513

 . . 423

Chapter 20

Dynamic Data
After completing this chapter, you will be able to

n Understand the problems Dynamic Data solves .

n Understand how Dynamic Data works .

n Create a functional Web site using the Dynamic Data feature .

n Customize the default appearance of a Dynamic Data site .

n Apply validation to a Dynamic Data site .

Now, more than a decade into the evolution of ASP .NET, it’s becoming clear that ASP .NET
makes usability and ease of development priorities . For example, ASP .NET master pages
make developing a common look and feel very doable in practice, relieving the need instead
for developers to handcraft some sort of inheritance mechanism . ASP .NET authentication and
authorization support makes security manageable . The validation controls make for conve-
nient data validation . ASP .NET data source controls make data sources available through the
Designer . ASP .NET 4 includes another major usability feature: Dynamic Data . Dynamic Data
extends the ASP .NET GridView and DetailsView controls with a rich framework, making data-
driven sites much more approachable . (Although it has been around for a while, only now is
Dynamic Data available officially through Microsoft Visual Studio .)

Chapter 10, “Data Binding,” discusses data binding . In ASP .NET, some controls bind directly
to a data source (for example, the DataGrid) . Data source controls are convenient because
you can display data easily without having to write a lot of code manually to make the data
appear for end users . Although the DataGrid can take a data source and display whatever
data you send it, that’s the extent of its functionality . Many developers would love an easy
way to add validation infrastructure to the DataGrid . Unfortunately, validation is not part of
DataGrid functionality . However, with ASP .NET Dynamic Data, you can build data-driven sites
because Dynamic Data supports just this type of facility .

Here’s another way to think about ASP .NET Dynamic Data features: As a developer, you need
to know (basically, a priori) what your site will look like . You have an idea of the data model,
and your job is to create a visual representation of the data (for example, a presentation suit-
able for humans) . The DataGrid can infer the data structure using reflection and display a
reasonable presentation for the end user . However, the grid’s data presentation is often just
a fragment of the page . ASP .NET Dynamic Data facilities take things a step further, enabling
you to build a whole site based on a data model .

This chapter starts by looking at the Dynamic Data controls .

424 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Dynamic .Data .Controls
The ASP .NET Dynamic Data framework provides six controls that specifically support Dynamic
Data . These controls make up the core of ASP .NET Dynamic Data functionality . Here’s a run-
down of the Dynamic Data controls:

n DynamicControl The DynamicControl control displays content defined in templated
data-bound controls (such as the ones described in Chapter 10) using ASP .NET Dynamic
Data features .

n DynamicDataManager The DynamicDataManager is a nonvisual control that
 manages the dynamic behavior of the controls that support Dynamic Data .

n DynamicEntity The DynamicEntity control represents an entity for use by ASP .NET
Dynamic Data .

n DynamicFilter The DynamicFilter control displays the user interface (UI) for filtering
table rows using a specified column .

n DynamicHyperLink The DynamicHyperLink control displays links to table actions such
as edit, delete, and insert .

n DynamicValidator The DynamicValidator control manages exception handling and
error message display for those exceptions thrown in a data model .

These controls fit into the ASP .NET infrastructure—just like the rest of the server-side
 controls . The following exercise illustrates how to develop a Dynamic Data Web site .

Developing a Dynamic Data site

 . 1 . . .Start Visual Studio . Create a new ASP .NET Project using the ASP .NET Dynamic Data
LINQ To SQL template . Name the project DynamicDataLinqToSQLSite, as shown here:

 Chapter 20 Dynamic Data 425

 . 2 . . Visual Studio generates a Web Project primed to use Dynamic Data . Look at the items
in Solution Explorer . (A few of these items are described throughout the rest of the
chapter .)

 . 3 . . .Borrow the ASPNETStepByStep4 .mdf file from the Chapter 10 project . Right-click the
App_Data folder in Solution Explorer, and click Add, Existing Item . Navigate to the
Chapter 10 project and pick up ASPNETStepByStep4 .mdf from the App_Data folder .

 . 4 . . Build a data model for the application . Right-click the project node from within
Solution Explorer, and click Add, New Item . Select the Linq To SQL Classes template
from the Installed Templates (Data node) . Name the Linq To SQL class (to be generated
by Visual Studio) DotNetReferences, as shown in the following graphic:

 . 5 . . Open Server Explorer and expand the ASPNETStepByStep4 database under the Data
Connections node . Open the Tables node and find the DotNetReferences table . Visual
Studio will display the Object Relational Designer surface automatically . Drag the
DotNetReferences table from Server Explorer into the Object Relational Designer, as
shown here (Visual Studio is showing that it will create a class named DotNetReference):

426 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 6 . . Visual Studio adds a file named DotNetReferences .dbml to your project (along with
some useful classes) . Save this file .

 . 7 . . Open the Global .asax file . Find the code that registers the data context with the default
data model . It will be commented out . Uncomment the line and have the DefaultModel
register the DotNetReferencesDataContext (which was generated by Visual Studio), as
shown in the following code . Also set the ScaffoldAllTables parameter to true .

public static void RegisterRoutes(RouteCollection routes)
{
 DefaultModel.RegisterContext(typeof(DotNetReferencesDataContext),
 new ContextConfiguration() { ScaffoldAllTables = true});
 // more registration code...
}

 . 8 . . Now run the site . The default page will appear like this:

 . 9 . . Click the DotNetReferences link that appears under the My Tables banner . Visual Studio
reflected on the data in the data model and populated a GridView based on the data .
(In fact, if you read the source code of Default .aspx, you can see only a GridView—you
see the source code in the next step .) You should this in your browser when you click
the DotNetReferences link:

 Chapter 20 Dynamic Data 427

 . 10 . . Open the Default .aspx file and look at what Visual Studio produced for you:

<asp:GridView ID="Menu1" runat="server" AutoGenerateColumns="false"
 CssClass="DDGridView" RowStyle-CssClass="td" HeaderStyle-CssClass="th"
 CellPadding="6">
 <Columns>
 <asp:TemplateField HeaderText="Table Name" SortExpression="TableName">
 <ItemTemplate>
 <asp:DynamicHyperLink ID="HyperLink1"
 runat="server"><%# Eval("DisplayName") %>
 </asp:DynamicHyperLink>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

 . 11 . . This code generates a table of hyperlinks based on the default data model (which
is made up of a single table right now) . When you click the link, ASP .NET directs
the request to a file named List .aspx . You can find List .aspx in the DynamicData\
PageTemplates node of the project in Solution Explorer . ASP .NET substitutes the display
name (the DotNetReferences) in the URL and uses the data to produce a listing of the
contents of the DotNetReferences table . If you open the List .aspx file, you also find a
GridView—this GridView in List .aspx produces the listing of the table contents .

428 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Dynamic .Data .Details
At this point, you might be looking at the preceding example and wondering what the big
deal is . After all, if you point the GridView toward a data source, the GridView automatically
reflects the data source columns and creates a bunch of columnar representations . However,
the columns for the GridView shown so far are bound columns that use the BoundField
server-side control . Once the GridView is rendered—that’s all the end user sees, and there
is no easy way to customize the behavior . ASP .NET Dynamic Data features change that: The
Dynamic Data features are built around the DynamicControl and the DynamicField controls .

The DynamicControl is used in the ListView and the FormView data controls . Using the
DynamicControl causes ASP .NET to render a UI based on schema from the database . You use
the DynamicField in the GridView and DetailsView (instead of the BoundField) to render the
UI . The DynamicField relies on the DynamicControl internally, so produces the same sort of
data-driven UI in the context of the GridView and the DetailsView .

When you use the DynamicControl (either explicitly or implicitly), ASP .NET renders data entry
forms generated directly from the tables of your database, and you can substitute other con-
trols to render the UI (rather than relying on the default provided by ASP .NET) . This lets you
use a wide variety of controls easily in the GridView, ListView, FormView, and DetailsView .

For example, imagine you want to allow users to enter a Social Security number using the
DataGrid . If you do not use Dynamic Data, the GridView uses the standard TextBox control to
render the editing UI, and there’s no easy way to inject any other control . Now imagine you
want to use a different control during editing: the MaskedTextBoxExtender from the AJAX
toolkit . By applying the MaskedTextBoxExtender to the TextBox, you can ensure that the user
enters the number in the correct format (three digits, a hyphen, two digits, another hyphen,
and then four more digits) . Up until now, it has not been feasible to extend the GridView in
this way . But now you can with the DynamicControl or DynamicField . The Dynamic Data scaf-
folding produced by Visual Studio includes well-delineated places where you can substitute
different, nondefault controls . In addition, Dynamic Data supports automatic validation . For
example, by using the Dynamic Data features of ASP .NET, you can avoid having to recode all
those validators over and over again because the database schema can inform how the data
validation works for a particular column .

The next example illustrates how to extend the application to show more tables and to use
the automatic validation supplied by the scaffolding .

Extending the application

 . 1 . . Open the DotNetReferences .dbml file . Visual Studio should display the Object
Relational Designer . Open Server Explorer . Find the DotNetLinks table and drag it into
the Object Relational Designer . Rebuild the application and you will see links for the

 Chapter 20 Dynamic Data 429

DotNetLinks table (as well as the DotNetReferences table) . Click the DotNetLinks hyper-
link . You should see the DotNetLinks table represented in the browser as follows:

 . 2 . . Close the browser and open the file List .aspx; it is in Solution Explorer under the Project
node: Open the Dynamic Data node, and then open the Page Templates node . After
you open List .aspx, switch to Design mode if not already displayed as such . You should
see the GridView in Design mode:

 . 3 . . This page is just like any other Web form at this point . If you would like to format the
GridView, you can by clicking the SmartTag for the grid (the angle bracket (>) in the
box in the upper right corner of the control) . For example, you can auto format the

430 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

GridView to give it a more colorful appearance . You can also edit the control to have
alternating row styles, as shown in Chapter 10 . The example here skins the GridView
 using the Classic format . Here’s the DotNetLinks GridView following the reformat:

 . 4 . . Now update the Linq to SQL data model to support regular expression validation .
The file created by Visual Studio is named DotNetReferences .Designer .cs, and you can
edit it by expanding the DotNetReferences .dbml file in Solution Explorer . Find the
URL property in the DotNetLink class and add the RegularExpression attribute to it .
The regular expression shown here is borrowed from the RegularExpressionValidator’s
ValidationExpression dialog box:

[global::System.Data.Linq.Mapping.ColumnAttribute(Storage="_URL",
 DbType="NVarChar(100) NOT NULL", CanBeNull=false)]
[System.ComponentModel.DataAnnotations.RegularExpression
 ("http(s)?://([\\w-]+\\.)+[\\w-]+(/[\\w- ./?%&=]*)?")]
public string URL
{
 get
 {
 return this._URL;
 }
 set
 {
 if ((this._URL != value))
 {
 this.OnURLChanging(value);
 this.SendPropertyChanging();
 this._URL = value;
 this.SendPropertyChanged("URL");
 this.OnURLChanged();
 }
 }
}

 Chapter 20 Dynamic Data 431

 . 5 . . Run the site . Go to the DotNetLinks page and try to edit one of the links . You are
 presented with the DotNetLinks edit page . Type an invalid URL in the edit box . Click
the Update link and watch the built-in regular expression validator fire, just as shown in
Chapter 6, “Control Potpourri,” and as illustrated in the following graphic . This happens
because the URL property in the data model throws an exception when a value not
matching the regular expression defined in the attribute is set .

 . 6 . . To see where the built-in RegularExpressionValidator is set up, open the file
Text_Edit .ascx, which is in the DynamicData\FieldTemplates folder in Server Explorer .
You’ll see the following code:

<%@ Control Language="C#" CodeBehind="Text_Edit.ascx.cs"
 Inherits="DynamicDataLinqToSQLSite.Text_EditField" %>

<asp:TextBox ID="TextBox1" runat="server"
 Text='<%# FieldValueEditString %>' CssClass="DDTextBox"></asp:TextBox>

<asp:RequiredFieldValidator runat="server"
 ID="RequiredFieldValidator1" CssClass="DDControl DDValidator"
 ControlToValidate="TextBox1"
 Display="Dynamic" Enabled="false" />
<asp:RegularExpressionValidator runat="server"
 ID="RegularExpressionValidator1" CssClass="DDControl DDValidator"
 ControlToValidate="TextBox1" Display="Dynamic" Enabled="false" />

<asp:DynamicValidator runat="server"
 ID="DynamicValidator1"
 CssClass="DDControl DDValidator"
 ControlToValidate="TextBox1" Display="Dynamic" />

Voila! The editing facilities of the page are controlled by a user control!

432 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

As you can see, there is nothing hidden or magical about the ASP .NET Dynamic Data feature .
In fact, if you peruse the files generated by Visual Studio, you can see a host of common
ASP .NET idioms and features that you have explored in earlier chapters of this book . The
power of Dynamic Data is that you can use it to tailor a site that is driven by the data model
rather than spending a lot of time creating a UI to match the data model . This is especially
powerful if you expect your data model to change in the future .

Chapter .20 .Quick .Reference
To Do This

Create a Dynamic Data-enabled
Web site

Use Visual Studio’s Dynamic Data Linq To SQL template or
Dynamic Data Entity template .

Create a Linq to SQL data model Use Visual Studio’s Linq to SQL Classes template to create dbml
and class files for you . Drag the table(s) you want represented in
your data model onto the Object Relational Designer surface .

Include the scaffolding in the request
routing chain

Call DefaultModel.RegisterContext passing in the correct data
 context type (produced by Visual Studio) .

Apply validation to the data model Annotate the property to validate with one of the valida-
tion attributes (for example, RegularExpression or the Required
 attributes) .

Modify the look and field of the
 generated source code

Open the DynamicData\PageTemplates node in Solution Explorer .
The generated code is in the aspx files located there (for example,
List .aspx, ListDetails .aspx, Details .aspx, Edit .aspx, and Insert .aspx) .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 . . 433

Chapter 21

ASP.NET and WPF Content
After completing this chapter, you will be able to

n Understand the benefits of Windows Presentation Foundation (WPF) over traditional
Windows user interfaces .

n Create an XAML-based browser application (XBAP) site .

n Add WPF-based content to an ASP .NET site .

The last 20 chapters demonstrate how ASP .NET makes Web development approachable by
pushing most HTML rendering to the ASP .NET Control class and its descendents . In addition,
the ASP .NET pipeline hides many of the details of a Web request so that you can focus on
your part in development . The next few chapters show alternative paths for producing con-
tent for the end user, including information on ASP .NET support for AJAX, its implementa-
tion of the Model-View-Controller pattern, and how Microsoft Silverlight works . This chapter
starts by discussing how you can render Extensible Application Markup Language (XAML)-
based content to the browser .

Improving .Perceived .Performance .by .Reducing . . .
Round-Trips

Throughout the history of the Web, one main way developers have improved end-user
 experience has been to reduce the number of round-trips to the server . For a long time, the
only way to do this was to employ client-side scripting in a Web page . That way, certain parts
of the application were executed on the client’s browser, which is usually much faster than
making an entire round-trip .

Chapter 23, “AJAX,” discusses AJAX, which represents a major improvement in Web-based
user interfaces (UIs) . AJAX adds many elements to Web-based user interfaces that have been
available previously only to desktop applications . For example, the AJAX AutoComplete ex-
tender allows users typing text into a TextBox to select from options generated dynamically
from a Web service . With the ModalPopupExtender, you can provide content in a pane that
behaves like a standard Windows modal dialog box at run time .

However, scripting isn’t the only way to push functionality to the browser . AJAX still relies
fundamentally on HTML, and although HTML includes a huge set of tags that render to
standard user interface elements that run in the browser, it stops there . Being able to run
WPF content on a site changes that . WPF represents a new way to add rich user interfaces to
a site, and it turns standard Web-based (and Windows-based) user interface programming

434 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

on its head . In this chapter, you see how WPF works and how it relates to the Internet and
to browser applications . You revisit some of this when you look at Silverlight, a similar
 technology . For now, first look at WPF .

What .Is .WPF?
Windows-based user interface programming is based on an architecture that has remained
fundamentally unchanged for more than a quarter century . Since back in the early 1980s
through today, all applications have had the same basic underpinnings: The main application
runs a message loop, picks up Windows messages off of the message queue, and deposits
them into a window handler . Every window is responsible for rendering its own presenta-
tion—that is, every window, from the top-level window of the application to the most minor
control in the window .

Nearly all Windows-based applications today use the Win32 application programming inter-
face (API) at the lowest level . The classic Win32 API has worked well for a long time . However,
its design is beginning to show its age . Because every window and control is responsible for
its own rendering using the Win32 Graphics Device Interface (GDI, or the GDI+ interface, in
the case of Windows Forms), fundamental user interface limitations are built into the design
of the Windows operating system . The GDI and GDI+ interfaces have a huge array of func-
tions . However, it takes a lot of work to do much more than basic drawing and text render-
ing . That is, special effects such as transformations, transparency, and video play integration
are difficult to accomplish using the current Windows graphics interface . Windows does
support a richer graphics-based interface named Direct X; however, using it is often beyond
the scope of most Windows-based applications and is typically reserved for use by game
programmers .

The limitations of the classic Windows API prompted Microsoft to develop a new program-
ming interface: the Windows Presentation Foundation (WPF) . With WPF, programming spe-
cial effects for Windows-based applications (including presenting Web content, as described
later) is very approachable . The WPF libraries are made up of a number of classes that work
together very much like the Windows Forms classes do (on the surface at least; underneath
the goings-on are very different from Windows Forms) .

WPF represents a very rich programming interface for developing a user interface . Here’s a
short list of the kinds of features available through WPF (this is a broad summary and is not
exhaustive):

n User interface elements that you can modify in all kinds of ways much more easily than
you can using Win32 and subclassing

n Paths, shapes, and geometries for drawing two-dimensional presentations

 Chapter 21 ASP.NET and WPF Content 435

n Transforms (scaling, translating, rotation, and skewing) that allow consistent and
 uniform modifications to all user interface elements

n Ability to manage the opacity of individual elements

n Built-in layout panels

n Brushes—image, video, and drawing brushes for filling areas on the screen

n Animations

WPF applications arrange the UI elements using layout panels . Rather than relying on
 absolute positioning (as is the case for Win32 applications) or flow layout (as is the case for
ASP .NET pages), WPF introduces a number of layout options including the following:

n Grid Elements are placed in a table .

n StackPanel Elements are stacked vertically or horizontally .

n Canvas Elements are positioned absolutely .

n DockPanel Elements are positioned against the sides of the host .

n WrapPanel Elements are repositioned to fit when the host is resized .

The example that follows later uses the Canvas .

You craft a typical WPF application from files in very much the same way that you create an
ASP .NET application . A stand-alone WPF application includes a main application object that
runs the message loop and one or more windows, which are browser-based WPF applica-
tions made up of pages . WPF application components are typically composed from a markup
file, just like ASP .NET pages are . WPF layouts are defined using Extensible Application Markup
Language (XAML) .

XAML files describe a WPF layout’s logical tree, the collection of WPF user interface elements .
A WPF application is made up of Common Language Runtime (CLR) classes underneath the
façade of markup language, very much like the ASP .NET object model is . XAML files rep-
resent instructions for constructing a logical tree of visual elements . In the case of a stand-
alone Windows application, the logical tree exists in a top-level window . In the case of a
browser-based application, the logical tree exists in a browser pane . The following is a short
XAML listing that displays “Hello World” in a button hosted in a browser pane:

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:sys="clr-namespace:System;assembly=mscorlib"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >
 <Button Height="100" Width="100">Hello World</Button>
</Page>

436 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The preceding code doesn’t do a whole lot, but it is an example of the fundamental structure
of a WPF page as expressed in XAML . When run, the XAML you see listed starts a browser
session and displays a button with the string “Hello World” as its content (provided the XAML
plug-in is installed) . In a real application, instead of containing a single button with a string,
the top-level WPF node can contain elaborate layouts using the different layout panels avail-
able in WPF . You see an example of this soon .

How Does WPF Relate to the Web?
What does all this mean for Web applications? Windows Internet Explorer and other
 browsers running under the Windows operating system are based on the classic Windows
 architecture . Browsers are responsible for rendering HTML using the graphic interface avail-
able to Windows: the Graphics Device Interface (GDI) . Consequently, accomplishing special
effects in browsers (and typical HTML) is just as difficult as it is with traditional Windows
programs .

Web programming is based on submitting HTTP requests to a server, processing the re-
quests, and sending back responses to the client . In that sense, any user interface–specific
responses are constrained to whatever can be expressed in HTML . The Web is dynamic, and
HTML is basically a document technology .

Is there another markup language that provides more than just simple tags that can be in-
terpreted by an HTML browser? Yes, that’s what XAML is when used in the context of a Web
application .

Remember the previous code example? If the contents of the file are saved in an ASCII text
file named HelloWorld .xaml, and you double click it in Windows Explorer, Internet Explorer
loads and parses the XAML content . Figure 21-1 shows how it appears in Internet Explorer
when you load the XAML file into the browser . Simply double-click the file name in Windows
Explorer to see the application .

When adding WPF-style content directly to a Web site, you have three options: presenting
the content through loose XAML files, creating an XAML-based browser application (XBAP),
or using Silverlight . (Silverlight is described in more detail in Chapter 24, “Silverlight and
ASP .NET .”)

 Chapter 21 ASP.NET and WPF Content 437

FIGURE .21-1 . A button rendered as specified by XAML .

Loose XAML Files
As just shown, if you place a properly formatted XAML file in your site and make it avail-
able through a Web server, any browser capable of using the XAML plug-in (such as Internet
Explorer) can pick it up and render it . This is one option for presenting WPF-based content
from a Web site . This technique is useful for rendering semidynamic content—that is, for
 rendering anything expressible using pure XAML files .

The WPF programming model marries XAML layout instructions with accompanying code
modules in very much the same way that ASP .NET does . Events generated from user interface
elements are handled in the accompanying code . Deploying s as loose XAML files precludes
adding event handlers and accompanying code .

However, WPF elements are dynamic in the sense that they can be animated, and user in-
terface elements can be tied together using only XAML . That’s why WPF content expressed
only through XAML is semidynamic . You can hook up some interactive elements using only
XAML, but there’s a limit . For example, all through XAML you can render a list of names
of images in a list box and allow users to select an image to zoom . You can attach slider
 controls to user interface elements so that the end user can change various aspects of the
elements through the slider . However, you cannot implement event handlers for controls;
that requires deploying a WPF application as an XBAP application .

438 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

XBAP Applications
XBAPs are another way to deploy WPF content over the Web . They’re a bit more complex
than loose XAML files are . In addition to expressing layout, XBAPs support accompanying
executable code for each page . When you deploy a WPF application over the Web, the cli-
ent receives the WPF visual layout and the accompanying code is downloaded to the client
 computer . Events occurring in the XBAP are handled on the client side .

The upside of deploying an application as an XBAP is that it works in very much the same
way that a Windows-based desktop application works (though with greatly reduced permis-
sions and tightened security) . For example, the application can handle mouse click events
and can respond to control events all on the client side .

Although XBAPs are not related directly to ASP .NET, XBAP content can be hosted in ASP .NET-
served pages in the same way that loose XAML content can be served . That is, you can make
redirects to XBAP files or host XBAP files from within <iframe> HTML elements .

Microsoft Visual Studio includes a wizard for generating XBAPs that can present WPF
 content . In addition, the user interface elements contained in the WPF content can respond
to events and messages the same way as any other desktop application can . When browsers
surf to your XBAPs (which are ultimately deployed through Internet Information Services),
they will have a very desktop-like experience in terms of user interface rendering and
 responsiveness, even though the application is running in a browser . The following exercise
illustrates how to create an XBAP .

Creating an XBAP

 . 1 . . Start Visual Studio and click File, New Project . Go to the Windows application templates
and select WPF Browser Application . Name the Application XBAPORama, as shown
here:

 Chapter 21 ASP.NET and WPF Content 439

 . 2 . . Visual Studio should have created for you a new XBAP that includes a page and an
 application XAML file set . The file names are Page1 .xaml/Page1 .xaml .cs and App .xaml/
App .xaml .cs . This is very similar to the ASP .NET Web Form application structure in that
there is a markup file that contains the bulk of the UI and a code file that implements
functionality to be run on the client . Visual Studio should show the Page1 .xaml file,
which contains a Grid layout panel .

 . 3 . . Change the layout panel from a Grid to a StackPanel so that it is simpler to work with .
With a StackPanel, you can drop in controls and not worry about creating grid columns
and rows:

<Page x:Class="XBAPORama.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 Title="Page1">
 <StackPanel>
 </StackPanel>
</Page>

 . 4 . . Modify the XAML a bit more . Change the FontSize property for the Page to 16 . Nest
the following controls in the StackPanel: a TextBox, a ListBox, and a Button . WPF works
very similarly to ASP .NET in that you can name controls in the markup file (the XAML
file) and they will appear as programmatic elements in the code behind . Set the Name
property for the TextBox to “theTextBox” and set the Name property of the ListBox
to “theListBox” so that you can refer to them in the code files . Finally, set the Height
 property of the ListBox to 100 so that it will show up even if it is empty:

<Page x:Class="XBAPORama.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300"
 Title="Page1" FontSize="16">
 <StackPanel>
 <TextBox Name="theTextBox"></TextBox>
 <ListBox Name="theListBox" Height="100"></ListBox>
 <Button>Click to Add Items</Button>
 </StackPanel>
</Page>

440 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The Designer should show all the controls in the StackPanel like this:

 . 5 . . Double-click the button to add a handler . Visual Studio creates a handler for the button
click . You can find the handler in the code file for the page . Because you didn’t name
the Button, Visual Studio gave the handler a default name of Button_Click . The method
looks very much like the ASP .NET button click handlers except the second argument is
a RoutedEventArg instead of the .NET typical EventArg .

 . 6 . . Implement the handler by adding whatever is in the TextBox to the ListBox . It should
feel almost like you are programming a Web Form—the code model is very similar:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace XBAPORama
{
/// <summary>
/// Interaction logic for Page1.xaml
/// </summary>
 public partial class Page1 : Page

 Chapter 21 ASP.NET and WPF Content 441

 {
 public Page1()
 {
 InitializeComponent();
 }
 private void Button_Click(object sender, RoutedEventArgs e)
 {
 this.theListBox.Items.Add(this.theTextBox.Text);
 }
 }
}

 . 7 . . Press Ctrl+F5 from within Visual Studio to run the application in the browser . When you
type text into the TextBox and click the Button, the code running on the client side will
add the contents of the TextBox to the ListBox, as follows (notice the .xbap extension at
the end of the file name in the URL):

Although this example does not strictly run in ASP .NET, it does show an alternative way
of producing content . When you compiled the application, Visual Studio created a few
files including XBAPORama .xbap and XBAPORama .exe . You can include this content as
part of an ASP .NET site by including the XBAP, the EXE, and the manifest files that re-
sulted from the compilation in a folder in an ASP .NET application . You do that shortly .

442 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

WPF .Content .and .Web .Applications
You can serve WPF content from an ASP .NET application in much the same way that ASP .NET
serves other content . You can include loose XAML files in a Web application, or you can host
some specific WPF content in an <iframe> HTML element .This exercise illustrates how you
can use WPF content in an ASP .NET application .

Adding XAML content to a site

 . 1 . . Create a new Empty ASP .NET Web Application project in Visual Studio . Name the
 project XAMLORama .

 . 2 . . Use Visual Studio to add a new text file to the project . Right-click the XAMLORama
project node in Visual Studio, and click Add, New Item . Select a text file type from the
templates .

 . 3 . . Rename the file so that it has an .xaml extension . This file shows a paper airplane
 drawing, so name the file PaperAirplane.xaml . The Visual Studio XAML designer might
show an error right away because there’s no content yet . This is not a problem because
you add content in the next step .

 . 4 . . Add some XAML content to the file, starting by defining the top-level layout node .
Include the following XML namespaces and make the window 750 units wide:

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

</Page>

All WPF layouts begin with a top-level node . In this case, the node is a Page so that it
will show up in the client’s browser .

 . 5 . . Add a Grid to the page, and add two row definitions and two column definitions:

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition Height="100"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="25"/>
 </Grid.ColumnDefinitions>
 </Grid>
</Page>

 . 6 . . Add WPF elements to the grid . Add a Canvas to the upper left corner of the Grid,
and make the Background SkyBlue . Add two Slider controls to the Grid, too . The first
Slider controls the X position of the airplane . Name the Slider sliderX . Put the slider into

 Chapter 21 ASP.NET and WPF Content 443

row 1, and use the ColumnSpan to stretch the Slider across two columns . The maximum
value of this slider should be 500 . Orient the second Slider vertically and configure it to
occupy column 1 in the Grid . Use the RowSpan to stretch the Slider across both rows .
This slider controls the rotation of the airplane . Name this Slider
sliderRotate . Its maximum value should be 360 .

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">
 <Grid
 <!-- Grid column and row definitions are here... -->
 <Canvas Background="SkyBlue" Grid.Row="0"
 Grid.Column="0">
 </Canvas>
 <Slider x:Name="sliderRotate" Orientation="Vertical"
 Grid.Row="0"
 Minimum="0" Maximum="360"
 Grid.Column="1"></Slider>
 <Slider x:Name="sliderX" Maximum="500"
 Grid.Column="0" Grid.Row="1"
 Grid.ColumnSpan="2"></Slider>
 </Grid>
</Page>

 . 7 . . Add the airplane and connect it to the sliders using XAML data binding . Here’s how:
Create the airplane drawing using a WPF Path . The Path draws a series of line seg-
ments using a specific pen . Make the Stroke Black and set the the StrokeThickness to 3 .
The Path data should connect the following points . Move the cursor to 0,0, and then
draw a line to 250,50, and then to 200,75 to 0,0 . Then, move the cursor to 200,75 and
draw a line to 190,115 and another line to 180,85 to 0,0 . Next, move the cursor to
180,85 and draw a line to 140,105 and then to 0,0 . Finally, move the cursor to 190,115
and draw a line to 158,93 . Set the Path’s relationship to the Top of the Canvas as 200 .
Bind the Path’s relationship to the Left of the Canvas to sliderX’s Value . Finally, add a
RenderTransform to the Path and include a RotateTransform . Bind the RotateTransform’s
Angle to sliderRotate’s Value . Set the Path’s RenderTransformOrigin to .5, .5 . Here’s the
Path code:

<Page xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="750">

 <Grid>
 <!-- Grid column and row definitions are here... -->
 <Canvas Background="SkyBlue" Grid.Row="0"
 Grid.Column="0">
 <Path Stroke="Black" StrokeThickness="2" Fill="White"
 Data="M0,0 L250,50 L200,75 L0,0 M200,75 L190,115 L180,85
 L0,0 M180,85 L140,105 L0,0 M190,115 L158,93"
 RenderTransformOrigin=".5, .5"
 Canvas.Top="200"
 Canvas.Left="{Binding ElementName=sliderX,Path=Value}" >

444 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <Path.RenderTransform>
 <RotateTransform Angle=
 "{Binding ElementName=sliderRotate,Path=Value}"/>
 </Path.RenderTransform>
 </Path>
 </Canvas>
 <!—Sliders go here... -->
 </Grid>
</Page>

After setting up the Canvas, the Path, and the Sliders in the grid, you should see it
 appear in Visual Studio .

 . 8 . . Add these references to the project: WindowsBase, PresentationCore, and
PresentationFramework by right-clicking the References node in Solution Explorer and
clicking Add Reference . Look in the .NET tab of the Add Reference dialog box to find
these assemblies . Run the page . Because Visual Studio doesn’t allow you to run loose
XAML files directly, you need to navigate from another page . Add a new page to the
application . Name it Default.aspx . Add a Hyperlink to the Default .aspx page and set the
NavigationUrl property to PaperAirplane.xaml . Surf to the default page and click the
hyperlink that loads the XAML file in the browser . It should appear like this:

 . 9 . . Experiment by moving the sliders . Because the vertical slider controls the angle of
 rotation, moving it up causes the airplane to spin in a clockwise direction . Because the
horizontal slider is connected to the Path’s Canvas.Left property, moving the horizontal
slider moves the plane along the x-axis, like this:

 Chapter 21 ASP.NET and WPF Content 445

 . 10 . . Integrate the new WPF content with some HTML . Add a new Page to the XAMLORama
file by right-clicking the XAMLORama node in Solution Explorer and adding a new Web
page . Name the page PaperAirplane.aspx . Add an <iframe> tag to the page in between
the <div> tags that Visual Studio provides . Set the <iframe> height to 500 and the
width to 750 . Finally, set the <iframe> src to PaperAirplane .xaml .

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="PaperAirplane.aspx.cs"
 Inherits="PaperAirplane" %>

<!DOCTYPE html PUBLIC "...">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <iframe height="500"
 width="750"
 src="paperairplane.xaml"></iframe>

 </div>
 </form>
</body>
</html>

446 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 11 . . Run the page . The PaperAirplane .xaml content appears in a frame in the page . The
XAML content has the same functionality in the frame as it did when it was run in the
browser:

Because this is rendered from a typical ASP .NET page, you could include ASP .NET server
controls along with the WPF content .

 . 12 . . Add the XBAP content from the previous example to this site . First, create a new folder
under the Project node in Solution Explorer . Name the folder XBAPContent . Right-
click the new folder and click Add, Exiting Item . Navigate to the previous example’s
bin directory (on my computer, it is C:\aspnetstepbystep4\chapterprojects\Chapter21\
XBAPORama\XBAPORama\bin\Debug) . Add XBAPORama .xbap, XBAPORama .exe,
and XBAPORama .exe .manifest to this XAMLORama ASP .NET project .

 . 13 . . Add a new link to the Default .aspx page . Set the NavigationUrl property to the
XBAPORama .xbap file in the XBAPContent folder . Run the application and click the link
that redirects to the XBAP content . You will see the XBAPORama .xbap content in the
browser . The Web server downloads the XBAP content (you can see a little status bar in
the browser, as shown in the following graphic) . Try adding some items to the list box
to ensure that it works .

 Chapter 21 ASP.NET and WPF Content 447

Here is the XBAP content running from in the ASP .NET site .

This example illustrates how it is possible to integrate HTML with XAML-based content . You
also saw that it is possible to include XBAP content in an ASP .NET site . Although these tech-
niques lie somewhat outside of the usual ASP .NET pipeline, XBAP-based and XAML-based
WPF content is still useful in many cases . A full investigation of WPF is beyond the scope
of this book . WPF and XAML offer entirely new ways to present content to the end user .
Because it is such new technology, the different ways it can be exploited are only now being
invented and discovered .

448 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

What .About .Silverlight?
As a Web developer, you have probably been unable to avoid hearing the buzz about
Silverlight . Until now, the only effective way to produce dynamic Web content has been
through Macromedia Flash . Flash is a plug-in for rendering dynamic content over the Web
(that is, animations) . However, with the advent of WPF and its dynamic content capabilities,
now there is a markup technology that rivals Flash in raw capability if you can find a way
to deliver it to the browser . Although other dynamic content technologies certainly have
worked, they have had some serious shortcomings for developers . Silverlight changes this .

Silverlight is a platform-independent WPF rendering engine . Without Silverlight, the only way
to render WPF content in a browser is to run Internet Explorer or the Firefox browser with the
XAML plug-in . Silverlight is packaged as an ActiveX Control for the Microsoft environment .
For example, the Apple Safari browser is supported by Silverlight . Visual Studio 2010 includes
full support for Silverlight applications . You visit Silverlight in Chapter 24 .

Chapter .21 .Quick .Reference
To Do This

Add an XAML file to your
site

Right-click the project node in the Visual Studio Solution Explorer . Click Add
New Item . Select Text File from the available templates . Be sure to name the file
with an .xaml extension .

Declare a Page within the
XAML file

At the top of the file, add a beginning <Page> tag and an ending </Page> tag .
Using WPF within XAML requires the standard WPF namespace “http://schemas .
microsoft .com/winfx/2006/xaml/presentation” and the keywords namespace
“http://schemas .microsoft .com/winfx/2006/xaml” (which is often mapped to “x”) .

Add a Canvas to the Page Use the <Canvas> opening tag and the </Canvas> closing tag . Nest objects
you’d like displayed in the canvas between the opening and closing tags .

Add content to the Canvas Nest objects you’d like to appear on the canvas between the <Canvas> opening
tag and the </Canvas> closing tag . Assign positions within the canvas using the
Canvas.Top and Canvas.Right properties .

Add a Grid to a Page Declare a <Grid> opening tag and a </Grid> closing tag on the page . Use the
Grid’s RowDefinitions and the Grid’s ColumnDefinitions properties to define the
rows and columns .

Add content to the Grid Nest objects you’d like to appear on the canvas between the <Grid> opening
tag and the </Grid> closing tag . Assign positions within the grid using the
Grid.Row and Grid.Column properties .

Create an XAML-based
 browser application

Select File, New Project in Visual Studio . From the Windows application
 templates, choose WPF Browser Application . Visual Studio will create an XBAP
application for you, starting with a simple page . Add WPF controls and han-
dlers to the page . If you want to run the XBAP contront from an ASP .NET site,
just make sure the XBAP,exe, and manifest files are available to the ASP .NET
Web Project .

 . . 449

Chapter 22

The ASP.NET MVC Framework
After completing this chapter, you will be able to

n Understand the software patterns behind Model-View-Controller (MVC) .

n Understand how ASP .NET implements the MVC pattern .

n Create a functional MVC-based Web site .

As many aspects of ASP .NET have stabilized and matured over the years, some interesting
new features have appeared . Of the new features, ASP .NET application of the classic
 Model-View-Controller (MVC) software development pattern has probably received the
most attention of all .

The ASP .NET MVC framework represents an alternative to the ASP .NET Web Forms environ-
ment . Web Forms offers a structured, controls-based framework for generating Web pages .
Using Web Forms can make it feel like you’re developing a desktop or rich client application
even though the application UI is built upon HTML transmitted over a disconnected protocol .
The basis of a Web Forms page is a collection of server-side controls—each one dedicated
to emitting some HTML toward the output stream that eventually ends up at the client . Web
Forms offers developers great leverage through its ability to handle view state and its event
model . The Microsoft Visual Studio Designer has extensive support for Web Forms . You can
develop entire pages and not have to deal with much, if any, raw HTML .

By contrast, the MVC framework works “closer to the metal .” That is, as a developer, you’re
on the hook to work with some raw HTML . However, rather than leaving you in the wild to
concoct a framework to manage the main application concerns (data and the UI), the MVC
framework incorporates an industry-recognized software pattern for coordinating the two
concerns . The MVC model draws strict distinctions between an application’s data, its render-
ing, and its request processing . Each of these concerns is handled by a separate software
component, and together they operate in concert with each other to handle HTTP requests .

This chapter covers how to use the ASP .NET MVC framework to create Web pages .

The .Model-View-Controller .(MVC) .Architecture
Modern software is complex . As you’ve seen so far, even developing Web applications using
a framework that hides as much detail as ASP .NET does can become fairly involved . Many
times, the complexity comes down to a problem of managing multiple concerns . For ex-
ample, a typical ASP .NET application involves dealing with a data source (often a database),

450 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

making sure the HTML rendered by the application is in sync with the application state, and
managing the incoming and outgoing message traffic .

By itself, ASP .NET has separate components for managing these concerns . ADO, LINQ, and
the entity framework work well for talking to a database . ASP .NET data binding and the
 data-bound controls help to keep the client view of the data current . Together with the
ASP .NET pipeline, the ASP .NET control architecture hides the details of managing incom-
ing and outgoing message traffic . Although these features of ASP .NET make Web develop-
ment very approachable, there are other approaches to Web development . MVC offers an
 alternative means for handling HTTP requests .

The MVC pattern is tailor-made for Web applications . MVC divides the three main concerns
of a typical Web application (managing data, keeping the visual aspect of an application in
sync with its internal state, managing message traffic) and handles each through three sepa-
rate components: a model, a view, and a controller . The model handles data access and man-
agement and application state, the view handles the visual representation of the application
state, and the controller manages message traffic .

The MVC model component is responsible for maintaining application state, as well as
 sometimes hosting code not tied directly to the view . Application state is often managed
through a persistent database . In an MVC-based application, the model encapsulates low-
level database access . For example, the model for a human resources application might
include an Employee class that represents rows from a table of employee information in
a human resources database . It might also include a collection of Employee classes in an
 in-memory structure .

MVC view components render the application’s user interface . This might include some
 controls (for example, to display and edit data) . These controls are usually tied to the model
data . For instance, an application might display separate views for showing employee data
and for editing employee data . The details view might simply render the details in read-only
form, while the editing view might include controls for editing the employee information
fields .

