
The Visual Basic Book
Programmers Count On

If you want to learn how to use Visual Basic 2010, you’ve come to the right
place. New users, you’ll build a simple VB application in the very fi rst chapter,
getting you quickly up to speed on the VB user interface and simple coding.
Intermediate and advanced users, you can bypass the basics and jump straight
to building data-driven applications, working with .NET 4.0 framework,
creating rich client and web applications, programming with web services,
and much more. Packed with step-by-step instruction and real-world scenarios
for users of all levels, this book is what you need to build top-level skills in
Visual Basic 2010.

COVERAGE INCLUDES:

• Getting started with Visual Basic 2010
• Mastering VB programming essentials, including GUI design,

event-driven programming, basic Windows controls, and more
• Working with custom classes, controls, and objects
• Understanding the .NET framework, including XML, LINQ, and

storing data in collections
• Programming with ADO.NET, using the data entity model, and

understanding DataSets
• Building web applications and programming with web services
• Getting the most out of advanced Windows controls such as ListView

and TreeView controls

Master Visual Basic 2010
and .NET Framework 4.0

Understand the Core
Language and User
Interface

Find a Wealth of Content
for All Users

Create Custom, Practical,
Data-Driven Applications
and Web Apps

Reinforce Your Skills with
Real-World Examples

ABOUT THE AUTHOR

Evangelos Petroutsos is a computer engineer who has worked for the California Institute of Technology and MCI. Currently, he writes
computer books and articles, teaches networking and programming courses, and works as a computer communications consultant. He is the
author of the Sybex titles Mastering Microsoft Visual Basic 2008 and Mastering Microsoft Visual Basic 2005, among other books.

CATEGORY

COMPUTERS/Programming
Languages/Visual Basic

$59.99 US
$71.99 CAN SERIOUS SKILLS.

Visual Basic® 2010

MASTERING

Build Rich Client and
Web Applications with
Visual Basic

Work with the .NET
Framework 4.0

ISBN 978-0-470-53287-4

www.sybex.com/go/masteringvb2010
www.sybex.com

MASTERING

V
isual B

asic
® 2010

Petroutsos

spine=2.11”

Microsoft®

Microsoft®

Evangelos Petroutsos

Mastering
Microsoft® Visual Basic® 2010

Mastering
Microsoft® Visual Basic® 2010

Evangelos Petroutsos

Wiley Publishing, Inc.

Acquisitions Editor: Agatha Kim
Development Editor: Mary Ellen Schutz
Technical Editor: Kirstin Juhl
Production Editor: Rachel McConlogue
Copy Editors: Judy Flynn and Kim Wimpsett
Editorial Manager: Pete Gaughan
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Book Designers: Maureen Forys and Judy Fung
Proofreader: Rebecca Rider
Indexer: Jack Lewis
Project Coordinator, Cover: Lynsey Stanford
Cover Designer: Ryan Sneed
Cover Image: © Pete Gardner/DigitalVision/Getty Images

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-53287-4

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, includ-
ing without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by
sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organiza-
tion or Web site is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Web site may provide or rec-
ommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

Library of Congress Cataloging-in-Publication Data

Petroutsos, Evangelos.
Mastering Microsoft Visual Basic 2010 / Evangelos Petroutsos. -- 1st ed.

p. cm.
ISBN 978-0-470-53287-4 (paper/website)
1. Microsoft Visual BASIC. 2. BASIC (Computer program language) I. Title.

QA76.73.B3P487 2010
005.2’768--dc22

2010000339

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Microsoft and Visual Basic are registered trademarks of Microsoft Corporation in the United States and/or other
countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated
with any product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing Mastering Microsoft Visual Basic 2010. This book is part of a family of
premium-quality Sybex books, all of which are written by outstanding authors who combine
practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to producing con-
sistently exceptional books. With each of our titles, we’re working hard to set a new standard
for the industry. From the paper we print on to the authors we work with, our goal is to bring
you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about
this or any other Sybex book by sending me an email at nedde@wiley.com. If you think you’ve
found a technical error in this book, please visit http://sybex.custhelp.com. Customer feed-
back is critical to our efforts at Sybex.

Best regards,

Neil Edde
Vice President and Publisher
Sybex, an Imprint of Wiley

http://sybex.custhelp.com

To my dearest and most precious ones, Nepheli and
Eleni-Myrsini

Acknowledgments
Many people contributed to this book, and I would like to thank them all. I first want to express
my deep appreciation to Danijel Arsenovski for contributing and revising several chapters, and
especially for his work on Chapter 17, ‘‘Using the Entity Data Model.’’ Many thanks to the book’s
technical editor, Kirstin Juhl, who has read this book with great care and a particular attention
to detail. Thank you, Kirstin. I also want to thank the folks at Microsoft for their commitment to
Visual Basic. Visual Basic remains my absolute favorite language.

Special thanks to the talented people at Sybex — to all of them and to each one individ-
ually — starting with my ‘‘Gentle Editor,’’ Mary Ellen Schutz, who has taken this book under
her wing and improved it in numerous ways. To acquisitions editor Agatha Kim, who has
followed the progress of this book from its conception through its completion. (She will keep
working on this book long after I’m done with this page). To Pete Gaughan, editorial manager;
Rachel McConlogue, production editor; Judy Flynn and Kim Wimpsett, copyeditors; Rebecca
Rider, proofreader; Jack Lewis, indexer; the compositors at Laserwords; and everyone else who
added their expertise and talent to this book.

About the Author
Evangelos Petroutsos is a computer engineer by education, but he has spent most of his profes-
sional life developing applications and digging through databases. He has a degree in computer
engineering from the University of California, Santa Barbara, and several years of professional
experience at the California Institute of Technology. He has worked as a consultant for many
companies, large and small, and has taught courses on Visual Basic and databases. He espe-
cially enjoys writing and teaching. With over 25 years of experience in this industry, he makes
his living by optimizing code and databases.

When he’s not obsessed with a new technology, he spends time with his family and friends,
reads science books, and finds excuses to visit every state in the country.

Contents at a Glance

Introduction . xxv

Part 1 • Visual Basic: The Language . 1

Chapter 1 • Getting Started with Visual Basic 2010 . 3

Chapter 2 • Handling Data . 37

Chapter 3 • Visual Basic Programming Essentials . 85

Part 2 • Developing Windows Applications . 127

Chapter 4 • GUI Design and Event-Driven Programming . 129

Chapter 5 • Basic Windows Controls . 161

Chapter 6 • Working with Forms . 203

Chapter 7 • More Windows Controls . 253

Part 3 • Working with Custom Classes and Controls 303

Chapter 8 • Working with Objects . 305

Chapter 9 • Building Custom Windows Controls . 355

Chapter 10 • Applied Object-Oriented Programming . 387

Part 4 • Working with the .NET Framework . 431

Chapter 11 • The Framework at Large . 433

Chapter 12 • Storing Data in Collections . 493

Chapter 13 • XML in Modern Programming . 529

Chapter 14 • An Introduction to LINQ . 577

xii CONTENTS AT A GLANCE

Part 5 • Developing Data-Driven Applications . 629

Chapter 15 • Programming with ADO.NET . 631

Chapter 16 • Developing Data-Driven Applications . 687

Chapter 17 • Using the Entity Data Model . 725

Chapter 18 • Building Data-Bound Applications . 769

Part 6 • Developing for the Web . 813

Chapter 19 • Accessing the Web . 815

Chapter 20 • Building Web Applications . 845

Chapter 21 • Building and Using Web Services . 893

Appendix • The Bottom Line . 941

Index . 987

Contents

Introduction . xxv

Part 1 • Visual Basic: The Language . 1

Chapter 1 • Getting Started with Visual Basic 2010 . 3

Exploring the Integrated Development Environment . 3
The Start Page . 4
Starting a New Project . 5
Using the Windows Form Designer . 7

Creating Your First VB Application . 13
Making the Application More User Friendly . 18

Understanding the IDE Components . 21
The IDE Menus . 21
The Toolbox Window . 26
The Solution Explorer Window . 26
The Properties Window . 26
The Output Window . 27
The Command and Immediate Windows . 27
The Error List Window . 28

Setting Environment Options . 29
Building a Console Application . 30
Using Code Snippets . 32
Using the My Component . 33
The Bottom Line . 36

Chapter 2 • Handling Data . 37

Variables . 37
Declaring Variables . 38
Types of Variables . 40
The Strict, Explicit, and Infer Options . 55
Object Variables . 59

Variables as Objects . 60
Converting Variable Types . 62
Formatting Numbers . 65
User-Defined Data Types . 68
Examining Variable Types . 70
A Variable’s Scope . 71
A Variable’s Lifetime . 73

Constants . 74

xiv CONTENTS

Arrays . 75
Declaring Arrays . 75
Initializing Arrays . 76
Multidimensional Arrays . 78
Collections . 81

The Bottom Line . 82

Chapter 3 • Visual Basic Programming Essentials 85

Flow-Control Statements . 85
Decision Statements . 86
Loop Statements . 93
Nested Control Structures . 99
The Exit and Continue Statements . 102

Writing and Using Procedures . 102
Subroutines . 103
Functions . 104

Arguments . 106
Argument-Passing Mechanisms . 108
Built-in Functions . 111
Custom Functions . 113
Passing Arguments and Returning Values . 115
Overloading Functions . 118

The Bottom Line . 125

Part 2 • Developing Windows Applications . 127

Chapter 4 • GUI Design and Event-Driven Programming 129

On Designing Windows Applications . 129
Building a Loan Calculator . 130

Understanding How the Loan Calculator Application Works 131
Designing the User Interface . 133
Programming the Loan Application . 136
Validating the Data . 140

Building a Calculator . 144
Designing the User Interface . 145
Programming the MathCalculator . 147
Using the Basic Debugging Tools . 152
Exception Handling . 155

The Bottom Line . 158

Chapter 5 • Basic Windows Controls . 161

The TextBox Control . 161
Basic Properties . 162
Text-Manipulation Properties . 165
Text-Selection Properties . 167
Undoing Edits . 168
VB 2010 at Work: The TextPad Project . 168

CONTENTS xv

Capturing Keystrokes . 176
Autocomplete Properties . 179

The ListBox, CheckedListBox, and ComboBox Controls . 182
Basic Properties . 183
Manipulating the Items Collection . 184
Selecting Items . 187
VB 2010 at Work: The ListBox Demo Project . 188
Searching the ListBox . 191
The ComboBox Control . 193

The ScrollBar and TrackBar Controls . 197
The ScrollBar Control . 197
The TrackBar Control . 200

The Bottom Line . 201

Chapter 6 • Working with Forms . 203

The Appearance of Forms . 203
Properties of the Form Object . 204
Placing Controls on Forms . 209
Setting the TabIndex Property . 211
VB 2010 at Work: The Contacts Project . 212
Anchoring and Docking . 216
Splitting Forms into Multiple Panes . 219
Form Events . 221

Loading and Showing Forms . 223
The Startup Form . 224
Controlling One Form from within Another . 225
Forms versus Dialog Boxes . 226

Building Dynamic Forms at Runtime . 233
The Form’s Controls Collection . 234
Creating Event Handlers at Runtime . 241

Designing Menus . 243
The Menu Editor . 243
The ToolStripMenuItem Properties . 246
Manipulating Menus at Runtime . 248

The Bottom Line . 251

Chapter 7 • More Windows Controls . 253

The Common Dialog Controls . 254
Using the Common Dialog Controls . 255
The ColorDialog Control . 256
The FontDialog Control . 258
The OpenDialog and SaveDialog Controls . 261
The FolderBrowserDialog Control . 266

The RichTextBox Control . 269
The RTF Language . 270
Text Manipulation and Formatting Properties . 271
Methods . 274

xvi CONTENTS

Advanced Editing Features . 275
Cutting, Copying, and Pasting . 276
VB 2010 at Work: The RTFPad Project . 277

The TreeView and ListView Controls . 286
Tree and List Structures . 287
The TreeView Control . 289
The ListView Control . 293
VB 2010 at Work: The CustomExplorer Project . 299

The Bottom Line . 300

Part 3 • Working with Custom Classes and Controls . 303

Chapter 8 • Working with Objects . 305

Classes and Objects . 305
What Is a Class? . 306

Classes Combine Code with Data . 307
Building the Minimal Class . 308

Adding Code to the Minimal Class . 311
Using Property Procedures . 313
Customizing Default Members . 320
Custom Enumerations . 323
Object Constructors . 331
Using the SimpleClass in Other Projects . 333
Firing Events . 335
Instance and Shared Methods . 338

A ‘‘Real’’ Class . 342
Nesting Classes . 344

Operator Overloading . 347
VB 2010 at Work: The LengthUnits Class . 348

The Bottom Line . 353

Chapter 9 • Building Custom Windows Controls 355

On Designing Windows Controls . 355
Enhancing Existing Controls . 356

Building the FocusedTextBox Control . 357
Building Compound Controls . 364

VB 2010 at Work: The ColorEdit Control . 365
Building User-Drawn Controls . 368

VB 2010 at Work: The Label3D Control . 369
Raising Custom Events . 377
Using the Custom Control in Other Projects . 378

Designing Irregularly Shaped Controls . 379
Customizing List Controls . 382

Designing Owner-Drawn ListBox Controls . 383
The Bottom Line . 385

CONTENTS xvii

Chapter 10 • Applied Object-Oriented Programming 387

Issues in Object-Oriented Programming . 387
Classes versus Objects . 387
Objects versus Object Variables . 388
Properties versus Fields . 395
Shared versus Instance Members . 395
Type Casting . 397
Early versus Late Binding . 398
Discovering a Variable’s Type . 399

Inheritance . 400
How to Apply Inheritance . 401
Designing with Inheritance . 402

Extension Methods . 407
Polymorphism . 411

Building the Shape Class . 413
Who Can Inherit What? . 418

Parent Class Keywords . 418
Derived Class Keywords . 419
Parent Class Member Keywords . 419
Derived Class Member Keyword . 420
VB 2010 At Work: The InheritanceKeywords Project . 420
MyBase and MyClass . 422
Putting Inheritance to Work . 423
The Class Diagram Designer . 429

The Bottom Line . 430

Part 4 • Working with the .NET Framework . 431

Chapter 11 • The Framework at Large . 433

What Is the Framework? . 433
Using Snippets . 434
Using the My Component . 436

How to Use the My Component . 439
The IO Namespace . 440

The Directory Class . 441
The File Class . 442
The DriveInfo Class . 442
The DirectoryInfo Class . 443
The Path Class . 444
Streaming Data . 445

Drawing and Painting . 446
Drawing Methods . 449
Gradients . 453

The Image Class . 454

xviii CONTENTS

Printing . 455
The PrintDocument Control . 455
The PrintDialog Control . 457
The PageSetupDialog Control . 457
The PrintPreviewDialog Control . 458
Page Geometry . 458
Basic Printing Methods . 459
VB 2010 at Work: Generating a Simple Printout . 460

Handling Strings and Characters . 463
The Char Class . 463
The String Class . 466
The StringBuilder Class . 472

Handling Dates and Time . 476
The DateTime Class . 476
The TimeSpan Class . 485
The StopWatch Class . 489

The Bottom Line . 490

Chapter 12 • Storing Data in Collections . 493

Advanced Array Topics . 493
Sorting Arrays . 494
Searching Arrays . 495
Performing Other Array Operations . 498

Collection Types . 500
Creating Collections . 501
Sorting Lists . 507
Searching Lists . 508
Iterating Through a List . 509

The Dictionary Collection . 510
The HashTable Collection . 512

VB 2010 at Work: The WordFrequencies Project . 513
The SortedList Collection . 518
Other Collections . 519
The IEnumerator and IComparer Interfaces . 519

Enumerating Collections . 520
Custom Sorting . 522

The Bottom Line . 528

Chapter 13 • XML in Modern Programming . 529

A Very Quick Introduction to XML . 530
XML Schema . 534
Numbers and Dates in XML . 537

Manipulating XML with VB . 538
XML as a Data Type . 540
Saving and Loading XML Documents . 542

CONTENTS xix

Traversing XML Documents . 543
The Element and Elements Methods . 543
Ancestors and Descendants Methods . 543
Attribute Property . 544
VB Axis Properties . 544
Editing XML Documents . 545

VB 2010 at Work: Manipulating XML Data . 546
Locating Information in the Document . 547
Editing the Document . 549
Using XML Segments as Literals . 551
Using Lambda Expressions . 557

XML Serialization . 559
The Serialization Process . 560
Serializing Individual Objects . 562
Serializing Custom Objects . 563
Serializing Collections of Objects . 567

Other Types of Serialization . 569
Deserializing Individual Objects . 571

The Bottom Line . 575

Chapter 14 • An Introduction to LINQ . 577

What Is LINQ? . 578
LINQ Components . 580

LINQ to Objects . 581
Anonymous Types and Extension Methods . 583
Querying Arbitrary Collections . 584
Aggregating with LINQ . 587
Some Practical LINQ Examples . 589
Transforming Objects with LINQ . 593

LINQ to XML . 597
Adding Dynamic Content to an XML Document . 599

LINQ to SQL . 609
Retrieving Data with the ExecuteQuery Method . 613
Working with LINQ to SQL Classes . 615
Navigation Methods . 620
Updates . 624

The Bottom Line . 628

Part 5 • Developing Data-Driven Applications . 629

Chapter 15 • Programming with ADO.NET . 631

What Is a Database? . 631
Using Relational Databases . 632
Obtaining the Northwind and Pubs Sample Databases . 633

xx CONTENTS

Exploring the Northwind Database . 635
Exploring the Pubs Database . 638
Understanding Relations . 640

SQL: An Overview . 642
Executing SQL Statements . 643
Selection Queries . 645
Working with Calculated Fields . 651
Calculating Aggregates . 651
Using SQL Joins . 653
Grouping Rows . 656

Action Queries . 658
Deleting Rows . 659
Inserting New Rows . 660
Editing Existing Rows . 661

Stream- versus Set-Based Data Access . 662
The Basic Data-Access Classes . 662

The Connection Class . 663
The Command Class . 665
The DataReader Class . 676

The Bottom Line . 685

Chapter 16 • Developing Data-Driven Applications 687

Using Business Objects . 687
VB 2010 at Work: The NWOrders Application . 689

Storing Data in DataSets . 701
Filling DataSets . 702
Accessing the DataSet’s Tables . 707
Working with Rows . 708
Handling Null Values . 709
Adding and Deleting Rows . 710
Navigating Through a DataSet . 711

Performing Update Operations . 714
Updating the Database with the DataAdapter . 715
Handling Identity Columns . 716

VB 2010 at Work: The SimpleDataSet Project . 717
The Bottom Line . 723

Chapter 17 • Using the Entity Data Model . 725

The Entity Framework: Raising the Data Abstraction Bar . 725
How Will You Benefit from the Entity Framework? . 726
Entity Data Model: Model-First Approach . 732

Putting the EDM to Work . 751
Querying the Entity Data Model . 751
Modifying the Data with the Entity Framework . 763

Reverse-Engineering an Entity Data Model . 767
The Bottom Line . 767

CONTENTS xxi

Chapter 18 • Building Data-Bound Applications . 769

Working with Typed DataSets . 769
Generating a Typed DataSet . 770
Exploring the Typed DataSet . 774

Data Binding . 778
Using the BindingSource Class . 781

Designing Data-Driven Interfaces the Easy Way . 786
Enhancing the Navigational Tools . 789
Binding Hierarchical Tables . 791
Adjusting the Appearance of the DataGridView Control 794
Editing the Data in Hierarchical Tables . 799
Building More-Functional Interfaces . 801
Data Binding with LINQ . 808

The Bottom Line . 811

Part 6 • Developing for the Web . 813

Chapter 19 • Accessing the Web . 815

The WebBrowser Control . 816
WebBrowser Control under the Hood . 816
WebBrowser Control Properties . 816
WebBrowser Control Methods . 821
WebBrowser Control Events . 822
VB 2010 at Work: The Stock Quotes Project . 823

Accessing the Web with the WebClient and HttpWebRequest/Response Classes . . . 827
The WebClient Class . 827
WebClient Class Properties . 827
WebClient Class Methods . 828
WebClient Class Event . 829
WebClient Asynchronous Download Example . 830
HttpWebRequest and HttpWebResponse Classes . 831

Putting It All Together: The Address Visualization Form . 831
Composing Web Services . 832
Coding Address Visualization Form . 834

The Bottom Line . 842

Chapter 20 • Building Web Applications . 845

Developing for the Web . 845
Understanding HTML and XHTML . 846
Working with HTML . 848

Page Construction . 848
Text Management . 849
Horizontal Rules . 850
Images . 850
Links . 850

xxii CONTENTS

Embedding Media . 851
Comments . 851
Scripts . 851
Lists . 851
Tables . 852
Page Formatting . 853
Forms and Form Elements . 854

Cascading Style Sheets (CSS) . 856
Formatting Styles with CSS . 857
Page Formatting with CSS . 858

JavaScript . 861
AJAX . 863

Microformats . 863
Server-Side Technologies . 863
Creating a Web Application . 864
Controls . 867

Standard Controls . 867
Data Controls . 868
Validation Controls . 868
Navigation Controls . 868
Login Controls . 870
WebParts Controls . 870
AJAX Extensions Controls . 870
Reporting Controls . 871
HTML Controls . 871

Maintaining State . 871
Master Pages . 874
ASP.NET Objects . 875
Postback . 879
VB 2010 at Work: Online Ordering Application . 879

Creating the Project . 880
Creating the Products Web Form . 880
Creating the Quantity Web Form . 883

The Bottom Line . 891

Chapter 21 • Building and Using Web Services . 893

Using ASP.NET and WCF Web Services . 893
What Is a Service? . 894
Consuming Web Services . 894
ASP.NET Web Services . 898
WCF . 899

Understanding Technologies Associated with Web Services 899
SOAP . 899
WSDL . 900
SOAP Discovery . 900
UDDI . 900

CONTENTS xxiii

Creating a Simple ASP.NET Web Service . 900
Setting Up the Web Service . 901
Testing the Web Service . 901
Consuming the Web Service . 902

Developing a Stand-Alone Web Service . 903
Building MyWebService . 904
Deploying MyWebService . 905
Consuming MyWebService . 906

Simple AJAX Implementation . 910
Building and Using WCF Services . 912

Building a WCF Service . 912
ADO.NET Data Services . 920

Building a Windows Client . 928
Submitting Updates . 932
Performing Transactions . 934
Securing Your Data Service . 937

The Bottom Line . 939

Appendix • The Bottom Line . 941

Chapter 1: Getting Started with Visual Basic 2010 . 941
Chapter 2: Handling Data . 942
Chapter 3: Visual Basic Programming Essentials . 944
Chapter 4: GUI Design and Event-Driven Programming . 945
Chapter 5: Basic Windows Controls . 946
Chapter 6: Working with Forms . 948
Chapter 7: More Windows Controls . 950
Chapter 8: Working with Projects . 953
Chapter 9: Building Custom Windows Controls . 956
Chapter 10: Applied Object-Oriented Programming . 959
Chapter 11: The Framework at Large . 959
Chapter 12: Storing Data in Collections . 964
Chapter 13: XML in Modern Programming . 967
Chapter 14: An Introduction to LINQ . 970
Chapter 15: Programming with ADO.NET . 972
Chapter 16: Developing Data-Driven Applications . 974
Chapter 17: Using the Entity Data Model . 975
Chapter 18: Building Data-Bound Applications . 976
Chapter 19: Accessing the Web . 978
Chapter 20: Building Web Applications . 981
Chapter 21: Building and Using Web Services . 984

Index . 987

Introduction

Welcome to Microsoft’s Visual Basic 2010, another milestone version of the most popular
programming language for building Windows and web applications. In modern software devel-
opment, however, the language is only one of the components we use to build applications.
The most important component is the .NET Framework, which is an indispensable component
of every application; it’s actually more important than the language itself. You can think of
the Framework as an enormous collection of functions for just about any programming task.
All drawing methods, for example, are part of the System.Drawing class. To draw a rectangle,
you call the DrawRectangle method of the System.Drawing class, passing the appropriate
arguments. To create a new folder, you call the CreateDirectory method of the Directory
class, and to retrieve the files in a folder, you call the GetFiles method of the same class.

The Framework contains all the functionality of the operating system and makes it available
to your application through methods. Methods are very similar to functions, which extend the
basic capabilities of a language. The Framework is a huge collection of such methods, organized
in units according to their role and in a way that makes it fairly easy to locate the methods for
the task at hand. The language and the Framework are the two ‘‘programming’’ components
absolutely necessary to build Windows applications. It’s possible to develop applications with
these two components alone, but the process would be awfully slow.

The software development process relies on numerous tools that streamline the coding expe-
rience. The third component is an integrated environment that hosts those tools, enabling you
to perform many common tasks with point-and-click operations. It’s basically an environment
in which you can design your forms with visual tools and write code as well. This environ-
ment, provided by Visual Studio, is known as an integrated development environment, or IDE.
You’ll be amazed by the functionality provided by the tools of Visual Studio: you can actu-
ally design a functional data-driven application without writing a single line of code. You can
use similar tools in the same environment to design a fancy data-driven web page without a
single line of code. Visual Studio even provides tools for manipulating databases and allows
you to switch between tasks, all in the same, streamlined environment. You realize, of course,
that Visual Studio isn’t about writing applications without code; it just simplifies certain tasks
through wizards, and more often than not, we step in and provide custom code to write a
functional application. Even so, Visual Studio provides numerous tools, from debugging tools
that help you track and fix all kinds of bugs in your code to database-manipulation tools and
deployment wizards that streamline the process of deploying applications.

This book shows you how to use Visual Studio 2010 and Visual Basic 2010 to design
rich Windows and web applications. We’ll start with the visual tools and then we’ll explore
Visual Basic and the Framework. A Windows application consists of a visual interface and
code behind the elements of the interface. (The code handles the user actions on the visual
interface, such as the click of a button, the selection of a menu item, and so on.) You’ll use the

xxvi INTRODUCTION

tools of Visual Studio to build the visual interface, and then you’ll program the elements of
the application with Visual Basic. For any nontrivial processing, such as file and folder manip-
ulation, data storage, and so on, you’ll use the appropriate classes of the .NET Framework. A
substantial segment of this book deals with the most useful components of the Framework. We
will also explore databases and data-driven applications, which are the most common type of
business applications. Finally, we’ll go through the basics of web programming. You’ll learn
how to build web applications with Visual Basic and how to write web services.

The Mastering Series
The Mastering series from Sybex provides outstanding instruction for readers with intermedi-
ate and advanced skills in the form of top-notch training and development for those already
working in their field and clear, serious education for those aspiring to become pros. Every
Mastering book includes the following:

◆ Real-World Scenarios, ranging from case studies to interviews, that show how the tool,
technique, or knowledge presented is applied in actual practice

◆ Skill-based instruction, with chapters organized around real tasks rather than abstract
concepts or subjects

◆ Self-review test questions, so you can be certain you’re equipped to do the job right

Who Should Read This Book?
You don’t need a solid knowledge of Visual Basic to read this book, but you do need a basic
understanding of programming. You need to know the meaning of variables and functions and
how an If…Then structure works. This book is aimed at the typical programmer who wants to
get the most out of Visual Basic. It covers the topics I felt are of use to most VB programmers,
and it does so in depth. Visual Basic 2010 and the .NET Framework 4.0 are two extremely rich
programming tools, and I had to choose between a superficial coverage of many topics and an
in-depth coverage of fewer topics. To make room for more topics, I have avoided including
a lot of reference material and lengthy listings. For example, you won’t find complete project
listings or form descriptions. I assume that you can draw a few controls on a form and set their
properties and that you don’t need long descriptions of the control properties (even if you don’t
know how to design a form, you’ll learn how in the first two chapters). I’m also assuming that
you don’t want to read the trivial segments of each application. Instead, the listings concentrate
on the ‘‘meaty’’ part of the code: the procedures that explain the topic at hand.

The topics covered in this book were chosen to provide a solid understanding of the prin-
ciples and techniques for developing applications with Visual Basic. Programming isn’t about
new keywords and functions. I chose the topics I felt every programmer should learn in order
to master the language. I was also motivated by my desire to present useful, practical examples.
You will not find all topics equally interesting or important. My hope is that everyone will find
something interesting and something of value for their daily work — whether it’s an applica-
tion that maps the folders and files of a drive to a TreeView control, an application that prints
tabular data, a data-driven application for editing customers or products, or an application that
saves a collection of objects to a file.

Many books offer their readers long, numbered sequences of steps to accomplish a task. Fol-
lowing instructions simplifies certain tasks, but programming isn’t about following instructions.

INTRODUCTION xxvii

It’s about being creative; it’s about understanding principles and being able to apply the same
techniques in several practical situations. And the way to creatively exploit the power of a lan-
guage such as Visual Basic 2010 is to understand its principles and its programming model.

In many cases, I provide a detailed, step-by-step procedure that will help you accomplish
a task, such as designing a menu, for example. But not all tasks are as simple as designing
menus. I explain why things must be done in a certain way, and I present alternatives and try
to connect new topics to those explained earlier in the book. In several chapters, I expand on
applications developed in earlier chapters. Associating new knowledge with something you
have mastered already provides positive feedback and a deeper understanding of the language.

This book isn’t about the hottest features of the language either; it’s about solid program-
ming techniques and practical examples. After you master the basics of programming Windows
applications with Visual Basic 2010 and you feel comfortable with the more advanced examples
of the book, you will find it easy to catch up with the topics not discussed in this book.

How about the Advanced Topics?
Some of the topics discussed in this book are nontrivial, and quite a few topics can be consid-
ered advanced. Creating collections of custom objects and querying them and exposing some
functionality in the form of web services are not trivial topics, but these are the tools that will
allow you to make the most of Visual Studio.

You may also find some examples to be more difficult than you expected. I have tried to
make the text and the examples easy to read and understand, but not unrealistically simple.
Understanding the basic functions for manipulating files and folders isn’t difficult. To make the
most of these functions, however, you need to understand how to scan a folder’s files, includ-
ing the files in its subfolders and the files in their subfolders, with a technique known as recur-
sion. To make each chapter as useful as possible, I’ve included nontrivial examples, which will
provide a better understanding of the topics. In addition, many of these examples can be easily
incorporated into your applications.

You can do a lot with the TreeView control with very little programming, but to make the
most out of this control, you must be ready for some advanced programming — nothing terri-
bly complicated, but some things just aren’t trivial. Programming most of the operations of the
TreeView control, for instance, is not complicated, but if your application calls for populating
a TreeView control with an arbitrary number of branches (such as mapping a directory
structure to a TreeView control), the code can get complex. The same goes for printing; it’s
fairly straightforward to write a program that prints some text, but printing tabular reports
takes substantial coding effort.

The reason I’ve included the more advanced examples is that the corresponding chapters
would be incomplete without them. If you find some material to be over your head at first
reading, you can skip it and come back to it after you have mastered other aspects of the lan-
guage. But don’t let a few advanced examples intimidate you. Most of the techniques are well
within the reach of an average VB programmer. The few advanced topics were included for the
readers who are willing to take that extra step and build elaborate interfaces by using the latest
tools and techniques.

There’s another good reason for including advanced topics. Explaining a simple topic, such
as how to populate a collection with items, is very simple. But what good is it to populate a
collection if you don’t know how to save it to disk and read back its items in a later session?
Likewise, what good is it to learn how to print simple text files? In a business environment,
you will most likely be asked to print a tabular report, which is substantially more complicated

xxviii INTRODUCTION

than printing text. One of my goals in writing this book was to exhaust the topics I’ve chosen
to discuss and present all the information you need to do something practical: not just how to
create collections, but also how to save them in disk files; not just how to write to a file, but
also how to prompt users for a filename with the same dialog box all Windows applications
use; not just how to print something, but also how to create a preview of the printout. In short,
I’ve tried to include everything you need to know in order to incorporate in your applications
the features everybody has come to expect from a Windows application.

The Structure of the Book
This book isn’t meant to be read from cover to cover, and I know that most people don’t read
computer books this way. Each chapter is independent of the others, although all chapters con-
tain references to other chapters. Each topic is covered in depth; however, I make no assump-
tions about the reader’s knowledge of the topic. As a result, you may find the introductory
sections of a chapter too simple. The topics become progressively more advanced, and even
experienced programmers will find some new information in most chapters. Even if you are
familiar with the topics in a chapter, take a look at the examples. I have tried to simplify many
of the advanced topics and to demonstrate them with clear, practical examples.

This book tries to teach through examples. Isolated topics are demonstrated with short
examples, and at the end of many chapters you’ll build a large, practical application (a real-
world application) that ‘‘puts together’’ the topics and techniques discussed throughout the
chapter. You may find some of the more advanced applications a bit more difficult to under-
stand, but you shouldn’t give up. Simpler applications would have made my job easier, but the
book wouldn’t deserve the Mastering title, and your knowledge of Visual Basic wouldn’t be as
complete.

The book starts with the fundamentals of Visual Basic, even though very little of it is specific
to version 2010. You’ll learn how to design visual interfaces with point-and-click operations and
how to program a few simple events, such as the click of the mouse on a button. After reading
the first two chapters, you’ll understand the structure of a Windows application. Then you’ll
explore the elements of the visual interface (the basic Windows controls) and how to program
them. You’ll also learn about the My object and code snippets, two features that make Visual
Basic so simple and fun to use (again). These two objects will also ease the learning process
and make it much simpler to learn the features of the language.

In Part 2, I discuss in detail the basic components of Windows applications. I explain the
most common controls you’ll use in building Windows forms as well as how to work with
forms: how to design forms, how to design menus for your forms, how to create applications
with multiple forms, and so on. You will find detailed discussions of many Windows controls
as well as how to take advantage of the built-in dialog boxes, such as the Font and Color dialog
boxes, in your applications.

Visual Basic 2010 is a truly object-oriented language, and objects are the recurring theme in
every chapter. Part 3 of the book (Chapter 8, Chapter 9, and Chapter 10) contains a formal and
more systematic treatment of objects. You will learn how to build custom classes and controls,
which will help you understand object-oriented programming a little better. You will also learn
about inheritance and will see how easy it is to add custom functionality to existing classes
through inheritance.

Part 4 deals with some of the most common classes of the .NET Framework. The Frame-
work is at the very heart of Windows programming; it’s your gateway to the functionality of
the operating system itself. The first chapter in this part of the book is an introduction to the

INTRODUCTION xxix

Framework at large, and it shows you how to use the basic classes for manipulating files and
folders, how to manipulate data and time, how to work with time spans, how to create graph-
ics and printouts, and other interesting aspects of the Framework. In the next chapter you’ll
learn how to use collections in your code and then you’ll find a chapter on XML and a chapter
on LINQ. You will see how easy it is to create and use XML in your VB code as well as how
to query collections, XML, and databases with a new language that’s embedded into VB: Lan-
guage Integrated Query (LINQ). LINQ is the hottest new technology that allows you to query
data with widely different structures, and data from different sources, in a uniform way.

The first 14 chapters deal with the fundamentals of the language and Windows applications.
Following these chapters, you will find an overview of the data-access tools. I’m assuming that
the majority of you will eventually build a data-driven application. The emphasis in Part 5 is
on the visual tools, and you will learn how to query databases and present data to the user.
You will also find information on programming the basic objects of ADO.NET and write simple
data-driven Windows applications.

In the last few chapters of this book you will learn about web applications, the basics of
ASP.NET 4, how to develop data-bound web applications, and how to write web services. Since
I could not discuss both Windows and web applications in the same detail, I’ve decided to
focus on Windows applications, and in the last few chapters (Part 6) show you how to apply
your knowledge to the Web. While the interface is totally different, the essential code is the
same.

Don’t Miss the Tutorials
In addition to the printed material, this book is accompanied by a number of tutorials, which
you can download from www.sybex.com/go/masteringvb2010. These tutorials are actual chap-
ters (some of them quite lengthy); we couldn’t include them in the printed version of the book,
so we included them as PDF files. They are as follows:

◆ Accessing Files and Folders

◆ Creating Graphics with VB 2010

◆ Printing with VB 2010

◆ Making the Most of the ListView and TreeView Controls

This book is a revision of Mastering Visual Basic 2008. As the book couldn’t keep growing —
and we had to make room for new topics — we decided to remove some chapters that were
included in the previous edition of the book from the printed version. These chapters have been
revised and edited and you will find them in PDF format at this book’s website. Throughout
this book, I’ll be referring to them as tutorials; they’re complete chapters with sample projects
and the same structure as the book’s chapters. You can download the tutorials from the same
site as the book’s projects and read them on your computer screen.

Downloading This Book’s Code
The code for the examples and projects can be downloaded from the Sybex website (www.
sybex.com). At the main page, you can find the book’s page by searching for the author,
the title, or the ISBN (9780470187425) and then clicking the book’s link listed in the search
results. On the book’s page, click the Download link and it will take you to the download

http://www.sybex.com

xxx INTRODUCTION

page. Or, you can go directly to the book’s page at www.sybex.com/go/masteringvb2010. The
downloaded source code is a ZIP file, which you can unzip with the WinZip utility.

How to Reach the Author

Despite our best efforts, a book of this size is bound to contain errors. Although a printed
medium isn’t as easy to update as a website, I will spare no effort to fix every problem
you report (or I discover). The revised applications, along with any other material I think
will be of use to the readers of this book, will be posted on the Sybex website. If you have
any problems with the text or the applications in this book, you can contact me directly at
pevangelos@yahoo.com.

Although I can’t promise a response to every question, I will fix any problems in the examples
and provide updated versions. I would also like to hear any comments you may have on
the book, about the topics you liked or did not like and how useful the examples are. Your
comments will be carefully considered for future editions.

Mastering
Microsoft® Visual Basic® 2010

Part 1

Visual Basic:
The Language
◆ Chapter 1: Getting Started with Visual Basic 2010

◆ Chapter 2: Handling Data

◆ Chapter 3: Visual Basic Programming Essentials

Chapter 1

Getting Started with
Visual Basic 2010

I’m assuming that you have installed one of the several versions of Visual Studio 2010. For this
book, I used the Professional edition of Visual Studio, but just about everything discussed in
this book applies to the Standard edition as well. Some of the Professional edition features that
are not supported by the Standard edition include the database tools, which are discussed in
Chapter 15 through Chapter 18 of this book.

You may have already explored the new environment on your own, but I’m going to start
with an overview of Visual Studio and its basic tools for the benefit of readers who aren’t famil-
iar with them. I will not assume any prior knowledge of Visual Basic 6 or Visual Basic .NET,
just some familiarity with programming at large.

As you already know, Visual Basic 2010 is just one of the languages you can use to build
applications with Visual Studio 2010. I happen to be convinced that it is also the simplest, most
convenient language, but this isn’t really the issue; I’m assuming you have your reasons to code
in VB or you wouldn’t be reading this book. What you should keep in mind is that Visual Stu-
dio 2010 is an integrated environment for building, testing, debugging, and deploying a vari-
ety of applications: Windows applications, web applications, classes and custom controls, and
even console applications. It provides numerous tools for automating the development process,
visual tools for performing many common design and programming tasks, and more features
than any author could hope to cover.

In this chapter, you’ll learn how to do the following:

◆ Navigate the integrated development environment of Visual Studio

◆ Understand the basics of a Windows application

Exploring the Integrated Development Environment
Visual Basic 2010 is just one of the languages you can use to program your applications. The
language is only one aspect of a Windows application. The visual interface of the application
isn’t tied to a specific language, and the same tools you’ll use to develop your application’s
interface will also be used by all programmers, regardless of the language they’ll use to code
the application.

4 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

To simplify the process of application development, Visual Studio provides an environment
that’s common to all languages, known as an integrated development environment (IDE). The pur-
pose of the IDE is to enable the developer to do as much as possible with visual tools before
writing code. Even as you write code, the IDE will help you in many ways. For example, it
underlines errors, it suggests the keywords that may appear at the current place in your code in
a list, and it even provides tools for locating and fixing errors (a process known as debugging).

