
ECMAScript (ES) 6
Mark Volkmann

Object Computing, Inc.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Table of Contents

Overview - 3

Transpilers - 6

Source Maps - 13

Block Scope - 18

Default Parameters - 20

Rest Parameters - 21

Spread Operator - 22

Destructuring - 23

Arrow Functions - 27

Symbols - 29

Enhanced Object
Literals - 32

Classes - 35

Getters and Setters - 38

New Math Functions - 40

New Number
Functions - 41

Numeric Literals - 42

New String
Methods - 43

Template Strings - 44

New Array Functions
and Methods - 47

New Object
Functions - 49

Reflect Object - 51

for-of Loops - 53

Collections (Set, Map,
WeakSet, WeakMap)
- 54

Promises - 65

Modules - 69

jspm - 75

Iterators and
Iterables - 80

Generators - 87

Proxies - 93

Tail Call
Optimization - 95

async and await - 97

Type Annotations - 99

2

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

ECMAScript

Defined by European Computer Manufacturers Association (ECMA)

Specification is called ECMAScript or ECMA-262
JavaScript 5.1 (ES5) - http://www.ecma-international.org/publications/standards/Ecma-262.htm

JavaScript 6 (ES6) - http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

goal is to finalize in June 2015

ECMAScript Technical Committee is called TC39

TC39 has bi-monthly face-to-face meetings

Besides defining the standard,
“TC39 members create and test implementations of the candidate specification
to verify its correctness and the feasibility of creating interoperable implementations.”

Current members include
Brendan Eich (Mozilla, JavaScript inventor), Allen Wirfs-Brock (Mozilla), Dave Herman (Mozilla),
Brandon Benvie (Mozilla), Mark Miller (Google), Alex Russell (Google, Dojo Toolkit),
Erik Arvidsson (Google, Traceur), Domenic Denicola (Google), Luke Hoban (Microsoft),
Yehuda Katz (Tilde Inc., Ember.js), Rick Waldron (Boucoup, jQuery), and many more

3

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

ES5 vs. ES6

ECMAScript 5 did not add any new syntax

ECMAScript 6 does!

ES6 is backward compatible with ES5,
which is backward compatible with ES3

Many ES6 features provide
syntactic sugar for more concise code

Spec sizes
ES5 - 258 pages

ES6 - 652 pages (draft on 2/20/15)

One goal of ES6 and beyond is to make JavaScript a
better target for compiling to from other languages

4

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

“One JavaScript”

Approach named by David Herman

Allows JavaScript to evolve without versioning
avoids migration issues like Python 2 to Python 3

“Don’t break the web!”
removing features would cause existing web apps to stop working

can add new, better features

ES5 strict mode was a bit of a mistake since it broke some existing code

this is why ES6 supports “sloppy mode” code outside modules and class definitions

Use linting tools to detect use of “deprecated” features
ex. switching from var to let and const and
using rest parameters in place of arguments object

5

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Transpilers

Compilers translate code one language to another
ex. Java to bytecode

Transpilers translate code to the same language

There are several transpilers that translate ES6 code to ES5

6

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

ES6 Transpilers

Traceur - 64%
from Google

generates source maps

doesn’t work with IE8 and below

due to use of ES5 get/set syntax

https://github.com/google/traceur-compiler/

Babel - 76%
aims to generate ES5 code that is as
close a possible to the input ES6 code

generates source maps

some features don’t work with IE10 and below

see https://babeljs.io/docs/usage/
caveats/#internet-explorer

https://babeljs.io

TypeScript - 9%
from Microsoft

“a typed superset of JavaScript
that compiles to plain JavaScript.
Any browser. Any host. Any OS. Open Source.”

supports optional type specifications for
variables, function return values,
and function parameters

has goal to support all of ES6

generates source maps

to install, npm install -g typescript

to compile, tsc some-file.ts

generates some-file.js

http://www.typescriptlang.org

7

there are more, but these
are the most popular and/or
support the most features

percentages are as of 3/18/15

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Use ES6 Today?

It may take years for all the features in ES6
to be supported in all major browsers

That's too long to wait and you don't have to wait

Use a transpiler to get comfortable with new features sooner
and allow writing more compact, more expressive code now

For a summary of ES6 feature support in browsers,
and in the Traceur tool discussed next,
see ES6 compatibility table from Juriy Zaytsev (a.k.a. kangax)

http://kangax.github.io/compat-table/es6/

try selecting "Sort by number of features?" checkbox

8

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Traceur

Implemented in ES6 and uses itself to
transpile to ES5 code that runs on Node.js

https://github.com/google/traceur-compiler

Online tool at http://google.github.io/traceur-compiler/demo/repl.html
enter ES6 on left side and see resulting ES5 code on right

useful for testing support for specific ES6 features
and gaining an understanding of what Traceur generates

does not execute code

“Options” menu includes ability to enable experimental features

To install

install Node.js
npm install -g traceur

9

AngularJS 2 uses Traceur
for ES6 support

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Running Traceur

To get help on options
traceur --help

traceur --longhelp

To run code in an ES6 file
traceur es6-file-path

requires file extension to be .js, but it can be omitted in the command

To compile an ES6 file to an ES5 file
traceur --out es5-file-path es6-file-path

generated code depends on provided file traceur-runtime.js

can be copied from directory where Traceur is installed

to use generated code in a browser, include a script tag for traceur-runtime.js

Experimental features
to use, add --experimental option

examples of features currently considered experimental include
symbols, async/await keywords, and type annotations

10

doesn’t check for native browser support;
does some feature detection like not
adding shim methods if already present

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Babel

Implemented in ES6 and uses itself to
transpile to ES5 code that runs on Node.js

http://babeljs.io

Online tool at http://babeljs.io/repl/
enter ES6 on left side and see resulting ES5 code on right

useful for testing support for specific ES6 features
and gaining an understanding of what Babel generates

optionally executes code (when “Evaluate” checkbox is checked)

output is at bottom of ES5 code

“Experimental” and “Playground” checkboxes enable ES7 features and other “ideas”

To install

install Node.js
npm install -g babel

11

“Babel works perfectly with React,
featuring a built-in JSX transformer.”

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Running Babel

To get help on options
babel --help

To run code in an ES6 file
babel-node es6-file-path

file extension can be omitted and defaults to .js

To compile an ES6 file to an ES5 file
babel es6-file-path -o es5-file-path

To compile a many ES6 files to ES5 files
babel es6-dir -o es5-dir

Experimental features
to use some ES7 features, add --experimental option

Optional babel-runtime
http://babeljs.io/docs/usage/transformers/#self-contained

12

in *nix environments, can use redirection
babel es6-file-path > es5-file-path

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Source Maps

Allow browser debuggers to step through code
that was transpiled from another language into JavaScript

for example, debug CoffeeScript code

can debug ES6 code that was transpiled to ES5

Traceur
option --source-maps causes it to generate a source map

places them in same directory as generated ES5 files

browser looks for them there

Babel
plugins for Grunt and Gulp can generate source maps

13

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Using Source Maps

In Chrome
open a page that uses transpiled ES6 code

open Developer Tools (cmd-option-i on Mac, ctrl-shift-i on Windows)

click gear icon in upper-right to see settings

check "Search in content scripts"

check "Enable JavaScript source maps"

select ES6 .js files from “Sources” tab

set breakpoints and refresh page

In Firefox
open Firefox debugger by selecting Tools ... Web Developer ... Debugger
(cmd-option-s on Mac, ctrl-shift-s on Windows?)

click gear icon in upper-right to see “Debugger Options”
and verify that “Show Original Sources” is selected

select ES6 .js files from “Sources” tab

set breakpoints and refresh page

14

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Linting

It is important to use some linting tool when writing JavaScript

Saves time and reduces errors by catching coding issues before code is run

Can be run from command-line,
integrated into editors/IDEs, and
run automatically when files are saved from any editor using tools like Grunt/Gulp