Finally, MVC controller components manage interactions with the end user . Although the
view component is responsible for rendering, rendering remains distinct from user interac-
tion . Within the context of ASP .NET, managing user interaction means managing Web traffic,
updating the model (the application state), and ultimately managing the UI (that is, emitting
the correct HTML) .

Figure 22-1 illustrates the relationships between all three components . Notice that the
 controller talks to the model and the view . That is, the controller updates the model as
 necessary, and it also interacts with the view when rendering . The view talks with the model
to make sure it’s displaying the most current application state .

 Chapter 22 The ASP.NET MVC Framework 451

Controller

Model View

FIGURE .22-1 . The relationship between the model, the view, and the controller .

Software .Design .Patterns
The MVC architecture is composed of several software patterns . Before exploring the
ASP .NET version of MVC, it’s worthwhile to make a short side trip to see how MVC uses
software design patterns .

At the moment when a person is faced with an act of design, he does not have time
to think about it from scratch.

—Christopher Alexander, architect

These words written by architect Christopher Alexander were intended originally to
apply to building architecture . However, as any software developer can tell you, these
words apply equally well to software development . It makes no sense to design some-
thing from scratch if there are some already established and reliable methodologies or
components to help you get your software out the door sooner .

Seasoned software developers might remember the Patterns movement from the
 mid-1990s . It really began to take flight around the end of 1993 . The idea of soft-
ware design patterns is borrowed from work on building architecture patterns by
Christopher Alexander . As a building architect, Christopher Alexander noticed many
recurring themes in buildings that “worked .” The results of his investigation into archi-
tectural patterns resulted in two renowned books on the subject: A Pattern Language
and The Timeless Way of Building .

In 1995, four computer scientists collaborated to create a similar work within the
 software world—Design Patterns: Elements of Reusable Object-Oriented Software,
 written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, and
 published by Addison Wesley . Design Patterns catalogues a number of software design
patterns (approaches) for solving common software problems .

452 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Software design patterns represent a formal way to document a solution to a design
problem . Software patterns generally describe solutions from a broad perspective and
usually avoid spelling out a specific implementation . A written pattern describes the
intent behind a pattern, the problem to be solved, and some specific applications of
the pattern . Patterns come with descriptive names such as the Command pattern . The
idea behind the Command pattern is to encapsulate a request as an object . This lets
you parameterize clients with different requests, queue requests, and support opera-
tions that might be undone . Microsoft Message Queuing (MSMQ) is a great real-world
example of the Command pattern .

One of the most well known software architectures is the Model-View-Controller
 architecture (MVC, for short) . The MVC architecture combines several patterns to
form a foundation suitable for creating applications . In general, the MVC pattern
 incorporates the Composite, Observer, and Strategy patterns . The Composite pattern
partitions software concerns (in this case, the database, user interface rendering, and
interaction concerns) . The Observer pattern describes a publish/subscribe relation-
ship between software components . Finally, the Strategy pattern is used for selecting
 program behavior at run time .

ASP .NET .and .MVC
MVC came to ASP .NET fairly recently . You can think of ASP .NET as a very loosely coupled set
of classes working together to handle requests . ASP .NET includes a pipeline that acts as a
substrate with different kinds of handlers hooked on to it . The pipeline is configured so that
requests for various file types go to their correct handlers .

As useful as ASP .NET is for handling Web requests, ASP .NET is not quite a true framework .
ASP .NET Web Forms mingles the concerns of the Web developer . MVC distinguishes itself
as a framework by drawing a clear separation between the concerns of Web developers .
Remember, models handle application state, views handle rendering, and controllers handle
interactions with the end user .

The ASP .NET MVC framework coexists with the other parts of ASP .NET . The framework
 operates independently of the standard .aspx and .ascx files, master pages, and Global .asax
files . MVC also works with the ASP .NET Forms Authentication and the standard membership
and roles providers . MVC has complete access to the existing data cache and output cache,
as well as the existing data providers . Developers can mix and match any of these other
 features of ASP .NET with the MVC framework .

To support MVC’s coexistence with ASP .NET, MVC looks to flexibility as a primary design
goal . MVC is intended to be customizable all around . For example, the code generated by

 Chapter 22 The ASP.NET MVC Framework 453

Visual Studio for an MVC-based application includes a standard routing table for helping the
 application figure out how to handle requests . Although the out-of-the-box routing mecha-
nism works fairly well most of the time, it might not be the best for all situations . Changing
the routing policy is relatively straightforward in an MVC application .

By moving all of the MVC routing architecture into the controller, you can easily swap routing
policies . This leads to some distinct advantages over typical ASP .NET development . For
 example, the MVC URL mapping keeps strange URLs hidden from the end user . URL map-
pings are pushed into the framework, so you can spare your users from seeing messy URL
names . Strange URLs, such as /contacts/edit/3256, can be mapped cleanly and internally .
At first glance, this might seem like a small feature . However, it does help clean up Web
UIs when long, ugly URLs can be stashed away, making room for some very clever rout-
ing scenarios . For example, applications using the MVC framework do not need to include
extensions, which makes it easy for MVC to support naming schemes for Search Engine
Optimization (SEO) and Representational State Transfer (REST) for services .

The MVC framework still uses existing ASP .NET file types, such as .aspx files, .ascx files, and
 .master files . MVC uses these markup files as view templates . They support the same inline
coding syntax (that is, <%= %> snippets) . However, rather than each interaction posting back
to the server directly, MVC routes interactions to a Controller class . This makes MVC applica-
tions much easier to test in the general sense, and to use specifically with test-driven design
(TDD) techniques if you prefer . Classic ASP .NET Web Forms by their very nature cannot
 directly support automated unit testing .

Finally, all the other features of ASP .NET remain intact while using MVC: The cache is still
there, output caching is available, session state still works, the provider architecture is
still there, and configuration works the same .

ASP .NET .MVC .vs . .Web .Forms
The ASP .NET MVC framework is fundamentally different from ASP .NET Web Forms . MVC
makes a very clear distinction between data sources, program interaction with the data, and
the presentation of data . MVC enforces a separation of concerns, whereas that sort of sepa-
ration is something you’d have to build into an ASP .NET Web Forms application explicitly .

MVC eschews some of the other features of standard Web Forms . For example, ASP .NET MVC
does not support view state directly (that feature really stems from server-side controls) . As a
result, you won’t see any hidden fields showing up in pages rendered by the MVC framework .

One of the most prominent places you’ll notice that MVC differs from Web Forms is in the
area of handling postback events . In MVC, events are routed through a routing table rather
than through the singular server-side controls . With Web Forms, however, routing typically
occurs through specific event handlers placed on a page .

454 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The MVC framework distinguishes between data, presentation, and program logic, allowing
for more isolation between components . This leads to easier testing and debugging . In fact,
the ASP .NET MVC framework supports test-driven development very well . This becomes a
huge advantage for projects built and supported by large teams .

Because MVC does not rely on certain features, such as view state and server-based controls,
more onus is placed on the developer to produce correct HTML . Although this means more
responsibility for the developer, it also gives developers much more direct control over how
the HTML is rendered .

Finally, ASP .NET Web Forms and server-side controls handle specific events, making it diffi-
cult to follow the execution path of a Web Forms–based application . MVC differs significantly
because all requests pass through a single point in the application—the routing table . With
use of a routing table, developers can control request routing at a single point rather than at
ad-hoc points on the page (that is, the event handlers) .

MVC .and .Testing
The MVC framework’s separation of functionality into specific areas of responsibility makes
testing MVC applications much easier than is testing of Web Forms applications . Although
the Web Forms model clearly improved the Web programming paradigm for Microsoft de-
velopers by separating the concerns of presentation (user interface) and program logic, the
Web Forms model still mixes several other concerns . Data access is usually mixed right in with
the rest of the program code . For example, if you code your own authentication scheme, you
might perform a user lookup directly when a postback occurs because the user clicked the
login button . The lookup code is usually right there in the code-beside file . As another ex-
ample, requests are routed directly back to the .aspx file that’s in play . Without MVC, there’s
no way to perform any alternate routing .

The MVC framework separates these other concerns, making for a much more modular
 architecture that accommodates unit testing . Testing typical ASP .NET programs usually
means clicking through all the controls and UI elements on a page to make sure they work .
Then, when something doesn’t work, you need to track it down and fix it . The MVC frame-
work supports test-driven development where you define the requirements of code first, and
even write test cases prior to writing the code . At that point, you can run user interactions in
the MVC framework individually without running the entire application . With this capabil-
ity, you can unit test individual parts of the application using any of the currently available
 testing frameworks, such as MS Test and NUnit .

 Chapter 22 The ASP.NET MVC Framework 455

How .MVC .Plays .with .ASP .NET
When building a new Web site, it’s usually best to decide up front whether you want to use
MVC . Although ASP .NET standard parts work independently of the MVC framework, having
Visual Studio create the Web application for you can save some headaches . Visual Studio
wires up a few components to make MVC work in your application . For example, the rout-
ing mechanism must be hooked in so that HTTP requests can be handled by the correct
 controller method . Visual Studio inserts the correct code into the Application_Start event in
the application’s Global .asax file . Here’s an example:

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);
}
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = "" } // Parameter defaults
);

}

The MVC framework includes a class named RouteTable that holds a number of entries that
tell the MVC framework how requests should be handled . Visual Studio generates a single
entry for the RouteTable that maps the URL to a specific method name in a specific controller,
along with parameters necessary to handle the request . The Visual Studio–generated route
map defaults to a method in the home controller named Index with an empty parameter .
Usually, the Index method displays some default information for the site and represents a
starting point for the user . You are free to add as many entries to the RouteTable as you need
to support your own routing scenarios .

In addition to adding the RouteTable setup to the Global .asax file, the Visual Studio–
generated code throws in a slightly modified Default .aspx file . This file is necessary—in
fact, Visual Studio throws in a comment warning you never to delete it . A quick look at the
Default .aspx Page_Load handler reveals that it hooks up the MVC HttpHandler to intercept
incoming MVC-based requests .

Following the Request Path
With all the MVC framework pieces in place, the application is ready to start processing
 requests . Requests come to the Web site in a typical fashion . For the first request, ASP .NET
fires up an instance of the application (represented by Global .asax) . After that, the first access
to Default .aspx hooks up the MVC handler so that requests are routed correctly . Figure 22-2
illustrates the request path as it travels through the system .

456 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

First request for the
application. Global.asax
creates the RouteTable.

Perform routing. Look up
the first matching route
in the RouteTable.

MvcRouteHandler
creates
MvcHandler.

MvcHandler figures out
which controller to
create using information
from the RequestContext.

MvcHandler calls the
controller’s Execute
Method

Invoke the action on the
controller (that is, actions
like Index, Details, Query, etc.,
available on the controller).

Execute result by
invoking the
correct view, preparing
some HTML, performing
a redirect, etc.

HTML destined for
client browser

FIGURE .22-2 . The path of a request through the MVC framework .

The following procedure shows how you can create an MVC-based site to see how it all
works .

Creating an MVC site

 . 1 . . Start Visual Studio . Select New Project on the File menu . Select ASP .NET MVC Site
from the available templates, as shown in the following graphic, and name the site
MVCORama . Visual Studio will ask you whether you want to create some unit tests for
the application; click OK . Visual Studio will create the site for you .

 Chapter 22 The ASP.NET MVC Framework 457

 . 2 . . When it finishes, Visual Studio will have created a full ASP .NET project for you to build
around the MVC framework . Look in Solution Explorer and notice the MVC folders:
Controllers, Models, and Views .

 . 3 . . Run the application to see how it looks .

 . 4 . . To see how MVC integrates with the rest of ASP .NET, open the master page under
the Views\Shared folder in the Designer . The master page file name is Site .master .
You can see some typical HTML, as well as some HTML helpers doing some work as
inline code . (You look at the HTML helpers a bit later in the chapter .) For example,
inside the master page, you can also see that the application uses something called
the LogOnUserControl . For now, change the heading text of the page from My MVC
Application to Dot .Net .References .

 . 5 . . You can change the styles and colors of the master page, too . The main CSS file is in the
Content folder and is named Site .css . To change the body style, right-click inside the
body style description in the code, and click Build Style on the shortcut menu . You can
change the background color, as well as any other style elements, by using the Style
Builder dialog box . After changing some of the elements, run the Web site by pressing
Ctrl+F5 from within Visual Studio . You should be able to see that the style elements
have changed for the pages .

 . 6 . . To start you off, Visual Studio creates an AccountController and a HomeController
along with the files to support the accompanying views . The Home controller/
view includes the text Welcome To ASP .NET MVC . To change this text, open the
HomeController .cs file under the Controllers\Home folder . The Index method prints out
the greeting—change the Index method to emit Welcome .to .the .Dot .Net .References .
Site . Then, open the Index .aspx file under the Views\Home folder . Change the text
from the following:

To learn more about ASP.NET MVC visit
<a href="http://asp.net/mvc"
title="ASP.NET MVC Website">http://asp.net/mvc

to this:

To learn more about Dot Net, visit
<a href="http://msdn.microsoft.com/en-us/netframework/default.aspx"
title="Dot Net Framework Development Center"> Dot Net Information

458 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 7 . . When you run the site, you’ll see that the new text appears, and the link should take
you to the Microsoft main .NET Framework Development Center:

 . 8 . . Next, create the data model for the application . Borrow the ASPNETStepByStep4 .mdf
file from the solution for Chapter 22 on the accompanying CD . This is a Microsoft SQL
Server database file containing two tables . The first table includes some .NET book ref-
erences . The second table includes some HTTP links to .NET developer Web sites . You
can use these tables as the basis for the models for the MVC-based application . To put
the ASPNETStepByStep4 .mdf file in your App_Data directory, right-click App_Data in
Solution Explorer and click Add Existing Item . Locate the database file on the accompa-
nying CD and bring it into the project .

 . 9 . . Once the database is available to your application, create some helper classes to access
the data . The easiest way to do this is to create some LINQ to SQL wrapper classes . In
Solution Explorer, right-click the Models folder . Click Add New Item on the shortcut
menu . Select Data from the left-hand side of the Add New Item dialog box . Select LINQ
To SQL in the panel on the right . Name the file DotNetReferences.dbml . This will create
a Database Markup Language (DBML) source file that Visual Studio will add to the proj-
ect . Next, drag the DotNetReferences table from the Server Explorer to the Designer
surface . Visual Studio will create a wrapper class named DotNetReference that repre-
sents a single row from the table . You’ll use this class shortly .

 . 10 . . The DotNetReference class is useful but operates only in the context of a live data-
base . When Visual Studio created the DotNetReference class, it also created a class
named DotNetReferencesDataContext that represents the DotNetReferences table .
Rather than accessing the database directly, you can use LINQ and a database

 Chapter 22 The ASP.NET MVC Framework 459

manager class to work with the data easily . In Solution Explorer, right-click the
Model folder, and add a new class . Name this class DotNetReferencesManager .
The DotNetReferencesManager class will wrap the DotNetReferencesDataContext,
so have the DotNetReferencesManager create an instance of the
DotNetReferencesDataContext class . Then, add a method named GetAllReferences to
the DotNetReferencesDataContext class . It should return IQueryable<DotNetReference> .
You can use the DotNetReferencesDataContext to fetch all the rows like so:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
namespace MVCORama.Models
{
 public class DotNetReferencesManager
 {
 DotNetReferencesDataContext dataContext =
 new DotNetReferencesDataContext();

 public IQueryable<DotNetReference> GetAllReferences()
 {
 return dataContext.DotNetReferences;
 }
 }
}

 . 11 . . Create a view for the DotNetReferences model . Right-click the View folder . Create a new
View folder and name it DotNetReferences by right-clicking the project’s Views folder
and clicking New Folder . Right-click the new folder and click Add and then View on the
shortcut menu . Visual Studio will then display the Add View dialog box for configuring
the view . Visual Studio will name the view Index . Make it strongly typed based on the
DotNetReferences class (it will be available in the dialog box) . Leave the master as is .
Finally, Visual Studio will generate the following view code for you by using reflection
against the DotNetReferences model:

<%@ Page Title=""
 Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<IEnumerable<MVCORama.DotNetReference>>" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Index
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Index</h2>
 <table>
 <tr>
 <th></th>
 <th>ID</th>
 <th>Title</th>

460 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <th>AuthorLastName</th>
 <th>AuthorFirstName</th>
 <th>Topic</th>
 <th>Publisher</th>
 </tr>
 <% foreach (var item in Model) { %>
 <tr>
 <td>
 <%= Html.ActionLink("Edit", "Edit", new { id=item.ID }) %> |
 <%= Html.ActionLink("Details", "Details", new { id=item.ID })%>
 </td>
 <td>
 <%= Html.Encode(item.ID) %>
 </td>
 <td>
 <%= Html.Encode(item.Title) %>
 </td>
 <td>
 <%= Html.Encode(item.AuthorLastName) %>
 </td>
 <td>
 <%= Html.Encode(item.AuthorFirstName) %>
 </td>
 <td>
 <%= Html.Encode(item.Topic) %>
 </td>
 <td>
 <%= Html.Encode(item.Publisher) %>
 </td>
 </tr>
 <% } %>
 </table>
 <p>
 <%= Html.ActionLink("Create New", "Create") %>
 </p>
</asp:Content>

 . 12 . . Notice that the Index .aspx file is based on typical ASP .NET syntax . The Page directive
appears at the top of the file followed by the ASP .NET Content control (so as to coor-
dinate content placement with the master page) . The view is tied to a model based on
the DotNetReferences class . If you examine the code-beside class, you can see the Index
iterates through each Item in the model and displays it . In this case, each Item repre-
sents a row in the DotNetReferences class . To show the view correctly, you just need to
add a controller to the model and view for the edit scenario .

 . 13 . . Create a controller to handle requests pertaining to the DotNetReferences model .
Right-click the Controllers folder and select Add, Controller . When the Add Controller
dialog box appears, name your new controller DotNetReferencesController . Visual
Studio will create a class based on the MVC framework Controller class . Add an in-
stance of the DotNetReferencesManager to the controller . Look for the method named
Index that returns an ActionResult . Instantiate a var in the Index method and use the

 Chapter 22 The ASP.NET MVC Framework 461

DotNetReferencesManager .GetAllReferences method to populate it . The var type is
a typeless collection useful for managing a collection of things—for when you don’t
know the type of objects in the collection ahead of time . The code you should add is in
bold type in the following example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.Ajax;
using MVCORama.Models;

namespace MVCORama.Controllers
{
 public class DotNetReferencesController : Controller
 {
 DotNetReferencesManager dotNetReferencesManager =
 new DotNetReferencesManager();

 public ActionResult Index()
 {
 var dotNetReferences =
 dotNetReferencesManager.GetAllReferences().ToList();
 return View("Index", dotNetReferences);
 }
 }
 }

 . 14 . . When you navigate to the DotNetReferences page, the MVC framework is set up to
show the DotNetReferences view . But to do this, you will need to add a tab to the
 master page to navigate to the DotNetReferences page as shown:

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 <% Html.RenderPartial("LogOnUserControl"); %>
 </div>

462 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <div id="menucontainer">
 <ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("DotNetReferences", "Index",
 "DotNetReferences")%>
 <%= Html.ActionLink("About", "About", "Home")%>

 </div>
 </div>

 <div id="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

 . 15 . . Go ahead and compile the application, and then press Ctrl+F5 to execute it . Once the
default page is displayed, navigate to the DotNetReferences page using the new tab .
You should see the application display the contents of the DotNetReferences database:

In the next procedure, you create a more fully featured MVC-based section in the application
that is more interactive . This example illustrates how to display item details as well as edit,
delete, and create entries .

 Chapter 22 The ASP.NET MVC Framework 463

 Implementing scenarios for adding, deleting, and updating

 . 1 . . Open the MVCORama application that you created in the preceding example . In this
procedure, you use the other table from the database—the DotNetLinks table . The
 previous example listed only the contents of the model .

 . 2 . . Create a model for the DotNetLinks table . As in the last exercise, add a LINQ to SQL
class for the DotNetLinks table . Right-click the Models folder, and click Add New Item .
In the Visual Studio Add New Item dialog box, click the Data tab and select LINQ To
SQL . Name the LINQ to SQL class DotNetLinks . Drag the DotNetLinks table from Server
Explorer onto the design surface of the LINQ to SQL class . Visual Studio will create a
wrapper class named DotNetLink .

 . 3 . . As with the DotNetReferences, create a data manager for the DotNetLinks table . Right-
click the Models folder, and click Add New Item . Select Class from the palette and
name the class DotNetLinksManager . Visual Studio will create the class for you .

 . 4 . . Add an instance of the DotNetLinksDataContext to the DotNetLinksManager
class . Add methods to get all the rows from the table, to find a DotNetLink in the
DotNetLinksDataContext, to add a DotNetLink to the DotNetLinksDataContext, and
to delete a DotNetLink from the DotNetLinksDataContext . Finally, add a method to
commit the changes to the underlying table . You exercise these methods through the
controller:

public class DotNetLinksManager
{
 DotNetLinksDataContext dataContext =
 new DotNetLinksDataContext();

 public IQueryable<DotNetLink> GetAllLinks()
 {
 return dataContext.DotNetLinks;
 }

 public DotNetLink Find(int id)
 {
 DotNetLink dotNetLink;

 dotNetLink =
 dataContext.DotNetLinks.SingleOrDefault(l => l.ID == id);

 return dotNetLink;
 }

 public void Add(DotNetLink dotNetLink)
 {
 dataContext.DotNetLinks.InsertOnSubmit(dotNetLink);
 }

464 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 public void Delete(DotNetLink dotNetLink)
 {
 dataContext.DotNetLinks.DeleteOnSubmit(dotNetLink);
 }

 public void Save()
 {
 dataContext.SubmitChanges();
 }
}

 . 5 . . Add a DotNetLinks controller to the Controllers folder . Right-click the Controllers folder,
and click Add, Controller . Visual Studio will create the controller class for you . Add an
instance of the DotNetLinksManager class as a member variable of the controller and
instantiate it .

public class DotNetLinksController : Controller
{
 DotNetLinksManager dotNetLinksManager =
 new DotNetLinksManager();

 // more code
}

 . 6 . . Add a new folder to the Views folder and name it DotNetLinks . Add a new view to that
folder named Index .aspx by right-clicking the Views\DotNetLinks folder and clicking
Add, View . Make it strongly typed to the DotNetLink class, and have it display the links
as a list .

 . 7 . . Now go back to the DotNetLinksController and have the Index action method
create a new index view based on a list of all the available links (call the
DotNetLinksManager .GetAllLinks method to do this) . Note that this method catches
all exceptions so that it runs cleanly . Another strategy is to let the exception propagate
through the pipeline:

public ActionResult Index()
{
 try {
 var dotNetLinks =
 dotNetLinksManager.GetAllLinks().ToList();
 return View("Index", dotNetLinks);
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 Chapter 22 The ASP.NET MVC Framework 465

 . 8 . . Open the Index .aspx file and tailor the presentation to show the URLs as links that can
be navigated . Changing this code causes the page to display the URL as a functional
link . Locate the code that displays the URL column and change it from the following:

 <td>
 <%= Html.Encode(item.URL) %>
 </td>

to this:
 <td>

 <a href="<%= item.URL %>" > <%= Html.Encode(item.DisplayName) %>

 </td>

 . 9 . . Open the master page and add a new tab to the menu in the Site .Master file to show
the DotNetLinks information:

<ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("DotNetReferences",
 "Index", "DotNetReferences")%>
 <%= Html.ActionLink("Dot Net Links", "Index", "DotNetLinks")%> <%=
Html.ActionLink("About", "About", "Home")%>

 . 10 . . Run the program and navigate to the DotNetLinks page . You should now see the links
displayed as typical, functional HTTP links, as shown in the following graphic:

466 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 11 . . Now handle the details scenario—where the user can see some more detailed informa-
tion about the link . Add the Details view by right-clicking the DotNetLinks\Views folder
and clicking Add, View . Use the Add View dialog box to configure a strongly typed view
based on the DotNetLink class, and select Details from the View Content combo box .
Visual Studio will create a view based on the DotNetLink class . Make sure the name of
the view file is Details .aspx .

 . 12 . . Now you need to tell MVC how to respond to requests for the details of a particular
link . Add a public method to the DotNetLinksController class to return a view to the
details of a single link . Call the DotNetLinksManager.Find method using the ID passed
in to the method . The ID parameter is actually passed as a URL parameter and pack-
aged into a managed type by the MVC framework . The index view generated by Visual
Studio includes a Details navigation link for items displayed in the model . After finding
the specific link in the DotNetLinksManager, call the controller’s View method, pass-
ing in the string “Details” as the first parameter and the DotNetLink as the second
parameter:

// Get the details for a single link and show them:
public ActionResult Details(int id)
{
 try {
 DotNetLink dotNetLink = dotNetLinksManager.Find(id);
 if (dotNetLink != null)
 {
 return View("Details", dotNetLink);
 } else {
 return View();
 }
 }
 catch(Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 Chapter 22 The ASP.NET MVC Framework 467

 . 13 . . Use the new tab to navigate to the DotNetLinks index page, and select one of the links
to show the details . You should see the following in the browser:

 . 14 . . Now handle adding new entries to the database . Start by adding a new strongly typed
view to the Views\DotNetLinks folder . Right-click the Views\DotNetLinks folder and
click Add, View . Use the resulting dialog box to configure a strongly typed view based
on the DotNetLink class . Then, select Create from the View Content combo box . Name
the view Create .

 . 15 . . Now add some methods to the controller to support adding entries . First, write a meth-
od named Create . It should simply display the default view . The following code displays
the default Create view with text boxes awaiting input for the DotNetLink properties:

public ActionResult Create()
{
 return View();
}

468 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 16 . . Add a static helper method named DotNetLinkFromFormsCollection that takes a single
FormCollection as a parameter and have it return a DotNetLink . The FormCollection
class is a name/value collection representing the contents of a postback . Use it to
 populate the DotNetLink:

private static DotNetLink DotNetLinkFromFormsCollection(FormCollection collection)
{
 DotNetLink dotNetLink = new DotNetLink();
 dotNetLink.DisplayName = collection["DisplayName"];
 dotNetLink.URL = collection["URL"];
 return dotNetLink;
}

 . 17 . . Add a method named Create that takes a FormCollection as the first parameter
and returns an ActionResult . Apply the AcceptVerbs attribute using the HttpVerbs.
Post enumeration . This helps the MVC framework to process the postback . The MVC
framework will populate the FormCollection using the results of the postback . Use
the DotNetLinkFromFormsCollection helper method to populate an instance of the
DotNetLink class . Use the DotNetLinksManager.Add method to add the DotNetLink
to the collection, and then call the DotNetLinksManager.Save method to commit the
change to the underlying database . Note that this is not production code, and doesn’t
validate user input . A production application probably should check input to avoid bad
input that might cause errors or even security attacks:

// Create scenario
[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(FormCollection collection)
{
 try {
 DotNetLink dotNetLink =
 DotNetLinkFromFormsCollection(collection); if (dotNetLinksManager.
Find(dotNetLink.ID) == null)

 {

 dotNetLinksManager.Add(dotNetLink);

 dotNetLinksManager.Save();

 }
 return RedirectToAction("Index");
 }
 catch(Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 Chapter 22 The ASP.NET MVC Framework 469

 . 18 . . Run the application and try adding a new link to the collection of DotNetLinks . For
 example, try clicking the Create New link . When the Create page opens, type in a
 display name such as MSDN . Then, type http://msdn .microsoft .com in the URL field
and some comments in the information field .

 . 19 . . Now create a view to handle the edit scenario . Right-click the Views\DotNetLinks folder
and add a new strongly typed view based on the DotNetLink class . Select Edit in the
View Content combo box . Visual Studio will generate a new view useful for editing
 existing entries .

 . 20 . . Add a method to the controller for handling editing . It should take a single integer
parameter representing the ID of the item to edit . The MVC framework will call this
method in the controller when you navigate to the Edit page (you can do this by go-
ing to the DotNetLinks home page and clicking the Edit link for one of the entries) . Use
the DotNetLinksManager.Find method to get the DotNetLink specified by the ID . Then,
call the controller View method, passing the string “Edit” (to invoke the Edit view) and a
 reference to the DotNetLink retrieved from the DotNetLinksManager:

// handle editing...
public ActionResult Edit(int id)
{
 try {
 DotNetLink dotNetLink =
 dotNetLinksManager.Find(id);
 if (dotNetLink != null)
 {
 return View("Edit", dotNetLink);
 }
 return View();
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 . 21 . . Add a method to the controller for handling the postback . Name the method Edit
and have it take two parameters: an integer specifying the ID of the link being ed-
ited, and a FormCollection . Have the Edit method return an ActionResult and use the
AcceptVerbs attribute to specify this method is a response to a postback . Use the
DotNetLinksManager.Find method to get the DotNetLink specified by the ID . Use the
controller’s base class method named UpdateModel to populate the DotNetLink from
the collection (UpdateModel is part of the framework and automatically updates the

470 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

model) . Then, call the DotNetLinkManager.Save method to save the information to the
database:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection)
{
 try {

 DotNetLink dotNetLink = dotNetLinksManager.Find(id);
 UpdateModel(dotNetLink);
 dotNetLinksManager.Save();
 return RedirectToAction("Index");
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 . 22 . . Finally, handle the delete scenario . Add a strongly typed view based on the DotNetLinks
class to the Views\DotNetLinks folder and name it Delete . Make it empty by selecting
Empty in the View Content combo box . This will be the confirmation page . Add some
text to the content area that asks the user to confirm that the record should be deleted .
Add an HTML form to the page by calling Html.BeginForm . Include a Submit button in
the form . Clicking this button will cause a postback:

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<MVCORama.Models.DotNetLink>" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Delete
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

 <h2>
 Confirm Delete
 </h2>
 <div>
 <p>Do you want to delete this link?:
 <i> <%=Html.Encode(Model.DisplayName) %>? </i> </p>
 </div>
 <% using (Html.BeginForm()) { %>
 <input name="confirmButton" type="submit" value="Delete" />
 <% } %>

</asp:Content>

 Chapter 22 The ASP.NET MVC Framework 471

 . 23 . . Open the Index .aspx page (the index view for the DotNetLinks) . Locate the section of
code that iterates through the items and include a Delete action (put it along with the
existing links to get the item’s details and to edit the item):

<% foreach (var item in Model) { %>

 <tr>
 <td>
 <%= Html.ActionLink("Edit", "Edit", new { id=item.ID }) %> |
 <%= Html.ActionLink("Details", "Details", new { id=item.ID })%> |
 <%= Html.ActionLink("Delete", "Delete", new { id=item.ID})%>
 </td>
 <td>
 <%= Html.Encode(item.DisplayName) %>
 </td>
 <td>
 <a href="<%= item.URL %>" > <%= Html.Encode(item.DisplayName) %>
 </td>
 </tr>
<% } %>

 . 24 . . Now add some methods to the controller for deleting a specific DotNetLink record .
First, add a single method named Delete that takes a single parameter of type integer .
The method should return an ActionResult . This is the method for responding to the
delete GET request . Use the DotNetLinksManager.Find method to get a reference to
the DotNetLink represented by the ID . Then, call the controller’s View method, passing
in the string “Delete” and the reference to the DotNetLink . This will show the delete
 confirmation page:

// Methods for deleting
public ActionResult Delete(int id)
{
 try {
 DotNetLink dotNetLink =
 dotNetLinksManager.Find(id);

 if (dotNetLink != null)
 {
 return View("Delete", dotNetLink);
 }
 else
 {
 return View();
 }
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 . 25 . . Finally, add a method named Delete to the controller that takes an integer and a
FormCollection . Adorn the method using the AcceptVerbs attribute and pass in the

472 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

HttpVerbs.Post enumeration so that this method is called during postbacks . This
method will be called when users click the delete confirmation button . Use the
DotNetLinksManager.Find method to locate the specific DotNetLink based on the
ID passed in to the controller . Then, call the DotNetLinksManager.Delete and the
DotNetLinksManager.Save methods to remove the record from the database . Use the
controller’s RedirectToAction method to show the index view:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Delete(int id,
 FormCollection formsCollection)
{
 try {
 DotNetLink dotNetLink =
 dotNetLinksManager.Find(id);

 if (dotNetLink != null)
 {
 dotNetLinksManager.Delete(dotNetLink);
 dotNetLinksManager.Save();
 return RedirectToAction("Index");
 }
 else
 {
 return View();
 }
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 return View();
 }
}

 . 26 . . Now run the program and try deleting one of the links .

Chapter .22 .Quick .Reference

To Do This

Create a new MVC Web site Select the MVC template when creating a new Web application project .

Create wrapper classes for a
table in a database to support
the model

Right-click the Model folder and click Add, New Item . Select LINQ To SQL
from the Data templates . Drag the database table for which you want
classes from the Server Explorer onto the design surface .

Add a view to the project Create a new folder under the Views folder to hold views of a specific
type . Right-click the specific folder . Click Add, View . Select a strongly
typed view if you’d like Visual Studio to reflect the table and produce a
typed view . Select the Create, Update, Details, or List view for standard
scenarios . Select Empty view for other scenarios .

Add a controller to the project Right-click the Controllers folder and click Add, Controller .

Add HTML tags to a view In the view’s .aspx file, type HTML tags directly . Alternatively, you can use
the HTML helpers .

 . . 473

Chapter 23

AJAX
After completing this chapter, you will be able to

n Understand the problem AJAX solves .

n Understand ASP .NET support for AJAX .

n Write AJAX-enabled Web sites .

n Take advantage of AJAX as necessary to improve the user’s experience .

This chapter covers AJAX, possibly the most interesting feature added to ASP .NET recently .
AJAX stands for Asynchronous JavaScript and XML, and it promises to produce an entirely
new look and feel for Web sites throughout the world .

Rich .Internet .Applications
Software evolution always seems to happen in this typical fashion: Once a technology is
grounded firmly (meaning the connections between the parts work and the architecture is
fundamentally sound), upgrading the end user’s experience becomes a much higher priority .
Application technology is in this stage, and the general term for this kind of application is a
Rich Internet Application (RIA) . AJAX is one means of producing Rich Internet Applications .
(Microsoft Silverlight is another popular means of creating RIAs .)

The primary reason for the existence of AJAX is to improve the standard HTTP GET/POST
 idiom with which Web users are so familiar . That is, the standard Web protocol in which
entire forms and pages are sent between the client and the server is getting a whole new
addition .

Although standard HTTP is functional and well understood by Web developers, it does have
certain drawbacks—the primary one is that the user is forced to wait for relatively long peri-
ods while pages refresh . This has been a common problem in all event-driven interfaces . (The
Windows operating system is one of the best examples .) AJAX introduces technology that
shields end users from having to wait for a whole page to post .

Think back to the way HTTP typically works . When you make a request (using GET or POST,
for example), the Web browser sends the request to the server, but you can do nothing until
the request finishes . That is, you make the request and wait—watching the little progress
indicator in the browser . When the request returns to the browser, you can begin using the

474 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

application again . The application is basically useless until the request returns . In some cases,
the browser’s window even goes completely blank . Web browsers have to wait for Web sites
to finish an HTTP request in much the same way that Windows-based programs have to
wait for message handlers to complete their processing . (Actually, if the client browser uses
a multithreaded user interface such as Windows Internet Explorer, users can usually cancel
the request—but that’s all they can really do .) You can easily demonstrate this problem by
introducing a call to System.Threading.Thread.Sleep inside the Page_Load method of an ASPX
page . By putting the thread to sleep, you force the end user to wait for the request to finish .

The AJAX solution to this problem is to introduce some way to handle the request asynchro-
nously . What if there were a way to introduce asynchronous background processing into a
Web site so that the browser would appear much more responsive to the user? What if (for
certain applications) making an HTTP request didn’t stall the entire browser for the duration
of the request, but instead seemed to run the request in the background, leaving the fore-
ground unhindered and changing only the necessary portion of the rendered page? The site
would present a much more continuous and smooth look and feel to the user . As another
example, what if ASP .NET included some controls that injected script into the rendered pages
that modified the HTML Document Object Model, providing more interaction from the
 client’s point of view? Well, that’s exactly what ASP .NET AJAX support is designed to do .

What .Is .AJAX?
AJAX formalizes a style of programming meant to improve the UI responsiveness and visual
appeal of Web sites . Many AJAX capabilities have been available for a while now . AJAX
 consolidates several good ideas and uses them to define a style of programming and extends
the standard HTTP mechanism that is the backbone of the Internet . Like most Web applica-
tion development environments, ASP .NET takes advantage of HTTP capabilities in a very
standard way . The browser usually initiates contact with the server using an HTTP GET re-
quest, followed by any number of POSTs . The high-level application flow is predicated upon
sending a whole request and then waiting for an entire reply from the server . Although the
ASP .NET server-side control architecture greatly improves back-end programming, users still
get their information a whole page at a time . It operates almost like the mainframe/terminal
model popular during the 1970s and early 1980s . However, this time the terminal is one of
many modern sophisticated browsers and the mainframe is replaced by a Web server (or
Web farm) .

The standard HTTP round-trip has been a useful application strategy, and the Web grew
up using it . While the Web was developing in the late 1990s, browsers had widely varying
degrees of functionality . For example, browsers ranged all the way from the rudimentary

 Chapter 23 AJAX 475

America Online Browser (which had very limited capabilities) to cell phones and personal
 digital assistants (PDAs), to more sophisticated browsers such as Internet Explorer and
Netscape Navigator, which were rich in capability . For instance, Internet Explorer supports
higher level features such as JavaScript and Dynamic HTML . This made striking a balance
 between usability of your site and the reach of your site very difficult prior to the advent of
ASP .NET .

However, the majority of modern computing platforms can run a decent browser that can
process client-side scripting . These days, most computing environments run a modern
 operating system, such as the Windows Vista or Windows 7 operating systems, or even
Macintosh OS X . These environments run browsers fully capable of supporting XML and
JavaScript . With so many Web client platforms supporting this functionality, it makes sense to
take advantage of the capabilities . As you see later in this chapter, AJAX makes good use of
these modern browser features to improve the user experience .

In addition to extending standard HTTP, AJAX is also a very clever way to use the Web service
idiom . Web services are traditionally geared toward enterprise-to-enterprise business com-
munications . However, Web services are also useful on a smaller scale for handling Web re-
quests out of band . (“Out of band” simply means making HTTP requests using other methods
instead of the standard page posting mechanism .) AJAX uses Web services behind the scenes
to make the client UI more responsive than it is for traditional HTTP GETs and POSTs . This
chapter describes how this works, especially in the section titled “Extender Controls” later in
the chapter, which describes the ASP .NET AJAX Control Toolkit extender controls .

ASP .NET .and .AJAX .
One of the primary changes AJAX brings to Web programming is that it depends on the
browser taking an even more active role in the process . Instead of the browser simply ren-
dering streams of HTML and executing small custom-written script blocks, AJAX includes
some new client-script libraries to facilitate the asynchronous calls back to the server .
AJAX also includes some basic server-side components to support these new asynchronous
calls coming from the client . There’s even a community-supported AJAX Control Toolkit
available for the ASP .NET AJAX implementation . Figure 23-1 shows the organization of
ASP .NET AJAX support .

476 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Networking

Asynchronous requests,
XML and JSON Serialization,
Web and Application Services

Components

Nonvisual components
Behaviors, Controls

Browser Compatibility

Support for browsers:
Microsoft Internet Explorer,
Mozilla Firefox, Apple Safari

Core Services

JavaScript, Base Client
Extensions, Type System,
Events, Serialization

The AJAX Library

Client Side

Application Services

Authentication and
profile support

Scripting

Localization, Globalization,
Debugging, Tracing

Web Services

Proxy Generation,
Page Methods,
XML and JSON Serialization

Server Controls

ScriptManager, Update Panel.
Update Progress, Timer

ASP.NET Extensions for AJAX

Server Side

FIGURE .23-1 . The conceptual organization of ASP .NET AJAX support layers .