The IDE provides tools for designing, executing, and debugging your applications. It will be
a while before you explore all the elements of the IDE, and I will explain the various items as
needed in the course of the book. In the following sections, you’ll look at the basic components
of the IDE you’ll be using to build simple Windows applications. You’ll learn how its tools
allow you to quickly design the user interface of your application as well as how to program
the application.

The IDE is your second desktop, and you’ll be spending most of your productive hours in
this environment.

The Start Page
When you run Visual Studio 2010 for the first time, you will be prompted to select the type
of projects you plan to build so that the environment can be optimized for that specific type
of development. I’m assuming that you have initially selected the Visual Basic Development
settings, which will optimize your copy of Visual Studio for building Windows and web appli-
cations with Visual Basic 2010. You can always change these settings, as explained at the end of
this section.

After the initial configuration, you will see a window similar to the one shown in Figure 1.1.
The Recent Projects tab will be empty, of course, unless you have already created some test
projects. Visual Studio 2010 will detect the settings of a previous installation, so if you’re
upgrading from an earlier version of Visual Studio, the initial screen will not be identical to the
one shown in Figure 1.1.

Figure 1.1

This is what you’ll see
when you start Visual
Studio for the first time.

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 5

On the Start Page window of Visual Studio, you will see the following panes under the Get
Started heading:

Welcome Click the Welcome tab to see a series of links that provide developer assistance for
using Visual Studio. These links include What’s New In Visual Studio 2010, Creating Applica-
tions With Visual Studio, and Extending Visual Studio, among others. Other related links may
be added as this book goes to the printer.

Windows Here you’ll find a list of topics related to Windows application development. Win-
dows applications, frequently referred to as desktop applications, are the applications you
install on a local computer and execute locally.

Web Here you’ll find a list of topics related to web application development. Web applica-
tions are executed on a remote computer, the web server, and you interact with them through
a browser.

Cloud, Office, SharePoint In addition to Windows and web applications, Visual Studio can
be used to develop applications for Office and SharePoint as well as applications that use a new
Microsoft platform for building distributed applications, the Azure platform. These three types
of projects aren’t discussed in this book.

Data Here you’ll find a list of topics related to data-driven programming. All applications
that interact with a database are data driven; they can be Windows or web applications. The
principles of interacting with a database (retrieve, display, and update database data) are the
same regardless of whether you use them to build Windows or web applications.

Recent Projects Here you see a list of the projects you opened most recently with Visual Stu-
dio, and you can select the one you want to open again — chances are you will continue work-
ing on the same project as the last time. Each project name is a hyperlink, and you can open a
project by clicking its name. Above the list of recent projects there are two hyperlinks — one for
creating a new project and another one for opening a new solution. You will find more infor-
mation on solutions and projects later in this chapter.

Most developers will skip the Start Page. To do so, open the Tools menu and choose the
Import And Export Settings command to start a configuration wizard. In the first dialog box
of the wizard, select the Reset All Settings check box and then click the Next button. The next
screen of the wizard prompts you for a location in which to save the new settings so that
Visual Studio can read them every time it starts. Leave the default location as is and click
Next again to see the last screen of the wizard, in which you’re prompted to select a default
collection of settings. This collection depends on the options you’ve installed on your system.
I installed Visual Studio 2010 with Visual Basic only on my system, and I was offered the
following options (among others): General Development Settings, Visual Basic Development
Settings, and Web Development. For the default configuration of my copy of Visual Studio,
and for the purpose of this book, I chose Visual Basic Development Settings so that Visual
Studio could optimize the environment for a typical VB developer. Click the Finish button to
see a summary of the process and then close the wizard.

Starting a New Project
At this point, you can create a new project and start working with Visual Studio. To best
explain the various items of the IDE, let’s build a simple form. The form is the window of your
application — it’s what users will see on their Desktop when they run your application.

6 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The basic work item with Visual Studio is the solution, which is a container for one or more
projects. When you create a set of related projects, they should belong to the same solution. (In
this book, you’ll learn how to build individual, unrelated projects.) Even when you create an
individual new project, though, Visual Studio automatically creates a solution for it. You can
add a new or existing project to the solution at any time.

Open the File menu and choose New Project, or click the New Project link on the Start
Page. In the New Project dialog box that pops up (see Figure 1.2), you’ll see a list of project
types you can create with Visual Studio. The most important ones are Windows Forms Appli-
cations, which are typical Windows applications with one or more forms (windows); Console
Applications, which are simple applications that interact with the user through a text window
(the console); Windows Forms Control Libraries, which are collections of custom controls; and
Class Libraries, which are collections of classes. These are the project types I’ll cover in depth
in this book.

Figure 1.2

The New Project
dialog box

If you have Visual Basic 2010 Express edition installed, you will see fewer project types in
the New Project dialog box, but all of the projects discussed in this book are included.

Notice the Create Directory For Solution check box in the dialog box shown in Figure 1.2.
If this box is checked, Visual Studio will create a new folder for the solution under the folder
you specify in the Location box. You also have the option to create a new solution or add the
project to the current solution, if you have one open at the time. While following along with the
projects of this book, you should create a new solution for each project and store it in its own
folder.

You may discover at some point that you have created too many projects and you
don’t really need all of them. You can remove unwanted projects from your system by
deleting the corresponding folders — no special action is required. You’ll know it’s time
to remove unneeded project folders when Visual Studio suggests project names such as
WindowsApplication9 or WindowsApplication49.

For this project, select the Windows Forms Application template; Visual Studio suggests the
name WindowsApplication1 as the project name. Change it to MyTestApplication, select the
Create Directory For Solution check box, and then click the OK button to create the new project.

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 7

What you see now is the Visual Studio IDE displaying the Form Designer for a new project,
as shown in Figure 1.3. The main window of your copy of Visual Studio may be slightly dif-
ferent, but don’t worry about it. I’ll go through all the components you need to access in the
process of designing, coding, and testing a Windows application.

Figure 1.3

The integrated develop-
ment environment of
Visual Studio 2010 for a
new project

Output

Click to access
the Toolbox.

Form Designer
Default new form component

Pushpin icons
lock and unlock
window positions.

Solution Explorer

Click AZ to display
the properties in
alphabetical order.

The Properties window
is also known as the
Properties Browser.

Click a property
name to edit.

The new project contains a form already: the Form1 component in the Solution Explorer. The
main window of the IDE is the Form Designer, and the gray surface on it is the window of
your new application in design mode. Using the Form Designer, you’ll be able to design the
visible interface of the application (place various components of the Windows interface on the
form and set their properties) and then program the application.

The default environment is rather crowded, so let’s hide a few of the toolbars that we won’t
use in the projects of the first few chapters. You can always show any of the toolbars at any
time. Open the View menu and choose Toolbars. You’ll see a submenu with 28 commands that
are toggles. Each command corresponds to a toolbar, and you can turn the corresponding tool-
bar on or off by clicking one of the commands in the Toolbars submenu. For now, turn off all
the toolbars except the Layout and Standard toolbars. These are the toolbars shown by default
and you shouldn’t hide them; if you do (perhaps to make more room for the designer), this is
the place where you go to make them visible again.

The last item in the Toolbars submenu is the Customize command; Customize leads to a dia-
log box in which you can specify which of the toolbars and which of the commands you want
to see. After you have established a work pattern, use this menu to customize the environment
for the way you work with Visual Studio. You can hide just about any component of the IDE,
except for the main menu — after all, you have to be able to undo the changes!

Using the Windows Form Designer
To design the form, you must place on it all the controls you want to display to the user at
runtime. The controls are the components of the Windows interface (buttons, text boxes, radio
buttons, lists, and so on). Open the Toolbox by moving the pointer over the Toolbox tab at the

8 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

far left; the Toolbox, shown in Figure 1.4, pulls out. This Toolbox contains an icon for each con-
trol you can use on your form.

Figure 1.4

Windows Forms Toolbox
of the Visual Studio IDE

The controls are organized into groups according to function on the interface. In the first
part of the book, you’ll create simple Windows applications and you’ll use the controls on the
Common Controls tab. When you develop web applications, you will see a different set of icons
in the Toolbox.

To place a control on the form, you can double-click the icon for the control. A new instance
with a default size will be placed on the form. Then you can position and resize it with the
mouse. Or you can select the control from the Toolbox with the mouse and then click and drag
the mouse over the form and draw the outline of the control. A new instance of the control
will be placed on the form, and it will fill the rectangle you specified with the mouse. Start by
placing a TextBox control on the form.

The control properties will be displayed in the Properties window. Figure 1.5 shows the
properties of a TextBox control. This window, at the far right edge of the IDE and below the
Solution Explorer, displays the properties of the selected control on the form. If the Properties
window is not visible, open the View menu and choose Properties Window, or press F4. If no
control is selected, the properties of the selected item in the Solution Explorer are
displayed.

In the Properties window, also known as the Properties Browser, you see the properties
that determine the appearance of the control and (in some cases) its function. The properties
are organized in categories according to their role. The properties that determine the appear-
ance of the control are listed alphabetically under the header Appearance, the properties that
determine the control’s behavior are listed alphabetically under the header Behavior, and so on.

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 9

You can click the AZ button on the window’s title bar to display all properties in alphabetical
order. After you familiarize yourself with the basic properties, you will most likely switch to
the alphabetical list.

Figure 1.5

Properties of a TextBox
control

Rearranging the IDE Windows

As soon as you place a control on the form, the Toolbox retracts to the left edge of the
Designer. You can fix this window on the screen by clicking the pushpin icon on the Toolbox’s
toolbar. (It’s the icon next to the Close icon at the upper-right corner of the Toolbox window,
and it appears when the Toolbox window is docked but not while it’s floating.)

You can easily rearrange the various windows that make up the IDE by moving them around
with the mouse. Move the pointer to a window’s title bar, press the left mouse button, and
drag the window around. If you can’t move a window with the mouse, it’s because the win-
dow’s position is locked. In this case, click the pushpin icon to unlock the window’s position
and then move it around with the mouse.

As you move the window, eight semitransparent buttons with arrows appear on the screen,
indicating the areas where the window can be docked, as shown in the following screen shot.
Keep moving the window until the pointer hovers over one of these buttons and the docking
area appears in semitransparent blue color. Find a position you like and release the mouse
button to dock it. If you release the mouse button while the pointer is not on top of an arrow,
the window is not docked. Instead, it remains where you dropped it as a floating window, and
you can move it around with your mouse at will.

10 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Most developers would rather work with docked windows, and the default positions of the
IDE windows are quite convenient. If you want to open even more windows and arrange
them differently on the screen, use the docking feature of the IDE to dock the additional
windows.

Locate the TextBox control’s Text property and set it to My TextBox Control by entering
the string into the box next to the property name. The control’s Text property is the string that
appears in the control (the caption), and most controls have a Text property.

Next locate its BackColor property and select it with the mouse. A button with an arrow
appears next to the current setting of the property. Click this button and you’ll see a dialog
box with three tabs (Custom, Web, and System), as shown in Figure 1.6. In this dialog box, you
can select the color that will fill the control’s background. Set the control’s background color to
yellow and notice that the control’s appearance changes on the form.

One of the settings you’ll want to change is the font of the various controls. While the
TextBox control is still selected on the form, locate the Font property in the Properties window.
You can click the plus sign in front of the property name and set the individual properties of
the font, or you can click the ellipsis button to invoke the Font dialog box. Here you can set
the control’s font and its attributes and then click OK to close the dialog box. Set the TextBox
control’s Font property to Verdana, 14 points, bold. As soon as you close the Font dialog box,
the control on the form is adjusted to the new setting.

There’s a good chance that the string you assigned to the control’s Text property won’t fit
in the control’s width when rendered in the new font. Select the control on the form with the
mouse and you will see eight handles along its perimeter. Rest the pointer over any of these
handles and it will assume a shape indicating the direction in which you can resize the control.

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 11

Make the control long enough to fit the entire string. If you have to, resize the form as well.
Click somewhere on the form, and when the handles appear along its perimeter, resize it with
the mouse.

Figure 1.6

Setting a color prop-
erty in the Properties
window

Some controls, such as the Label, Button, and CheckBox controls, support the AutoSize
property; AutoSize determines whether the control is resized automatically to accommodate
the caption. The TextBox control, as well as many others, doesn’t support the AutoSize prop-
erty. If you attempt to make the control tall enough to accommodate a few lines of text, you’ll
realize that you can’t change the control’s height. By default, the TextBox control accepts a sin-
gle line of text, and you must set its MultiLine property to True before you can resize the
TextBox control vertically.

The Font Is a Design Element

Like documents, forms should be designed carefully and follow the rules of a printed page
design. At the very least, you shouldn’t use multiple fonts on your forms, just as you shouldn’t
mix different fonts on a printed page. You could use two font families on rare occasions, but
you shouldn’t overload your form. You also shouldn’t use the bold style in excess.

To avoid adjusting the Font property for multiple controls on the form, set the font for the
form first because each control you place on a form inherits the form’s font. If you change the
form’s font, the controls will be adjusted accordingly, but this may throw off the alignment
of the controls on the form. Experiment with a few Label controls, select a font that you like
that’s appropriate for your interface (you shouldn’t use a handwritten style with a business
application, for example), and then set the form’s Font property to the desired font. Every

12 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

time you add a new form to the application, you should start by setting its Font property to
that same font so that the entire application will have a consistent look.

The font is the most basic design element, whether you’re designing forms or a document.
Various components of the form may have a different font size, even a different style (like
bold or italics), but there must be a dominant font family that determines the look of the
form. The Verdana family was designed for viewing documents on computer monitors and is a
popular choice. Another great choice is Segoe UI, a new font family introduced with Windows
Vista. The Segoe Print font has a distinguished handwritten style, and you can use it with
graphics applications.

The second most important design element is color, but don’t get too creative with colors
unless you’re a designer. I recommend that you stay with the default colors and use similar
shades to differentiate a few elements of the interface.

The design of a modern interface has become a new discipline in application develop-
ment, and there are tools for designing interfaces. One of them is Microsoft’s Expression
Blend, which enables designers to design the interface and developers to write code with-
out breaking each other’s work. You can download a trial version of Expression Blend from
www.microsoft.com/expression.

So far, you’ve manipulated properties that determine the appearance of the control. Now
you’ll change a property that determines not only the appearance, but also the function of the
control. Locate the Multiline property. Its current setting is False. Expand the list of available
settings and change it to True. (You can also change it by double-clicking the name of the prop-
erty. This action toggles the True/False settings.) Switch to the form, select the TextBox control,
and make it as tall as you wish.

The Multiline property determines whether the TextBox control can accept one (if
Multiline = False) or more (if Multiline = True) lines of text. Set this property to True, go
back to the Text property, set it to a long string, and press Enter. The control breaks the long
text into multiple lines. If you resize the control, the lines will change, but the entire string will
fit in the control because the control’s WordWrap property is True. Set it to False to see how the
string will be rendered on the control.

Multiline TextBox controls usually have a vertical scroll bar so users can quickly locate the
section of text that they’re interested in. Locate the control’s ScrollBars property and expand
the list of possible settings by clicking the button with the arrow. This property’s settings are
None, Vertical, Horizontal, and Both. Set it to Vertical, assign a very long string to its Text
property, and watch how the control handles the text. At design time, you can’t scroll the text
on the control; if you attempt to move the scroll bar, the entire control will be scrolled. The
scroll bar will work as expected at runtime. (It will scroll the text vertically.)

You can also make the control fill the entire form. Start by deleting any other controls you
may have placed on the form and then select the multiline TextBox. Locate the Dock property
in the Properties window and keep double-clicking the name of the property until its setting
changes to Fill. (You’ll learn a lot more about docking controls in Chapter 6, ‘‘Working with
Forms.’’) The TextBox control fills the form and is resized as you resize the form, both at design
time and runtime.

To examine the control’s behavior at runtime, press F5. The application will be compiled,
and a few moments later, a window filled with a TextBox control (like the one shown in

CREATING YOUR FIRST VB APPLICATION 13

Figure 1.7) will appear on the Desktop. This is what the users of your application would see (if
this were an application worth distributing, of course).

Figure 1.7

A TextBox control dis-
playing multiple text
lines

Enter some text on the control, select part of the text, and copy it to the Clipboard by press-
ing Ctrl+C. You can also copy text from any other Windows application and paste it on the
TextBox control. Right-click the text on the control and you will see the same context menu you
get with Notepad; you can even change the reading order of the text — not that you’d want
to do that with a Western language. When you’re finished, open the Debug menu and choose
Stop Debugging. This will terminate your application’s execution, and you’ll be returned to the
IDE. The Stop Debugging command is also available as a button with a blue square icon on
the toolbar. Finally, you can stop the running application by clicking the Close button in the
application’s window.

The design of a new application starts with the design of the application’s form, which is the
application’s user interface, or UI. The design of the form determines to a large extent the func-
tionality of the application. In effect, the controls on the form determine how the application
will interact with the user. The form itself could serve as a prototype, and you could demon-
strate it to a customer before even adding a single line of code. By placing controls on the
form and setting their properties, you’re implementing a lot of functionality before coding the
application. The TextBox control with the settings discussed in this section is a functional text
editor.

Creating Your First VB Application
In this section, I will walk you through the development of a simple application to demon-
strate not only the design of the interface, but also the code behind the interface. You’ll build
an application that allows users to enter the name of their favorite programming language, and
the application will evaluate the choice. Objectively, VB is a step ahead of all other languages,
and it will receive the best evaluation. All other languages get the same grade — good — but
not VB.

14 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The project is called WindowsApplication1. You can download the project from
www.sybex.com/go/masteringvb2010 and examine it, but I suggest you follow the steps
outlined in this section to build the project from scratch. Start a new project, use the default
name, WindowsApplication1, and place a TextBox and a Button control on the form. Use the
mouse to position and resize the controls on the form, as shown in Figure 1.8.

Figure 1.8

A simple applica-
tion that processes a
user-supplied string

Start by setting the form’s Font property to Segoe UI, 9 pt. Arrange and size the controls
as shown in Figure 1.8. Then, place a Label control on the form and set its Text property to
Enter your favorite programming language. The Label will be resized according to its cap-
tion because the control’s AutoSize property is True by default. To be sure that a Label control
will not grow too long and cover other controls on the form, set its AutoSize property to False
and size it manually. As you move the controls around on the form, you’ll see some blue lines
connecting the edges of the controls when they’re aligned. These lines are called snap lines, and
they allow you to align controls on the form.

Now you must insert some code to evaluate the user’s favorite language. Windows applica-
tions are made up of small code segments, called event handlers, which react to specific actions
such as the click of a button, the selection of a menu command, the click of a check box, and
so on. For this example, you want to program the action of clicking the button. When the user
clicks the button, you want to execute some code that will display a message.

The Windows programming model is known as event-driven programming, as it’s based
on programming events. A Windows form contains controls, such as Buttons, CheckBoxes,
TextBoxes, and so on. These controls react to certain events, which are usually initiated by the
user. A button click, checking or clearing a check box, a drag and a drop operation — all are
examples of user-initiated events. You decide the events to which your application should react
and then program the desired actions by inserting some code into the event’s handler. Event
handlers are independent of one another, and you can focus on one event at a time.

To insert some code behind the Button control, double-click the control. You’ll see the form’s
code window, which is shown in Figure 1.9. You will see only the definition of the procedure,
not the code that is shown between the two statements in the figure. The statement beginning
with Private… is too long to fit on the printed page, so I had to break it into two lines. When
a line is too long, you can break it into two (or more) lines by pressing Enter. In previous ver-
sions, you had to insert a space followed by an underscore to indicate that the statement con-
tinues on the following line. Alternatively, you can turn on the word wrap feature of the editor
(you’ll see shortly how to adjust the editor’s properties). Notice that I also inserted quite a bit

CREATING YOUR FIRST VB APPLICATION 15

of space before the second half of the first code line. It’s customary to indent continued lines so
they can be easily distinguished from the other lines.

Figure 1.9

Outline of a subrou-
tine that handles the
Click event of a Button
control

The editor opens a subroutine, which is delimited by the following statements:

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

At the top of the main pane of the Designer, you will see two tabs named after the form: the
Form1.vb [Design] tab and the Form1.vb tab. The first tab is the Windows Form Designer (in
which you build the interface of the application with visual tools), and the second is the code
editor (in which you insert the code behind the interface). At the top of the code editor, which
is what you see in Figure 1.9, are two ComboBoxes. The one on the left contains the names
of the controls on the form. The one on the right contains the names of events each control
recognizes. When you select a control (or an object, in general) in the left list, the other list’s
contents are adjusted accordingly. To program a specific event of a specific control, select the
name of the control in the left list (the Objects list) and the name of the event in the right list
(the Events list). While Button1 is selected in the Objects list, open the Events list to see the
events to which the button can react.

The Click event happens to be the default event of the Button control. To program the But-
ton’s Click event, double-click the Button on the form and the editor will open a window with
the Button1_Click subroutine. This subroutine is an event handler, which is invoked automati-
cally every time an event takes place. The event of interest in our example is the Click event of
the Button1 control. Every time the Button1 control on the form is clicked, the Button1_Click
subroutine is activated. To react to the Click event of the button, you must insert the appropri-
ate code in this subroutine.

There are more than two dozen events for the Button control, and it is among the simpler
controls. (After all, what can you do to a button besides click it?) Most of the controls recognize
a very large number of events, which we rarely code. I’ve never seen a button that reacts
to a double-click, even though you can program this event, or coding for the KeyPress

16 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

event, which is fired when the user presses a key when the button has the focus. When
programming a TextBox control, however, the KeyPress event is one of the most common
events to code.

The definition of the event handler can’t be modified; this is the event handler’s signature
(the arguments it passes to the application). All event handlers in VB 2010 pass two arguments
to the application: the sender argument, which is an object that represents the control that fired
the event, and the e argument, which provides additional information about the event.

The name of the subroutine is made up of the name of the control, followed by an
underscore and the name of the event (Button1_Click). This is just the default name, and
you can change it to anything you like (such as EvaluateLanguage, for this example, or
StartCalculations). What makes this subroutine an event handler is the keyword Handles at
the end of the statement. The Handles keyword tells the compiler which event this subroutine
is supposed to handle. Button1.Click is the Click event of the Button1 control. If there were
another button on the form, the Button2 control, you’d have to write code for a subroutine
that would handle the Button2.Click event. Each control recognizes many events, and you
can provide a different event handler for each control and event combination. Of course, we
never program every possible event for every control.

The controls have a default behavior and handle the basic events on their own. The TextBox
control knows how to handle keystrokes. The CheckBox control (a small square with a check
mark) changes state by hiding or displaying the check mark every time it’s clicked. The Scroll-
Bar control moves its indicator (the button in the middle of the control) every time you click
one of the arrows at the two ends. Because of this default behavior of the controls, you need
not supply any code for the events of most controls on the form.

If you change the name of the control after you have inserted some code in an event han-
dler, the name of the event handled by the subroutine will be automatically changed. The name
of the subroutine, however, won’t change. If you change the name of the Button1 control to
bttnEvaluate, the subroutine’s header will become

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnEvaluate.Click

End Sub

Rename the Button1_Click subroutine to EvaluateLanguage. You must edit the code to
change the name of the event handler. I try to name the controls before adding any code to
the application so that their event handlers will be named correctly. Alternatively, you can use
your own name for each event handler. The default names of the controls you place on a form
are quite generic, and you should change them to something more meaningful. I usually prefix
the control names with a few characters that indicate the control’s type (such as txt, lbl, bttn,
and so on), followed by a name that reflects the function of the control on the form. Names
such as txtLanguage and bttnEvaluate make your code far more readable. It’s a good prac-
tice to change the default names of the controls as soon as you add the controls to the form.
Names such as Button1, Button2, Button3, and so on, don’t promote the readability of your
code. With the exception of this first sample project, I’m using descriptive names for the con-
trols used in this book’s projects.

Let’s add some code to the Click event handler of the Button1 control. When this but-
ton is clicked, I want to examine the text the user entered in the text box. If it’s Visual Basic,

CREATING YOUR FIRST VB APPLICATION 17

I want to display one message; if not, I want to display a different message. Insert the lines of
Listing 1.1 between the Private Sub and End Sub statements. (I’m showing the entire listing
here, but there’s no reason to retype the first and last statements.)

Listing 1.1: Processing a user-supplied string

Private Sub EvaluateLanguage(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text
If language = "Visual Basic" Then

MsgBox("We have a winner!")
Else

MsgBox(language & " is not a bad language.")
End If

End Sub

Here’s what this code does. First, it assigns the text of the TextBox control to the variable
language. A variable is a named location in memory where a value is stored. Variables
are where you store the intermediate results of your calculations when you write code. All
variables are declared with a Dim statement and have a name and a type. The first statement
declares a new variable, the language variable, with the Dim statement and sets its type to
String (it’s a variable that will store text).

You could also declare and assign a value to the language variable in a single step:

Dim language = TextBox1.Text

The compiler will create a String variable, because the statement assigns a string to the vari-
able. We’ll come back to the topic of declaring and initializing variables in Chapter 2, ‘‘Han-
dling Data.’’

Then the program compares the value of the language variable to the string Visual Basic,
and depending on the outcome of the comparison, it displays one of two messages. The
MsgBox() function displays the message that you passed as an argument by placing it between
the parentheses in a small window with an OK button, as shown in Figure 1.8. The argument
for a MsgBox() function must be a string. Users can view the message and then click the OK
button to close the message box.

Even if you’re not familiar with the syntax of the language, you should be able to under-
stand what this code does. Visual Basic is the simplest of the languages supported by Visual
Studio 2010, and I will discuss the various aspects of the language in detail in the following
chapters. In the meantime, focus on understanding the process of developing a Windows appli-
cation: how to build the visible interface of the application and how to program the events to
which you want your application to react.

The code of this first application isn’t very robust. If the user doesn’t enter the string with
the exact spelling shown in the listing, the comparison will fail. You can convert the string to
uppercase and then compare it with VISUAL BASIC to eliminate differences in case. To convert

18 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

a string to uppercase, use the ToUpper method of the String class. The following expression
returns the string stored in the language variable, converted to uppercase:

language.ToUpper

You should also take into consideration the fact that the user might enter VB or VB2010, or
something similar. You never know what users may throw at your application, so whenever
possible you should try to limit their responses to the number of available choices. In this case,
you could display the names of certain languages (the ones you’re interested in) and force the
user to select one of them.

One way to display a limited number of choices is to use a ComboBox control. In the next
section, you’ll revise your sample application so that users won’t have to enter the name of the
language. You’ll force them to select their favorite language from a list so that you won’t have
to validate the string supplied by the user.

Making the Application More User Friendly
Start a new project: the WindowsApplication2 project. Do not select the Create Directory For
Solution check box; save the project from within the IDE. As soon as the project is created,
open the File menu and choose Save All to save the project. When the Save Project dialog box
appears, click the Browse button to select the folder where the project will be saved. In the
Project Location dialog box that appears, select an existing folder or create a new folder such
as MyProjects or VB.NET Samples.

Open the Toolbox and double-click the ComboBox tool icon. A ComboBox control will be
placed on your form. Now, place a Button control on the form and position it so that your form
looks like the one shown in Figure 1.10. Then set the Text property for the button to Evaluate
My Choice.

Figure 1.10

Displaying options in a
ComboBox control

You must now populate the ComboBox control with the valid choices. Select the ComboBox
control on the form by clicking it with the mouse and locate its Items property in the Proper-
ties window. The setting of this property is Collection, which means that the Items property

CREATING YOUR FIRST VB APPLICATION 19

doesn’t have a single value; it’s a collection of items (strings, in this case). Click the ellipsis but-
ton and you’ll see the String Collection Editor dialog box, as shown in Figure 1.11.

Figure 1.11

Click the ellipsis button
next to the Items prop-
erty of a ComboBox to
see the String Collection
Editor dialog box.

The main pane in the String Collection Editor dialog box is a TextBox, in which you can
enter the items you want to appear in the ComboBox control at runtime. Enter the following
strings, one per row and in the order shown here:

C++
C#

Visual Basic

Java

Cobol

Click the OK button to close the dialog box. The items you just entered will not appear on
the control at design time, but you will see them when you run the project. Before running
the project, set one more property. Locate the ComboBox control’s Text property and set it to
Select your favorite programming language. This is not an item of the list; it’s the string that
will initially appear on the control.

You can run the project now and see how the ComboBox control behaves. Press F5 and
wait a few seconds. The project will be compiled, and you’ll see the form displayed on your
Desktop, on top of the Visual Studio window. I’m sure you know how the ComboBox control
behaves in a typical Windows application, and your sample application is no exception. You
can select an item on the control, either with the mouse or with the keyboard. Click the button
with the arrow to expand the list and then select an item with the mouse. Or press the down or
up arrow keys to scroll through the list of items. The control isn’t expanded, but each time you
click an arrow button, the next or previous item in the list appears on the control. Press the Tab
key to move the focus to the Button control and press the spacebar to emulate a Click event
(or simply click the Button control).

You haven’t told the application what to do when the button is clicked yet, so let’s go back
and add some code to the project. Stop the application by clicking the Stop button on the tool-
bar (the solid black square) or by choosing Debug � Stop Debugging from the main menu.
When the form appears in design mode, double-click the button and the code window will

20 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

open, displaying an empty Click event handler. Insert the statements shown in Listing 1.2
between the Private Sub and End Sub statements.

Listing 1.2: The revised Click event handler

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = ComboBox1.Text
If language = "Visual Basic" Then

MsgBox("We have a winner!")
Else

MsgBox(language & "is not a bad language.")
End If

End Sub

When the form is first displayed, a string that doesn’t correspond to a language is displayed
in the ComboBox control. This is the string that prompts the user to select a language; it isn’t a
valid selection because it’s not included in the list of items.

You can also preselect one of the items from within your code when the form is first loaded.
When a form is loaded, the Load event of the Form object is raised. Double-click somewhere on
the form and the editor will open the form’s Load event handler:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Enter the following code to select the Visual Basic item when the form is loaded:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox1.SelectedIndex = 2
End Sub

SelectedIndex is a property of the ComboBox control that returns the index of the selected
item in the Items collection. You can set it to an integer value from within your code to select
an item on the control, and you can also use it to retrieve the index of the selected item in the
list. Instead of comparing strings, you can compare the SelectedIndex property to the value
that corresponds to the index of the item Visual Basic, with a statement such as the following:

If ComboBox1.SelectedIndex = 2 Then
MsgBox("We have a winner!")

Else
MsgBox(ComboBox1.Text & " is not a bad language.")

End If

UNDERSTANDING THE IDE COMPONENTS 21

The Text property of the ComboBox control returns the text on the control, and it’s used
to print the selected language’s name. The & symbol is an operator, similar to the arithmetic
operators, that concatenates two strings. The first string is the Text property of the ComboBox
control and the second string is a literal enclosed in double quotes. To combine the two, use the
concatenation operator.

Of course, if you insert or remove items from the list, you must edit the code accordingly.
If you run the application and test it thoroughly, you’ll realize that there’s a problem with the
ComboBox control. Users can type in the control a new string, which will be interpreted as a
language. By default, the ComboBox control allows users to type in something in addition to
selecting an item from the list. To change the control’s behavior, select it on the form and locate
its DisplayStyle property in the Properties window. Expand the list of possible settings for
the control and change the property’s value from DropDown to DropDownList. Run the applica-
tion again and test it; your sample application has become bulletproof. It’s a simple application,
but you’ll see more techniques for building robust applications in Chapter 4, ‘‘GUI Design and
Event-Driven Programming.’’

The controls on the Toolbox are more than nice pictures you can place on your forms. They
encapsulate a lot of functionality and expose properties that allow you to adjust their appear-
ance and their functionality. Most properties are usually set at design time, but quite frequently
you change the properties of various controls from within your code. And it should be obvious
by now that the changes take place from within the code that resides in the handlers for the
events to which the application should react.

Now that you’re somewhat familiar with the process of building Windows applications, and
before you look into any additional examples, I will quickly present the components of the
Visual Studio IDE.

Understanding the IDE Components
The IDE of Visual Studio 2010 contains numerous components, and it will take you a while to
explore them. It’s practically impossible to explain in a single chapter what each tool, window,
and menu command does. I’ll discuss specific tools as we go along and as the topics become
more and more advanced. In the following sections, I will go through the basic items of the
IDE — the ones you’ll use in the following few chapters to build simple Windows applications.

The IDE Menus
The IDE menus provide access to a variety of commands; some lead to submenus. Notice that
most menus can be displayed as toolbars. Also, not all options are available at all times. The
options that cannot possibly apply to the current state of the IDE are either invisible or dis-
abled. The Edit menu is a typical example. It’s quite short when you’re designing the form and
quite lengthy when you edit code. The Data menu disappears altogether when you switch to
the code editor — you can’t use these menu options while editing code. If you open an XML
document in the IDE, the XML item will be added to the menu bar of Visual Studio. Yes, Visual
Studio can handle XML files too. Not only that, but Visual Basic provides built-in support for
XML files, which I’ll help you explore in Chapter 13, ‘‘XML in Modern Programming.’’

File Menu

The File menu contains commands for opening and saving projects or project items as well as
commands for adding new or existing items to the current project. For the time being, use the

22 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

New � Project command to create a new project, Open � Project/Solution to open an existing
project or solution, Save All to save all components of the current project, and the Recent
Projects submenu to open one of the recent projects.

Edit Menu

The Edit menu contains the usual editing commands. Among these commands are the
Advanced command and the IntelliSense command. Both commands lead to submenus, which
are discussed next. Note that these two items are visible only when you’re editing your code
and are invisible while you’re designing a form.

Edit � Advanced Submenu

The following options are the more-interesting ones available through the Edit � Advanced
submenu:

View White Space Space characters (necessary to indent lines of code and make it easy to
read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, the line is
automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your
code statements to document your application. Every line that begins with a single quote is
a comment; it is part of the code, but the compiler ignores it. Sometimes, you want to disable a
few lines from your code but not delete them (because you want to be able to restore them later,
should you change your mind). A simple technique to disable a line of code is to comment
it out (insert the comment symbol in front of the line). The Comment Selection/Uncomment
Selection command allows you to comment (or uncomment) large segments of code in a single
move.

Edit � IntelliSense Submenu

Edit � IntelliSense leads to a submenu with five options, which are described next. IntelliSense
is a feature of the editor (and other Microsoft applications) that displays as much informa-
tion as possible, whenever possible. When you type the name of a control and the following
period, IntelliSense displays a list of the control’s properties and methods so that you can select
the desired one — no more guessing at names. When you type the name of a function and an
opening parenthesis, IntelliSense will display the syntax of the function — its arguments. The
IntelliSense submenu includes the following options:

List Members When this option is on, the editor lists all the members (properties, methods,
events, and argument list) in a drop-down list. This list appears when you enter the name
of an object or control followed by a period. Then, you can select the desired member from
the list using either the mouse or the keyboard. Let’s say your form contains a control named
TextBox1 and you’re writing code for this form. When you enter the name of the control fol-
lowed by a period (TextBox1.), a list with the members of the TextBox control will appear (as
shown in Figure 1.12).

In addition, a description of the selected member is displayed in a ToolTip box, as you can
see in the same figure. Select the Text property and then enter the equal sign, followed by a
string in quotes, as follows:

TextBox1.Text = "Your User Name"

UNDERSTANDING THE IDE COMPONENTS 23

Figure 1.12

Viewing the members of
a control in the Intelli-
Sense drop-down list

If you select a property that can accept a limited number of settings, you will see the names of
the appropriate constants in a drop-down list. If you enter the following statement, you will
see the constants you can assign to the property (see Figure 1.13):

TextBox1.TextAlign =

Figure 1.13

Viewing the possible
settings of a prop-
erty in the IntelliSense
drop-down list

Again, you can use your mouse to select the desired value. The drop-down list with the mem-
bers of a control or object (the Members list) remains open until you type a terminator key (the
Esc or End key) or select a member by pressing the spacebar or the Enter key.

Parameter Info While editing code, you can move the pointer over a variable, method, or
property and see its declaration in a pop-up box. You can also jump to the variable’s definition
or the body of a procedure by choosing Go To Definition from the context menu that appears if
you right-click the variable or method name in the code window.

Quick Info Quick Info is another IntelliSense feature that displays information about com-
mands and functions. When you type an opening parenthesis following the name of a function,
for example, the function’s arguments will be displayed in a ToolTip box. The first argument
appears in bold font; after a value for this argument is entered, the next one is shown in bold.
If an argument accepts a fixed number of settings, these values will appear in a drop-down list,
as explained previously.

Complete Word The Complete Word feature enables you to complete the current word by
pressing Ctrl+spacebar. For example, if you type TextB and then press Ctrl+spacebar, you
will see a list of words that you’re most likely to type (TextBox, TextBox1, and so on).

Insert Snippet This command opens the Insert Snippet window at the current location in the
code editor window. Code snippets, which are an interesting feature of Visual Studio 2010, are
discussed in the section ‘‘Using Code Snippets’’ later in this chapter.

24 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Edit � Outlining Submenu

A practical application contains a substantial amount of code in a large number of event han-
dlers and custom procedures (subroutines and functions). To simplify the management of the
code window, the Outlining submenu contains commands that collapse and expand the various
procedures.

Let’s say you’re finished editing the Click event handlers of several buttons on the form.
You can reduce these event handlers to a single line that shows the names of the procedures
with a plus sign in front of them. You can expand a procedure’s listing at any time by clicking
the plus sign. When you do so, a minus sign appears in front of the procedure’s name, and
you can click it to collapse the body of the procedure again. The Outlining submenu contains
commands to handle the outlining of the various procedures or to turn off outlining and view
the complete listings of all procedures. You will use these commands as you write applications
with substantial amounts of code:

Hide Selection This option lets you hide the selected code segment. You can select part of
a routine or multiple routines, which are hidden as a whole with this command. To display
the hidden code, click the plus icon on the left margin, or use the Stop Hiding Selection
command.

Toggle Outlining Expansion This option lets you change the outline mode of the current
procedure. If the procedure’s definition is collapsed, the code is expanded, and vice versa.

Toggle All Outlining This option is similar to the Toggle Outlining Expansion option, but it
toggles the outline mode of the current document. A form is reduced to a single statement. A
file with multiple classes is reduced to one line per class.

Stop Outlining This option turns off outlining and adds a new command to the Outlining
submenu, Start Automatic Outlining, which you can select to turn on automatic outlining
again.

Stop Hiding Current This option stops hiding the currently hidden selection.

Collapse To Definitions This option reduces the listing to a list of procedure headers.

View Menu

This menu contains commands that allow you to display any toolbar or window of the IDE.
The Other Windows command leads to a submenu with the names of some standard windows,
including the Output and Command windows. The Output window is the console of the appli-
cation. The compiler’s messages, for example, are displayed in the Output window. The Com-
mand window allows you to enter and execute statements. When you debug an application,
you can stop it and enter VB statements in the Command window. Another related window is
the Immediate window, which is very similar to the Command window, and it has the advan-
tage of displaying the IntelliSense box as you type. You’ll see how to use these windows later
in this book (they’re used mostly for debugging).

Project Menu

This menu contains commands for adding items to the current solution (an item can be a form,
a file, a component, or another project). The last option in this menu is the Project Properties
command, which opens the project’s properties pages. The Add Reference and Add Web
Reference commands allow you to add references to .NET components and web components,

UNDERSTANDING THE IDE COMPONENTS 25

respectively. These two commands are also available in the project’s shortcut menu (to open
this menu, right-click the name of the project in the Solution Explorer).

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic
commands in this menu are Build and Rebuild All. The Build command compiles (builds
the executable for) the entire solution, but it doesn’t compile any components of the project
that haven’t changed since the last build. The Rebuild All command clears any existing files
and builds the solution from scratch. Every time you start your application, Visual Studio
recompiles it as needed so you don’t usually have to build your application to execute it. There
are situations (when you add custom classes and controls to your application) when you must
build the project. These topics are discussed later in this book.

Debug Menu

This menu contains commands to start or end an application as well as the basic debugging
tools. The basic commands of this menu are discussed briefly in Chapter 4.