Most popular JavaScript linting tools
JSLint - http://jslint.org; unclear if or when JSLint will support ES6

JSHint - http://jshint.org; has good support now using "esnext" option

ESLint - http://eslint.org; recently added support ES6; needs more testing

I highly recommend using JSHint to check ES6 code

15

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Automation

Grunt - http://gruntjs.com

great tool for automating web development tasks

4,472 plugins available as of 3/8/15

for Traceur support, see these plugins: traceur, traceur-latest, traceur-build, traceur-simple, and node-traceur

for Babel support, see the plugin grunt-babel

see example Gruntfile.js in article

uses "watch" plugin to watch for changes to HTML, CSS and JavaScript files

when watch detects these, it automatically runs specified tasks including linting CSS and JavaScript,
running Traceur to generate ES5 code, and refreshing browser to immediately show results of changes

last part is enabled by "livereload" option and including a special script tag in main HTML file

Gulp - http://gulpjs.com

similar in goal to Grunt, but configuration is different

1,457 plugins available as of 3/8/15

also supports watch and livereload

emphasizes use of file streaming for better efficiency

see gulp-traceur and gulp-babel plugins

16

see Grunt and Gulp examples at
https://github.com/mvolkmann/gulp-traceur-demo

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

ES6 Features

The following slides describe most of the features in ES6

Also see Luke Hoban’s (TC39 member) summary
https://github.com/lukehoban/es6features

17

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Block Scope ...

const declares constants with block scope

must be initialized

reference can’t be modified, but object values can

to prevent changes to object values, use Object.freeze(obj)

let declares variables like var, but they have block scope
not hoisted to beginning of enclosing block, so references before declaration are errors

most uses of var can be replaced with let (not if they depend on hoisting)

when a file defines a module, top-level uses of let are file-scoped, unlike var

Traceur and Babel implement block scopes by renaming variables declared in block

when a let variable is accessed out of its scope,
a ReferenceError is thrown with message “name is not defined”

18

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Block Scope

block functions
functions declared in a block are scoped to that block

for example, in if and for-loop blocks

19

function outer() {
 console.log('in outer');
}

{
 function inner() {
 console.log('in inner');
 }

 outer(); // works
 inner(); // works
}

outer(); // works
inner(); // throws ReferenceError

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Default Parameters

Example

Default value expressions can return to preceding parameters

Explicitly passing undefined triggers use of default value

Idiom for required parameters (from Allen Wirfs-Brock)

20

let today = new Date();

function makeDate(day, month = today.getMonth(), year = today.getFullYear()) {
 return new Date(year, month, day).toDateString();
}

console.log(makeDate(16, 3, 1961)); // Sun Apr 16 1961
console.log(makeDate(16, 3)); // Wed Apr 16 2014
console.log(makeDate(16)); // Sun Feb 16 2014

run on 2/28/14

function req() { throw new Error('missing argument'); }
function foo(p1 = req(), p2 = req(), p3 = undefined) {
 ...
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Rest Operator

Gather variable number of arguments after named parameters
into an array

If no corresponding arguments are supplied,
value is an empty array, not undefined

Removes need to use arguments object

21

function report(firstName, lastName, ...colors) {
 let phrase = colors.length === 0 ? 'no colors' :
 colors.length === 1 ? 'the color ' + colors[0]:
 'the colors ' + colors.join(' and ');
 console.log(firstName, lastName, 'likes', phrase + '.');
}

report('John', 'Doe');
// John Doe likes no colors.
report('Mark', 'Volkmann', 'yellow');
// Mark Volkmann likes the color yellow.
report('Tami', 'Volkmann', 'pink', 'blue');
// Tami Volkmann likes the colors pink and blue.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Spread Operator

Spreads out elements of any “iterable” (discussed later)
so they are treated as separate arguments to a function

Mostly removes need to use Function apply method

Examples

22

let arr1 = [1, 2];
let arr2 = [3, 4];
arr1.push(...arr2);
console.log(arr1); // [1, 2, 3, 4]

let dateParts = [1961, 3, 16];
let birthday = new Date(...dateParts);
console.log(birthday.toDateString());
// Sun Apr 16, 1961

alternative to
arr1.push.apply(arr1, arr2);

examples of things that
are iterable include
arrays, sets, and strings

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Destructuring ...

Assigns values to any number of variables
from values in arrays and objects

Can be used in variable declarations/assignments,
parameter lists, and for-of loops (covered later)

Can’t start statement with {, so add parens when
assigning to existing variables using object destructuring,
surround LHS with parens

LHS expression can be nested to any depth
arrays of objects, objects whose property values are arrays, ...

23

// Positional destructuring of iterables
let [var1, var2] = some-iterable;
// Can skip elements (elision)
let [,,var1,,var2] = some-iterable;

// Property destructuring of objects
let {prop1: var1, prop2: var2} = some-obj;
// Can omit variable name if same as property name
let {prop1, prop2} = some-obj;

({prop1: var1, prop2: var2}) = some-obj;

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Destructuring ...

LHS variables can specify default values

default values can refer to variables that precede their variable

Positional destructuring can use rest operator for last variable

When assigning rather than declaring variables,
any valid LHS variable expression can be used

ex. obj.prop and arr[index]

Can be used to swap variable values

Useful with functions that have multiple return values
really one array or object

24

[a, b] = [b, a];

[var1 = 19, var2] = some-iterable;

[var1, ...others] = some-iterable;

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Destructuring ...

Great for getting parenthesized groups of a RegExp match

Great for configuration kinds of parameters of
any time named parameters are desired (common when many)

25

function config({color, size, speed = 'slow', volume}) {
 console.log('color =', color); // yellow
 console.log('size =', size); // 33
 console.log('speed =', speed); // slow
 console.log('volume =', volume); // 11
}

config({
 size: 33,
 volume: 11,
 color: 'yellow'
});

let dateStr = 'I was born on 4/16/1961 in St. Louis.';
let re = /(\\d{1,2})\\/(\\d{1,2})\\/(\\d{4})/;
let [, month, day, year] = re.exec(dateStr);
console.log('date pieces =', month, day, year);

order is
irrelevant

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Destructuring

26

function report([name, color]) {
 console.log(name + "'s favorite color is", color + '.');
}
let data = ['Mark', 'yellow'];
report(data); // Mark's favorite color is yellow.

let arr = [1, [2, 3], [[4, 5], [6, 7, 8]]];
let [a, [, b], [[c], [,, d]]] = arr;
console.log('a =', a); // 1
console.log('b =', b); // 3
console.log('c =', c); // 4
console.log('d =', d); // 8

let obj = {color: 'blue', weight: 1, size: 32};
let {color, size} = obj;
console.log('color =', color); // blue
console.log('size =', size); // 32

function report2(p1, {weight, color}) {
 console.log(p1, color, weight);
}
report2(19, obj); // 19 blue 1

extracting array
elements
by position

extracting object
property values
by name

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Arrow Functions ...

(params) => { expressions }

if only one parameter and not using destructuring, can omit parens

need parens if no parameters

cannot insert line feed between parameters and =>

if only one expression, can omit braces and
its value is returned without using return keyword

expression can be another arrow function that is returned

if expression is an object literal, wrap it in parens to distinguish it from a block of code

27

let arr = [1, 2, 3, 4];
let doubled = arr.map(x => x * 2);
console.log(doubled); // [2, 4, 6, 8]

let product = (a, b) => a * b;
console.log(product(2, 3)); // 6

let average = numbers => {
 let sum = numbers.reduce((a, b) => a + b);
 return sum / numbers.length;
};
console.log(average(arr)); // 2.5

Arrow functions are typically used for
anonymous functions like those
passed to map and reduce.