Reasons to Use AJAX
If traditional ASP .NET development is so entrenched and well established, why would you
want to introduce AJAX? At first glance, AJAX seems to introduce some new complexities
into the ASP .NET programming picture . In fact, it seems to reintroduce some program-
ming idioms that ASP .NET was designed to deprecate (such as overuse of client-side script) .
However, AJAX promises to produce a richer experience for the user . Because ASP .NET sup-
port for AJAX is nearly seamless, the added complexities are well mitigated . When building a
Web site, there are a few reasons you might choose to enable your ASP .NET site for AJAX:

n AJAX improves the overall efficiency of your site by performing, when appropriate,
parts of a Web page’s processing in the browser . Instead of waiting for the entire
HTTP protocol to get a response from the browser, you can push certain parts of the
page processing to the client to help the client to react much more quickly . Of course,
this type of functionality has always been available—as long as you’re willing to write
the code to make it happen . ASP .NET AJAX support includes a number of scripts so
that you can get a lot of browser-based efficiency by simply using a few server-side
controls .

n ASP .NET AJAX introduces to a Web site UI elements usually found in desktop applica-
tions, such as rectangle rounding, callouts, progress indicators, and pop-up windows

 Chapter 23 AJAX 477

that work for a wide range of browsers (more browser-side scripting—but most of it
has been written for you) .

n AJAX introduces partial-page updates . By refreshing only the parts of the Web page
that have been updated, the user’s wait time is reduced significantly . This brings Web-
based applications much closer to desktop applications with regard to perceived UI
performance .

n AJAX is supported by most popular browsers—not just Internet Explorer . It works for
Mozilla Firefox and Apple Safari, too . Although it still requires some effort to strike a
balance between UI richness and the ability to reach a wider audience, the fact that
AJAX depends on features available in most modern browsers makes this balance much
easier to achieve .

n AJAX introduces a huge number of new capabilities . Whereas the standard ASP .NET
control and page-rendering model provides great flexibility and extensibility for pro-
gramming Web sites, AJAX brings in a new concept—the extender control . Extender
controls attach to existing server-side controls (such as the TextBox, ListBox, and
DropDownList) at run time and add new client-side appearances and behaviors to the
controls . Sometimes extender controls can even call a predefined Web service to get
data to populate list boxes and such (for example, the AutoComplete extender) .

n AJAX improves on ASP .NET Forms Authentication and profiles and personalization ser-
vices . ASP .NET support for authentication and personalization provides a great boon to
Web developers—and AJAX just sweetens the offerings .

These days, when you browse different Web sites, you run into many examples of AJAX-style
programming . Here are some examples:

n Colorado Geographic: http://www.coloradogeographic.com/

n Cyber Homes: http://www.cyberhomes.com/default.aspx

n Component Art: http://www.componentart.com/

Real-World AJAX
Throughout the 1990s and into the mid-2000s, Web applications were nearly a throwback to
1970s mainframe and minicomputer architectures . However, instead of a single large com-
puter serving dumb terminals, Web applications consist of a Web server (or a Web farm) con-
nected to smart browsers capable of fairly sophisticated rendering capabilities . Until recently,
Web applications took their input from HTTP forms and presented output in HTML pages .
The real trick in understanding standard Web applications is to see the disconnected and
stateless nature of HTTP . Classic Web applications can show only a snapshot of the state of
the application .

478 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

As this chapter describes, Microsoft supports standard AJAX idioms and patterns in the
ASP .NET framework . However, AJAX is more a style of Web programming involving out-of-
band HTTP requests than any specific technology .

You’ve no doubt seen sites engaging the new interface features and stylings available
through AJAX programming . Examples include Microsoft .com, Google .com, and Yahoo .com .
Very often while browsing these sites, you’ll see modern features such as automatic page up-
dates that do not require you to generate a postback explicitly . Modal-type dialog boxes that
require your attention appear until you dismiss them . These are all features available through
AJAX-style programming patterns and the ASP .NET extensions (for example, a rich set of
AJAX server-side controls and extensions) for supporting AJAX .

If you’re a long-time Microsoft environment Web developer, you might be asking yourself
whether AJAX is something really worthwhile or whether you might be able to get much of
the same type of functionality using a tried and true technology such as DHTML .

AJAX in Perspective
Any seasoned Web developer targeting Internet Explorer as the browser is undoubtedly
familiar with Dynamic HTML (DHTML) . DHTML is a technology that runs at the browser
for enabling Windows desktop-style UI elements in the Web client environment . DHTML
was a good start, and AJAX brings the promise of more desktop-like capabilities to Web
applications .

AJAX makes available wider capabilities than DHTML does . With DHTML, primarily you can
change the style declarations of an HTML element through JavaScript . However, that’s about
as far as it goes . DHTML is very useful for implementing such UI features as having a menu
open when the mouse pointer rests on it . AJAX expands on this idea of client-based UI using
JavaScript as well as out-of-band calls to the server . Because AJAX is based on out-of-band
server requests (rather than relying only on a lot of client script code), AJAX has the potential
for much more growth in terms of future capabilities than does DHTML .

ASP .NET .Server-Side .Support .for .AJAX
Much of ASP .NET support for AJAX resides in a collection of server-side controls responsible
for rendering AJAX-style output to the browser . Recall from Chapter 3, “The Page Rendering
Model,” that the entire page-rendering process of an ASP .NET application is broken down
into little bite-sized chunks . Each individual bit of rendering is handled by a class derived
from System.Web.UI.Control . The entire job of a server-side control is to render output that
places HTML elements in the output stream so that they appear correctly in the browser .
For example, ListBox controls render a <select/> tag . TextBox controls render an

 Chapter 23 AJAX 479

<input type=”text” /> tag . ASP .NET AJAX server-side controls render AJAX-style script and
HTML to the browser .

ASP .NET AJAX support consists of these server-side controls along with client code scripts
that integrate to produce AJAX-like behavior . The following subsections describe the most
frequently used AJAX-oriented ASP .NET server controls: ScriptManager, ScriptManagerProxy,
UpdatePanel, UpdateProgress, and Timer .

ScriptManager Control
The ScriptManager control manages script resources for the page . The ScriptManager con-
trol’s primary action is to register the AJAX Library script with the page so that the client
script can use type system extensions . The ScriptManager also makes possible partial-page
rendering and supports localization as well as custom user scripts . The ScriptManager assists
with out-of-band calls back to the server . Any ASP .NET site wishing to use AJAX must include
an instance of the ScriptManager control on any page using AJAX functionality .

ScriptManagerProxy Control
Scripts on a Web page often require a bit of special handling in terms of how the server
renders them . Typically, the page uses a ScriptManager control to organize the scripts at
the page level . Nested components such as content pages and user controls require the
ScriptManagerProxy to manage script and service references to pages that already have a
ScriptManager control .

This is most notable in the case of master pages . The master page typically houses the
ScriptManager control . However, ASP .NET throws an exception if a second instance of
ScriptManager is found in a given page . So, what would content pages do if they needed
to access the ScriptManager control that the master page contains? The answer is that
the content page should house the ScriptManagerProxy control and work with the true
ScriptManager control through the proxy . Of course, as mentioned, this also applies to user
controls as well .

UpdatePanel Control
The UpdatePanel control supports partial-page updates by tying together specific server-side
controls and events that cause them to render . The UpdatePanel control causes only selected
parts of the page to be refreshed instead of the whole page (as happens during a typical
HTTP postback) .

480 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

UpdateProgress Control
The UpdateProgress control coordinates status information about partial-page updates
as they occur in UpdatePanel controls . The UpdateProgress control supports intermediate
 feedback for long-running operations .

Timer Control
The Timer control issues postbacks at defined intervals . Although the Timer control will
 perform a typical postback (posting the whole page), it is especially useful when coordinated
with the UpdatePanel control to perform periodic partial-page updates .

AJAX .Client .Support
ASP .NET AJAX client-side support is centered around a set of JavaScript libraries . The
 following layers are included in the ASP .NET AJAX script libraries:

n The browser compatibility layer assists in managing compatibility across the most
 frequently used browsers . Whereas ASP .NET by itself implements browser capabili-
ties on the server end, this layer handles compatibility on the client end (the browsers
 supported include Internet Explorer, Mozilla Firefox, and Apple Safari) .

n The ASP .NET AJAX core services layer extends the usual JavaScript environment by
 introducing classes, namespaces, event handling, data types, and object serialization
that are useful in AJAX programming .

n The ASP .NET AJAX base class library for clients includes various components, such as
components for string management and for extended error handling .

n The networking layer of the AJAX client-side support manages communication with
Web-based services and applications . The networking layer also handles asynchronous
remote method calls .

The pièce de résistance of ASP .NET AJAX support is the community-supported Control
Toolkit . Although all the features mentioned previously provide solid infrastructure for
ASP .NET AJAX, AJAX isn’t very compelling until you add a rich tool set .

ASP.NET AJAX Control Toolkit
The ASP .NET AJAX Control Toolkit is a collection of components (and samples showing how
to use them) encapsulating AJAX capabilities . When you browse through the samples, you
can get an idea of the kind of user experiences available through the controls and extenders .

 Chapter 23 AJAX 481

The Control Toolkit also provides a powerful software development kit for creating custom
controls and extenders . You can download the ASP .NET AJAX Control Toolkit from the
ASP .NET AJAX Web site .

The AJAX Control Toolkit is a separate download and not automatically included with
Microsoft Visual Studio 2010 . The latest version is 3 .0, which was made available at the end
of September 2009 . See http://asp.net/ajax/ajaxcontroltoolkit/ for details . You can download
the binaries or the source code . If you aren’t interested in the source code, you only need to
make a reference to the AjaxControlToolkit .dll assembly in your project .

If you want to build the toolkit yourself, follow these steps:

 . 1 . . Download the toolkit source code .

 . 2 . . After unzipping the Toolkit file, open the AjaxControlToolkit solution file in Visual
Studio .

 . 3 . . Build the AjaxControlKit project .

 . 4 . . The compilation process produces a file named AjaxControlToolkit .dll in the
AjaxControlToolkit\bin directory .

 . 5 . . Right-click the Toolbox in Visual Studio, and click Choose Items on the menu . Browse
to the AjaxControlToolkit .dll file in the AjaxControlToolkit\bin directory and include the
DLL . This brings all the new AJAX controls from the toolkit into Visual Studio so that
you can drop them in forms in your applications .

Note You can find a wealth of AJAX-enabled server-side controls and client-side scripts avail-
able through a community-supported effort . Although they are not quite officially part of the
Microsoft AJAX release, the support includes the ASP .NET AJAX community-supported controls
(mentioned previously) as well as support for client declarative syntax (XML script) and more . Go
to http://www.asp.net/ajax/ for more information . This site includes links to download the
ASP .NET AJAX Control Toolkit, links to some interesting AJAX-enabled sites, video tutorials, and
other useful downloads .

AJAX Control Toolkit Potpourri
A number of other extenders and controls are available through a community-supported
 effort . You can find a link to the AJAX Control Toolkit at http://www.asp.net/ajax/. This
 chapter discusses a few of the controls available from the toolkit . Table 23-1 lists the controls
and extenders available through this toolkit .

482 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

TABLE .23-1 . The .ASP .NET .Control .Toolkit

Component Description

Accordion This extender is useful for displaying a group of panes one pane
at a time . It’s similar to using several CollapsiblePanels constrained
to allow only one to be expanded at a time . The Accordion is com-
posed of a group of AccordionPane controls .

AlwaysVisibleControl This extender is useful for pinning a control to the page so that
its position remains constant while content behind it moves and
scrolls .

Animation This extender provides a clean interface for animating page
 content .

AsyncFileUpload This control is for uploading a file asynchronously in the
 background .

AutoComplete This extender is designed to communicate with a Web service to list
possible text entries based on what’s already in the text box .

Calendar This extender is targeted for the TextBox control providing client-
side date-picking functionality in a customizable way .

CascadingDropDown This extender is targeted toward the DropDownList control . It
 functions to populate a set of related DropDownList controls
 automatically .

CollapsiblePanel This extender is targeted toward the Panel control for adding
 collapsible sections to a Web page .

ConfirmButton This extender is targeted toward the Button control (and types
 derived from the Button control) and is useful for displaying mes-
sages to the user . The scenarios for which this extender is useful
include those requiring confirmation from the user (for example,
where linking to another page might cause the end user to lose
state) .

DragPanel This is an extender targeted toward Panel controls for adding the
capability for users to drag the Panel around the page .

DropDown This extender implements a Microsoft SharePoint–style drop-down
menu .

DropShadow This extender is targeted toward the Panel control that applies a
drop shadow to the Panel .

DynamicPopulate This extender uses an HTML string returned by a Web service or
page method call .

FilteredTextBox This extender is used to ensure that an end user enters only valid
characters in a text box .

HoverMenu This extender is targeted for any WebControl that has an associ-
ated pop-up window for displaying additional content . The pop-up
window is activated when the user rests the mouse pointer on the
targeted control .

 Chapter 23 AJAX 483

Component Description

ListSearch This extender searches items in a designated ListBox or
DropDownList based on keystrokes as they’re typed by the user .

MaskedEdit This extender is targeted toward TextBox controls to constrain the
kind of text that the TextBox will accept by applying a mask .

ModalPopup This extender mimics the standard Windows modal dialog box
behavior . With the ModalPopup, a page can display content of a
pop-up window that focuses attention on itself until it is dismissed
explicitly by the end user .

MutuallyExclusiveCheckBox This extender is targeted toward the CheckBox control . The
 extender groups CheckBox controls using a key . When a number of
CheckBox controls all share the same key, the extender ensures that
only a single check box will appear selected at a time .

NoBot This control attempts to provide CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart)-like bot/
spam detection and prevention without requiring any user interac-
tion . Although a noninteractive approach might be bypassed more
easily than one requiring actual human interaction can be, this
implementation is invisible .

NumericUpDown This extender is targeted toward the TextBox control to create a
control very similar to the standard Windows Edit control with
the Spin button . The extender adds “up” and “down” buttons for
 incrementing and decrementing the value in the TextBox .

PagingBulletedList This extender is targeted toward the BulletedList control . The
 extender enables sorted paging on the client side .

PasswordStrength This extender is targeted toward the TextBox control to help when
end users type passwords . Whereas the typical TextBox hides only
the actual text, the PasswordStrength extender also displays the
strength of the password using visual cues .

PopupControl This extender is targeted toward all controls . Its purpose is to open
a pop-up window for displaying additional relevant content .

Rating This control renders a rating system from which end users rate
something using images to represent their choice (stars are
 common) .

ReorderList This ASP .NET AJAX control implements a bulleted, data-bound list
with items that can be reordered interactively .

ResizableControl This extender works with any element on a Web page . Once the
ResizableControl is associated with an element, the user can resize
that control . The ResizableControl puts a handle on the lower right
corner of the control .

RoundedCorners The RoundedCorners extender can be applied to any Web page
 element to turn square corners into rounded corners .

484 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Component Description

Seadragon The Seadragon control renders an image along with buttons for
zooming in and out, going to full screen, and panning,

Slider This extender is targeted to the TextBox control . It adds a graphical
slider that the end user can use to change the numeric value in the
TextBox .

SlideShow This extender controls and adds buttons users can use to
move between images individually and to play the slide show
 automatically .

Tabs This server-side control manages a set of tabbed panels for
 managing content on a page .

TextBoxWatermark TextBoxWatermark extends the TextBox control to display a
 message while the TextBox is empty . When the TextBox contains
some text, the TextBox appears as a typical TextBox .

ToggleButton This extender extends the CheckBox to show custom images
 reflecting the state of the CheckBox .

UpdatePanelAnimation This extender provides a clean interface for animating content
 associated with an UpdatePanel .

ValidatorCallout ValidatorCallout extends the validator controls (such as
RequiredFieldValidator and RangeValidator) . The callouts are small
pop-up windows that appear near the UI elements containing
 incorrect data to direct user focus to them .

Getting .Familiar .with .AJAX
Here’s a short example to help get you familiar with AJAX . It’s a very simple Web Forms
application that shows behind-the-scenes page content updates with the UpdatePanel
server-side control . In this exercise, you create a page with labels showing the date and time
that the page loads . One label is outside the UpdatePanel, and the other label is inside the
UpdatePanel . You can see how partial-page updates work by comparing the date and time
shown in each label .

Implementing a simple partial-page update

 . 1 . . Create a new Web site project named AJAXORama . Make it an empty, file system-
based Web site . Visual Studio 2010 creates AJAX Enabled projects right from the start .
Make sure the default .aspx file is open .

 . 2 . . Add a ScriptManager control to the page by dragging one from the Toolbox onto the
page . (It is under the AJAX Extensions tab in the Toolbox instead of the normal control
tab .) Using the AJAX controls requires a ScriptManager to appear prior to any other
AJAX controls on the page . By convention, the control is usually placed outside the DIV

 Chapter 23 AJAX 485

Visual Studio creates for you . After placing the script manager control on your page,
the <body> element in the Source view should look like this:

<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 </asp:ScriptManager>
 <div>

 </div>
 </form>
</body>

 . 3 . . Drag a Label control onto the Default .aspx form . In the Properties pane, give the Label
control the name LabelDateTimeOfPageLoad. Then, drop a Button on the form as well .
Give it the text Click Me. Open the code-beside file (default .aspx .cs) and update the
Page_Load handler so that the label displays the current date and time:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString();
 }
}

 . 4 . . Run the page and generate some postbacks by clicking the button a few times . Notice
that the label on the page updates with the current date and time each time you click
the button .

 . 5 . . Add an UpdatePanel control to the page . (You can find this control alongside the
ScriptManager control in the AJAX node in the Visual Studio Toolbox.) Then, drop an-
other Label from the Toolbox into the content area of the UpdatePanel . Name the label
LabelDateTimeOfButtonClick.

 . 6 . . Add some code to the Page_Load method so that the label shows the current date and
time:

using System;
using System.Data;
using System.Configuration;

486 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

using System.Web;
using System.Web.Security;

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString();
 this.LabelDateTimeOfButtonClick.Text =
 DateTime.Now.ToString();
 }
}

The following graphic shows the UpdatePanel, Button, and Labels as displayed in the
Visual Studio Designer (there are some line breaks in between so that the page is
readable):

 . 7 . . Run the page and generate some postbacks by clicking the button . Both labels should
be showing the date and time of the postback (that is, they should show the same
time) . Although the second label is inside the UpdatePanel, the action causing the
 postback is happening outside the UpdatePanel .

 Chapter 23 AJAX 487

The following graphic shows the Web page running without the Button being
 associated with the UpdatePanel:

 . 8 . . Now delete the current button from the form and drop a new button into the
UpdatePanel1 control . Add a Label to the UpdatePanel1 as well . Name the new label
LabelDateTimeOfButtonPress . Look at the Default .aspx file to see what was produced:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>
<body>
 <form id=”form1” runat=”server”>
 <asp:ScriptManager
 ID=”ScriptManager1” runat=”server” />

 <asp:Label ID=”LabelDateTimeOfPageLoad”
 runat=”server”></asp:Label>

 <asp:UpdatePanel ID=”UpdatePanel1” runat=”server”>

 <ContentTemplate>
 <asp:Label ID=”LabelDateTimeOfButtonPress”
 runat=”server”>
 </asp:Label>

488 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <asp:Button ID=”Button1”
 runat=”server” Text=”Click Me” />
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

The new Button should now appear nested inside the UpdatePanel along with the new
Label .

 . 9 . . Run the page and generate some postbacks by clicking the button . Notice that only the
label showing the date and time enclosed in the UpdatePanel is updated . This is known
as a partial-page update because only part of the page is actually updated in response
to a page action, such as clicking the button . Partial-page updates are also sometimes
referred to as callbacks rather than postbacks . The following graphic shows the Web
page running with the Button being associated with the UpdatePanel:

 . 10 . . Add an UpdatePanel trigger . Because the second label and the button are both associ-
ated with the single UpdatePanel, only the second Label is updated in response to the
postback generated by the button . If you could set up partial-page updates based only
on elements tied to a single UpdatePanel, that would be fairly restrictive . As it turns out,
the UpdatePanel supports a collection of triggers that generate partial-page updates .
To see how this works, you need to first move the button outside the UpdatePanel (so
that the button generates a full normal postback) . The easiest way is simply to drag a
button onto the form, making sure it lands outside the UpdatePanel .

 Chapter 23 AJAX 489

Because the button is outside the UpdatePanel again, postbacks generated by the
 button are no longer tied solely to the second label, and the partial-page update
 behavior you saw in step 9 is again nonfunctional .

 . 11 . . Update the UpdatePanel’s Triggers collection to include the Button’s Click event . With
the Designer open, select the UpdatePanel . Go to the properties Window and choose
Triggers .

 . 12 . . Add a trigger and set the control ID to the button’s ID and the event to Click as shown
in the following graphic:

(Note that the handy drop-down lists for each property assist you with this selection .)
Run the page . Clicking the button should now generate a callback (causing a partial-
page update) in which the first label continues to show the date and time of the origi-
nal page load and the second label shows the date and time of the button click . Pretty
cool!

Async .Callbacks
As you know by now, standard Web pages require the browser to instigate post-
backs . Many times, postbacks are generated by clicking a Button control (in ASP .NET
terms) . However, you can enable most ASP .NET controls to generate postbacks as well .
For example, if you’d like to receive a postback whenever a user selects an item in a
DropDownList, just flip the AutoPostBack property to true, and the control will generate
the normal postback whenever the selected item changes .

In some cases, an entire postback is warranted for events such as when the selected
item changes . However, in most cases generating postbacks is distracting for users and

490 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

leads to very poor performance of your page . That’s because standard postbacks
 refresh the whole page .

ASP .NET AJAX support introduces the notion of the asynchronous postback by using
JavaScript running inside the client page . The XMLHttpRequest object posts data to the
server—making an end run around the normal postback . The server returns data as
XML, JSON, or HTML and has to refresh only part of the page . The JavaScript running in
the page replaces old HTML in the Document Object Model with new HTML based on
the results of the asynchronous postback .

If you’ve done any amount of client-side script programming, you can imagine how
much work doing something like this can be . Performing asynchronous postbacks and
updating pages usually requires a lot of JavaScript .

The UpdatePanel control you just used in the preceding exercise hides all of the client-
side code and also the server-side plumbing . Also, because of the well-architected
server-side control infrastructure in ASP .NET, the UpdatePanel maintains the same
server-side control model you’re used to seeing in ASP .NET .

The .Timer
In addition to causing partial-page updates through an event generated by a control (such
as a button click), AJAX includes a timer to cause regularly scheduled events . You can find
the Timer control alongside the other standard AJAX controls in the Toolbox . By dropping a
Timer on a page, you can generate automatic postbacks to the server .

Some uses for the Timer include a “shout box”—like an open chat where a number of users
type in messages and they appear near the top like a conversation . Another reason you
might like an automatic postback is if you wanted to update a live Web camera picture or to
refresh some other frequently updated content .

The Timer is very easy to use—simply drop it on a page that hosts a ScriptManager. The
 default settings for the timer cause the timer to generate postbacks every minute (every
60,000 milliseconds) . The Timer is enabled by default and begins firing events as soon as the
page loads .

Here’s an exercise using the Timer to write a simple chat page that displays messages from
a number of users who are logged in . The conversation is immediately updated for the user
typing in a message . However, users who have not refreshed since the last message don’t get
to see it—unless they perform a refresh . The page uses a Timer to update the conversation
automatically . At first, the entire page is refreshed . Then, the chat page uses an UpdatePanel
to update only the chat log (which is the element that changes) .

 Chapter 23 AJAX 491

Using the Timer to create a chat page

 . 1 . . Open the AJAXORama application if it’s not already open . The first step is to create
a list of chat messages that can be seen from a number of different sessions . Add a
global application class to the project by right-clicking in Solution Explorer and click-
ing Add New Item . Choose Global Application Class as the type of file to add . This adds
files named Global .asax and Global .asax .cs to your Web site .

 . 2 . . Update the Application_Start method in Global .asax .cs to create a list for storing
 messages and add the list to the application cache .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.SessionState;

namespace AJAXORama
{
 public class Global : System.Web.HttpApplication
{
 protected void Application_Start(object sender, EventArgs e)
 {
 // Code that runs on application startup
 List<string> messages = new List<string>();
 HttpContext.Current.Cache[“Messages”] = messages;
 }
 // other generated code is here...
}

}

 . 3 . . Create a chat page by adding a new page to the Web site and calling it
GroupChat.aspx . This will hold a text box with messages as they accumulate, and it also
gives users a means of adding messages .

 . 4 . . When the messages are coming in, it would be very useful to know who sent which
messages . This page forces users to identify themselves first; then, they can start add-
ing messages . First, type in the text Group .Chatting . . . after the ScriptManager . Give
it a large font style with block display so that it’s on its own line . After that, type in the
text First, .give .us .your .name: . Then, drag a TextBox control from the Toolbox onto
the page . Give the TextBox the ID TextBoxUserID . Drop a Button on the page so that the
user can submit his or her name . Give it the text Submit ID and the ID ButtonSubmitID .

 . 5 . . Drop another TextBox onto the page . This one will hold the messages, so make it large
(800 pixels wide by 150 pixels high should do the trick) . Set the TextBox’s TextMode
property to MultiLine, and set the ReadOnly property to True . Give the TextBox the ID
TextBoxConversation .

492 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 6 . . Drop one more TextBox onto the page . This one will hold the user’s current message .
Give the TextBox the ID TextBoxMessage .

 . 7 . . Add one more Button to the page . This one enables the user to submit the current
message and should include the text Add Your Message . Be sure to give the button
the ID value ButtonAddYourMessage . The following graphic shows a possible layout of
these controls:

 . 8 . . Open the code-beside file GroupChat .aspx .cs for editing . Add a method that retrieves
the user’s name from session state:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected string GetUserID()
 {
 string strUserID =
 (string) Session[“UserID”];
 return strUserID;
 }
}

 Chapter 23 AJAX 493

 . 9 . . Add a method to update the UI so that users may type messages only after they’ve
identified themselves . If the user has not been identified (that is, the session variable is
not there), disable the chat conversation UI elements and enable the user identification
UI elements . If the user has been identified, enable the chat conversation UI elements
and disable the user identification UI elements:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 // other code goes here...
 void ManageUI()
 {
 if (GetUserID() == null)

 {
 // if this is the first request, then get the user’s ID
 TextBoxMessage.Enabled = false;
 TextBoxConversation.Enabled = false;
 ButtonAddYourMessage.Enabled = false;

 ButtonSubmitID.Enabled = true;
 TextBoxUserID.Enabled = true;
 }
 else
 {
 // if this is the first request, then get the user’s ID
 TextBoxMessage.Enabled = true;
 TextBoxConversation.Enabled = true;
 ButtonAddYourMessage.Enabled = true;

 ButtonSubmitID.Enabled = false;
 TextBoxUserID.Enabled = false;
 }
 }
}

 . 10 . . Add a Click event handler for the Button that stores the user ID (ButtonSubmitID) . The
method should store the user’s identity in session state and then call ManageUI to
 enable and disable the correct controls:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

494 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 }
 // other page code goes here...
 protected void ButtonSubmitID_Click(object sender, EventArgs e)
 {
 Session[“UserID”] = TextBoxUserID.Text;
 ManageUI();
 }
}

 . 11 . . Add a method to the page for refreshing the conversation . The code should look up
the message list in the application cache and build a string that shows the messages in
reverse order (so the most recent is on top) . Then, the method should set the conversa-
tion TextBoxConversation’s Text property to the new string (that is, the text property of
the TextBox showing the conversation):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
 // other page code goes here...
 void RefreshConversation()
 {
 List<string> messages = (List<string>)Cache[“Messages”];
 if (messages != null)
 {
 string strConversation = “”;

 int nMessages = messages.Count;

 for(int i = nMessages-1; i >=0; i--)
 {
 string s;

 s = messages[i];
 strConversation += s;
 strConversation += “\r\n”;
 }

 TextBoxConversation.Text =
 strConversation;
 }
 }
}

 Chapter 23 AJAX 495

 . 12 . . Add a Click event handler for adding your message by double-clicking the Button for
adding your message (the lower button on the form) and adding a Click event handler
to respond to the user submitting his or her message (ButtonAddYourMessage) . The
method should grab the text from the user’s message TextBoxMessage, prepend the
user’s ID to it, and add it to the list of messages held in the application cache . Then, the
method should call RefreshConversation to make sure the new message appears in the
conversation TextBox:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
 // Other code goes here...
 protected void ButtonAddYourMessage_Click(object sender,
 EventArgs e)
 {
 // Add the message to the conversation...
 if (this.TextBoxMessage.Text.Length > 0)
 {
 List<string> messages = (List<string>)Cache[“Messages”];
 if (messages != null)
 {
 TextBoxConversation.Text = “”;

 string strUserID = GetUserID();

 if (strUserID != null)
 {
 messages.Add(strUserID +
 “: “ +
 TextBoxMessage.Text);
 RefreshConversation();
 TextBoxMessage.Text = “”;
 }
 }
 }
 }
}

496 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 13 . . Update the Page_Load method to call ManageUI and RefreshConversation:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

using System.Xml.Linq;
using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page
{
 // Other code goes here...
 protected void Page_Load(object sender, EventArgs e)
 {
 ManageUI();
 RefreshConversation();
 }
}

 . 14 . . Now run the page to see how it works . After you’ve identified yourself, you can start
typing in messages—and you’ll see them appear in the conversation TextBox . Try
browsing the page using two separate browsers . Do you see an issue? The user typing
a message gets to see the message appear in the conversation right away . However,
other users involved in the chat don’t see any new messages until after they submit
messages of their own . You can solve this issue by dropping an AJAX Timer onto the
page .

 . 15 . . Drag a ScriptManager from the AJAX controls onto the page . Then, drag a Timer from
the AJAX controls onto the page . Although the AJAX Timer starts generating postbacks
automatically, the default interval is 60,000 milliseconds, or once per minute . Set the
Timer’s Interval property to something more reasonable, such as 10,000 milliseconds
(or 10 seconds) .

Now run both pages and see what happens . You should see the pages posting back
 automatically every 10 seconds . However, there’s still one more issue with this scenario .
If you watch carefully enough, you’ll see that the whole page is refreshed—even
though the user name is not changing . During the conversation, you’re really only in-
terested in seeing the conversation TextBox updated . You can fix this by putting in an
UpdatePanel .

 . 16 . . Drag an UpdatePanel from the AJAX controls onto the page . Position the UpdatePanel
so that it can hold the conversation text box . Move the conversation text box so that
it’s positioned in the UpdatePanel . Modify the UpdatePanel’s triggers so that it in-
cludes the Timer’s Tick event . Now run the chat pages, and you should see only the

 Chapter 23 AJAX 497

 conversation text box being updated on each timer tick . The following graphic shows
the new layout of the page employing the UpdatePanel:

The ASP .NET AJAX Timer is useful whenever you need regular, periodic posts back to the
server . You can see here how it is especially useful when combined with the UpdatePanel to
do periodic partial-page updates .

Updating .Progress
A recurring theme when programming any UI environment is keeping the user updated
about the progress of a long-running operation . If you’re programming Windows Forms, you
can use the BackgroundWorker component and show progress updating using the Progress
control . Programming for the Web requires a slightly different strategy . ASP .NET AJAX
 support includes a component for this—the ASP .NET AJAX UpdateProgress control .

UpdateProgress controls display during asynchronous postbacks . All UpdateProgress con-
trols on the page become visible when any UpdatePanel control triggers an asynchronous
postback .

Here’s an exercise for using an UpdateProgress control on a page .

Using the UpdateProgress control

 . 1 . . Add a new page to the AJAXORama site named UseUpdateProgressControl.aspx .

 . 2 . . Drag a ScriptManager from the Toolbox onto the page .

498 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 3 . . Drag an UpdatePanel onto the page . Give the panel the ID UpdatePanelForProgress so
that you can identify it later . Add the text This .is .from .the .update .panel, and then
add a Button to the update panel that will begin a long-running operation . Give it the
ID ButtonLongOperation and the text Activate Long Operation .

 . 4 . . Add a Click event handler for the button . The easiest way to create a long-running
 operation is to put the thread to sleep for a few seconds, as shown here . By introducing
a long-running operation, you have a way to test the UpdateProgress control and see
how it works when the request takes a long time to complete .

public partial class UseUpdateProgressControl : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void
 ButtonLongOperation_Click(object sender,
 EventArgs e)
 {
 // Put thread to sleep for five seconds
 System.Threading.Thread.Sleep(5000);
 }
}

 . 5 . . Now add an UpdateProgress control to the page . An UpdateProgress con-
trol must be tied to a specific UpdatePanel . Set the UpdateProgress control’s
AssociatedUpdatePanelID property to the UpdatePanelForProgress panel you just
added . Note that you can simply use the provided droplist to select this ID . Also change
the DisplayAfter value to be 100 (indicating the progress indication should begin 100
milliseconds after the refresh begins) .

 . 6 . . Add a ProgressTemplate to the UpdateProgress control—this is where the content for
the update display is declared . Add a Label to the ProgressTemplate so that you can see
it when it appears on the page:

<asp:UpdateProgress ID=”UpdateProgress1”
 runat=”server”
 AssociatedUpdatePanelID=”UpdatePanelForProgress”
 DisplayAfter=”100”>
 <ProgressTemplate>
 <asp:Label ID=”Label1” runat=”server”
 Text=”What’s happening? This takes a long time...”>
 </asp:Label>
 </ProgressTemplate>
</asp:UpdateProgress>

 Chapter 23 AJAX 499

 . 7 . . Run the page to see what happens . When you click the button that executes the
 long-running operation, you should see the UpdateProgress control show its content
automatically . This graphic shows the UpdateProgress control in action:

 . 8 . . Finally, no asynchronous progress updating UI technology is complete without a means
to cancel the long-running operation . If you wish to cancel the long-running opera-
tion, you can do so by inserting a little of your own JavaScript into the page . You need
to do this manually because there’s no support for this using the wizards . Write a
client-side script block and place it near the top of the page—inside the <head> tag .
The script block should get the instance of the Sys.WebForms.PageRequestManager .
The PageRequestManager class is available to the client as part of the script injected
by the ASP .NET AJAX server-side controls . The PageRequestManager has a method
named get_isInAsyncPostBack() that you can use to figure out whether the page is in
the middle of an asynchronous callback (generated by the UpdatePanel) . If the page
is in the middle of an asynchronous callback, use the PageRequestManager’s
abortPostBack() method to quit the request . Add a Button to the ProgressTemplate
and assign its OnClientClick property to make a call to your new abortAsyncPostback
method . In addition to setting the OnClientClick property to the new abort method,
insert return false; immediately after the call to the abort method, as shown in the
 following code . (Inserting return false; prevents the browser from issuing a postback .)

<%@ Page Language=”C#”
 AutoEventWireup=”true”
CodeFile=”UseUpdateProgressControl.aspx.cs”
Inherits=”UseUpdateProgressControl” %>

500 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

<!DOCTYPE html PUBLIC
“...”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title></title>

<script type=”text/javascript”>
 function abortAsyncPostback()
 {
 var obj =
 Sys.WebForms.PageRequestManager.getInstance();
 if(obj.get_isInAsyncPostBack())
 {
 obj.abortPostBack();
 }
 }
</script>

</head>
<body>
 <form id=”form1” runat=”server”>
 <div>

 <asp:ScriptManager ID=”ScriptManager1” runat=”server”>
 </asp:ScriptManager>

 </div>
 <asp:UpdateProgress ID=”UpdateProgress1”
 runat=”server”
 AssociatedUpdatePanelID=”UpdatePanelForProgress”
 DisplayAfter=”100”>
 <ProgressTemplate>
 <asp:Label ID=”Label1” runat=”server”
 Text=”What’s happening? This takes a long time...”>
 </asp:Label>
 <asp:Button ID=”Cancel” runat=”server”
 OnClientClick=”abortAsyncPostback(); return false;”
 Text=”Cancel” />
 </ProgressTemplate>
 </asp:UpdateProgress>
 <asp:UpdatePanel ID=”UpdatePanelForProgress” runat=”server”>
 <ContentTemplate>
 This is from the update panel
 <asp:Button ID=”ButtonLongOperation”
 runat=”server”
 onclick=”ButtonLongOperation_Click”
 Text=”Activate Long Operation” />
 </ContentTemplate>
 </asp:UpdatePanel>

 </form>
</body>
</html>

 Chapter 23 AJAX 501

Caution Caveat Cancel: As you can see, canceling an asynchronous postback is completely a
client-side affair . Canceling a long-running operation on the client end is tantamount to discon-
necting the client from the server . Once the client is disconnected from the server, the client will
never see the response from the server .

Also, although the client is happy that it could cancel the operation, the server might never know
that the client canceled . So, the big caveat here is to plan for such a cancelation by making sure
you program long-running blocking operations carefully so that they don’t spin out of control .
Although Microsoft Internet Information Services (IIS) 6 and IIS 7 should eventually refresh the
application pool for such runaway threads, it’s better to depend on your own good program-
ming practices to make sure long-running operations end reasonably nicely .

ASP .NET AJAX support provides a great infrastructure for managing partial-page updates
and for setting up other events such as regular timer ticks . The next section looks at the
ASP .NET AJAX extender controls .

Extender .Controls
The UpdatePanel provides a way to update only a portion of the page . That’s pretty amazing .
However, AJAX’s compelling features have a very broad reach . One of the most useful
 features is the extender control architecture .

Extender controls target existing controls to extend functionality in the target . Whereas
 controls such as the ScriptManager and the Timer do a lot in terms of injecting script code
into the page as the page is rendered, the extender controls often manage the markup
(HTML) in the resulting page .

The following subsections discuss the ASP .NET AJAX extender controls . The first one is the
AutoComplete extender .

The AutoComplete Extender
The AutoComplete extender attaches to a standard ASP .NET TextBox . As the end user types
text in the TextBox, the AutoComplete extender calls a Web service to look up candidate
entries based on the results of the Web service call . The following example borrows a com-
ponent from Chapter 15, “Application Data Caching”—the quotes collection containing a
number of famous quotes by various people .

Using the AutoComplete extender

 . 1 . . Add a new page to AJAXORama . Because this page will host the AutoComplete
 extender, name it UseAutocompleteExtender .

502 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 2 . . Add an instance of the ScriptManager control to the page you just added .

 . 3 . . Borrow the QuotesCollection class from Chapter 15 . Remember, the class derives from
System.Data.Table and holds a collection of famous quotes and their originators . You
can add the component to AJAXORama by right-clicking the project node, select-
ing Add Existing Item, and locating the QuotesCollection .cs file associated with the
UseDataCaching example in Chapter 15 .

 . 4 . . Add a method to retrieve the quotes based on the last name . The method should ac-
cept the last name of the originator as a string parameter . The System.Data.DataView
class you use for retrieving a specific quote is useful for performing queries on a table
in memory . The method should return the quotes as a list of strings . There might be
none, one, or many, depending on the selected quote author . You use this function
shortly .

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Collections.Generic;

/// <summary>
/// Summary description for QuotesCollection
/// </summary>
public class QuotesCollection : DataTable
{
 public QuotesCollection()
 { }

 public void Synthesize()
 {
 this.TableName = “Quotations”;
 DataRow dr;

 Columns.Add(new DataColumn(“Quote”, typeof(string)));
 Columns.Add(new DataColumn(“OriginatorLastName”, typeof(string)));
 Columns.Add(new DataColumn(@”OriginatorFirstName”,
 typeof(string)));

 dr = this.NewRow();
 dr[0] = “Imagination is more important than knowledge.”;
 dr[1] = “Einstein”;

 dr[2] = “Albert”;
 Rows.Add(dr);

 Chapter 23 AJAX 503

 // Other quotes added here...
 }

 public string[]
 GetQuotesByLastName(string strLastName)
 {
 List<string> list = new List<string>();

 DataView dvQuotes = new DataView(this);
 string strFilter = String.Format(“OriginatorLastName = ‘{0}’”, strLastName);
 dvQuotes.RowFilter = strFilter;

 foreach (DataRowView drv in dvQuotes)
 {
 string strQuote =
 drv[“Quote”].ToString();

 list.Add(strQuote);
 }

 return list.ToArray();
 }
}

 . 5 . . Add a class named QuotesManager to the project . The class manages caching .
The caching example from which this code is borrowed stores and retrieves the
QuotesCollection during the Page_Load event . Because the QuotesCollection will be
used within a Web service, the caching has to happen elsewhere . To do this, add a
 public static method named GetQuotesFromCache to retrieve the QuotesCollection
from the cache:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

/// <summary>
/// Summary description for QuotesManager
/// </summary>
public class QuotesManager
{
 public QuotesManager()
 {
 }

 public static QuotesCollection GetQuotesFromCache()
 {
 QuotesCollection quotes;

504 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 quotes =
 (QuotesCollection)HttpContext.Current.Cache[“quotes”];

 if (quotes == null)
 {
 quotes = new QuotesCollection();
 quotes.Synthesize();
 }
 return quotes;
 }
}

 . 6 . . Add an XML Web Service to your application . Right-click the project and add an ASMX
file to your application . Name the service QuoteService . You can remove the WebService
and WebServiceBinding attributes, but be sure to adorn the XML Web Service class
with the [System.Web.Script.Services.ScriptService] attribute by uncommenting it (Visual
Studio put it in for you) . That way, it is available to the AutoComplete extender later on .
The AutoCompleteExtender uses the XML Web Service to populate its drop-down list
box .