Data Menu

This menu contains commands you will use with projects that access data. You’ll see how to
use this short menu’s commands in the discussion of the visual database tools in Chapter 16
through Chapter 18.

Format Menu

The Format menu, which is visible only while you design a Windows or web form, contains
commands for aligning the controls on the form. The commands accessible from this menu are
discussed in Chapter 4. The Format menu is invisible when you work in the code editor — the
commands apply to the visible elements of the interface.

Tools Menu

This menu contains a list of useful tools, such as the Macros command, which leads to a sub-
menu with commands for creating macros. Just as you can create macros in a Microsoft Office
application to simplify many tasks, you can create macros to automate many of the repetitive
tasks you perform in the IDE. The last command in this menu, the Options command, leads to
the Options dialog box, in which you can fully customize the environment. The Choose Tool-
box Items command opens a dialog box that enables you to add more controls to the Toolbox.
In Chapter 9, ‘‘Building Custom Windows Controls,’’ you’ll learn how to design custom con-
trols and add them to the Toolbox.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of
open windows, it contains the Hide command, which hides all toolboxes, leaving the entire
window of the IDE devoted to the code editor or the Form Designer. The toolboxes don’t
disappear completely; they’re all retracted, and you’ll be able see the tabs on the left and
right edges of the IDE window. To expand a toolbox, just hover the mouse pointer over the
corresponding tab.

26 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic
Help window, which is populated with topics that apply to the current operation. The Index
command opens the Index window, in which you can enter and get help on a specific topic.

The Toolbox Window
The Toolbox window contains all the controls you can use to build your application interface.
This window is usually retracted, and you must move the pointer over it to view the Toolbox.
The controls in the Toolbox are organized in various tabs, so take a look at them to become
familiar with their functions.

In the first few chapters, we’ll work with the controls in the Common Controls and Menus
& Toolbars tabs. The Common Controls tab contains the icons for the most common Windows
controls, while the All Windows Controls tab contains all the controls you can place on
your form. The Data tab contains the icons for the objects you will use to build data-driven
applications (they’re explored later in this book). The Menus & Toolbars tab contains the Menu
and ContextMenu controls (they’re discussed in Chapter 4) among others. On the Printing tab
you will find all the controls you’ll need to create printouts, and they’re discussed briefly in
Chapter 11 and in more detail in the tutorial ‘‘Printing with Visual Basic.’’ The Dialogs tab
contains controls for implementing the common dialog controls, which are so common in
Windows interfaces; they’re discussed in Chapter 7, ‘‘More Windows Controls.’’

The Solution Explorer Window
The Solution Explorer window contains a list of the items in the current solution. A solution
can contain multiple projects, and each project can contain multiple items. The Solution
Explorer displays a hierarchical list of all the components, organized by project. You can
right-click any component of the project and choose Properties in the context menu to see the
selected component’s properties in the Properties window. If you select a project, you will see
the Project Properties dialog box. You will find more information on project properties in the
following chapter.

If the solution contains multiple projects, you can right-click the project you want to become
the startup form and select Set As StartUp Project. (The Startup project is the one that starts
executing when you press F5 in the IDE.) You can also add items to a project with the Add
Item command from the context menu or remove a component from the project with the
Exclude From Project command. This command removes the selected component from the
project but doesn’t affect the component’s file on the disk. The Delete command removes the
selected component from the project and also deletes the component’s file from the disk.

If a project contains many items, you can organize them into folders. Right-click the project
name and select Add from the context menu. From the shortcut menu that appears, select New
Folder. To move an existing item into a folder, just drag it and drop it on one of the project
folders.

The Properties Window
This window (also known as the Properties Browser) displays all the properties of the selected
component and their settings. Every time you place a control on a form, you switch to this
window to adjust the appearance of the control. You have already seen how to manipulate
the basic properties of a control through the Properties window, and you will find many more
examples in this and the following chapter.

UNDERSTANDING THE IDE COMPONENTS 27

Many properties are set to a single value, such as a number or a string. If the possible
settings of a property are relatively few, they’re displayed as meaningful constants in a
drop-down list. Other properties are set through a more elaborate interface. Color properties,
for example, are set on a Color dialog box that’s displayed right in the Properties window.
Font properties are set through the usual Font dialog box. Collections are set in a Collection
Editor dialog box, in which you can enter one string for each item of the collection, as you did
for the items of the ComboBox control earlier in this chapter.

If the Properties window is hidden, or if you have closed it, you can choose View � Prop-
erties Window or right-click a control on the form and choose Properties, or you can simply
press F4 to bring up this window. There will be times when one control might totally overlap
another control, and you won’t be able to select the hidden control and view its properties. In
this case, you can select the desired control in the ComboBox at the top of the Properties win-
dow. This box contains the names of all the controls on the form, and you can select a control
on the form by selecting its name from this box.

The Output Window
The Output window is where many of the tools, including the compiler, send their output.
Every time you start an application, a series of messages is displayed in the Output window.
These messages are generated by the compiler, and you need not understand them at
this point. If the Output window is not visible, choose View � Other Windows � Output
from the menu.

The Command and Immediate Windows
While testing a program, you can interrupt its execution by inserting a breakpoint. When
the breakpoint is reached, the program’s execution is suspended and you can execute a state-
ment in the Immediate window. Any statement that can appear in your VB code can also
be executed in the Immediate window. To evaluate an expression, enter a question mark
followed by the expression you want to evaluate, as in the following samples, where result is
a variable in the program you interrupted:

? Math.Log(35)
? "The answer is " & result.ToString

You can also send output to this window from within your code with the Debug.Write and
Debug.WriteLine methods. Actually, this is a widely used debugging technique — to print
the values of certain variables before entering a problematic area of the code. There are more
elaborate tools to help you debug your application, but printing a few values to the Immediate
window is a time-honored practice in programming with VB.

In many of the examples of this book, especially in the first few chapters, I use the
Debug.WriteLine statement to print something to the Immediate window. To demonstrate the
use of the DateDiff() function, for example, I’ll use a statement like the following:

Debug.WriteLine(DateDiff(DateInterval.Day, #3/9/2007#, #5/15/2008#))

When this statement is executed, the value 433 (which is the number of days between the
two dates) will appear in the Immediate window. This statement demonstrates the syntax of
the DateDiff() function, which returns the difference between the two dates in days. Sending

28 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

some output to the Immediate window to test a function or display the results of intermediate
calculations is a common practice.

To get an idea of the functionality of the Immediate window, switch back to your first
sample application and insert the Stop statement after the End If statement in the button’s
Click event handler. Run the application, select a language, and click the button on the form.
After displaying a message box, the application will reach the Stop statement and its execution
will be suspended. You’ll see the Immediate window at the bottom of the IDE. If it’s not
visible, open the Debug menu and choose Windows � Immediate. In the Immediate window,
enter the following statement:

? ComboBox1.Items.Count

Then, press Enter to execute it. Notice that IntelliSense is present while you’re typing in
the Immediate window. The expression prints the number of items in the ComboBox control.
(Don’t worry about the numerous properties of the control and the way I present them here;
they’re discussed in detail in Chapter 5, ‘‘Basic Windows Controls.’’) As soon as you press
Enter, the value 5 will be printed on the following line.

You can also manipulate the controls on the form from within the Immediate window. Enter
the following statement and press Enter to execute it:

ComboBox1.SelectedIndex = 4

The fifth item on the control will be selected (the indexing of the items begins with 0). How-
ever, you can’t see the effects of your changes because the application isn’t running. Press F5 to
resume the execution of the application and you will see that the item Cobol is now selected in
the ComboBox control.

The Immediate window is available only while the application’s execution is suspended. To
continue experimenting with it, click the button on the form to evaluate your choice. When the
Stop statement is executed again, you’ll be switched to the Immediate window.

Unlike the Immediate window, the Command window is available at design time. The Com-
mand window allows you to access all the commands of Visual Studio by typing their names
in this window. If you enter the string Edit followed by a period, you will see a list of all
commands of the Edit menu, including the ones that are not visible at the time, and you
can invoke any of these commands and pass arguments to them. For example, if you enter
Edit.Find ‘‘Margin’’ in the Command window and then press Enter, the first instance of
the string Margin will be located in the open code window. To start the application, you
can type Debug.Start. You can add a new project to the current solution with the AddProj
command, and so on. Most developers hardly ever use this window in designing or debugging
applications.

The Error List Window
This window is populated by the compiler with error messages if the code can’t be success-
fully compiled. You can double-click an error message in this window and the IDE will take
you to the line with the statement in error — which you should fix. Change the MsgBox() func-
tion name to MssgBox(). As soon as you leave the line with the error, the name of the function
will be underlined with a wiggly red line and the following error description will appear in the
Error List window:

Name ‘MssgBox’ is not declared

SETTING ENVIRONMENT OPTIONS 29

Correct the function name (it should be MsgBox with one s) and the error number will disap-
pear from the Error List window. The Error List window has two more tabs, the Warnings tab
and the Messages tab, which display various warnings.

Setting Environment Options
The Visual Studio IDE is highly customizable. I will not discuss all the customization options
here, but I will show you how to change the default settings of the IDE. Open the Tools menu
and select Options (the last item in the menu). The Options dialog box appears, in which you
can set all the options regarding the environment. Figure 1.14 shows the options for the fonts of
the various items of the IDE. Here you can set the font for the Text Editor, dialog boxes, tool-
boxes, and so on. Select an item in the tree in the left pane list and then set the font for this
item in the box below.

Figure 1.14

The Fonts And Colors
options

Figure 1.15 shows the Projects And Solutions options. The top box indicates the default loca-
tion for new projects. The Save New Projects When Created check box determines whether
the editor will create a new folder for the project when it’s created. If you uncheck this box,
then Visual Studio will create a folder in the Temp folder. Projects in the Temp folder will be
removed when you run the Disk Cleanup utility to claim more space on your hard drives.

By default, Visual Studio saves the changes to the current project every time you press F5.
You can change this behavior by setting the Before Building option in the Build And Run page,
under the Project And Solutions branch. If you change this setting, you must save your project
from time to time with the File � Save All command.

Most of the tabs in the Options dialog box are straightforward, and you should take a look
at them. If you don’t like some of the default aspects of the IDE, this is the place to change
them. If you switch to the Basic item under the Text Editor branch of the tree in the left pane of
the Options dialog box, you will find the Line Numbers option. Select this check box to display
numbers in front of each line in the code window. The Options dialog box contains a lot of
options for customizing your work environment, and it’s worth exploring on your own. Before
you make any changes in the Visual Studio options, make sure you save the current settings
with the Import And Exporting Settings command accessible from the Tools menu.

30 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Figure 1.15

The Projects And Solu-
tions options

Building a Console Application
Apart from Windows applications, you can use Visual Studio 2010 to build applications that
run in a command prompt window. The command prompt window isn’t really a DOS win-
dow, even though it looks like one. It’s a text window, and the only way to interact with an
application is to enter lines of text and read the output generated by the application, which is
displayed in this text window, one line at a time. This type of application is called a console
application, and I’m going to demonstrate console applications with a single example. We will
not return to this type of application later in the book because it’s not what you’re supposed to
do as a Windows developer.

The console application you’ll build in this section, ConsoleApplication1, prompts users to
enter the name of their favorite language. It then prints the appropriate message on a new line,
as shown in Figure 1.16.

Figure 1.16

A console application
uses the command
prompt window to inter-
act with the user.

Start a new project. In the New Project dialog box, select the template Console Application.
You can also change its default name from ConsoleApplication1 to a more descriptive name.
For this example, don’t change the application’s name.

BUILDING A CONSOLE APPLICATION 31

A console application doesn’t have a user interface, so the first thing you’ll see is the code
editor’s window with the following statements:

Module Module1

Sub Main()

End Sub

End Module

Unlike a Windows application, which is a class, a console application is a module. Main()
is the name of a subroutine that’s executed automatically when you run a console application.
The code you want to execute must be placed between the statements Sub Main() and End Sub.
Insert the statements shown in Listing 1.3 in the application’s Main() subroutine.

Listing 1.3: Console application

Module Module1
Sub Main()

Console.WriteLine("Enter your favorite language")
Dim language As String
language = Console.ReadLine()
language = language.ToUpper
If language = "VISUAL BASIC" Or

language = "VB" Or
language = "VB.NET" Or
language = "VISUAL BASIC 2010" Then

Console.WriteLine("We have a winner!")
Else

Console.WriteLine(language & " is not a bad language.")
End If
Console.WriteLine()
Console.WriteLine()
Console.WriteLine("PRESS ENTER TO EXIT")
Console.ReadLine()

End Sub
End Module

This code is quite similar to the code of the equivalent Windows applications we developed
earlier, except that it uses the Console.WriteLine statement to send its output to the command
prompt window instead of a message box.

A console application doesn’t react to events because it has no visible interface. However,
it’s easy to add some basic elements of the Windows interface to a console application. If you
change the Console.WriteLine method call into the MsgBox() function, the message will be
displayed in a message box.

One reason to build a console application is to test a specific feature of the language with-
out having to build a user interface. Many of the examples in the documentation are console

32 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

applications; they demonstrate the topic at hand and nothing more. If you want to test the
DateDiff() function, for example, you can create a new console application and enter the lines
from Listing 1.4 in its Main() subroutine.

Listing 1.4: Testing the DateDiff() function with a console application

Sub Main()
Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2000#, #5/15/2008#))
Console.WriteLine("PRESS ENTER TO EXIT")
Console.ReadLine()

End Sub

The last two lines will be the same in every console application you write. Without them,
the command prompt window will close as soon as the End Sub statement is reached, and you
won’t have a chance to see the result. The Console.ReadLine method waits until the user
presses the Enter key.

Console applications are convenient for testing short code segments, but Windows program-
ming is synonymous with designing graphical user interfaces, so you won’t find any more
console applications in this book.

Using Code Snippets
Visual Basic 2010 comes with a lot of predefined code snippets for selected actions, and you
can insert these snippets into your code as needed. Let’s say you want to insert the statements
for writing some text to a file, but you have no idea how to access files. Create an empty line in
the listing (press the Enter key a couple of times at the end of a code line). Then open the Edit
menu and choose IntelliSense � Insert Snippet (or right-click somewhere in the code window
and choose Insert Snippet from the context menu).

When Insert Snippet opens, you will see a list of the snippets, organized in folders according
to their function, as shown in Figure 1.17. Double-click any folder name to see the subfold-
ers or actual snippets available for that function. Try it out. Double-click the Fundamentals
folder and take a look at the options available to you: Collections, Data Types, File System, and
Math. Double-click the filesystem item to see a list of common file-related tasks, as shown in
Figure 1.18. Scroll down and locate the item Write Text To A File in the list. Now, double-click
it to insert that snippet at the current location in the code window.

The following snippet will be inserted in your code:

My.Computer.FileSystem.WriteAllText("C:\test.txt", "Text", True)

To write some text to a file, you need to call the WriteAllText method of the
My.Computer.FileSystem object. You can replace the strings shown in the snippet with
actual values. The first string is the filename, the second string is the text to be written to the
file, and the last argument of the method determines whether the text will be appended to the
file (if False) or will overwrite any existing text (if True).

Each snippet shows you the basic statements for performing a common task, and you can
edit the code inserted by Visual Studio as needed. A real-world application would probably
prompt the user for a filename via the File common dialog box and then use the filename spec-
ified by the user in the dialog box instead of a hard-coded filename.

USING THE MY COMPONENT 33

Figure 1.17

The code snippets are
organized according to
function.

Figure 1.18

Selecting a code snippet
to insert in your code

As you program, you should always try to find out whether there’s a snippet for the task at
hand. Sometimes you can use a snippet without even knowing how it works. Although snip-
pets can simplify your life, they won’t help you understand the Framework, which is discussed
in detail throughout this book.

Using the My Component
You have probably noticed that the code snippets available through Visual Studio use an entity
called My — a peculiar object that was introduced with VB 2005 to simplify many program
ming tasks. As you saw in the preceding code snippet, the My component allowed you to write
some text to a file with a single statement, the WriteAllText method. If you’re familiar with
earlier versions of Visual Basic, you know that to actually write text to a file you must first
open a file, then write some text to it, and finally close the file. The My component allows you
to perform all these operations with a single statement.

Another example is the Play method, which you can use to play back a WAV file from
within your code:

My.Computer.Audio.Play ("C:\Sounds\CountDown.wav")

Or you can use it to play back a system sound:

My.Computer.Audio.PlaySystemSound(System.Media.SystemSounds.Exclamation)

34 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The method that plays back the sound is the Play method, and the method that writes text
to a file is the WriteAllText method. However, you can’t call them directly through the My
component; they’re not methods of the My component. If they were, you’d have to dig hard to
find out the method you need. The My component exposes six components, which contain their
own components. Here’s a description of the basic components of the My component and the
functionality you should expect to find in each component:

My.Application The Application component provides information about the current appli-
cation. The CommandLineArgs property of My.Application returns a collection of strings, which
are the arguments passed to the application when it was started. Typical Windows applications
aren’t called with command-line arguments, but it’s possible to start an application and pass a
filename as an argument to the application (the document to be opened by the application, for
example). The Info property is an object that exposes properties such as DirectoryPath (the
application’s default folder), ProductName, Version, and so on.

My.Computer This component exposes a lot of functionality via a number of properties,
many of which are objects. The My.Computer.Audio component lets you play back sounds.
The My.Computer.Clipboard component lets you access the Clipboard. To find out whether
the Clipboard contains a specific type of data, use the ContainsText, ContainsImage,
ContainsData, and ContainsAudio methods. To retrieve the contents of the Clipboard, use
the GetText, GetImage, GetData, and GetAudioStream methods. Assuming that you have a
form with a TextBox control and a PictureBox control, you can retrieve text or image data from
the Clipboard and display it on the appropriate control with the following statements:

If My.Computer.Clipboard.ContainsImage Then
PictureBox1.Image = My.Computer.Clipboard.GetImage

End If
If My.Computer.Clipboard.ContainsText Then

TextBox2.Text = My.Computer.Clipboard.GetText
End If

You may have noticed that using the My component in your code requires that you write long
statements. You can shorten them substantially via the With statement, as shown next:

With My.Computer.Clipboard
If .ContainsImage Then

PictureBox1.Image = .GetImage
End If
If .ContainsText Then

TextBox2.Text = .GetText
End If

End With

When you’re executing multiple statements on the same object, you can specify the object in
a With statement and call its methods in the block of the With statement by specifying the
method name prefixed with a dot. The With statement is followed by the name of the object
to which all following methods apply and is terminated with the End With statement.

Another property of the My.Computer component is the FileSystem object that exposes
all the methods you need to access files and folders. If you enter the expression

USING THE MY COMPONENT 35

My.Computer.FileSystem followed by a dot, you will see all the methods exposed by
the FileSystem component. Among them, you will find DeleteFile, DeleteDirectory,
RenameFile, RenameDirectory, WriteAllText, ReadAllText, and many more. Select a
method and then type the opening parenthesis. You will see the syntax of the method in a
ToolTip. The syntax of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String)

Just specify the path of the file you want to copy and the new file’s name, and you’re finished.
This statement will copy the specified file to the specified location.

You will notice that the ToolTip box with the syntax of the CopyFile method has multiple ver-
sions, which are listed at the left side of the box along with arrow up and arrow down icons.
Click these two buttons to see the next and previous versions of the method. The second ver-
sion of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String,
overwrite As Boolean)

The overwrite argument specifies whether the method should overwrite the destination file if
it exists.

The third version of the method accepts a different third argument that determines whether
the usual copy animation will be displayed as the file is being copied.

The various versions of the same method differ in the number and/or type of their arguments,
and they’re called overloaded forms of the method. Instead of using multiple method names
for the same basic operation, the overloaded forms of a method allow you to call the same
method name and adjust its behavior by specifying different arguments.

My.Forms This component lets you access the forms of the current application. You can also
access the application’s forms by name, so the Forms component isn’t the most useful one.

My.Settings This component lets you access the application settings. These settings apply to
the entire application and are stored in an XML configuration file. The settings are created from
within Visual Studio, and you use the Settings component to read them.

My.User This component returns information about the current user. The most important
property of the User component is the CurrentPrincipal property, which is an object that
represents the credentials of the current user.

My.WebServices The WebServices component represents the web services referenced by the
current application.

The My component gives beginners unprecedented programming power and allows you to
perform tasks that would require substantial code if implemented with earlier versions of the
language, not to mention the research it would take to locate the appropriate methods in the
Framework. You can explore the My component on your own and use it as needed. My is not a
substitute for learning the language and the Framework. It can help you initially, but you can’t
go far without learning the methods of the Framework for handling files or any other feature.

36 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Let’s say you want to locate all the files of a specific type in a folder, including its sub-
folders. Scanning a folder and its subfolders to any depth is quite a task (you’ll find
the code in the tutorial ‘‘Accessing Folders and Files,’’ which you can download from
www.sybex.com/go/masteringvb2010). You can do the same with a single statement by using
the My component:

Dim files As ReadOnlyCollection(Of String)
files = My.Computer.FileSystem.GetFiles("D:\Data", True, "*.txt")

The GetFiles method populates the files collection with the pathnames of the text files in
the folder D:\Data and its subfolders. However, it won’t help you if you want to process each
file in place. Moreover, this GetFiles method is synchronous: If the folder contains many sub-
folders with many files, it will block the interface until it retrieves all the files. In the tutorial
‘‘Accessing Folders and Files,’’ you’ll see the code that retrieves filenames and adds them to a
control as it goes along.

If you’re already familiar with VB, you may think that the My component is an aid for the abso-
lute beginner or the nonprogrammer. This isn’t true. VB is about productivity, and the My com-
ponent can help you be more productive with your daily tasks, regardless of your knowledge
of the language or programming skills. If you can use My to save a few (or a few dozen) state-
ments, do it. There’s no penalty for using the My component because the compiler replaces the
methods of the My component with the equivalent method calls to the Framework.

The Bottom Line

Navigate the integrated development environment of Visual Studio. To simplify the pro-
cess of application development, Visual Studio provides an environment that’s common to all
languages, known as an integrated development environment (IDE). The purpose of the IDE
is to enable the developer to do as much as possible with visual tools before writing code. The
IDE provides tools for designing, executing, and debugging your applications. It’s your second
desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Understand the basics of a Windows application. A Windows application consists of
a visual interface and code. The visual interface is what users see at runtime: a form with
controls with which the user can interact — by entering strings, checking or clearing check
boxes, clicking buttons, and so on. The visual interface of the application is designed with
visual tools. The visual elements incorporate a lot of functionality, but you need to write some
code to react to user actions.

Master It Describe the process of building a simple Windows application.

Chapter 2

Handling Data

This chapter and the next discuss the fundamentals of any programming language: variables
and data types. A variable stores data, which is processed with statements. A program is a list
of statements that manipulate variables. To write even simple applications, you need a basic
understanding of some fundamental topics, such as the data types (the kind of data you can
store in a variable), the scope and lifetime of variables, and how to write procedures and pass
arguments to them. In this chapter, we’ll explore the basic data types of Visual Basic, and in the
following one, you’ll learn about procedures and flow-control statements.

If you’re new to Visual Basic, you may find some material in this chapter less than exciting.
It covers basic concepts and definitions — in general, tedious, but necessary, material. Think of
this chapter as a prerequisite for the following ones. If you need information on core features
of the language as you go through the examples in the rest of the book, you’ll probably find it
here.

In this chapter, you’ll learn how to do the following:

◆ Declare and use variables

◆ Use the native data types

◆ Create custom data types

◆ Use arrays

Variables
In Visual Basic, as in any other programming language, variables store values during a pro-
gram’s execution. A variable has a name and a value. The variable UserName, for example,
might have the value Joe, and the variable Discount might have the value 0.35. UserName and
Discount are variable names, and Joe and 0.35 are their values. Joe is a string (that is, text),
and 0.35 is a numeric value. When a variable’s value is a string, it must be enclosed in double
quotes. In your code, you can refer to the value of a variable by the variable’s name.

In addition to a name and a value, variables have a data type, which determines what kind
of values you can store to a variable. VB 2010 supports several data types (and they’re dis-
cussed in detail later in this chapter). It’s actually the Common Language Runtime (CLR) that
supports the data types, and the data types are common to all languages, not just to Visual
Basic. The data type of a variable is specified when the variable is declared, and you should

38 CHAPTER 2 HANDLING DATA

always declare variables before using them. (I’ll tell you more about declaring variables in the
next section.)

The various data types are discussed in detail later in this chapter, but let me start with
some simple examples to demonstrate the concepts of using variables in an application. One
of the available numeric data types is the Decimal data type; it can store both integer and
non-integer values. For example, the following statements calculate and display the discount
for the amount of $24,500:

Dim Amount As Decimal
Dim Discount As Decimal
Dim DiscountedAmount As Decimal
Amount = 24500
Discount = 0.35
DiscountedAmount = Amount * (1 - Discount)
MsgBox(′′Your price is $′′ & DiscountedAmount.ToString)

If you enter these statements in a button’s Click event handler to test them, the compiler
may underline the statement that assigns the value 0.35 to the Discount variable and generate
an error message. To view the error message, hover the pointer over the underlined segment
of the statement in error. This will happen if the Strict option is on. (I discuss the Strict option,
along with two more options of the compiler, later in this chapter.) By default, the Strict option
is off and the statement won’t generate an error.

The compiler treats any numeric value with a fractional part as a Double value and detects
that you’re attempting to assign a Double value to a Decimal variable. To specify that a
numeric value should be treated as a Decimal type, use the following notation:

Discount = 0.35D

As you will see later, the D character at the end of a numeric value indicates that the value
should be treated as a Decimal value, and there are a few more type characters (see Table 2.2
later in this chapter). I’ve used the Decimal data type here because it’s commonly used in finan-
cial calculations.

The amount displayed on the message box by the last line of code depends on the values
of the Discount and Amount variables. If you decide to offer a better discount, all you have to
do is change the value of the Discount variable. If you didn’t use the Discount variable, you’d
have to make many changes throughout your code. In other words, if you coded the line that
calculated the discounted amount as follows, you’d have to look for every line in your code
that calculates discounts and change the discount from 0.35 to another value:

DiscountedAmount = 24500 * (1 - 0.35)

When you change the value of the Discount variable in a single place in your code, the
entire program is up-to-date and it will evaluate the proper discount on any amount.

Declaring Variables
In most programming languages, variables must be declared in advance. Historically, the rea-
son for doing this has been to help the compiler generate the most efficient code. If the compiler

VARIABLES 39

knows all the variables and their types ahead of time, it can produce the most compact and effi-
cient, or optimized, code. For example, when you tell the compiler that the variable Discount
will hold a number, the compiler sets aside a certain number of bytes for the Discount variable
to use.

When programming in VB 2010, you should declare your variables because this is the
default mode, and Microsoft recommends this practice strongly. If you attempt to use an
undeclared variable in your code, VB 2010 will throw an exception. It will actually catch the
error as soon as you type in the line that uses the undeclared variable, underlining it with
a wiggly line. It is possible to change the default behavior and use undeclared variables
the way most people did with earlier versions of VB, but all the examples in this book
use explicitly declared variables. In any case, you’re strongly encouraged to declare your
variables.

You already know how to declare variables with the Dim statement and the As keyword,
which introduces their type:

Dim meters As Integer
Dim greetings As String

The first variable, meters, will store integers, such as 3 or 1,002; the second variable,
greetings, will store text. You can declare multiple variables of the same or different type in
the same line, as follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

If you want to declare multiple variables of the same type, you need not repeat the type.
Just separate all the variables of the same type with commas and set the type of the last
variable:

Dim Length, Width, Height As Integer, Volume, Area As Double

This statement declares three Integer variables and two Double variables. Double variables hold
fractional values (or floating-point values, as they’re usually called) that are similar to the Sin-
gle data type except that they can represent non-integer values with greater accuracy.

An important aspect of variables is their scope, a topic that’s discussed in more detail later in
this chapter. In the meantime, bear in mind that all variables declared with the Dim statement
exist in the module in which they were declared. If the variable Count is declared in a subrou-
tine (an event handler, for example), it exists only in that subroutine. You can’t access it from
outside the subroutine. Actually, you can have a Count variable in multiple procedures. Each
variable is stored locally, and they don’t interfere with one another.

Variable-Naming Conventions

When declaring variables, you should be aware of a few naming conventions:

◆ A variable’s name must begin with a letter or an underscore character, followed by more
letters or digits.

◆ It can’t contain embedded periods or other special punctuation symbols. The only special
character that can appear in a variable’s name is the underscore character.

40 CHAPTER 2 HANDLING DATA

◆ It mustn’t exceed 1,024 characters.

◆ It must be unique within its scope. This means that you can’t have two identically named
variables in the same subroutine, but you can have a variable named counter in many dif-
ferent subroutines.

Variable names are not case sensitive: myAge, myage, and MYAGE all refer to the same vari-
able in your code. Actually, as you enter variable names in your code, the editor converts their
casing so that they match their declaration.

Variable Initialization

Visual Basic allows you to initialize variables in the same line that declares them. The following
statement declares an Integer variable and immediately places the value 3,045 in it:

Dim distance As Integer = 3045

This statement is equivalent to the following two:

Dim distance As Integer
distance = 3045

It is also possible to declare and initialize multiple variables (of the same or different type)
on the same line:

Dim quantity As Integer = 1, discount As Single = 0.25

Types of Variables
You’ve learned how to declare variables and that all variables should have a type. But what
data types are available? Visual Basic recognizes the following five categories of variables:

◆ Numeric

◆ String

◆ Boolean

◆ Date

◆ Object

The two major variable categories are numeric and string. Numeric variables store numbers,
and string variables store text. Object variables can store any type of data. Why bother to spec-
ify the type if one type suits all? On the surface, using object variables might seem like a good
idea, but they have their disadvantages. Integer variables are optimized for storing integers,
and date variables are optimized for storing dates. Before VB can use an object variable, it must
determine its type and perform the necessary conversions. If the variable is declared with a
specific type, these conversions are not necessary.

Text is stored in string variables, but numbers can be stored in many formats, depending on
the size of the number and its precision. That’s why there are many types of numeric variables.
The String and Date data types are much richer in terms of the functionality they expose and
are discussed in more detail in Chapter 11, ‘‘The Framework at Large.’’

VARIABLES 41

Numeric Variables

You’d expect that programming languages would use the same data type for numbers. After
all, a number is a number. But this couldn’t be further from the truth. All programming lan-
guages provide a variety of numeric data types, including the following:

◆ Integer (there are several Integer data types)

◆ Decimal

◆ Single (floating-point numbers with limited precision)

◆ Double (floating-point numbers with extreme precision)

Decimal, Single, and Double are the three basic data types for storing floating-point numbers
(numbers with a fractional part). The Double data type can represent these numbers more accu-
rately than the Single type and is used almost exclusively in scientific calculations. The Integer
data types store whole numbers. The data type of your variable can make a difference in the
results of the calculations. The proper variable types are determined by the nature of the val-
ues they represent, and the choice of data type is frequently a trade-off between precision and
speed of execution (less-precise data types are manipulated faster). Visual Basic supports the
numeric data types shown in Table 2.1. In the Data Type column, I show the name of each data
type and the corresponding keyword in parentheses.

Integer Variables

There are three types of variables for storing integers, and they differ only in the range of
numbers each can represent. As you understand, the more bytes a type takes, the larger
values it can hold. The type of Integer variable you’ll use depends on the task at hand. You
should choose the type that can represent the largest values you anticipate will come up
in your calculations. You can go for the Long type, to be safe, but Long variables take up
four times as much space as Short variables and it takes the computer longer to process
them.

Single- and Double-Precision Numbers

The Single and Double data type names come from single-precision and double-precision
numbers. Double-precision numbers are stored internally with greater accuracy than single-
precision numbers. In scientific calculations, you need all the precision you can get; in those
cases, you should use the Double data type.

The Single and Double data types are approximate; you can’t represent any numeric value
accurately and precisely with these two data types. The problem stems from the fact that com-
puters must store values in a fixed number of bytes, so some accuracy will be lost. Instead of
discussing how computers store numeric values, I will demonstrate the side effects of using the
wrong data type with a few examples.

The result of the operation 1 ÷ 3 is 0.333333 . . . (an infinite number of the digit 3). You could
fill 256 MB of RAM with 3s, and the result would still be truncated. Here’s a simple example
that demonstrates the effects of truncation.

In a button’s Click event handler, declare two variables as follows:

Dim a As Single, b As Double

42 CHAPTER 2 HANDLING DATA

Table 2.1: Visual Basic numeric data types

Data Type Memory

Representation

Stores

Byte (Byte) 1 byte Integers in the range 0 to 255.

Signed Byte
(SByte)

1 byte Integers in the range −128 to 127.

Short (Int16) 2 bytes Integer values in the range −32,768 to 32,767.

Integer (Int32) 4 bytes Integer values in the range −2,147,483,648 to
2,147,483,647.

Long (Int64) 8 bytes Integer values in the range −9,223,372,036,854,755,808 to
9,223,372,036,854,755,807.

Unsigned Short
(UShort)

2 bytes Positive integer values in the range 0 to 65,535.

Unsigned Integer
(UInteger)

4 bytes Positive integers in the range 0 to 4,294,967,295.

Unsigned Long
(ULong)

8 bytes Positive integers in the range 0 to
18,446,744,073,709,551,615.

Single Precision
(Single)

4 bytes Single-precision floating-point numbers. A single precision
variable can represent negative numbers in the range
−3.402823E38 to −1.401298E–45 and positive numbers in
the range 1.401298E–45 to 3.402823E38. The value 0 can’t
be represented precisely (it’s a very, very small number,
but not exactly 0).

Double Precision
(Double)

8 bytes Double-precision floating-point numbers. A double
precision variable can represent negative numbers in the
range −1.79769313486232E308 to
−4.94065645841247E–324 and positive numbers in the
range 4.94065645841247E–324 to 1.79769313486232E308.

Decimal (Decimal) 16 bytes Integer and floating-point numbers scaled by a factor in
the range from 0 to 28. See the description of the Decimal
data type for the range of values you can store in it.

Then enter the following statements:

a = 1 / 3
Debug.WriteLine(a)

Run the application, and you should get the following result in the Output window:

.3333333

VARIABLES 43

There are seven digits to the right of the decimal point. Break the application by pressing
Ctrl+Break and append the following lines to the end of the previous code segment:

a = a * 100000
Debug.WriteLine(a)

This time, the following value will be printed in the Output window:

33333.34

The result is not as accurate as you might have expected initially — it isn’t even rounded
properly. If you divide a by 100,000, the result will be as follows:

0.3333334

This number is different from the number we started with (0.3333333). The initial value was
rounded when we multiplied it by 100,000 and stored it in a Single variable. This is an impor-
tant point in numeric calculations, and it’s called error propagation. In long sequences of numeric
calculations, errors propagate. Even if you can tolerate the error introduced by the Single data
type in a single operation, the cumulative errors might be significant.

Let’s perform the same operations with double-precision numbers, this time using the vari-
able b. Add these lines to the button’s Click event handler:

b = 1 / 3
Debug.WriteLine(b)
b = b * 100000
Debug.WriteLine(b)

This time, the following numbers are displayed in the Output window:

0.333333333333333
33333.3333333333

The results produced by the double-precision variables are more accurate.
Why are such errors introduced in our calculations? The reason is that computers store

numbers internally with two digits: zero and one. This is very convenient for computers
because electronics understand two states: on and off. As a matter of fact, all the statements
are translated into bits (zeros and ones) before the computer can understand and execute
them. The binary numbering system used by computers is not much different from the decimal
system we humans use; computers just use fewer digits. We humans use 10 different digits
to represent any number, whole or fractional, because we have 10 fingers (in effect, computers
count with just two fingers). Just as with the decimal numbering system, in which some
numbers can’t be precisely represented, there are numbers that can’t be represented precisely
in the binary system.

Let me give you a more illuminating example. Create a single-precision variable, a, and a
double-precision variable, b, and assign the same value to them:

Dim a As Single, b As Double

44 CHAPTER 2 HANDLING DATA

a = 0.03007
b = 0.03007

Then print their difference:

Debug.WriteLine(a-b)

If you execute these lines, the result won’t be zero! It will be –6.03199004634014E–10. This is
a very small number that can also be written as 0.000000000603199004634014. Because different
numeric types are stored differently in memory, they don’t quite match. What this means to
you is that all variables in a calculation should be of the same type.

Eventually, computers will understand mathematical notation and will not convert all
numeric expressions into values as they do today. If you multiply the expression 1/3 by 3, the
result should be 1. Computers, however, must convert the expression 1/3 into a value before
they can multiply it by 3. Because 1/3 can’t be represented precisely, the result of the (1/3) ×
3 will not be exactly 1. If the variables a and b are declared as Single or Double, the following
statements will print 1:

a = 3
b = 1 / a
Debug.WriteLine(a * b)

If the two variables are declared as Decimal, however, the result will be a number very
close to 1 but not exactly 1 (it will be 0.9999999999999999999999999999 — there will be 28 dig-
its after the decimal point). Fortunately, these errors do not surface with typical business-line
applications, but you should be aware of truncation errors and how they may affect your cal-
culations. In business applications, we always round our results to two decimal digits and the
value 0.999999 of the preceding example will be rounded to 1.00.

The Decimal Data Type

Variables of the Decimal type are stored internally as integers in 16 bytes and are scaled by
a power of 10. The scaling power determines the number of decimal digits to the right of the
floating point, and it’s an integer value from 0 to 28. When the scaling power is 0, the value is
multiplied by 100, or 1, and it’s represented without decimal digits. When the scaling power is
28, the value is divided by 1028(which is 1 followed by 28 zeros — an enormous value), and it’s
represented with 28 decimal digits.

The largest possible value you can represent with a Decimal value is an integer: 79,228,
162,514,264,337,593,543,950,335. The smallest number you can represent with a Decimal variable
is the negative of the same value. These values use a scaling factor of 0. When the scaling fac-
tor is 28, the largest value you can represent with a Decimal variable is quite small, actually. It’s
7.9228162514264337593543950335 (and the smallest value is the same with a minus sign). This is
a very small numeric value (not quite 8), but it’s represented with extreme accuracy. The num-
ber zero can’t be represented precisely with a Decimal variable scaled by a factor of 28. The
smallest positive value you can represent with the same scaling factor is 0.00 . . . 01 (there are
27 zeros between the decimal period and the digit 1) — an extremely small value, but still not
quite zero. The more accuracy you want to achieve with a Decimal variable, the smaller the
range of available values you have at your disposal — just as with everything else in life.

VARIABLES 45

When using decimal numbers, the compiler keeps track of the decimal digits (the digits fol-
lowing the decimal point) and treats all values as integers. The value 235.85 is represented as
the integer 23585, but the compiler knows that it must scale down the value by 100 when it
finishes using it. Scaling down by 100 (that is, 102) corresponds to shifting the decimal point
by two places. First, the compiler multiplies this value by 100 to make it an integer. Then, it
divides it by 100 to restore the original value. Let’s say that you want to multiply the following
values:

328.558 * 12.4051

First, the compiler turns them into integers. The compiler remembers that the first number
has three decimal digits and the second number has four decimal digits. The result of the mul-
tiplication will have seven decimal digits. So the compiler can multiply the following integer
values:

328558 * 124051

It then treats the last seven digits of the result as decimals. The result of the multiplica-
tion is 40,757,948,458. The actual value after taking into consideration the decimal digits is
4,075.7948458. This is how the compiler manipulates the Decimal data type.

Type Characters

As I mentioned earlier, the D character at the end of a numeric value specifies that the
number should be converted into a Decimal value. By default, every value with a fractional
part is treated as a Double value because this type can accommodate fractional values with
the greatest possible accuracy. Assigning a Double value to a Decimal variable will produce
an error if the Strict option is on, so you must specify explicitly that the two values should
be converted to the Decimal type. The D character at the end of the value is called a type
character. Table 2.2 lists all of the type characters that are available in Visual Basic.