Functions like product and average
are better defined the normal way so
their names appear in stack traces.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Arrow Functions

Inside arrow function, this has same value as containing scope,
not a new value (called “lexical this”)

so can’t use to define constructor functions or methods, only plain functions

Also provides “lexical super”

Immediately invoked functions (IIFEs)
not typically needed in ES6 since modules provide file scope

can write like this

ending like this is a syntax error

28

(() => {
 ...
})();

(() => {
 ...
}());

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Symbols ...

Immutable identifiers that are guaranteed to be unique
unlike strings

To create a symbol
let sym = Symbol(description);

note new keyword is not used

throws TypeError; it’s a function, not a constructor

description is optional and mainly useful for debugging

To retrieve description
sym.toString() or String(sym)

returns 'Symbol(description)'

concatenating a symbol to a string throws TypeError

A new primitive type
typeof sym === 'symbol'

29

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Symbols

Can use as object keys
obj[sym] = value;

They become non-enumerable properties
Object.getOwnPropertyNames(obj) gets string keys, but not symbol keys

Object.getOwnPropertySymbols(obj) gets symbol keys, but not string keys

Reflect.ownKeys(obj) gets both string and symbol keys

Can use for constants that only serve as unique identifiers
const NAME = Symbol();

Can use to add “meta-level” properties or internal methods to an object
that avoid clashing with normal properties

Symbol.iterator is an example (described later)

To use in Traceur and Babel, enable experimental mode

30

// Using computed
// property syntax
let obj = {
 [sym1]: value,
 [sym2](params) {
 ...
 }
};

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Public Symbols

There are several predefined symbols
that can be used as method names
to customize how JavaScript treats specific objects

To customize instanceof, implement Symbol.hasInstance method

To customize conversion to a primitive, implement Symbol.toPrimitive method

To customize conversion to a string, implement Symbol.toStringTag method

To make an object “iterable”, implement Symbol.iterator method

31

unlike constants whose
names are all uppercase,
these have camelcase names

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Enhanced Object Literals ...

Literal objects can omit value for a key
if it’s in a variable with the same name

similar to destructuring syntax

Example

32

let fruit = 'apple', number = 19;
let obj = {fruit, foo: 'bar', number};
console.log(obj);
// {fruit: 'apple', foo: 'bar', number: 19}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Enhanced Object Literals ...

Computed properties names can be specified inline

33

// Old style
let obj = {};
obj[expression] = value;

// New style
let obj = {
 [expression]: value
};

one use is to define properties
whose keys are symbols
instead of strings

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Enhanced Object Literals

Property method assignment
alternative way to attach a method to a literal object

example

34

let obj = {
 number: 2,
 multiply: function (n) { // old way
 return this.number * n;
 },
 times(n) { // new way
 return this.number * n;
 },
 // This doesn't work because the
 // arrow function "this" value is not obj.
 product: n => this.number * n
};

console.log(obj.multiply(2)); // 4
console.log(obj.times(3)); // 6
console.log(obj.product(4)); // NaN

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Classes ...

Use class keyword

Define constructor
and methods inside

one constructor function
per class

Really just sugar over
existing prototypal
inheritance mechanism

creates a constructor function
with same name as class

adds methods to prototype

Code in class definition
is always evaluated
in strict mode

35

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 Shoe.count += 1;
 }
 static createdAny() { return Shoe.count > 0; }
 equals(obj) {
 return obj instanceof Shoe &&
 this.brand === obj.brand &&
 this.model === obj.model &&
 this.size === obj.size;
 }
 toString() {
 return this.brand + ' ' + this.model +
 ' in size ' + this.size;
 }
}
Shoe.count = 0;

let s1 = new Shoe('Mizuno', 'Precision 10', 13);
let s2 = new Shoe('Nike', 'Free 5', 12);
let s3 = new Shoe('Mizuno', 'Precision 10', 13);
console.log('created any?', Shoe.createdAny()); // true
console.log('count =', Shoe.count); // 3
console.log('s2 = ' + s2); // Nike Free 5 in size 12
console.log('s1.equals(s2) =', s1.equals(s2)); // false
console.log('s3.equals(s3) =', s3.equals(s3)); // true

not a standard
JS method

class property

class method

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Classes ...

Inherit with extends keyword

In subclasses, constructor must call super(args)
and it must be before this is accessed
because the highest superclass creates the object

36

class RunningShoe extends Shoe {
 constructor(brand, model, size, type) {
 super(brand, model, size);
 this.type = type;
 this.miles = 0;
 }
 addMiles(miles) { this.miles += miles; }
 shouldReplace() { return this.miles >= 500; }
}

let rs = new RunningShoe(
 'Nike', 'Free Everyday', 13, 'lightweight trainer');
rs.addMiles(400);
console.log('should replace?', rs.shouldReplace()); // false
rs.addMiles(200);
console.log('should replace?', rs.shouldReplace()); // true

inside constructor, super(args)
calls the superclass constructor;
can only call super like this
in a constructor and only once

inside a method, super.name(args)
calls the superclass method name

value after extends can be an expression
that evaluates to a class/constructor function

this is not set until
the call to super returns

inherits both instance and static methods

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Classes

In a class with no extends,
omitting constructor is the same as specifying
constructor() {}

In a class with extends,
omitting constructor is the same as specifying
constructor(...args) { super(...args); }

Can extend builtin classes like Array and Error

requires JS engine support; transpilers cannot provide

instances of Array subclasses can be used like normal arrays

instances of Error subclasses can be thrown like provided Error subclasses

Precede method names with “* ” for generators (discussed later)

37

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Getters and Setters

ES5 supports these using Object.defineProperty/defineProperties

ES6 supports get and set keywords in class definitions

ES5 also allows use get and set in object literals, but that seems less useful

38

class Shoe {
 ...
 get size() {
 return this._size;
 }
 set size(size) {
 this._size = size;
 }
 ...
}
let s = new Shoe();
s.size = 13; // invokes setter
console.log(s.size); // invokes getter

can do more here

can use a Symbol in place of _size and _name
to make them a non-enumerable properties

class Person {
 constructor(name) {
 this._name = name;
 }
 get name() {
 return this._name;
 }
}
let p = new Person('Mark');
console.log('name is', p.name); // Mark
p.name = 'Jason';
// throws ModuleEvaluationError
// with message "Cannot set property name
// of #<Person> which has only a getter

using size instead of _size for
the “backing field” would cause a
ModuleEvaluationError with message
“Maximum call stack size exceeded”

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

ES5 vs. ES6 Functions

39

ES5 ES6

normal
function

function function or
arrow function

method
function

on prototype
method

in class

constructor function constructor
in class

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New Math Functions

Math.fround(number) - returns nearest single precision floating point number to number

Math.sign(number) - returns sign of number; -1, 0 or 1

Math.trunc(number) - returns integer part of number

Math.cbrt(number) - returns cube root of number

Math.expm1(number) - returns exp(number) - 1;

Math.exp returns e (Euler’s constant) raised to number power

Math.hypot(x, y, ...) - returns square root of sum of squares of arguments

Math.imul(n1, n2) - multiplies two 32-bit integers; for performance

logarithmic functions - Math.log1p(number), Math.log10(number), Math.log2(number)

Math.log1p returns Math.log(1 + number)

hyperbolic trig functions - Math.asinh(number), Math.acosh(number), Math.atanh(number)

40

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New Number Functions

Number.isFinite(n) - returns boolean indicating whether n is a Number
and is not NaN, Infinity or -Infinity

Number.isInteger(n) - returns boolean indicating whether n is an integer
and not a float, NaN, Infinity or -Infinity