 . 7 . . Add a method to get the last names of the quote originators—that’s the method
that populates the drop-down box . The method should take a string representing
the text already typed in as the first parameter, an integer representing the maxi-
mum number of strings to return . Grab the QuotesCollection from the cache using the
QuoteManager’s static method GetQuotesFromCache . Use the QuotesCollection to get
the rows from the QuotesCollection . Finally, iterate through the rows and add the origi-
nator’s last name to the list of strings to be returned if it starts with the prefix passed in
as the parameter . The Common Language Runtime (CLR) String type includes a method
named StartsWith that’s useful to figure out whether a string starts with a certain pre-
fix . Note that you also have to add using statements for generic collections and data as
shown:

using System;
using System.Linq;
using System.Web;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

using System.Data;

[System.Web.Script.Services.ScriptService]
public class QuoteService : System.Web.Services.WebService
{

 Chapter 23 AJAX 505

 [WebMethod]
 public string[]
 GetQuoteOriginatorLastNames(string prefixText,
 int count)

 {
 List<string> list = new List<string>();

 QuotesCollection quotes =
 QuotesManager.GetQuotesFromCache();

 prefixText = prefixText.ToLower();

 foreach (DataRow dr in quotes.Rows)
 {
 string strName =
 dr[“OriginatorLastName”].ToString();

 if (strName.ToLower().StartsWith(prefixText))
 {
 if (!list.Contains(strName))
 {
 list.Add(strName);
 }
 }
 }

 return list.GetRange(0,
 System.Math.Min(count, list.Count)).ToArray();
 }
}

 . 8 . . Now drop a TextBox on the UseAutocompleteExtender page to hold the originator’s
last name to be looked up . Give the TextBox an ID of TextBoxOriginatorLastName .

 . 9 . . Drag an AutoCompleteExtender from the AJAX Toolbox and add it to the
page . Set its ID to be AutoCompleteExtenderForOriginatorLastName . Point the
AutoComplete TargetControlID to the TextBox holding the originator’s last name,
TextBoxOriginatorLastName . Make the MinimumPrefix length 1, the ServiceMethod
GetQuoteOriginatorLastNames, and the ServicePath quoteservice.asmx . This wires up
the AutoComplete extender so that it takes text from the
TextBoxOriginatorLastName TextBox and uses it to feed the XML Web Service
GetQuoteOriginatorLastNames method .

<cc1:AutoCompleteExtender
 ID=”AutoCompleteExtenderForOriginatorLastName”
 TargetControlID=”TextBoxOriginatorLastName”
 MinimumPrefixLength=”1”
 ServiceMethod=”GetQuoteOriginatorLastNames”
 ServicePath=”quoteservice.asmx”
 runat=”server”>
</cc1:AutoCompleteExtender>

506 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 10 . . Add a TextBox to the page to hold the quotes . Name the TextBox TextBoxQuotes .

 . 11 . . Update the Page_Load method . It should look up the quotes based on the name
in the text box by retrieving the QuotesCollection and calling the QuotesCollection
GetQuotesByLastName method:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Text;

public partial class UseAutocompleteExtender :
System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 QuotesCollection quotes =
 QuotesManager.GetQuotesFromCache();
 string[] quotesArray =
 quotes.GetQuotesByLastName(TextBoxOriginatorLastName.Text);

 if (quotesArray != null && quotesArray.Length > 0)
 {
 StringBuilder str = new StringBuilder();
 foreach (string s in quotesArray)
 {
 str.AppendFormat(“{0}\r\n”, s);
 }
 this.TextBoxQuotes.Text = str.ToString();
 }
 else
 {
 this.TextBoxQuotes.Text = “No quotes match your request.”;
 }
 }
}

 . 12 . . To make the page updates more efficient, drop an UpdatePanel onto the page . Put the
TextBox for holding the quotes in the UpdatePanel . This causes only the TextBox show-
ing the quotes to be updated instead of performing a whole-page refresh . Add a but-
ton following the originator’s last name TextBox with the ID ButtonFindQuotes .

 . 13 . . Add two asynchPostBack triggers to the UpdatePanel . The first trigger should connect
the TextBoxOriginatorLastName TextBox to the TextChanged event . The second trigger
should connect the ButtonFindQuotes button to the button’s Click event .

 Chapter 23 AJAX 507

The following graphic shows the layout of the page using the AutoCompleteExtender in
action:

 . 14 . . Run the page . As you type originator names into the TextBox, you should see a drop-
down list appear containing candidate names based on the QuotesCollection’s contents .

The AutoComplete extender is an excellent example of the capabilities that ASP .NET AJAX
support includes . Internet Explorer has had an autocomplete feature built in for quite a while .
Internet Explorer remembers often-used names of HTML input text tags and recent values
that have been used for them . For example, when you go online to buy an airline ticket and
then go back to buy another one later, watch what happens as you type in the Web address .
The Internet Explorer autocomplete feature makes available a drop-down list below the ad-
dress bar that shows the last few addresses you’ve typed in that begin with the same text you
began typing in the text box .

The ASP .NET AutoComplete extender works very much like this . However, the major
 difference is that the end user sees input candidates generated by the Web site rather than
simply a history of recent entries . Of course, the Web site could mimic this functionality by
tracking a user’s profile identity and store a history of what a particular user has typed in to
a specific input field on a page . The actual process of generating autocomplete candidates
is completely up to the Web server, giving a whole new level of power and flexibility in
 programming user-friendly Web sites .

508 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

A Modal Pop-up Dialog-Style Component
AJAX provides another interesting feature that makes Web applications appear more like
desktop applications: the ModalPopup extender . Historically, navigating a Web site involves
users walking down the hierarchy of a Web site and climbing back out . When users provide
inputs as they work with a page, the only means available to give feedback about the quality
of the input data has been the validation controls . In addition, standard Web pages have no
facility to focus users’ attention while they type in information .

Traditional desktop applications usually employ modal dialog boxes to focus user attention
when gathering important information from the end user . The model is very simple and ele-
gant: The end user is presented with a situation in which he or she must enter some data and
then click OK or Cancel before moving on . After dismissing the dialog box, the end user sees
exactly the same screen he or she saw right before the dialog box appeared . There’s no am-
biguity and no involved process where the end user must walk up and down some arbitrary
page hierarchy .

This example shows how to use the pop-up dialog extender control . You create a page with
some standard content and then have a modal dialog-style pop-up window appear right
 before the page is submitted .

Using a ModalPopup extender

 . 1 . . Add a new page to AJAXORama to host the pop-up extender . Call it
UseModalPopupExtender .

 . 2 . . As with all the other examples using AJAX controls, drag a ScriptManager from the
Toolbox onto the page .

 . 3 . . Add a title to the page (the example here uses “ASP .NET Code of Content”) . Give the
banner some prominence by surrounding it with <h1> and </h1> tags . You can simply
replace the existing <div> tag with the <h1> tag .

 . 4 . . Drag a Panel from the Toolbox onto the page to hold the page’s normal content .

 . 5 . . Add a Button to the Panel for submitting the content . Give the Button the ID
ButtonSubmit and the text Submit and create a button Click event handler . You need
this button later .

 . 6 . . Place some content on the panel . The content in this sample application uses several
check boxes that the modal dialog pop-up examines before the page is submitted .

<h1 >ASP.NET Code Of Conduct </h1>

<asp:Panel ID=”Panel1” runat=”server”
 style=”z-index: 1;left: 10px;top: 70px;
 position: absolute;height: 213px;width: 724px;
 margin-bottom: 0px;”>

 Chapter 23 AJAX 509

 <asp:Label ID=”Label1” runat=”server”
 Text=”Name of Developer:”></asp:Label>
 <asp:TextBox ID=”TextBox1”
 runat=”server”></asp:TextBox>

 As an ASP.NET developer, I promise to

 <input type=”checkbox” name=”Check” id=”Checkbox1”/>
 <label for=”Check1”>Use Forms Authentication</label>

 <input type=”checkbox” name=”Check” id=”Checkbox2”/>
 <label for=”Check2”>Separate UI From Code</label>

 <input type=”checkbox” name=”Check” id=”Checkbox3”/>
 <label for=”Check3”>Take Advantage of Custom Controls</label>

 <input type=”checkbox” name=”Check” id=”Checkbox4”/>
 <label for=”Check4”>Use AJAX</label>

 <input type=”checkbox” name=”Check” id=”Checkbox5”/>
 <label for=”Check5”>Give MVC a try</label>

 <input type=”checkbox” name=”Check” id=”Checkbox6”/>
 <label for=”Check6”>Give Silverlight a try</label>

 <asp:Button ID=”ButtonSubmit” runat=”server” Text=”Submit”
 onclick=”ButtonSubmit_Click” />

 </asp:Panel>

 . 7 . . Add another Panel to the page to represent the pop-up . Give this Panel a light yellow
background color so that you’ll be able to see it when it comes up . It should also have
the ID PanelModalPopup .

 . 8 . . Add some content to the new Panel that’s going to serve as the modal pop-up . At the
very least, the pop-up should have OK and Cancel buttons . Give the OK and Cancel
buttons the ID values ButtonOK and ButtonCancel . You need them a bit later, too .

<asp:Panel ID=”PanelModalPopup” runat=”server”
 BorderColor=”Black”
 BorderStyle=”Solid”
 BackColor=”LightYellow” Height=”72px”
 Width=”403px”>

 <asp:Label
 Text=”Are you sure these are the correct entries?”
 runat=”server”>
 </asp:Label>

510 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <asp:Button ID=”ButtonOK”
 runat=”server”
 Text=”OK” />

 <asp:Button ID=”ButtonCancel”
 runat=”server” Text=”Cancel” />

</asp:Panel>

 . 9 . . Add a script block to the ASPX file . You need to do this by hand . Write functions to
handle the OK and Cancel buttons . The example here examines check boxes to see
which ones have been selected and then displays an alert to show which features have
been chosen . The Cancel handler simply displays an alert indicating that the Cancel
button was clicked:

<script type=”text/javascript”>

 function onOk() {
 var optionsChosen;
 optionsChosen = “Options chosen: “;

 if($get(‘Checkbox1’).checked)
 {
 optionsChosen =
 optionsChosen.toString() +
 “Use Forms Authentication “;
 }

 if($get(‘Checkbox2’).checked)
 {
 optionsChosen =
 optionsChosen.toString() +
 “Separate UI From Code “;
 }

 if($get(‘Checkbox3’).checked)
 {
 optionsChosen =
 optionsChosen.toString() +
 “Take Advantage of Custom Controls “;
 }

 if($get(‘Checkbox4’).checked)
 {
 optionsChosen =
 optionsChosen.toString() +
 “Give AJAX a try “;
 }
 alert(optionsChosen);
 }

 function onCancel() {
 alert(“Cancel was pressed”);
 }
</script>

 Chapter 23 AJAX 511

 . 10 . . Drag the ModalPopup extender from the Toolbox onto the page .

 . 11 . . Add the following markup to the page to set various properties on the new
ModalPopup extenders .s This sets the OkControIID property to ButtonOK and
the CancelControlID property to ButtonCancel . It also sets the OnCancelScript
property to onCancel() (the client-side Cancel script handler you just wrote) . Set
OnOkScript=”onOk()” (the client-side OK script handler you just wrote) . Finally, the
 following markup sets the TargetControlID property to ButtonSubmit:

<cc1:ModalPopupExtender
 ID=”ModalPopupExtender1”
 runat=”server”
 OkControlID=”ButtonOK”
 CancelControlID=”ButtonCancel”
 OnCancelScript=”onCancel()”
 OnOkScript=”onOk()”
 TargetControlID=”ButtonSubmit”
 PopupControlID=”PanelModalPopup”
 runat=”server”
 DynamicServicePath=”” Enabled=”True”>
</cc1:ModalPopupExtender>

This graphic shows the layout of the page using the ModalPopup extender in Visual
Studio 2010:

 . 12 . . Run the page . When you click the Submit button, the Panel designated to be the modal
pop-up window is activated . (Remember, the Submit button is the TargetControlID of
the ModalPopup Extender .) When you dismiss the pop-up window by clicking OK or

512 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Cancel, you should see the client-side scripts being executed . The following graphic
 image shows the ModalPopup extender displaying the modal pop-up window:

Chapter .23 .Quick .Reference

To Do This

Enable a Web site for AJAX Normal Web sites generated by Visual Studio 2010’s template are AJAX-
enabled by default . However, you must add a ScriptManager to a page
before using any of the AJAX server-side controls .

Implement partial page updating in
your page

From within an ASP .NET project, select an UpdatePanel from the toolbox .
Controls that you place in the UpdatePanel will trigger updates for only
that panel, leaving the rest of the page untouched .

Assign arbitrary triggers to an
UpdatePanel (that is, trigger partial
page updates using controls and
events not related to the panel)

Modify an UpdatePanel’s trigger collection to include the new events
and controls . Highlight the UpdatePanel from within the Visual Studio
designer . Select the Triggers property from within the property editor .
Assign triggers as appropriate .

Implement regularly timed
automatic posts from your page

Use the AJAX Timer control, which will cause a postback to the server at
regular intervals .

Use AJAX to apply special UI
nuances to your Web page

After installing Visual Studio 2008, you can create AJAX-enabled sites,
and use the new AJAX-specific server-side controls available in the AJAX
toolkit . Select the control you need . Most AJAX server-side controls may
be programmed completely from the server . However, some controls
require a bit of JavaScript on the client end .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

 . . 513

Chapter 24

Silverlight and ASP.NET
After completing this chapter, you will be able to

n Understand the importance of Microsoft Silverlight .

n Create a Silverlight application .

n Add Silverlight content to Web pages .

n Understand the “Silverlight way .”

n Work with Silverlight layout .

n Work with Silverlight animations .

Chapter 21, “ASP .NET and WPF Content,” covers integrating Windows Presentation
Foundation–based content into a site using XAML-based browser applications (XBAP) .
Using XBAP is an alternate way to get content out to the client’s browser . Rather than simply
emitting some HTML tags that turn into controls when they hit the browser, WPF XBAP appli-
cations allow for much richer content, including sophisticated layout schemes, deep and var-
ied colors, and even two-dimensional and three-dimensional graphics and transformations .

Although XBAP goes a long way toward producing rich content for your site, it does have a
few associated drawbacks . The primary drawback is that XBAP works only with the Windows
operating system . Sites providing XBAP content won’t work on Macintosh pure clients unable
to support the Microsoft .NET Framework version 3 .0 (or later) runtime . The second drawback
is that integrating usual Web content and Windows Presentation Foundation (WPF) content
can be tricky . One option for adding XBAP content is to create a separate page to which
clients can navigate . Another option is to use the <iframe /> tag to host the XBAP content
within other HTML .

To help overcome these obstacles, Microsoft introduced Silverlight as a tool for creating Rich
Internet Applications (RIAs) . RIAs are characterized by the inclusion of content you’d expect
to see as part of desktop applications . The main advantage of Silverlight is that it works on
computers running Windows and Windows Internet Explorer (or Firefox) and Macintoshes
running the Safari browser . Because these two platforms constitute the bulk of online
 consumers, Silverlight makes such WPF-style content available to a majority of Web users .

This chapter shows you how to get started using Silverlight, including the following:

n Some reasons why you might want to include Silverlight content on your site

n How to create a Silverlight application

514 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

n How to develop Silverlight-based content

n How to integrate Silverlight content with the rest of your site’s pages

First, consider the reason Silverlight even exists .

Web .Applications .Mature
At this point, you’re familiar with the way a typical Web application works—the browser
 issues an HTTP request to the server, and the server responds with something . Most of the
time, the response is composed mostly of some HTML that represents a user interface (UI) or
data representation on the end user’s browser . As you’ve seen, Microsoft ASP .NET responses
are typically built from the ASP .NET Page class and its server-side control architecture . A Page
contains a collection of server-side controls, and the server-side controls are responsible for
emitting HTML into the response stream . The browser turns the response stream into the
 visual representation displayed by the browser .

The earliest Web pages were typically just some formatted text with images sprinkled about
and normal HTTP links for navigating around the site . There was usually nothing fancy about
these sites: no pop-up menus using Dynamic HTML (DHTML), no interactive graphics, and no
pop-up windows (using Asynchronous JavaScript and XML, or AJAX) . As various Web tech-
nologies have grown and matured, these desktop-like user interface features began to ap-
pear in more and more sites . In fact, you can track the evolution of many of these features by
going to a Web site archive named “The Wayback Machine” at http://www.archive.org . After
entering a URL, you can track the evolution of a specific company’s site—often all the way
back to 1996 or 1997 .

Some Web technologies such as DHTML and AJAX have moved much of the UI and interac-
tive processing to the client end—enabled through script . For example, the earliest pop-up
menus (the kind that appear when the mouse pointer rests on a single menu item) were of-
ten implemented using DHTML . Developers were left to roll them by hand . An early version
of an ASP .NET server-side control toolkit made available through the Microsoft Developer
Network (MSDN) simplified the task for developers using ASP .NET .

For richer content, many developers relied on a product named Flash (originally produced
by Macromedia and now produced by Adobe) . Until recently, Flash was the primary tool
 enabling rich graphics and animations for Web developers . The Flash player was imple-
mented as an ActiveX control for Windows-based computers and as a browser plug-in for
other operating systems . Near the end of the 1990s and into the 2000s, most animated and
graphic content appeared by way of Flash . The latest rich content tool available from Adobe
is named Flex .

With so much of this type of content appearing courtesy of Flash and Flex, you might ask
why Microsoft would even venture into producing a Web tool that could be perceived simply
as a competitor of a product that already has a foothold in the RIA space .

 Chapter 24 Silverlight and ASP.NET 515

The most compelling answer is that Silverlight provides the same kind of rich content fea-
tures as existing products—but it’s geared specifically for the Microsoft developer . As a
site developer, I’ve always found it difficult to move from the beautiful, clean .NET pro-
gramming model to a programming model that is scripted—and comes with all the issues
brought on by scripting . For example, writing script is often difficult because it’s not type
safe . Sometimes scripts don’t perform well because they’re interpreted rather than compiled
into native code . In addition, the tools for developing scripts are as mature as the tools for
 developing .NET code .

Enter Silverlight .

What .Is .Silverlight?
Silverlight is Microsoft’s foray into the RIA arena . The idea of the RIA has been gaining
ground . More and more features closely associated with desktop applications have been
moving into browser-hosted applications implemented through client-side scripting, AJAX,
or browser plug-ins . Silverlight enables rich, client-style features for PC clients running the
Windows operating system and Internet Explorer and Firefox, and Macintosh clients using
Safari .

Silverlight has gone through several permutations over the last few years, moving from
Silverlight version 1 .0 to 2 and now 3 . Whereas Silverlight 1 .0 and 2 are completely different
from each other, Silverlight 3 builds upon the foundations of Silverlight 2 .

Silverlight 1 .0 was more of an Extensible Application Markup Language (XAML) render-
ing engine than anything else . Though you could interact with browser content and handle
events, it was all done through scripting . Silverlight 2 is actually a subset of the .NET common
language runtime (CLR) and WPF-style rendering technology running on the client . When
you develop content using Silverlight 2 or 3, you program it using a syntax that is compiled
into Intermediate Language . It is compiled just in time (JIT) and runs similarly to how typical
desktop .NET applications run . Silverlight offers many of the same development features as
typical .NET development . However, some features are missing because they either do not
fit the scope of Silverlight, or they don’t make sense to implement within what is basically a
browser-based platform .

Here are some of the features available through Silverlight:

n With Silverlight, you can plant an island of rich, interactive content in a Web page .
Although much of a page might be composed of HTML rendered by a browser,
Silverlight content is run within a miniature CLR . The .NET programming model remains
largely intact, replete with the usual .NET event handlers, .NET collections, and the .NET
control and event model .

516 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

n Silverlight includes a rich and ever-growing library of controls . From a development
perspective, these controls are much like typical Windows controls or ASP .NET controls .
That is, Button, ListBox, RadioButton, Label, and TextBox controls are part of the control
canon . They support many of the same properties and events as the classic Windows
and ASP .NET controls do . For example, the Button control supports properties such as
Foreground and Background as well as events like Click . ListBoxes include a source to
which collections are bound as well as events like SelectionChanged .

n Silverlight supports rich graphics . Traditionally, the only way to get drawings up to the
browser has been to draw them in a design tool and ship them to the client as JPG files
or PNG files . Silverlight has a programmatic drawing API that you can use to render
figures on the client computer . Because Silverlight allows programmatic access to your
drawings, the drawings become active content that can be changed on the fly and that
responds to user-generated events .

n Silverlight includes controls that provide media services, making it easy to embed video
and audio in your Web pages .

n Silverlight integrates well with the HTML Document Object Model . You can access
HTML elements from within Silverlight code, and you can access Silverlight code from
JavaScript code .

n Silverlight is targeted to the .NET developer . Silverlight is actually a miniature .NET
runtime that downloads onto the client computer as an ActiveX control (for Windows-
based computers) or as a plug-in for the Safari browser (for Macs) . Although other Rich
Internet Application tools have been available for some time, they all require their own
scripting syntax to make the content interactive . .NET developers can step right into
Silverlight development because they can program Silverlight using the .NET program-
ming model .

n Tool support for Silverlight is unsurpassed . Microsoft Visual Studio 2010 fully supports
Silverlight development from programming and debugging points of view . Those with
design skill can use Microsoft Expression Blend to help develop the visual appear-
ance of applications independently of the programming and logic of the applications .
Microsoft Expression Design is a high-end vector graphics drawing tool, and Microsoft
Expression Encoder is for supporting media .

Silverlight takes many architecture and design cues from WPF . In many ways, Silverlight is
like the younger sibling of WPF . As in WPF, the visual appearance of a Silverlight UI is usu-
ally expressed using XAML, an XML dialect useful for expressing object models (such as the
one that represents the Silverlight visual tree) . The program logic is expressed using a .NET
language .

Next, dive right in and see how a Silverlight application works .

 Chapter 24 Silverlight and ASP.NET 517

Creating .a .Silverlight .Application
Before getting into the details of Silverlight, consider how it fits in with the rest of the project
types available through Visual Studio . Creating a Silverlight application is like creating other
types of applications using Visual Studio . Visual Studio includes a template that creates the
Silverlight content . Visual Studio also gives you the option to include one of the following:

n A simple HTML test page on which to exercise the Silverlight content

n An entire ASP .NET site so that you can exercise the Silverlight content in an ASP .NET-
type setting

From there, developing a Silverlight component follows much the same programming model
as the rest of .NET: You develop the Silverlight portion, and then exercise it using the HTML
page or the ASP .NET project . In fact, when you start debugging, Visual Studio starts up the
Web development server and your browser of choice—just as it does with typical Web appli-
cation development . If you set any breakpoints in your Silverlight code, Visual Studio will stop
there so that you can watch your code execute .

This first exercise shows the steps necessary for creating a simple Silverlight application . The
purpose here is just to get started . You’ll see Silverlight’s capabilities in more detail soon .

Creating a Silverlight application

 . 1 . . Begin by starting Visual Studio . Select File, New, Project . Under Project Type, select
Silverlight Application . Name the project SilverlightSite:

518 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 2 . . Visual Studio asks you whether you’d like to create a single HTML page for testing or
an entire ASP .NET site for testing . The default is to create an entire site, as shown in the
following graphic . Select .this option, and click OK . If you have not yet installed all the
necessary Silverlight development tools (the Silverlight SDK in this case), Visual Studio
reminds you to do so . In fact, Visual Studio will not let you proceed until the SDK is
downloaded .

 . 3 . . Visual Studio generates a solution with two projects . The first project contains the
Silverlight content . The second project is a Web Application project . Here is Solution
Explorer after creating the Silverlight application:

 Chapter 24 Silverlight and ASP.NET 519

The first node in the solution represents the project holding the Silverlight content .
Notice the normal Properties folder, which includes a version of AssemblyInfo .cs with
assembly-wide information . You also see the familiar References folder, which contains
references to other assemblies . The assemblies to which this project is linked are actu-
ally the Silverlight versions of the .NET system assemblies . There are also MainPage .
xaml and App .xaml nodes . You dig into those in the section titled “Architecture” later in
this chapter .

The second project in the solution is the ASP .NET site that you can use to exercise
the content . In many ways, it looks like any typical ASP .NET site . There is a
Default .aspx folder, an App_Data folder, and the usual Properties and References
 folders . There are a few new folders and files here, as well . First, there are two files
named SilverlightSiteTestPage—a raw HTML version and an ASPX version . These
 illustrate alternate ways to host the Silverlight content in your site . You take a closer
look at these in the section titled “Adding Silverlight Content to a Web Page” later in
this chapter . The Silverlight .js file includes some script utilities you might find useful—
most notably a scripting function useful for instantiating the Silverlight content dynam-
ically from script . Finally, notice the ClientBin directory—this is the folder into which the
final Silverlight content will be compiled so that the client browser can fetch it as the
 browser loads the page .

 . 4 . . Open the Page .xaml file and type the following tag so that the page renders a Button .
Doing so places a Button control in the Silverlight display area so that you can see the
Silverlight content when you run the application . Whatever string you assign to the
Content property becomes the text the Button displays:

<UserControl x:Class="SilverlightSite.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Hello World!"></Button>
 </Grid>
d</UserControl>

 . 5 . . Build the program and run it by pressing Ctrl+F5 . Because you created the solution to
use an ASP .NET project as the test project, Visual Studio starts the Web development
browser and uses the ASP .NET test page . (There’s actually an ASP .NET server-side con-
trol that will host Silverlight—you see that in just a minute .) Notice that without the
Height and Width properties defined, the button takes up the entire area allotted to
Silverlight .

520 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 6 . . To make the Silverlight content interactive, add an event handler to the button . Before
you add the handler, it’s usually best to name the control because Visual Studio uses
the control name to generate the handler method name . That makes it easier to track
the handlers later on . Add the Name attribute to the <Button> tag, followed by a
Click handler . When you start typing the word Click, Visual Studio offers to write the
event handler for you . This is what you see when you look at the code:

<UserControl x:Class="SilverlightSite.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Hello World!"
 x:Name="theButton"
 Click="theButton_Click"
 >
 </Button>
 </Grid>
</UserControl>

 . 7 . . Now add some code to handle the button click . Open the file MainPage .xaml .cs and
locate the new handler . If you allowed Visual Studio to create the handler code for
you, the handler method will be named theButton_Click . The handler takes two ar-
guments (like most other .NET handlers) . The first parameter is the sender—in this
case, a reference to the button that was clicked . The second parameter is of the type

 Chapter 24 Silverlight and ASP.NET 521

RoutedEventArgs . The RoutedEventArgs is similar to the typical .NET EventArgs in that it
contains information about the event . However, Silverlight manages its own message
routing scheme (routed events), so the event information argument type is slightly
enhanced .

Modify the Click handler to update the content of the button, increase the font size,
and change the Foreground color to red . To do so, add the code you see here in bold
type:

private void theButton_Click(object sender,
 RoutedEventArgs e)
{
 Button button = sender as Button;
 button.Content =
 "The button was clicked";
 button.FontSize = 22;
 button.Foreground =
 new SolidColorBrush(Colors.Red);
}

 . 8 . . Run the program to ensure that it works . Visual Studio opens a browser and shows the
ASP .NET test page . When you click the button, you should see the font size increase
and the font color change, and the button should show new content .

Architecture
Now that you’ve seen Silverlight in action, here’s how it works . The architecture of a
Silverlight component is pretty straightforward . It consists of an instance of the Application
object (represented by the Application .xaml and the Application .xaml .cs files) and a visual
component (represented by the MainPage .xaml and MainPage .xaml .cs files) . Silverlight
 divides its presentation code and its logic/behavior code into separate concerns—just like
ASP .NET does . The ASP .NET code-beside model involves ASPX/C# or Visual Basic file pairings .
Silverlight uses XAML/C# or Visual Basic pairings . The XAML files usually express the user in-
terface, and the C# or Visual Basic files support the behavior .

The Application object is there to provide a rendezvous point for the component . It’s a place
where you can store any component-wide state, and it has startup and shutdown events
to which you can subscribe . If you open the Application .xaml .cs file, you can see that Visual
Studio has stubbed out some of those events and wired them up for you already .

The Application object is available at all times (in the same way the ASP .NET HttpApplication
object is always available) . In addition to supporting global events, the Application object
maintains global state .

Part of the Application bootstrapping is to set up the application’s RootVisual property . The
RootVisual property tells the Silverlight rendering engine what to present . The RootVisual

522 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 derives from a class named UserControl . It represents the backplane onto which visual
 content is placed . By taking a closer look at the UserControl you can get a good idea about
how XAML works .

XAML
XAML stands for eXtensible Application Markup Language . XAML is a dialect of XML
 invented primarily for constructing object graphs declaratively . Although it was originally
 developed to support WPF, it’s found its way into other uses—most notably Windows
Workflow Foundation . Silverlight presentations are described through XAML .

Silverlight uses XAML to build the visual tree . Take another look at the MainPage class from
the last example:

<UserControl x:Class="SilverlightSite.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Hello World!"
 x:Name="theButton"
 Click="theButton_Click"></Button>
 </Grid>
</UserControl>

The XAML constructs an instance of the UserControl class, associates it with the class
named SilverlightSite.MainPage, and initializes the DesignWidth property to 400 and the
DesignHeight property to 300 . Next, the XAML constructs an instance of the Grid class, as-
signs the name LayoutRoot to the Grid, and sets the Background to white . Finally, the XAML
constructs an instance of the Button class, names it theButton, assigns the string “Hello
World!” to the Content property, and then sets up the Click event so that it’s handled by
the theButton_Click method (which is a member of the SilverlightSite.MainPage class) . After
spending some time with ASP .NET, this should look awfully familiar—this is how the ASP .NET
Page class builds its control tree . The major difference here is really between the ASPX syntax
and the XAML syntax .

Constructing the Visual Tree
The role of XAML in Silverlight is to construct the Silverlight component’s visual tree . This
happens in the MainPage constructor . Notice that the code produced by Visual Studio
contains a call to the method InitializeComponent . InitializeComponent parses the XAML

 Chapter 24 Silverlight and ASP.NET 523

to create the objects composing the visual tree and initializes the properties mentioned in
the XAML . For example, the previous snippet and the following snippet produce the same
visual tree:

Page ConstructVisualTreeProgrammatically()
{
 Page page = new Page();

 Grid grid = new Grid();
 Button button = new Button();
 button.Click += this.theButton_Click;
 button.Content = "Hello World!";
 grid.Children.Add(button);

 return page;
}

XAML and Namespaces
Near the top of the XAML in the earlier example, you can see four XML namespaces defined,
the first two of which I discuss here (they’re most important) . The default namespace is as-
signed to be “http://schemas .microsoft .com/winfx/2006/xaml/presentation” . This namespace
scopes the typical Silverlight features and the control canon . For example, by making this
the default namespace, you can simply use the <Button /> tag without any prefixes . The
second namespace, “x”, is assigned to “http://schemas .microsoft .com/winfx/2006/xaml” .
This namespace defines Silverlight keywords such as Name (used to name XAML elements
to make them available programmatically) and Key (used to assign key/value pairs within
Silverlight resource dictionaries) .

You can add other namespaces as necessary . For example, if you want to make any types you
define in the SilverlightSite assembly available within XAML, you could add a namespace . For
example, if the Silverlight component assembly has a type named CustomButton in it, and
you’d like to include it as part of the visual presentation, you could add the namespace as
follows, and then use the component from within the XAML as shown in the following bold
text:

<UserControl x:Class="SilverlightSite.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:my="clr-namespace:SilverlightSite"

 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">

524 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 <my:CustomButton
 Content="Hello World!"
 x:Name="theButton"
 Click="theButton_Click"></my:CustomButton>

 </Grid>
</UserControl>

Compiling .the .Silverlight .Application
To compile the Silverlight application from within Visual Studio, select Build, Debug from
the main menu, or press F6 . When you build the SilverlightSite solution, Visual Studio com-
piles the Silverlight component into a regular .NET assembly (though the references are to
the Silverlight system assemblies rather than the normal .NET assemblies) . Afterward, Visual
Studio creates a XAP (pronounced “zap”) file containing the Silverlight component and any
external resources (images, graphics, fonts, and so forth) you want to have available when
the component finally ends up at the client browser .

The XAP file is a typical zip-compressed file . In fact, you can open it with any standard zip
compression utility to view the contents . Compressing the Silverlight content this way cuts
down on page loading time for pages using the component .

Finally, Visual Studio copies the XAP file into the ClientBin directory managed by the ASP .NET
project .

Adding .Silverlight .Content .to .a .Web .Page
You can add Silverlight content to a Web page in three ways . The first is to use the traditional
<object> tag embedded in HTML . Second, you can use the ASP .NET server-side control for
hosting Silverlight content . Finally, you can add Silverlight content dynamically using some
JavaScript . Begin by adding content using the <object> tag .

Using the Object Tag
The first way to add Silverlight content is by using the standard <object> tag (the one that
loaded ActiveX controls on pages written in the late 1990s!) . In fact, Visual Studio creates an
HTML page for you that loads the Silverlight content using the <object> tag .

<body>
 <!—Run-time errors from Silverlight will be displayed here. -->
 <!-- This will contain debugging information and should be removed -->
 <!-- or hidden when debugging is completed -->
 <div id='errorLocation' style="font-size: small;color: Gray;"></div>

 Chapter 24 Silverlight and ASP.NET 525

 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="source" value="ClientBin/SilverlightSite.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="2.0.31005.0" />
 <param name="autoUpgrade" value="true" />
 <a href="http://go.microsoft.com/fwlink/?LinkID=124807"
 style="text-decoration: none;">
 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight" style="border-style: none"/>

 </object>
 <iframe style='visibility:hidden;height:0;width:0;border:0px'>
 </iframe>
 </div>
</body>

Silverlight is implemented as an ActiveX control for Windows clients and as a Safari browser
plug-in for Macintosh clients . The <object> tag looks up the Silverlight implementation on
the client computer, and then fetches the appropriate XAP file from the server and hosts
it . Notice how parameters can be passed to Silverlight . The ones listed previously are pre-
defined, but you can define your own parameters to be passed into Silverlight when it loads .

Using the ASP.NET Silverlight Server-Side Control
The second way to include Silverlight content on your page is to use the ASP .NET server-side
control that generates the object tag for you when it renders . Visual Studio creates a page
using the ASP .NET Silverlight control .

<%@ Page Language="C#" AutoEventWireup="true" %>
<%@ Register Assembly="System.Web.Silverlight"
 Namespace="System.Web.UI.SilverlightControls"
 TagPrefix="asp" %>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" style="height:100%;">
 <head runat="server">
 <title>SilverlightORama</title>
 </head>
 <body style="height:100%;margin:0;">
 <form id="form1" runat="server" style="height:100%;">
 <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>
 <div style="height:100%;">
 <asp:Silverlight ID="Xaml1" runat="server"
 Source="~/ClientBin/SilverlightSite.xap"
 MinimumVersion="2.0.31005.0" Width="100%"
 Height="100%" />
 </div>
 </form>
</body>
</html>

526 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The Silverlight control works much the same way as all of the other server-side controls work .
They end up in the page’s control tree and send HTML to the browser . The Silverlight control
emits the HTML necessary to allow the client browser to load Silverlight and host the content
in it .

Using the JavaScript Function
Visual Studio also includes a JavaScript library with a helper function—
Silverlight .createObjectEx . You can find it in the Silverlight .js file included as part of the
ASP .NET test project produced by Visual Studio . Call Silverlight .createObjectEx from within
the HTML page and pass in the path to the XAP file, the events, and any other parameters
important to the Silverlight control . Although this is less convenient than is using the server-
side control, it offers you the ability to invoke Silverlight content dynamically—for example,
by way of a JavaScript event .

Controls .and .Events
Because you are well versed in the controls available through ASP .NET, there’s a lot to say
about the way Silverlight controls work . Silverlight includes nearly all the same controls avail-
able as ASP .NET server-side controls (Button, ListBox, RadioButton, TextBox, Label, and so
forth) .

Whereas the job of an ASP .NET server-side control is to emit a tag to be interpreted by the
browser eventually, Silverlight controls are rendered directly on the client by the Silverlight
engine . ASP .NET control events are usually handled on the server by server-side event han-
dlers, while Silverlight control events are handled on the client side within the Silverlight
component .

Routed Events
Silverlight control events look much like typical .NET events . The event handlers all use
an object as the first parameter (always the sender) . Following the sender parameter, the
handlers include some permutation of the standard event arguments . To manage events
Silverlight uses routed events, which are like typical .NET events in that handlers for routed
events can be attached directly to the controls that produce them (for example, the Button
control exposes a Click event) . However, routed events are different because you can attach
handlers for events at various places up and down the Silverlight visual tree . That is, you do
not need to attach the handlers directly to the controls . This can be useful in various sce-
narios . For example, imagine you want to trap the left mouse down event for all elements
in a layout panel (within a Grid, for instance) . Rather than attaching singular event handlers

 Chapter 24 Silverlight and ASP.NET 527

to each element in the panel, you could attach the handler to the layout panel itself and
i ntercept the event there .

Silverlight Controls and Class Members
Just as ASP .NET tags that are given IDs in the ASPX file have corresponding members in the
code-beside class, XAML tags that are given names also end up as members in the code-
beside class . For example, the following XAML produces Grid and Button member variables
named LayoutRoot and theButton that you can access from the code-beside accompanying
the Silverlight application:

<UserControl x:Class="SilverlightSite.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.
com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Hello World!"
 x:Name="theButton"
 Click="theButton_Click"></Button>
 </Grid></UserControl>

Expression .Blend
Although Visual Studio does contain a designer that you can use to see basically what
your finished content will look like, Visual Studio is better for programming and debug-
ging . For more intricate design tasks, Microsoft provides Expression Blend . You should
consider using Expression Blend to design and modify the visual elements of an ap-
plication . Expression Blend is too complex to discuss in detail in this chapter, but Visual
Studio and Expression Blend share the same solution and project file formats . You can
create Silverlight applications using Visual Studio and open them with Expression Blend,
and you can create Silverlight applications using Expression Blend and open them with
Visual Studio .

As mentioned, extensive coverage of Expression Blend is beyond the scope of this
book, but it’s worthwhile for you to learn about this application . Expression Blend pro-
vides a perspective of the visual aspect of a Silverlight component different from the
perspective provided by Visual Studio . For more information about Expression Blend,
see the Microsoft Silverlight page at http://www.microsoft.com/expression/products/
Blend_Overview.aspx .

528 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Silverlight .and .Layout
As mentioned earlier in the chapter, MainPage (derived from UserControl) is the main
 presentation area for the Silverlight content . The UserControl is a ContentControl that can
contain a single piece of content . Although you could put any control (such as a TextBlock
or a Button) on the page, you’d be left with no more room to put anything else . This was the
case with the SilverlightSite application you saw earlier in the chapter .

Rather than forcing a singular layout scheme (for example, absolute x and y positioning),
Silverlight supports various layout schemes available through layout panels . By using these
panels, you can add many controls as well as dictate their positioning in the final user inter-
face . Out of the box, Silverlight supports the Canvas, the Grid, and the StackPanel .

When you place a Canvas layout panel inside the MainPage, it positions elements at absolute
x and y locations . The Grid positions elements in rows and columns . The StackPanel stacks el-
ements either vertically or horizontally . Here is an exercise to illustrate how Silverlight layout
works .

Working with Silverlight layout

 . 1 . . Create a new Silverlight application named SilverlightLayout . Have Visual Studio create
an ASP .NET test project for you .

 . 2 . . Examine the MainPage .xaml file generated by Visual Studio . Make the UserControl
width 600 .

 . 3 . . Visual Studio gives you a grid as the layout . Turn on grid lines and add two grid col-
umns . The Grid ShowGridLines property is a simple Boolean . However, the Grid column
definitions are a little trickier . Defining columns requires using the rich property syntax:

<UserControl x:Class="SilverlightLayout.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"

 DesignWidth="600" DesignHeight="300">
 <Grid x:Name="LayoutRoot" Background="White"
 ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition ></ColumnDefinition>
 <ColumnDefinition ></ColumnDefinition>
 </Grid.ColumnDefinitions>
 </Grid>
</UserControl>

 Chapter 24 Silverlight and ASP.NET 529

 . 4 . . Add a Canvas to the grid, name the Canvas theCanvas so that you can refer to it
 programmatically later on . Put it in column 0 . Add some content to the Canvas . The
following example shows how you can draw a few shapes and locate them within the
Canvas using the Canvas.Left and Canvas.Right attached properties . Notice that shapes
have Stroke and StrokeThickness that define the color and thickness of each shape’s bor-
der . There’s also a Fill property with which you can define the color used to fill a shape .
Finally, set the opacity of each of these shapes to 60 percent . You can use this property
to add some mouse interactivity to the shapes .