Table 2.2: Type characters

Type Character Description Example

C Converts value to a Char type Dim ch As String = "A"c

D or @ Converts value to a Decimal type Dim price As Decimal = 12.99D

R or # Converts value to a Double type Dim pi As Double = 3.14R

I or % Converts value to an Integer type Dim count As Integer = 99I

L or & Converts value to a Long type Dim distance As Long = 1999L

S Converts value to a Short type Dim age As Short = 1S

F or ! Converts value to a Single type Dim velocity As Single = 74.99F

46 CHAPTER 2 HANDLING DATA

If you perform the same calculations with Single variables, the result will be truncated (and
rounded) to three decimal digits: 4,075.795. Notice that the Decimal data type didn’t introduce
any rounding errors. It’s capable of representing the result with the exact number of decimal
digits provided the Decimal type can accommodate both operands and their result. This is the
real advantage of Decimals, which makes them ideal for financial applications. For scientific
calculations, you must still use Doubles. Decimal numbers are the best choice for calculations
that require a specific precision (such as four or eight decimal digits).

Infinity and Other Oddities

The Framework can represent two very special values, which may not be numeric values them-
selves but are produced by numeric calculations: NaN (not a number) and Infinity. If your
calculations produce NaN or Infinity, you should give users a chance to verify their data, or
even recode your routines as necessary. For all practical purposes, neither NaN nor Infinity
can be used in everyday business calculations.

Not a Number (NaN)

NaN is not new. Packages such as Wolfram Mathematica and Microsoft Excel have been using
it for years. The value NaN indicates that the result of an operation can’t be defined: It’s not
a regular number, not zero, and not infinity. NaN is more of a mathematical concept rather
than a value you can use in your calculations. The Log() function, for example, calculates
the logarithm of positive values. By definition, you can’t calculate the logarithm of a negative
value. If the argument you pass to the Log() function is a negative value, the function will
return the value NaN to indicate that the calculations produced an invalid result. You may
find it annoying that a numeric function returns a non-numeric value, but it’s better than if
it throws an exception. Even if you don’t detect this condition immediately, your calculations
will continue and they will all produce NaN values.

Some calculations produce undefined results, such as infinity. Mathematically, the result of
dividing any number by zero is infinity. Unfortunately, computers can’t represent infinity, so
they produce an error when you request a division by zero. Visual Basic will report a special
value, which isn’t a number: the Infinity value. If you call the ToString method of this value,
however, it will return the string Infinity. Let’s generate an Infinity value. Start by declar-
ing a Double variable, dblVar:

Dim dblVar As Double = 999

Then divide this value by zero:

Dim infVar as Double
infVar = dblVar / 0

And display the variable’s value:

MsgBox(infVar)

VARIABLES 47

The string Infinity will appear in a message box. This string is just a description; it tells
you that the result is not a valid number (it’s a very large number that exceeds the range of
numeric values that can be represented with any data type), but it shouldn’t be used in other
calculations. However, you can use the Infinity value in arithmetic operations. Certain opera-
tions with infinity make sense; others don’t. If you add a number to infinity, the result is still
infinity (any number, even an arbitrarily large one, can still be increased). If you divide a value
by infinity, you’ll get the zero value, which also makes sense. If you divide one Infinity value
by another Infinity value, you’ll get the second odd value, NaN.

Another calculation that will yield a non-number is the division of a very large number by
a very small number (a value that’s practically zero, but not quite). If the result exceeds the
largest value that can be represented with the Double data type, the result is Infinity. Declare
three variables as follows:

Dim largeVar As Double = 1E299
Dim smallVar As Double = 1E-299
Dim result As Double

The notation 1E299 means 10 raised to the power of 299, which is an extremely large num-
ber. Likewise, 1E-299 means 10 raised to the power of –299, which is equivalent to dividing 10
by a number as large as 1E299.

Then divide the large variable by the small variable and display the result:

result = largeVar / smallVar
MsgBox(result)

The result will be Infinity. If you reverse the operands (that is, you divide the very small
by the very large variable), the result will be zero. It’s not exactly zero, but the Double data
type can’t accurately represent numeric values that are very, very close (but not equal) to zero.

You can also produce an Infinity value by multiplying a very large (or very small) number
by itself many times. But clearly, the most absurd method of generating an Infinity value is
to assign the Double.PositiveInfinity or Double.NegativeInfinity value to a variable!

The result of the division 0 / 0, for example, is not a numeric value. If you attempt to enter
the statement 0 / 0 in your code, however, VB will catch it even as you type, and you’ll get the
error message Division by zero occurs in evaluating this expression.

To divide zero by zero, set up two variables as follows:

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
MsgBox(result)

If you execute these statements, the result will be NaN. Any calculations that involve the
result variable will also yield NaN. The following statements will produce a NaN value:

result = result + result
result = 10 / result

48 CHAPTER 2 HANDLING DATA

result = result + 1E299
MsgBox(result)

If you make var2 a very small number, such as 1E-299, the result will be zero. If you make
var1 a very small number, the result will be Infinity.

For most practical purposes, Infinity is handled just like NaN. They’re both numbers that
shouldn’t occur in business applications (unless you’re projecting the national deficit in the
next 50 years), and when they do, it means that you must double-check your code or your data.
They are much more likely to surface in scientific calculations, and they must be handled with
the statements described in the next section.

Testing for Infinity and NaN

To find out whether the result of an operation is a NaN or Infinity, use the IsNaN and
IsInfinity methods of the Single and Double data types. The Integer data type doesn’t
support these methods, even if it’s possible to generate Infinity and NaN results with integers.
If the IsInfinity method returns True, you can further examine the sign of the Infinity value
with the IsNegativeInfinity and IsPositiveInfinity methods.

In most situations, you’ll display a warning and terminate the calculations. The statements
of Listing 2.1 do just that. Place these statements in a button’s Click event handler and run the
application.

Listing 2.1: Handling NaN and Infinity values

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
If Double.IsInfinity(result) Then

If Double.IsPositiveInfinity(result) Then
MsgBox(′′Encountered a very large number. Can’t continue′′)

Else
MsgBox(′′Encountered a very small number. Can’t continue′′)

End If
Else

If Double.IsNaN(result) Then
MsgBox(′′Unexpected error in calculations′′)

Else
MsgBox(′′The result is : ′′ & result.ToString)

End If
End If

This listing will generate a NaN value. Set the value of the var1 variable to 1 to generate
a positive Infinity value or to –1 to generate a negative Infinity value. As you can see, the
IsInfinity, IsPositiveInfinity, IsNegativeInfinity, and IsNaN methods require that the
variable be passed as an argument.

VARIABLES 49

If you change the values of the var1 and var2 variables to the following values and execute
the application, you’ll get the message Encountered a very large number:

var1 = 1E+299
var2 = 1E-299

If you reverse the values, you’ll get the message Encountered a very small number. In either
case, the program will terminate gracefully and let the user know the type of problem that pre-
vents the completion of the calculations.

Byte Variables

None of the previous numeric types is stored in a single byte. In some situations, however, data
are stored as bytes, and you must be able to access individual bytes. The Byte data type holds
an integer in the range of 0 to 255. Bytes are frequently used to access binary files, image and
sound files, and so on. To declare a variable as a Byte, use the following statement:

Dim n As Byte

The variable n can be used in numeric calculations too, but you must be careful not to assign
the result to another Byte variable if its value might exceed the range of the Byte type. If the
variables A and B are initialized as:

Dim A As Byte, B As Byte
A = 233
B = 50

the following statement will produce an overflow exception:

Debug.WriteLine(A + B)

The result (283) can’t be stored in a single byte. Visual Basic generates the correct answer, but
it can’t store it into a Byte variable.

Boolean Operations with Bytes

The operators that won’t cause overflows are the Boolean operators And, Or, Not, and Xor,
which are frequently used with Byte variables. These aren’t logical operators that return True
or False; they combine the matching bits in the two operands and return another byte. If you
combine the numbers 199 and 200 with the AND operator, the result is 192. The two values in
binary format are 11000111 and 11001000. If you perform a bitwise AND operation on these two
values, the result is 11000000, which is the decimal value 192.

In addition to the Byte data type, VB 2010 provides a Signed Byte data type, SByte, which
can represent signed values in the range from –128 to 127. The bytes starting with the 1 bit
represent negative values. The range of positive values is less by one than the range of negative
values because the value 0 is considered a positive value (its first bit is 0).

50 CHAPTER 2 HANDLING DATA

Boolean Variables

The Boolean data type stores True/False values. Boolean variables are, in essence, integers that
take the value –1 (for True) and 0 (for False). Actually, any nonzero value is considered True.
Boolean variables are declared as

Dim failure As Boolean

and they are initialized to False. Even so, it’s a good practice to initialize your variables explic-
itly, as in the following code segment. Boolean variables are used in testing conditions, such as
the following:

Dim failure As Boolean = False
’ other statements …
If failure Then MsgBox(′′Couldn’t complete the operation′′)

They are also combined with the logical operators And, Or, Not, and Xor. The Not operator
toggles the value of a Boolean variable. The following statement is a toggle:

running = Not running

If the variable running is True, it’s reset to False and vice versa. This statement is a shorter
way of coding the following:

Dim running As Boolean
If running = True Then

running = False
Else

running = True
End If

Boolean operators operate on Boolean variables and return another Boolean as their result.
The following statements will display a message if one (or both) of the variables ReadOnly and
Hidden are True (in the following example, the ReadOnly and Hidden variables might represent
the corresponding attributes of a file):

If ReadOnly Or Hidden Then
MsgBox(′′Couldn’t open the file′′)

Else
’ statements to open and process file…

End If

The condition of the If statement combines the two Boolean values with the Or operator. If
one or both of them are True, the final expression is True.

String Variables

The String data type stores only text, and string variables are declared as follows:

Dim someText As String

VARIABLES 51

You can assign any text to the variable someText. You can store nearly 2 GB of text in a
string variable (that’s 2 billion characters, and it’s much more text than you care to read on a
computer screen). The following assignments are all valid:

Dim aString As String
aString = ′′Now is the time for all good men to come ′′

′′to the aid of their country′′

aString = ′′ ′′

aString = ′′There are approximately 25,000 words in this chapter′′

aString = ′′25,000′′

The second assignment creates an empty string, and the last one creates a string that just
happens to contain numerals, which are also characters. The difference between these two vari-
ables is that they hold different values:

Dim aNumber As Integer = 25000
Dim aString As String = ′′25,000′′

The aString variable holds the characters 2, 5, comma, 0, 0, and 0, and aNumber holds a
single numeric value. However, you can use the variable aString in numeric calculations and
the variable aNumber in string operations. VB will perform the necessary conversions as long
as the Strict option is off. In general, you should turn on the Strict option because it will help
you catch possible runtime errors, as discussed in the section ‘‘The Strict, Explicit, and Infer
Options.’’ The recommended practice is to convert strings to numbers and numbers to strings
explicitly as needed using the methods discussed in the section ‘‘Converting Variable Types,’’
later in this chapter. Even if you prefer to work with the Strict option off, which is the default
value, it’s recommended that you turn it on temporarily to spot any areas in your code that
might cause runtime errors.

Character Variables

Character variables store a single Unicode character in two bytes. In effect, characters are
Unsigned Short integers (UInt16), but the Framework provides all the tools you need to work
with characters without having to resort to their numeric values (a very common practice for
the older among us).

To declare a Character variable, use the Char data type:

Dim char1, char2 As Char

You can initialize a Char variable by assigning either a character or a string to it. In the latter
case, only the first character of the string is assigned to the variable. The following statements
will print the characters a and A to the Output window:

Dim char1 As Char = ′′a′′, char2 As Char = ′′ABC′′

Debug.WriteLine(char1)
Debug.WriteLine(char2)

52 CHAPTER 2 HANDLING DATA

These statements will work only if the Strict option is off. If it’s on, the values assigned to
the char1 and char2 variables will be marked in error and the code will not compile. To fix
the error, change the Dim statement as follows:

Dim char1 As Char = ′′a′′c, char2 As Char = ′′A′′c

(This tells the compiler to treat the values of the variables as characters, not strings.) When the
Strict option is on, you can’t assign a string to a Char variable and expect that only the first
character of the string will be used.

Unicode or ANSI

The Integer values that correspond to the English characters are the ANSI (American National
Standards Institute) codes of the equivalent characters. The following statement will print the
value 65:

Debug.WriteLine(Convert.ToInt32("a"))

If you convert the Greek character alpha (α) to an integer, its value is 945. The Unicode value
of the famous character π is 960. Unicode and ANSI values for English characters are the same,
but all ‘‘foreign’’ characters have a unique Unicode value.

Character variables are used in conjunction with strings. You’ll rarely save real data as char-
acters. However, you might have to process the individual characters in a string, one at a time.
Let’s say the string variable password holds a user’s new password, and you require that pass-
words contain at least one special symbol. The code segment of Listing 2.2 scans the password
and rejects it if it contains letters and digits only.

Listing 2.2: Processing individual characters

Dim password As String, ch As Char
Dim i As Integer
Dim valid As Boolean = False
While Not valid

password = InputBox(′′Please enter your password′′)
For i = 0 To password.Length - 1

ch = password.Chars(i)
If Not Char.IsLetterOrDigit(ch) Then

valid = True
Exit For

End If
Next
If valid Then

MsgBox(′′You new password will be activated immediately! ′′)
Else

MsgBox(′′Your password must contain at least one special symbol! ′′)
End If

End While

VARIABLES 53

If you are not familiar with the If…Then, For…Next, or While…End While structures, you can
read their descriptions in the following chapter.

The code prompts the user with an input box to enter a password. The valid variable is
Boolean and it’s initialized to False. (You don’t have to initialize a Boolean variable to False
because this is its default initial value, but it does make the code easier to read.) It’s set to True
from within the body of the loop only if the password contains a character that is not a letter or
a digit. We set it to False initially, so the While…End While loop will be executed at least once.
This loop will keep prompting the user until a valid password is entered.

The For…Next loop scans the string variable password, one letter at a time. At each iteration,
the next letter is copied into the ch variable. The Chars property of the String data type is an
array that holds the individual characters in the string (another example of the functionality
built into the data types).

Then the program examines the current character. The IsLetterOrDigit method of the
Char data type returns True if a character is either a letter or a digit. If the current character
is a symbol, the program sets the valid variable to True so that the outer loop won’t be exe-
cuted again, and it exits the For…Next loop. Finally, it prints the appropriate message and either
prompts for another password or quits.

Date Variables

Date variables store date values that may include a time part (or not), and they are declared
with the Date data type:

Dim expiration As Date

The following are all valid assignments:

expiration = #01/01/2010#
expiration = #8/27/1998 6:29:11 PM#
expiration = ′′July 2, 2011′′

expiration = Today()

Now and Today

By the way, the Today() function returns the current date and time, while the Now() function
returns the current date. You can also retrieve the current date by calling the Today property
of the Date data type: Date.Today.

The pound sign tells Visual Basic to store a date value to the expiration variable, just as
the quotes tell Visual Basic that the value is a string. You can store a date as a string to a Date
variable, but it will be converted to the appropriate format.

The format of the date inside the pound characters is determined by the regional settings
(found in Control Panel). In the United States, the format is mm/dd/yy. (In other countries, the
format is dd/mm/yy.) If you assign an invalid date to a Date variable, such as 23/04/2012, the
statement will be underlined and an error message will appear in the Task List window. The
description of the error is Date constant is not valid.

You can also perform arithmetic operations with date values. VB recognizes your inten-
tion to subtract dates and it properly evaluates their difference. The result is a TimeSpan

54 CHAPTER 2 HANDLING DATA

object, which represents a time interval. If you execute the following statements, the value
638.08:49:51.4970000 will appear in the Output window:

Dim d1, d2 As Date
d1 = Now
d2 = #1/1/2004#Debug.WriteLine(d1 - d2)

The value of the TimeSpan object represents an interval of 638 days, 8 hours, 49 minutes,
and 51.497 seconds.

Converting between Locales

In a global environment like ours, handling dates has gotten a bit complicated. If you live in
the United States and you receive a data file that includes dates from a company in the United
Kingdom, you should take into consideration the locale of the computer that generated the
file. To specify the locale of a date value, use the Parse method of the DateTime class, which
accepts two arguments: the date to be parsed and a CultureInfo object that represents the
date’s locale. (If you find this tip too advanced on first reading, please make a note and look it
up when you have to deal with dates in different cultures).

The date 25/12/2011 is a valid UK date, but if you attempt to assign this value to a Date
variable (assuming that your computer’s locale is English-US), the statement will generate an
error. To convert the date to US format, create a CultureInfo that represents the locale of
the original date:

Dim UK As New CultureInfo("en-GB")

Then call the DateTime.Parse method, as follows, to convert the date value to a valid date:

Dim D1 As Date
D1 = DateTime.Parse("25/12/2011", UK)

The following code segment compares two dates with different locales to one another and
prints an appropriate message that indicates whether the two dates are equal (in this example,
they are):

Dim D1, D2 As Date
Dim UK As New CultureInfo("en-GB")
Dim US As New CultureInfo("en-US")
D1 = DateTime.Parse("27/8/2010", UK)
D2 = DateTime.Parse("8/27/2010", US)
If D1 = D2 Then

MsgBox("Same date")
Else

MsgBox("Different dates")
End If

Dates like 3/4/2025 or 4/3/2025 are valid in any culture, but they may not be correct unless
you interpret them with the proper locale, so be careful when importing dates. You can look

VARIABLES 55

up the locales of other countries in the documentation. For example, fr-FR is France’s French
locale, fr-BE is Belgium’s French locale, and fr-CH is Switzerland’s French locale. For Switzer-
land, a culturally diverse place, there’s also a German locale, the de-CH locale. The problem of
locales is also addressed by XML, which is the definitive standard for data exchange, and it’s
discussed later in this book in Chapter 13, ‘‘XML in Modern Programming,’’ and Chapter 14,
‘‘Introduction to LINQ.’’

You’ll face a similar issue with formatted numeric values because some locales use the period
as the decimal separator while others use it as a separator for thousands. The two formatted
values 19,000.99 and 19.000,99 are valid in different cultures, but they’re not the same at
once. To properly convert these formatted numbers, use the Parse method of the Decimal or
Double class, passing as argument the string to be parsed and the locale of the original value
(the US locale for 19,999.99 and the UK locale for 19,999.99). Again, examine the following
statements that convert these two formatted numeric strings into numeric values, taking into
consideration the proper locale. The statements are equivalent to the ones I showed you earlier
for handling dates. For this example, I’ll use the Italian language locale; that locale uses the
period as the thousands separator and the coma as the decimal separator.

Dim val1, val2 As Decimal
Dim IT As New CultureInfo("it-IT")
Dim US As New CultureInfo("en-US")
val1 = System.Decimal.Parse("19,999.99", IT)
val2 = System.Decimal.Parse("19,999.99", US)
If val1 = val2 Then

MsgBox("Same values")
Else

MsgBox("Different values")
End If

Many developers try to remove the thousands separator(s) from the formatted number and
then replace the period with a coma (or vice versa). Use the technique shown here; it will
work regardless of the current locale and it’s so much easier to read and so much safer.

The Strict, Explicit, and Infer Options
The Visual Basic compiler provides three options that determine how it handles variables:

◆ The Explicit option indicates whether you will declare all variables.

◆ The Strict option indicates whether all variables will be of a specific type.

◆ The Infer option indicates whether the compiler should determine the type of a variable
from its value.

These options have a profound effect on the way you declare and use variables, and you
should understand what they do. By exploring these settings, you will also understand a little
better how the compiler handles variables. It’s recommended that you turn on all three, but old
VB developers may not want to follow this advice.

VB 2010 doesn’t require that you declare your variables, but the default behavior is to
throw an exception if you attempt to use a variable that hasn’t been previously declared. If an

56 CHAPTER 2 HANDLING DATA

undeclared variable’s name appears in your code, the editor will underline the variable’s name
with a wiggly line, indicating that it caught an error. The description of the error will appear
in the Task List window below the code window. If you rest the cursor over the segment in
question, you will see the description of the error in a ToolTip box.

To change the default behavior, you must insert the following statement at the beginning of
the file:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting
affects the code in the current module, not in all files of your project or solution. You can turn
on the Strict (as well as the Explicit) option for an entire solution. Open the project’s proper-
ties page (right-click the project’s name in Solution Explorer and select Properties), select the
Compile tab, and set the Strict and Explicit options accordingly, as shown in Figure 2.1.

Figure 2.1

Setting the
variable-related options
on the project’s proper-
ties pages

You can also set default values for the Explicit option (as well as for Strict and Infer) for all
projects through the Options dialog box of the IDE (Integrated Development Environment). To
open this dialog box, choose the Options command from the Tools menu. When the dialog box
appears, select the VB Defaults tab under Projects And Solutions, as shown in Figure 2.2. Here
you can set the default values for all four options. You can still change the default values for
specific projects through the project’s properties pages.

The way undeclared variables are handled by VB 2010 is determined by the Explicit and
Strict options, which can be either on or off. The Explicit option requires that all variables
used in the code are declared before they’re used. The Strict option requires that variables are
declared with a specific type. In other words, the Strict option disallows the use of generic
variables that can store any data type.

The default value of the Explicit statement is On. This is also the recommended value, and
you should not make a habit of changing this setting. By setting the Explicit option to Off,
you’re telling VB that you intend to use variables without declaring them. As a consequence,
VB can’t make any assumption about the variable’s type, so it uses a generic type of variable
that can hold any type of information. These variables are called Object variables, and they’re
equivalent to the old variants.

VARIABLES 57

Figure 2.2

Setting the
variable-related options
in the Visual Studio
Options dialog box

While the option Explicit is set to Off, every time Visual Basic runs into an undeclared vari-
able name, it creates a new variable on the spot and uses it. Visual Basic adjusts the variable’s
type according to the value you assign to it. With Explicit turned off, create two variables, var1
and var2, by referencing them in your code with statements like the following ones:

var1 = ′′Thank you for using Fabulous Software′′

var2 = 49.99

The var1 variable is a string variable, and var2 is a numeric one. You can verify this with
the GetType method, which returns a variable’s type. The following statements print the high-
lighted types shown below each statement:

Debug.WriteLine ′′Variable var1 is ′′ & var1.GetType().ToString
Variable var1 is System.String
Debug.WriteLine ′′Variable var2 is ′′ & var2.GetType().ToString
Variable var2 is System.Double

Later in the same program, you can reverse the assignments:

var1 = 49.99
var2 = ′′Thank you for using Fabulous Software′′

If you execute the preceding type-checking statements again, you’ll see that the types of the
variables have changed. The var1 variable is now a Double, and var2 is a String. The type of
a generic variable is determined by the variable’s contents, and it can change in the course of
the application. Of course, changing a variable’s type at runtime doesn’t come without a per-
formance penalty (a small one, but nevertheless some additional statements must be executed).

Another related option is the Strict option, which is off by default. The Strict option tells
the compiler whether the variables should be strictly typed. A strictly typed (or strongly typed)
variable must be declared with a specific type and it can accept values of the same type only.

58 CHAPTER 2 HANDLING DATA

With the Strict option set to Off, you can use a string variable that holds a number in a numeric
calculation:

Dim a As String = ′′25000′′

Debug.WriteLine a / 2

The last statement will print the value 12500 in the Immediate window. Likewise, you can use
numeric variables in string calculations:

Dim a As Double = 31.03
a = a + ′′1′′

After the execution of the preceding statements, the a variable will still be a Double and will
have the value 32.03. If you turn the Strict option on by inserting the following statement at the
beginning of the file, you won’t be able to mix and match variable types:

Option Strict On

If you attempt to execute any of the last two code segments while the Strict option is on, the
editor will underline a segment of the statement to indicate an error. If you rest the cursor over
the underlined segment of the code, the following error message will appear in a tip box:

Option strict disallows implicit conversions from String to Double

or any type conversion is implied by your code.
When the Strict option is set to On, the compiler will allow some implicit conversions

between data types, but not always. For example, it will allow you to assign the value of an
integer to a Long, but not the opposite. The Long value might exceed the range of values that
can be represented by an Integer variable.

Type Inference

One of the trademark features of BASIC, including earlier versions of Visual Basic, was the abil-
ity to use variables without declaring them. It has never been a recommended practice, yet VB
developers loved it. This feature is coming back to the language, only in a safer manner. VB
2010 allows you to declare variables by assigning values to them. The compiler will infer the
type of the variable from its value and will create a variable of the specific type behind the
scenes. The following statement creates an Integer variable:

Dim count = 2999

Behind the scenes, the compiler will create a typed variable with the following statement:

Dim count As Integer = 2999

To request the variable’s type, use the GetType method. This method returns a Type object,
which represents the variable’s type. The name of the type is given by the ToString property.
The following statement will print the highlighted string in the Immediate window:

Debug.WriteLine(count.GetType.ToString)
System.Int32

VARIABLES 59

The count variable is of the Integer type (the 32-bit integer variety, to be precise). If you
attempt to assign a value of a different type, such as a date, to this variable later in your code,
the editor will underline the value and generate a warning like this: Value of type ‘Date’ can-
not be converted to Integer. The compiler has inferred the type of the value assigned initially to
the variable and created a variable of the same type. That’s why subsequent statements can’t
change the variable’s type. Behind the scenes, the compiler will actually insert a Dim statement,
as if you had declared the variable explicitly.

If the Infer option is off, the compiler will handle variables declared without a specific type
depending on the Strict option. If the Strict option is off, the compiler will create an Object vari-
able, which can store any value, even values of different types in the course of the application.
If the Strict option is on, the compiler will reject the declaration; it will underline the variable’s
name with a wiggly line and generate the following warning: Option Strict On requires all vari-
able declarations to have an As clause.

Object Variables
Variants — variables without a fixed data type — were the bread and butter of VB programmers
up to version 6. Variants are the opposite of strictly typed variables: They can store all types of
values, such as integers, strings, characters, you name it. If you’re starting with VB 2010, you
should use strongly typed variables. However, variants are a major part of the history of VB,
and most applications out there (the ones you may be called to maintain) use them. I will discuss
variants briefly in this section and show you what was so good (and bad) about them.

Variants, or object variables, are the most flexible data type because they can accommodate
all other types. A variable declared as Object (or a variable that hasn’t been declared at all) is
handled by Visual Basic according to the variable’s current contents. If you assign an integer
value to an object variable, Visual Basic treats it as an integer. If you assign a string to an object
variable, Visual Basic treats it as a string. Variants can also hold different data types in the course
of the same program. Visual Basic performs the necessary conversions for you.

To declare a variant, you can turn off the Strict option and use the Dim statement without
specifying a type, as follows:

Dim myVar

You can use object variables in both numeric and string calculations. Suppose that the vari-
able modemSpeed has been declared as Object with one of the following statements:

Dim modemSpeed ‘ with Option Strict = Off
Dim modemSpeed As Object ‘ with Option Strict = On

Later in your code, you assign the following value to it:

modemSpeed = ′′28.8′′
You can treat the modemSpeed variable as a string and use it in statements such as the
following:

MsgBox ′′We suggest a ′′ & modemSpeed & ′′ modem.′′

This statement displays the following message:

′′We suggest a 28.8 modem.′′

60 CHAPTER 2 HANDLING DATA

You can also treat the modemSpeed variable as a numeric value, as in the following
statement:

Debug.WriteLine ′′A ′′ & modemSpeed & ′′ modem can transfer ′′ &
modemSpeed * 1024 / 8 & ′′ bytes per second.′′

This statement displays the following message:

′′A 28.8 modem can transfer 3686.4 bytes per second.′′

The first instance of the modemSpeed variable in the preceding statement is treated as a string
because this is the variant’s type according to the assignment statement (we assigned a string
to it). The second instance, however, is treated as a number (a single-precision number). The
compiler sees that it’s used in a numeric calculation and converts it to a double value before
using it.

Another example of this behavior of variants can be seen in the following statements:

Dim I, S
I = 10
S = ′′11′′

Debug.WriteLine(I + S)
Debug.WriteLine(I & S)

The first WriteLine statement will display the numeric value 21, whereas the second state-
ment will print the string 1011. The plus operator (+) tells VB to add two values. In doing so,
VB must convert the two strings into numeric values and then add them. The concatenation
operator (&) tells VB to concatenate the two strings.

Visual Basic knows how to handle object variables in a way that makes sense. The
result may not be what you had in mind, but it certainly is dictated by common sense. If
you really want to concatenate the strings 10 and 11, you should use the concatenation
operator (&), which tells Visual Basic exactly what to do. Quite impressive, but for many
programmers, this is a strange behavior that can lead to subtle errors — and they avoid it.
Keep in mind that if the value of the S variable were the string A1, then the code would
compile fine but would crash at runtime. And this is what we want to avoid at all costs: an
application that compiles without warnings but crashes at runtime. Using strongly typed
variables is one of the precautions you can take to avoid runtime errors. Keep in mind that
a program that prompts users for data, or reads it from a file, may work for quite a while,
just because it’s reading valid data, and crash when it encounters invalid data. It’s up to
you to decide whether to use variants and how far you will go with them. Sure, you can
perform tricks with variants, but you shouldn’t overuse them to the point that others can’t read
your code.

Variables as Objects
Variables in Visual Basic are more than just names or placeholders for values. They’re intelli-
gent entities that can not only store but also process their values. I don’t mean to scare you,
but I think you should be told: VB variables are objects. And here’s why: A variable that holds
dates is declared as such with the following statement:

Dim expiration As Date

VARIABLES AS OBJECTS 61

To assign a date value to the expiration variable, use a statement like this:

expiration = #1/1/2003#

So far, nothing out of the ordinary; this is how we always used variables, in most languages.
In addition to holding a date, however, the expiration variable can manipulate dates. The
following expression will return a new date that’s three years ahead of the date stored in the
expiration variable:

expiration.AddYears(3)

The AddYears method returns a new date, which you can assign to another date variable:

Dim newExpiration As Date
newExpiration = expiration.AddYears(3)

AddYears is a method that knows how to add a number of years to a Date variable. By
adding a number of years (or months, or days) to a date, we get back another date. The method
will take into consideration the number of days in each month and the leap years, which is a
totally nontrivial task if we had to code it ourselves. There are similarly named methods for
adding months, days, and so on. In addition to methods, the Date type exposes properties, such
as the Month and Day properties, which return the date’s month and day number, respectively.
The keywords following the period after the variable’s name are called methods and properties,
just like the properties and methods of the controls you place on a form to create your appli-
cation’s visual interface. The methods and properties (or the members) of a variable expose the
functionality that’s built into the class representing the variable itself. Without this built-in func-
tionality, you’d have to write some serious code to extract the month from a date variable, to
add a number of days to a given date, to figure out whether a character is a letter or a digit or
a punctuation symbol, and so on. Much of the functionality that you’ll need in an application
that manipulates dates, numbers, or text has already been built into the variables themselves.

Don’t let the terminology scare you. Think of variables as placeholders for values and access
their functionality with expressions like the ones shown earlier. Start using variables to store
values, and if you need to process them, enter a variable’s name followed by a period to see
a list of the members it exposes. In most cases, you’ll be able to figure out what these mem-
bers do by just reading their names. I’ll come back to the concept of variables as objects, but I
wanted to hit it right off the bat. A more detailed discussion of the notion of variables as objects
can be found in Chapter 8, ‘‘Working with Objects,’’ which discusses objects in detail.

Basic Data Types versus Objects

Programming languages can treat simple variables much more efficiently than they treat objects.
An integer takes two bytes in memory, and the compiler will generate very efficient code to
manipulate an integer variable (add it to another numeric value, compare it to another integer,
and so on). If you declare an integer variable and use it in your code as such, Visual Basic
doesn’t create an object to represent this value. It creates a new variable for storing integers,
like good old BASIC. After you call one of the variable’s methods, the compiler emits code to
create the actual object. This process is called boxing, and it introduces a small delay, which is
truly insignificant compared to the convenience of manipulating a variable through its methods.

62 CHAPTER 2 HANDLING DATA

As you’ve seen by now, variables are objects. This shouldn’t come as a surprise, but it’s an
odd concept for programmers with no experience in object-oriented programming. We haven’t
covered objects and classes formally yet, but you have a good idea of what an object is. It’s
an entity that exposes some functionality by means of properties and methods. The TextBox
control is an object and it exposes the Text property, which allows you to read or set the text
on the control. Any name followed by a period and another name signifies an object. The name
after the period is a property or method of the object.

Converting Variable Types
In many situations, you will need to convert variables from one type into another. Table 2.3
shows the methods of the Convert class that perform data-type conversions.

Table 2.3: The data-type conversion methods of the Convert class

Method Converts Its Argument To

ToBoolean Boolean

ToByte Byte

ToChar Unicode character

ToDateTime Date

ToDecimal Decimal

ToDouble Double

ToInt16 Short Integer (2-byte integer, Int16)

ToInt32 Integer (4-byte integer, Int32)

ToInt64 Long (8-byte integer, Int64)

ToSByte Signed Byte

CShort Short (2-byte integer, Int16)

ToSingle Single

ToString String

ToUInt16 Unsigned Integer (2-byte integer, Int16)

ToUInt32 Unsigned Integer (4-byte integer, Int32)

ToUInt64 Unsigned Long (8-byte integer, Int64)

VARIABLES AS OBJECTS 63

In addition to the methods of the Convert class, you can still use the data-conversion func-
tions of VB (CInt() to convert a numeric value to an Integer, CDbl() to convert a numeric
value to a Double, CSng() to convert a numeric value to a Single, and so on), which you can
look up in the documentation. If you’re writing new applications in VB 2010, use the new Con-
vert class to convert between data types.

To convert the variable initialized as

Dim A As Integer

to a Double, use the ToDouble method of the Convert class:

Dim B As Double
B = Convert.ToDouble(A)

Suppose you have declared two integers, as follows:

Dim A As Integer, B As Integer
A = 23
B = 7

The result of the operation A / B will be a Double value. The statement

Debug.Write(A / B)

displays the value 3.28571428571429. The result is a Double value, which provides the greatest
possible accuracy. If you attempt to assign the result to a variable that hasn’t been declared as
Double and the Strict option is on, the editor will generate an error message. No other data
type can accept this value without loss of accuracy. To store the result to a Single variable, you
must convert it explicitly with a statement like the following:

Dim C As Single = Convert.ToSingle(A / B)

You can also use the DirectCast() function to convert a variable or expression from one
type to another. The DirectCast() function is identical to the CType() function. Let’s say the
variable A has been declared as String and holds the value 34.56. The following statement con-
verts the value of the A variable to a Decimal value and uses it in a calculation:

Dim A As String = ′′34.56′′

Dim B As Double
B = DirectCast(A, Double) / 1.14

The conversion is necessary only if the Strict option is on, but it’s a good practice to perform
your conversions explicitly. The following section explains what might happen if your code
relies on implicit conversions.

64 CHAPTER 2 HANDLING DATA

Widening and Narrowing Conversions

In some situations, VB 2010 will convert data types automatically, but not always. Let’s say
you have declared and initialized two variables, an Integer and a Double, with the following
statements:

Dim count As Integer = 99
Dim pi As Double = 3.1415926535897931

If the Strict option is off and you assign the variable pi to the count variable, the count vari-
able’s new value will be 3. (The Double value will be rounded to an Integer value, according to
the variable’s type.) Although this may be what you want, in most cases it’s an oversight that
will lead to incorrect results.

If the Strict option is on and you attempt to perform the same assignment, the compiler will
generate an error message to the effect that you can’t convert a Double to an Integer. The exact
message is Option Strict disallows implicit conversions from Double to Integer.

When the Strict option is on, VB 2010 will allow conversions that do not result in loss of
accuracy (precision) or magnitude. These conversions are called widening conversions. When you
assign an Integer value to a Double variable, no accuracy or magnitude is lost. This is a widen-
ing conversion because it goes from a narrower to a wider type and will therefore be allowed
when Strict is on.

On the other hand, when you assign a Double value to an Integer variable, some accuracy
could be lost (the decimal digits may be truncated). This is a narrowing conversion because we
go from a data type that can represent a wider range of values to a data type that can represent
a narrower range of values. With the Strict option on, such a conversion will not be allowed.

Because you, the programmer, are in control, you might want to give up the
accuracy — presumably, it’s no longer needed. Table 2.4 summarizes the widening conversions
that VB 2010 will perform for you automatically.

Table 2.4: VB 2010 widening conversions

Original Data Type Wider Data Type

Any type Object

Byte Short, Integer, Long, Decimal, Single, Double

Short Integer, Long, Decimal, Single, Double

Integer Long, Decimal, Single, Double

Long Decimal, Single, Double

Decimal Single, Double

Single Double

Double None

Char String

VARIABLES AS OBJECTS 65

If the Strict option is on, the compiler will point out all the statements that may cause run-
time errors and you can reevaluate your choice of variable types. Even if you’re working with
the Strict option off, you can turn it on momentarily to see the compiler’s warnings and then
turn it off again.

Formatting Numbers
So far, you’ve seen how to use the basic data types. Let me digress here for a moment and
mention that the basic data types are no longer part of the language (Visual Basic or C#).
They’re actually part of the Common Language Runtime (CLR), which is a basic component
of Visual Studio (actually, it’s the core of Visual Studio and it’s shared by all languages that
can be used with Visual Studio). You can treat this note as fine print for now, but don’t be
surprised when you read in the documentation that the basic data types are part of the CLR.
All data types expose a ToString method, which returns the variable’s value (a number or
date) as a string so that it can be used with other strings in your code. The ToString method
formats numbers and dates in many ways, and it’s probably one of the most commonly used
methods. You can call the ToString method without any arguments, as we have done so far,
to convert any value to a string. With many types, the ToString method, however, accepts an
optional argument, which determines how the value will be formatted as a string. For example,
you can format a number as currency by prefixing it with the appropriate symbol (such as the
dollar symbol) and displaying it with two decimal digits, and you can display dates in many
formats. Some reports require that negative amounts are enclosed in parentheses. The ToString
method allows you to display numbers and dates, and any other type, in any way you wish.

Notice that ToString is a method, not a property. It returns a value that you can assign to
a string variable or pass as arguments to a function such as MsgBox(), but the original value is
not affected. The ToString method can also format a value if called with an optional argument:

ToString(formatString)

The formatString argument is a format specifier (a string that specifies the exact format to be
applied to the variable). This argument can be a specific character that corresponds to a pre-
determined format (a standard format string, as it’s called) or a string of characters that have
special meaning in formatting numeric values (a picture format string). Use standard format
strings for the most common formatting options, and use picture strings to specify unusual for-
matting requirements. To format the value 9959.95 as a dollar amount, you can use the C format
specifier, which stands for Currency:

Dim Amnt As Single = 9959.95
Dim strAmnt As String
strAmnt = Amnt.ToString(′′C′′)

Or use the following picture numeric format string:

strAmnt = Amnt.ToString(′′$#,###.00′′)

Both statements will format the value as $9,959.95. If you’re using a non-U.S. version of
Windows, the currency symbol will change accordingly. If you’re in the United States, use
the Regional And Language Options tool in Control Panel to temporarily change the current
culture to a European one and the amount will be formatted with the Euro sign.

66 CHAPTER 2 HANDLING DATA

The picture format string is made up of literals and characters that have special meaning
in formatting. The dollar sign has no special meaning and will appear as is. The # symbol is
a digit placeholder; all # symbols will be replaced by numeric digits, starting from the right.
If the number has fewer digits than specified in the string, the extra symbols to the left will
be ignored. The comma tells the ToString method to insert a comma between thousands. The
period is the decimal point, which is followed by two more digit placeholders. Unlike the #
sign, the 0 is a special placeholder: If there are not enough digits in the number for all the zeros
you’ve specified, a 0 will appear in the place of the missing decimal digits. If the original value
had been 9959.9, for example, the last statement would have formatted it as $9,959.90. If you
used the # placeholder instead, the string returned by the ToString method would have a sin-
gle decimal digit.

Standard Numeric Format Strings

The ToString method of the numeric data types recognizes the standard numeric format
strings shown in Table 2.5.