Number.isNaN(n) - returns boolean indicating whether n is the special NaN value

Number.isSafeInteger(n) - returns boolean indicating whether n
can be represented exactly in a double (within 53 bits)

also new constants Number.MIN_SAFE_INTEGER and Number.MAX_SAFE_INTEGER

Number.toInteger(n) - converts a number to an integer

Number.parseInt(string) - parses a string into an integer; same as the global function

Number.parseFloat(string) - parses a string into a double; same as the global function

41

note how some of these are
functions on other objects in ES5

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Numeric Literals

Hexadecimal
preceded with zero and x

0xa === 10

supported before ES6

Octal
preceded with zero and o

0o71 === 57

Binary
preceded with zero and b

0b1101 === 13

When used in strings,
all of these can be parsed with Number(s)

42

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New String Methods

s1.startsWith(s2) - determines if starts with given characters

s1.endsWith(s2) - determines if ends with given characters

s1.includes(s2) - determines if includes given characters

s.repeat(count) - creates new string by copying s count times

JavaScript uses UTF-16 characters
each occupies two or four bytes

length property of JavaScript strings, as well as charAt and charCodeAt methods
assume two bytes per character

to get length in code points, [...string].length

no easy way to get or create 4-byte characters in ES5

string.codePointAt(pos)
gets UTF-16 integer value at a given position

to convert to hex, call toString(16) on this value

String.fromCodePoint(int1, ..., intN)
returns string created from any number of UTF-16 integer values

43

use of 4-byte UTF-16 characters is
somewhat rare (ex. Egyptian Hieroglyphs),
so this is often not a problem

can specify
starting position
of test for
each of these

new Unicode escape syntax
inside literal strings for
specifying a code point
\u{code}
(really include the braces)

ES7 may add
trimLeft and
trimRight
methods

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Template Strings

String interpolation

Surrounded by backticks

Can contain newline characters for multi-line strings

Can contain any number of embedded expressions
${expression}

44

console.log(`${x} + ${y} = ${x + y}`);

let greeting = `Hello,
World!`;

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Tagged Template Strings ...

Preceded by a function name that will produce a customized result
examples include special escaping (ex. HTML encoding), language translation, and DSLs

Passed array of template strings outside expressions (“raw”)
and expression values as individual parameters (“cooked”)

Provided template function String.raw

treats characters like \n as separate \\ and n characters

45

function upValues(strings, ...values) {
 let result = strings[0];
 values.forEach((value, index) =>
 result += value.toUpperCase() + strings[index + 1]);
 return result;
}
let firstName = 'Mark';
let lastName = 'Volkmann';
console.log(upValues `Hello ${firstName} ${lastName}!`);
// Hello MARK VOLKMANN!

JSHint doesn’t support
tagged template strings yet

In this example
strings is ['Hello ', ' ', '!'] and
values is ['Mark', 'Volkmann']

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Tagged Template Strings

46

function dedent(strings, ...values) {
 let last = strings.length - 1, re = /\n\s+/g, result = '';
 for (let i = 0; i < last; i++) {
 result += strings[i].replace(re, '\n') + values[i];
 }
 return result + strings[last];
}

let homeTeam = 'Cardinals';
let visitingTeam = 'Cubs';
console.log(dedent `Today the ${homeTeam}
 are hosting the ${visitingTeam}.`);
// Outputs
// If template starts with an expression, strings will start with ''.
// If template ends with an expression, strings will end with ''.
console.log(dedent `${homeTeam}
 versus
 ${visitingTeam}`);

Output
Today the Cardinals
are hosting the Cubs.
Cardinals
versus
Cubs

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New Array Functions

Array.of(values) - creates an Array from it’s arguments

can use literal array syntax instead

Array.from(arrayLikeObj, [mapFn]) - creates an Array from an Array-like object

mapFn is an optional function that is called on each element to transform the value

47

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New Array Methods

arr.copyWithin(targetIndex, srcStartIndex, [srcEndIndex]) -
copies elements from srcStartIndex to srcEndIndex - 1, or to the end of the array,
to targetIndex, replacing existing elements

indexes can be negative to count from end

arr.find(predicateFn) - returns first element in arr that satisfies a given predicate function

predicateFn is passed element, index, and arr

if none satisfy, undefined is returned

arr.findIndex(predicateFn) - same as find, but returns index instead of element

if none satisfy, -1 is returned

arr.fill(value, [startIndex], [endIndex]) - fills arr with a given value

startIndex defaults to 0; endIndex defaults to the array length

arr.entries() - returns an iterator over the [index, value] pairs of arr

arr.keys() - returns an iterator over the indices of arr

arr.values() - returns an iterator over the values in arr

48

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

New Object Functions ...

Object.assign(target, src1, ... srcN)

copies properties from src objects to target,
replacing those already present

returns target

can use to create a shallow clone an object

to create a clone with the same prototype

can use in constructors to assign initial property values

can use to add default values to an object

49

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 // or
 Object.assign(this,
 {brand, model, size});
 }
 ...
}

uses enhanced object literal

let copy = Object.assign({}, obj);

function clone(obj) {
 let proto = Object.getPrototypeOf(obj);
 return Object.assign(
 Object.create(proto), obj);
}
let copy = clone(obj);

const DEFAULTS = {
 color: 'yellow',
 size: 'large'
};
let obj = {size: 'small'};
obj = Object.assign({}, DEFAULTS, obj); order is significant!

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... New Object Functions

Object.is(value1, value2)

determines if value1 and value2 are the same

values can be primitives or objects; objects are the same only if they are the same object

unlike ===, this treats Number.NaN as the same as Number.NaN

google “MDN JavaScript Object” for more detail

Object.setPrototypeOf(obj, prototype)

changes prototype of an existing object

use is discouraged because it is slow and makes subsequent operations on the object slow

Object.getOwnPropertySymbols(obj)

returns array of symbol keys

alternative to existing Object.keys and Object.getOwnPropertyNames functions

also see functions on Reflect object (described next)

50

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Reflect Functions

get(obj, propName) - alternative to obj[propName]

set(obj, propName, value) - alternative to obj[propName] = value

has(obj, propName) - alternative to propName in obj

deleteProperty(obj, propName) - alternative to delete obj[propName]

construct(ctorFn, args) - alternative to using new ctorFn(...args)

apply(fn, thisValue, args) - alternative to using fn.apply(thisValue, args)

getOwnPropertyDescriptor(obj, propName) - similar to same function in Object

defineProperty(obj, propName, propAttrs) - similar to same function in Object

getPrototypeOf(obj) - same as function in Object

setPrototypeOf(obj, prototype) - changes prototype of obj

ownKeys(obj) - returns an array of string and symbol keys

enumerate(obj) - returns an iterator over all string keys (not symbols) including those in prototype chain

isExtensible(obj) - same as function in Object

preventExtensions(obj) - similar to same function in Object

51

supported by Babel, but not Traceur

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Getting Object Keys

52

string
keys

symbol
keys

only
own

only
enumerable

Object.keys √ √ √

Object.getOwnPropertyNames √ √

Object.getOwnPropertySymbols √ √

Reflect.ownKeys √ √ √

Reflect.enumerate √ √

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

for-of Loops

New way of iterating over elements in an “iterable”
for arrays, this is an alternative to for-in loop and Array forEach method

Iteration variable is scoped to loop

Value after of can be anything that is iterable such as an array
iterators are described later

Example

53

let stooges = ['Moe', 'Larry', 'Curly'];
for (let stooge of stooges) {
 console.log(stooge);
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Collections

New collection classes include
Set

Map

WeakSet

WeakMap

54

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Set Class ...