<UserControl x:Class="SilverlightLayout.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"

 DesignWidth="600" DesignHeight="300">
 <Grid x:Name="LayoutRoot" Background="White"
 ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition ></ColumnDefinition>
 <ColumnDefinition ></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Canvas Grid.Column="0" x:Name="theCanvas">
 <Rectangle Width="100" Height="100"
 Fill="LightBlue" Stroke="Black"
 StrokeThickness="2"
 Canvas.Top="75" Canvas.Left="150"
 Opacity=".6">
 </Rectangle>
 <Ellipse Width="150" Height="100"
 Fill="Green" Stroke="Yellow"
 StrokeThickness="3"
 Canvas.Left="50"
 Canvas.Top="175"
 Opacity=".6">
 </Ellipse>
 <Rectangle Width="150" Height="150"
 Fill="Red"
 Stroke="Maroon"
 StrokeThickness="3"
 Canvas.Left="30"
 Canvas.Top="45"
 Opacity=".6">
 </Rectangle>
 </Canvas>
 </Grid>
</UserControl>

530 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 5 . . Now add some mouse interactivity to the shapes on the Canvas . First, set up mouse
enter and leave handlers to increase the opacity of the shapes in the Canvas when the
pointer rests on them . To do this, open the MainPage .xaml .cs file and implement event
handlers for the MouseEnter and the MouseLeave events . The event handlers are go-
ing to be attached to the shapes themselves, so the sender of these events is going to
be the shapes . For each implementation, cast the first argument (the sender) to be of
type Shape . This is necessary to access its Opacity property . The MouseEnter handler
should then assign the Opacity property to be 100 percent (the number 1, that is) . The
MouseLeave handler should reduce the Opacity property to 60 percent (the number
0 .6, that is) . After implementing the MouseEnter and MouseLeave handlers, in the Page
constructor, wire up the event handlers to the MouseEnter and MouseLeave events of
every element on the Canvas, as shown in bold text in the following XAML:

public partial class MainPage : UserControl
{
 private void theCanvas_MouseEnter(object sender, MouseEventArgs e)
 {
 Shape shape = sender as Shape;
 if (shape != null)
 {
 shape.Opacity = 1;
 }
 }
 private void theCanvas_MouseLeave(object sender, MouseEventArgs e)
 {
 Shape s = sender as Shape;
 if (s != null)
 {
 s.Opacity = .6;
 }
 }

 public MainPage()
 {
 InitializeComponent();
 foreach (Shape s in theCanvas.Children)
 {
 s.MouseEnter += this.theCanvas_MouseEnter;
 s.MouseLeave += this.theCanvas_MouseLeave;
 }
 }
}

 Chapter 24 Silverlight and ASP.NET 531

 . 6 . . Run the application . At first, you should be able to see the outlines of all the shapes
 because they start out with an opacity of 60 percent, as shown in the following graphic:

 . 7 . . Then, when you move the pointer over one of the shapes, you should see it
become opaque:

In this case, when the pointer rests on the rectangle that is topmost in the Z-order,
the rectangle blocks full view of the other rectangle and ellipse behind it .

532 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 8 . . Now add a StackPanel to the grid and place it in the second column . Add a Button to
the StackPanel, followed by a ListBox with some contained items . Following the first
ListBox, nest another StackPanel in the outer StackPanel—orient this one horizontally
by setting the Orientation property to Horizontal . Place two more ListBoxes in the
 nested StackPanel:

<UserControl x:Class="SilverlightLayout.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"

 DesignWidth="600" DesignHeight="600">
 <Grid x:Name="LayoutRoot" Background="White"
 ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition ></ColumnDefinition>
 <ColumnDefinition ></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <!—- Canvas goes here... -->

 <StackPanel Grid.Column="1">
 <Button Content="Button1"></Button>
 <ListBox Height="75">
 <ListBoxItem Content="Item 1"></ListBoxItem>
 <ListBoxItem Content="Item 2"></ListBoxItem>
 <ListBoxItem Content="Item 3"></ListBoxItem>
 <ListBoxItem Content="Item 4"></ListBoxItem>
 <ListBoxItem Content="Item 5"></ListBoxItem>
 </ListBox>
 <StackPanel Orientation="Horizontal">
 <ListBox Height="75">
 <ListBoxItem Content="Item 1"></ListBoxItem>
 <ListBoxItem Content="Item 2"></ListBoxItem>
 <ListBoxItem Content="Item 3"></ListBoxItem>
 <ListBoxItem Content="Item 4"></ListBoxItem>
 <ListBoxItem Content="Item 5"></ListBoxItem>
 </ListBox>
 <ListBox Height="75">
 <ListBoxItem Content="Item 1"></ListBoxItem>
 <ListBoxItem Content="Item 2"></ListBoxItem>
 <ListBoxItem Content="Item 3"></ListBoxItem>
 <ListBoxItem Content="Item 4"></ListBoxItem>
 <ListBoxItem Content="Item 5"></ListBoxItem>
 </ListBox>
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

 Chapter 24 Silverlight and ASP.NET 533

The layout should appear like this when you’re finished:

This example shows that you can nest Silverlight layout panels arbitrarily . In addition to the
three panels available as part of the official control set, you can write your own custom panel
by deriving from the Panel class .

Integrating .with .HTML
Silverlight offers two paths for integrating with traditional Web content (that is, HTML) .
First, Silverlight components can access the Document Object Model (DOM) . Second,
JavaScript within a Web page can access Silverlight components .

To access HTML elements from within Silverlight, use the System.Windows.Browser.
HtmlDocument class . The HtmlDocument class is loaded with the HTML Document Object
Model of the currently loaded Web page . It’s available through the static Document member
of System.Windows.Browser.HtmlPage . You can find elements identified in the HTML docu-
ment using HtmlDocument.GetElementByName or HtmlDocument.GetElementById . From
there, you can access the data within the tags and use the data programmatically . In addi-
tion, you can attach managed events to the HTML elements (for example, to input buttons)
and handle the events from managed code rather than from JavaScript .

For example, take a look at the following code, which shows some HTML with the tags
 identified through the ID attribute:

<input id="input" type="text" />
<input id="submit" type="button" value="Submit" />
<div id="output" />

534 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Accessing the DOM is straightforward . In the Silverlight component code, declare separate
HtmlElements for each tag you want to access within the DOM . You find the HtmlElement
definition in the System.Windows.Browser namespace . The HtmlDocument class (available
through the HtmlPage class) gives you access to the tags . The most useful methods of the
HtmlElement class are GetProperty, SetProperty, and AttachEvent . The following code il-
lustrates how to access the identified tags through the HtmlDocument class . It also shows
how to get and set properties within the tag and how to attach events (for example, how to
attach a click handler to the button tag) . The HTML DOM helper classes are in the System.
Windows.Browser namespace .

namespace UseDOM
{
 public partial class MainPage : UserControl
 {
 HtmlElement _input;
 HtmlElement _output;
 HtmlElement _submit;

 public MainPage()
 {
 InitializeComponent();

 HtmlDocument document = HtmlPage.Document;
 _input = document.GetElementById("input");
 _output = document.GetElementById("output");
 _submit = document.GetElementById("submit");

 _submit.AttachEvent("onclick", OnSubmit);
 }

 void OnSubmit(object sender, HtmlEventArgs ea)
 {
 string input = (string)_input.GetProperty("value");
 string output = "you typed: " + input;
 _output.SetProperty("innerHTML", output);
 }
 }
}

So that you can access managed code from within JavaScript, Silverlight includes
the [ScriptableType] attribute that you use to mark entire types as scriptable and the
[ScriptableMember] attribute that you use to mark individual type members as scriptable .
The System.Windows.HtmlPage class includes two methods for registering managed types
to make them available to script: RegisterCreatableType allows fresh instances of the type to
be created from within script, and RegisterScriptableObject allows access to already-existing
instances of the type . From there, use the Silverlight plug-in’s content member to create the
type or look up the existing instance . Then, you can use the type from within script code and
treat it as though it was a normal JavaScript object .

 Chapter 24 Silverlight and ASP.NET 535

Animations
One of the most compelling features of Silverlight is how it gives you the ability to
 incorporate animations in the content space . Silverlight provides a uniform and consistent
means of animating UI elements within a visual tree .

To understand how Silverlight animation works, you need to understand a bit about
Silverlight dependency properties . Many Silverlight classes expose their properties as
 dependency properties, which work this way . As a concrete example, think about the Button
control . Instead of storing properties such as Height and Width as actual data members with-
in the Button class, Silverlight stores the actual data for these properties in a backing store
managed by Silverlight . Backing store is simply a term that means that the underlying class or
infrastructure provides the memory for the property data storage .

Each class gets its own storage for data members, and the values are keyed to the class
 instance identities . This might seem like an odd way to approach storing data members, but
it provides the developer two important features . First, storing data this way can save a lot
of instance data, which helps performance (for example, by reducing garbage collections) .
Another main feature is that when the values change (for any reason), Silverlight can trig-
ger events—for example, telling the scene to rearrange (and redraw) itself . This eliminates
the need to write all those painting event handlers when any (from a possible multitude) of
 values change .

Animations best illustrate the value of dependency properties . All Silverlight animations
 generally work the same way:

 . 1 . . Choose the property you wish to animate (only dependency properties can be
animated) .

 . 2 . . Choose from a number of animation drivers (there’s one for most data types, including
double, integer values, Boolean values, colors, and so on) .

 . 3 . . Connect the animation driver to the property .

 . 4 . . Create a storyboard to hold the animation and add the animation .

 . 5 . . Start the storyboard .

When the storyboard starts, it uses the animation drivers to modify the target properties .
Because the target properties are dependency properties, changes become immediately
apparent . For example, if you animate the Width property of a button, you literally see the
width of the button change .

536 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Silverlight animations are configurable in many ways . For example, you can configure the
 following factors:

n The duration of an animation

n Whether an animation reverses automatically

n The acceleration curve of an animation

n How many times or how long an animation repeats

Finally, Silverlight offers more complex animations, as well . For example, Silverlight offers key
frame animations and spline animations for nonlinear animation effects .

Following is an exercise that shows how Silverlight animations work . This example shows
how you can animate a set of images so that they grow in height and width, become more
opaque, and then reset to their original state . The example illustrates several concepts, in-
cluding how to work with animations within the code beside, transform UI elements visu-
ally and animate the transform, and how binary resources are packed in the Silverlight XAP
container .

Animating the RenderTransform and Opacity properties of an image

 . 1 . . Create a new Silverlight application named SilverlightAnimations . Have Visual Studio
create an ASP .NET Web Project .

 . 2 . . Add 5 ColumnDefinitions and 10 RowDefinitions to the Grid that is the LayoutRoot . This
is all the XAML code you add in this example . The rest of the code lives in the code
beside .

<UserControl x:Class="SilverlightAnimation.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"

 DesignWidth="600" DesignHeight="300">
 <Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 Chapter 24 Silverlight and ASP.NET 537

 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 </Grid>
</UserControl>

 . 3 . . Add some images of the state flags so that there’s something to animate . Go to the
final solution (included on the CD that accompanies this book) and borrow the JPGs of
the 50 state flags . From Solution Explorer, right-click the SilverlightAnimation project
and click Add, Folder . Name the Folder Images . Right-click the Images folder and click
Add, Existing Items . Navigate to the solution for Chapter 24 on the CD accompany-
ing the book (the directories are named by chapter), and select all 50 images from
the Images folder . These images are JPEG images of all 50 state flags . Including them
as part of the project makes them available to be loaded as images . The normal build
 action for these images is to include them as resources . They will be transported to the
client computer .

 . 4 . . Add a class to manage all the state flags . Notice that the names of the flag images
 follow the pattern <state abbreviation> .jpg . This new class simply contains a list of all
the state abbreviations . Right-click the SilverlightAnimation project and click Add, New
Item, and then select Class (so that Visual Studio generates the code for a new class) .
Name the class States . Visual Studio opens the code in the editor for you .

 . 5 . . Derive the State class from the generic List class, and provide string as the type
 argument . Then, add the abbreviations for all the states . (If you’d like, you can borrow
this code from the solution rather than typing in all the state abbreviations .)

class States : List<string>
{
 public States()
 {
 Add("AL");
 Add("AK");
 Add("AZ");
 Add("AR");
 Add("CA");
 Add("CO");
 // more states…
 Add("WA");
 Add("WV");
 Add("WI");
 Add("WY");
 }
}

538 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 6 . . Open the file MainPage .xaml .cs, add code to MainPage constructor to load the images,
and mark each cell with a TextBlock naming the state . Create an instance of the States
class so that you can look up the state abbreviations . Iterate through all the columns
and rows within the LayoutRoot . For each cell within the grid, create a TextBlock to
show the state abbreviation . Get the state abbreviation from the instance of the States
class and set the Text property to the state abbreviation . You can set various properties
such as the FontSize and FontFamily to dress up the TextBlock . Add the TextBlock to the
children collection of LayoutRoot . Use the TextBlock.SetRow and SetColumn static meth-
ods to position the TextBlock in the grid .

Next, create an instance of the Image class . Add a ScaleTransform to the Image . You
animate that a bit later . Use the current state abbreviation to create a URI indicating the
image containing the state flag (it is in the Images folder) . Finally, set the Opacity of the
Image to a little less than half, add the Image to the LayoutRoot, and position it in the
current row and column .

public MainPage()
{
 InitializeComponent();

 States states = new States();
 int stateNumber = 0;

 for (int column = 0; column < 5; column++)
 {
 for (int row = 0; row < 10; row++)
 {
 // get the state abbrev
 string stateAbbrev = states[stateNumber];

 TextBlock theTextBlock = new TextBlock();
 theTextBlock.FontSize = 22;
 theTextBlock.Text = stateAbbrev;
 theTextBlock.TextAlignment = TextAlignment.Center;
 theTextBlock.VerticalAlignment = VerticalAlignment.Center;
 LayoutRoot.Children.Add(theTextBlock);
 Grid.SetRow(theTextBlock, row);
 Grid.SetColumn(theTextBlock, column);

 // Add an image control to the grid
 Image theImage = new Image();
 ScaleTransform st = new ScaleTransform();
 st.ScaleX = 1; st.ScaleY = 1;
 theImage.RenderTransform = st;
 Uri uri =
 new Uri("Images/" +
 stateAbbrev + ".jpg", UriKind.Relative);

 theImage.Source = new BitmapImage(uri);
 theImage.Margin = new Thickness(10);
 theImage.Opacity = .4;

 Chapter 24 Silverlight and ASP.NET 539

 LayoutRoot.Children.Add(theImage);

 // then position it
 Grid.SetRow(theImage, row);
 Grid.SetColumn(theImage, column);

 stateNumber++;
 }
 }
}

 . 7 . . Run the application . It should look something like this:

 . 8 . . Write a method to animate the flags by scaling it . Create DoubleAnimations for the
ScaleTransform ScaleX and ScaleY properties, and another for the Image Opacity
 property . Set the From properties of the ScaleTransform animations to 1, and the
To properties to 5 . Set the From property of the Opacity animation to .4 and the To
property to 1 . Set the AutoReverse properties of the three DoubleAnimations to true so
that they roll back after they are finished . Create a Storyboard to hold the animations .

540 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Associate the animations with their targets within the Storyboard by using the
StoryBoard SetTarget and SetTargetProperty methods . Finally, add the animations to
the Storyboard .

Putting this all within a try/catch block can help you debug any errors when this
executes .

public partial class MainPage : UserControl
{
 void AnimateImage(Image image)
 {
 try
 {
 DoubleAnimation scaleXAnimation = new DoubleAnimation();
 scaleXAnimation.AutoReverse = true;
 DoubleAnimation scaleYAnimation = new DoubleAnimation();
 scaleYAnimation.AutoReverse = true;
 DoubleAnimation opacityAnimation = new DoubleAnimation();
 opacityAnimation.AutoReverse = true;

 scaleXAnimation.From = 1;
 scaleXAnimation.To = 5;
 scaleYAnimation.From = 1;
 scaleYAnimation.To = 5;
 opacityAnimation.From = .4;
 opacityAnimation.To = 1;

 Storyboard sb = new Storyboard();
 Storyboard.SetTarget(scaleXAnimation, image.RenderTransform);
 Storyboard.SetTargetProperty(scaleXAnimation,
 new PropertyPath("ScaleX"));

 Storyboard.SetTarget(scaleYAnimation, image.RenderTransform);
 Storyboard.SetTargetProperty(scaleYAnimation,
 new PropertyPath("ScaleY"));

 Storyboard.SetTarget(opacityAnimation, image);
 Storyboard.SetTargetProperty(opacityAnimation,
 new PropertyPath("Opacity"));

 sb.Children.Add(scaleXAnimation);
 sb.Children.Add(scaleYAnimation);
 sb.Children.Add(opacityAnimation);

 Chapter 24 Silverlight and ASP.NET 541

 sb.Begin();
 }
 catch (Exception ex)
 {
 System.Diagnostics.Debug.WriteLine(ex.Message);
 }
 }
}

 . 9 . . Add a handler for the OnMouseLeftButtonDown event to the MainPage class that
 animates the image . This will be hooked up to the images directly, so the sender is
the image . Just cast the sender as an Image and call the Animate method, passing
in the image:

public partial class MainPage : UserControl
{
 void OnMouseLeftButtonDown(object sender, MouseButtonEventArgs ea)
 {
 Image image = sender as Image;
 AnimateImage(image);
 }
}

 . 10 . . Finally, connect the MouseLeftButtonDown event of each Image to the handler:

public MainPage()
{
 // other initialization code
 for (int column = 0; column < 5; column++)
 {
 for (int row = 0; row < 10; row++)
 {
 // other code...
 Image theImage = new Image();

 theImage.MouseLeftButtonDown += OnMouseLeftButtonDown;

 // other code.
 }
 }

}

 . 11 . . Click one of the flags . It should animate . You should see it grow by five times its original
height and width, become more opaque, and then recede back to its original state .

542 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

WCF .Services .and .Silverlight
As you might have noticed by now, Silverlight presents an entirely new programming model
for Web sites . ASP .NET programming traditionally involves managing a collection of ASP .NET
controls that emit HTML to the client . ASP .NET has a whole infrastructure for managing ses-
sion state and view state (necessary for HTML over HTTP) .

Silverlight content is generally disconnected from the rest of the Web site . Ways exist to in-
tegrate with the HTML on the client side through the Document Object Model, and you can
pass parameters into your Silverlight content before sending it off to the client . However,
support for connecting with the rest of the Web site is not built-in as much . To communicate
with the rest of the Web site, Silverlight usually uses Windows Communication Foundation
(WCF) services provided by the Web site .

Here’s an exercise that shows how Silverlight works with WCF . This example shows how you
can add a Silverlight-enabled WCF service to your Silverlight Web site . The Web site exposes
a collection of products through a Web service . The Silverlight control queries the service for
a list of products, and then looks them up one at a time when the end user selects a product

 Chapter 24 Silverlight and ASP.NET 543

from a list box . This exercise illustrates how to create a WCF service, expose data through the
WCF service, and data bind to a ListBox and a TextBlock .

Using Silverlight with ASP.NET and WCF

 . 1 . . Create a new Silverlight application named SilverlightAndWCF . Have Visual Studio
 create an ASP .NET Web Project along with the Silverlight application .

 . 2 . . Add a Silverlight-enabled WCF service . Name it ProductsService .

 . 3 . . Create a ProductInfo class in the Web project to hold individual products . Right-click
the SilverlightAndWCF project in Solution Explorer and click Add, New Item . Select
Class from the available templates . Name the class ProductInfo . It should include
properties for the name of the product, a description of the product, and the price
of the product . It’s important that these members be exposed as properties be-
cause the Silverlight client will use data binding to connect to the properties . Use the
DataContract and DataContractFormat attributes to enable this class to be exposed
through the WCF service . Use the DataMember attribute before each property so that
the members show up as properties in the proxy (to be produced for use on the cli-
ent) . You need to use the System.Runtime.Serialization and the System.ServiceModel
namespaces to resolve the attributes . Remember, this is still in the Web Service project .

[DataContract]
[DataContractFormat]
public class ProductInfo
{
 string product;
 [DataMember]
 public string Product
 {
 get { return product; }
 set { product = value; }
 }

 string description;

 [DataMember]
 public string Description
 {
 get { return description; }
 set { description = value; }
 }

 double price;

 [DataMember]
 public double Price
 {
 get { return price; }
 set { price = value; }
 }
}

544 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 4 . . Create a collection of ProductInfos (derive from the generic List class) . You can
 either have Visual Studio create the class for you, or you could add it directly to the
ProductInfo .cs file . Write a constructor that adds some ProductInfo objects to the
 collection . They can be any kind of products . I’m a guitar enthusiast, so I added a
 guitar to the product list you see here:

public class Products: List<ProductInfo>
{
 public Products()
 {
 ProductInfo productInfo = new ProductInfo();

 productInfo = new ProductInfo();
 productInfo.Product = "Solidbody";
 productInfo.Description = @"Flame maple top " +
 "mahogany body. Rosewood fingerboard. " +
 "One piece mahogany neck. Two humbucking " +
 "pickups. With case.";
 productInfo.Price = 2500.00;
 Add(productInfo);
 // add more products...
 }
}

 . 5 . . Open the file ProductsService .svc .cs (remember—this is all going in the Web Service
project right now) . Add a static instance of the Products class . Add two methods to
the service: one to get the entire list of ProductInfos, and one to look up a particular
product . The ServiceContract attribute usually stipulates a namespace . I left it out in this
case for the sake of brevity . You also need to use the System.ServiceModel.Activation
namespace .

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements
 (RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class ProductsService
{
 static Products products = new Products();

 [OperationContract]
 public Products GetProducts()
 {
 return ProductsService.products;
 }

 [OperationContract]
 ProductInfo GetProduct(string key)
 {
 return ProductsService.products.Find(
 delegate(ProductInfo productInfo)
 {

 Chapter 24 Silverlight and ASP.NET 545

 if (productInfo.Product == key)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
);
 }
}

 . 6 . . Edit the MainPage .xaml XAML file to produce a layout . Add four rows to the
LayoutRoot . The first three rows should resize to their content (that is, the
RowDefinitions should use Auto as the Height) . Add three columns . The first column
should size automatically (that is, the ColumnDefinition should use Auto as its Width) .

<Grid x:Name="LayoutRoot"
 Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

</Grid>

 . 7 . . Now add content to the grid .

 . a . . Add a TextBlock to the top row and first column (row 0, column 0) to serve as a
header for the Details section . It should span two columns .

 . b . . Add a TextBlock to the first row, third column to serve as a header for the list box .

 . c . . Add three TextBlocks down the first column to serve as labels . The TextBlock in
row 2 should say “Product:”, the TextBlock in row 3 should say “Price:”, and the
TextBlock in row 4 should say “Description:” .

 . d . . Add three TextBlocks down the second column to display the product info . The
TextBlock in row 2 should use the Binding markup extension to bind the Text
property to the ProductInfo Product property . That is, assignment of the Text
property should look like this: Text =” {Binding Product}” . The TextBlock in row 3
should bind its Text property to the ProductInfo Price property, and the TextBlock
in row 4 should bind its Text property to the ProductInfo Description property

546 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

using the same binding statement as the one used for binding the Product
property .

 . e . . Finally, add a ListBox to row 1, column 2 . Make it span three rows . Name it
“theListBox” . Assign a handler to the SelectionChanged event . When you type
SelectionChanged in the tag, Visual Studio stubs one out for you . Assign the
DisplayMemberPath property the string “Product” . That way, when the collection
of ProductInfos is bound to the ListBox, the ListBox will show the Product property .

<Grid x:Name="LayoutRoot"
 Background="White">
 <!—grid row and column definitions are here -->
 <TextBlock Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 FontSize="24"
 Text="Details:"/>

 <TextBlock Grid.Row="0"
 Grid.Column="2"
 FontSize="24"
 Text="Select Product:"/>

 <TextBlock Grid.Row="1"
 Grid.Column="0"
 FontSize="18"
 Text="Product:" />

 <TextBlock Grid.Row="2"
 Grid.Column="0"
 FontSize="18"
 Text="Price:" />

 <TextBlock Grid.Row="3"
 Grid.Column="0"
 FontSize="18"
 Text="Description:" />

 <TextBlock Grid.Row="1"
 Grid.Column="1"
 FontSize="14"
 Text="{Binding Product}"
 Margin="5"/>

 <TextBlock Grid.Row="2"
 Grid.Column="1"
 FontSize="14"
 Text="{Binding Price}"
 Margin="5"/>

 <TextBlock Grid.Row="3"
 Grid.Column="1"
 FontSize="14"
 Margin="5"

 Chapter 24 Silverlight and ASP.NET 547

 TextWrapping="Wrap"
 Text="{Binding Description}"/>

 <ListBox x:Name="theListBox"
 Grid.Row="1"
 Grid.Column="2"
 Grid.RowSpan="3"
 DisplayMemberPath="Product"
 SelectionChanged=
 "theListBox_SelectionChanged">
 </ListBox>
</Grid>

 . 8 . . Run the application . It should look something like this:

 . 9 . . Add a service reference for the WCF service to the SilverlightAndWCF project .
Right-click the SilverlightAndWCF project in Solution Explorer, and click Add Service
Reference . Visual Studio will display the following dialog box to get information about
the service . Click the Discover button in the upper right-hand corner . Visual Studio will
find the ProductsService service for you .

548 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 . 10 . . Click the expansion symbol next to the ProductsService .svc service to expand the
node so that you can see details about the service . Click OK (leave the namespace the
same: ServiceRefernce1) . Visual Studio will write a proxy for you to use in the Silverlight
control .

 . 11 . . Include a using clause to scope the new service reference . Declare an instance of the
ProductsServiceClient class as a member of the MainPage class . Create an instance of
the client so that the MainPage can talk to the Web site . You use the proxy to issue calls
to the service to get all the products and to look up singular products .

using SilverlightAndWCF.ServiceReference1;

public partial class Page : UserControl
{
 ProductsServiceClient productsService =
 new ProductsServiceClient();

 public MainPage()
 {
 InitializeComponent();
 }
}

Silverlight-enabled WCF proxies work asynchronously . When you call the GetProducts
and the GetProduct methods, they run on a different thread . You need to add event
handlers to the service client to harvest the results when the service call is finished .
Write a method named GetProductsCompleted to harvest the collection of prod-
ucts . The first argument is of type object (the sender) and the second argument is a
GetProductsCompletedEventArgs (defined within the proxy code generated by Visual
Studio) . GetProductsCompletedEventArgs includes a Result property representing

 Chapter 24 Silverlight and ASP.NET 549

the collection . GetProductsCompleted should assign that collection to the ListBox
ItemsSource property . Because the ListBox DisplayMemberPath property is set to
“Product”, the ListBox displays the Product property of each ProductInfo in the
collection .

In addition, add a method named GetProductCompleted to harvest the results of the
singular product lookup . The method should take an object (the sender) as the first
parameter and a GetProductCompletedEventArgs (also generated by Visual Studio) as
the second parameter . GetProductCompletedEventArgs holds the selected product in its
Result property . Set the LayoutRoot DataContext property to the ProductInfo returned
by the service . Because the TextBox controls in the Grid are bound to the Product, Price,
and Description properties, this data appears in the TextBlocks automatically .

public partial class MainPage : UserControl
{
public MainPage()
 {
 InitializeComponent();
 }

 void GetProductscompleted(object sender,
 GetProductsCompletedEventArgs ea)
 {
 if (ea.Error == null)
 {
 this.theListBox.ItemsSource = ea.Result;
 }
 else
 {
 System.Diagnostics.Debug.WriteLine(ea.Error.InnerException);
 this.theListBox.Items.Add("Gibson Les Paul Standard");
 }
 }

 void GetProductCompleted(object sender,
 GetProductCompletedEventArgs ea)
 {
 ProductInfo pi = ea.Result as ProductInfo;
 if (pi != null)
 {
 this.LayoutRoot.DataContext = pi;
 }
 }
}

 . 12 . . Connect the GetProductCompleted and GetProductsCompleted handlers to the
ProductsService proxy in the MainPage constructor, and then call ProductsService.
GetProducts to fetch the collection of products .

Implement the ListBox SelectionChanged handler . Get the SelectedItem property from
the ListBox and use it when calling the proxy’s GetProduct method (that is, pass the

550 Part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight

 currently selected item as the key) . When the service completes its work, the result ends
up in the GetProductCompleted method .

public partial class MainPage : UserControl
{
public MainPage()
 {
 InitializeComponent();

 productsService.GetProductsCompleted +=
 GetProductscompleted;

 productsService.GetProductCompleted +=
 this.GetProductCompleted;

 productsService.GetProductsAsync(this);
 }

 // Asynchronous handlers here...

 private void theListBox_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 string key =
 (theListBox.SelectedItem as ProductInfo).Product;

 productsService.GetProductAsync(key, this);
 }
}

 . 13 . . Run the program . When the browser opens, you can see a collection of products on the
right-hand side . When you select a product, the details appear on the left-hand side .

 Chapter 24 Silverlight and ASP.NET 551

Chapter .24 .Quick .Reference

To Do This

Generate a Silverlight
application

Click File, New, Project from the main menu . Select the Silverlight
Application template .

Manage layout in a Silverlight
component

Choose a layout panel as a UserControl for the RootVisual . The Grid posi-
tions visual elements into rows and columns . The StackPanel positions
visual elements on top of each other (when aligned vertically) or next to
each other (when aligned horizontally) . With the Canvas, you can position
visual elements absolutely using x and y coordinates .

Change the properties of
controls on a page

Make sure the page editor is in Design mode . Highlight the control whose
property you want to change . Select the property to edit in the Properties
window .

Use the HTML Document
Object Model in a Silverlight
 component

Follow these steps:

1 . Name the HTML elements using the ID attribute .

2 . Use the HtmlPage.Document property to retrieve the HtmlElements . Call
the GetElementById to fetch the element .

3 . Use the HtmlElement GetProperty and SetProperty methods to modify
the elements .

4 . Use the HtmlElement AttachEvent to connect managed event handlers to
the elements .

Access managed code from
within JavaScript

Use the ScriptableType attribute to mark an entire type as scriptable . Use
the ScriptableMember attribute to mark individual type members as script-
able . Use the HtmlPage.RegisterCreatableType to create fresh instances
from within script . Use HtmlPage.RegisterScriptableObject to allow access
to already-existing instances of the type . From there, access the methods
and properties using the Silverlight plug-in .

Access the ASP .NET site
programmatically

Add a Silverlight-enabled WCF service to the Web site . Use the proxy
 created by Visual Studio to access the service methods easily .

Microsoft ASP.NET 4 Step by Step

 . . 553

Part VI

Services and Deployment

In this part:

Windows Communication Foundation . 555

Deployment . 575

 . . 555

Chapter 25

Windows Communication
Foundation

After completing this chapter, you will be able to

n Understand the motivation behind Windows Communication Foundation (WCF) .

n Understand the WCF architecture .

n Implement a WCF-based server .

n Build a client to use the WCF server .

Distributed .Computing .Redux
Released in 2006, the Windows Communication Foundation (WCF) is one of three main
 pillars of Microsoft .NET Framework version 3 and later . The other two specific, highly
 advantageous technological pillars are Windows Workflow Foundation and Windows
Presentation Foundation . Each redefines programming within a certain idiom . Windows
Workflow Foundation unifies the business work flow model . Windows Presentation
Foundation redefines user interface development for Windows-based desktop applications
and for the Web (using Microsoft Silverlight) . And Windows Communication Foundation
 unifies the distributed programming model for the Microsoft environment . Clearly uniting
these fragmented programming models is the main theme of .NET 3 .5 .

To get an idea of how fragmented the distributed computing solutions are, think back to
the earliest ways computers were connected . At one point, you could program in a standard
way only the old venerable RS232 serial connection or through a modem . Over the years,
distributed computing in the Microsoft environment has grown to encompass many dif-
ferent protocols . For example, the Microsoft Windows NT operating system supported a
Remote Procedure Call (RPC) mechanism that was eventually wrapped using the Distributed
Component Object Model (DCOM) . The Windows operating system also supports sock-
ets programming . Near the turn of the twenty-first century, Microsoft released Microsoft
Message Queuing (MSMQ) to support disconnected queuing-style distributed applications .
When it became apparent that DCOM was running into some dead-ends, Microsoft intro-
duced .NET remoting . (The dead-ends that DCOM implemented are mainly its requirement
to contact client objects periodically to remain assured of a connection, which limits scal-
ability; its complex programming model; its difficult configuration needs; and its Internet-
unfriendly security architecture .) Finally, to help supplement a wider reach for distributed
programming, Microsoft introduced an XML Web Service framework in ASP .NET represented
by the ASMX files you looked at earlier in Chapter 23, “AJAX .”

556 Part VII Services and Deployment

A .Fragmented .Communications .API
Each of the older technologies mentioned previously has its own specific advantages—
especially when you consider the periods in computing history in which they were in-
troduced . However, having so many different means of writing distributed computing
applications has led to a fragmented application programming interface (API) . Which tech-
nology to use has always been a decision that must be made early in development . Earlier
distributed technologies often tied applications to a specific transport protocol . If you made
the wrong architectural decision or later simply wanted to migrate to a newer technology,
doing so was often difficult, if not nearly impossible . Even if it could be done, it was usually
an expensive proposition in terms of application redevelopment and end-user acceptance
and deployment .

When you rely on these older technologies, a number of programming and configuration
issues are involved . Earlier connection technologies coupled multiple auxiliary factors, those
not directly required for communicating data, with the communication process itself . For
 example, earlier distributed computing systems forced decisions such as how to format data
in the early stages of design, as well as in the implementation of a distributed system . To
make DCOM Remote Procedure Calls, an application was required to be tied to the DCOM
connection protocol and wire format . This forced administrators to open port 135, the
DCOM object discovery port, leading to immense security risks . With the .NET Framework,
you can choose the transports and wire formats: Out of the box, you can choose to use HTTP
or TCP as the connection protocol, and you can use either SOAP or the .NET binary format
as the wire format . However, even with the choices provided, applications using classic .NET
remoting are often fated to use a single connection protocol and wire format once the con-
figuration is set . You can swap out connection protocols and wire formats, but it’s not easy .
At best, significant code changes are required . At worst, entire application architectures need
revision .

In addition to tying wire formats and connection protocols to the implementation of a
 distributed system, many more issues arise when you try to connect two computers together .
Right off you have to think about issues such as transactions, security, reliability, and serial-
ization—these issues inevitably become embedded in the application code (instead of being
added later as necessary) . In addition, earlier communication technologies don’t lend them-
selves to the currently in-vogue service-oriented architectures (SOAs) where interoperability
is key, although in practice interoperability is tricky to achieve .

WCF .for .Connected .Systems
The main job of WCF is to unify the previously fragmented Windows communication APIs
and provide applications with a single programming model . At the same time, WCF aims
to decouple the process of communicating over a distributed system from the applications

 Chapter 25 Windows Communication Foundation 557

themselves . When you work with WCF, you see that the distinctions between contracts,
 transports, and implementation are enforced rather than just offered as a good idea . In
 addition, because Microsoft is attuned to the needs of existing applications, it designed WCF
to accommodate partial or complete migrations from earlier communication technologies
(.NET remoting or XML Web Services) to WCF-based computing .

SOA is becoming an important design influence in modern software development . SOA is
an architectural philosophy that encourages building large distributed systems from loosely
coupled endpoints that expose their capabilities through well-known interfaces . WCF adheres
to standard SOA principles, such as setting explicit boundaries between autonomous ser-
vices, having services be contract and policy based (rather than class based), having business
processes be the focal point of the services (rather than the services themselves), and accom-
modating fluctuating business models easily . WCF is designed for both high performance
and maximum interoperability .

WCF represents a communication layer, so introduces a level of indirection between a distrib-
utable application and the means by which that application is distributed . As an independent
layer, WCF makes implementing and configuring a distributed application simpler by pro-
viding a consistent interface for managing such aspects as security, reliability, concurrency,
transactions, throttling (throughput limitations for callers or methods), serialization, error
handling, and instance management .

Whereas WCF is capable of communicating with XML Web Services using SOAP (a standard
for many existing Web services), you can also configure and extend it to communicate using
messages based on non-SOAP formats, such as custom XML and Really Simple Syndication
(RSS) .

WCF is smart enough to know whether both endpoints are WCF based, in which case it uses
optimized wire encoding . The structures of the messages are the same—they’re just en-
coded in binary form . WCF includes other services often required by distributed systems . For
 example, WCF includes built-in queued messaging .

WCF .Constituent .Elements
WCF is composed of a few separate elements: endpoints, channels, messages, and behaviors .
Whereas earlier communication technologies tended to couple these concepts, WCF distin-
guishes them as truly separate entities . Here’s a rundown of the elements of WCF .

Endpoints
Endpoints define the originators and recipients of WCF communications . Microsoft devised
a clever acronym for defining endpoints: ABC . That is, WCF endpoints are defined by an
 address, a binding, and a contract .

558 Part VII Services and Deployment

Address
The address identifies the network location of the endpoint . WCF endpoints use the
 addressing style of the transport moving the message . WCF addressing supports the use of
both fully qualified addresses and relative addresses . For example, a fully qualified Internet
 protocol address looks like the following:

http://someserver/someapp/mathservice.svc/calculator

WCF supports relative addressing by using a base address and then a relative address . Base
addresses are registered with the service, and WCF can find services relative to the base ad-
dress . For example, a whole address of an endpoint might comprise a base address such as
http://someserver/someapp/mathservice.svc and a relative address of calculator .

Binding
WCF bindings specify how messages are transmitted . Rather than being identified simply by
a coupled transport and wire format (à la DCOM), WCF bindings are composed from a stack
of binding elements, which at a minimum include a protocol, a transport, and an encoder .

Contract
The final element defining an endpoint is the contract . The contract specifies the primary
agreement between the client and the service about what the service can do for the client .
The contract specifies the information to be exchanged during a service call .

WCF expresses a service contract as a .NET interface adorned with the ServiceContract at-
tribute . Methods in the WCF contract interface are annotated with the OperationContract
attribute . WCF interfaces can pass data structures as well . Data members in the structures are
exposed as properties and adorned with the DataMember attribute .

Channels
WCF channels represent the message transmission system . WCF defines protocol channels
and transport channels . Protocol channels add services such as security and transactions
independently of transport . Transport channels manage the physical movement of bytes
between endpoints (for example, WCF uses protocols such as MSMQ, HTTP, P2P (Point-
to-Point), TCP, and Named Pipes) . WCF uses a factory pattern to make channel creation
consistent .

Behaviors
In WFC, the service contract defines what the service will do . The service contract
 implementation specifies exactly how the service contract functionality works . However, one

 Chapter 25 Windows Communication Foundation 559

of the hallmarks of a distributed system is that it usually requires some add-on functionality
that might not necessarily be tied to contract implementation . For example, when securing
a Web service, authenticating and authorizing the client might be necessary, but it’s usually
not part of the service contract . WCF implements this kind of add-on functionality through
behaviors . Behaviors implement the SOA higher-order notion of policy and are used to
 customize local execution .

Behaviors are governed by attributes—the main two of which are the ServiceBehavior and
the OperationBehavior . The ServiceBehavior and OperationBehavior attributes control the
 following aspects of the service execution:

n Impersonation

n Concurrency and synchronization support

n Transaction behavior

n Address filtering and header processing

n Serialization behavior

n Configuration behavior

n Session lifetime

n Metadata transformation

n Instance lifetimes

Applying these attributes to modify the server execution is easy . Just adorn a service or
 operation implementation with the appropriate attribute and set the properties . For example,
to require that callers of an operation support impersonation, adorn a service operation with
the OperationBehavior attribute and set the Impersonation property to ImpersonationOption.
Require .

Messages
The final element of WCF is the actual message . WCF messages are modeled on SOAP
 messages . They are composed of an envelope, a header, a body, and addressing informa-
tion . Of course, messages also include the information being exchanged . WCF supports three
message exchange patterns: one way, request–response, and duplex . One-way messages
are passed from the transmitter to the receiver only . Messages passed using the request–
response pattern are sent from the transmitter to the receiver, and the receiver is expected to
send a reply back to the originator . Messages using the request–response pattern block until
the receiver sends a response to the originator . In duplex messaging, services can call back
to the client while executing a service requested by the client . The default message exchange
pattern is request–response .

560 Part VII Services and Deployment

How .WCF .Plays .with .ASP .NET
Although WCF applications can be hosted by manually written servers, ASP .NET makes a
perfectly good host . You can either write your own Windows Service to act as a host, or you
can take advantage of a readily available Windows Service, Internet Information Services (IIS),
and consequently ASP .NET . WCF and ASP .NET can coexist on a single computer in two differ-
ent modes: side-by-side mode and ASP .NET compatibility mode . Here’s a rundown of these
two modes .