The format character can be followed by an integer. If present, the integer value specifies the
number of decimal places that are displayed. The default accuracy is two decimal digits.

Table 2.5: Standard numeric format strings

Format

Character

Description Example

C or c Currency (12345.67).ToString(′′C′′) returns $12,345.67.

D or d Decimal (123456789).ToString(′′D′′) returns
123456789. It works with integer values only.

E or e Scientific format (12345.67).ToString(′′E′′) returns 1.234567E
+ 004.

F or f Fixed-point format (12345.67).ToString(′′F′′) returns 12345.67.

G or g General format Returns a value either in fixed-point or scientific
format.

N or n Number format (12345.67).ToString(′′N′′) returns 12,345.67.

P or p Percentage (0.12345).ToString(′′N′′) returns 12.35%.

R or r Round-trip (1 / 3).ToString(′′R′′) returns
0.33333333333333331 (where the G specifier
would return a value with fewer decimal digits:
0.333333333333333).

X or x Hexadecimal format 250.ToString(′′X′′) returns FA.

VARIABLES AS OBJECTS 67

The C format string causes the ToString method to return a string representing the num-
ber as a currency value. An integer following the C determines the number of decimal digits
that are displayed. If no number is provided, two digits are shown after the decimal sepa-
rator. Assuming that the variable value has been declared as Decimal and its value is 5596,
then the expression value.ToString(′′C′′) will return the string $5,596.00. If the value of the
variable were 5596.4499, then the expression value.ToString(′′C3′′) would return the string
$5,596.450. Also note that the C format string formats negative amounts in a pair of parenthe-
ses, as is customary in business applications.

Notice that not all format strings apply to all data types. For example, only integer values can
be converted to hexadecimal format, and the D format string works with integer values only.

Picture Numeric Format Strings

If the format characters listed in Table 2.5 are not adequate for the control you need over the
appearance of numeric values, you can provide your own picture format strings. Picture for-
mat strings contain special characters that allow you to format your values exactly as you like.
Table 2.6 lists the picture formatting characters.

Table 2.6: Picture numeric format strings

Format Character Description Effect

0 Display zero
placeholder

Results in a nonsignificant zero if a
number has fewer digits than there are
zeros in the format

Display digit
placeholder

Replaces the symbol with only
significant digits

. Decimal point Displays a period (.) character

, Group separator Separates number groups — for
example, 1,000

% Percent notation Displays a % character

E + 0, E − 0, e + 0, e − 0 Exponent notation Formats the output of exponent
notation

\ Literal character Used with traditional formatting
sequences such as \n (newline)

′′ ′′ Literal string Displays any string within single or
double quotation marks literally

; Section separator Specifies different output if the
numeric value to be formatted is
positive, negative, or zero

68 CHAPTER 2 HANDLING DATA

The following statements will print the highlighted values:

Dim Amount As Decimal = 42492.45
Debug.WriteLine(Amount.ToString(′′$#,###.00′′))
$42,492.45
Amount = 0.2678
Debug.WriteLine(Amount.ToString(′′0.000′′))
0.268
Amount = -24.95
Debug.WriteLine(Amount.ToString(′′$#,###.00;($#,###.00)′′))
($24.95)

User-Defined Data Types
In the previous sections, we used variables to store individual values (or scalar values, as
they’re called). As a matter of fact, most programs store sets of data of different types. For
example, a program for balancing your checkbook must store several pieces of information for
each check: the check’s number, amount, date, and so on. All these pieces of information are
necessary to process the checks, and ideally, they should be stored together.

What we need is a variable that can hold multiple related values of the same or different
type. You can create custom data types that are made up of multiple values using Structures.
A Structure allows you to combine multiple values of the basic data types and handle them as
a whole. For example, each check in a checkbook-balancing application is stored in a separate
Structure (or record), as shown in Figure 2.3. When you recall a given check, you need all the
information stored in the Structure.

Figure 2.3

Pictorial representation
of a structure

Record Structure
Check Number

275
276
277
278

11/04/2010
11/09/2010
11/12/2010
11/21/2010

104.25
48.76

200.00
631.50

Gas Co.
Books
VISA
Rent

Check Date Check Amount Check Paid To

Array of Records

To define a Structure in VB 2010, use the Structure statement, which has the following syn-
tax:

Structure structureName
Dim variable1 As varType
Dim variable2 As varType
…
Dim variablen As varType

End Structure

varType can be any of the data types supported by the CLR or the name of another Structure
that has been defined already. The Dim statement can be replaced by the Private or Public
access modifiers. For Structures, Dim is equivalent to Public.

VARIABLES AS OBJECTS 69

After this declaration, you have in essence created a new data type that you can use in your
application. structureName can be used anywhere you’d use any of the base types (Integers,
Doubles, and so on). You can declare variables of this type and manipulate them as you manip-
ulate all other variables (with a little extra typing). The declaration for the CheckRecord Struc-
ture shown in Figure 2.3 is as follows:

Structure CheckRecord
Dim CheckNumber As Integer
Dim CheckDate As Date
Dim CheckAmount As Single
Dim CheckPaidTo As String

End Structure

This declaration must appear outside any procedure; you can’t declare a Structure in a sub-
routine or function. Once declared, the CheckRecord Structure becomes a new data type for
your application.

To declare variables of this new type, use a statement such as this one:

Dim check1 As CheckRecord, check2 As CheckRecord

To assign a value to one of these variables, you must separately assign a value to each one
of its components (they are called fields), which can be accessed by combining the name of the
variable and the name of a field separated by a period, as follows:

check1.CheckNumber = 275

Actually, as soon as you type the period following the variable’s name, a list of all members
to the CheckRecord Structure will appear, as shown in Figure 2.4. Notice that the Structure
supports a few members on its own. You didn’t write any code for the Equals, GetType,
and ToString members, but they’re standard members of any Structure object, and you can
use them in your code. Both the GetType and ToString methods will return a string like
ProjectName.FormName + CheckRecord. You can provide your own implementation of the
ToString method, which will return a more meaningful string:

Public Overrides Function ToString() As String
Return ′′CHECK # ′′ & CheckNumber & ′′ FOR ′′ & CheckAmount.ToString(′′C′′)

End Function

I haven’t discusses the Overrides keyword yet; it tells the compiler to override the default
implementation of the ToString method. For the time being, use it as shown here to create
your custom ToString method. This, as well as other object-related terms, are discussed in
detail in Chapter 8.

As you understand, Structures are a lot like objects that expose their fields as properties and
then expose a few members of their own. The following statements initialize a variable of the
CheckRecord type:

check2.CheckNumber = 275
check2.CheckDate = #09/12/2010#

70 CHAPTER 2 HANDLING DATA

check2.CheckAmount = 104.25
check2.CheckPaidTo = ′′Gas Co.′′

Figure 2.4

Variables of custom
types expose their mem-
bers as properties.

Examining Variable Types
Besides setting the types of variables and the functions for converting between types, Visual
Basic provides the GetType method. GetType returns a string containing the name of the vari-
able type (Int32, Decimal, and so on). All variables expose this method automatically, and you
can call it like this:

Dim var As Double
Debug.WriteLine ′′The variable’s type is ′′ & var.GetType.ToString

There’s also a GetType operator, which accepts as an argument a type and returns a Type
object for the specific data type. The GetType method and GetType operator are used mostly in
If structures, like the following one:

If var.GetType() Is GetType(Double) Then
‘ code to handle a Double value

End If

Notice that the code doesn’t reference data type names directly. Instead, it uses the value
returned by the GetType operator to retrieve the type of the class System.Double and then
compares this value to the variable’s type with the Is (or the IsNot) keyword. If you attempt
to express this comparison with the equals operator (=), the editor will detect the error and

VARIABLES AS OBJECTS 71

suggest that you use the Is operator. This syntax is a bit arcane for BASIC developers; just
make a note, and when you need to find out a variable’s type in your application, use it
as is.

Is It a Number, String, or Date?

Another set of Visual Basic functions returns variable data types, but not the exact type. They
return a True/False value indicating whether a variable holds a numeric value, a date, or an
array. The following functions are used to validate user input, as well as data stored in files,
before you process them.

IsNumeric() Returns True if its argument is a number (Short, Integer, Long, Single, Double,
Decimal). Use this function to determine whether a variable holds a numeric value before
passing it to a procedure that expects a numeric value or before processing it as a number.
The following statements keep prompting the user with an InputBox for a numeric value.
The user must enter a numeric value or click the Cancel button to exit. As long as the user
enters non-numeric values, the InputBox keeps popping up and prompting for a numeric
value:

Dim strAge as String = ""
Dim Age As Integer
While Not IsNumeric(strAge)

strAge = InputBox("lease enter your age")
End While
Age = Convert.ToInt16(strAge)

The variable strAge is initialized to a non-numeric value so that the While…End While loop
will be executed at least once.

IsDate() Returns True if its argument is a valid date (or time). The following expressions
return True because they all represent valid dates:

IsDate(#10/12/2010#)
IsDate("10/12/2010")
IsDate("October 12, 2010")

IsArray() Returns True if its argument is an array.

A Variable’s Scope
In addition to a type, a variable has a scope. The scope (or visibility) of a variable is the section
of the application that can see and manipulate the variable. If a variable is declared within
a procedure, only the code in the specific procedure has access to that variable; the variable
doesn’t exist for the rest of the application. When the variable’s scope is limited to a procedure,
it’s called local.

Suppose that you’re coding the handler for the Click event of a button to calculate the
sum of all even numbers in the range 0 to 100. One possible implementation is shown in
Listing 2.3.

72 CHAPTER 2 HANDLING DATA

Listing 2.3: Summing even numbers

Private Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArguments) _
Handles Button1.Click

Dim i As Integer
Dim Sum As Integer = 0
For i = 0 to 100 Step 2

Sum = Sum + i
Next
MsgBox ′′The sum is ′′ & Sum.ToString

End Sub

The variables i and Sum are local to the Button1_Click() procedure. If you attempt to set
the value of the Sum variable from within another procedure, Visual Basic will complain that
the variable hasn’t been declared. (Or, if you have turned off the Explicit option, it will create
another Sum variable, initialize it to zero, and then use it. But this won’t affect the variable Sum
in the Button1_Click() subroutine.) The Sum variable is said to have procedure-level scope;
it’s visible within the procedure and invisible outside the procedure.

Sometimes, however, you’ll need to use a variable with a broader scope: a variable that’s
available to all procedures within the same file. This variable, which must be declared outside
any procedure, is said to have a module-level scope. In principle, you could declare all vari-
ables outside the procedures that use them, but this would lead to problems. Every procedure
in the file would have access to any variable, and you would need to be extremely careful not
to change the value of a variable without good reason. Variables that are needed by a single
procedure (such as loop counters) should be declared in that procedure.

Another type of scope is the block-level scope. Variables introduced in a block of code,
such as an If statement or a loop, are local to the block but invisible outside the block. Let’s
revise the previous code segment so that it calculates the sum of squares. To carry out the
calculation, we first compute the square of each value and then sum the squares. The square
of each value is stored to a variable that won’t be used outside the loop, so we can define
the sqrValue variable in the loop’s block and make it local to this specific loop, as shown in
Listing 2.4.

Listing 2.4: A variable scoped in its own block

Private Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArguments) _
Handles Button1.Click

Dim i, Sum As Integer
For i = 0 to 100 Step 2

Dim sqrValue As Integer
sqrValue = i * i
Sum = Sum + sqrValue

Next
MsgBox ′′The sum of the squares is ′′ & Sum

End Sub

VARIABLES AS OBJECTS 73

The sqrValue variable is not visible outside the block of the For…Next loop. If you attempt
to use it before the For statement or after the Next statement, the code won’t compile.

The sqrValue variable maintains its value between iterations. The block-level variable is not
initialized at each iteration, even though there’s a Dim statement in the loop.

Finally, in some situations, the entire application must access a certain variable. In this case,
the variable must be declared as Public. Public variables have a global scope; they are visible
from any part of the application. To declare a public variable, use a Public statement in place
of a Dim statement. Moreover, you can’t declare public variables in a procedure. If you have
multiple forms in your application and you want the code in one form to see a certain variable
in another form, you can use the Public modifier.

So, why do we need so many types of scope? You’ll develop a better understanding of scope
and which type of scope to use for each variable as you get involved in larger projects. In gen-
eral, you should try to limit the scope of your variables as much as possible. If all variables
were declared within procedures, you could use the same name for storing a temporary value
in each procedure and be sure that one procedure’s variables wouldn’t interfere with those of
another procedure, even if you use the same name.

A Variable’s Lifetime
In addition to type and scope, variables have a lifetime, which is the period for which they
retain their value. Variables declared as Public exist for the lifetime of the application. Local
variables, declared within procedures with the Dim or Private statement, live as long as the
procedure. When the procedure finishes, the local variables cease to exist, and the allocated
memory is returned to the system. Of course, the same procedure can be called again, and
then the local variables are re-created and initialized again. If a procedure calls another, its local
variables retain their values while the called procedure is running.

You also can force a local variable to preserve its value between procedure calls by using
the Static keyword. Suppose that the user of your application can enter numeric values at
any time. One of the tasks performed by the application is to track the average of the numeric
values. Instead of adding all the values each time the user adds a new value and dividing by
the count, you can keep a running total with the function RunningAvg(), which is shown in
Listing 2.5.

Listing 2.5: Calculations with global variables

Function RunningAvg(ByVal newValue As Double) As Double
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

You must declare the variables CurrentTotal and TotalItems outside the function so that
their values are preserved between calls. Alternatively, you can declare them in the function
with the Static keyword, as shown in Listing 2.6.

Listing 2.6: Calculations with local Static variables

Function RunningAvg(ByVal newValue As Double) As Double
Static CurrentTotal As Double

74 CHAPTER 2 HANDLING DATA

Static TotalItems As Integer
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

The advantage of using static variables is that they help you minimize the number of total
variables in the application. All you need is the running average, which the RunningAvg()
function provides without making its variables visible to the rest of the application. Therefore,
you don’t risk changing the variable values from within other procedures.

Variables declared in a form module outside any procedure take effect when the form is
loaded and cease to exist when the form is unloaded. If the form is loaded again, its variables
are initialized as if it’s being loaded for the first time.

Variables are initialized when they’re declared, according to their type. Numeric variables
are initialized to zero, string variables are initialized to a blank string, and object variables are
initialized to Nothing.

Constants
Some variables don’t change value during the execution of a program. These variables are con-
stants that appear many times in your code. For instance, if your program does math calcula-
tions, the value of pi (3.14159. . .) might appear many times. Instead of typing the value 3.14159
over and over again, you can define a constant, name it pi, and use the name of the constant in
your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

The manner in which you declare constants is similar to the manner in which you declare
variables except that you use the Const keyword, and in addition to supplying the constant’s
name, you must also supply a value, as follows:

Const constantname As type = value

Constants also have a scope and can be Public or Private. The constant pi, for instance, is
usually declared in a module as Public so that every procedure can access it:

Public Const pi As Double = 3.14159265358979

The rules for naming variables also apply to naming constants. The constant’s value is a lit-
eral value or a simple expression composed of numeric or string constants and operators. You
can’t use functions in declaring constants. By the way, the specific value I used for this example
need not be stored in a constant. Use the pi member of the Math class instead (Math.pi).

ARRAYS 75

Arrays
A standard structure for storing data in any programming language is the array. Whereas indi-
vidual variables can hold single entities, such as one number, one date, or one string, arrays can
hold sets of data of the same type (a set of numbers, a series of dates, and so on). An array has
a name, as does a variable, and the values stored in it can be accessed by a number or index.

For example, you could use the variable Salary to store a person’s salary:

Salary = 34000

But what if you wanted to store the salaries of 16 employees? You could either declare 16
variables — Salary1, Salary2, and so on up to Salary16 — or declare an array with 16 ele-
ments. An array is similar to a variable: It has a name and multiple values. Each value is iden-
tified by an index (an integer value) that follows the array’s name in parentheses. Each different
value is an element of the array. If the array Salaries holds the salaries of 16 employees, the
element Salaries(0) holds the salary of the first employee, the element Salaries(1) holds
the salary of the second employee, and so on up to the element Salaries(15). Yes, the default
indexing of arrays starts at zero, as odd as it may be for traditional BASIC developers.

Declaring Arrays
Arrays must be declared with the Dim (or Public) statement followed by the name of the array
and the index of the last element in the array in parentheses, as in this example:

Dim Salary(15) As Integer

Salary is the name of an array that holds 16 values (the salaries of the 16 employees) with
indices ranging from 0 to 15. Salary(0) is the first person’s salary, Salary(1) the second per-
son’s salary, and so on. All you have to do is remember who corresponds to each salary, but
even this data can be handled by another array. To do this, you’d declare another array of 16
elements:

Dim Names(15) As String

Then assign values to the elements of both arrays:

Names(0) = ′′Joe Doe′′

Salary(0) = 34000
Names(1) = ′′Beth York′′

Salary(1) = 62000
…
Names(15) = ′′Peter Smack′′

Salary(15) = 10300

This structure is more compact and more convenient than having to hard-code the names of
employees and their salaries in variables.

All elements in an array have the same data type. Of course, when the data type is Object,
the individual elements can contain different kinds of data (objects, strings, numbers, and
so on).

76 CHAPTER 2 HANDLING DATA

Arrays, like variables, are not limited to the basic data types. You can declare arrays that
hold any type of data, including objects. The following array holds colors, which can be used
later in the code as arguments to the various functions that draw shapes:

Dim colors(2) As Color
colors(0) = Color.BurlyWood
colors(1) = Color.AliceBlue
colors(2) = Color.Sienna

The Color class represents colors, and among the properties it exposes are the names of the
colors it recognizes.

A better technique for storing names and salaries is to create a structure and then declare an
array of this type. The following structure holds names and salaries:

Structure Employee
Dim Name As String
Dim Salary As Decimal

End Structure

Insert this declaration in a form’s code file, outside any procedure. Then create an array of the
Employee type:

Dim Emps(15) As Employee

Each element in the Emps array exposes two fields, and you can assign values to them by using
statements such as the following:

Emps(2).Name = ′′Beth York′′

Emps(2).Salary = 62000

The advantage of using an array of structures instead of multiple arrays is that the related
information will always be located under the same index. The code is more compact, and you
need not maintain multiple arrays.

Initializing Arrays
Just as you can initialize variables in the same line in which you declare them, you can initialize
arrays, too, with the following constructor (an array initializer, as it’s called):

Dim nameArray() As type = {entry0, entry1, … entryN}

Here’s an example that initializes an array of strings:

Dim Names() As String = {′′Joe Doe′′, ′′Peter Smack′′}

This statement is equivalent to the following statements, which declare an array with two ele-
ments and then set their values:

Dim Names(1) As String

ARRAYS 77

Names(0) = ′′Joe Doe′′

Names(1) = ′′Peter Smack′′

The number of elements in the curly brackets following the array’s declaration determines the
dimensions of the array, and you can’t add new elements to the array without resizing it. If
you need to resize the array in your code dynamically, you must use the ReDim statement and
supply the new size of the array in parentheses.

Array Limits

The first element of an array has index 0. The number that appears in parentheses in the Dim
statement is one fewer than the array’s total capacity and is the array’s upper limit (or upper
bound). The index of the last element of an array (its upper bound) is given by the method
GetUpperBound, which accepts as an argument the dimension of the array and returns the
upper bound for this dimension. The arrays we have examined so far are one-dimensional, and
the argument to be passed to the GetUpperBound method is the value 0. The total number of
elements in the array is given by the method GetLength, which also accepts a dimension as
an argument. The upper bound of the following array is 19, and the capacity of the array is 20
elements:

Dim Names(19) As Integer

The first element is Names(0), and the last is Names(19). If you execute the following state-
ments, the highlighted values will appear in the Output window:

Debug.WriteLine(Names.GetLowerBound(0))
0
Debug.WriteLine(Names.GetUpperBound(0))
19

To assign a value to the first and last element of the Names array, use the following
statements:

Names(0) = ′′First entry′′

Names(19) = ′′Last entry′′

To iterate through the array elements, use a loop like the following one:

Dim i As Integer, myArray(19) As Integer
For i = 0 To myArray.GetUpperBound(0)
myArray(i) = i * 1000

Next

The number of elements in an array is given by the expression myArray.GetUpper
Bound(0) + 1. You can also use the array’s Length property to retrieve the count of elements.
The following statement will print the number of elements in the array myArray in the Output
window:

Debug.WriteLine(myArray.Length)

78 CHAPTER 2 HANDLING DATA

Still confused with the zero-indexing scheme, the count of elements, and the index of the
last element in the array? You can make the array a little larger than it needs to be and ignore
the first element. Just make sure that you never use the zero element in your code — don’t
store a value in the element Array(0), and you can then ignore this element. To get 20 ele-
ments, declare an array with 21 elements as Dim MyArray(20) As type and then ignore the first
element.

Multidimensional Arrays
One-dimensional arrays, such as those presented so far, are good for storing long sequences of
one-dimensional data (such as names or temperatures). But how would you store a list of cities
and their average temperatures in an array? Or names and scores, years and profits, or data
with more than two dimensions, such as products, prices, and units in stock? In some situa-
tions, you will want to store sequences of multidimensional data. You can store the same data
more conveniently in an array of as many dimensions as needed.

Figure 2.5 shows two one-dimensional arrays — one of them with city names, the other
with temperatures. The name of the third city would be City(2), and its temperature would
be Temperature(2).

Figure 2.5

Two one-dimensional
arrays and the equiv-
alent two-dimensional
array

Cities (7)
0
1
2
3
4
5
6
7

Two one-dimensional arrays A two-dimensional array

San Francisco San Francisco78
86

78
86

65 65

Los Angeles Los Angeles

Seattle Seattle

Temperatures (7) Temperatures (7, 1)

A two-dimensional array has two indices: The first identifies the row (the order of the city in
the array), and the second identifies the column (city or temperature). To access the name and
temperature of the third city in the two-dimensional array, use the following indices:

Temperatures(2, 0) ‘ is the third city′s name
Temperatures(2, 1) ‘ is the third city′s average temperature

The benefit of using multidimensional arrays is that they’re conceptually easier to manage.
Suppose you’re writing a game and want to track the positions of certain pieces on a board.
Each square on the board is identified by two numbers: its horizontal and vertical coordinates.
The obvious structure for tracking the board’s squares is a two-dimensional array, in which the
first index corresponds to the row number and the second corresponds to the column number.
The array could be declared as follows:

Dim Board(9, 9) As Integer

ARRAYS 79

When a piece is moved from the square in the first row and first column to the square in the
third row and fifth column, you assign the value 0 to the element that corresponds to the initial
position:

Board(0, 0) = 0

And you assign 1 to the square to which it was moved to indicate the new state of the board:

Board(2, 4) = 1

To find out whether a piece is on the top-left square, you’d use the following statement:

If Board(0, 0) = 1 Then
’ piece found

Else
’ empty square

End If

This notation can be extended to more than two dimensions. The following statement creates
an array with 1,000 elements (10 by 10 by 10):

Dim Matrix(9, 9, 9)

You can think of a three-dimensional array as a cube made up of overlaid two-dimensional
arrays, such as the one shown in Figure 2.6.

Figure 2.6

Pictorial representa-
tions of one-, two-, and
three-dimensional arrays

0

Data(7) Data(7, 3) Data(7, 3, 3)

1
2
3
4
5
6
7

0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0

0,1
1,1
2,1
3,1
4,1
5,1
6,1
7,1

0,2
1,2
2,2
3,2
4,2
5,2
6,2
7,2

0,3
1,3
2,3
3,3
4,3
5,3
6,3
7,3

3,0,0 3,0,1 3,0,2 3,0,3
3,1,3
3,2,3
3,3,3
3,4,3
3,5,3
3,6,3
3,7,3

2,0,0 2,0,1 2,0,2 2,0,3
2,1,3
2,2,3
2,3,3
2,4,3
2,5,3
2,6,3
2,7,3

1,0,0 1,0,1 1,0,2 1,0,3
1,1,3
1,2,3
1,3,3
1,4,3
1,5,3
1,6,3
1,7,3

0,0,0
0,1,0
0,2,0
0,3,0
0,4,0
0,5,0
0,6,0
0,7,0

0,0,1
0,1,1
0,2,1
0,3,1
0,4,1
0,5,1
0,6,1
0,7,1

0,0,2
0,1,2
0,2,2
0,3,2
0,4,2
0,5,2
0,6,2
0,7,2

0,0,3
0,1,3
0,2,3
0,3,3
0,4,3
0,5,3
0,6,3
0,7,3

It is possible to initialize a multidimensional array with a single statement, just as you
do with a one-dimensional array. You must insert enough commas in the parentheses
following the array name to indicate the array’s rank. The following statements initialize a
two-dimensional array and then print a couple of its elements:

Dim a(,) As Integer = {{10, 20, 30}, {11, 21, 31}, {12, 22, 32}}
Console.WriteLine(a(0, 1)) ’ will print 20
Console.WriteLine(a(2, 2)) ’ will print 32

80 CHAPTER 2 HANDLING DATA

You should break the line that initializes the dimensions of the array into multiple lines to
make your code easier to read:

Dim a(,) As Integer = {{10, 20, 30},
{11, 21, 31},
{12, 22, 32}}

If the array has more than one dimension, you can find out the number of dimensions with
the Array.Rank property. Let’s say you have declared an array for storing names and salaries
by using the following statements:

Dim Employees(1,99) As Employee

To find out the number of dimensions, use the following statement:

Employees.Rank

When using the Length property to find out the number of elements in a multidimensional
array, you will get back the total number of elements in the array (2 × 100 for our example).
To find out the number of elements in a specific dimension, use the GetLength method, pass-
ing as an argument a specific dimension. The following expressions will return the number of
elements in the two dimensions of the array:

Debug.WriteLine(Employees.GetLength(0))
2
Debug.WriteLine(Employees.GetLength(1))
100

Because the index of the first array element is zero, the index of the last element is the length
of the array minus 1. Let’s say you have declared an array with the following statement to store
player statistics for 15 players and there are five values per player:

Dim Statistics(14, 4) As Integer

The following statements will return the highlighted values shown beneath them:

Debug.WriteLine(Statistics.Rank)
2 ’ dimensions in array
Debug.WriteLine(Statistics.Length)
75 ’ total elements in array
Debug.WriteLine(Statistics.GetLength(0))
15 ’ elements in first dimension
Debug.WriteLine(Statistics.GetLength(1))
5 ’ elements in second dimension
Debug.WriteLine(Statistics.GetUpperBound(0))
14 ’ last index in the first dimension
Debug.WriteLine(Statistics.GetUpperBound(1))
4 ’ last index in the second dimension

ARRAYS 81

Multidimensional arrays are becoming obsolete because arrays (and other collections) of cus-
tom structures and objects are more flexible and convenient.

Collections
Historically, arrays are the primary structures for storing sets of data, and for years they were
the primary storage mechanism for in-memory data manipulation. In this field, however,
where technologies grow in and out of style overnight, arrays are being replaced by other,
more flexible and more powerful structures, the collections. Collections are discussed in detail
in Chapter 12, but I should mention them briefly in this chapter, not only for completeness, but
also because collections are used a lot in programming and you will find many examples of
collections in this book’s chapters.

A collection is a dynamic data storage structure: You don’t have to declare the size of a
collection ahead of time. Moreover, the position of the items in a collection is not nearly as
important as the position of the items in an array. New items are appended to a collection
with the Add method, while existing items are removed with the Remove method. (Note that
there’s no simple method of removing an array element, short of copying the original array
to a new one and skipping the element to be removed.) The collection I just described is the
List collection, which is very similar to an array. To declare a List collection, use the New
keyword:

Dim names As New List(Of String)

The New keyword is literally new to you; use it to create variables that are true objects (any
variable that’s not of a basic data type or structure). The New keyword tells the compiler to cre-
ate a variable of the specified type and initialize it. The List collection must be declared with a
specific data type, which is specified with the Of keyword in parentheses. All items stored in
the example names list must be strings. A related collection is the ArrayList collection, which is
identical to the List collection but you don’t have to declare the type of variables you intend to
store in it because you can add objects of any type to an ArrayList collection.

To create a collection of color values, use the following declaration:

Dim colors As New List(Of Color)

The following statements add a few items to the two collections:

names.Add(′′Richard′′)
names.Add(′′Nancy′′)
colors.Add(Color.Red)
colors.Add(TextBox1.BackColor)

Another collection is the Dictionary collection, which allows you to identify each element by
a key instead of an index value. The following statement creates a new Dictionary collection for
storing names and birth dates:

Dim BDays As New Dictionary(Of String, Date)

82 CHAPTER 2 HANDLING DATA

The first data type following the Of keyword is the data type of the keys, while the following
argument is the data type of the values you want to store to the collection. Here’s how you add
data to a Dictionary collection:

BDays.Add(′′Manfred′′, #3/24/1972#)
BDays.Add(′′Alfred′′, #11/24/1959#)

To retrieve the birth date of Manfred, use the following statement:

BDays(′′Manfred′′)

Finally, you can use collections to store custom objects too. Let’s say you have three vari-
ables that represent checks (they’re of the CheckRecord custom type presented earlier in this
chapter in the section ‘‘User-Defined Data Types’’). You can add them to a List collection just
as you would add integers or strings to a collection:

Dim Checks As New List(Of CheckRecord)
Checks.Add(check1)
Checks.Add(check2)
Checks.Add(check3)

A seasoned developer would store the same data to a Dictionary collection using the check
number as an index value:

Dim Checks As New Dictionary(Of Integer, CheckRecord)
Checks.Add(check1.CheckNumber, check1)

An application that uses this structure can prompt the user for a specific check number,
retrieve it by its index from the Checks collection and display it to the user. As you will see in
Chapter 12, a big advantage of collections over arrays is that collections allow you to remove
elements with the Remove method.

The Bottom Line

Declare and use variables. Programs use variables to store information during their execu-
tion, and different types of information are stored in variables of different types. Dates, for
example, are stored in variables of the Date type, while text is stored in variables of the String
type. The various data types expose a lot of functionality that’s specific to a data type; the meth-
ods provided by each data type are listed in the IntelliSense box.

Master It How would you declare and initialize a few variables?

Master It Explain briefly the Explicit, Strict, and Infer options.

Use the native data types. The CLR recognized the following data types, which you can use
in your code to declare variables: String, numeric data types (Integer, Double, and so on), Date,
Char and Boolean types.

THE BOTTOM LINE 83

All other variables, or variables that are declared without a type, are Object variables and can
store any data type or any object.

Master It How will the compiler treat the following statement?

Dim amount = 32

Create custom data types. Practical applications need to store and manipulate multiple data
items, not just integers and strings. To maintain information about people, we need to store
each person’s name, date of birth, address, and so on. Products have a name, a description, a
price, and other related items. To represent such entities in our code, we use structures, which
hold many pieces of information about a specific entity together.

Master It Create a structure for storing products and populate it with data.

Use arrays. Arrays are structures for storing sets of data as opposed to single-valued
variables.

Master It How would you declare an array for storing 12 names and another one for stor-
ing 100 names and Social Security numbers?

Chapter 3

Visual Basic Programming Essentials

The one thing you should have learned about programming in Visual Basic so far is that an
application is made up of small, self-contained segments. The code you write isn’t a monolithic
listing; it’s made up of small segments called procedures, and you work on one procedure at a
time.

In this chapter we’ll explore the two types of procedures supported by Visual Basic: sub-
routines and functions — the building blocks of your applications. We’ll discuss them in detail:
how to call them with arguments and how to retrieve the results returned by the functions.
You’ll learn how to use the built-in functions that come with the language as well as how to
write your own subroutines and functions.

The statements that make up the core of the language are actually very few. The flexibil-
ity of any programming language is based on its capacity to alter the sequence in which the
statements are executed through a set of so-called flow-control statements. These are the state-
ments that literally make decisions and react differently depending on the data, user actions, or
external conditions. Among other topics, in this chapter you’ll learn how to do the following:

◆ Use Visual Basic’s flow-control statements

◆ Write subroutines and functions

◆ Pass arguments to subroutines and functions

Flow-Control Statements
What makes programming languages so flexible and capable of handling every situation and
programming challenge with a relatively small set of commands is their capability to examine
external or internal conditions and act accordingly. Programs aren’t monolithic sets of com-
mands that carry out the same calculations every time they are executed; this is what calcula-
tors (and extremely simple programs) do. Instead, they adjust their behavior depending on the
data supplied; on external conditions, such as a mouse click or the existence of a peripheral;
even on a coding mistake you haven’t caught during your tests.

In effect, the statements discussed in the first half of this chapter are what programming is
all about. Without the capability to control the flow of the program, computers would just be
bulky calculators. You have seen how to use the If statement to alter the flow of execution in
previous chapters, and I assume you’re somewhat familiar with these kinds of statements. In

86 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

this section, you’ll find a formal discussion of flow-control statements, which are grouped into
two major categories: decision statements and looping statements.

Decision Statements
Applications need a mechanism to test conditions, and they take a different course of action
depending on the outcome of the test. Visual Basic provides three statements that allow you to
alter the course of the application based on the outcome of a condition:

◆ If…Then

◆ If…Then…Else

◆ Select Case

If…Then Statements

The If…Then statement tests an expression, which is known as a condition. If the condition
is True, the program executes the statement(s) that follow the Then keyword up to the End
If statement, which terminates the conditional statement. The If…Then statement can have a
single-line or a multiple-line syntax. To execute one statement conditionally, use the single-line
syntax as follows:

If condition Then statement

To execute multiple statements conditionally, embed the statements within an If and End If
statement, as follows:

If condition Then
' Statement
' Statement

End If

Conditions are logical expressions that evaluate to a True/False value and they usually con-
tain comparison operators — equals (=), different (< >), less than (<), greater than (>), less than
or equal to (<=), and so on — and logical operators — And, Or, Xor, and Not. Here are a few
examples of valid conditions:

If (age1 < age2) And (age1 > 12) Then …
If score1 = score2 Then …

The parentheses are not really needed in the first sample expression, but they make the
code a little easier to read and understand. Sometimes parentheses are mandatory, to specify
the order in which the expression’s parts will be evaluated, just as math formulae may require
parentheses to indicate the precedence of calculations.

The expressions can get quite complicated. The following expression evaluates to True if the
date1 variable represents a date earlier than the year 2005 and either one of the score1 and
score2 variables exceeds 90 (you could use it locate high scores in a specific year):

If (date1 < #1/1/2005) And (score1 > 90 Or score2 > 90) Then
‘ statements

End If

FLOW-CONTROL STATEMENTS 87

The parentheses around the last part of the comparison are mandatory because we want the
compiler to perform the following comparison first:

score1 > 90 Or score2 > 90

If either variable exceeds 90, the preceding expression evaluates to True and the initial con-
dition is reduced to the following:

If (date1 < #1/1/2008) And (True) Then

The compiler will evaluate the first part of the expression (it will compare two dates) and
finally it will combine two Boolean values with the And operator: If both values are True, the
entire condition is True; otherwise, it’s False. If you didn’t use parentheses, the compiler would
evaluate the three parts of the expression:

expression1: date1 < #1/1/2008#
expression2: score1 < 90
expression3: score2 < 90

Then it would combine expression1 with expression2 using the And operator, and finally
it would combine the result with expression3 using the Or operator. If score2 were greater
than 90, the entire expression would evaluate to True, regardless of the value of the date1 and
score1 variables.

If…Then…Else Statements

A variation of the If…Then statement is the If…Then…Else statement, which executes one block
of statements if the condition is True and another block of statements if the condition is False.
The syntax of the If…Then…Else statement is as follows:

If condition Then
statementblock1

Else
statementblock2

End If

Visual Basic evaluates the condition; if it’s True, VB executes the first block of statements
and then jumps to the statement following the End If statement. If the condition is False,
Visual Basic ignores the first block of statements and executes the block following the Else
keyword.

A third variation of the If…Then…Else statement uses several conditions, with the ElseIf
keyword:

If condition1 Then
statementblock1

ElseIf condition2 Then
statementblock2

ElseIf condition3 Then
statementblock3

88 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

Else
statementblock4

End If

You can have any number of ElseIf clauses. The conditions are evaluated from the top,
and if one of them is True, the corresponding block of statements is executed. The Else clause,
which is optional, will be executed if none of the previous expressions is True. Listing 3.1 is an
example of an If statement with ElseIf clauses.

Listing 3.1: Multiple ElseIf statements

score = InputBox("Enter score")
If score < 50 Then

Result = "Failed"
ElseIf score < 75 Then

Result = "Pass"
ElseIf score < 90 Then

Result = "Very Good"
Else

Result = "Excellent"
End If
MsgBox Result

Multiple If . . . Then Structures versus ElseIf

Notice that after a True condition is found, Visual Basic executes the associated statements
and skips the remaining clauses. It continues executing the program with the statement
immediately after End If. All following ElseIf clauses are skipped, and the code runs a bit
faster. That’s why you should prefer the complicated structure with the ElseIf statements
used in Listing 3.1 to this equivalent series of simple If statements:

If score < 50 Then
Result = "Failed"

End If
If score < 75 And score >= 50 Then

Result = "Pass"
End If
If score < 90 And score > =75 Then

Result = "Very Good"
End If
If score >= 90 Then

Result = "Excellent"
End If

With the multiple If statements, the compiler will generate code that evaluates all the condi-
tions, even if the score is less than 50.

FLOW-CONTROL STATEMENTS 89

The order of the comparisons is vital when you’re using multiple ElseIf statements. Had
you written the previous code segment with the first two conditions switched, like the follow-
ing segment, the results would be quite unexpected:

If score < 75 Then
Result = "Pass"

ElseIf score < 50 Then
Result = "Failed"

ElseIf score < 90 Then
Result = "Very Good"

Else
Result = "Excellent"

End If

Let’s assume that score is 49. The code would compare the score variable to the value 75.
Because 49 is less than 75, it would assign the value Pass to the variable Result, and then it
would skip the remaining clauses. Thus, a student who scored 49 would have passed the test!
So be extremely careful and test your code thoroughly if it uses multiple ElseIf clauses. You
must either make sure they’re listed in the proper order or use upper and lower limits, as in
the sidebar ‘‘Multiple If…Then Structures versus ElseIf.’’ It goes without saying that such a
code segment should be tested for all possible intervals of the score variable.

The IIf() Function

Not to be confused with the If…Then statement, the IIf() function is also part of the lan-
guage. This built-in function accepts as an argument an expression and two values, evaluates
the expression, and returns the first value if the expression is True or the second value if the
expression is False. The IIf() function has the following syntax:

IIf(expression, TruePart, FalsePart)

The TruePart and FalsePart arguments are objects. (They can be integers, strings, or any
built-in or custom object.) The IIf() function is a more compact notation for simple If
statements, and you can use it to shorten If…Then…Else expressions. Let’s say you want
to display one of the strings "Close" or "Far", depending on the value of the distance
variable. Instead of a multiline If statement, you can call the IIf() function as follows:

Dim result As String
Result = IIf(distance > 1000, "Far", "Close")
MsgBox(result)

Another typical example of the IIf() function is in formatting negative values. It’s fairly
common in business applications to display negative amounts in parentheses. Use the IIf()
statement to write a short expression that formats negative and positive amounts differently,
like the following one:

IIf(amount < 0, " (" & Math.Abs(amount).ToString("#.00") & ")",
amount.ToString("#.00"))

90 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

The Abs method of the Math class returns the absolute value of a numeric value, and the ‘‘#.00’’
argument of the ToString method specifies that the amount should be formatted as a currency
amount with two decimal digits. You can insert the preceding statement anywhere you would
display the amount variable. Assign a positive or negative value to the amount variable and then
pass the entire expression to the MsgBox() function to display the formatted value:

MsgBox(
IIf(amount < 0, "(" & Math.Abs(amount).ToString("#.00") & ")",
amount.ToString("#.00")))

Select Case Statements

An alternative to the efficient but difficult-to-read code of the multiple ElseIf structure is the
Select Case structure, which compares the same expression to different values. The advantage
of the Select Case statement over multiple If…Then…ElseIf statements is that it makes the
code easier to read and maintain.