Instances hold collections of unique values
when values are objects, they are compared by reference

Values can be any type including objects and arrays
To create, let mySet = new Set()

can pass iterable object (such as an array) to constructor to add all its elements

To add an element, mySet.add(value);

To test for element, mySet.has(value)

To delete an element, mySet.delete(value)

To delete all elements, mySet.clear()

55

can chain to add multiple values

could store references
to DOM nodes

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Set Class

size property holds number of keys

keys method returns iterator over elements

values method returns iterator over elements

used by default in for-of loop

entries method returns iterator over
[element, element] pairs

forEach method is like in that in Array, but
passes value, value and the set to callback

56

these
iterate in
insertion
order

methods for Set iteration
treat sets like maps
where corresponding keys
and values are equal
for API consistency

iterators are
described later

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Common Set Operations

All of these work by creating Arrays from Sets,
operating on them, and creating a new Set

Map

Filter

Union

Intersection

Difference

Remove duplicates from an array

57

let union = new Set([...set1, ...set2]);

let intersection = new Set([...set1].filter(elem => set2.has(elem)));

let union = new Set([...set1].filter(elem => !set2.has(elem)));

Thanks Dr. Axel
Rauschmayer

let newSet = new Set([...set].map(elem => some-code));

let newSet = new Set([...set].filter(elem => some-code));

let newArr = [...new Set(arr)];

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Set Example

58

let colors = new Set();
colors.add('red');
colors.add('green');
colors.add('blue');
colors.add('red');

// Another way to populate a Set
let arr = ['red', 'green', 'blue', 'red'];
colors = new Set(arr);

console.log(colors.size); // 3
console.log(colors.has('red')); // true
console.log(colors.has('pink')); // false

console.log('\nkeys are:');
colors.forEach(key => console.log(key));
// red green blue

console.log('\nvalues are:');
for (let value of colors.values()) {
 console.log(value); // red green blue
}
for (let value of colors) { // same
 console.log(value); // red green blue
}

console.log('\nentries are:');
for (let entry of colors.entries()) {
 console.log(entry);
 // ['red', 'red']
 // ['green', 'green']
 // ['blue', 'blue']
}

colors.delete('red');
console.log(colors.size); // 2
console.log(colors.has('red')); // false

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Map Class ...

Instances hold key/value pairs where keys are unique
when keys are objects, they are compared by reference

Keys and values can be any type including objects and arrays
differs from JavaScript objects in that keys are not restricted to strings

To create, let myMap = new Map()

can pass iterable object to constructor to add all its pairs (ex. array of [key, value])

To add or modify a pair, map.set(key, value)

To get a value, myMap.get(key);

returns undefined if not present

To test for key, myMap.has(key)

To delete a pair, myMap.delete(key)

To delete all pairs, myMap.clear()

size property holds number of keys

59

can chain to add/modify multiple values

could use DOM nodes
as keys or values

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Map Class

size property holds number of keys

keys method returns iterator over keys

values method returns iterator over values

entries method returns iterator over array of [key, value] arrays

used by default in for-of loop

forEach method is like in Array, but passes value, key and map to callback

60

these
iterate in
insertion
order

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Common Map Operations

Map

Filter

61

let newMap = new Map([...map].map(
 ([key, value]) => [new-key-expr, new-value-expr]));

let newMap = new Map([...map].filter(
 ([key, value]) => boolean-expr]));

an array of key/value arrays

Thanks Dr. Axel
Rauschmayer

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Map Example

62

console.log('\\nvalues are:');
for (let value of teams.values()) {
 console.log(value);
 // Cubs, Royals, Cardinals
}

console.log('\\nentries are:');
for (let entry of teams.entries()) {
 console.log(entry);
 // ['Chicago', 'Cubs']
 // ['Kansas City', 'Royals']
 // ['St. Louis', 'Cardinals']
}
for (let [city, team] of teams) { // same
 console.log(
 'The', team, 'plays in', city);
}

teams.delete('Chicago');
console.log(teams.size); // 2
console.log(teams.has('Chicago')); // false

let teams = new Map();
teams.set('Chicago', 'Cubs');
teams.set('Kansas City', 'Royals');
teams.set('St. Louis', 'Cardinals');

// Another way to populate a Map
let arr = [
 ['Chicago', 'Cubs'],
 ['Kansas City', 'Royals'],
 ['St. Louis', 'Cardinals']
];
teams = new Map(arr);

console.log(teams.size); // 3
console.log(teams.has('St. Louis')); // true
console.log(teams.has('Los Angeles')); // false
console.log(teams.get('St. Louis')); // Cardinals

console.log('\\nkeys are:');
teams.forEach((value, key) => console.log(key));
// Chicago, Kansas City, St. Louis

// Another way to iterate over keys
for (let key of teams.keys()) {
 console.log(key);
 // Chicago, Kansas City, St. Louis
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

WeakSet Class

Similar API to Set, but differs in that

values must be objects

values are “weakly held”,
i.e. can be garbage collected if not referenced elsewhere

don’t have a size property

can’t iterate over values

no clear method to remove all elements

63

supported by Babel, but not Traceur

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

WeakMap Class

Similar API to Map, but differs in that

keys must be objects

keys are “weakly held”,
i.e. a pair can be garbage collected if the key is not referenced elsewhere

at that point the value can be garbage collected if not referenced elsewhere

don’t have a size property

can’t iterate over keys or values

no clear method to remove all pairs

64

supported by Babel, but not Traceur

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Promises ...

Proxy for a value that may be known in the future
after an asynchronous operation completes

Create with Promise constructor, passing it
a function that takes resolve and reject functions

Register to be notified when promise is resolved or rejected
with then or catch method

then method takes success and failure callbacks
and returns a Promise to support chaining

catch method only takes failure callback

“success callback” is passed a value of any kind

“failure callback” is passed a “reason” which can be an Error object or a string

Can call then on a promise after it has been resolved or rejected
the success or failure callback is called immediately

Three possible states: pending, fullfilled, and rejected
once state is fullfilled or rejected, can’t return to pending

65

call omit
one callback

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Promises ...

Static methods
Promise.resolve(value) returns promise
that is resolved immediately with given value

Promise.reject(reason) returns promise
that is rejected immediately with given reason

Promise.all(iterable) returns promise
that is resolved when
all promises in iterable are resolved

resolves to array of results
in order of provided promises

if any are rejected, this promise is rejected

Promise.race(iterable) returns promise
that is resolved when
any promise in iterable is resolved
or rejected when
any promise in iterable is rejected

66

function asyncDouble(n) {
 return new Promise((resolve, reject) => {
 if (typeof n === 'number') {
 resolve(n * 2);
 } else {
 reject(n + ' is not a number');
 }
 });
}

asyncDouble(3).then(
 data => console.log('data =', data), // 6
 err => console.error('error:', err));

in real usage, some
asynchronous operation
would happen above

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Promises ...

Supports chaining to reduces code nesting

Some fine print
if a success callback returns a non-Promise value,
it becomes the resolved value of the Promise returned by then

if a success callback returns a Promise value,
it becomes the Promise returned by then

if any Promise in the chain is rejected or throws,
the next failure callback in the chain receives it

if a failure callback returns a value,
it becomes the resolve value for the next success callback in the chain

67

asyncDouble(1).
 then(v => asyncDouble(v)).
 then(v => asyncDouble(v)).
 //then((v) => asyncDouble('bad')).
 then(v => console.log('success: v =', v)).
 catch(err => console.error('error:', err));

Output
success: v = 8

asyncDouble
returns a Promise

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Promises

If an error is thrown inside a success or failure callback
the promise returned by then is rejected

68

let p = asyncDouble(3).then(
 v => {
 // This causes the promise returned by
 // the call to then above to be rejected.
 throw 'Did you see this?';
 },
 err => console.error('error:', err)); // not reached

p.then(
 value => console.log('resolved with', value),
 reason => console.log('rejected with', reason));
// Output is "rejected with Did you see this?"