Side-by-Side Mode
When running in side-by-side mode, WCF services hosted by IIS are colocated with ASP .NET
applications composed of ASPX files and ASMX files (and ASCX and ASHX files when neces-
sary) . ASP .NET files and WCF services reside inside a single, common application domain
(AppDomain) . When run this way, ASP .NET provides common infrastructure services such as
AppDomain management and dynamic compilation for both WCF and the ASP .NET HTTP
runtime . WCF runs in side-by-side mode with ASP .NET by default .

When running in side-by-side mode, the ASP .NET runtime manages only ASP .NET requests .
Requests intended for a WCF service go straight to the WCF-based service . Although the
ASP .NET runtime does not participate in processing the requests, there are some specific
ramifications of running in side-by-side mode .

First, ASP .NET and WCF services can share AppDomain state . This includes such items as
static variables and public events . Although it shares an AppDomain with ASP .NET, WCF runs
independently—some features you might count on when working with ASP .NET become un-
available . Probably the major restriction is that there’s no such thing as a current HttpContext
from within a WCF service (despite the architectural similarity of WCF to the ASP .NET run-
time pipeline) . Architecturally speaking, WCF can communicate over many different proto-
cols, including but not limited to HTTP, so an HTTP-specific context might not even make
sense in many scenarios .

Second, authentication and authorization can get a bit tricky . For example, a client might
be authenticated on an ASP .NET site using Forms Authentication, and then suddenly re-
quire reauthentication to accommodate a service call if the service call requires a different
 authentication scheme . In this case, the site might need to support two authentication and
authorization schemes .

Even though WCF applications do not interfere with ASP .NET applications, WCF applications
can access various parts of the ASP .NET infrastructure such as the application data cache . In
fact, this chapter’s example shows one approach to accessing the cache .

 Chapter 25 Windows Communication Foundation 561

ASP.NET Compatibility Mode
WCF is designed primarily to unify the programming model over a number of transports and
hosting environments . However, there are times when a uniform programming model with
this much flexibility is not necessary and the application might desire or even require some of
the services provided by the ASP .NET runtime . For those cases, WCF introduces the ASP .NET
compatibility mode . With ASP .NET compatibility mode, you can run your WCF application
as a full-fledged ASP .NET citizen, complete with all the functionality and services available
through ASP .NET .

WCF services that run using ASP .NET compatibility mode have full access to the ASP .NET
pipeline and execute through the entire ASP .NET HTTP request life cycle . In ASP .NET compat-
ibility mode, WCF includes an implementation of IHttpHandler that wraps WCF services and
moves them through the ASP .NET HTTP pipeline . In effect, a WCF service running in ASP .NET
compatibility mode looks, tastes, and feels just like a standard ASP .NET Web service (that is,
an ASMX file) .

WCF applications running under ASP .NET compatibility mode get a current HttpContext with
all its contents—the session state, the Server object, the Response object, and the Request
object . WCF applications running as ASP .NET-compatible applications can implement security
by associating Windows access control lists (ACLs) to the service .svc file . In this manner, only
specific Windows users could use the WCF service . ASP .NET URL authorization also works for
WCF applications running as ASP .NET-compatible applications . The pipeline remains arbitrari-
ly extensible for WCF applications running as ASP .NET applications because service requests
are not intercepted as they are with the general-purpose side-by-side mode—they’re man-
aged by ASP .NET for the entire request life cycle .

You can turn on WCF ASP .NET compatibility mode at the application level through the ap-
plication’s web .config file . You can also apply ASP .NET compatibility to a specific WCF service
implementation .

Writing .a .WCF .Service
Here’s an example of a WCF service to help illustrate how WCF works . Recall the XML Web
Service example application from Chapter 23, the QuoteService that doled out pithy quotes
to any client wishing to invoke the service . The example here represents the same service—
but using a WCF-based Web site instead of an ASMX-based Web service . This way, you can
see what it takes to write a WCF-based service and client, and you can see some of the differ-
ences between WCF-based services and ASMX-based services (there are a couple of distinct
differences) .

562 Part VII Services and Deployment

Building the QuotesService as a WCF service

 . 1 . . Create a Web Application project that uses WCF . This example takes you through the
details of developing a working WCF application that can be accessed from any client
anywhere . Start Microsoft Visual Studio 2010 . Click File, New, Project and select WCF
Service Application from the available templates . Name the site WCFQuotesService .
The following graphic shows the New Project dialog box:

 . 2 . . Examine the files created by Visual Studio . Visual Studio generated several files:
IService1 .cs, Service1 .svc, and Service1 .svc .cs . These files are placeholders representing
the WCF contract (as a .NET interface type) and a class implementing the contract .

 . 3 . . Tweak the files produced by Visual Studio . Name the code files representing the
 service: IService.cs should become IQuotesService.cs, and Service1.svc should be-
come QuotesService.svc . When you rename the SVC file, Visual Studio will rename the
 corresponding C# file, too .

 . 4 . . Change the service interface name from IService1 to IQuotesService, and change the
service class name from Service1 to QuotesService . Use the Visual Studio refactoring
facilities to do this . That is, highlight the identifier you want to change, right-click in the
text editor, and click Rename on the Refactoring menu . Visual Studio will make sure the
change is propagated through the entire project .

 . 5 . . Borrow the QuotesCollection object from the project for Chapter 15, “Application Data
Caching” (that is, add the QuotesCollection .cs file to the WCFQuotesService project) .
You can get the QuotesCollection .cs file from Chapter 15’s project, UseDataCaching,
by right-clicking the Project node in Solution Explorer and clicking Add Existing Item .
Navigate to the UseDataCaching project from Chapter 15 (you can use the one that
comes with the CD) . Select the file QuotesCollection .cs . The QuotesCollection .cs file will
be copied into your WCF solution and added to the project .

 Chapter 25 Windows Communication Foundation 563

 . 6 . . Borrow the QuotesCollection .xml and QuotesCollection .xsd from the Web service
 example . Right-click the App_Data node in the WCFQuotesService project, and click
Add Existing Item . Go to the Web services project and pick up the XML and XSD files .

 . 7 . . Now that the data and the data management code are in place, the service needs a
way to expose itself . It’s time to develop a contract for the service . First, create a struc-
ture for passing quotes back and forth . Open the file IQuotesService .cs to add the data
and operation contracts by deleting the CompositeType class that Visual Studio placed
there for you as an example . In its place, type in the following code for the Quote struc-
ture . The Quote structure should contain three strings—one to represent the quote
text, and separate strings to represent the originator’s first and last names . Expose the
strings as properties adorned with the DataMember attribute:

[DataContract]
public struct Quote
{
 private String _strQuote;

 [DataMember]
 public String StrQuote
 {
 get { return _strQuote; }
 set { _strQuote = value; }
 }

 private String _strOriginatorLastName;

 [DataMember]
 public String StrOriginatorLastName
 {
 get { return _strOriginatorLastName; }
 set { _strOriginatorLastName = value; }
 }

 private String _strOriginatorFirstName;

 [DataMember]
 public String StrOriginatorFirstName
 {
 get { return _strOriginatorFirstName; }
 set { _strOriginatorFirstName = value; }
 }

 public Quote(String strQuote,
 String strOriginatorLastName,
 String strOriginatorFirstName)
 {
 _strQuote = strQuote;
 _strOriginatorLastName = strOriginatorLastName;
 _strOriginatorFirstName = strOriginatorFirstName;
 }
}

564 Part VII Services and Deployment

 . 8 . . Develop a service contract for the service . In the IQuotesService .cs file, update the in-
terface to include methods to get a single quote, add a quote, and get all the quotes:

using System.Data; // must be added to identify DataSet

[ServiceContract]
public interface IQuotesService
{
 [OperationContract]
 Quote GetAQuote();

 [OperationContract]
 void AddQuote(Quote quote);

 [OperationContract]
 DataSet GetAllQuotes();
}

 . 9 . . Implement the service contract . Open the file QuotesService .svc .cs to add the
 implementation . Start by implementing a method that loads the quotes into memory
and stores the collection and the ASP .NET cache . Although this application is an
ASP .NET application, ASP .NET handles WCF method calls earlier in the pipeline than it
does typical ASP .NET requests, and because of that there’s no such thing as a current
HttpContext object . You can still access the cache through the HttpRuntime object,
which is available in the context of WCF . The HttpRuntime.AppDomainAppPath proper-
ty includes the path to the application that’s useful for setting up a cache dependency
for the XML file containing the quotes . Make sure to add using statements for the
 system.Web, system.Web.Caching, and system.Data namespaces .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;
using System.Web;
using System.Web.Caching;
using System.Data;

namespace WCFQuotesService
{
 // NOTE: You can use the Rename command on the
 // Refactor menu to change the class name "Service1" in code, svc, and config file
together.
 public class QuotesService : IQuotesService
 {
 QuotesCollection LoadQuotes()
 {
 QuotesCollection quotesCollection;
 quotesCollection =
 (QuotesCollection)

 Chapter 25 Windows Communication Foundation 565

 HttpRuntime.Cache["quotesCollection"];
 if (quotesCollection == null)
 {
 quotesCollection = new QuotesCollection();
 string strAppPath;
 strAppPath = HttpRuntime.AppDomainAppPath;
 string strFilePathXml =
 string.Format("{0}\\App_Data\\QuotesCollection.xml", strAppPath);
 string strFilePathSchema =
 string.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);
 quotesCollection.ReadXmlSchema(strFilePathSchema);
 quotesCollection.ReadXml(strFilePathXml);
 CacheDependency cacheDependency =
 new CacheDependency(strFilePathXml);
 HttpRuntime.Cache.Insert("quotesCollection",
 quotesCollection,
 cacheDependency,
 Cache.NoAbsoluteExpiration,
 Cache.NoSlidingExpiration,
 CacheItemPriority.Default,
 null);
 }
 return quotesCollection;
 }
 // more code will go here...
 }
}

 . 10 . . Implement the GetAQuote method in the QuotesService class . Call LoadQuotes to get
the QuotesCollection object . Generate a random number between 0 and the number of
quotes in the collection and use it to select a quote in the collection . Create an instance
of the Quote structure and return it after populating it with the data from the stored
quote .

public class QuotesService : IQuotesService
{
 // LoadQuotes here...

 public Quote GetAQuote()
 {
 QuotesCollection quotesCollection = this.LoadQuotes();
 int nNumQuotes = quotesCollection.Rows.Count;

 Random random = new Random();
 int nQuote = random.Next(nNumQuotes);
 DataRow dataRow = quotesCollection.Rows[nQuote];
 Quote quote = new Quote((String)dataRow["Quote"],
 (String)dataRow["OriginatorLastName"],
 (String)dataRow["OriginatorFirstName"]);
 return quote;
 }
 // more code will go here...
}

566 Part VII Services and Deployment

 . 11 . . Implement AddAQuote . Call LoadQuotes to get the QuotesCollection . Create a new row
in the QuotesCollection and populate it with information coming from the client (that
is, the Quote parameter) . Use the HttpRuntime.AppDomainAppPath to construct the
path to the QuotesCollection .xml file and use the QuotesCollection’s WriteXml method
to reserialize the XML file . WriteXml is available from the QuotesCollection class because
QuotesCollection derives from System.Data.DataTable . Because it was loaded in the
cache with a file dependency, the cache is invalidated and the new quotes collection is
loaded the next time around .

public class QuotesService : IQuotesService
{
 // LoadQuotes here...
 // GetAQuote here

 public void AddQuote(Quote quote)
 {
 QuotesCollection quotesCollection = this.LoadQuotes();

 DataRow dr = quotesCollection.NewRow();
 dr[0] = quote.StrQuote;
 dr[1] = quote.StrOriginatorLastName;
 dr[2] = quote.StrOriginatorFirstName;
 quotesCollection.Rows.Add(dr);

 string strAppPath;
 strAppPath = HttpRuntime.AppDomainAppPath;

 String strFilePathXml =
 String.Format("{0}\\App_Data\\QuotesCollection.xml", strAppPath);
 String strFilePathSchema =
 String.Format("{0}\\App_Data\\QuotesCollection.xsd", strAppPath);

 quotesCollection.WriteXmlSchema(strFilePathSchema);
 quotesCollection.WriteXml(strFilePathXml);
 }
}

 . 12 . . Implement the GetAllQuotes operation . Create a new DataSet, load the quotes, and
add the QuotesCollection to the data set as the first table . Then, return the DataSet .

public class QuotesService : IQuotesService
{
 // LoadQuotes here
 // GetAQuote here
 // AddQuote here

 public DataSet GetAllQuotes()
 {
 QuotesCollection quotesCollection = LoadQuotes();
 DataSet dataSet = new DataSet();
 dataSet.Tables.Add(quotesCollection);
 return dataSet;
 }
}

 Chapter 25 Windows Communication Foundation 567

 . 13 . . Examine the web .config file . ASP .NET 4 simplifies WCF Web Service configuration
considerably . Earlier versions of ASP .NET (for example, version 3 .5) require you to add
information about the endpoints manually . You can still tweak the bindings and add
service behaviors (for example, to manage security for the service) . In this example, the
default provided by Visual Studio works just fine .

That is how you build a WCF service hosted through ASP .NET that can be called from
 anywhere in the world (where Internet service is available, that is) . In many ways, it is very
similar to writing a classic ASP .NET Web service . However, because this service runs in
ASP .NET side-by-side mode, there’s no such thing as a current HttpContext (as is avail-
able in typical ASP .NET applications) . In many cases, this might not be necessary . You can
get to many of the critical ASP .NET run-time services (for example, the cache) through the
HttpRuntime object . If you need full ASP .NET support (such as for session state if the WCF
service you write depends on session data), WCF supports ASP .NET Compatibility mode .

Building .a .WCF .Client
A WCF service is useless without any clients to employ it . This section illustrates how to build
a client application that consumes the Quotes service . Here, you can see how Visual Studio
makes it very easy to create a reference to a service . You see how to make WCF service calls
both synchronously and asynchronously .

Building the QuotesService client

 . 1 . . Start Visual Studio 2010 . Open the WCFQuotesService solution and add a new Console
Application project named ConsumeQuotesService to it . The following graphic
 illustrates adding the Console Application project to the solution:

568 Part VII Services and Deployment

 . 2 . . Create a reference to the WCFQuotesService application by right-clicking the
ConsumeQuotesService Project tree node in Solution Explorer and clicking Add Service
Reference . In the Add Service Reference dialog box, click the Discover button . Select
the Service .svc file from this project and expand its associated tree node . After a min-
ute, the dialog box displays the service contracts that are available through the service .
Expand the Services tree in the left pane to make sure you see the IQuotesService con-
tract . Notice the namespace given by the dialog box: ServiceReference1 . Do not click OK
yet . The following graphic shows adding the service reference:

 . 3 . . Click the Advanced button . Select the Generate Asynchronous Operations option so
that Visual Studio generates the asynchronous versions of the proxy methods .

 . 4 . . Click the OK button to add the service reference . Visual Studio produces a new direc-
tory named ServiceReferences in the ConsumeQuotesService project directory . Visual
Studio generates information about the service in the form of XML files, XSD files, and
a WSDL file (among others) . You also get source code for a proxy class that will call the
service on your behalf (by default, the proxy lands in a file named Reference .cs) .

 . 5 . . Try calling the GetAQuote operation . Calling the proxy methods generated for the
WCF service calls can be a bit verbose from time to time, but they are effective and it’s
much better than setting everything up manually by yourself . First, create an instance
of the QuotesServiceClient, available from the ServiceReference you just created . Create
an instance of the ServiceReference1.Quote structure to receive the results of calling
GetAQuote . Call GetAQuote from the QuotesServiceClient, and print the result on the
console .

using System;
using System.Collections.Generic;

 Chapter 25 Windows Communication Foundation 569

using System.Linq;
using System.Text;

namespace ConsumeQuotesService
{
 class Program
 {
 static void Main(string[] args)
 {
 // Get a single random quote
 ServiceReference1.QuotesServiceClient quotesServiceClient =
 new ServiceReference1.QuotesServiceClient();

 ServiceReference1.Quote quote = quotesServiceClient.GetAQuote();

 Console.WriteLine("Getting a single quote: " + quote.StrQuote);
 Console.WriteLine();
 }
 }
}

 . 6 . . Now try calling AddAQuote . This is very much like calling GetAQuote . However, this
time the request requires some parameters . Create an instance of the Quote (available
from the ServiceReference) . Find a pithy quote somewhere (or make one up) and plug
it into the Quote object along with the first and last names of the originator . You can
use the same instance of the QuotesServiceClient to call AddAQuote, passing the Quote
object in . The next call to GetAllQuotes reveals that the quote was added to the quotes
collection (which you see in a minute) .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsumeQuotesService
{
 class Program
 {
 static void Main(string[] args)
 {
 // Get a single random quote
 ...

 // Now add a quote
 ServiceReference1.Quote newQuote = new ServiceReference1.Quote();
 newQuote.StrQuote = "But to me nothing - the negative, the empty" +
 "- is exceedingly powerful.";
 newQuote.StrOriginatorFirstName = "Alan";
 newQuote.StrOriginatorLastName = "Watts";

 quotesServiceClient.AddQuote(newQuote);

 Console.WriteLine("Added a quote");
 Console.WriteLine();
 }
 }
}

570 Part VII Services and Deployment

 . 7 . . Now try calling GetAllQuotes . By now you should know the pattern pretty well . Use
the QuotesServiceClient to call GetAllQuotes . GetAllQuotes returns a DataSet ob-
ject that contains a collection of all the quotes, so declare one of those, too . Use
the QuotesServiceClient object to call GetAllQuotes . When the call returns, use the
DataSet object to print the quotes to the console . Be sure to include the System.Data
namespace so that the compiler understands the DataSet .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace ConsumeQuotesService
{
 class Program
 {
 static void Main(string[] args)
 {
 // Get a single random quote

 // Now add a quote

 // Now get all the quotes
 DataSet dataSet = quotesServiceClient.GetAllQuotes();
 DataTable tableQuotes = dataSet.Tables[0];

 foreach (DataRow dr in tableQuotes.Rows)
 {
 System.Console.WriteLine(dr[0] + " " +
 dr[1] + " " + dr[2]);
 }
 }
 }
}

 . 8 . . Try calling GetAQuote asynchronously . The proxy created by Visual Studio sup-
ports asynchronous invocation if you ask it to generate the asynchronous methods .
To call GetAQuote asynchronously, you need to implement a callback method that
WCF will call when the method is finished executing . Add a static method named
GetAQuoteCallback to your Program class . Have the method return void, and take
IAsyncResult as a parameter . When WCF calls back into this method, the IAsyncResult
parameter will be an instance of the class originating the call—an instance of
QuotesServiceClient . Declare an instance of the ServiceReference1.QuotesServiceClient
class and assign it by casting the IAsyncResult parameter’s AsyncState property to the
ServiceReference1.QuotesServiceClient type . Then, declare an instance of the Quote
class and harvest the quote by calling QuotesServiceClient.EndGetAQuote, passing the
AsyncResult parameter . Finally, write the quote out to the console .

 Chapter 25 Windows Communication Foundation 571

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace ConsumeQuotesService
{
 class Program
 {
 static void Main(string[] args)
 {
 // Get a single random quote

 // Now add a quote

 // Now get all the quotes
 }

 static void GetAQuoteCallback(IAsyncResult asyncResult)
 {
 ServiceReference1.QuotesServiceClient quotesServiceClient =
 (ServiceReference1.QuotesServiceClient)
 asyncResult.AsyncState;

 ServiceReference1.Quote quote =
 quotesServiceClient.EndGetAQuote(asyncResult);

 Console.WriteLine(quote.StrQuote);
 }
 }
}

 . 9 . . Make the asynchronous call to GetAQuote . This is easy—just call the
QuotesServiceClient’s BeginGetAQuote method from the Program class’s Main method .
Pass in the GetAQuoteCallback method you just wrote as the first parameter and the
QuotesServiceClient object as the second parameter . Add a call to System.Console
.ReadLine to pause the main thread so that the asynchronous call has time to execute .

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;

namespace ConsumeQuotesService
{
 class Program
 {
 static void Main(string[] args)
 {
 // Get a single random quote

572 Part VII Services and Deployment

 // Now add a quote

 // Now get all the quotes

 // Now call GetAQuote asynchronously
 System.Console.WriteLine(
 "Now fetching a quote asynchronously");
 Console.WriteLine();

 quotesServiceClient.BeginGetAQuote(GetAQuoteCallback,
 quotesServiceClient);

 Console.WriteLine("Press enter to exit...");
 Console.ReadLine();
 }

 static void GetAQuoteCallback(IAsyncResult asyncResult)
 {
 // implementation removed for clarity
 }
 }
}

 . 10 . . Run the program to watch the console application call the WCFQuotesService . You
should see the following output:

 Chapter 25 Windows Communication Foundation 573

Chapter .25 .Quick .Reference

To Do This

Create a WCF-enabled Web site In Visual Studio, choose File, .New, .Web Site and select WCF Service from
the available templates . This will produce a WCF-enabled Web site for
you and will stub out a default contract and implementation that you
may change to fit your needs .

Create a service contract Service contracts are defined as .NET interfaces . The entire interface
should be adorned with the [ServiceContract] attribute . Interface mem-
bers meant to be exposed as individual services are adorned with the
[OperationContract] attribute . Data structures may be passed through
the interface . Structure members meant to be visible through the
 interface are adorned with the [DataContract] attribute .

Implement the service contract Create a class that derives from the interface defining the service
 contract and implement the members .

Expose the WCF service as an
ASP .NET application

Make sure that the web .config file mentions the service contract and the
implementation .

Create a client to consume the
WCF service

Use the Add Service Reference menu item found in the project’s con-
text menu (exposed from Visual Studio Solution Explorer) to discover
and locate the service metadata . Alternatively, use the ServiceModel
Metadata Utility Tool (packaged as an assembly named Svcutil.exe) .

Customize the service’s local
 execution, managing execution
 aspects such as security, instance
 lifetime, and threading

Apply the ServiceBehaviorAttribute and OperationBehaviorAttribute
 attributes as necessary to control the following aspects of the service
execution: instance lifetimes, concurrency and synchronization support,
configuration behavior, transaction behavior, serialization behavior,
metadata transformation, session lifetime, address filtering and header
processing, and impersonation .

Access the ASP .NET application
cache from a standard WCF
 application (one not configured to
run in ASP .NET compatibility mode)

Use the HttpRuntime.Cache property .

 . . 575

Chapter 26

Deployment
After completing this chapter, you will be able to

n Understand Microsoft Visual Studio support for deploying Web Applications .

n Create a deployment package using Visual Studio .

The first 25 chapters of this book focus on how the various features of ASP .NET work . A major
theme in ASP .NET is to solve the most common use cases of Web site development . The
 preceding chapters have discussed the following aspects of ASP .NET:

n Rendering model, which breaks down page rendering into small manageable pieces
 using server-side controls

n Support for data binding, easing the task of rendering collections

n Login controls that cover the most common login scenarios

n Session state, which makes tracking users manageable

n Navigation and site map support

n XML Web Services as well as Windows Communication Foundation (WCF)-based Web
site service support

n Support for creating a common look and feel for an application through master pages
and themes

n Support for rich content using Microsoft Silverlight

n Support for AJAX-style programming

After you build a feature-rich application that streamlines your company operations or drives
customers to your business, you need to be able to deploy it and manage it effectively . That’s
the topic of this chapter—how the various Visual Studio models affect your deployment
strategy . In addition, this chapter looks at building a Web setup project .

Important This chapter’s code samples on the companion CD require IIS support to execute .
See the “Code Samples” section in the Introduction for important information on running the
examples for this chapter .

576 Part VII Services and Deployment

Visual .Studio .Web .Sites
The Visual Studio File, New menu includes an entry for creating new ASP .NET projects and
another entry for creating new Web sites . Most of this book focuses on creating new ASP .NET
projects; this chapter focuses on deploying ASP .NET projects . Before discussing deployment,
this chapter takes a quick look at the Visual Studio Web site templates that you can use to
develop and deploy directly to various platforms (for example, to a file system, to an FTP site,
or to Internet Information Services (IIS)) .

HTTP Web Sites
In Visual Studio, when you click File, New, Web Site, and then select HTTP in the Web
Location combo box in the New Web Site dialog box, you get a project that is much like the
very first ASP .NET project development model available in Visual Studio (that is, in versions
earlier than Visual Studio 2005) . For the HTTP Web site model, Visual Studio creates a vir-
tual directory under IIS and uses IIS to intercept requests during development time . Under
this model, the solution file (.sln file) resides in a directory specified under the Visual Studio
project settings directory . The source code for the project is stored in the IIS virtual directory
(that is, \Inetpub\wwwroot) .

Although this is not the preferred development model for most companies, the option is still
available for some fringe scenarios, for example, individual developers creating sites . You
might use this option if you want to work as closely as possible with IIS . With an IIS Web site
during development, you can test the entire request path because it will run in production
(not just the path through the Visual Studio–integrated Web server) .

FTP Web Sites
The Visual Studio New Web Site template also includes a facility for creating an FTP Web Site .
To create an FTP site, select FTP in the Web Location combo box in the New Web Site dia-
log box . This option was introduced in 2005 for projects that you want to manage remotely
through an FTP server . For example, using an FTP project is a good option if you employ a
remote hosting service to host your Web site . The FTP site option represents a reasonable
means of getting files from your development environment to the hosting site .

For this type of site, Visual Studio can connect to any FTP server for which you have file and
directory Read and Write access . You then use Visual Studio to manage the content on the
remote FTP server .

 Chapter 26 Deployment 577

File System Web Sites
The File System Web Site is the most developer-oriented Web site option . To create a File
System Web Site, click File, New Web Site, and then select File System in the Web Location
combo box in the New Web Site dialog box . File System Web Sites rely on the Web server
integrated with Visual Studio to run Web sites during development . When you specify a File
System Web Site, you can tell Visual Studio to put it anywhere on your file system or in a
shared folder on another computer .

If you don’t have access to IIS, or you don’t have administration rights to the system on which
you’re developing, you can create a File System–based Web site project . The site runs locally
but independently of IIS . The most common scenario in this case is to develop and test a
Web site on the file system . Then, when it is time to expose your site, you can simply create
an IIS virtual directory and point it to the pages in the file system Web site .

Another aspect of developing ASP .NET Web applications, aside from selecting the proper
project type, is deciding whether to precompile your Web app . By default, Visual Studio does
not precompile your Web application . After you have developed a site using Visual Studio,
you can decide to precompile it for performance reasons . The next section looks at this
option .

Precompiling
The earliest versions of Visual Studio automatically built ASP .NET applications when you
 selected Build, Build Solution on the main menu . All the source code (the .vb and the .cs files)
was compiled into a resulting assembly with the same name as the project . This precompiled
assembly went into the project’s bin directory and became part of the files used for deploy-
ment . ASP .NET still precompiles an application for you . However, now you have two choices
with regard to precompilation—using a virtual path (for applications already defined in IIS)
and using a physical path (for sites that live on the file system) . In addition, you must be
deliberate about precompiling . The two precompilation options are precompile for perfor-
mance and precompile for deployment . Precompiling a Web site involves using command-
line tools .

Precompiling for Performance
The first option is also known as “precompiling in place .” This is useful for existing sites for
which you want to enhance performance . When you precompile the source code behind
your site, the primary benefit is that ASP .NET does not have to run that initial compilation
when the site is hit for the first time . If your site requires frequent updates to the code base,
you might see a small amount of performance improvement .

578 Part VII Services and Deployment

To precompile an IIS-based site in place, open a Visual Studio command window .
Navigate to the .NET directory on your computer (probably Windows\Microsoft .Net\
Framework\<versionnumber>) . In that directory is a program named aspnet_compiler .
Execute the aspnet_compiler program, with the name of the Web site as known by IIS
 following the –v switch . For example, if IIS has a virtual directory named MySite, the following
command line will build it:

aspnet_compiler -v MySite

The precompiled application ends up in the Temporary ASP .NET Files directory under your
current .NET directory .

If the Web site is a file system Web site without an IIS virtual directory, use the –p command-
line parameter to specify the physical path . This compilation option precompiles the code
and places it in the bin directory for the application .

Precompiling for Deployment
Compiling for deployment involves compiling the code for a site and directing the output
to a special directory from which it can be copied to the deployment computer or used in a
setup project (as you see momentarily) . In this case, the compiler produces assemblies from
all ASP .NET source files that are typically compiled at run time . That includes the code for the
pages, source code in the App_Code directory, and resource files .

To precompile a site for deployment, open a Visual Studio command window . Navigate to
the .NET directory . Run the aspnet_compiler command-line program, specifying the source
as either a virtual path or a physical path . Provide the target folder following the input direc-
tory . For example, the following command builds the code in the MySite virtual directory and
puts the resulting compiled version in C:\MySiteTarget:

aspnet_compiler -v MySite c:\MySiteTarget

If you add a –u command-line parameter at the end of the command line, the compiler will
compile some of the code and leave the page code files to be compiled just in time .

Visual .Studio .2010 .Deployment .Support .
For many developers, deploying an ASP .NET application is a far-off activity that they have to
simply take care of at the end of the development cycle . However, it turns out that deploying
and redeploying an application is a big deal—especially with the advent of cloud computing
where you might not have direct access to your servers . The deployment task is the one task
to which Visual Studio has been only partially suited . That is, up until now .

 Chapter 26 Deployment 579

Visual Studio includes several new features that make Web site deployment much more
 manageable than before . These features include the following:

n Web packaging

n Transforming web .config files for deployment (for example, by substituting
 development-time connection strings with production-time connection strings)

n Database deployment/redeployment

n One-Click Publish for Web applications

These new Visual Studio 2010 deployment features address a long-neglected phase of
ASP .NET application development—getting your code to a place where users can browse to
it . Before these features were available, the best deployment option was usually to create an
install package to distribute to those administering a Web farm . Although creating an install
package is definitely preferable to simply copying files to a Web server, the install package
mechanism didn’t take care of everything . For example, database schema changes were
often a big problem during site redeployment . The ASP .NET debug/release Web .config file
mechanism is completely unaccounted for by the Web install project . The ASP .NET new Web
packaging feature solves these problems . Using the Web packaging feature, you can create
either a ZIP file or a folder containing all the content and support files necessary to deploy
the project onto a Web server . The following items are included in a Web package:

n The content—such as Web Form pages, user controls, and HTML files

n Microsoft SQL Server database schemas and data, if desired

n IIS settings such as error page settings and application pooling information

n Other pieces required to support the project, such as components to be installed in the
global assembly cache, security certificates, and registry setting information

Once created, you can either copy the Web package to a server and install it manually (using
IIS Manager), or you can install it using command-line programs or the deployment APIs
(useful for automated deployment scenarios) .

The best way to understand these features is to set up an ASP .NET site for deployment .

Packaging an ASP.NET project for deployment

 . 1 . . Create a new Empty ASP .NET Web Application project named DeployThisApplication .

 . 2 . . Add some content to this site so that you can see it when it’s deployed . At
the very least, include a Default .aspx page, and include a Button named
ButtonShowApplicationSetting .and a Label named LabelShowApplicationSetting . These
illustrate how the web .config transforms work . The example included with this book
also has a Default .aspx page, Page1 .aspx, and Page2 .aspx .

580 Part VII Services and Deployment

 . . 3 . . The application created by Visual Studio comes in two flavors: Debug and Release . You
want to create a new configuration named Staging that might require some slightly
different settings once the application is running on the Web servers . Right-click the
Solution node in Solution Explorer, and then select Configuration Manager . Visual
Studio displays this dialog box:

 . 4 . . In the Active Solution Configuration combo box, select <New...> . Visual Studio
will display the New Solution Configuration dialog box, as shown in the following
 graphic . Name the new configuration Staging, and copy the settings from the Release
 configuration, like so . Click OK to save the new configuration .

 Chapter 26 Deployment 581

 . 5 . . Now that there’s a staging configuration, add a transform for web .config to handle any
configuration changes that might occur between development and deployment . To see
how this works, start by adding an application setting to the web .config file . Use the
ASP .NET Configuration tool to add an application setting to this project’s configuration
file (you can find it under Project, ASP .NET Configuration) . This example has a setting
whose key is ApplicationSetting and whose value is This ApplicationSetting was created
at development time, as shown here:

 . 6 . . Create a button handler by double-clicking the button in the Designer . Write a handler
that looks up the application setting and displays it in the label, like so:

protected void ButtonShowApplicationSetting_Click(object sender, EventArgs e)
{
 string applicationSetting =
 System.Configuration.ConfigurationManager.AppSettings["ApplicationSetting"];
 this.LabelShowApplicationSetting.Text = applicationSetting;
}

582 Part VII Services and Deployment

It should appear something like this when you run the page and click the button:

 . 7 . . Now set up a version of the configuration file to be used during deployment . To do
this, right-click the Web .config node in Solution Explorer and select Add Configuration
Transform . Visual Studio will create a Web .Staging .config for you automatically . You can
see it in Solution Explorer along with Web .Debug .config and Web .Release .config:

 . 8 . . Open the main web .config file and copy the application settings section to the
Clipboard . Then, open the Web .Staging .config file and paste the application settings
section into it . Now the development and deployment application settings can differ—
and Visual Studio will make sure the deployment settings are in the deployment
web .config file .

 Chapter 26 Deployment 583

 . 9 . . Modify the Web .Staging .config file to include a different setting . Change the setting to
reflect that it is coming from the staging configuration . Also, add two XML Document
Transform attributes, xdt:Transform and xdt:Locator, so that the setting will be substi-
tuted correctly when the application is transformed for deployment . Visual Studio will
read the attributes when the package is created and will replace the application setting
string in the Web .Staging .config file .

<appSettings>
 <add key="ApplicationSetting"
 value="This ApplicationSetting was created at DEPLOYMENT time"
 xdt:Transform="Replace"
 xdt:Locator="Match(key)"
 />
</appSettings>
<system.web>
</system.web>

 . 10 . . Have Visual Studio create the deployment package for you . Make sure Staging is the
active configuration . First, open the Package/Publish Settings for the project by right-
clicking the project in Solution Explorer and clicking Package/Publish Settings . Clear
the Create Web Package As A ZIP File check box so that the files will be deployed into a
directory structure you can later examine . Click the Save button on the toolbar to save
your new setting .

 . 11 . Right-click the project node in Solution Explorer and click Create Package . Visual Studio
will create a directory structure with everything needed to deploy the application . You
can find it in the project’s directory structure under obj\Staging\Package\PackageTmp,
like so:

584 Part VII Services and Deployment

 . 12 . . Copy the contents of the package directory into a directory on your root directory that
you can use as a virtual directory for IIS . This example assumes that the content is cop-
ied into C:\deploythisapplication . Use IIS to create a new Web Application under the
Default Web Site by right-clicking the Default Web Site node in IIS and selecting Add
Application as you did in Chapter 2, “ASP .NET Application Fundamentals .” Provide IIS
with the directory containing the new content, like this:

 . . 13 . . Open the content pane for the new site and notice the deployed content is
visible to IIS:

 Chapter 26 Deployment 585

 . 14 . . Right-click the Default .aspx page and browse to the Default page . Click the button and
notice that the DEPLOYMENT version of the application setting is displayed:

Chapter .26 .Quick .Reference

To Do This

Work on a Web site locally without
going through IIS

Create a File System Web site .

Work on a Web site using IIS Create an HTTP Web site .

Work on a Web site by copying files
over to the server FTP

Create an FTP site .

Precompile for performance or for
deployment

Use the aspnet_compiler utility to precompile the code or
 publish it using Visual Studio .

Publish a Web application Use the Build, Publish option in Visual Studio . Visual Studio will
push the files to the directory you specify (which can be an IIS
virtual directory) .

Create an installer for your Web
application

Add a second project to your solution . Make it a Web Setup
project . Add the necessary files to the project to make it work .
Build the installer .

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

586 Part VII Services and Deployment

To Do This

Create a new configuration for
deployment

Right mouse click on the Solution node in Solution Explorer .
Select Configuration Manager . Under the Active solution con-
figuration, select <new configuration> . Name the configuration
and copy it from an existing configuration .

Create a new Web .config file to transform After creating a new configuration, right mouse click on
the Web .config file in Solution Explorer . Select Add Config
Transforms .

Create a Web Package Right mouse click on the Project node in Solution Explorer .
Select Create Package .

 . . 587

Symbols
404 errors, 378
<% and %> tags, 19, 31
<body> tag, 147
<Canvas>/</Canvas> tags, 448
[DataContract] attribute, 573
<deny users=”*”> node, 204
<form>/</form> tags, 9–11

action attribute, 10
method attribute, 10–11

<Grid>/</Grid> tags, 448
<iframe> element, 442, 445
 tag, 128
<input type=image /> tag, 129
<object> tags, 524–525
[OperationContract] attribute, 573
<option> tag, 207
<Page>/</Page> tags, 448
[ScriptableMember] attribute, 534
[ScriptableType] attribute, 534
<select>and </select> tags, 9,

207
[ServiceContract] attribute, 573

A
ABC endpoints definition, 557
abortPostBack() method, 499
absolute expirations, for cached

data, 331–333
absolute positioning, 77, 150
AcceptVerbs attribute, 469, 471
access

managing, 181 . See also security
speeds of, 321

access rules, 198
creating, 203–204

Accordion extenders, 482
AccountController, 457
action attribute, 10
ActionResult, 460, 469
Active Data Objects (ADO), 215
Active Server Pages (ASP), 18–21

code processing, 46
control state, loss of, 97
dynamic content support, 60, 61
execution model, 25
locked files in, 42

Response object, 32
script blocks, 31

ActiveViewIndex property, 137
ActiveX controls, for Web-based

GUIs, 62
Add Application Setting dialog

box, 178
add attribute, 406
Add Connection String dialog

box, 177
Add New Access Rule link, 203
Add New Item dialog box, 53
Add Reference dialog box, 398
Add Service Reference command,

547
Add Service Reference dialog

box, 568
Add Style Rule dialog box,

156–157
administrators, user access

control, 182
ADO (Active Data Objects), 215
ADO .NET, 215–221

database connection classes,
216

database provider factories,
216–217

database scalability and, 219
result set management,

218–221
ADO .NET objects, data-bound

controls, session state and,
299–305

AJAX (Asynchronous Java and
XML), 433, 474–475

AJAX-style programming
examples, 477

ASP .NET and, 475–478
async callbacks, 489–490
authentication support, 477
AutoComplete extender, 433,

501–507
base class library, 480
benefits of, 476–477
browser compatibility layer, 480
browser support, 477
client-side support, 480–484
core services layer, 480
vs . DHTML, 478

extender control architecture,
477, 501–512

ModalPopup extender, 433,
508–512

networking layer, 480
partial-page updates, 477,

484–489
personalization support, 477
progress updating, 497–501
in the real world, 477–478
RIAs, creating with, 473
server-side support, 478–480
style of programming, 474–475
Web service idiom use, 475
Web sites, enabling for, 512
for Web UIs, 62

AJAX Control Toolkit, 475,
480–481

building, 481
community-supported effort,

481
controls and extenders,

482–484
AJAX Library scripts, registering

with page, 479
AJAX script libraries, 480
Alexander, Christopher, 451
allowAnonymous attribute, 262,

266
allowCustomSqlDatabase setting,

311
AlternateRowStyle property, 228
AlternateText property, 130
AlwaysVisibleControl extenders,

482
Animation extenders, 482
animations

rendering, 448
in Silverlight, 535–542

Anonymous Authentication
mode, 183

anonymousIdentification element,
262, 266

anonymous personalization, 262
anonymous profiles, 261

tracking, 266
AnonymousTemplate template,

200

Index

588

anonymous users
denying access of, 198–199
personalization support for, 262

App_Code directory, adding to
projects, 210

App_Data directory, 53
AppDomain state, shared, 560
AppearanceEditorPart, 271, 276
appearance of pages, output

caching and, 357
AppendCacheExtension, 351
Application_AuthenticateRequest

event, 391
Application_BeginRequest event,

391
Application_BeginRequest handler,

393
application configuration settings

accessing, 173–174
adding to web .config, 170–173
managing, 177–178

application data cache, 389–390
vs . application state, 389

application dictionary, 386
accessing, 404
indexing data in, 389
storing data in, 389

Application directive, 387
Application_End event, 390
Application_EndRequest handler,

393
Application_Error event, 390
application event handlers,

387–388
application object, 386

event handling abilities,
390–391

Application objects, 389
in Silverlight projects, 521

application performance . See also
performance

nesting controls and, 102
view state management and,

100
application pooling, 31
applications . See also Web

applications
access management, 181 . See

also security
cache, 80
console application, 6, 567
debugging, 375–377, 383
Debug version, 580
distributable, 557
interactive applications, 10–11

isolation of, 31
Release version, 580
RIAs, 473–474
settings in web .config, 581
Silverlight applications, 517–524,

533–534, 551
virtual directories for, 13
WPF applications, 435
XBAPs, 438–441, 448, 513

Application_Start event, 388, 389,
390

application state, 385, 389–390
accessing, 49
vs . application data cache, 389
managing, 388–389
MVC model management of,

450
storing in modules, 400–403

application tracing, 370–374
enabling, 325, 383

application-wide cache, 49
application-wide data

repository for, 48 . See
also HttpApplication objects

application-wide events, 385, 386,
391–392

exposing, 47
handling, 49, 387, 390–391

App_Themes directory
creating, 156

App .xaml .cs files, 439
App .xaml files, 439
ArrayList objects, adding to

controls, 97–98
ASCX files, applying OutputCache

directive, 354, 359
ASHX files, 417–419
ASP . See Active Server Pages (ASP)
ASPClassic handler, 18
ASP .DLL ISAPI DLL, 19
 .asp extension, 19
ASP .NET

AJAX and, 475–480
browser capability information,

95
evolution of, 22–23
IIS compatibility, 35
object-oriented execution

model, 25
Page model, 64–66 . See

also pages
precompiling, 577–578
request handling facility,

407–410

server-side control architecture,
59, 62

subdirectories in, 41
syntax, 25
technologies underlying, 3
Visual Studio and, 50–58
WCF and, 560–561
XBAP support, 438

ASP .NET 1 .0, 22
custom control/user control

approach to UI, 143–144
ASP .NET 1.x, configuration

management, 163, 168–169
ASP .NET 2 .0, 22–23

configuration management, 169
ASP .NET 3 .5, 23
ASP .NET 4, 23
ASP .NET applications . See

also applications; Web
applications

converting HTML files to, 29
aspnet_compiler utility, 578, 585
ASP .NET configuration, 163,

167–174 . See also application
configuration settings;
configuration

configuring from IIS, 174–180
keywords, 166
schema for, 167–168

ASP .NET Configuration Settings
pane, 180

ASP .NET Configuration tab, 163,
174–180

aspnet_isapi .dll
mapping extensions to, 419
requests routed to, 38

ASP .NET MVC Site template, 456
ASP .NET pipeline, 46–49

accessing, 40, 48–50
HTTP modules and, 395–396
integrated version, 47
WCF services access to, 561

aspnet_regsql .exe, 195, 288, 336
ASP .NET Server Control template,

82, 100, 103
ASPNETStepByStepExamples, 52
ASPNETStepByStep Web site, 27
ASP .NET tags, ID attribute, 74
ASP .NET test sites, for Silverlight

content, 517–518
ASP .NET Web Forms, controls

collection in, 80
ASP .NET Web Site template, 53
ASP .NET worker process, 31
asp: prefix, 86

anonymous .users

 . . 589

 .aspx extension, 29
ASPX files

code-behind directives, 43–44
compiling, 41, 417
integrating with assemblies,

30–31
mapping virutal URLs to,

251–255
ASPX pages

breakpoints, inserting, 375
page tracing, setting, 364

assemblies . See also .NET
assemblies

binary composite controls as,
117

integrating with .aspx files,
30–31

pages compiled into, 41
precompiled, 44–45, 577
refreshing, 93
reverse compiling, 41
storage in temporary

directories, 41, 42
strong names for, 166
viewing, 41–42

AssociatedUpdatePanelID
property, 498

asterisks, in output caching
paramters, 357

AsyncFileUpload extender, 482
asynchPostBack triggers, 506
asynchronous background

processing, 474
Asynchronous Java and XML .