The Select Case structure evaluates a single expression at the top of the structure. The
result of the expression is then compared with several values; if it matches one of them, the
corresponding block of statements is executed. Here’s the syntax of the Select Case statement:

Select Case expression
Case value1

' statementblock1
Case value2

' statementblock2
.
.
.

Case Else
statementblockN

End Select

A practical example based on the Select Case statement is shown in Listing 3.2.

Listing 3.2: Using the Select Case statement

Dim Message As String
Select Case Now.DayOfWeek

Case DayOfWeek.Monday
message = "Have a nice week"

Case DayOfWeek.Friday
message = "Have a nice weekend"

Case Else
message = "Welcome back! "

End Select
MsgBox(message)

FLOW-CONTROL STATEMENTS 91

In the listing, the expression that’s evaluated at the beginning of the statement is the
Now.DayOfWeek method. This method returns a member of the DayOfWeek enumeration, and
you can use the names of these members in your code to make it easier to read. The value of
this expression is compared with the values that follow each Case keyword. If they match,
the block of statements up to the next Case keyword is executed, and the program skips
to the statement following the End Select statement. The block of the Case Else statement is
optional and is executed if none of the previous cases matches the expression. The first two
Case statements take care of Fridays and Mondays, and the Case Else statement takes care of
the other days.

Some Case statements can be followed by multiple values, which are separated by commas.
Listing 3.3 is a revised version of the previous example. The code of Listing 3.3 handles Satur-
days and Sundays.

Listing 3.3: A Select Case statement with multiple cases per clause

Select Case Now.DayOfWeek
Case DayOfWeek.Monday

message = "Have a nice week"
Case DayOfWeek.Tuesday, DayOfWeek.Wednesday, DayOfWeek.Thursday

message = "Welcome back!"
Case DayOfWeek.Friday, DayOfWeek.Saturday, DayOfWeek.Sunday

message = "Have a nice weekend!"
End Select
MsgBox(message)

Monday, weekends, and weekdays are handled separately by three Case statements. The
second Case statement handles multiple values (all workdays except for Monday and Friday).
Monday is handled by a separate Case statement. This structure doesn’t contain a Case Else
statement because all possible values are examined in the Case statements; the DayOfWeek
method can’t return another value.

The Case statements can get a little more complex. For example, you may want to distin-
guish a case where the variable is larger (or smaller) than a value. To implement this logic, use
the Is keyword, as in the following code segment that distinguishes between the first and sec-
ond half of the month:

Select Now.Day
Case Is < 15

MsgBox("It’s the first half of the month")
Case Is >= 15

MsgBox("It’s the second half of the month")
End Select

Short-Circuiting Expression Evaluation

A common pitfall of evaluating expressions with VB is to attempt to compare a Nothing value
to something. An object variable that hasn’t been set to a value can’t be used in calculations or

92 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

comparisons. Consider the following statements:

Dim B As SolidBrush
B = New SolidBrush(Color.Cyan)
If B.Color = Color.White Then

MsgBox("Please select another brush color")
End If

These statements create a SolidBrush object variable, the B variable, and then examine the
brush color and prohibit the user from drawing with a white brush. The second statement ini-
tializes the brush to the cyan color. (Every shape drawn with this brush will appear in cyan.)
If you instead attempted to use the B variable without initializing it (that is, if you had not
included the line that creates a new SolidBrush object), a runtime exception would be thrown:
the infamous NullReferenceException would be thrown when the program gets to the If
statement because the B variable has no value (it’s Nothing), and the code attempts to com-
pare it to something. Nothing values can’t be compared to anything. Comment out the second
statement by inserting a single quote in front of it and then execute the code to see what will
happen. Then restore the statement by removing the comment mark.

Actually, as soon as you comment out the statement that initializes the B variable, the editor
will underline the B variable and it will generate the warning Variable B is used before it has been
assigned a value. A null reference exception could result at runtime.

Let’s fix it by making sure that B is not Nothing:

If B IsNot Nothing And B.Color = Color.White Then
MsgBox("Please select another brush color")

End If

The If statement should compare the Color property of the B object, only if the B object is
not Nothing. But this isn’t the case. The AND operator evaluates all terms in the expression and
then combines their results (True or False values) to determine the value of the expression. If
they’re all True, the result is also True. However, it won’t skip the evaluation of some terms as
soon as it hits a False value. To avoid unnecessary comparisons, use the AndAlso operator. The
AndAlso operator does what the And operator should have done in the first place: it evaluates
the expressions from left to right, and when it encounters a False value, it stops evaluating the
remaining terms because they won’t affect the result. If one of its operands is False, the entire
expression will evaluate to False. In other words, if B is Nothing, there’s no reason to examine
its color; the entire expression will evaluate to False, regardless of the brush color. Here’s how
to use the AndAlso operator:

If B IsNot Nothing AndAlso B.Color = Color.White Then
MsgBox("Please select another brush color")

End If

The AndAlso operator is said to short-circuit the evaluation of the entire expression as
soon as it runs into a False value. As soon as one of the parts in an AndAlso operation turns
out to be False, the entire expression is False and there’s no need to evaluate the remaining
terms.

FLOW-CONTROL STATEMENTS 93

There’s an equivalent operator for short-circuiting OR expressions: the OrElse operator. The
OrElse operator can speed the evaluation of logical expressions a little by returning True when
the first operand evaluates to True (the result of the OR operation will be True, regardless of the
value of the second operand). Another good reason for short-circuiting expression evaluation is
to help performance. If the second term of an And expression takes longer to execute (it has to
access a remote database, for example), you can use the AndAlso operator to make sure that it’s
not executed when it’s not needed.

Loop Statements
Loop statements allow you to execute one or more lines of code repetitively. Many tasks consist
of operations that must be repeated over and over again, and loop statements are an important
part of any programming language. Visual Basic supports the following loop statements:

◆ For…Next

◆ Do…Loop

◆ While…End While

For…Next Loops

Unlike the other two loops, the For…Next loop requires that you know the number of times that
the statements in the loop will be executed. The For…Next loop has the following syntax:

For counter = start To end [Step increment]
' statements

Next [counter]

The keywords in the square brackets are optional. The arguments counter, start, end, and
increment are all numeric. The loop is executed as many times as required for the counter
variable’s value to reach (or exceed) the end value. The variable that appears next to the For
keyword is the loop’s counter, or control variable.

In executing a For…Next loop, Visual Basic does the following:

1. Sets the counter variable equal to the start variable (this is the control variable’s initial
value).

2. Tests to see whether counter is greater than end. If so, it exits the loop without executing
the statements in the loop’s body, not even once. If increment is negative, Visual Basic tests
to see whether the counter value is less than the end value. If it is, it exits the loop.

3. Executes the statements in the block.

4. Increases the counter variable by the amount specified with the increment argument fol-
lowing the Step keyword. If the increment argument isn’t specified, counter is increased
by 1. If Step is a negative value, counter is decreased accordingly.

5. Continues with step 2.

The For…Next loop in Listing 3.4 scans all the elements of the numeric array data and calcu-
lates their average.

94 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

Listing 3.4: Iterating an array with a For…Next loop

Dim i As Integer, total As Double
For i = 0 To data.Length

total = total + data(i)
Next i
Debug.WriteLine (total / Data.Length)

The single most important thing to keep in mind when working with For…Next loops is that
the loop’s ending value is set at the beginning of the loop. Changing the value of the end vari-
able in the loop’s body won’t have any effect. For example, the following loop will be executed
10 times, not 100 times:

Dim endValue As Integer = 10
Dim i as Integer
For i = 0 To endValue

endValue = 100
' more statements

Next i

You can, however, adjust the value of the counter variable from within the loop. The fol-
lowing is an example of an endless (or infinite) loop:

For i = 0 To 10
Debug.WriteLine(i)
i = i - 1

Next i

This loop never ends because the loop’s control variable, in effect, is never increased. (If you try
this, press Ctrl+Break to interrupt the endless loop.)

Do Not Manipulate the Loop Counter

Manipulating the control variable of a For…Next loop is strongly discouraged. This practice
will most likely lead to bugs, such as infinite loops, overflows, and so on. If the number of
repetitions of a loop isn’t known in advance, use a Do…Loop or a While…End While structure
(discussed shortly). To jump out of a For…Next loop prematurely, use the Next For state-
ment. You can also use the Continue For statement to continue with the next iteration of
the loop (in other words, jump to the beginning of the loop and start a new iteration).

The increment argument can be either positive or negative. If start is greater than end, the
value of increment must be negative. If not, the loop’s body won’t be executed, not even once.

VB 2010 allows you to declare the counter in the For statement. The control variable ceases to
exist when the program bails out of the loop:

For i As Integer = 1 to 10
Debug.WriteLine(i.ToString)

FLOW-CONTROL STATEMENTS 95

Next
Debug.WriteLine(i.ToString)

The i variable is used as the loop counter and it’s not visible outside the loop. The last state-
ment won’t even compile; the editor will underline it with a wiggly line and will generate the
error message Name ‘i’ is not declared.

For Each…Next Loops

This is a variation of the classic For loop and it’s used to iterate through the items of a collec-
tion or array. Let’s say you have declared an array of strings like the following:

Dim months() As String = _
{"January", "February", "March", "April", "May", "June"}

You can iterate through the month names with a For Each loop like the one that follows:

For Each month As String In months
Debug.WriteLine(month)

Next

The month control variable need not be declared if the Infer option is on. The compiler will
figure out the type of the control variable based on the types of the values you’re iterating over,
which in our example are strings. You can easily write the equivalent For…Next loop for the
same task, but the For Each loop is more elegant. It also provides a variable that represents the
current item at each iteration.

Let’s look at a more interesting example of the For Each loop to get an idea of the type
of operations it’s best suited for. The Process class of the Framework provides methods for
inspecting the process running on the target computer at any time. These are the processes you
see in the Processes tab of the Task Manager. Each process is represented by a Process object,
which in turn exposes several useful properties (such as the name of the process, the physical
memory it’s using, and so on) as well as methods to manipulate the processes, including the
Kill method that terminates a process.

The GetProcesses method returns an array of Process objects, one for each running process.
To iterate through the current processes, you can use a For Each loop like the following:

Dim processes() = Process.GetProcesses
For Each Proc As Process In processes

Debug.WriteLine(Proc.ProcessName & " " &
Proc.PrivateMemorySize64.ToString)

Next

This loop will display a list like the following in the Output window:

taskeng 10588160
svchost 11476992
YahooMessenger 20496384
sqlservr 104538112

96 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

svchost 4255744
svchost 6549504
SearchIndexer 53612544
sqlwriter 3715072
searchFilterHost 3514368
cmd 2080768
iexplore 250073088

As you can see, the For Each loop is much more elegant than a For…Next loop when it comes
to iterating through the items of a collection. The loop’s counter is not an index, but an object
that represents the current entity — provided that all elements are of the same type, of course.
Many developers use a For Each…Next loop whenever possible, even in situations where a triv-
ial For…Next loop would suffice. Compare the loops in Listing 3.5 and Listing 3.6 for iterating
through the elements of an array of integers.

Listing 3.5: Using a For…Next loop

Dim numbers() = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
For i As Integer = 1 to numbers.Length - 1

` Process value numbers(i)
Next

Listing 3.6: Using a For Each…Next loop

Dim numbers() = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
For Each number As Integer In numbers

` Process value number
Next

Although I declare the control variable in both of the preceding loops, this isn’t mandatory
as long as you have turned on type inference. The compiler will figure out the proper type
from the type of the objects that make up the collection you’re iterating.

Do Loops

The Do…Loop statement executes a block of statements for as long as a condition is True or
until a condition becomes True. Visual Basic evaluates an expression (the loop’s condition), and
if it’s True, the statements in the loop body are executed. The expression is evaluated either
at the beginning of the loop (before any statements are executed) or at the end of the loop (after
the block statements are executed at least once). If the expression is False, the program’s execu-
tion continues with the statement following the loop. These two variations use the keywords
While and Until to specify how long the statements will be executed. To execute a block of
statements while a condition is True, use the following syntax:

Do While condition
' statement-block

Loop

FLOW-CONTROL STATEMENTS 97

To execute a block of statements until the condition becomes True, use the following syntax:

Do Until condition
' statement-block

Loop

When Visual Basic executes these loops, it first evaluates condition. If condition is False,
a Do…While loop is skipped (the statements aren’t even executed once) but a Do…Until loop
is executed. When the Loop statement is reached, Visual Basic evaluates the expression again;
it repeats the statement block of the Do…While loop if the expression is True or repeats the
statements of the Do…Until loop if the expression is False. In short, the Do…While loop is
executed when the condition is True (while the condition is True), and the Do…Until loop
is executed when the condition is False (until the condition becomes True).

A last variation of the Do statement, the Do…Loop statement, allows you to always evaluate
the condition at the end of the loop, even in a While loop. Here’s the syntax of both types of
loop, with the evaluation of the condition at the end of the loop:

Do
' statement-block

Loop While condition

Do
' statement-block

Loop Until condition

As you can guess, the statements in the loop’s body are executed at least once, even in the
case of the While loop, because no testing takes place as the loop is entered.

Here’s a typical example of using a Do…Loop: Suppose that the variable MyText holds some
text (like the Text property of a TextBox control) and you want to count the words in the text.
(We’ll assume that there are no multiple spaces in the text and that the space character sepa-
rates successive words.) To locate an instance of a character in a string, use the IndexOf method
of the String class. This method accepts two arguments: the starting location of the search and
the character being searched. The following loop repeats for as long as there are spaces in the
text. Each time the IndexOf method finds another space in the text, it returns the location of
the space. When there are no more spaces in the text, the IndexOf method returns the value –1,
which signals the end of the loop, as shown:

Dim MyText As String =
"The quick brown fox jumped over the lazy dogs"

Dim position, words As Integer
position = 0
words = 0
Do While position >= 0

position = MyText.IndexOf(" ", position + 1)
words += 1

Loop
MsgBox("There are " & words & " words in the text")

The Do…Loop is executed while the IndexOf method function returns a positive number,
which means that there are more spaces (and therefore words) in the text. The variable

98 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

position holds the location of each successive space character in the text. The search for the
next space starts at the location of the current space plus 1 (so the program won’t keep finding
the same space). For each space found, the program increases the value of the words variable,
which holds the total number of words when the loop ends. By the way, there are simpler
methods of breaking a string into its constituent words, such as the Split method of the String
class. This is just an example of the Do…While loop.

You might notice a problem with the previous code segment: It assumes that the text con-
tains at least one word. You should insert an If statement that detects zero-length strings and
doesn’t attempt to count words in them. You can also use the IsNullOrEmpty method of the
String class, which returns True if a String variable is empty or Nothing.

You can code the same routine with the Until keyword. In this case, you must continue
searching for spaces until position becomes –1. Here’s the same code with a different loop:

Dim position As Integer = 0
Dim words As Integer = 0
Do Until position = -1

position = MyText.IndexOf(" ", position + 1)
words = words + 1

Loop
MsgBox("There are " & words & " words in the text")

While Loops

The While…End While loop executes a block of statements as long as a condition is True. The
loop has the following syntax:

While condition
' statement-block

End While

If condition is True, the statements in the block are executed. When the End While state-
ment is reached, control is returned to the While statement, which evaluates condition again.
If condition is still True, the process is repeated. If condition is False, the program resumes
with the statement following End While.

The loop in Listing 3.7 prompts the user for numeric data. The user can type a negative
value to indicate he’s done entering values and terminate the loop. As long as the user enters
positive numeric values, the program keeps adding them to the total variable.

Listing 3.7: Reading an unknown number of values

Dim number, total As Double
number = 0
While number => 0

total = total + number
number = InputBox("Please enter another value")

End While

FLOW-CONTROL STATEMENTS 99

I’ve assigned the value 0 to the number variable before the loop starts because this value isn’t
negative and doesn’t affect the total.

Sometimes, the condition that determines when the loop will terminate can’t be evaluated at
the top of the loop. In these cases, we declare a Boolean value and set it to True or False from
within the loop’s body. Here’s the outline of such a loop:

Dim repeatLoop As Boolean
repeatLoop = True
While repeatLoop

' statements
If condition Then

repeatLoop = True
Else

repeatLoop = False
End If

End While

You may also see an odd loop statement like the following one:

While True
' statements

End While

It’s also common to express the True condition in one of the following two forms:

While 1 = 1

or

While True

Now, there’s no good reason to use statements like these; I guess they’re leftovers from old pro-
grams. The seemingly endless loops must be terminated from within the body using an Exit
While statement, which is called when a condition becomes True or False. The following loop
terminates when a condition is met in the loop’s body:

While True
' statements
If condition Then Exit While
' more statements

End While

Of course, this code isn’t elegant and you should avoid it, except when you’re implementing
some complicated logic that can’t be easily coded differently.

Nested Control Structures
You can place, or nest, control structures inside other control structures (such as an If…Then
block within a For…Next loop) or nest multiple If…Then blocks within one another. Control

100 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

structures in Visual Basic can be nested in as many levels as you want. The editor automatically
indents the bodies of nested decision and loop structures to make the program easier to read.

When you nest control structures, you must make sure that they open and close within the
same structure. In other words, you can’t start a For…Next loop in an If statement and close
the loop after the corresponding End If. The following code segment demonstrates how to nest
several flow-control statements:

For a = 1 To 100
' statements
If a = 99 Then

' statements
End If
While b < a

' statements
If total <= 0 Then

' statements
End If

End While
For c = 1 to a

' statements
Next c

Next a

I show the names of the control variables after the Next statements to make the code more
readable to humans. To find the matching closing statement (Next, End If, or End While), move
down from the opening statement until you hit a line that starts at the same column. This is the
matching closing statement. Notice that you don’t have to align the nested structures yourself;
the editor reformats the code automatically as you type. It also inserts the matching closing
statement — the End If statement is inserted automatically as soon as you enter an If state-
ment and press Enter, for example. Not only that, but as soon as you click in a control or loop
statement, the editor highlights the corresponding ending statement.

Listing 3.8 shows a typical situation with nested loops. The two nested loops scan all the
elements of a two-dimensional array.

Listing 3.8: Iterating through a two-dimensional array

Dim Array2D(6, 4) As Integer
Dim iRow, iCol As Integer
For iRow = 0 To Array2D.GetUpperBound(0)

For iCol = 0 To Array2D.GetUpperBound(1)
Array2D(iRow, iCol) = iRow * 100 + iCol
Debug.Write(iRow & ", " & iCol & " = " &

Array2D(iRow, iCol) & " ")
Next iCol
Debug.WriteLine()

Next iRow

FLOW-CONTROL STATEMENTS 101

The outer loop (with the iRow counter) scans each row of the array. At each iteration, the
inner loop scans all the elements in the row specified by the counter of the outer loop (iRow).
After the inner loop completes, the counter of the outer loop is increased by one, and the inner
loop is executed again — this time to scan the elements of the next row. The loop’s body con-
sists of two statements that assign a value to the current array element and then print it in the
Output window. The current element at each iteration is Array2D(iRow, iCol).

Another typical example of nested loops is the code that iterates through the cells of a
ListView control. (This control is discussed in Chapter 7, ‘‘More Windows Controls,’’ and
also in the tutorial ‘‘The ListView and TreeView controls.’’) The ListView control is basically
a grid — not an editable one, I’m afraid, but an excellent tool for displaying tabular data. To
iterate through the control’s cells, you must set up a loop that iterates through its rows and a
nested loop that iterates through the current row’s cells. Each row of the ListView control is a
ListViewItem object, which provides information about the rows’ cells through the SubItems
property. The SubItems property is an array of values, one for each cell of the grid’s row. The
expression ListView1.Items(2).SubItems(1).Text returns the contents of the second cell in
the control’s third row. The following code segment iterates through the cells of any ListView
control, regardless of the number of rows and columns it contains:

For iRow As Integer = 0 To ListView1.Items.Count – 1
Dim LI As ListViewItem = ListView1.Items(iRow)
For iCol As Integer = 0 To LI.SubItems.Count – 1

' process cell LI.SubItems(iCol)
Next

Next

The two nested For…Next loops are quite old-fashioned. In modern VB, you’d write the same
code as follows:

Dim str As String = ""
For Each LI As ListViewItem In ListView1.Items

For Each cell In LI.SubItems
str = str & cell.Text.ToString & vbTab

Next
str = str & vbCrLf

Next
MsgBox(str)

The preceding code segment gradually builds a string with the contents of the ListView con-
trol, separating cells in the same row with a tab (vbTab constant) and consecutive rows with a
line feed (vbCrLf constant). You can also nest multiple If statements. The code in Listing 3.9
tests a user-supplied value to determine whether it’s positive; if so, it determines whether the
value exceeds a certain limit.

Listing 3.9: Simple nested If statements

Dim Income As Decimal
Income = Convert.ToDecimal(InputBox("Enter your income"))
If Income > 0 Then

102 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

If Income > 12000 Then
MsgBox "You will pay taxes this year"

Else
MsgBox "You won’t pay any taxes this year"

End If
Else

MsgBox "Bummer"
End If

The Income variable is first compared with zero. If it’s negative, the Else clause of the
If…Then statement is executed. If it’s positive, it’s compared with the value 12,000, and
depending on the outcome, a different message is displayed. The code segment shown here
doesn’t perform any extensive validations and assumes that the user won’t enter a string when
prompted for income.

The Exit and Continue Statements
The Exit statement allows you to prematurely exit from a block of statements in a control
structure, from a loop, or even from a procedure. Suppose that you have a For…Next loop that
calculates the square root of a series of numbers. Because the square root of negative numbers
can’t be calculated (the Math.Sqrt method will generate a runtime error), you might want to
halt the operation if the array contains an invalid value. To exit the loop prematurely, use the
Exit For statement as follows:

For i = 0 To UBound(nArray)
If nArray(i) < 0 Then

MsgBox("Can’t complete calculations" & vbCrLf &
"Item " & i.ToString & " is negative! "

Exit For
End If
nArray(i) = Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues with the
statement following the Next statement.

There are similar Exit statements for the Do loop (Exit Do), the While loop (Exit While),
the Select statement (Exit Select), and functions and subroutines (Exit Function and Exit
Sub). If the previous loop was part of a function, you might want to display an error and exit
not only the loop, but also the function itself by using the Exit Function statement.

Sometimes you may need to continue with the following iteration instead of exiting the loop
(in other words, skip the body of the loop and continue with the following value). In these
cases, you can use the Continue statement (Continue For for For… Next loops, Continue While
for While loops, and so on).

Writing and Using Procedures
Now that you have seen the decision and looping structures of Visual Basic, let’s move on to
procedures. In traditional programming languages, procedures are the basic building blocks
of every application. And what exactly is a traditional language? Well, a procedural language, of

WRITING AND USING PROCEDURES 103

course. A procedural language is one that requires you to specify how to carry out specific tasks
by writing procedures. A procedure is a series of statements that tell the computer how to carry
out a specific task. The task could be the calculation of a loan’s monthly payment (a task that
can be coded literally with a single statement) or the retrieval of weather data from a remote
server. In any case, the body of statements form a unit of code that can be invoked by name,
not unlike scripts or macro commands but much more flexible and certainly more complex.

The idea of breaking a large application into smaller, more manageable sections is not new
to computing. Few tasks, programming or otherwise, can be managed as a whole. Using event
handlers is just one example of breaking a large application into smaller tasks.

For example, when you write code for a control’s Click event, you concentrate on the event
at hand — namely, how the program should react to the Click event. What happens when the
control is double-clicked or when another control is clicked is something you will worry about
later — in another control’s event handler. This divide-and-conquer approach isn’t unique to
programming events. It permeates the Visual Basic language, and developers write even the
longest applications by breaking them into small, well-defined, easily managed tasks. Each
task is performed by a procedure that is written and tested separately from the others. As
mentioned earlier, the two types of procedures supported by Visual Basic are subroutines and
functions.

Subroutines perform actions and they don’t return any result. Functions, on the other hand,
perform some calculations and return a value. This is the only difference between subroutines
and functions. Both subroutines and functions can accept arguments (values you pass to the
procedure when you call it). Usually, the arguments are the values on which the procedure’s
code acts. Arguments and the related keywords are discussed in detail later in this chapter.

Subroutines
A subroutine is a block of statements that carries out a well-defined task. The block of state-
ments is placed within a set of Sub…End Sub statements and can be invoked by name. The fol-
lowing subroutine displays the current date in a message box:

Sub ShowDate()
MsgBox("Today’s date is " & Now().ToShortDateString)

End Sub

To use it in your code, you can just enter the name of the function in a line of its own:

ShowDate()

To experiment with the procedures presented in this chapter, start a new Windows project,
place a button on the main form, and then enter the definition of the ShowDate() subrou-
tine outside any event handler. In the button’s Click event handler, enter the statement
ShowDate(). If you run the application and click the button, the current date will appear on a
message box. The single statement in the event handler calls the ShowDate() subroutine, which
displays the current date. Your main program calls the subroutine by name and it doesn’t care
how complex the subroutine is.

Normally, the task performed by a subroutine is more sophisticated than this, but even this
simple subroutine is a block of code isolated from the rest of the application. The statements in
a subroutine are executed, and when the End Sub statement is reached, control returns to the
calling code. It’s possible to exit a subroutine prematurely by using the Exit Sub statement. In

104 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

effect, a subroutine is a set of statements that perform a very specific task, and you can invoke
them by name. Use subroutines to break your code into smaller, more manageable units and
certainly if you’re coding tasks that may be used in multiple parts of the application. Note that
the ShowDate() subroutine can be called from any event handler in the current form.

All variables declared within a subroutine are local to that subroutine. When the subroutine
exits, all variables declared in it cease to exist.

Most procedures also accept and act upon arguments. The ShowDate() subroutine displays
the current date in a message box. If you want to display any other date, you have to imple-
ment it differently and add an argument to the subroutine:

Sub ShowDate(ByVal aDate As Date)
MsgBox(aDate.ToShortDateString)

End Sub

aDate is a variable that holds the date to be displayed; its type is Date. The ByVal keyword
means that the subroutine sees a copy of the variable, not the variable itself. What this means
practically is that the subroutine can’t change the value of the variable passed by the calling code.

To display a specific date with the second implementation of the subroutine, use a statement
like the following:

Dim myBirthDate = #2/9/1960#
ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate
variable:

ShowDate(#2/9/1960#)

If you later decide to change the format of the date, there’s only one place in your code you
must edit — the statement that displays the date from within the ShowDate() subroutine.

Functions
A function is similar to a subroutine, but a function returns a result. Because they return values,
functions — like variables — have types. The value you pass back to the calling program from
a function is called the return value, and its type determines the type of the function. Functions
accept arguments, just like subroutines. The statements that make up a function are placed in a
set of Function…End Function statements, as shown here:

Function NextDay() As Date
Dim theNextDay As Date
theNextDay = Now.AddDays(1)
Return theNextDay

End Function

Functions are called like subroutines — by name — but their return value is usually
assigned to a variable. To call the NextDay() function, use a statement like this:

Dim tomorrow As Date = NextDay()

WRITING AND USING PROCEDURES 105

Because functions have types like variables, they can be used anywhere you’d use a variable
name. You will find several examples of practical functions later in this chapter, both built-in
functions that are part of the language and custom functions. Subroutines are being gradually
replaced by functions, and in some languages there are no subroutines, just functions. Even
if you need a procedure to perform some task without returning a value, you can implement
it as a function that returns a True/False value to indicate whether the operations completed
successfully or not.

The Function keyword is followed by the function name and the As keyword that specifies
its type, similar to a variable declaration. Inside the preceding sample function, AddDays is a
method of the Date type, and it adds a number of days to a date value. The NextDay() func-
tion returns tomorrow’s date by adding one day to the current date. NextDay() is a custom
function, which calls the built-in AddDays method to complete its calculations.

The result of a function is returned to the calling program with the Return statement, which
is followed by the value you want to return from your function. This value, which is usually
a variable, must be of the same type as the function. In our example, the Return statement
happens to be the last statement in the function, but it could appear anywhere; it could even
appear several times in the function’s code. The first time a Return statement is executed, the
function terminates and control is returned to the calling code.

You can also return a value to the calling routine by assigning the result to the name of the
function. The following is an alternate method of coding the NextDay() function:

Function NextDay() As Date
NextDay = Now.AddDays(1)

End Function

Notice that this time I’ve assigned the result of the calculation to the function’s name
directly and haven’t use a Return statement. This assignment, however, doesn’t terminate the
function as the Return statement does. It sets up the function’s return value, but the function
will terminate when the End Function statement is reached or when an Exit Function state-
ment is encountered.

Similar to the naming of variables, a custom function has a name that must be unique in its
scope (which is also true for subroutines, of course). If you declare a function in a form, the
function name must be unique in the form. If you declare a function as Public or Friend, its
name must be unique in the project. Functions have the same scope rules as variables and can
be prefixed by many of the same keywords. In effect, you can modify the default scope of a
function with the keywords Public, Private, Protected, Friend, and Protected Friend. In
addition, functions have types, just like variables, and they’re declared with the As keyword.

Suppose that the function CountWords() counts the number of words and the function
CountChars() counts the number of characters in a string. The average length of a word in the
string longString could be calculated as follows:

Dim longString As String, avgLen As Double
longString = TextBox1.Text
avgLen = CountChars(longString) / CountWords(longString)

The first executable statement gets the text of a TextBox control and assigns it to a variable,
which is then used as an argument to the two functions. When the third statement executes,
Visual Basic first calls the functions CountChars() and CountWords() with the specified argu-
ments and then divides the results they return.

106 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

The CountWords() function uses the Split method, which isolates the words in a string
and returns them as an array of strings. Then the code reads the length of the array, which
equals the number of words in the string. The Split method accepts as an argument a charac-
ter, which is the delimiter it will use to break the string into words. The space character being
passed as an argument is enclosed in double quotes, but this is a string, not a character. It’s
a string that contains a single character, but a string nevertheless. To convert the space string
(””) into a character value, you just append the c character to the string. The number of words
in the string is the length of the array that holds the individual words, the words array.

Function CountWords(ByVal longString As String) As Integer
Dim words = longString.Split(" "c)
Return words.Length

End Function

Function CountChars(ByVal longString As String) As Integer
longString = longString.Replace(" ", "")
Return longString.Length

End Function

You can call functions in the same way that you call subroutines, but the result won’t be
stored anywhere. For example, the function Convert() might convert the text in a text box to
uppercase and return the number of characters it converted. Normally, you’d call this function
as follows:

nChars = Convert()

If you don’t care about the return value — you only want to update the text on a TextBox
control — you would call the Convert() function with the following statement:

Convert()

Most of the procedures in an application are functions, not subroutines. The reason is that
a function can return (at the very least) a True/False value that indicates whether it completed
successfully or not. In the remainder of this chapter, I will focus on functions, but the same
principles apply to subroutines as well, except for the return value.

Arguments
Subroutines and functions aren’t entirely isolated from the rest of the application. Most pro-
cedures accept arguments from the calling program. Recall that an argument is a value you
pass to the procedure and on which the procedure usually acts. This is how subroutines and
functions communicate with the rest of the application.

Subroutines and functions may accept any number of arguments, and you must supply a value
for each argument of the procedure when you call it. Some of the arguments may be optional,
which means you can omit them; you will see shortly how to handle optional arguments.

Let’s implement a simple custom function to demonstrate the use of arguments. The Min()
function, shown next, is a custom function that accepts two arguments and returns the smaller

ARGUMENTS 107

one. Once you write the function, you can call it from within your code just like any built-in
function. The difference is that while the built-in functions are always available, the custom
functions are available only to the project in which they are declared. Here’s the implementa-
tion of the Min() function:

Function Min(ByVal a As Single, ByVal b As Single) As Single
Min = IIf(a < b, a, b)

End Function

Interestingly, the Min() function calls the IIf() built-in function. IIf() is a built-in function
that evaluates the first argument, which is a logical expression. If the expression is True, the
IIf() function returns the second argument. If the expression is False, the function returns the
third argument.

To call the Min() custom function, use a few statements like the following:

Dim val1 As Single = 33.001
Dim val2 As Single = 33.0011
Dim smallerVal as Single
smallerVal = Min(val1, val2)
MsgBox("The smaller value is " & smallerVal)

If you execute these statements (place them in a button’s Click event handler), you will see
the following in a message box:

The smaller value is 33.001

Or you can insert these statements in the Main subroutine of a Console application and replace
the call to the MsgBox function with a call to the Console.WriteLine method to see the output
on a console window. Here’s what the entire Console application’s code should look like:

Module Module1

Sub Main()
Dim val1 As Single = 33.001
Dim val2 As Single = 33.0011
Dim smallerVal As Single
smallerVal = Min(val1, val2)
Console.WriteLine("The smaller value is " & smallerVal)
Console.ReadKey()

End Sub

Function Min(ByVal a As Single, ByVal b As Single) As Single
Min = IIf(a < b, a, b)

End Function

End Module

108 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

If you attempt to call the same function with two Double values with a statement like the
following, you will see the value 3.33 in the Immediate window:

Debug.WriteLine(Min(3.33000000111, 3.33000000222))

The compiler converted the two values from Double to Single data type and returned one
of them. Which one is it? It doesn’t make a difference because when converted to Single, both
values are the same.

Interesting things will happen if you attempt to use the Min() function with the Strict
option turned on. Insert the statement Option Strict On at the very beginning of the file, or
set Option Strict to On in the Compile tab of the project’s properties pages. The editor will
underline the statement that implements the Min() function: the IIf() function. The IIf()
function accepts two Object variables as arguments and returns one of them as its result. The
Strict option prevents the compiler from converting an Object to a numeric variable. To use the
IIf() function with the Strict option, you must change the Min implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object
Min = IIf(Val(a) < Val(b), a, b)

End Function

It’s possible to implement a Min() function that can compare arguments of all types (inte-
gers, strings, dates, and so on).

Argument-Passing Mechanisms
One of the most important topics in implementing your own procedures is the mechanism used
to pass arguments. The examples so far have used the default mechanism: passing arguments
by value. The other mechanism is passing them by reference. Although most programmers use
the default mechanism, it’s important to know the difference between the two mechanisms and
when to use each.

By Value versus by Reference

When you pass an argument by value, the procedure sees only a copy of the argument. Even
if the procedure changes this copy, the changes aren’t reflected in the original variable passed
to the procedure. The benefit of passing arguments by value is that the argument values are
isolated from the procedure and only the code segment in which they are declared can change
their values.

In VB 6, the default argument-passing mechanism was by reference, and this is something
you should be aware of, especially if you’re migrating VB 6 code to VB 2010.

To specify the arguments that will be passed by value, use the ByVal keyword in front of
the argument’s name. If you omit the ByVal keyword, the editor will insert it automatically
because it’s the default option. Suppose you’re creating a function called Degrees() to convert
temperatures from degrees Celsius to degrees Fahrenheit. To declare that the Degrees() function’s
argument is passed by value, use the ByVal keyword in the argument’s declaration as follows:

Function Degrees(ByVal Celsius as Single) As Single
Return((9 / 5) * Celsius + 32)

End Function

ARGUMENTS 109

To see what the ByVal keyword does, add a line that changes the value of the argument in
the function:

Function Degrees(ByVal Celsius as Single) As Single
Dim Fahrenheit = (9 / 5) * Celsius + 32
Celsius = 0
Return Fahrenheit

End Function

Now call the function as follows:

Dim CTemp As Single = InputBox("Enter temperature in degrees Celsius")
Dim FTemp As Single = Degrees(CTemp)
MsgBox(CTemp.ToString & " degrees Celsius are " &

FTemp & " degrees Fahrenheit")

If you enter the value 32, the following message is displayed:

32 degrees Celsius are 89.6 degrees Fahrenheit

The value you specify in the InputBox is stored in the CTemp variable, which is then passed
to the Degrees() function. The function’s return value is then stored in the FTemp variable,
which is then used to display the result to the user. Replace the ByVal keyword with the ByRef
keyword in the function’s definition and call the function with the same statements; the pro-
gram will display the following message:

0 degrees Celsius are 89.6 degrees Fahrenheit

When the CTemp argument was passed to the Degrees() function, its value was 32. But the
function changed its value, and upon return it was 0. Because the argument was passed by ref-
erence, any changes made by the procedure affected the calling code’s variable that was passed
into the function.

Returning Multiple Values

If you want to write a function that returns more than a single result, you will most likely
pass additional arguments by reference and set their values from within the function’s code.
The CalculateStatistics() function, shown a little later in this section, calculates the basic
statistics of a data set. The values of the data set are stored in an array, which is passed
to the function by reference. The CalculateStatistics() function must return two
values: the average and standard deviation of the data set. Here’s the declaration of the
CalculateStatistics() function:

Function CalculateStatistics(ByRef Data() As Double,
ByRef Avg As Double, ByRef StDev As Double) As Integer

The declaration of a procedure is basically its signature; it includes all the information you
need in order to use the procedure in your call. Of course, you have to know what the various
arguments represent, but this is where the documentation comes in. It’s also possible to add

110 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

a short description for each argument, which will appear in the IntelliSense box, as with the
built-in procedures. You’ll learn how to automate the documentation of your procedures in the
last section of this chapter. The function returns an integer, which is the number of values in
the data set. The two important values calculated by the function are returned in the Avg and
StDev arguments:

Function CalculateStatistics(ByRef Data() As Double,
ByRef Avg As Double, ByRef StDev As Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer
points = Data.Length
For i = 0 To points - 1

sum = sum + Data(i)
sumSqr = sumSqr + Data(i) ˆ 2

Next
Avg = sum / points
StDev = System.Math.Sqrt(sumSqr / points – Avg ˆ 2)
Return(points)

End Function

To call the CalculateStatistics() function from within your code, set up an array of Dou-
bles and declare two variables that will hold the average and standard deviation of the data set:

Dim Values() = {102.301, 391.200, 19.29, 179.42, 88.031, 208.01}
Dim average, deviation As Double
Dim points As Integer
points = CalculateStatistics(Values, average, deviation)
Debug.WriteLine(points & " values processed.")
Debug.WriteLine("The average is " & average.ToString & " and ")
Debug.WriteLine("the standard deviation is " & deviation.ToString)

The simplest method for a function to effectively return multiple values is to pass to it argu-
ments by reference using the ByRef keyword. However, the definition of your functions might
become cluttered, especially if you want to return more than a few values. Another problem
with this technique is that it’s not clear whether an argument must be set before calling the
function. As you will see shortly, it is possible for a function to return an array or a custom
structure with fields for any number of values.

A Note on Refactoring Code

A relatively new term in computer programming, refactoring, refers to rewriting a piece of
code using procedures. As developers, we tend to insert a lot of code in applications. We start
coding a simple operation, and once we get it to work, we realize that we can improve it or
add more features to it. The result is a procedure that keeps growing. It doesn’t take a rocket
scientist to realize that large segments of code are hard to understand and even harder to
maintain. That’s why there are tools that allow us to break large procedures into smaller ones.
The process isn’t automatic, of course. As soon as you realize that a procedure has gotten too
long, you can select segments of it and implement them as procedures: You move the code

ARGUMENTS 111

into a procedure and insert a call to the procedure in the code’s place. The process isn’t trivial
because you need to pass arguments to the procedure. Refactoring tools do just that: They
remove a code segment from a routine and use it to create a new routine. I won’t discuss
refactoring tools in this book, but you should know that help is available when you decide to
reorganize your code.

Built-in Functions
VB provides many functions that implement common or complicated tasks, and you can
look them up in the documentation. (You’ll find them in the Visual Studio � Visual Basic �
Reference � Functions branch of the contents tree in the Visual Studio documentation.) There
are functions for the common math operations, functions to perform calculations with dates
(these are truly complicated operations), financial functions, and many more. When you use
the built-in functions, you don’t have to know how they work internally — just how to call
them and how to retrieve the return value.