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Modules

A JavaScript file that is imported by another is treated as a “module”
defined by a single, entire source file

contents are not wrapped in any special construct

also code in an HTML <module> tag is treated as a “module” (will anyone use this?)

Modules typically export values to be shared with other files that import it

Top-level variables and functions that are not exported
are not visible in other source files (like in Node.js)

Module code is evaluated in strict mode by default
no need to specify 'use strict';

Supports cyclic module dependencies

Enables APIs to be defined in modules instead of global variables
eliminates need to use objects for namespaces - ex. JSON and Math

future versions of jQuery $ and Underscore _ will be defined using modules

69

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Modules - Exporting

Can export any number of values from a module
values can be any JavaScript type including functions and classes

can optionally specify a default export
which is actually a named export with the name "default"

To export a value
export let name = value;

export function name(params) { ... }

export class name { ... }

To export multiple, previously defined values
export {name1, name2 as other-name2, ...};

To specify a default export
export default expr;

export {name as default};

export default function (params) { ... };

export default class { ... };

70

note ability to export a value
under a different name

same as previous line if value of name is expr

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Modules - Importing

Can import values from other modules

To import all exports into a single object
import * as obj from 'module-path';

obj is read-only

To import specific exports
import {name1, name2 as other-name, ...} from 'module-path';

To import the default export
import name from 'module-path';

import {default as name} from 'module-path';

To import the default export and specific exports
import default-name, {name1, name2, ...} from 'module-path';

To import a module only for its side effects
import 'module-path';

71

module paths do not include .js file extension;
relative to containing file;
can start with ./ (the default) or ../

note ability to import a value
under a different name

same as previous line

bindings from imports
are read-only

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

More on Modules

A module can export values from another module
without first importing them

adds to its own exports

export * from 'module-path';

export {name1, name2 as other-name} from 'module-path';

Module Loader API
supports conditionally loading modules

allows customized resolving of 'module-path' strings (see Reflect.Loader)

System.import returns a promise

can use Promise.all to wait for multiple modules to be loaded

there is much more to this!

72

exports everything exported by the given module

System.import('module-path').
 then(theModule => { ... }).
 catch(err => { ... });

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Modules in Traceur ...

To transpile ES6 files that use modules
transpile just main file to generate a single ES5 file that contains all required code

traceur --out main.js --source-maps main6.js

Traceur generated source maps support modules
can step through each of the original ES6 files
that make up a single generated ES5 file

Use in browsers requires traceur-runtime.js

if Traceur was installed using npm install -g traceur,
determine where global modules are installed with npm -g root
and copy traceur-runtime.js from traceur/bin below that directory

add script tag for this in main HTML file

73

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Modules in Traceur

74

<html>
 <head>
 <title></title>
 <script src="lib/traceur-runtime.js"></script>
 <script src="gen/main.js"></script>
 </head>
 <body>
 See console output.
 </body>
</html>

index.html

import {foo1, foo2} from './foo6';
console.log('in main');
console.log('foo1 =', foo1);
foo2();

main6.js

import {bar1, bar2} from './bar6';

export let foo1 = 'the value of foo1';
console.log('foo6: bar1 =', bar1);

export function foo2() {
 console.log('in foo2');
 bar2();
}

foo6.js

export let bar1 = 'the value of bar1';

export function bar2() {
 console.log('in bar2');
}

bar6.js

To run from command-line:
 traceur main6
To generate ES5 and source map:
 traceur --out gen/main.js \
 --source-maps main6.js

Output:
foo6: bar1 = the value of bar1
in main
foo1 = the value of foo1
in foo2
in bar2

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Guy Bedford Rocks!

ES6 Module Loader - https://github.com/ModuleLoader/es6-module-loader

“dynamically loads ES6 modules in browsers and NodeJS”

will track “JavaScript Loader Standard” at https://github.com/whatwg/loader

SystemJS - https://github.com/systemjs/systemjs

“universal dynamic module loader - loads ES6 modules (using ES6 Module Loader),
AMD, CommonJS, and global scripts (like jQuery and lo-dash) in the browser and NodeJS.”

dependency management handles circular references and
modules that depend on different versions of the same module (like Node.js does)

supports “loading assets ... such as CSS, JSON or images”

jspm - http://jspm.io and https://github.com/jspm

JavaScript Package Manager for SystemJS

“load any module format (ES6, AMD, CommonJS, and globals)
directly from any endpoint such as npm and GitHub”

“custom endpoints can be created”

“for development, load modules as separate files with ES6”

“for production, optimize into a bundle ... with a single command”

75

all of these support
Traceur and Babel

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Using jspm ...

To install and configure jspm
npm install -g jspm

jspm init

prompts and creates package.json and config.js

can accept all defaults

create index.html

setup a local file server

a good option is live-server

npm install -g live-server

live-server

browse localhost:8080

automatically transpiles using
Traceur (default) or Babel

automatically generates sourcemaps

To install modules
for packages in npm

jspm install npm:module-name (ex. jsonp)

by default, installs in jspm_packages/npm

for packages in GitHub
jspm install github:module-name

by default, installs in jspm_packages/github

for well-known packages
jspm install module-name

includes angularjs, bootstrap, d3, jquery, lodash,
moment, and underscore

see list at https://github.com/jspm/registry/blob/master/
registry.json

adds dependencies to package.json

adds System.config call in config.js

76

lesser used modules
require jspm configuration
before they can be installed

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Using jspm

To reinstall dependencies
similar to npm, run jspm install

recreates and populates
jspm_packages directory

recreates config.js if it is missing

To make your own packages
compatible with jspm

see https://github.com/jspm/registry/wiki/
Configuring-Packages-for-jspm

can publish in npm or GitHub

allows others to install them using jspm

To bundle for production
jspm bundle-sfx --minify main

removes all dynamic loading and transpiling

generates build.js and build.js.map

replace all script tags in main HTML file
with one for build.js

if using Traceur, add
<script src="jspm_packages/traceur-runtime.js">
</script>

there are other bundling options,
but this seems like the best

won’t be necessary in the future
when browsers support HTTP2

will be able to download many files efficiently

today browsers limit concurrent HTTP requests
to the same domain to 6 or 8

77

sfx is short for
"self executing"

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES678

<!DOCTYPE html>
<html>
 <head>...</head>
 <body>
 <div id="content"></div>

 <!-- Enable ES6 module loading and more. -->
 <script src="jspm_packages/system.js"></script>

 <!-- Enable loading dependencies
 that were installed with jspm. -->
 <script src="config.js"></script>

 <!-- Load the main JavaScript file
 that can import others. In this
 example, main.js is in same directory.
 Can also specify a relative directory path. -->
 <script>System.import('main');</script>
 </body>
</html>

index.html

import $ from 'jquery';
import * as strUtil from './str-util';

$('#content').text('initials are ' +
 strUtil.initials(
 'Richard Mark Volkmann'));

export function initials(text) {
 return text.split(' ').
 map(word => word[0]).
 join('');
}

main.js

main.js

str-util.js

jspm Example #1
the basics plus a little jQuery

jspm install jquery

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

jspm Example #2
adds Bootstrap and more jQuery

79

<!DOCTYPE html>
<html>
 <head>
 <title>jspm demo</title>
 <meta charset="utf-8">
 <link rel="stylesheet" href="main.css">
 <script src="jspm_packages/system.js"></script>
 <script src="config.js"></script>
 <script>System.import('main');</script>
 </head>
 <body>
 <label>Name</label>
 <input id="name-input"
 class="form-control"
 value="Richard Mark Volkmann">
 <button id="get-initials-btn"
 class="btn btn-default">
 Get Initials
 </button>
 <div id="content"></div>
 </body>
</html>

index.html

import 'bootstrap';
import $ from 'jquery';
import * as strUtil from './str-util';