See AJAX (Asynchronous Java
and XML)

asynchronous postbacks, 489–490
canceling, 499–501

asynchronous proxy methods,
Visual Studio generated, 568

asynchronous service references,
568

attributes, of HTML tags, 9
Authenticate event, 200
Authenticate method, 190
authentication, 119, 189–194

AJAX support for, 477
definition of, 181
managing in configuration files,

168
manual, 190, 206
Passport authentication, 189
WCF services side-by-side mode

and, 560
Windows authentication, 189

authentication cookies
installing, 190
invalidating, 206
setting manually, 192
value of, viewing, 188
verifying, 206

authentication keyword, 166
Authentication page (ASP .NET

Configuration Settings pane),
180

authorization, 119, 182, 184,
203–206

access rules, 198
definition of, 181
WCF services side-by-side mode

and, 560
AutoComplete extenders, 433,

482, 501–507
AutoDetect, 310
AutoEventWireup attribute, 145
automaticSaveEnabled attribute,

260
AutoPostBack property, 212
 .axd extension, file mappings for,

409

B
background processing,

asynchronous, 474
BackgroundWorker component,

497
backing files, 334
banners on master pages,

153–154
base classes, building pages

based on, 144
base class library, 480
BeginRequest event, intercepting,

392–393
BehaviorEditorPart, 272
behaviors (WCF), 558–559
binary composite controls, 101,

103–110
advantages of, 117
default properties, 113
disadvantage of, 117
global assembly cache, adding

to, 117
mappings to file extensions, 36
UI functionality, grouping in,

117
bindings (WCF endpoint), 558
bitmaps . See also images

clickable areas, defining, 130

BorderColor property, 134
BorderStyle property, 134
breakpoints, inserting, 375
breaks (
), 86
BrowseDisplayMode, 274
browser compatibility layer, 480
browser definition capability files,

165
Browser object, 95
browsers

AJAX support, 477
HTML interpreting capabilities,

95
HTTP requests from, 5–6, 29
jobs of, 7
modern features of, 475
pushing functionality to,

433–434
XAML plug-in, 448
variations in, 475
viewing HTML source in, 30
version-independent rendering

code, 100
built-in handlers, 407–410 . See

also HTTP handlers
BulletedList control, 209
BunchOfControls page, 59, 60

control tree, 66
raw HTML, 65–66
source code for, 61, 63

Button_Click handlers, 440
buttons

adding graphics to, 129
adding to page, 73
Click handlers for, 115
event handlers for, 74–75

C
CacheControl property, 353
cached data . See also data caching

expirations, 331–333
flushing, 334
managing, 163, 346–354
SQL Server dependency,

336–338
varying on query string

parameters, 348–351
cache dependencies, 334–336 . See

also data cache
CacheDependency objects, 341,

353
Cache.Insert method, 341
Cache.NoAbsoluteExpiration

policy, 335

Cache .NoAbsoluteExpiration .policy

590

Cache.NoSlidingExpiration policy,
332, 335

Cache objects
accessing, 321
Insert method, 327–328

CacheProfile attribute, 347
Cache property, 341, 359
CacheWithFileDependency

method, 336, 340
caching . See also data caching;

output caching
page content, 343–346
user controls, 359

caching profiles, 353–354
Calendar extenders, 482
callback delegates, 341
callbacks, 488 . See also postbacks

aynchronous, 489–490
initiating, 338–340

Call Stack window, 377
Canvas, 435, 442–443, 528–529

adding, 448
adding content to, 448

Canvas.Left property, 444
Canvas.Right property, 448
Canvas.Top property, 448
CascadingDropDown extenders,

482
Cascading Style Sheets (CSS), 155
Cassini Web server, 12, 13
CatalogDisplayMode, 274
CatalogPart controls, 271
catalogs, adding Web Parts to,

284–285
CatalogZone, 277, 288
cc1: prefix, 86
ChangePassword control, 200
channels (WCF), 558
chat pages, creating, 491–497
CheckBoxList control, 209
child controls

adding, 102
of composite controls, 109
unique IDs for, 103

Choose Toolbox Items dialog
box, 83

ChtmlTextWriter class, 95
Class1 class, 396, 411
Class1 .cs file, 396
classic ASP, 18–21 . See also Active

Server Pages (ASP)
file inclusion method, 143

Classic mode (IIS), 37
ClassName attribute, 145
Click handlers, adding, 115

client authentication by IIS, 36 .
See also authentication

ClientBin directory, 519
clients

infrastructure on, 62
JavaScript support, 125
sending output to, 49

client-side controls, 59
client-side scripting, 433
client-side validation, 125
closing tags (HTML), 9
CLR object dictionary, 321 . See

also data cache
code behind, 43–44
code beside, 43–45

accessing controls with, 64
derivation of, 64

code blocks, server-side, 33–34
code execution, server-side, 31
CodeFile directive, 45
collaboration sites, Web Parts

and, 268
CollapsiblePanel extenders, 482
collections

attaching to controls, 208,
210–215

binding to controls, 236
member variables, exposing,

211–212
rendering as tables, 98
representing as UI elements,

207
representing with data binding,

208–210
representing without data

binding, 207–208
ColumnDefinitions property, 448,

545
CommandBuilder, 221
commands, database commands,

217–218
Common Gateway Interface (CGI),

11–12
Common Language Runtime

(CLR) classes, IHttpHandler
implementation, 25

communications API, fragmented,
556

CompareValidator controls, 120
adding to Web Forms, 127

compilation model, 35–42
CompilerOptions attribute, 145
compiler tracing, 374
Component Object Model (COM),

ActiveX support, 62

CompositeControl class, deriving
from, 103

composite controls, 79 . See
also controls

ArrayList, adding, 107–108
building, 103–110
Button event handler, 104
categories of, 101
child members, 102
control tree, 109
CreateChildControls method

override, 105
event hookup, 105
fields, adding, 103
LiteralControl, 105
for login, 102
nesting, 102
RenderContents method,

removing, 103
vs . rendered controls, 101–102
rendering, 102
running, 108
StripNonAlphanumerics

method, 103–104
Table control, adding, 107–108
Text property, 103
utility of, 102

Composite pattern, 452
CompositeType class, 563
config .sys, editing, 414
configuration . See also application

configuration settings
browser definition capability

files, 165
configuration section handlers,

165
keywords, 166
machine .config comments, 165
managing in ASP .NET 1x,

168–169
managing in later versions of

ASP .NET, 169–174
of site maps, 242–243

configuration files, 163
authentication, managing in,

168
for deployment, 582
listing, 164
for .NET applications, 167
retrieving settings from, 180
for Web applicaitons, 167

ConfigurationManager.
AppSettings collection, 178

ConfigurationManager class, 173,
180

Cache .NoSlidingExpiration .policy

 . . 591

configuration section handlers,
165–166

configuration settings
for ASP .NET applications, 180
retrieving, 180
for subdirectories under virtual

directories, 180
using IIS ASP .NET Configuration

tool, 180
using Web Site Administration

Tool, 180
ConfirmButton extenders, 482
ConnectDisplayMode, 274
connecting to databases, 215–217
connection strings, adding, 177
Console Application projects, 6,

567
content

dynamic content, 9–18
interactive content, 520
semidynamic content, 437
static content, generalized, 257

ContentPlaceholder controls,
145–147

Context.ClearError, 382
contracts (WCF endpoints), 558

Visual Studio–generated
placeholders for, 562

Control class . See System.Web.
UI.Control class

control flow, with Forms
Authentication, 185

Controller class, 453
controllers, adding to MVC

projects, 460–461, 464, 472
controls, 77 . See also composite

controls; user controls
adding to control tree, 64
adding to Toolbox, 100
adding with Visual Studio, 67–78
appearance properties,

managing, 159–160
custom, 3, 81–88, 100, 101
data-bound . See also data-

bound controls
declaring on page, 85
default event handlers, 78
event management for, 100
extender, 477, 501–512
identifying text, 85
layout options, 77, 78
naming, 121
nesting, 102
new instances of, 93
placing on pages, 84

populating with query results,
221–226

properties, changing, 78, 86,
100

rendering as tags, 59
run-time availability, 75
selecting, 85–86
selection handlers, 213
Silverlight controls, 516,

526–527
skins for, 159–160
state of, 62
tag prefix, mapping to, 85
view state management, 93,

97–100
ControlToAssociate property, 121
ControlToValidate property, 120

setting, 122–123
control trees

construction of, 80
control instances, adding, 64
controls in, 87, 88
viewing, 365
walking, 67–68

cookieName setting, 311
cookies

session identifier as, 310
session state, tracking with,

309–310
Set Auth cookie, 206

CookiesSupported method, 190
core services layer, 480
Create Application Settings link,

170
CreateChildControls method,

overriding, 105
Create Package command, 583
CreateUserWizard control, 201
CssClass property, 77
CurrentNode property, 240
Current property, 49–50, 387
custom attributes, for nodes in

web .sitemap, 248–250
custom cache providers, 358
CustomControlLib assembly,

composite controls in, 110
CustomControlLib directory, 83
CustomControlLib project, 82–88
custom controls, 3 . See

also composite controls;
controls

creating, 81–88, 100
types of, 101

custom error pages, 378–381

customErrors section (web .config),
379

custom handlers . See also HTTP
handlers

creating, 419
mapping extensions to,

414–415
as separate assemblies, 419
session state and, 416
Trace handler, 407–409
writing, 411–415

custom providers for session
state, 311

CustomValidator controls, 120,
127–128

D
data access, 324

expense of, 323 . See also data
caching

DataAdapter, 219–220
database access, expense of, 323
database lookups, 324
Database Markup Language

(DBML) source files, 458
database queries

configuring, 222–223
inline, 234–236
using a DataSet, 220
using data readers, 218

database query results
IDataReader, for iterating

through, 218–219
populating controls with,

221–226
databases

commanding, 217–218
connecting to, 215–217, 222
deployment/redeployment, 579
limits of connectivity, 219
managing result sets, 218–221
provider pattern and, 216
random access to, 221
SQL support, 217–218
Tables collection, 219

database tables, wrapper classes
for, 472

database technologies, ADO .NET
providers for, 216

DataBind, 208
data binding

collections, representing with,
208–210

data .binding .collections

592

data binding (continued)
simple method, 210–215
TreeView support of, 135

data-bound controls, 208
ADO .NET objects, session state,

and, 299–305
AutoPostBack property, 212
DataList control, 210, 232–233
DataSourceID property, 208
DataSource property, 208, 236
DetailsView control, 210,

230–232
FormView control, 209, 228–230
GridView control, 209, 226–228
ListControl base class, 209
Menu control, 209
Repeater control, 210
TreeView control, 209
value associated with, 212

data cache
accessing, 341
benefits of, 321–323
cache dependencies, 334–336
callback delegates, 341
clearing, 338–340
controlling cache entries, 327
deleting items from, 341
inserting items in, 341
inserting items with

dependencies, 341
inserting items with expiration

times, 341
managing, 327, 331–333
retrieving data from, 503–504
searching, 324
SQL Server dependency,

336–338
using, 324–325

data caching, 321–341, 386
backing files, 334
impact of, 325–327
output caching, 343–358
removal callbacks, 338–340

data collection, multistage,
312–320

DataContract attribute, 543
DataContractFormat attribute,

543
DataList control, 210, 232–233,

236
DataMember attribute, 543
data members, storing, 535
data models, for MVC sites, 458
data providers, managing, 170
data readers, 218–221

holding, 328
DataSet class, 219–221

CommandBuilder, 221
DataSets, 328–331
Data Source Configuration dialog

box, 245
DataSource controls, 208, 221–226

attaching to data-bound
controls, 221

DataSourceID property, 208
DataSourceMode property

setting, 223
DataSource property, 208, 236
data sources

attaching data-bound controls
to, 208

configuring, 224
DataSourceMode property, 223
for navigation controls, 256

DataTable arrays, 219
displaying, 236

DataTables, 302, 328–331
in-memory, 328–330
synthesizing programmatically,

328–329
DataTextFields, 236
DataValueFields, 236
DbProviderConfigurationHandler,

216
Debug Description attribute, 145
debugging, 374–377

page tracing, 363–370
preparing Web sites for, 383
starting, 375
Visual Studio support for, 374
Web applications, 383

Debug, Step Into command, 376
Debug, Step Over command, 376
DeclarativeCatalogPart, 271, 277,

278
declarative data binding, 208,

221 . See also data binding
DetailsView support of, 210
FormView support of, 209
GridView support of, 209
Menu support of, 209
TreeView support of, 209

Decrypt method, 190
default .aspx .cs files, 53
default .aspx files, 53

for MVC applications, 455
default configuration settings, 167
defaultRedirect attribute, 378
delegates for event handlers, 105
DeleteProfile method, 260

dependencies
for cached items, 334–336
in output caching, 353

dependency properties, 535
deployment, 575–586

configuration files for, 582
precompiling for, 578
Visual Studio support for,

578–585
deployment packages, creating,

583
DesignDisplayMode, 274
Designer (Visual Studio)

controls, support for, 110
event handlers, wiring, 105
user controls, support for, 110,

111, 117
visual development in, 67

Design mode
placing controls in, 84
switching to, 78

Design Patterns: Elements of
Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, Vlissides), 451

Design tab (Visual Studio), 54
Design view (Visual Studio), 68

inserting text in, 69
DetailsView control, 210, 230–232
device profiles, session state and,

311
DHTML (Dynamic HTML), 478
directories, for Web application

files, 26
discretionary access control lists

(DACLs), 182
display names, resolving to URLs,

237
Display property, 128
Dispose method, 397, 404
distributable applications,

indirection layer for, 557
distributed computing solutions,

fragmented nature of,
555–556

<div> tags, 69
attributes, setting, 69

DLLs, 14
ISAPI DLLs, 13–14, 19

DockPanel, 435
Document Object Model (DOM)

in Silverlight applications,
533–534, 551

Silverlight interaction with, 516,
533–534

data .binding .(continued)

 . . 593

DragPanel extenders, 482
DropDown extenders, 482
DropDownList boxes, 9, 209

adding items to, 72–73
editing items in, 72–73
rendering, 207–208

DropShadow extenders, 482
Duration attribute, 344, 347
dynamic content, 9–18

rendering, 60, 448
Dynamic Data model,

DynamicValidator controls,
128

Dynamic HTML (DHTML), 478
DynamicPopulate extenders, 482

E
EditDisplayMode, 274
EditorZone, 276, 288
Empty Web site template, 146
Enabled key, 371
Enabled property, 240
EnableViewState Explicit attribute,

145
Encrypt method, 190
endpoints (WCF), 557–558

address, 558
bindings, 558
contracts, 558
loosely coupled, 557
wire encoding, 557

EndRequest event, intercepting,
392–393

environment variables, 164
Error events, handling, 380–382
ErrorMessage property, 125

setting, 122
error messages

management of, 124, 128
from validator controls, 120

error pages, 378–381
Errors window (Visual Studio), 57
event handlers

adding, 74
adding with text wizard,

104–105
creation of, 93
delegates for, 105

event handling, 390–393
events

AJAX Timer control, 490–497
application-wide, 385, 391–392
exposing, 92–94
firing, 92–93
handlers for, creating, 93

managing, 100
responding to, 94
Silverlight events, 526–527

Events button (Properties pane),
93

exceptions handling, 381–382
executable blocks, 21
executable code

adding as a script block, 34–35
adding inline, 32–33
compiling, 46
managing, 43–46
marking, 31, 179

ExecuteReader, 218
execution model, 33

compilation model, 35
object-oriented, 25

execution tags <% %>, 31
expirations

absolute, 331–332
on cached data, 331–333
sliding, 333–334

Expression Blend, 516, 527
extender controls, 477, 501–512
eXtensible Application Markup

Language . See XAML

F
fields, validating, 120–128
file mappings

for .axd extension, 409
for HTTP handlers, 419
for virtual directories, 17–18

file name extensions
 .asp, 19
 .aspx, 29
 .axd, 409
mappings to binary

components, 36
mappings to ISAPI DLLs, 13
 .master, 145
 .xaml, 448
 .xbap, 441

file system, loading Web
applications from, 12

File System Web sites, 50–51, 577,
585

creating, 58
precompiling, 578

FilteredTextBox extenders, 482
Flash, 514
Flex, 514
folders, adding to a project, 203
Forbidden handler, 409–410

<form> tags, runat attribute,
63–64

Forms Authentication, 36,
184–189

enabling, 196
target file, 188
using, 206

FormsAuthentication class, 188,
189, 190

methods of, 190
Set Auth cookie, 206
SignOut method, 206

FormsCookieName method, 190
FormsCookiePath method, 190
Forms keyword, 166
FormView control, 209, 228–230,

236
free-form layout, 209
FrontPage 2002 Server Extensions

for Web site development, 51
FTP Web sites, 51, 576, 585

creating, 58

G
Gamma, Erich, 451
GDI and GDI+ interfaces, 434, 436
Generic Handler template, 417,

419
GetAuthCookie method, 190
GetAverageLengthOfRequest

method, 401
GetElementById, 551
get_isInAsyncPostBack method,

499
GetProductsCompletedEventArgs

argument, 548–549
GetPropertyValue method, 260
GetRedirectUrl method, 190
GET requests, 4, 10–11, 35
GetResponse method, 6–7
GetVaryByCustomString method,

351
global application class, adding,

338
Global Application Class template,

338, 388
Global .asax .cs files, 338, 387

global event handlers, 390
Global .asax files, 387

vs . HTTP modules, 404
server-side script block, 387

global assemblies
sharing, 419
signing and deploying, 117

global .assemblies

594

global assembly cache, binary
composite controls in, 117

global configuration files, viewing,
180

global state
making thread safe, 389–390
storing in modules, 400–404

graphical user interfaces (GUIs) .
See also UIs (user interfaces),
modular, 62

Graphics Device Interface, 434,
436

Grid.Column property, 448
Grid layout panel, 435, 528, 551

adding content to, 448
adding to Page, 448

Grid.Row property, 448
Grid ShowGridLines property, 528
GridView controls, 209, 226–228,

236
AlternateRowStyle property, 228
PagerSettings property, 228
PagerStyle property, 228

group element, 261
GUI components

packaging, 62, 63
server-side, 62

H
handler mappings, 23, 38–39
handlers . See also event handlers

for requests, 62
HashPasswordForStoring-

InConfigFile method, 190
header information, viewing, 5
HEAD requests, 4
HelloWorld2 .aspx file, 32

output of, 33
HelloWorld3 .aspx file, 34
HelloWorld4Code .cs file, 43
HelloWorld5Code .cs file, 44
HelloWorld .aspx .cs file, 56
HelloWorld .aspx file, 29, 30, 57
HelloWorld .htm file, 28

converting to ASP .NET
application, 29

HelloWorld Web application
building, 26–30
in Visual Studio, 52–58

Helm, Richard, 451
hideSkiplink style, 244
hierarchical data binding, 209
HomeController, 457
host pages, subscription to

events, 92

HotSpot Collection Editor, 130
HotSpotMode property, 130
hot spots

defining, 130
editing, 130–131

HotSpots property, 130
HoverMenu extenders, 482
HTML (Hypertext Markup

Language), 8–9
in ASP content, 60–62
changes between versions, 95
integrating Silverlight content

with, 533–534
over a disconnected protocol,

67
and page, layer of indirection

between, 62
rendering, 95
tables, rendering in, 96
test pages for Silverlight

content, 517–518
versions of, 8
XAML content, integrating,

442–447
Html32TextWriter class, 95
Html.BeginForm, 470
HtmlDocument class, 533

GetElementById, 533
GetElementByName, 533
AttachEvent method, 551
GetProperty method, 551
SetProperty method, 551

HTML files
converting to ASP .NET

applications, 29
creating, 28

HTML forms, 10–11
postbacks, 10

HTML markup, rendering, 105
HtmlPage class

Document property, 551
RegisterCreatableType, 551
RegisterScriptableObject, 551

HTML source, viewing, 30
HTML streams, renderings of, 8–9
HTML tags

attributes of, 9
<form>, 9
 tag, 128
<input type=image /> tag, 129
<option> tag, 207
<select>and </select>, 9, 207
sending to browser, 59
views, adding to, 472

HtmlTextWriter class, 80, 90, 95,
95–96

AddStyleAttribute, 96
RenderBeginTag, 96
tag-rendering methods, 100
using, 96
versions of, 95

HTTP 1 .0, 4
HTTP 1 .1, 4
HttpApplication, 38, 46–48, 386–

387, 391–392
dictionary, 386
overriding, 387–393

HttpApplicationState, 80
Lock method, 389

HttpBrowserCapabilities object
SupportsRedirectWithCookie

property, 311
HttpCachePolicy class, 351–352

SetCacheability method,
352–353

HttpContext, 386
Cache property, 341
Current property, 387
Profile property, 259
RewritePath method, 251
User.Identity.Name key, 261
for WCF applications, 561

HttpContext objects, 38, 46,
48–49, 291

properties in, 49
HTTP GET/POST idiom

drawbacks of, 473
improving, 473 . See also AJAX

HttpHandler interface, 50
HTTP handlers, 50, 405–420 . See

also custom handlers
add attribute, 406
built-in, 407–410
creating, 419
file mapping, 419
Forbidden handler, 409–410
generic handlers, 417–419
lifetime of, 48
request handlers, 405–407
session state and, 416
Trace handler, 407–409
type element, 406
validate attribute, 406
verbs, 406

httpHandler section (web .config
file), 419

HTTP (Hypertext Transfer
Protocol), 4

HttpModules, 46, 49
HTTP modules, 394–403

creating, 395
features handled by, 395

global .assembly .cache

 . . 595

HTTP modules (continued)
vs . Global .asax, 404
implementing, 396–397
project-level references to, 398
storing state in, 400–403
viewing, 398–400

HTTP requests/responses, 4–7 . See
also requests

from a browser, 5–6
endpoint of, 48
headers with, 95
handlers for, 17–18
header information, 5
inbound port for, 12
information about, 49
listening for, 12–13
managing, 48–50
MVC handling, 450 . See

also MVC Framework
object representing, 80
payload of, 100
routing of, 35–42
_VIEWSTATE field, 100
without a browser, 6

HttpResponse objects,
CacheControl property, 353

HttpRuntime
AppDomainAppPath property,

566
Cache property, 573

http://schemas.microsoft.com/
winfx/2006/xaml namespace,
448

http://schemas.microsoft.com/
winfx/2006/xaml/presentation
namespace, 448, 523

HTTPS (Secure HTTP), inbound
port for, 12

HTTP .SYS, 39
HttpVerbs.Post enumeration, 468,

472
HTTP Web sites, 52, 576, 585

creating, 58
HttpWorkerRequest class, 46
HyperLink controls, 282

adding to master pages, 204
NavigationUrl method, 204

hyperlink Web Parts, creating,
281–288

I
ICollection interface, 208
IDataReader interface, 218–219
ID attribute, 74

identity configuration elements,
311

IEnumerable interface, 208
IHierarchicalDataSource interface,

238, 241
IHierarchicalEnumerable interface,

238, 241
IHttpHandler interface, 50, 406,

410–411, 419
implementation of, 25, 46, 48,

405
IHttpModule, 397, 404
IIS Content View, 14–15
IIS Features View, 14–16
IIS (Internet Information Services),

12–13
Anonymous Authentication

mode, 183
application pooling, 31
ASP .NET, configuring from,

174–180
ASP .NET pipeline and, 46–47
ASP .NET, working with, 39, 40
Classic mode, 37
client authentication, 36
C++/native core server API, 16
custom handlers, configuring

for, 414–415
Default Web Site node, 26–27
directory space, 13
Handler Mappings page, 414
hosting Web sites in, 174
HTTP modules and, 395
Integrated mode, 37–38
loading Web applications with,

12
output caching, 36
port 80, listening on, 35
request handling, 36–42
resources, surfing to, 23
running, 14–18
securing, 183–184
security context of, 182, 183
security identity, viewing, 183
session state configuration

page, 307
Trace .axd request handling, 409
URL Rewrite Module, 255
virtual directories of, 13, 26
Windows authentication

support, 183
IIS management console

starting, 23
IListSource interface, 208
image-based controls, 128–132
ImageButton controls, 129

OnClientClick property, 129
PostBackUrl property, 129

Image controls, 128–130
ImageUrl property, 129, 230,

249
ImageMap controls, 129

adding to Web Forms, 130
AlternateText property, 130
HotSpotMode property, 130
ImageUrl property, 130

images
hot spots in, defining, 130
managing and organizing, 129
tooltips for, 130–131

ImageUrl property, 129, 130, 249
Impersonation property, 559
implicit properties, 211
ImportCatalogPart, 271
INamingContainer interface, 103
indexer notation, 341
indexers, for Session object, 293
Index method, 455, 460

index views, generating with,
464

Inherits attribute, 44, 145
InitializationComplete handler,

274–275
initialization files (.ini files), 164
Init method, 397, 404
InitOutputCache method, 352
in process, storing session state,

306
Insert method

Cache object, 327–328
overloads, 328, 338

installers, for Web applications,
585

Integrated mode (IIS)
handler mappings, 37–38
module mappings, 36, 37

interactive applications, 10–11
interactive content, 520
Internet Information Services .

See IIS (Internet Information
Services)

Internet Information Services (IIS)
Manager

Application Settings pane,
177–178

ASP .NET Configuration Settings
pane, 180

Connections pane, 176
Connection Strings pane,

176–177
Features View pane, 176
opening, 176

Internet .Information .Services .(IIS) .Manager

596

Internet Services Application
Programming Interface,
13–14, 19, 32

inventory binding code, 322–323
ISAPI DLLs, 13–14, 19, 32
IsapiFilterModule module, 16
IsapiModule module, 16
IService1 .cs file, 562
IsReusable property, 410–411, 419
IsValid property, 125, 126
item changed event handlers,

223–224
ItemCommand handler, 301
Items collections, 207–208
IValidator interface, 125

J
Java applets, for GUI components

packaging, 62
JavaScript

client-side validation and, 125
managed code, accessing in,

551
Silverlight components,

accessing with, 533
JavaScript libraries

for AJAX client-side support,
480

Silverlight.createObjectEx helper
function, 526

Java Virtual Machine, Java applet
support, 62

Johnson, Ralph, 451

K
keywords for configuration, 166
keywords namespace, 448

L
<label> element, 121
labels

adorning, 70
ControlToAssociate property,

121
editing content, 71
for validator controls, 121

Language attribute, 63, 145
Language Disassembler (ILDASM),

41
viewing assemblies in, 41–42

Language Integrated Query
(LINQ), 215, 234–236

language syntax, choosing, 53–54
layout

Silverlight schemes, 528–533
options for controls, 77, 78

LayoutEditorPart, 272
layout panels, 435

Silverlight, 528–533
LayoutRoot, 545
lineage of pages, 56
line breaks, rendering, 105
LINQ (Language Integrated

Query), 215, 234–236
queries, constructing, 234–235

LinqDataSource control, 208
LINQ To SQL template, 472
LINQ to SQL wrapper classes, 458
ListBox controls, 209

adding items to, 150–152
ListControl base class, 209, 215
ListItem Collection Editor dialog

box, 72
ListSearch extenders, 483
LiteralControl for line breaks, 105
literal text, rendering, 105
localhost, 27
local IIS Web sites, 50

creating, 53
localOnly key, 371
Locals window, 376–377
LocalSystem, access rights, 31
Location attribute, 347, 352–353,

359
location element, 168, 180
Lock method, 389
LoggedInTemplate template, 200
logical trees, in Windows-

based vs . browser-based
application, 435

login composite controls, 102
login controls, 119, 200–203
LoginName control, 200
login pages

basic page, 186–188
creating, 201
with Forms Authentication, 185
optional, 191–194
Visual Studio–created, 201

LoginStatus control, 200
LoginUrl method, 190
LoginView control, 200
LogOnUserControl, 457
long-running operations

canceling, 499–501
updating progress of, 497–501

look and feel, 143–144

master pages, 145–155
skins, 159–160
themes, 155–159

loopbacks, 308
loose XAML files, 436, 437, 438,

442, 444

M
machine .config files, 165

provider keys in, 216–217
configuration section handlers,

165–166
default .NET configuration

settings, 167
location of, 166
updating, 167

machine .config .comments file,
165

Macromedia Flash, 448
MainPage class, 522, 528
MainPage constructor, Silverlight

visual tree in, 522–523
MainPage .xaml .cs file, 521
MainPage .xaml file, 521
Manage Access Rules link, 203
managed code, 16–18

accessing in JavaScript, 534, 551
ManageForm method, 412
ManageUI, 493, 496
mangled URLs, 261
marker interfaces, 416
MaskedEdit extenders, 483
Master attribute, 146
master configuration files,

394–395
 .master extension, 145
MasterPage directives, attributes

of, 145–146
MasterPage .master file, 146

<body> tag, 147
master pages, 145–155

absolute positioning on, 150
adding content, 149–150
 .aspx pages, similarities to, 147
automatic, 179
banners on, 153–154
content of, 145
menus, adding to, 152
ScriptManager control on, 479
SiteMapPath control, adding,

246
Visual Studio–generated code

for, 146–147, 149
Web Forms based on, 244

Internet .Services .Application .Programming .Interface

 . . 597

Master Page template, 146
master web .config file

HTTP handlers in, 406–407
httpModules section, 394–395

member variables, 74
accessing, 64
exposing, 211–212, 236

Menu controls, 209, 237–238, 241,
256

data source for, 245
MaximumDynamicDisplayLevels

property, 246
StaticDisplayLevels property,

246
menu items

adding, 152
NavigateUrl property, 238

menus
adding to master pages, 152
hideSkiplink style, 244

messages (WCF), 559
message traffic, MVC

management of, 450
method attribute, 10–11
method calls, HTTP requests as,

405–406
methods, stepping into and over,

376
Microsoft SharePoint, 268
Microsoft.SharePoint.

WebPartPages.WebPart, 267
Microsoft Silverlight . See

Silverlight
Microsoft Visual Basic Controls

(VBXs), 62
Microsoft Web platform, 12 . See

also IIS (Internet Information
Services)

ModalPopup extenders, 433, 483,
508–512

configuring, 511
mode keyword, 166
Model-View-Controller (MVC)

software development
pattern, 449, 452 . See
also MVC framework

ASP .NET and, 452–453
Modify Style dialog box, 70, 157

<div> tag settings, 69
module mappings, 23

viewing, 16–17
modules . See HTTP modules
mostRecent key, 371
multistage data collection,

312–320

MultiView controls, 136–138
ActiveViewIndex property, 137
adding Views to, 136

MutuallyExclusiveCheckBox
extenders, 483

MVC framework
application state management,

450
architecture, 449–452
controllers, adding, 472
message traffic management,

450
postback events handling, 453
postbacks processing, 468
request path, 455–456
testing and, 454
UI management, 450
views, creating, 472
view templates, 453
Visual Studio wiring of, 455
vs . Web Forms, 453

MVC Site template, 456
MVC Web sites

creating, 456–462, 472
data model for, 458
delete views, 470–472
details views, 466
edit views, 469
index views, 466
links, adding, 465
navigation, 461
Site .css file, 457
Site .master file, 457
updating entries, 463–472
view code, 459

N
namespaces, XAML and, 523–524
NavigateUrl property, 238
navigation, 237–240 . See also site

maps
security trimming and, 251
URL mapping and, 251–255
URL rewriting and, 255

navigation controls, 237–239
adding, 256
data source for, 256
pointing to site map, 243
using, 241–243

navigation requests
intercepting, 256
redirecting with URL mapping,

251–255

redirecting with URL rewriting,
255

navigation structure, in-memory
representation of, 239–240

NavigationUrl method, 204
navigation URLs, setting, 153
nesting of controls, 102
 .NET assemblies . See

also assemblies
pages compiled into, 41

 .NET configuration, machine .
config, 165

 .NET configuration directory, 167
 .NET Globalization page (ASP .

NET Configuration Settings
pane), 180

 .NET run-time parameters, 165
 .NET databases, 215–221
 .NET developers, Silverlight and,

516
 .NET Framework

configuration, 164–174
LINQ extensions, 234–235
WCF, 555
XML configuration files, 164

 .NET Framework 3 .5, implicit
properties, 211

 .NET interfaces, [ServiceContract]
attribute, 573

networking layer, 480
NetworkService account, 31
New Data Source command, 245
New Project dialog box, 6
New Solution Configuration

dialog box, 580
New Style dialog box, 77
NextResult method, 219
NoBot extenders, 483
nonalphanumeric characters,

stripping out, 89, 90
nonexistent URLs, mapping to

ASPX files, 251–255
NoStore attribute, 347
NumericUpDown extenders, 483

O
ObjectDataSource control, 208
object type arguments, 548
Observer pattern, 452
OnClientClick property, 129
One-Click Publish, 579
OnEndRequest handler, 401
OnMenuItemDataBound event,

249–250

OnMenuItemDataBound .event

598

on/off attributes, 378
opening tags (HTML), 9
OperationBehavior attribute, 559
OperationBehaviorAttribute

attribute, 573
operations, updating on progress

of, 497–501
<option> tags, 67
out-of-band request handling,

475, 478, 479
output cache

dependencies, 353
managing, 346–354

OutputCache directive
Duration attribute, 344
Location attribute, 352–353, 359
modifying, 346–351
parameters of, 347–348
placing on page, 343
Shared property, 354
syntax, 344
VaryByCustom parameter, 347
VaryByHeader attribute, 359
VaryByParam attribute, 344,

359
outputCacheProfile elements, 353,

359
OutputCacheProvider elements,

358
outputCacheSettings section, 353
output caching, 163, 343–358, 359

alternate providers for, 358
by IIS, 36
caching profiles, 353–354
effective strategies for, 357–358
locations for content, 352–353
page appearance and, 357
setting up, 343
of user controls, 354–357

output caching parameters,
asterisks in, 357

P
Package/Publish Settings, 583
__Page objects, 66
Page1 .xaml .cs files, 439
Page1 .xaml files, 439
PageCatalogPart, 271
Page class, 30 . See System .Web .

UI .Page class
contents of, 514
request handling, 405
server-side validation

management, 125
Trace property, 363–370

UI processing, 405
Validate method, 126

page content
based on different browsers,

347
cached, locations of, 352–353
caching, 343–346

Page directive, 30, 63
adding, 29

page elements, themes for,
155–161

Page_Load events, handling, 63
Page_Load method

CacheWithFileDependency(),
336

calling, 323
updating properties in, 249
in Wizard controls, 317

page loads, costs of, 325 . See
also data caching

pageOutput key, 371
page refreshes, 473
page-rendering process

bypassing, 343 . See also output
caching

composite controls and, 102
PageRequestManager class, 499

abortPostBack() method, 499
get_isInAsyncPostBack method,

499
PagerSettings property, 228
PagerStyle property, 228
pages . See also Web Parts pages;

Web pages
absolute positioning on, 150
browsing to, 28–29
compiling into assemblies, 41
content placeholders, 145
controls, adding, 80
controls, declaring on, 85
controls, placing on, 84
control tree for, 64, 66–67
events management, 100
initialization of, 80
IsValid property, 126
layout options, 77, 78
lineage of, 56
loading of, 80
master pages, 145–155
properties of, 69
Register directives, 144
rendering contents of, 80
state of, encoding, 97
styles, adding, 77
unloading of, 80
user controls, adding, 115

XAML files, declaring in, 448
Pages And Controls page (ASP .