The Pmt() function, for example, calculates the monthly payments on a loan. All you have to
know is the arguments you must pass to the function and how to retrieve the result. The syntax
of the Pmt() function is as follows, where MPay is the monthly payment, Rate is the monthly
interest rate, and NPer is the number of payments (the duration of the loan in months). PV is
the loan’s present value (the amount you took from the bank):

MPay = Pmt(Rate, NPer, PV, FV, Due)

Due is an optional argument that specifies when the payments are due (the beginning or the
end of the month), and FV is another optional argument that specifies the future value of an
amount. This isn’t needed in the case of a loan, but it can help you calculate how much money
you should deposit each month to accumulate a target amount over a given time. (The amount
returned by the Pmt() function is negative because it’s a negative cash flow — it’s money you
owe — so pay attention to the sign of your values.)

To calculate the monthly payment for a $20,000 loan paid off over a period of six years at a
fixed interest rate of 7.25%, you call the Pmt() function, as shown in Listing 3.10.

Listing 3.10: Using the Pmt() built-in function

Dim mPay, totalPay As Double
Dim Duration As Integer = 6 * 12
Dim Rate As Single = (7.25 / 100) / 12
Dim Amount As Single = 20000
mPay = -Pmt(Rate, Duration, Amount)
totalPay = mPay * Duration
MsgBox("Your monthly payment will be " & mPay.ToString("C") &

vbCrLf & "You will pay back a total of " &
totalPay.ToString("C"))

112 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

Notice that the interest (7.25%) is divided by 12 because the function requires the monthly
interest. The value returned by the function is the monthly payment for the loan specified with
the Duration, Amount, and Rate variables. If you place the preceding lines in the Click event
handler of a button, run the project, and then click the button, the following message will
appear in a message box:

Your monthly payment will be $343.39
You will pay back a total of $24,723.80

Let’s say you want to accumulate $40,000 over the next 15 years by making monthly
deposits of equal amounts. To calculate the monthly deposit amount, you must call the Pmt()
function, passing 0 as the present value and the target amount as the future value. Replace the
statements in the button’s Click event handler with the following and run the project:

Dim mPay As Double
Dim Duration As Integer = 15 * 12
Dim Rate As Single = (4.0 / 100.0) / 12
Dim Amount As Single = -40000.0
mPay = Pmt(Rate, Duration, 0, Amount)
MsgBox("A monthly deposit of " & mPay.ToString("C") & vbCrLf &

"every month will yield $40,000 in 15 years")

It turns out that if you want to accumulate $40,000 over the next 15 years to send your kid to
college, assuming a constant interest rate of 4%, you must deposit $162.54 every month. You’ll
put out almost $30,000, and the rest will be the interest you earn.

Pmt() is one of the simpler financial functions provided by the Framework, but most of us
would find it really difficult to write the code for this function. Because financial calculations
are quite common in business programming, many of the functions you might need already
exist, and all you need to know is how to call them. If you’re developing financial applications,
you should look up the financial functions in the documentation. You can experiment with the
Pmt() function (and learn the basics of banking) by finding out the monthly payments for a
loan and an investment of the same amount and same duration, using the current interest rates.

Let’s look at another useful built-in function, the MonthName() function, which accepts as an
argument a month number and returns the name of the month. This function is not as trivial
as you might think because it returns the month name or its abbreviation in the language of
the current culture. The MonthName() function accepts as arguments the month number and a
True/False value that determines whether it will return the abbreviation or the full name of the
month. The following statements display the name of the current month (both the abbreviation
and the full name). Every time you execute these statements, you will see the current month’s
name in the current language:

Dim mName As String
mName = MonthName(Now.Month, True)
MsgBox(mName) ‘ prints "Jan"
mName = MonthName(Now.Month, False)
MsgBox(mName) ‘ prints "January"

A similar function, the WeekDayName() function, returns the name of the week for a specific
weekday. This function accepts an additional argument that determines the first day of the

ARGUMENTS 113

week. (See the documentation for more information on the syntax of the WeekDayName()
function.)

The primary role of functions is to extend the functionality of the language. Many functions
that perform rather common practical operations have been included in the language, but they
aren’t nearly enough for the needs of all developers or all types of applications. Besides the
built-in functions, you can write custom functions to simplify the development of your custom
applications, as explained in the following section.

Custom Functions
Most of the code we write is in the form of custom functions or subroutines that are called
from several places in the application. Subroutines are just like functions except that they don’t
return a value, so we’ll focus on the implementation of custom functions. With the exception of
a function’s return value, everything else presented in this and the following section applies to
subroutines as well.

Let’s look at an example of a fairly simple (but not trivial) function that does something
useful. Books are identified by a unique international standard book number (ISBN), and every
application that manages books needs a function to verify the ISBN, which is made up of 12
digits followed by a check digit. To calculate the check digit, you multiply each of the 12 digits
by a constant; the first digit is multiplied by 1, the second digit is multiplied by 3, the third
digit by 1 again, the fourth digit by 3, and so on. The sum of these multiplications is then
divided by 10, and we take the remainder. The check digit is this remainder subtracted from
10. To calculate the check digit for the ISBN 978078212283, compute the sum of the following
products:

9 * 1 + 7 * 3 + 8 * 1 + 0 * 3 + 7 * 1 + 8 * 3 +
2 * 1 + 1 * 3 + 2 * 1 + 2 * 3 + 8 * 1 + 3 * 3 = 99

The sum is 99; when you divide it by 10, the remainder is 9. The check digit is 10 – 9, or 1, and
the book’s complete ISBN is 9780782122831. The ISBNCheckDigit() function, shown in Listing
3.11, accepts the 12 digits of the ISBN as an argument and returns the appropriate check digit.

Listing 3.11: The ISBNCheckDigit() custom function

Function ISBNCheckDigit(ByVal ISBN As String) As String
Dim i As Integer, chksum As Integer = 0
Dim chkDigit As Integer
Dim factor As Integer = 3
For i = 0 To 11

factor = 4 - factor
chksum += factor * Convert.ToInt16(ISBN.SubString(i, 1))

Next
Return (10 - (chksum Mod 10)).ToString

End Function

The ISBNCheckDigit() function returns a string value because ISBNs are handled as strings,
not numbers. (Leading zeros are important in an ISBN but are totally meaningless, and omitted,
in a numeric value.) The SubString method of a String object extracts a number of characters

114 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

from the string to which it’s applied. The first argument is the starting location in the string,
and the second is the number of characters to be extracted. The expression ISBN.SubString(i,
1) extracts one character at a time from the ISBN string variable. During the first iteration of the
loop, it extracts the first character; during the second iteration, it extracts the second character;
and so on.

The extracted character is a numeric digit stored as a character, which is converted to its
numeric value and then multiplied by the factor variable value. The result is added to the
chkSum variable. This variable is the checksum of the ISBN. After it has been calculated, we
divide it by 10 and take its remainder (the Mod operator returns the remainder of this division),
which we subtract from 10. This is the ISBN’s check digit and the function’s return value.

You can use this function in an application that maintains a book database to make sure all
books are entered with a valid ISBN. You can also use it with a web application that allows
viewers to request books by their ISBN. The same code will work with two different applica-
tions, and you can even pass it to other developers. Developers using your function don’t have
to know how the check digit is calculated, just how to call the function and retrieve its result.
In Chapter 8, ‘‘Working with Objects,’’ you’ll learn how to package this function as a method
so that other developers can use it without having access to your code. They will be able to call
it to calculate an ISBN’s check digit, but they won’t be able to modify the function’s code.

To test the ISBNCheckDigit() function, start a new project, place a button on the form, and
enter the following statements in its Click event handler (or open the ISBN project in the folder
with this chapter’s sample projects at www.sybex.com/go/masteringvb2010):

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Console.WriteLine("The check Digit is " &
ISBNCheckDigit("978078212283"))

End Sub

After inserting the code of the ISBNCheckDigit() function and the code that calls the func-
tion, your code editor should look like Figure 3.1. You can place a TextBox control on the form
and pass the Text property of the control to the ISBNCheckDigit() function to calculate the
check digit.

Figure 3.1

Calling the
ISBNCheckDigit()
function

ARGUMENTS 115

A similar algorithm is used for calculating the check digit of credit cards: the Luhns algo-
rithm. You can look it up on the Internet and write a custom function for validating credit card
numbers.

Passing Arguments and Returning Values
So far, you’ve learned how to write and call procedures with a few simple arguments and
how to retrieve the function’s return value and use it in your code. This section covers a few
advanced topics on argument-passing techniques and how to write functions that return multi-
ple values, arrays of values, and custom data types.

Passing an Unknown Number of Arguments

Generally, all the arguments that a procedure expects are listed in the procedure’s definition,
and the program that calls the procedure must supply values for all arguments. On occasion,
however, you might not know how many arguments will be passed to the procedure. Proce-
dures that calculate averages or, in general, process multiple values can accept from a few
to several arguments whose count is not known at design time. Visual Basic supports the
ParamArray keyword, which allows you to pass a variable number of arguments to a proce-
dure. There are situations where you might not know in advance whether a procedure will
be called with two or two dozen arguments, and this is where the ParamArray comes in very
handy because it allows you to pass an array with any number of arguments.

Let’s look at an example. Suppose that you want to populate a ListBox control with ele-
ments. To add a single item to the ListBox control, you call the Add method of its Items col-
lection as follows:

ListBox1.Items.Add("new item")

This statement adds the string new item to the ListBox1 control. If you frequently add
multiple items to a ListBox control from within your code, you can write a subroutine that
performs this task. The following subroutine adds a variable number of arguments to the
ListBox1 control:

Sub AddNamesToList(ByVal ParamArray NamesArray() As Object)
Dim x As Object
For Each x In NamesArray

ListBox1.Items.Add(x)
Next x

End Sub

This subroutine’s argument is an array prefixed with the keyword ParamArray. This array
holds all the parameters passed to the subroutine. If the parameter array holds items of the
same type, you can declare the array to be of the specific type (string, integer, and so on). To
add items to the list, call the AddNamesToList() subroutine as follows:

AddNamesToList("Robert", "Manny", "Renee", "Charles", "Madonna")

If you want to know the number of arguments actually passed to the procedure, use the Length
property of the parameter array. The number of arguments passed to the AddNamesToList()
subroutine is given by the following expression:

NamesArray.Length

116 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

The following loop goes through all the elements of the NamesArray array and adds them to
the list (this is an alternate implementation of the AddNamesToList subroutine):

Dim i As Integer
For i = 0 to NamesArray.Length

ListBox1.Items.Add(NamesArray(i))
Next i

A procedure that accepts multiple arguments relies on the order of the arguments. To omit
some of the arguments, you must use the corresponding comma. Let’s say you want to call
such a procedure and specify the first, third, and fourth arguments. The procedure must be
called as follows:

ProcName(arg1, , arg3, arg4)

The arguments to similar procedures are frequently of equal stature, and their order doesn’t
make any difference. A function that calculates the mean or other basic statistics of a set of
numbers, or a subroutine that populates a ListBox or ComboBox control, is prime candidates
for this type of implementation. If the procedure accepts a variable number of arguments that
aren’t equal in stature, you should consider the technique described in the following section. If
the function accepts a parameter array, the parameter array must be the last argument in the
list, and none of the other parameters can be optional.

Named Arguments

You learned how to write procedures with optional arguments and how to pass a variable
number of arguments to the procedure. The main limitation of the argument-passing mecha-
nism, though, is the order of the arguments. By default, Visual Basic matches the values passed
to a procedure to the declared arguments by their order (which is why the arguments you’ve
seen so far are called positional arguments).

This limitation is lifted by Visual Basic’s capability to understand named arguments. With
named arguments, you can supply arguments in any order because they are recognized by
name and not by their order in the list of the procedure’s arguments. Suppose you’ve written a
function that expects three arguments: a name, an address, and an email address:

Sub CreateContact(Name As String, Address As String, EMail As String)

Presumably, this subroutine creates a new contact with the specified data, but right now
we’re not interested in the implementation of the function, just how to call it. When calling this
subroutine, you must supply three strings that correspond to the arguments Name, Address,
and EMail, in that order. You can call this subroutine as follows:

CreateContact("Peter Evans", "2020 Palm Ave., Santa Barbara, CA 90000",
"PeterEvans@example.com")

However, there’s a safer way. You can call it by supplying the arguments in any order by their
names:

CreateContact(Address:= "2020 Palm Ave., Santa Barbara, CA 90000",
EMail:= "PeterEvans@example.com", Name:= "Peter Evans")

ARGUMENTS 117

The := operator assigns values to the named arguments. Because the arguments are passed by
name, you can supply them in any order.

To test this technique, enter the following subroutine declaration in a form’s code:

Sub CreateContact(ByVal Name As String, ByVal Address As String,
ByVal EMail As String)

Debug.WriteLine(Name)
Debug.WriteLine(Address)
Debug.WriteLine(EMail)

End Function

Then call the CreateContact() subroutine from within a button’s Click event with the fol-
lowing statement:

Debug.WriteLine(
CreateContact(Address:= "2020 Palm Ave., Santa Barbara, CA 90000",

Name:= "Peter Evans", EMail:= "PeterEvans@example.com"))

You’ll see the following in the Immediate window:

Peter Evans
2020 Palm Ave., Santa Barbara, CA 90000
PeterEvans@example.com

The subroutine knows which value corresponds to which argument and can process them
the same way that it processes positional arguments. Notice that the subroutine’s definition
is the same, whether you call it with positional or named arguments. The difference is in how
you call the subroutine and not how you declare it.

Named arguments make code safer and easier to read, but because they require a lot of
typing, most programmers don’t use them. Besides, when IntelliSense is on, you can see the
definition of the function as you enter the arguments, and this minimizes the chances of swap-
ping two values by mistake.

Functions Returning Arrays

In addition to returning custom data types, VB 2010 functions can return arrays. This is an
interesting possibility that allows you to write functions that return not only multiple values,
but also any number of values.

In this section, we’ll write the Statistics() function, similar to the CalculateStatistics()
function you saw a little earlier in this chapter. The Statistics() function returns the statistics
in an array. Moreover, it returns not only the average and the standard deviation, but the
minimum and maximum values in the data set as well. One way to declare a function that
calculates all the statistics is as follows:

Function Statistics(ByRef DataArray() As Double) As Double()

118 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

This function accepts an array with the data values and returns an array of Doubles. To
implement a function that returns an array, you must do the following:

1. Specify a type for the function’s return value and add a pair of parentheses after the type’s
name. Don’t specify the dimensions of the array to be returned here; the array will be
declared formally in the function.

2. In the function’s code, declare an array of the same type and specify its dimensions. If the
function should return four values, use a declaration like this one:

Dim Results(3) As Double

The Results array, which will be used to store the results, must be of the same type as the
function — its name can be anything.

3. To return the Results array, simply use it as an argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

Dim Statistics() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Statistics(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the
Statistics() function. Your code can then retrieve each element of the array with an index
value as usual.

Overloading Functions
There are situations in which the same function must operate on different data types or a dif-
ferent number of arguments. In the past, you had to write different functions, with different
names and different arguments, to accommodate similar requirements. The Framework intro-
duced the concept of function overloading, which means that you can have multiple implemen-
tations of the same function, each with a different set of arguments and possibly a different
return value. Yet all overloaded functions share the same name. Let me introduce this concept
by examining one of the many overloaded functions that comes with the .NET Framework.

The Next method of the System.Random class returns a random integer value from
–2,147,483,648 to 2,147,483,647. (This is the range of values that can be represented by the
Integer data type.) We should also be able to generate random numbers in a limited range of
integer values. To emulate the throw of a die, we want a random value in the range from 1 to
6, whereas for a roulette game we want an integer random value in the range from 0 to 36.
You can specify an upper limit for the random number with an optional integer argument. The
following statement will return a random integer in the range from 0 to 99:

randomInt = rnd.Next(100)

ARGUMENTS 119

You can also specify both the lower and upper limits of the random number’s range. The
following statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

To use the Random class in your code, you must create a variable of this type and then call
its methods:

Dim rnd As New Math.Random
MsgBox(rnd.Next(1, 6))

The same method behaves differently based on the arguments we supply. The behavior of
the method depends on the type of the arguments, the number of the arguments, or both. As
you will see, there’s no single function that alters its behavior based on its arguments. There are
as many different implementations of the same function as there are argument combinations.
All the functions share the same name, so they appear to the user as a single multifaceted func-
tion. These functions are overloaded, and you’ll see how they’re implemented in the following
section.

If you haven’t turned off the IntelliSense feature of the editor, as soon as you type the open-
ing parenthesis after a function or method name, you’ll see a yellow box with the syntax of the
function or method. You’ll know that a function, or a method, is overloaded when this box con-
tains a number and two arrows. Each number corresponds to a different overloaded form, and
you can move to the next or previous overloaded form by clicking the two little arrows or by
pressing the arrow keys.

Let’s return to the Min() function we implemented earlier in this chapter. The initial imple-
mentation of the Min() function is shown next:

Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = IIf(a < b, a, b)

End Function

By accepting Double values as arguments, this function can handle all numeric types. VB
2010 performs automatic widening conversions (it can convert Integers and Decimals to Dou-
bles), so this trick makes the function work with all numeric data types. However, what about
strings? If you attempt to call the Min() function with two strings as arguments, you’ll get a
compiler error. The Min() function just can’t handle strings.

To write a Min() function that can handle both numeric and string values, you must write
two Min() functions. All Min() functions must be prefixed with the Overloads keyword. The
following statements show two different implementations of the same function, one for num-
bers and another one for strings:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = Convert.ToDouble(IIf(a < b, a, b))

End Function

Overloads Function Min(ByVal a As String, ByVal b As String) As String
Min = Convert.ToString(IIf(a < b, a, b))

End Function

120 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

You need a third overloaded form of the same function to compare dates. If you call the
Min() function, passing as an argument two dates as in the following statement, the Min()
function will compare them as strings and return (incorrectly) the first date:

Debug.WriteLine(Min(#1/1/2011#, #3/4/2010#))

This statement is not even valid when the Strict option is on, so you clearly need another over-
loaded form of the function that accepts two dates as arguments, as shown here:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date
Min = Convert.ToDateTime(IIf(a < b, a, b))

End Function

If you now call the Min() function with the dates #1/1/2011# and #3/4/2010#, the func-
tion will return the second date, which is chronologically smaller than the first. Assuming that
you have inserted the three forms of the Min() function in your code as shown in Figure 3.2,
as soon you enter the name of the function, the IntelliSense box will display the first form of
the function. Click the buttons with the arrows to see the other ones and select the appropri-
ate form.

Figure 3.2

(Top) The implementa-
tion of three overloaded
forms of a function.
(Bottom) The three over-
loaded forms of the
Min() function in the
IntelliSense list.

If you’re wondering about the Convert.ToDateTime method, it’s used because the IIf()
function returns a value of the Object type. Each of the overloaded forms of the Min() function,
however, has a specific type. If the Strict option is on (the recommended setting), you should
make sure the function returns the appropriate type by converting the result of the IIf() func-
tion to the corresponding type, as shown in the preceding Min() examples.

VB2010 at Work: The OverloadedFunctions Project

Let’s look into a more complicated overloaded function, which makes use of some topics dis-
cussed later in this book. The CountFiles() function that follows counts the number of files
in a folder that meet certain criteria. The criteria could be the size of the files, their type, or the
date they were created. You can come up with any combination of these criteria, but the follow-
ing are the most useful combinations. (These are the functions I would use, but you can create

ARGUMENTS 121

even more combinations or introduce new criteria of your own.) The names of the arguments
are self-descriptive, so I won’t explain what each form of the CountFiles() function does.

CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date) As Integer
CountFiles(ByVal type As String) As Integer
CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer,

ByVal type As String) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date,

ByVal type As String) As Integer

Listing 3.12 shows an implementation of these overloaded forms of the CountFiles() func-
tion. (I’m not showing all overloaded forms of the function; you can open the Overloaded-
Functions project in the IDE and examine the code.) Because we haven’t discussed file oper-
ations yet, most of the code in the function’s body will be new to you — but it’s not hard to
follow. For the benefit of readers who are totally unfamiliar with file operations, I included a
statement that prints in the Immediate window the type of files counted by each function. The
Debug.WriteLine statement prints the values of the arguments passed to the function along
with a description of the type of search it will perform. The overloaded form that accepts two
integer values as arguments prints something like this:

You’ve requested the files between 1000 and 100000 bytes

The overloaded form that accepts a string as an argument prints the following:

You’ve requested the .EXE files

Listing 3.12: The overloaded implementations of the CountFiles() function

Overloads Function CountFiles(
ByVal minSize As Integer, ByVal maxSize As Integer) As Integer

Debug.WriteLine("You’ve requested the files between " &
minSize & " and " & maxSize & " bytes")

Dim files() As String
files = System.IO.Directory.GetFiles("c:\windows")
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.Length >= minSize And FI.Length <= maxSize Then

fileCount = fileCount + 1
End If

Next
Return(fileCount)

End Function

Overloads Function CountFiles(

122 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

ByVal fromDate As Date, ByVal toDate As Date) As Integer
Debug.WriteLine("You’ve requested the count of files created from " &

fromDate & " to " & toDate)
Dim files() As String
files = System.IO.Directory.GetFiles("c:\windows")
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.CreationTime.Date >= fromDate And

FI.CreationTime.Date <= toDate Then
fileCount = fileCount + 1

End If
Next
Return(fileCount)

End Function

Overloads Function CountFiles(ByVal type As String) As Integer
Debug.WriteLine("You’ve requested the " & type & " files")
‘ Function Implementation

End Function

Overloads Function CountFiles(
ByVal minSize As Integer, ByVal maxSize As Integer,
ByVal type As String) As Integer

Debug.WriteLine("You’ve requested the " & type &
" files between " & minSize & " and " &
maxSize & " bytes")

‘ Function implementation
End Function

Overloads Function CountFiles(
ByVal fromDate As Date,
ByVal toDate As Date, ByVal type As String) As Integer

Debug.WriteLine("You’ve requested the " & type &
" files created from " & fromDate & " to " & toDate)

‘ Function implementation
End Function

If you’re unfamiliar with the Directory and File objects, focus on the statement that prints
to the Immediate window and ignore the statements that actually count the files that meet
the specified criteria. After reading the tutorial ‘‘Accessing Folders and Files,’’ published at
www.sybex.com/go/masteringvb2010, you can revisit this example and understand the state-
ments that select the qualifying files and count them.

Start a new project and enter the definitions of the overloaded forms of the function on the
form’s level. Listing 3.12 is lengthy, but all the overloaded functions have the same structure
and differ only in how they select the files to count. Then place a TextBox and a button on the
form, as shown in Figure 3.3, and enter a few statements that exercise the various overloaded

ARGUMENTS 123

forms of the function (such as the ones shown in Listing 3.13) in the button’s Click event
handler.

Listing 3.13: Testing the overloaded forms of the CountFiles() function

Private Sub Button1_Click(…) Handles Button1.Click
TextBox1.AppendText(CountFiles(1000, 100000) &

" files with size between 1KB and 100KB" & vbCrLf)
TextBox1.AppendText(CountFiles(#1/1/2006#, #12/31/2006#) &

" files created in 2006" & vbCrLf)
TextBox1.AppendText(CountFiles(".BMP") & " BMP files" & vbCrLf)
TextBox1.AppendText(CountFiles(1000, 100000, ".EXE") &

" EXE files between 1 and 100 KB" & vbCrLf)
TextBox1.AppendText(CountFiles(#1/1/2006#, #12/31/2007#, ".EXE") &

" EXE files created in 2006 and 2007")
End Sub

Figure 3.3

The OverloadedFunc-
tions project

The button calls the various overloaded forms of the CountFiles() function one after the
other and prints the results on the TextBox control. From now on, I’ll be omitting the list of
arguments in the most common event handlers, such as the Click event handler, because
they’re always the same and they don’t add to the readability of the code. In place of the two
arguments, I’ll insert an ellipsis to indicate the lack of the arguments.

Function overloading is used heavily throughout the language. There are relatively few
functions (or methods, for that matter) that aren’t overloaded. Every time you enter the
name of a function followed by an opening parenthesis, a list of its arguments appears in the
drop-down list with the arguments of the function. If the function is overloaded, you’ll see a
number in front of the list of arguments, as shown in Figure 3.4. This number is the order of

124 CHAPTER 3 VISUAL BASIC PROGRAMMING ESSENTIALS

the overloaded form of the function, and it’s followed by the arguments of the specific form
of the function. The figure shows all the forms of the CountFiles() function.

Figure 3.4

The overloaded forms
of the CountFiles()
function

Documenting Functions

When working with overloaded functions and methods, you need as much help from the editor
as possible because there are many arguments taken in total. You can document each argument
of each overloaded form with a short description that will be displayed in the IntelliSense box
as the user enters the argument values for the selected form, as shown in Figure 3.4. The same
techniques apply to all functions, of course, not just to overloaded functions. While you can get
by without documenting functions that are not overloaded, it’s almost a necessity when work-
ing with overloaded functions. To document a function, enter three single quotes in an empty
line of the editor, just before the function’s definition. As soon as you type the third quote, the
editor will insert a boilerplate for the function as follows:

''' <summary>
'''
''' </summary>
''' <param name="fromDate"></param>
''' <param name="toDate"></param>
''' <param name="type"></param>
''' <returns></returns>
''' <remarks></remarks>

Enter any comments about the function in the summary section, even notes to yourself about
future improvements, desired but not implemented features, and so on. There’s a param section
for each of the arguments where you must insert a short description regarding each argument.
This is the description that will appear in the IntelliSense drop-down list as the user enters each
argument. Finally, in the returns section you must enter the function’s description, which will
be also displayed in the IntelliSense list. Here’s the documentation of one of the overloaded
forms of the CountFiles method:

''' <summary>
'''
''' </summary>

THE BOTTOM LINE 125

''' <param name="minSize">The minimum size of the file to be included
in the search</param>

''' <param name="maxSize">The maximum size of the file to be included
in the search</param>

''' <param name="type">The number of files of the specified type</param>
''' <returns>The number of files with a size in a given range

and of a specific type</returns>
''' <remarks></remarks>

The Bottom Line

Use Visual Basic’s flow-control statements Visual Basic provides several statements for con-
trolling the flow of control in a program: decision statements, which change the course of exe-
cution based on the outcome of a comparison, and loop statements, which repeat a number of
statements while a condition is true or false.

Master It Explain briefly the decision statements of Visual Basic.

Write subroutines and functions To manage large applications, break your code into small,
manageable units. These units of code are the subroutines and functions. Subroutines perform
actions and don’t return any values. Functions, on the other hand, perform calculations and
return values. Most of the language’s built-in functionality is in the form of functions.

Master It How will you create multiple overloaded forms of the same function?

Pass arguments to subroutines and functions Procedures and functions communicate with
one another via arguments, which are listed in a pair of parentheses following the procedure’s
name. Each argument has a name and a type. When you call a procedure, you must supply
values for each argument, and the types of the values should match the types listed in the pro-
cedure’s definition.

Master It Explain the difference between passing arguments by value and passing argu-
ments by reference.

Part 2

Developing Windows
Applications
◆ Chapter 4: GUI Design and Event-Driven Programming

◆ Chapter 5: Basic Windows Controls

◆ Chapter 6: Working with Forms

◆ Chapter 7: More Windows Controls

Chapter 4

GUI Design and Event-Driven
Programming

The first three chapters of this book introduced you to the basics of designing applications with
Visual Studio 2010 and the components of the Visual Basic language. You know how to design
graphical user interfaces (GUIs) and how to use Visual Basic statements to program events for
the various controls. You also know how to write functions and subroutines and how to call
the functions and subroutines that are built into Visual Basic.

In this chapter, you’ll design a few more Windows applications — this time, a few practical
applications with more functional interfaces and a bit of code that does something more prac-
tical. You’ll put together the information presented so far in the book by building Windows
applications with the visual tools of Visual Studio, and you’ll see how the applications interact
with users by coding the events of interest. If you are new to Visual Studio, you should design
the examples on your own using the instructions in the text rather than open the projects for
this chapter (available for download at www.sybex.com/go/masteringvb2010) and look at
the code.

In this chapter, you will learn how to do the following:

◆ Design graphical user interfaces

◆ Program events

◆ Write robust applications with error handling

On Designing Windows Applications
As you recall from Chapter 1, ‘‘Getting Started with Visual Basic 2010,’’ the design of a Win-
dows application consists of two distinct phases: the design of the application’s interface and
the coding of the application. The design of the interface is performed with visual tools and
consists of creating a form with the relevant elements. These elements are the building blocks
of Windows applications and are called controls.

The available controls are shown in the Toolbox and are the same elements used by all Win-
dows applications. You can purchase additional controls from third-party vendors or create
your own custom controls. After you install third-party or custom controls, they will appear
in the Toolbox alongside the built-in controls. In addition to being visually rich, the controls
embed a lot of functionality. The TextBox control, for example, can handle text on its own,

130 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

without any programming effort on your part. The ComboBox control expands the list with its
items when users click the arrow button and displays the selected item in its edit box. In gen-
eral, the basic functionality of the controls is built in by design so that all applications maintain
a consistent look.

The interface dictates how users will interact with your application. To prompt users for
text or numeric data, use TextBox controls. When it comes to specifying one or more of several
options, you have many choices: You can use a ComboBox control from which users can select
an option, or you can put a few CheckBox controls on a form that users can select or clear. If
you want to display a small number of mutually exclusive options, place a few RadioButton
controls on the form. Every time the user selects an option, the previously selected one is
cleared. To initiate actions, place one or more Button controls on the form. You will learn
more about basic Windows controls and their properties in Chapter 5, ‘‘The Basic Windows
Controls.’’

Controls expose a large number of properties, which are displayed in the Properties window
at design time. You use these properties to adjust not only the appearance of the controls on
the form but their functionality as well. The process of designing the interface consists mostly
of setting the properties of the various controls. By the way, you can also set the properties of
controls through code. The code will take effect in runtime. You will see some examples of such
code in the next chapter.

An important aspect of the design of your application’s user interface is the alignment of the
controls on the form. Controls that are next to one another should be aligned horizontally. Con-
trols that are stacked should have either their left or right edges aligned vertically. You should
also make sure the controls are spaced equally. The integrated development environment (IDE)
provides all the tools for sizing, aligning, and spacing controls on the form, and you’ll see these
tools in action through examples in this chapter.

By designing the interface you have practically outlined how the application will interact
with the user. The next step is to actually implement the interaction by writing some code. The
programming model of Visual Basic is event driven: As the user interacts with the controls on
your form, some code is executed in response to user actions. The user’s actions cause events,
and each control recognizes its own set of events and handles them through subroutines, which
are called event handlers. When users click a button, the control’s Click event is fired, and you
must insert the relevant code in the control’s Click event handler. The event-driven program-
ming model has proven very successful because it allows developers to focus on handling spe-
cific actions. It allows you to break a large application into smaller, manageable units of code
and implement each unit of code independently of any other.

Developing Windows applications is a conceptually simple process, but there’s a methodol-
ogy to it and it’s not trivial. Fortunately, the IDE provides many tools to simplify the process;
it will even catch most of the errors in your code as you type. You have seen how to use some
of the tools of the IDE in the first three chapters. In this chapter, I’ll present these tools through
examples.

Building a Loan Calculator
One easy-to-implement, practical application is a program that calculates loan parameters.
Visual Basic provides built-in functions for performing many types of financial calculations,
and you need only a single line of code to calculate the monthly payment given the loan
amount, its duration, and the interest rate. Designing the user interface, however, takes much
more effort.

BUILDING A LOAN CALCULATOR 131

Regardless of the language you use, you must go through the following process to develop
an application:

1. Decide what the application will do and how it will interact with the user.

2. Design the application’s user interface according to the requirements of step 1.

3. Write the actual code behind the events you want to handle.

Using Prototypes to Capture Application Requirements

A prototype is an incomplete version of an application that simulates some aspects of applica-
tion functionality. The prototype is created by using constant or hard-coded values to supplant
values the program should calculate in runtime. For example, a prototype for the Loan Calcu-
lator application (see Figure 4.1) might display the form with all of the controls necessary for
loan calculation. However, when the user presses the Monthly Payment button, the value that
appears in the Monthly Payment text box would always be the same hard-coded value and
would not vary with input from the other controls.

Most commonly, prototypes are used to simulate the user interface. The purpose of the proto-
type is to get the customer’s approval on the appearance and functionality of an application.
Instead of reading documentation or analyzing drawings of the interface, users can actually
try out the application. This often facilitates user feedback in early application development
stages. Some prototypes are throw-away applications while others can be evolved further into
fully functional applications. Visual Basic is well known for its rapid prototyping features.

Understanding How the Loan Calculator Application Works
Following the first step of the process outlined previously, you decide that the user should be
able to specify the amount of the loan, the interest rate, and the duration of the loan in months.
You must, therefore, provide three text boxes in which the user can enter these values.

Another parameter affecting the monthly payment is whether payments are made at the
beginning or at the end of each month, so you must also provide a way for the user to spec-
ify whether the payments will be early (first day of the month) or late (last day of the month).
The most appropriate type of control for entering Yes/No or True/False type of information
is the CheckBox control. This control is a toggle: If it’s selected, you can clear it by clicking it;
if it’s cleared, you can select it by clicking again. The user doesn’t enter any data in this con-
trol (which means you need not anticipate user errors with this control), and it’s the simplest
method for specifying values with two possible states.

Figure 4.1 shows a user interface that matches our design specifications. This is the main
form of the LoanCalculator project, which you will find in this chapter’s folder on the book’s
project download site.

The user enters all the information on the form and then clicks the Monthly Payment button
to calculate the monthly payment. The program will calculate the monthly payment and dis-
play it in the lower TextBox control. All the action takes place in the Monthly Payment button’s
Click event handler.

132 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

Figure 4.1

LoanCalculator is a sim-
ple financial application.

To calculate the monthly payments on a loan, we call the built-in Pmt () function, whose
syntax is as follows:

MonthlyPayment = Pmt(InterestRate, Periods, Amount, FutureValue, Due)

The Pmt () Function

Here’s how the Pmt () function works. The interest rate, argument InterestRate, is spec-
ified as a monthly rate. If the annual interest rate is 14.5 percent, the value entered by the
user in the Interest Rate box should be 14.5. The user will express the rate as a percentage,
but the function accepts the decimal value. To convert percentage to a decimal value, you
need to multiply the annual percentage rate by 0.01. Finally, since this is the annual rate and
you need a monthly value, you need to divide the value by 12. The mathematical expression
for converting the annual interest rate specified by the user to a monthly interest rate accepted
by the Pmt() function is: 0.01 * annualInterestRate / 12. In this example, with a 14.5
annual rate, the monthly rate will be 0.145/12. The duration of the loan, the Periods argu-
ment, is specified in number of months, and the Amount argument is the total loan amount.
The FutureValue argument is the value of the loan at the end of the period, which should
be zero (it would be a positive value for an investment), and the last argument, Due, specifies
when payments are due. The value of Due can be one of the constants DueDate.BegOfPeriod
and DueDate.EndOfPeriod. These two constants are built into the language, and you can use
them without knowing their exact value.

The present value of the loan is the amount of the loan with a negative sign. It’s negative
because you don’t have the money now. You’re borrowing it — it is money you owe to the
bank. Future value represents the value of something at a stated time — in this case, what
the loan will be worth when it’s paid off. This is what one side owes the other at the end
of the specified period. So the future value of a loan is zero.

You don’t need to know how the Pmt () function calculates the monthly payment, just how to
call it and how to retrieve the results. To calculate the monthly payment on a loan of $25,000
with an interest rate of 14.5 percent, payable over 48 months and payments due the last day of
the payment period (which in this case is a month), you’d call the Pmt() function as follows:

Pmt(0.145 / 12, 48, -25000, 0, DueDate.EndOfPeriod)

BUILDING A LOAN CALCULATOR 133

The Pmt() function will return the value 689.448821287218. Because it’s a dollar amount,
you must round it to two decimal digits on the interface. Notice the negative sign in front of
the Amount argument in the statement. If you specify a positive amount, the result will be
a negative payment. The payment and the loan’s amount have different signs because they
represent different cash flows. The loan’s amount is money you owe to the bank, whereas the
payment is money you pay to the bank.

The last two arguments of the Pmt() function are optional. The Parameter Info feature of
the IntelliSense autocompletion system built into Visual Studio will indicate optional param-
eters by placing them inside the square brackets in the Parameter Info pop-up window, as
shown here.

If you omit optional parameters, Visual Basic uses their default values, which are 0 for the
FutureValue argument and DueDate.BegOfPeriod for the Due argument. You can entirely
omit these arguments and call the Pmt() function like this:

Pmt(0.145 / 12, 48, -25000)

Calculating the amount of the monthly payment given the loan parameters is quite simple.
For this exercise, what you need to understand are the parameters of a loan and how to pass
them to the Pmt() function. You must also know how the interest rate is specified to avoid
invalid values. Although the calculation of the payment is trivial, designing the interface will
take a bit of effort. You need to make sure the interface is easily understood and intuitive.
When the user is confronted with the application, they should be able to guess easily what
the application is doing and how they can interact with it. The application should also behave
according to the principle of least surprise. For example, if the user presses the Tab button,
they expect that focus of the controls will move from right to left or from top to bottom. Also,
the user will expect the application to perform basic data validation. If the application detects
invalid data, the user will expect that the focus will be set on the control containing the invalid
value so that they can immediately correct the entered value. These are just a few example
characteristics of well-behaved applications.

If you wish to learn more about GUI guidelines that Microsoft recommends for applications
running on Windows 7 and Windows Vista, you can download the ‘‘Windows User Experience
Interaction Guidelines’’ PDF file from MSDN. You will find the download link at the following
URL: http://msdn.microsoft.com/en-us/library/aa511258.aspx.

Designing the User Interface
Now that you know how to calculate the monthly payment and understand the basics of good
interface design, you can design your own user interface. To do so, start a new Windows Forms
project, name it LoanCalculator, and rename its form to frmLoan. Your first task is to decide
the font and size of the text you’ll use for the controls on the form. The form is the container

134 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

for the controls, and they receive some of the form’s properties, such as the font. You can
change the font later during the design, but it’s a good idea to start with the right font. At any
rate, don’t try to align the controls if you’re planning to change their fonts. The change will,
most likely, throw off your alignment efforts.

The book’s sample project uses the 10-point Verdana font. To change it, select the form with
the mouse, double-click the name of the Font property in the Properties window to open the
Font dialog box, and select the desired font and attributes. I use the Verdana and Seago fonts
a lot because they’re clean and they were designed for viewing on monitors. Of course, this is
a personal choice. Avoid elaborate fonts and don’t mix different fonts on the same form (or in
different forms of the same application).

To design the form shown in Figure 4.1, follow these steps:

1. Place four labels on the form and assign the captions (the Text property of each control)
listed in Table 4.1 to them.
You don’t need to change the default names of the four Label controls on the form because
their captions are all you need. You aren’t going to add any code to them.

2. Place a TextBox control next to each label. Use the information in Table 4.2 to set the Name
and Text property values. I used meaningful names for the TextBox controls because we’ll
use them in our code shortly to retrieve the values entered by the user on these controls.
These initial values correspond to a loan of $25,000 with an interest rate of 14.5 percent and
a payoff period of 48 months.

Table 4.1: LoanCalulator label captions

Name Text

Label1 Amount

Label2 Duration (months)

Label3 Interest Rate (annual)

Label4 Monthly Payment

Table 4.2: LoanCalulator TextBox control names and default value text

Name Text

txtAmount 25000

txtDuration 48

txtRate 14.5

txtPayment

BUILDING A LOAN CALCULATOR 135

3. The fourth TextBox control is where the monthly payment will appear. The user isn’t sup-
posed to enter any data in this box, so set the ReadOnly property to True to lock the con-
trol and prevent users from entering data. You’ll be able to change its value from within
your code, but users won’t be able to type anything in it. (We could have used a Label
control instead, but the uniform look of TextBoxes on a form is usually preferred.) You
will also notice that the TextBox controls have a 3D frame. Experiment with the control’s
BorderStyle property to discover the available styles for the control’s frame (I’ve used the
Fixed3D setting for the TextBox controls).