$('#get-initials-btn').click(() => {
 let name = $('#name-input').val();
 let initials = strUtil.initials(name);
 $('#content').text(
 'initials are ' + initials);
});

$('body').show();

export function initials(text) {
 return text.split(' ').
 map(word => word[0]).
 join('');
}

main.js

main.js

str-util.js

body {
 display: none;
 padding: 10px;
}

input.form-control {
 display: inline-block;
 vertical-align: middle;
 width: 180px;
}

main.css

jspm install bootstrap

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iterators and Iterables

Iterators are objects that can visit elements in a sequence
not created with a custom class; can be Object

have a next method and optional return and throw methods

described on next slide

Iterables are objects that have a method
whose name is the value of Symbol.iterator

this method returns an iterator

80

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iterator Methods

next method

gets next value in sequence

takes optional argument, but not on first call

specifies value that the yield hit in this call will return at the start of processing for the next call

returns a new object with value and done properties

done will be true if end of sequence has been reached; can omit if false

when done is true, value is not valid; typically undefined; can omit

return method (optional)
called if iteration ends before iterator returns done: true

can end iteration with break, return, throw, and continue (with label of outer loop; rarely used)

allows iterator to clean up (ex. close files)

throw method (optional)

takes error argument and throws it inside generator function that created the iterator

can catch inside generator function

81

yield and generators
will be discussed soon

Why return a new object from next method
instead of returning the same object
with modified value and done properties?
It is possible for an iterator to be used by
more than one consumer and those consumers could
access the object returned by next asynchronously.
If each call doesn’t return a new object,
its properties could be modified after the object is received,
but before it checks the properties.
While this is a rare situation, implementers of iterators
can’t be sure how they will be used.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iterable Objects ...

Objects from these builtin classes are iterable
Array - over elements

Map - over key/value pairs as [key, value]

Set - over elements

DOM NodeList - over Node objects (coming soon)

Primitive strings are iterable
over Unicode code points

These methods on Array (including typed arrays), Map, and Set return an iterable
entries - over key/value pairs as [key, value]

keys - over keys

values - over values

Custom objects can be made iterable
by adding Symbol.iterator method

82

for arrays, keys are indices;
for sets, keys are same as values

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Iterable Objects

To get an iterable represention of an array-like object
let iterable = Array.from(arrayLike)

Ordinary objects such as those created from object literals are not iterable
when this is desired, use new Map class instead or write a function like the following

83

function objectEntries(obj) {
 let index = 0;
 let keys = Reflect.ownKeys(obj); // gets both string and symbol keys
 return { // note how the iterable and iterator can be same object
 [Symbol.iterator]() { return this; },
 next() {
 if (index === keys.length) return {done: true};
 let k = keys[index++], v = obj[k];
 return {value: [k, v]};
 }
 };
}

let obj = {foo: 1, bar: 2, baz: 3};
for (let [k, v] of objectEntries(obj)) {
 console.log(k, 'is', v);
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iteratable Consumers

for-of loop
for (let value of someIterable) { ... } // iterates over all values

spread operator
can add all values from an iterable into a new array

let arr = [firstElem, ...someIterable, lastElem];

can use all values from iterable as arguments to a function, method, or constructor call
someFunction(firstArg, ...someIterable, lastArg);

destructuring to an array
let [a, b, c] = someIterable; // gets first three values

Map constructor takes an iterable over key/value pairs

Set constructor takes an iterable over elements

Promise methods all and race take an iterable over promises

In a generator, yield* yields all values in an iterable one at a time

84

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iterator Example #1

85

let fibonacci = {
 [Symbol.iterator]() {
 let prev = 0, curr = 1;
 return {
 next() {
 [prev, curr] = [curr, prev + curr];
 return {value: curr};
 }
 };
 }
};

for (let n of fibonacci) {
 if (n > 100) break;
 console.log(n);
}

1
2
3
5
8
13
21
34
55
89

stops iterating when
done is true which never
happens in this example

iterators can also be implemented
with generators - see slide 89

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Iterator Example #2

86

let arr = [1, 2, 3, 5, 6, 8, 11];
let isOdd = n => n % 2 === 1;

// This is less efficient than using an iterator because
// the Array filter method builds a new array and
// iteration cannot begin until that completes.
arr.filter(isOdd).forEach(n => console.log(n)); // 1 3 5 11

// This is more efficient, but requires more code.
function getFilterIterator(arr, filter) {
 let index = 0;
 return {
 [Symbol.iterator] = () => ({
 next() {
 while (true) {
 if (index >= arr.length) return {done: true};
 let value = arr[index++];
 if (filter(value)) return {value};
 }
 }
 })
 };
}

for (let v of getFilterIterator(arr, isOdd)) {
 console.log(v); // 1 3 5 11
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Generators

Generator functions
implicitly return a generator which is a special kind of iterator

have multiple return points, each specified using yield keyword

each yield is hit in a separate call to the iterator next method

Can obtain values from a sequence one at a time
supports lazy evaluation and infinite sequences

Defined with function* name(params) { code }

code uses yield keyword to return each value in sequence,
often inside a loop

ends when generator function exits

can exit using return keyword; value returned is not yielded

Can create generator methods in class definitions
preceded method name with *

ex. to make instances iterable, * [Symbol.iterator]() { ... }

87

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Steps to Use Generators

1) Call generator function to obtain generator

2) Call generator next method to request next value

optionally pass a value that iterator
can use to compute the subsequent value

after iterator “yields” next value,
its code is “suspended” until next request

3) Process value

4) Repeat from step 2

88

When an iterator is used in a for-of loop
it performs steps 2 and 4.
Step 3 goes in loop body.

for (let v of someGenerator()) {
 // process v
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Generator yield

To return a “normal” value
yield value;

To yield each value returned by an iterable one at a time
yield* some-iterable;

can obtain an iterable by calling another generator function - otherGenerator(params);

not commonly used

89

function* fibonacci() {
 let [prev, curr] = [0, 1];
 while (true) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
}

for (let value of fibonacci()) {
 if (value > 100) break;
 console.log(value);
}

1
2
3
5
8
13
21
34
55
89

compare to
slide 85

// Iterables can be
// implemented with generators.
let fib = {
 * [Symbol.iterator]() {
 let [prev, curr] = [0, 1];
 while (true) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
 }
};

for (let n of fib) {
 if (n > 100) break;
 console.log(n);
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

More Generator Examples

90

function* gen2(v) {
 try {
 v = yield 'foo' + v;
 v = yield 'bar' + v;
 yield 'baz' + v;
 } catch (e) {
 console.error('caught', e);
 }
}

let iter = gen2(1); // can pass value to generator function,
let result = iter.next(); // but can't pass in first call to next
console.log(result.value); // foo1; result.done is false

result = iter.next(2);
console.log(result.value); // bar2; result.done is false

//iter.throw('stop now'); // triggers catch in gen2

result = iter.next(3);
console.log(result.value); // baz3; result.done is false

result = iter.next(4);
console.log(result.done ? 'done' : result.value); // done

function* gen1() {
 yield 'foo';
 yield 'bar';
 yield 'baz';
}

for (let value of gen1()) {
 console.log(value);
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Generators For Async ...

91

function double(n) {
 return new Promise(resolve => resolve(n * 2));
}

function triple(n) {
 return new Promise(resolve => resolve(n * 3));
}

function badOp(n) {
 return new Promise((resolve, reject) => reject('I failed!'));
}

function async(generatorFn) {
 let iter = generatorFn();
 function success(result) {
 let next = iter.next(result);
 // next.value is a promise
 // next.done will be true if iter.next is called after
 // the last yield in workflow (on next slide) has run.
 if (!next.done) next.value.then(success, failure);
 }
 function failure(err) {
 let next = iter.throw(err);
 // next.value is a promise
 // next.done will be false if the error was caught and handled.
 if (!next.done) next.value.then(success, failure);
 }
 success();
}

multiplies a given number
by 2 asynchronously

multiplies a given number
by 3 asynchronously

The magic! This obtains and waits for each of the promises
that are yielded by the specified generator function.
It is a utility method that would only be written once.