NET Configuration Settings
pane), 180

page tracing, 66, 363–370
configuring, 370–371
enabling, 383
turning on, 364

page validation, 125–127
PageView controls, 136
PagingBulletedList extenders, 483
partial classes, 45
partial-page updates, 477,

484–489
implementing, 512
triggers for, 488
UpdatePanel support of, 479

Passport authentication, 189
PasswordRecovery control, 200
passwords, hard-coded, 191, 194
PasswordStrength extenders, 483
PATH environment variable, 164
A Pattern Language (Alexander),

451
Patterns movement, 451
performance

AJAX and, 476
application performance, 100,

102
data caching and, 321
improving, 433–434
nesting controls and, 102
output caching and, 345–346
precompiling for, 577–578
request processing chain,

plugging into and, 394
round-trips to database and,

323
view state management and,

100
per-request dictionary, 49
personal information

management, 257–258 . See
also personalization; user
profiles

Personalizable property, 283
personalization, 257–266, 271

AJAX support for, 477
anonymous, 262
personalization providers,

258–259
user profiles, 258 . See also user

profiles
using, 259–265
Web Parts and, 272

PersonalizationProvider class, 258

on/off .attributes

 . . 599

personalization providers,
258–259

physical directories, mappings to
URLs, 13

PopupControl extenders, 483
port 80, 26

monitoring, 12
requests on, 35

port 443, 12
port 42424, 308
portals, 268, 269

Web Parts and, 268
postback events, MVC handling

of, 453, 468, 469
postbacks, 10

from ASP .NET controls, 489–490
asynchronous, 490
canceling, 499–501
timed and automatic, 480, 490,

496–497, 512
PostBackUrl property, 129
postprocessing, 46
POST requests, 4, 10–11
posts, maintaining state between,

97–100
precompiled assemblies, 577
precompiling, 44, 577–578, 585

for deployment, 578
for performance, 577

preprocessing, 40, 46
PresentationCore reference, 444
PresentationFramework reference,

444
ProcessRequest method, 410–411,

419
ProcessRequest method

(IHttpHandler), 50
ProductsServiceClient class, 548
ProfileBase class, 260
profile information

saving, 260
using, 259–260

Profile property, 259
profile providers, 258
profiles

accessing properties of, 266
anonymous, 261
defining settings, 266
deleting, 260
grouping and nesting, 261
profile submission handler,

262–264
saving, 260, 264
using, 259–260

profile schemas, defining, 259
Program .cs file, 7

Progress control, 497
ProgressTemplate, 498
progress updating, 497–501
project templates

ASP .NET Web site, 53
Empty Web Site, 52
HTTP site, 52

Project Wizard (Visual Studio), 50
properties

implicit properties, 211
of validation controls, 128

Properties pane, 71
Events button, 93

PropertyGridEditorPart, 272, 286
protocol channels, 558
provider factories, 216–217
provider pattern, 216

personalization providers,
258–259

Provider property, 240
providers for output caching, 358
Providers property, 240
ProxyPartManager, 270
publishing Web applications, 583,

585
PUT requests, 4

Q
query string parameters, varying

cached content on, 348–351
query strings, 11

R
radio button controls, selection

handlers, 225
RadioButtonList control, 209
RangeValidator controls, 120, 127
Rating extenders, 483
Read method, 219
Really Simple Syndication (RSS),

557
record sets, disconnected, 219
RedirectFromLoginPage method,

190
RedirectToAction method, 472
References node, 444
reflection for view code,

generating, 459
RefreshConversation, 495, 496
regenerateExpiredSessionId

setting, 311
RegisterCreatableType method,

534

Register directive, 85
TagPrefix attribute, 86

Register directives, 144
RegisterScriptableObject method,

534
registry, editing, 164
Regular Expression Editor,

126–127
regular expressions, for validation,

126–127
RegularExpressionValidator

control, 120
adding to Web Forms, 126–127

remoteOnly attribute, 378
remote Web sites, 51
removal callbacks, setting up,

338–340
remove instruction, 168
RenderContents method, 80, 85,

100
HtmlTextWriter methods, using

in, 96
overriding, 83, 100, 102
removing, 103

rendered controls, 101 . See
also controls

vs . composite controls, 101–102
rendering code, browser version

independent, 100
rendering controls, 79 . See

also controls
Render method, 288
ReorderList extenders, 483
Repeater control, 210
request duration, tracking,

400–403
request handlers, 405–407
request handling facility, 407–410
requestLimit key, 371
request paths of MVC

applications, 455–456
request pipeline, 62–63
request processing, inserting

functionality in, 394–403
Request property (HttpContext

and Page), 95
request–response pattern for

WCF messages, 559
requests . See also HTTP requests/

responses
asynchronous handling of, 474 .

See also AJAX
authenticating manually, 206
Authentication tickets for, 189
context information, viewing,

366

requests

600

requests (continued)
handlers for, 63
out-of-band handling, 475
routing tables for, 454
time stamping, 396–398
waiting for, 473–474

RequiredFieldValidator controls,
120

adding to Web Forms, 122
RequireSSL method, 190
ResizableControl extenders, 483
resources

associating with user roles, 203
DACLs of, 182
surfing to from IIS, 23
virtual directories for, 13

Response class HttpCachePolicy,
351

Response object, 21, 32, 75
Cache property, 359

responses, 5, 7 . See HTTP
requests/responses

Authentication tickets for, 189
generating, 22
header information, 5

Response.Write, 75
result sets, managing, 218–236
reverse compiling, 41
RewritePath method, 251
Rich Internet Applications (RIAs),

473–474
Silverlight generation of, 513

RootNode property, 240
RootVisual property, 521, 551
RoundedCorners extenders, 483
round-trips to server, 474–475

client-side validation and, 125
reducing, 433–434

RoutedEventArg argument, 440
RoutedEventArgs parameter, 521
routed events, 526–527
RouteTable class, 455
routing policies, changing, 453
routing tables, 454
RowDefinitions property, 448, 545
runat=server attribute, 35, 63–64,

66
runaway threads, avoiding, 501
runtime, enabling session state,

416

S
scalability, application dictionary

size and, 389–390
ScriptableMember attribute, 551

ScriptableType attribute, 551
script blocks, executable, 34–35
scripting issues, 515
ScriptManager controls, 479

adding to page, 484–485, 512
ScriptManagerProxy controls, 479
<script> tags, 31
Seadragon extenders, 484
security

authentication services of ASP .
NET, 189–194

authorizing users, 203–206
configuring, 206
Forms Authentication, 184–189
IIS, securing, 183–184
login controls, 200–203
of Web applications, 31
user access, managing, 194–199
Windows security, 182

security identity of IIS, 183
security trimming, 251
securityTrimmingEnabled

attribute, 251
<select> tags, 67
Select A Single Provider For All

Site Management Data link,
195

SelectedNodeChanged events, 135
SelectionChanged event handler,

546
selection controls, selected item

management, 97
selection handlers, adding, 213
semidynamic content, 437
ServerControl1 control, 82–84
servers

CGI support, 11–12
code execution on, 31
executable script blocks on,

34–35
GUI componentization on, 62
requests to, 6–9

server-side controls, 59
adding to page, 78
attaching collections to,

210–215
composite controls, 79
for layer of indirection, 62
for literal text and HTML

markup, 105
Items collections, 207–208
navigation controls, 237–239
rendering controls, 79
ScriptManager control, 479
ScriptManagerProxy control,

479

Silverlight control, 525–526
size, changing, 78
style template support, 159
Timer control, 480
UpdatePanel control, 479
UpdateProgress control, 480
validator controls, 120, 125
view state management, 97–100
vs . Web Parts, 267

server-side script blocks, 63
server-side validation, 125–126 .

See also validation
Service1 .svc .cs file, 562
Service1 .svc file, 562
ServiceBehavior attribute, 559
ServiceBehaviorAttribute attribute,

573
Service class request handling,

405
ServiceContract attribute, 544
service contracts

behaviors, 558–559
creating, 564, 573
implementing, 564, 573

ServiceModel Metadata Utility
Tool, 573

service references
adding, 568
adding to Silverlight projects,

547
services . See also WCF services

contract and policy based, 557
explicit boundaries between,

557
Services control panel, 308
Session_End event, 391
session identifiers as cookies,

309–311
Session member, 260
Session objects, 291

indexer for, 293
inserting and retrieving data

from, 293, 296–297
objects stored in, 299
role of, 292

Session_Start event, 391
session state, 292, 386

accessing, 320
accessing specific values in, 320
adding objects to, 294
ADO .NET objects, data-bound

controls, and, 299–305
ASP .NET support of, 292–293
configuring, 306–308
custom handlers and, 416
custom providers for, 311

requests .(continued)

 . . 601

session state (continued)
device profiles and, 311
disabling, 306, 307, 320
enabling, 163
managing, 163, 180
retrieving data from, 492–493
storing in a database, 306, 308
storing in a SQL Server

database, 308, 311, 320
storing in a state server, 306,

307–308, 320
storing InProc, 306, 307, 320
timeouts, 311, 320
tracking with cookies, 309–310,

320
tracking with URLs, 310–311,

320
trying, 293–297

sessionState configuration
settings, 166

Session State management
feature (ASP .NET
Configuration Settings pane),
180

sessionString member variable,
295, 298

Set Auth cookie, 206
SetAuthCookie method, 192
SetCacheability method, 351–353
SetETag, 351
SetExpires, 351
SetLastModified, 351
SetMaxAge, 351
SetPropertyValue method, 260
SetRevalidation, 351
SetTargetProperty method, 540
SetValidUntilExpires, 351
SetVaryByCustom, 351
Shared attribute, 347
Shared property, 354
shopping carts, 299
shout boxes, 490
ShowContent method, 192
ShowLineage methods, 34, 35, 56
ShowMessageBox property, 123
SidebarTemplate, 312
SignOut method, 190, 206
Silverlight, 448, 515–516

animations, 535–542
architecture, 521–522
dependency properties, 535
Expression Blend and, 527
features of, 515–516
integrating with HTML, 533–534
layout schemes, 528–533, 551
WCF services and, 542–551

XAML role in, 522
Silverlight 1 .0, 515
Silverlight 2 and 3, 515
Silverlight applications, 517

compiling, 524
creating, 517–521
generating, 551
HTML Document Object Model

in, 551
RootVisual property, 521–522
visual tree, 522–523

Silverlight Application template,
551

Silverlight class members, 527
Silverlight content

adding to Web pages, 524–526
ASP .NET site for, 517–519
HTML test page for, 517–518
integrating with Web site,

542–550
interactive, 520
project node for, 518–519

Silverlight control, 525–526
Silverlight control events, 526–527

handling, 526
Silverlight controls, 526–527
Silverlight.createObjectEx helper

function, 526
Silverlight events, 526–527
Silverlight .js file, 519

Silverlight.createObjectEx helper
function, 526

Silverlight keywords, 523
SilverlightSiteTestPage file, 519
singleton software pattern, 387
Site .css file, 457
SiteMap class, 239–240

events and properties of, 240
SiteMapDataSource

ShowStartingNode property,
246

StartFromCurrentNode
property, 246

site map data sources, 237, 238
SiteMapNode, 239, 240

methods and properties of, 240
site map nodes, 239

custom attributes, adding, 248
editing, 245
nesting, 246

SiteMapPath control, 237–238,
241–242, 256

adding to master pages, 246
site map providers, 237, 239

managing, 239
SiteMapResolve event, 240

SiteMapResolve event handler,
247–248, 256

site maps, 239 . See also navigation
adding, 256
blank top-level node, 243
configuring, 242–243
creating, 243–247
custom attributes for nodes,

248–250
default, 239
updating, 239, 243

Site Map template, 244
Site .master files, 457

tabs, adding, 465
site nodes, custom attributes for,

248–250
Skin File template, 160
skins, 159–161

applying, 161
creating, 160
file storage, 159

Slider extenders, 484
SlideShow extenders, 484
SlidingExpiration method, 190
sliding expirations, for cached

items, 333
SOAP, 405, 557
SOA principles, 557
software design patterns, 451–452
Solution Explorer (Visual Studio),

54, 55
MVC folders, 457
Package/Publish Settings, 583
References node, 444

source code
compiling, 577
generated by Visual Studio,

74–75
precompiling, 577–578, 585
viewing, 55, 75, 410

Source code mode, switching
to, 78

Source tab (Visual Studio), 54
Source view (Visual Studio), 55, 69
Split tab (Visual Studio), 54
SqlCacheDependency class,

336–337
SqlDataAdapter, 220
SqlDataSource control,

configuring, 221–222
SqlDependency attribute, 347
SqlPersonalizationProvider class,

259
SQL Server dependencies,

336–338
Src attribute, 44, 146

Src attribute

602

StackPanel layout panels, 435,
439–440, 528, 532–533, 551

StartNavigationTemplate, 312
StartsWith method, 504
stateNetworkTimeout, 311
state service, turning on, 308
static helper methods, adding to

MVC applications, 468
static pages, 9
stepping into methods, 376
stepping over methods, 376
stepping through code, 376
Storyboard, 539

SetTarget method, 540
Strategy pattern, 452
Strict attribute, 145
String types, StartsWith method,

504
StripNonAlphanumerics method,

103, 112
strong names, 166
Structured Query Language (SQL),

217–218
style definitions, text-based,

155–159
styles, modifying, 157
style sheets, building, 156–157
Styles menu Add Style Rule

option, 156
subdirectories, configuration

settings for, 180
Substitution controls, 349
SupportsRedirectWithCookie

property, 311
System.Data.DataView class, 502
System.Diagnostics.Debug, 374
System.Diagnostics.Trace calls,

tracing, 374
System.Runtime.Serialization

namespace, 543
System.ServiceModel.Activation

namespace, 544
System.ServiceModel namespace,

543
[System.Web.Script.Services.

ScriptService] attribute, 504
System.Web.Services.WebService,

46
System.Web.SessionState.

IRequiresSessionState
interface, 416

System.Web.UI.Control class,
79–81

elements of, 80

System.Web.UI.Page class, 33, 46,
59, 79

control collection of, 80
controls, iterating, 80
object-oriented approach, 63
properties, methods, and

events, 80
System.Web.UI.Page handler, 405
System.Web.UI.UserControl

user controls, 110
System.Web.UI.WebControls.

ContentPlaceHolder controls,
145

System.Web.UI.WebControls.
WebParts.WebPart class, 269

deriving classes from, 280–281
System.Web.UI.WebControl.

WebControl class, 83
System.Windows.Browser.

HtmlDocument class, 533
System.Windows.Browser.

HtmlPage class, 533
System.Windows.HtmlPage class,

534
RegisterCreatableType method,

534
RegisterScriptableObject

method, 534

T
tabbed panes, 136–138
tables

adding to user controls, 114
rendering in HTML 3 .2 and

HTML 4 .0, 96
Tables collection, 219
Tabs extenders, 484
TabStrip controls, 136
TagPrefix attribute (Register

directive), 86
TcpTrace, 5
testing

against local version of IIS, 50
application-specific features, 51
MVC applications, 454

text
editing, 69
inserting, 69

text boxes
TextMode property, 121
Text property, 91

TextBoxWatermark extenders, 484
Text File template, 448
TextMode property, 121

Text property
changing, 85
modifications, 106–107
setter for, 92, 106–107, 107, 114
setting, 87–88

TextTextField property, 236
text transfer, 4
TextValueField property, 236
Theme directive, 158
theme folders

creating, 156
skin files in, 159

themes, 155–159
applying, 159
creating and using, 156–159
predefined, 155

this keyword, 33
Threads window, 377
Tick events, 496
The Timeless Way of Building

(Alexander), 451
timeout configuration setting, 311
timeouts, session, 311, 320
Timer controls, 480, 490–497, 512

creating chat pages with,
491–497

default interval, 496
default settings for, 490
Tick event, 496

TimeSpan, 401
timing modules, 398

implementing, 396–398
ToggleButton extenders, 484
Toolbox

adding items to, 84, 91, 100
opening, 70
sorting items in, 84
user controls in, 110

Trace .axd handler, 411
Trace .axd resource, 407–408
TraceFinished event, 373–374
Trace handler, 407–409
traceMode key, 371
Trace objects, adding trace

statements to, 368–369
Trace property, 363–370
trace statements, 367–370
Trace.Warn, 368
Trace.Write, 368
tracing, 188, 206

application tracing, 370–374
enabling, 383
enabling programmatically, 373
page tracing, 363–370
TraceFinished event, 373–374

StackPanel .layout .panels

 . . 603

tracing (continued)
turning on, 64–65, 78

tracing messages, managing, 374
tracing output

for application tracing, 372
context information, 366–367
control tree, 365
managing, 373–374
trace statements, 367–370
tracing information, adding,

368–370
transport channels, 558
trapping exceptions, 381–382
tree controls, 132 . See

also TreeView controls
tree node events, handling,

134–135
tree nodes

building, 135
editing, 133–134

TreeView controls, 132–135, 209,
237–238, 241, 256

adding to Web Forms, 133
BorderColor property, 134
BorderStyle property, 134
data binding support, 135
formatting, 133
SelectedNodeChanged events,

135
TreeView Node Editor, 133–134
TreeView Tasks menu, 133
triggers

for partial-page updates, 488
for UpdatePanel, 512

Triggers collection, 489
Triggers property, 512
troubleshooting, 363 . See

also debugging; exceptions
handling; tracing

type element, 406
types, scriptable, 551
type system extensions, 479

U
UIs (user interfaces)

AJAX support of, 476–477
consistency in, 143–144 . See

also master pages; skins;
themes

MVC management of, 450
packaging as components,

62–67
processing, 405
progress updates, 497–501

refreshing, 493, 494
responsiveness, improving, 474 .

See also AJAX
of user controls, 110

UI programming, Windows-
based, 434

unit testing with MVC framework,
454

UpdatePanelAnimation extenders,
484

UpdatePanel controls, 479, 512
adding to page, 485, 496–497
Triggers collection, 488, 489,

512
using, 506

UpdateProgress controls, 480,
497–501

adding to page, 498
AssociatedUpdatePanelID

property, 498
ProgressTemplate, 498

URL mapping, 251–255, 256
MVC management of, 453

urlMappings element, 251
URL Rewrite Module, 255
URLs

mangled URLs, 261
resolving display names to, 237
tracking session state with, 310,

320
UseCustomControl .aspx, 84

markup, 86
UseDeviceProfile option, 311
user access management,

181, 194–199, 206 . See
also authorization

user controls, 101, 110–117, 528
adding to pages, 115
advantage of, 117
ArrayList, 114
caching, 354–357, 359
default properties, lack of, 113
deployment of, 117
Designer support for, 111, 117
disadvantage of, 117
output of, 116–117
page trace of, 116
System.Web.UI.UserControl

derivation, 110
Table, adding, 114
Text property, 113
UI component, 110
UI functionality, grouping in,

117

using statement for System.
Collections, 114

User.Identity.Name key, 261
user information management,

257–258 . See
also personalization

user input
handling, 10
multistage data collection,

312–320
validating, 120–128

user input controls, 10
user interfaces . See UIs (user

interfaces)
user preferences, storing, 258
user profiles, 261

accessing properties of, 266
defining, 258, 266
deleting, 260
grouping and nesting, 261
profile submission handler, 262
saving, 260, 264
using, 259–260

user roles
associating with resources, 203
authorization based on,

203–205
creating, 196–197
security trimming and, 251

users
adding to Web site, 197
authenticating, 181, 198
authorizing, 181, 198–199,

203–206
WebPart controls, adding, 288
Web site customization, 267 . See

also Web Parts
user state, associating with

session, 291

V
validate attribute, 406
Validate method, 125, 126
validation, 119–128

client-side, 125
failure of, 126
server-side, 125–126
using regular expressions,

126–127
validation controls, 120–128

ControlToValidate property, 120
custom logic of, 125
Display property, 128
EnableClientScript property, 125

validation .controls

604

validation controls (continued)
grouping, 128
properties of, 128
tags associated with, 125
ValidationGroup property, 128

validation expressions, selecting,
126

validation functions, 128
ValidationGroup property, 128
validation handlers, 125
validation script blocks, 128
ValidationSummary controls, 120

adding to Web Forms, 123
ShowMessageBox property, 123

ValidatorCallout extenders, 484
variables, displaying values of, 376
var type, 461
VaryByContentEncoding attribute,

347
VaryByCustom attribute, 348, 351
VaryByCustom parameter, 347
VaryByHeader attribute, 348, 351,

359
VaryByParam attribute, 344, 348,

351, 359
modifying, 351

verbs, 406
view code, 459
View Code button (Visual Studio),

55
View controls, 136–138
views

adding content to, 137
adding HTML tags to, 472
adding to MultiView controls,

136
adding to MVC projects, 459,

464, 467, 472
managing, 136
navigating between, 137

view state, 386
management of, 97–100
storing, 100

__VIEWSTATE field, 65
ViewState property (Page class),

93, 97–100
view templates, 453
virtual directories

adding, 27
Anonymous Authentication for,

183
creating, 23
definition of, 13
file mappings, 17
file type support, 23

for source code, 26
handler mappings, 23
module mappings, 16–17, 23
physical path for, 28
storing Web sites in, 50
viewing in IIS, 15

virtual URLs, mapping to ASPX
files, 251–255

Visual Studio
Administrative mode, 52
and ASP .NET, 50–58
ASP .NET code generated by, 69
asynchronous proxy method

generation, 568
building a page in, 68–75 . See

also pages
Call Stack window, 377
code generated by, 54
controls, adding with, 67–78
debugging support, 374–377
deployment support, 578–585
Design view, 68
FTP server connectivity, 51
Hello World application, 52–58
HTML files, creating, 28
layout of, 54
Locals window, 376–377
MVC wiring, 455
prebuilt login page, 199
Properties pane, 71
running as administrator, 175
Source view, 69
Threads window, 377
Toolbox, adding items to, 91
Watch window, 377
WCF contract placeholder files,

562
Web application configuration

files, 167–168
Web application development

in, 67–68
Web Control Library, default

code for, 82
Web site templates, 576–577

Visual Studio Web server, 50
visual trees, constructing, 522–523
Vlissides, John, 451

W
WarningLevel attribute, 146
Watch window, 377
Wayback Machine, 514
WCF, 555

ASP .NET and, 560–561

behaviors, 558–559
channels, 558
compatibility mode, 561
elements of, 557–559
endpoints, 557–558
messages, 559
role of, 556–557
service contracts, 573
side-by-side mode, 560
Web sites enabled for, 573

WCF clients, building, 567–572,
573

WCF contracts, 558
Visual Studio–generated

placeholders, 562
WCF proxies, Silverlight-enabled,

548
WCF Service Application

template, 562
WCF services

calling asynchronously, 570–571
exposing, 563, 573
service contracts for, 564
service references, 568
Silverlight and, 542–550, 551
writing, 561–567

WCF Service template, 573
Web Application projects, 518
Web applications . See also

applications
building, 57
configuration files for, 167–168
debugging, 41
deploying, 578–586
developing, 3
evolution of, 514–515
executable code, adding, 32–33
global space for, 385–404
installers for, 585
loading, 12
loose XAML files in, 442
One-Click Publish, 579
precompiling, 577–578
publishing, 583, 585
running, 57
security of, 31
storage in temporary directory,

42
Web-based security, 182–189
WebBrowsable property, 283
Web browsers . See browsers
web .config file, 167–168

anonymous access setting, 262
application settings, adding,

170–173, 581

validation .controls .(continued)

 . . 605

web .config file (continued)
application tracing settings, 325
authentication node, 184–185
authorization element, 199
authorization node, 184–185,

192–193
child files, 167
compiler tracing, 374
creating, 170
custom error attributes, 378
customErrors section, 379
debugger setting, 375
<deny users=”*”> node, 204
forced authentication settings,

186
Forms Authentication,

implementing in, 184–189
handlers in, 406
httpHandlers section, 413, 419
httpModules section, 398
identity configuration element,

311
location element, 180
login URL specified, 201
managing with Web Site

Administration Tool, 170–172
outputCacheProfile elements,

359
outputCacheSettings section,

353
output caching configuration,

359
personalization properties,

defining in, 258–259
<profile> element, 261, 266
profile schemas, defining in, 259
sample, 165
securityTrimmingEnabled

attribute, 251
session state settings, 311–312
site map configuration settings,

242–243
top-level, 167
tracing, enabling in, 370–371
transform for configuration

changes, 581
transforming for deployment,

579 urlMappings element, 251
WCF service contracts, 573

Web Control Library, default code
for, 82

web .debug .config file, 167, 582
Web development, 3

issues of, 21–22
WebDisplayName property, 283

Web Forms, 449
adding to Web sites, 53
based on master pages, 148–

149, 244
vs . MVC framework, 453
sign-in forms, 121–124
user controls in, 110

Web packaging, 579
Web pages . See also pages

adding Silverlight content,
524–526

appearance of and output
caching, 357

building with Web Parts,
272–280

cachable, creating, 344–346
Cache property, 341
lifetime of, 296
partial page updating, 512
SharePoint based, 268
static pages, 9
storing multiple versions of, 359
timed automatic posts from,

512
visual style definition, 155–159
WebPart controls, enabling for,

288
WebPageTraceListener type, 374
WebPart controls

built-in, 271–280
dynamic additions of, 288
enabling Web pages for, 288

WebPartManager, 269, 270, 288
Web Parts, 267

adding to catalog, 284–285
application development, 269
architecture, 269–280
built-in, 271–272
connecting, 271
creating, 288
derivation of, 267
developing, 280–288
development scenarios, 269
display modes, 274
enabling sites for, 288
history of, 268
page development, 269
Render method, 288
vs . server-side controls, 267
server-side controls managed

by, 288
uses of, 268–269
using, 272–280
zones, 270, 270–271

Web Parts pages, 269
CatalogZone, 288
editing capabilities, 288
EditorZone, 288
switching display modes,

275–276
WebZone, 288

WebPart Toolbox, 271–272
WebPartZone class, 270

settings for, 272
web .release .config file, 167, 582
WebRequest class, 6

GetResponse method, 6–7
Web servers . See IIS (Internet

Information Services); servers
WebService class, 405
Web service idiom, AJAX use of,

475
Web Service projects, creating,

543–550
Web Setup projects, 585
Web Site Administration Tool

(WSAT), 163, 169–172, 180,
206

Add New Access Rule link, 203
Application tab, 170–171
Create Application Settings link,

170
editing web .config with, 184
Manage Access Rules link, 203
Provider tab, 170, 195
Security tab, 170, 195, 197, 198

web .sitemap file, 239
site nodes, custom attributes

for, 248–250
Web site performance . See also

performance
view state management and,

100
Web site projects, 50–51
Web sites

adding items to, 53
adding WPF-style content to,

436–437, 442–447
AJAX AutoComplete extender

for, 507
asynchronous background

processing, 474
control flow with Forms

Authentication, 185
debugging, 383
dynamic content, 9–18
enabling for AJAX, 512
enabling for WCF, 573

Web .sites

606

Web Sites (continued)
File System Web sites, 50–51,

58, 577, 585
FTP Web sites, 51, 58, 576, 585
hosted by IIS, 174–175
HTTP Web sites, 52, 58, 576, 585
local, 50
look and feel of, 143–144 . See

also master pages; skins;
themes

navigation support, 237–256
packaging for deployment,

579–586
personalization support for,

257–266
portal-type, 268–269
profile schema, defining, 259
remote, 51
security for, 181, 206 . See

also security
testing application-specific

features, 51
testing locally, 50
user configuration of, 267 . See

also Web Parts
Web Parts, enabling for, 288
XAML files, adding, 448

Web site templates, 576–577
Web .Staging .config file, 582–583
Web User Control template, 111
WebZone, 288
Win32 API, 434
Win32 Graphics Device Interface

(GDI), 434
Windows authentication, 189

IIS support for, 183
Windows-based user interface

programming, 434
WindowsBase reference, 444
Windows Communication

Foundation . See WCF
Windows configuration, 164
Windows Forms Controls, 62

Progress control, 497
Windows Internet Explorer

autocomplete feature, 507
Windows Live ID, 189
Windows operating system

environment variables, 164
initialization files (.ini files), 164

Windows Presentation
Foundation . See WPF

Windows security, 182
Windows Workflow Foundation,

555
wire encoding for WCF-based

endpoints, 557
Wizard controls, 138, 312–320

adding controls to steps, 314
adding steps to, 313
auto formatting, 312–313
Page_Load method, 317
SidebarTemplate, 312
StartNavigationTemplate, 312
StepType, 313

WizardStep Collection Editor
dialog box, 313

worker processes, in ASP .NET
pipeline, 47–48

WPF, 434–441, 555
features available through,

434–435
layout panels, 435
Silverlight and, 516
uses of, 433–434

WPF applications
creating, 435
logical tree, 435

WPF-based content
as loose XAML files, 437–438
presenting, 436–437

WPF Browser Application
template, 438, 448

WPF content
deploying with XBAPs, 438–441
rendering, 448
serving, 442–447

WPF layouts, top-level nodes, 442
WPF namespace, 448
WrapPanel layout panel, 435
wrapper classes

creating, 458
for database tables, 472

writeToDiagnosticsTrace key, 371
writeToDiagnosticsTrace option,

374
WriteXml method, 566

X
XAML, 522–524

namespaces and, 523–524
role in Silverlight, 522
visual trees, constructing,

522–523
in Web applications, 436
for WPF layouts, 435

XAML-based browser
applications . See XBAPs
(XAML-based browser
applications)

XAML content
adding, 442
HTML content, integrating,

442–447
 .xaml extension, 448
XAML files

adding to sites, 448
loose, 436, 437, 438, 442, 444
Pages, declaring in, 448

XAML plug-in, 448
XAP files, 524
 .xbap extension, 441
XBAPs (XAML-based browser

applications)
creating, 438–441, 448
drawbacks of, 513

xdt:Locator attribute, 583
xdt:Transform attribute, 583
XHTML document tags, 145
XhtmlTextWriter class, 95
XML

configuration files, 164
DataSet objects serialized as,

220
XmlDataSource control, 208
XMLHttpRequest objects, 490
XmlSiteMapProvider, 239, 242
XML site maps, 239 . See also site

maps
“x” namespace, 523

Z
ZoneTemplate, 270

Web .Sites .(continued)

About the Author
George Shepherd is a software consultant who
 specializes in Microsoft .NET technologies . As an
 instructor for DevelopMentor, George delivers short
seminars that cover .NET, ASP .NET, and WPF . George is
the author and co-author of several other books on
software development, including MFC Internals
(Addison-Wesley) and Programming with Microsoft
Visual C++ .NET (Microsoft Press) . He has served as
 contributing editor for MSDN Magazine and Dr . Dobb’s
Journal and is a contributing architect for Syncfusion’s
Essential .NET toolset .

Best Practices for Software Engineering

ALSO .SEE

microsoft .com/mspress

Code Complete,
Second Edition
Steve McConnell

ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated . Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance . Rethink your approach—and
deliver the highest quality code .

Software Estimation:
Demystifying the Black Art
Steve McConnell

ISBN 9780735605350

Amazon .com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them .
Acclaimed author Steve McConnell demystifies the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away .

Agile Portfolio Management
Jochen Krebs

ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results . So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results .

The Enterprise and Scrum
Ken Schwaber

ISBN 9780735623378

Extend Scrum’s benefits—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise . Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change .

Simple Architectures for
Complex Enterprises
Roger Sessions

ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions . And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization .

Software Requirements, Second Edition
Karl E . Wiegers
ISBN 9780735618794

More About Software Requirements:
Thorny Issues and Practical Advice
Karl E . Wiegers
ISBN 9780735622678

Software Requirement Patterns
Stephen Withall
ISBN 9780735623989

Agile Project Management with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

* No purchase necessary. Void where prohibited. Open only to residents of the 50 United States (includes District of Columbia)
 and Canada (void in Quebec). For of cial rules and entry dates see: microsoft.com/learning/booksurvey

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do you think of
this book?
We want to hear from you!

Your feedback will help us continually improve our books and learning resources for you.
To participate in a brief online survey, please visit:

…and enter this book’s ISBN-10 or ISBN-13 number (appears above barcode on back cover).
As a thank-you to survey participants in the U.S. and Canada, each month we’ll randomly
select ve respondents to win one of ve $100 gift certi cates from a leading online merchant.
At the conclusion of the survey, you can enter the drawing by providing your e-mail address,
which will be used for prize noti cation only.*

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

Where to nd the ISBN on back cover

Example only. Each book has unique ISBN.

SurvPage_Corp.indd 1 8/5/08 4:21:13 AM

	Cover
	Copyright page

	Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Who This Book Is For
	Getting Started
	Finding Your Best Starting Point in This Book

	Conventions and Features in This Book
	Conventions
	Other Features

	Prerelease Software
	Hardware and Software Requirements
	Code Samples
	Digital Content for Digital Book Readers
	Installing the C# Code Samples
	Using the Code Samples
	Uninstalling the Code Samples

	Support for This Book
	We Want to Hear from You

	Part I: Fundamentals
	Chapter 1:Web Application Basics
	HTTP Requests
	HTTP Requests from a Browser
	Making HTTP Requests Without a Browser

	Hypertext Markup Language
	Dynamic Content
	HTML Forms
	Common Gateway Interface: Very Retro
	The Microsoft Environment as a Web Server
	Internet Information Services
	Internet Services Application Programming Interface DLLs
	Running Internet Information Services

	Classic ASP: Putting ASP.NET into Perspective
	Web Development Concepts
	ASP.NET
	Chapter 1 Quick Reference

	Chapter 2:ASP.NET Application Fundamentals
	The Canonical Hello World Application
	Mixing HTML with Executable Code
	Server-Side Executable Blocks

	The ASP.NET Compilation Model
	Coding Options
	ASP.NET 1.x Style
	Modern ASP.NET Style

	The ASP.NET HTTP Pipeline
	The IIS 5.x and IIS 6.x Pipeline
	The IIS 7.x Integrated Pipeline
	Tapping the Pipeline

	Visual Studio and ASP.NET
	Local IIS Web Sites
	File System–Based Web Sites
	FTP Web Sites
	Remote Web Sites
	Hello World and Visual Studio

	Chapter 2 Quick Reference

	Chapter 3:The Page Rendering Model
	Rendering Controls as Tags
	Packaging the UI as Components
	The Page Using ASP.NET
	The Page’s Rendering Model
	The Page’s Control Tree

	Adding Controls Using Visual Studio
	Layout Considerations

	Chapter 3 Quick Reference

	Chapter 4:Custom Rendered Controls
	The Control Class
	Visual Studio and Custom Controls
	A Palindrome Checker
	Controls and Events
	HtmlTextWriter and Controls
	Controls and ViewState
	Chapter 4 Quick Reference

	Chapter5: Composite Controls
	Composite Controls versus Rendered Controls
	Custom Composite Controls
	User Controls
	When to Use Each Type of Control
	Chapter 5 Quick Reference

	Chapter6: Control Potpourri
	Validation
	How Page Validation Works
	Other Validators
	Validator Properties

	Image-Based Controls
	TreeView
	MultiView
	Chapter 6 Quick Reference

	Part II:Advanced Features
	Chapter 7:A Consistent Look and Feel
	Managing User Interface Consistency
	ASP.NET Master Pages
	Themes
	Skins
	Chapter 7 Quick Reference

	Chapter 8:Configuration
	Windows Configuration
	.NET Configuration
	Machine.Config
	Configuration Section Handlers
	Web.Config
	Managing Configuration in ASP.NET 1.x
	Managing Configuration in Later Versions of ASP.NET

	Configuring ASP.NET from IIS
	Chapter 8 Quick Reference

	Chapter 9:Logging In
	Web-Based Security
	Securing IIS
	Basic Forms Authentication

	ASP.NET Authentication Services
	The FormsAuthentication Class
	An Optional Login Page

	Managing Users
	ASP.NET Login Controls
	Authorizing Users
	Chapter 9 Quick Reference

	Chapter 10:Data Binding
	Representing Collections Without Data Binding
	Representing Collections with Data Binding
	ListControl-Based Controls
	TreeView Control
	Menu Control
	FormView Control
	GridView Control
	DetailsView Control
	DataList Control
	Repeater Control

	Simple Data Binding
	Accessing Databases
	The .NET Database Story
	Connections
	Commands
	Managing Results

	ASP.NET Data Sources
	Other Data-Bound Controls
	LINQ
	Chapter 10 Quick Reference

	Chapter 11:Web Site Navigation
	ASP.NET Navigation Support
	Navigation Controls
	XML Site Maps
	The SiteMapProvider
	The SiteMap Class
	The SiteMapNode

	Using Navigation Controls
	The Menu and TreeView Controls
	The SiteMapPath Control
	Site Map Configuration

	Building Navigable Web Sites
	Trapping the SiteMapResolve Event
	Defining Custom Attributes for Each Node
	Security Trimming
	URL Mapping
	URL Rewriting
	Chapter 11 Quick Reference

	Chapter 12:Personalization
	Personalizing Web Visits
	Personalization in ASP.NET
	User Profiles
	Personalization Providers

	Using Personalization
	Defining Profiles in Web.Config
	Using Profile Information
	Saving Profile Changes
	Profiles and Users

	Chapter 12 Quick Reference

	Chapter 13:Web Parts
	A Brief History of Web Parts
	What Good Are Web Parts?
	Developing Web Parts Controls
	Web Parts Page Development
	Web Parts Application Development

	The Web Parts Architecture
	WebPartManager and WebZones
	Built-In Zones
	Built-In Web Parts

	Developing a Web Part
	Chapter 13 Quick Reference

	Part III:Caching and State Management
	Chapter 14: Session State
	Why Session State?
	ASP.NET and Session State
	Introduction to Session State
	Session State and More Complex Data
	Configuring Session State
	Turning Off Session State
	Storing Session State InProc
	Storing Session State in a State Server
	Storing Session State in a Database

	Tracking Session State
	Tracking Session State with Cookies
	Tracking Session State with the URL
	Using AutoDetect
	Applying Device Profiles
	Session State Timeouts

	Other Session Configuration Settings
	The Wizard Control: An Alternative to Session State
	Chapter 14 Quick Reference

	Chapter 15:Application Data Caching
	Getting Started with Caching
	Using the Data Cache
	Impact of Caching
	Managing the Cache
	DataSets in Memory
	Cache Expirations
	Cache Dependencies
	The SQL Server Dependency
	Clearing the Cache

	Chapter 15 Quick Reference

	Chapter 16:Caching Output
	Caching Page Content
	Managing Cached Content
	Modifying the OutputCache Directive
	The HttpCachePolicy
	Caching Locations
	Output Cache Dependencies
	Caching Profiles

	Caching User Controls
	When Output Caching Makes Sense
	Other Cache Providers
	Chapter 16 Quick Reference

	Part IV:Diagnostics and Plumbing
	Chapter 17:Diagnostics and Debugging
	Page Tracing
	Tracing
	Trace Statements

	Application Tracing
	Enabling Tracing Programmatically
	The TraceFinished Event
	Piping Other Trace Messages

	Debugging with Visual Studio
	Error Pages
	Unhandled Exceptions
	Chapter 17 Quick Reference

	Chapter 18:The HttpApplication Class and HTTP Modules
	The Application: A Rendezvous Point
	Overriding HttpApplication
	HttpModules
	Global.asax vs. HttpModules
	Chapter 18 Quick Reference

	Chapter 19:HTTP Handlers
	ASP.NET Request Handlers
	The Built-in Handlers
	Handlers and IHttpHandler
	Handlers and Session State
	Generic Handlers (ASHX Files)
	Chapter 19 Quick Reference

	Part V:Dynamic Data, XBAP, MVC, AJAX, and Silverlight
	Chapter 20:Dynamic Data
	Dynamic Data Controls
	Dynamic Data Details
	Chapter 20 Quick Reference

	Chapter 21:ASP.NET and WPF Content
	Improving Perceived Performance by Reducing
Round-Trips
	What Is WPF?
	How Does WPF Relate to the Web?
	Loose XAML Files
	XBAP Applications

	WPF Content and Web Applications
	What About Silverlight?
	Chapter 21 Quick Reference

	Chapter 22:The ASP.NET MVC Framework
	The Model-View-Controller (MVC) Architecture
	ASP.NET and MVC
	ASP.NET MVC vs. Web Forms
	MVC and Testing
	How MVC Plays with ASP.NET
	Following the Request Path

	Chapter 22 Quick Reference

	Chapter 23:AJAX
	Rich Internet Applications
	What Is AJAX?
	ASP.NET and AJAX
	Reasons to Use AJAX
	Real-World AJAX
	AJAX in Perspective

	ASP.NET Server-Side Support for AJAX
	ScriptManager Control
	ScriptManagerProxy Control
	UpdatePanel Control
	UpdateProgress Control
	Timer Control

	AJAX Client Support
	ASP.NET AJAX Control Toolkit
	AJAX Control Toolkit Potpourri

	Getting Familiar with AJAX
	The Timer
	Updating Progress
	Extender Controls
	The AutoComplete Extender
	A Modal Pop-up Dialog-Style Component

	Chapter 23 Quick Reference

	Chapter 24:Silverlight and ASP.NET
	Web Applications Mature
	What Is Silverlight?
	Creating a Silverlight Application
	Architecture
	XAML
	Constructing the Visual Tree
	XAML and Namespaces

	Compiling the Silverlight Application
	Adding Silverlight Content to a Web Page
	Using the Object Tag
	Using the ASP.NET Silverlight Server-Side Control
	Using the JavaScript Function

	Controls and Events
	Routed Events
	Silverlight Controls and Class Members

	Silverlight and Layout
	Integrating with HTML
	Animations
	WCF Services and Silverlight
	Chapter 24 Quick Reference

	Part VI:Services and Deployment
	Chapter 25:Windows Communication Foundation
	Distributed Computing Redux
	A Fragmented Communications API
	WCF for Connected Systems
	WCF Constituent Elements
	Endpoints
	Channels
	Behaviors
	Messages

	How WCF Plays with ASP.NET
	Side-by-Side Mode
	ASP.NET Compatibility Mode

	Writing a WCF Service
	Building a WCF Client
	Chapter 25 Quick Reference

	Chapter 26:Deployment
	Visual Studio Web Sites
	HTTP Web Sites
	FTP Web Sites
	File System Web Sites

	Precompiling
	Precompiling for Performance
	Precompiling for Deployment

	Visual Studio 2010 Deployment Support
	Chapter 26 Quick Reference

	Index
	About the Author
	Resources
	Survey page