BUT DON’T DO THIS!
See async and await
keywords ahead.

compare to
slide 98

called on
next slide

workflow.js

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Generators for Async

92

async(function* () { // passing a generator
 let n = 1;
 try {
 n = yield double(n);
 n = yield triple(n);
 //n = yield badOp(n);
 console.log('n =', n); // 6
 } catch (e) {
 // To see this happen, uncomment yield of badOp.
 console.error('error:', e);
 }
});

Call multiple asynchronous functions in series
in a way that makes them appear to be synchronous.
This avoids writing code in the pyramid of doom style.

These yield promises that the
async function waits on to be
resolved or rejected.

This can be simplified
with new ES7 keywords!

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Proxies ...

Can intercept all operations whose names match functions on the Reflect object

see slide 51

can provide additional or alternate functionality

Uses new Proxy class

constructor takes “target” (the object for which operations are to be intercepted)
and “handler” (an object that defines alternate handling)

Must use proxy object instead of target object
or interceptions won’t occur!

Methods called on proxy that aren’t defined there
are forwarded to the target object

Can create proxies that can be later turned off (revoked)
after being revoked, calls on proxies object are just forwarded to target

Proxies can be the prototype of other objects

Support - currently only Firefox; no transpilers

93

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Proxies

94

var obj = {
 p1: 'some value',
 m1: () => 'm1 result',
 m2: () => 'm2 result'
};

var proxy = new Proxy(obj, {
 get: (target, key) => {
 console.log('intercepted get for key =', key);
 var value = target[key];
 return value === undefined ? () => 'missing method ' + key :
 typeof value === 'string' ? value.toUpperCase() :
 value;
 },
 set: (target, key, value) => {
 console.log('intercepted set for key =', key);
 target[key] = value;
 }
});

// Replace a method on obj with a proxy for it.
obj.m1 = new Proxy(obj.m1, {
 apply: (fn, target, args) => {
 console.log('intercepted call to function', fn);
 var result = fn.apply(target, args);
 return typeof result === 'string' ? result.toUpperCase() : value;
 }
});

proxy.p1 = 'other value';
console.log('proxy.p1 =', proxy.p1);
console.log('obj.p1 =', obj.p1);

console.log('proxy.m1() =', proxy.m1()); // has a proxy
console.log('proxy.m2() =', proxy.m2()); // doesn't have a proxy

console.log(proxy.makeMeUpOnTheFly());

At the time this was written, only Firefox
supported proxies. However, there were
other ES6 features it did not yet support
such as “let” and enhanced object literals.

Output
intercepted set for key = p1
intercepted get for key = p1
proxy.p1 = OTHER VALUE
obj.p1 = other value

intercepted get for key = m1
intercepted call to function function obj.m1()
proxy.m1() = M1 RESULT

intercepted get for key = m2
proxy.m2() = m2 result

intercepted get for key = makeMeUpOnThFly
missing method makeMeUpOnTheFly

Proxies can’t distinguish between
gets for property lookup and
gets for method calls, so
“method missing” can only be implemented
if it can be assumed that all missing
property lookups should provide a method.
It could only supply methods for
key names that match a certain pattern.

This works because
functions are objects.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Tail Call Optimization

Makes it possible to avoid growing the call stack
when making recursive calls
or invoking callback functions

otherwise could exceed maximum call stack allowed

alternative to recursion is using loops

Possible when the last operation in a function
is a function call

translates to

Support - currently only Babel; no browsers

95

continuation passing style (CPS)

function fac(n, acc) {
 return n == 0 ? acc : fac(n - 1, acc * n);
}
function factorial(n) {
 return fac(n, 1);
}

"use strict";

function fac(_x, _x2) {
 var _again = true;

 _function: while (_again) {
 _again = false;
 var n = _x,
 acc = _x2;
 if (n == 0) {
 return acc;
 } else {
 _x = n - 1;
 _x2 = acc * n;
 _again = true;
 continue _function;
 }
 }
}

function factorial(n) {
 return fac(n, 1);
}

a label

why not drop the
_again flag, label,
and continue and
change the loop
condition to true?

// This version can't use TCO because
// multiplication occurs AFTER the recursive call.
function factorial(n) {
 return n <= 1 ? n : n * factorial(n - 1);
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

What’s Next?

The next version is always referred to as “JS-next”

Currently that is ES7

Will include
async and await keywords

type annotations

new Object instance method observe

array comprehensions

generator comprehensions

value objects - immutable datatypes for representing many kinds of numbers

more

96

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

async and await ...

Keywords to be added in ES7
already implemented in Traceur as an experimental feature

JSHint doesn’t recognize these yet

Hide use of generators for managing async operations,
simplifying code

Replace use of yield keyword with await keyword
to wait for a value to be returned asynchronously

await can be called on any function

not required to be marked as async or return a Promise

Mark functions that use await with async keyword

Works in Traceur and Babel now in experimental mode

97

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

 ... async and await

98

function sleep(ms) {
 return new Promise(resolve => {
 setTimeout(resolve, ms);
 });
}

async function double(n) {
 await sleep(50);
 return n * 2;
}

function triple(n) {
 return new Promise(resolve => resolve(n * 3));
}

function quadruple(n) {
 return n * 4;
}

function badOp() {
 return new Promise(
 (resolve, reject) => reject('I failed!'));
}

Call multiple asynchronous functions in series
in a way that makes them
appear to be synchronous.
This avoids writing code in
the pyramid of doom style.

async function work() {
 let n = 1;
 try {
 n = await double(n);
 n = await triple(n);
 //n = await badOp(n);
 n = await quadruple(n);
 console.log('n =', n); // 24
 } catch (e) {
 // To see this happen,
 // uncomment await of badOp.
 console.error('error:', e);
 }
}

work();

async function

function that returns a promise

“normal” function

compare to
slides 91-92

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Type Annotations ...

Optional type annotations for
variables, properties, function parameters, and function return types

current syntax: thing-to-annotate:type-expression

details of syntax are still being determined

if not specified, can hold any kind of value

Will provide run-time type checking

Can specify builtin types and names of custom classes

Types are first-class values
can be stored in variables and passed to functions

Builtin types: boolean, number, string, void, any

To use in Traceur, enable experimental mode
supports specifying types, but doesn’t enforce them yet

See http://wiki.ecmascript.org/doku.php?id=strawman:types&s=types

99

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

... Type Annotations

100

function initials(name:string):string {
 return name.split(' ').map(part => part.charAt(0)).join('');
}

function isFullName(name:string):boolean {
 return name.split(' ').length >= 3;
}

let name = 'Richard Mark Volkmann';
//let name = 'Mark Volkmann';
console.log('initials are', initials(name)); // RMV
console.log('full name?', isFullName(name)); // true

class Point {
 constructor(x:number, y:number) {
 this.x = x;
 this.y = y;
 }

 distanceFrom(point:Point) {
 return Math.hypot(this.x - point.x, this.y - point.y);
 }
}

let p1 = new Point(1, 2);
let p2 = new Point(4, 6);
console.log('distance =', p1.distanceFrom(p2));

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES6

Summary

Which features of ES6 should you start using today?

I recommend choosing those in the intersection of
the set of features supported by Traceur and JSHint

Includes at least these

101

arrow functions
block scope (const, let, and functions)

classes
default parameters
destructuring
enhanced object literals
for-of loops

iterators

generators
modules
promises
rest parameters
spread operator
template strings
new methods in String and Object classes