4. Next, place a CheckBox control on the form. By default, the control’s caption is CheckBox1,
and it appears to the right of the check box. Because we want the titles to be to the left of the
corresponding controls, we’ll change this default appearance.

5. Select the check box with the mouse, and in the Properties window locate the CheckAlign
property. Its value is MiddleLeft. If you expand the drop-down list by clicking the arrow
button, you’ll see that this property has many different settings, and each setting is shown
as a square. Select the button that will center the text vertically and right-align it horizon-
tally. The string MiddleRight will appear in the Properties window when you click the
appropriate button.

6. With the check box selected, locate the Name property in the Properties window, and set it
to chkPayEarly.

7. Change the CheckBox’s caption by entering the string Early Payment in its Text property
field.

8. Place a Button control in the bottom-left corner of the form. Name it bttnShowPayment, and
set its Text property to Monthly Payment.

9. Finally, place another Button control on the form, name it bttnExit, and set its Text prop-
erty to Exit.

Aligning the Controls

Your next step is to align the controls on the form. The IDE provides commands to align the
controls on the form, all of which can be accessed through the Format menu. To align the con-
trols that are already on the form, follow these steps:

1. Select the four labels on the form. The handles of all selected controls will be black except
for one control whose handles will be white. To specify the control that will be used as a
reference for aligning the other controls, click it after making the selection. (You can select
multiple controls either by using the mouse to draw a rectangle that encloses them or by
clicking each control while holding down the Ctrl button.)

2. With the four text boxes selected, choose Format � Align � Lefts to left-align them. Don’t
include the check box in this selection.

3. Resize the CheckBox control. Its left edge should align with the left edges of the Label con-
trols, and its right edge should align with the right edges of the Label controls. In case
the resizing markers do not appear on the CheckBox control, set the value of its AutoSize
property to False.

4. Select all the Label and the CheckBox controls and choose Format � Vertical Spacing
�Make Equal. This action will space the controls vertically. Then align the baseline of

136 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

each TextBox control with the baseline of the matching Label control. To do so, move each
TextBox control with the mouse until you see a magenta line that connects the baseline of
the TextBox control you’re moving and that of the matching Label control.

Your form should now look like the one shown in Figure 4.1. Take a good look at it and
make sure no controls are misaligned. In the interface design process, you tend to overlook
small problems such as a slightly misaligned control. The user of the application, however,
instantly spots such mistakes.

Programming the Loan Application
Now you’ve created the interface, run the application, and seen how it behaves. Next you’ll
enter a few values in the text boxes, change the state of the check box, and test the function-
ality already built into the application. Clicking the Monthly Payment button won’t have any
effect because we have not yet added any code. If this were a prototype you were building for
a customer, you would add a statement in the Monthly Payment button to display a random
value in the Monthly Payment box.

When you double-click the control for the first time, Visual Studio will generate an empty
default event handler declaration for you. Next time you double-click the control, Visual Studio
will bring you to the event handler. If you’re happy with the user interface, stop the applica-
tion, open the form, and double-click the Monthly Payment Button control. Visual Basic opens
the code window and displays the definition of the ShowPayment_Click event:

Private Sub bttnShowPayment_Click(...) Handles
bttnPayment.Click

Because all Click event handlers have the same signature (they provide the same two argu-
ments), I’ll be omitting the list of arguments from now on. Actually, all event handlers have
two arguments, and the first of them is always the control that fired the event. The type of the
second argument differs depending on the type of the event. Place the pointer between the lines
Private Sub and End Sub, and enter the rest of the lines of Listing 4.1. (You don’t have to reen-
ter the first and last lines that declare the event handler.)

Listing 4.1: The Code behind the Monthly Payment button

Private Sub bttnShowPayment_Click(ByVal (…)
Handles bttnShowPayment.Click

Dim Payment As Double
Dim LoanIRate As Double
Dim LoanDuration As Integer
Dim LoanAmount As Integer

LoanAmount = Convert.ToInt32(txtAmount.Text)
LoanIRate = 0.01 * Convert.ToDecimal(txtRate.Text) / 12
LoanDuration = Convert.ToInt32(txtDuration.Text)
Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod

BUILDING A LOAN CALCULATOR 137

Else
payEarly = DueDate.EndOfPeriod

End If
Payment = Pmt(LoanIRate, LoanDuration, -LoanAmount, 0, payEarly)
txtPayment.Text = Payment.ToString("#.00")

End Sub

The code window should now look like the one shown in Figure 4.2. In previous versions
of Visual Basic, you would use the underscore character at the end of the first part of the long
line. For the most part, this is no longer necessary; Visual Basic in Visual Studio 2010 supports
implicit line continuations. I’m using implicit line continuations in this book a lot to fit long
lines on the printed page. The same statement you see as multiple lines in the book may appear
in a single, long line in the project.

Figure 4.2

The Show Payment
button’s Click event
handler

You don’t have to break long lines manually as you enter code in the editor’s window. Open
the Edit menu and choose Advanced � Word Wrap. The editor will wrap long lines automati-
cally. While the word wrap feature is on, a check mark appears in front of the Edit � Advanced
� Word Wrap command. To turn off word wrapping, select the same command again.

Enumeration Types

Enumerations are a special kind of type in Visual Basic language used to define a set of log-
ically related unchanging literal values. A typical example for an enumeration is DayOfWeek
that contains members for each day of the week (DayOfWeek.Monday, DayOfWeek.Tuesday,
and so on). Enumerations are declared with the Enum keyword, in following fashion:

138 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

Public Enum DayOfWeek
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

End Enum

By using Enum instead of simple constant literal values, you add type safety to your applica-
tion. For example, if you define the function that has a day as the DayOfWeek parameter, as
in TicketPrice(movie as Movie, day as DayOfWeek) as Decimal, the code that is calling
the function will have to pass a value defined in the DayOfWeek enum as a parameter, as in
following statement:

Dim price = TicketPrice(avatarMovie, DayOfWeek.Saturday)

Had you defined the days of the week names as constants, as in following code, you would not
be able to perform type checking:

Const Monday As String = "Monday"
Const Tuesday As String = "Tuesday"
Const Wednesday As String = "Wednesday"
’ …

Had you no Enum construct in Visual Basic, you would have to resort to constants. When you
use constants, the TicketPrice function would have to declare the day parameter as String,
meaning that when invoking the function, you could pass just any String value. Using the
Enum type, however, you know that value belongs to predefined enumeration.

In Listing 4.1, the first line of code within the subroutine declares a variable. It lets the appli-
cation know that Payment is a variable for storing a floating-point number (a number with a
decimal part) — the Double data type. The line before the If statement declares a variable of
the DueDate type. This is the type of argument that determines whether the payment takes
place at the beginning or the end of the month. The last argument of the Pmt() function must
be a variable of this type, so we declare a variable of the DueDate type. As mentioned earlier in
this chapter, DueDate is an enumeration with two members: BegOfPeriod and EndOfPeriod.

The first really interesting statement in the subroutine is the If statement that examines
the value of the chkPayEarly CheckBox control. If the control is selected, the code sets the
payEarly variable to DueDate.BegOfPeriod. If not, the code sets the same variable to
DueDate.EndOfPeriod. The ComboBox control’s Checked property returns True if the control
is selected at the time and False otherwise. After setting the value of the payEarly variable, the
code calls the Pmt() function, passing the values of the controls as arguments:

◆ The first argument is the interest rate. The value entered by the user in the txtRate
TextBox is multiplied by 0.01 so that the value 14.5 (which corresponds to 14.5 percent)
is passed to the Pmt() function as 0.145. Although we humans prefer to specify interest

BUILDING A LOAN CALCULATOR 139

rates as integers (8 percent) or floating-point numbers larger than 1 (8.24 percent), the
Pmt() function expects to read a number that’s less than 1. The value 1 corresponds to 100
percent. Therefore, the value 0.1 corresponds to 10 percent. This value is also divided by 12
to yield the monthly interest rate.

◆ The second argument is the duration of the loan in months (the value entered in the
txtDuration TextBox).

◆ The third argument is the loan’s amount (the value entered in the txtAmount TextBox).

◆ The fourth argument (the loan’s future value) is 0 by definition.

◆ The last argument is the payEarly variable, which is set according to the status of the chk-
PayEarly control.

The last statement in Listing 4.1 converts the numeric value returned by the Pmt() function
to a string and displays this string in the fourth TextBox control. The result is formatted appro-
priately with the following expression:

Payment.ToString("#.00")

The Payment variable is numeric, and all numeric variables provide the method ToString,
which formats the numeric value and converts it to a string. The character # stands for the
integer part of the variable. The period separates the integer from the fractional part, which
is rounded to two decimal digits. The Pmt() function returns a precise number, such as
372.2235687646345, and you should round it to two decimal digits and format it nicely before
displaying it. For more information on formatting numeric (and other) values, see the section
‘‘Formatting Numbers’’ in Chapter 2, ‘‘VB Programming Essentials.’’ Finally, the formatted
string is assigned to the Text property of the TextBox control on the form.

A Code Snippet for Calculating Monthly Loan Payments

If you didn’t know about the Pmt() built-in function, how would you go about calculating
loan payments? Code snippets to the rescue!

1. Right-click somewhere in the code window, and from the context menu, choose the Insert
Snippet command.

2. Double-click the Fundamentals folder to see another list of items.

3. This time, double-click the Math folder and then select the snippet Calculate a Monthly Payment
on a Loan.

The following code will be inserted at the location of the pointer:

Dim futureValue As Double = 0
Dim payment As Double
payment1 = Pmt(0.05 / 12, 36, -1000, futureValue, DueDate.EndOfPeriod)

140 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

The snippet demonstrates the use of the Pmt() function. All you have to do is replace the val-
ues of the various parameters with the data from the appropriate controls on the form.

If you don’t know how to use the arguments of the Pmt() function, start editing the func-
tion’s arguments and you will see their description in the usual tooltip box, as with all
built-in functions.

The code of the LoanCalculator sample project is a bit different and considerably longer
than what I have presented here. The statements discussed in the preceding text are the bare
minimum for calculating a loan payment. The user can enter all kinds of unreasonable values
on the form and cause the program to crash. In the next section, you’ll see how you can
validate the data entered by the user, catch errors, and handle them gracefully (that is, give the
user a chance to correct the data and proceed) as opposed to terminating the application with
a runtime error.

Validating the Data
If you enter a non-numeric value in one of the fields, the program will crash and display an
error message. For example, if you enter twenty in the Duration text box, the program will dis-
play the error message shown in Figure 4.3. A simple typing error can crash the program. This
isn’t the way Windows applications should work. Your applications must be able to handle all
kinds of user errors, provide helpful messages, and in general, guide the user in running the
application efficiently. If a user error goes unnoticed, your application will either end abruptly
or will produce incorrect results without an indication.

Figure 4.3

The FormatException
error message means
that you supplied a
string where a numeric
value was expected.

Visual Basic will take you back to the application’s code window in which the statements
that caused the error will be highlighted in green. Obviously, we must do something about user
errors. One way to take care of typing errors is to examine each control’s contents; if the con-
trols don’t contain valid numeric values, display your own descriptive message and give the
user another chance. Listing 4.2 is the revised Click event handler that examines the value of
each text box before attempting to use it in any calculations.

Listing 4.2: Revised Show Payment button

Private Sub bttnShowPayment_Click(...) Handles bttnPayment.Click
Dim Payment As Double

BUILDING A LOAN CALCULATOR 141

Dim LoanIRate As Double
Dim LoanDuration As Integer
Dim LoanAmount As Integer

‘ Validate amount
If IsNumeric(txtAmount.Text) Then

LoanAmount = Convert.ToInt32(txtAmount.Text)
Else

MsgBox("Invalid amount, please re-enter")
txtAmount.Focus()
txtAmount.SelectAll()
Exit Sub

End If
‘ Validate interest rate
If IsNumeric(txtRate.Text) Then

LoanIRate = 0.01 * Convert.ToDouble(txtRate.Text) / 12
Else

MsgBox("Invalid interest rate, please re-enter")
txtRate.Focus()
txtRate.SelectAll()
Exit Sub

End If
‘ Validate loan’s duration
If IsNumeric(txtDuration.Text) Then

LoanDuration = Convert.ToInt32(txtDuration.Text)
Else

MsgBox("Please specify the loan’s duration as a number of months")
txtDuration.Focus()
txtDuration.SelectAll()
Exit Sub

End If
‘ If all data were validated, proceed with calculations
Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod
Else

payEarly = DueDate.EndOfPeriod
End If
Payment = Pmt(LoanIRate, LoanDuration, -LoanAmount, 0, payEarly)
txtPayment.Text = Payment.ToString("#.00")

End Sub

First, we declare three variables in which the loan’s parameters will be stored: LoanAmount,
LoanIRate, and LoanDuration. These values will be passed to the Pmt() function as argu-
ments. Each text box’s value is examined with an If structure. If the corresponding text box
holds a valid number, its value is assigned to the numeric variable. If not, the program dis-
plays a warning and exits the subroutine without attempting to calculate the monthly pay-
ment. Before exiting the subroutine, however, the code moves the focus to the text box with

142 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

the invalid value and selects the text in the textbox because this is the control that the user will
most likely edit. After fixing the incorrect value, the user can click the Show Payment button
again. IsNumeric() is another built-in function that accepts a variable and returns True if the
variable is a number and False otherwise.

You can run the revised application and check it out by entering invalid values in the fields.
Notice that you can’t specify an invalid value for the last argument; the CheckBox control won’t
let you enter a value. You can only select or clear it, and both options are valid. The actual cal-
culation of the monthly payment takes a single line of Visual Basic code. Displaying it requires
another line of code. Adding the code to validate the data entered by the user, however, is an
entire program. And that’s the way things are.

Writing Well-Behaved Applications

Well-behaved applications must contain data-validation code. If an application such as Loan-
Calculator crashes because of a typing mistake, nothing really bad will happen. The user will
try again or else give up on your application and look for a more professional one. However, if
the user has been entering data for hours, the situation is far more serious. It’s your responsi-
bility as a programmer to make sure that only valid data are used by the application and that
the application keeps working, no matter how the user misuses or abuses it.

Our sample application is not typical because it calculates the result with a single function
call, but in developing typical business applications, you must write a substantial amount
of code to validate user input. The reason for validating user input is to control inputs to your
code so that you can ensure that it behaves correctly and that you can provide specific error
messages to help the user identify the error and correct it.

You will notice that the sample applications included in this book don’t contain much
data-validation code, because it would obscure the ‘‘useful’’ code that applies to the topic at
hand. Instead, they demonstrate specific techniques. You can use parts of the examples in your
applications, but you should provide your own data-validation code (and error-handling code,
as you’ll see in a moment).

Now run the application one last time and enter an enormous loan amount. Try to find
out what it would take to pay off the national debt with a reasonable interest rate in, say, 72
months. The program will crash again (as if you didn’t know). This time the program will go
down with a different error message, as shown in Figure 4.4. Visual Basic will complain about
an overflow. The exact message is Value was either too large or too small for an Int32, and the pro-
gram will stop at the line that assigns the contents of the txtAmount TextBox to the LoanAmount
variable. Press the Break button and the offending statement in the code will be highlighted.

An overflow is a numeric value too large for the program to handle. This error is usually
produced when you divide a number by a very small value. When you attempt to assign a very
large value to an Integer variable, you’ll also get an overflow exception.

Actually, in the LoanCalculator application, any amount greater than 2,147,483,647 will
cause an overflow condition. This is the largest value you can assign to an Integer variable;
it’s plenty for our banking needs but not nearly adequate for handling government deficits.

BUILDING A LOAN CALCULATOR 143

As you learned in Chapter 2, Visual Basic provides other types of variables, which can store
enormous values (making the national debt look really small). In the meantime, if you want
the loan calculator to be truly useful, change the declaration of the LoanAmount variable to the
following:

Dim LoanAmount As Double

Figure 4.4

Very large values can
cause the application to
crash and display this
error message.

The Double data type can hold much larger values. Besides, the Double data type can also
hold non-integer values. Not that anyone will ever apply for a loan of $25,000 and some cents,
but if you want to calculate the precise monthly payment for a debt you have accumulated,
you should be able to specify a non-integer amount. In short, I should have declared the
LoanAmount variable with the Double data type in the first place. By the way, there’s another
integer type, the Long data type, which can hold much larger integer values.

An overflow error can’t be caught with data-validation code. There’s always a chance that
your calculations will produce overflows or other types of math errors. Data validation won’t
help here; you just don’t know the result before you carry out the calculations. You need some-
thing called error handling, or exception handling. This is additional code that can handle errors
after they occur. In effect, you’re telling VB that it shouldn’t stop with an error message, which
would be embarrassing for you and wouldn’t help the user one bit. Instead, VB should detect
the error and execute the proper statements to handle the error. Obviously, you must supply
these statements. (You’ll see examples of handling errors at runtime shortly.)

The sample application works as advertised, and it’s fail-safe. Yet there’s one last touch
you can add to the application. The various values on the form are not always in synch. Let’s
say you’ve calculated the monthly payment for a specific loan and then you want to change
the duration of the loan to see how it affects the monthly payment. As soon as you change the
duration of the loan, and before you click the Monthly Payment button, the value in the
Monthly Payment box doesn’t correspond to the parameters of the loan. Ideally, the monthly
payment should be cleared as soon as the user starts editing one of the loan’s parameters. To
do so, you must insert a statement that clears the txtPayment control. But what’s the proper

144 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

event handler for this statement? The TextBox control fires the TextChanged event every time
its text is changed, and this is the proper place to execute the statement that clears the monthly
payment on the form. Because there are three TextBox controls on the form, you must program
the TextChanged event of all three controls or write an event handler inside the frmLoan class
that handles all three events:

Private Sub txtAmount_TextChanged(ByVal (…) Handles
txtAmount.TextChanged, txtDuration.TextChanged,
txtRate.TextChanged

txtPayment.Clear()
End Sub

Yes, you can write a common handler for multiple events, as long as the events are of the
same type and they’re all listed after the Handles keyword. You’ll see another example of
the same technique in the following sample project.

One of the sample projects for this chapter is a revised version of the LoanCalculator project,
the LoanCalculator-Dates project, which uses a different interface. Instead of specifying the
duration of the loan in months, this application provides two instances of the DateTimePicker
control, which is used to specify dates. Delete the TextBox control and the corresponding Labels
and insert two new Label controls and two DateTimePicker controls on the form. Name the
DateTimePicker controls dtFrom and dtTo. Users can set the loan’s starting and ending dates
on these two controls and the program calculates the duration of the loan in months with the
following statement:

LoanDuration = DateDiff(DateInterval.Month,
dtFrom.Value, dtTo.Value) + 1

The DateDiff() function returns the difference between two dates in the interval supplier
as the first argument to the function. The rest of the code doesn’t change; as long as the
LoanDuration variable has the correct value, the same statements will produce the correct
result. If you open the project, you’ll find a few more interesting statements that set the dtFrom
control to the first date of the selected month and the dtTo control to the last date of the
selected month.

Building a Calculator
This next application is more advanced, but it’s not as advanced as it looks. It’s a calculator
with a typical visual interface that demonstrates how Visual Basic can simplify the program-
ming of fairly advanced operations. If you haven’t tried it, you may think that writing an appli-
cation such as this one is way too complicated for a beginner, but it isn’t. The MathCalculator
application is shown in Figure 4.5.

The application emulates the operation of a handheld calculator and implements basic arith-
metic operations. It has the look of a math calculator, and you can easily expand it by adding
more features. In fact, adding features such as cosines and logarithms is actually simpler than
performing the basic arithmetic operations. This interface will also give you a chance to exercise
most of the tools of the IDE for aligning and spacing the controls on a form.

BUILDING A CALCULATOR 145

Figure 4.5

The calculator applica-
tion window

Designing the User Interface
The application’s interface is straightforward, but it takes a bit of effort. You must align the but-
tons on the form and make the calculator look as much like a handheld calculator as possible.
Start a new Windows Forms project, the MathCalculator project, and rename the main form
from Form1.vb to frmCalculator.vb.

Designing the interface of the application isn’t trivial because it’s made up of many buttons,
all perfectly aligned on the form. To simplify the design, follow these steps:

1. Select a font that you like for the form. All the command buttons you’ll place on the form
will inherit this font. The MathCalculator sample application uses 10-point Verdana font.
I’ve used a size of 12 points for the Period button because the 10-point period was too small
and very near the bottom of the control.

2. Add the Label control, which will become the calculator’s display. Set its BorderStyle
property to Fixed3D so that it will have a 3D look, as shown in Figure 4.5. Change its
ForeColor and BackColor properties too, if you want it to look different from the rest of
the form. The sample project uses colors that emulate the — now extinct — green CRT
monitors. Name the Label control lblDisplay.

3. Draw a Button control on the form, change its Text property to 1, and name it bttn1. Size
the button carefully so that its caption is centered on the control. The other buttons on the
form will be copies of this one, so make sure you’ve designed the first button as best as you
can before you start making copies of it. You can also change the button’s style with the
FlatStyle property. (You can experiment with the Popup, Standard, and System settings
for this property.)

4. Place the button in its final position on the form. At this point, you’re ready to create the
other buttons for the calculator’s digits. Right-click the button and choose Copy from the
context menu. The Button control is copied to the Clipboard, and now you can paste it on
the form (which is much faster than designing an identical button).

5. Right-click somewhere on the form, choose Paste, and the button copied to the Clipboard
will be pasted on the form. The copy will have the same caption as the button it was copied
from, and its name will be Button1.

6. Now set the button’s Name property to bttn2 and its Text property to 2. This button is the
digit 2. Place the new button to the right of the previous button. You don’t have to align the
two buttons perfectly now; later we’ll use the commands of the Format menu to align
the buttons on the form. As you move the control around on the form, one or more lines
may appear on the design surface at times. These lines are called snap lines, and they appear

146 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

as soon as a control is aligned (vertically or horizontally) with one or more of the existing
controls on the form. The snap lines allow you to align controls with the mouse. Blue snap
lines appear when the control’s edge is aligned with the edge of another control. Red
snap lines appear when the control’s baseline is aligned with the baseline of another
control. The baseline is the invisible line on which the characters of the control’s caption
are based.

7. Repeat steps 5 and 6 eight more times, once for each numeric digit. Each time a new Button
control is pasted on the form, Visual Basic names it Button1 and sets its caption to 1; you
must change the Name and Text properties. You can name the buttons anything you like,
but a name that indicates their role in the application is preferred.

8. When the buttons of the numeric digits are all on the form, place two more buttons, one
for the C (Clear) operation and one for the Period button. Name them bttnClear and
bttnDecimalPoint, and set their captions accordingly. Use a larger font size for the Period
button to make its caption easier to read.

9. When all the digit buttons of the first group are on the form and in their approximate posi-
tions, align them by using the commands of the Format menu. You can use the snap lines to
align horizontally and vertically the various buttons on the form, but you must still space
the controls manually, which isn’t a trivial task. Here’s how you can align the buttons per-
fectly via the Format menu:

a. First, align the buttons of the top row. Start by aligning the 1 button with the left side of
the lblDisplay Label. Then select all the buttons of the top row and make their hori-
zontal spacing equal (choose Format � Horizontal Spacing �Make Equal). Then do the
same with the buttons in the first column; this time, make sure their vertical distances
are equal (Format � Vertical Spacing �Make Equal).

b. Now you can align the buttons in each row and each column separately. Use one of the
buttons you aligned in the last step as the guide for the rest of them. The buttons can be
aligned in many ways, so don’t worry if somewhere in the process you ruin the align-
ment. You can always use the Undo command in the Edit menu. Select the three buttons
on the second row and align their tops by using the first button as a reference. To set the
anchor control for the alignment, click it with the mouse while holding down the Ctrl
key. Do the same for the third and fourth rows of buttons. Then do the same for the
four columns of buttons, using the top button as a reference.

10. Now, place the buttons for the arithmetic operations on the form — addition (+), subtrac-
tion (–), multiplication (*), and division (/). Name the addition button bttnPlus, the sub-
traction button bttnMinus, the multiplication button bttnMultiply, and the division but-
ton bttnDivide.

11. Finally, place the Equals button on the form, name it bttnEquals, and make it wide enough
to span the space of two operation buttons. Use the commands on the Format menu to align
these buttons, as shown in Figure 4.5. The form shown in Figure 4.5 has a few more buttons,
which you can align by using the same techniques you used to align the numeric buttons.

If you don’t feel quite comfortable with the alignment tools of the IDE, you can still position
the controls on the form through the x and y components of each control’s Location property.
(They’re the x- and y-coordinates of the control’s upper-left corner on the form.) The various
alignment tools are among the first tools of the IDE you’ll master, and you’ll be creating forms
with perfectly aligned controls in no time at all.

BUILDING A CALCULATOR 147

Programming the MathCalculator
Now you’re ready to add some code to the application. Double-click one of the digit buttons on
the form and you’ll see the following in the code window:

Private Sub bttn1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
bttn1.Click

End Sub

This is the Click event’s handler for a single digit button. Your first inclination might be
to program the Click event handler of each digit button, but repeating the same code 10 times
isn’t very productive. (Not to mention that if you decide to edit the code later, the process must
be repeated 10 times.) We’re going to use the same event handler for all buttons that represent
digits. All you have to do is append the names of the events to be handled by the same sub-
routine after the Handles keyword. You should also change the name of the event handler to
something that indicates its role. Because this subroutine handles the Click event for all the
digit buttons, let’s call it DigitClick(). Here’s the revised declaration of a subroutine that can
handle all the digit buttons:

Private Sub DigitClick(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttn0.Click, bttn1.Click, bttn2.Click,
bttn3.Click, bttn4.Click, bttn5.Click, bttn6.Click,
bttn7.Click, bttn8.Click, bttn9.Click

End Sub

You don’t have to type all the event names; as soon as you insert the first comma after
bttn0.Click, a drop-down list with the names of the controls will open and you can select the
name of the next button with the down arrow. Press the spacebar to select the desired control
(bttn1, bttn2, and so on), and then type the period. This time, you’ll see another list with the
names of the events for the selected control. Locate the Click event and select it by pressing
the spacebar. Type the next comma and repeat the process for all the buttons. This extremely
convenient feature of the language is IntelliSense: The IDE presents the available and valid
keywords as you type.

When you press a digit button on a handheld calculator, the corresponding digit is
appended to the display. To emulate this behavior, insert the following line in the Click event
handler:

lblDisplay.Text = lblDisplay.Text + sender.Text

This line appends the digit clicked to the calculator’s display. The sender argument of the
Click event represents the control that was clicked (the control that fired the event). The Text
property of this control is the caption of the button that was clicked. For example, if you have
already entered the value 345, clicking the digit 0 displays the value 3450 on the Label control
that acts as the calculator’s display.

The expression sender.Text is not the best method of accessing the Text property of the
button that was clicked, but it will work as long as the Strict option is off. As discussed in

148 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

Chapter 2, we must cast the sender object to a specific type (the Button type) and then call its
Text method:

CType(sender, Button).Text

The code behind the digit buttons needs a few more lines. After certain actions, the display
should be cleared. After one of the buttons that correspond to math operations is pressed, the
display should be cleared in anticipation of the second operand. Actually, the display must be
cleared as soon as the first digit of the second operand is pressed and not as soon as the math
operator button is pressed. Likewise, the display should also be cleared after the user clicks the
Equals button. Revise the DigitClick event handler, as shown in Listing 4.3.

Listing 4.3: The DigitClick event

Private Sub DigitClick(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles bttn1.Click, bttn2.Click, bttn3.Click,
bttn4.Click, bttn5.Click, bttn6.Click,
bttn7.Click, bttn8.Click, bttn9.Click

If clearDisplay Then
lblDisplay.Text = ""
clearDisplay = False

End If
lblDisplay.Text = lblDisplay.Text + sender.text

End Sub

The clearDisplay variable is declared as Boolean, which means it can take a True or False
value. Suppose the user has performed an operation and the result is on the calculator’s dis-
play. The user now starts typing another number. Without the If clause, the program would
continue to append digits to the number already on the display. This is not how calculators
work. When the user starts entering a new number, the display must be cleared. Our program
uses the clearDisplay variable to know when to clear the display.

The Equals button sets the clearDisplay variable to True to indicate that the display con-
tains the result of an operation. The DigitClick() subroutine examines the value of this vari-
able each time a new digit button is pressed. If the value is True, DigitClick() clears the
display and then prints the new digit on it. The subroutine also sets clearDisplay to False
so that when the next digit is pressed, the program won’t clear the display again.

What if the user makes a mistake and wants to undo an entry? The typical handheld calcula-
tor has no Backspace key. The Clear key erases the current number on the display. Let’s imple-
ment this feature. Double-click the C button and enter the code of Listing 4.4 in its Click event.

Listing 4.4: Programming the Clear button

Private Sub bttnClear_Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnClear.Click

lblDisplay.Text = ""
End Sub

BUILDING A CALCULATOR 149

Now we can look at the Period button. A calculator, no matter how simple, should be able
to handle fractional numbers. The Period button works just like the digit buttons, with one
exception. A digit can appear any number of times in a numeric value, but the decimal point
can appear only once. A number such as 99.991 is valid, but you must make sure the user can’t
enter numbers such as 23.456.55. After a decimal point is entered, this button must not insert
another one. The code in Listing 4.5 accounts for this.

Listing 4.5: Programming the Period button

Private Sub bttnDecimalPointClick(…) Handles bttnDecimalPoint.Click
If lblDisplay.Text.IndexOf(".") >= 0 Then

Exit Sub
Else

lblDisplay.Text = lblDisplay.Text & "."
End If

End Sub

IndexOf is a method that can be applied to any string. The expression lblDisplay.Text
is a string (the text on the Label control), so we can call its IndexOf method. The expression
lblDisplay.Text.IndexOf(".") returns the location of the first instance of the period in the
caption of the Label control. If this number is zero or positive, the number entered contains a
period already and another can’t be entered. In this case, the program exits the subroutine. If
the method returns –1, the period is appended to the number entered so far, just like a regular
digit.

Check out the operation of the application. We have already created a functional user inter-
face that emulates a handheld calculator with data-entry capabilities. It doesn’t perform any
operations yet, but we have already created a functional user interface with only a small num-
ber of statements.

Coding the Math Operations

Now we can move to the interesting part of the application: the coding of the math operations.
Let’s start by defining the three variables listed in Table 4.3.

Table 4.3: Math operation variable definitions

Variable Definition

Operand1 The first number in the operation

MathOperator The desired operation

Operand2 The second number in the operation

When the user clicks one of the math symbols, the application will store the value of the
operand in the variable Operand1. If the user then clicks the Plus button, the program must
make a note to itself that the current operation is an addition and set the clearDisplay

150 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

variable to True so that the user can enter another value (the second value to be added). The
symbol of the operation is stored in the MathOperator variable. The user enters another value
and then clicks the Equals button to see the result. At this point, your program must do the
following:

1. Read the value on the display into the Operand2 variable.

2. Perform the operation indicated by the MathOperator variable with the two operands.

3. Display the result and set the clearDisplay variable to True.

The Equals button must perform the following operation:

Operand1 MathOperator Operand2

Suppose the number on the display when the user clicks the Plus button is 3342. The user
then enters the value 23 and clicks the Equals button. The program must carry out the addition:
3342 + 23.

If the user clicks the Division button, the operation is as follows: 3342 ÷ 23.
Variables are local in the subroutines in which they are declared. Other subroutines have

no access to them and can’t read or set their values. Sometimes, however, variables must be
accessed from many places in a program. The variables Operand1, Operand2, and Operator,
as well as the clearDisplay variable, must be accessed from within more than one subrou-
tine, so they must be declared outside any subroutine; their declarations usually appear at the
beginning of the class code with the following statements:

Dim clearDisplay As Boolean
Dim Operand1 As Double
Dim Operand2 As Double
Dim MathOperator As String

These variables are called form-wide variables, or simply form variables, because they are visi-
ble from within any subroutine on the form. Let’s see how the program uses the MathOperator
variable. When the user clicks the Plus button, the program must store the value + in the
MathOperator variable. This takes place from within the Plus button’s Click event.

All variables that store numeric values are declared as variables of the Double type, which
can store values with the greatest possible precision. The Boolean type takes two values: True
and False. You have already seen how the clearDisplay variable is used.

With the variable declarations out of the way, we can now implement the operator but-
tons. Double-click the Plus button, and in the Click event’s handler, enter the lines shown in
Listing 4.6.

Listing 4.6: The Plus button

Private Sub bttnPlus_Click(ByVal (…) Handles bttnPlus.Click
Operand1 = Convert.ToDouble(lblDisplay.Text)
MathOperator = "+"
clearDisplay = True

End Sub

BUILDING A CALCULATOR 151

The variable Operand1 is assigned the value currently on the display. The Convert.
ToDouble() method converts its argument to a double value. The Text property of the
Label control is a string. The actual value stored in the Text property is not a number. It’s
a string such as 428, which is different from the numeric value 428. That’s why we use the
Convert.ToDouble method to convert the value of the Label’s caption to a numeric value.
The remaining buttons do the same, and I won’t show their listings here.

After the second operand is entered, the user can click the Equals button to calculate the
result. When this happens, the code of Listing 4.7 is executed.

Listing 4.7: The Equals button

Private Sub bttnEquals_Click(ByVal (…) Handles bttnEquals.Click
Dim result As Double
Operand2 = Convert.ToDouble(lblDisplay.Text)
Select Case MathOperator

Case "+"
result = Operand1 + Operand2

Case "-"
result = Operand1 - Operand2

Case "*"
result = Operand1 * Operand2

Case "/"
If Operand2 <> "0" Then

result = Operand1 / Operand2
End If

End Select
lblDisplay.Text = result.ToString
clearDisplay = True

End Sub

The result variable is declared as Double so that the result of the operation will be stored
with maximum precision. The code extracts the value displayed in the Label control and stores
it in the variable Operand2. It then performs the operation with a Select Case statement. This
statement compares the value of the MathOperator variable to the values listed after each Case
statement. If the value of the MathOperator variable matches one of the Case values, the fol-
lowing statement is executed.

Division takes into consideration the value of the second operand because if it’s zero, the
division can’t be carried out. The last statement carries out the division only if the divisor is
not zero. If Operand2 happens to be zero, nothing happens.

Now run the application and check it out. It works just like a handheld calculator, and you
can’t crash it by specifying invalid data. We didn’t have to use any data-validation code in this
example because the user doesn’t get a chance to type invalid data. The data-entry mechanism
is foolproof. The user can enter only numeric values because there are only numeric digits on
the calculator. The only possible error is to divide by zero, and that’s handled in the Equals
button.

Of course, users should be able to just type the numeric values; you shouldn’t force them
to click the digit buttons on the interface. To intercept keystrokes from within your code, you

152 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

must first set the form’s KeyPreview property to True. By default, each keystroke is reported
to the control that has the focus at the time and fires the keystroke-related events: the KeyDown,
KeyPress, and KeyUp events. Sometimes we need to handle certain keystrokes from a central
place, and we set the form’s KeyPreview property to True so that keystrokes are reported first
to the form and then to the control that has the focus. We can intercept the keystrokes in the
form’s KeyPress event and handle them in this event handler. Insert the statements shown in
Listing 4.8 in the form’s KeyPress event handler.

Listing 4.8: Handling keystrokes at the form’s level

Private Sub CalculatorForm_KeyPress(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles
Me.KeyPress

Select Case e.KeyChar
Case "1" : bttn1.PerformClick()
Case "2" : bttn2.PerformClick()
Case "3" : bttn3.PerformClick()
Case "4" : bttn4.PerformClick()
Case "5" : bttn5.PerformClick()
Case "6" : bttn6.PerformClick()
Case "7" : bttn7.PerformClick()
Case "8" : bttn8.PerformClick()
Case "9" : bttn9.PerformClick()
Case "0" : bttn0.PerformClick()
Case "." : bttnDecimalPoint.PerformClick()
Case "C", "c" : bttnClear.PerformClick()
Case "+" : bttnPlus.PerformClick()
Case "-" : bttnMinus.PerformClick()
Case "*" : bttnMultiply.PerformClick()
Case "/" : bttnDivide.PerformClick()
Case "=" : bttnEquals.PerformClick()

End Select
End Sub

This event handler examines the key pressed by the user and invokes the Click event han-
dler of the appropriate button by calling its PerformClick method. This method allows you to
‘‘click’’ a button from within your code. When the user presses the digit 3, the form’s KeyPress
event handler intercepts the keystrokes and emulates the click of the bttn3 button. Because the
large Select Case statement doesn’t handle characters and punctuation symbols, there’s no way
for the user to enter invalid digits when a number is expected.

Using the Basic Debugging Tools
Our sample applications work nicely and are quite easy to test and fix if you discover some-
thing wrong with them (but only because they’re very simple applications). As you write code,
you’ll soon discover that something doesn’t work as expected, and you should be able to find
out why and then fix it. The process of eliminating errors in logic — as opposed to errors in

BUILDING A CALCULATOR 153

syntax, which are caught by the compiler — is called debugging. Visual Studio provides the
tools to simplify the process of debugging. There are a few simple debugging techniques you
should know, even as you work with simple projects.

Open the MathCalculator project in the code editor and place the pointer in the line that
calculates the difference between the two operands. Let’s pretend there’s a problem with this
line and we want to follow the execution of the program closely to find out what’s going wrong
with the application. Press F9 and the line will be highlighted in brown. This line has become a
breakpoint: As soon as it is reached, the program will stop.

Another way to add a breakpoint is to use the Breakpoint option in the context menu. You
can display the context menu in the editor by right-clicking the line of code where you wish
the execution to stop. Finally, there is a special window in Visual Studio that displays break-
points. You can display the Breakpoints window by navigating to the Debug � Windows �
Breakpoints menu options in Visual Studio. In this window, you can see all the breakpoints in
the solution, deactivate and activate breakpoints, attach conditions and labels to breakpoints,
and even view some breakpoint-related statistics.

Visual Studio Function Keys and Keyboard Shortcuts

F9 is not the only useful function key or shortcut key combination available in Visual Studio.
The following list includes some of the function key commands and shortcut key combinations
you will find useful.

Function Key Command

F1 Context-Sensitive Help

F5 Run Application In Debug Mode

Shift + F5 Run Application Without Debugging

F7 Toggle Design View - Code View

F9 Toggle Breakpoint

F10 Step Over (while Debugging)

F11 Step Into (while Debugging)

F12 Go To Definition

Ctrl + , ‘‘Navigate To’’ Window

Ctrl + . Generate Code Stubs

Ctrl + Mouse Wheel Zoom In / Zoom Out In Code Window

Ctrl + Shift Highlight All Keyword References

Press F5 to run the application and perform a subtraction. Enter a number; click the minus
button and then another number, and finally, click the Equals button. The application will stop,
and the code editor will open. The breakpoint will be highlighted in yellow. You’re still in
runtime mode, but the execution of the application is suspended. You can even edit the code in
break mode and then press F5 to continue the execution of the application. Hover the pointer
over the Operand1 and Operand2 variables in the code editor’s window. The value of the

154 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

corresponding variable will appear in a small ToolTip box. Move the pointer over any variable
in the current event handler to see its value. These are the values of the variables just prior to
the execution of the highlighted statement.

The result variable is zero because the statement hasn’t been executed yet. If the variables
involved in this statement have their proper values (if they don’t, you know that the problem
is prior to this statement and perhaps in another event handler), you can execute this statement
by pressing F10, which executes only the highlighted statement. The program will stop at the
next line. The next statement to be executed is the End Select statement.

Find an instance of the result variable in the current event handler, rest the pointer over it,
and you will see the value of the variable after it has been assigned a value. Now you can press
F10 to execute another statement or press F5 to return to normal execution mode.

You can also evaluate expressions involving any of the variables in the current event han-
dler by entering the appropriate statement in the Immediate window. The Immediate window
appears at the bottom of the IDE. If it’s not visible, open the Debug menu and choose Windows
� Immediate. The current line in the command window is prefixed with the greater-than
symbol (reminiscent of the DOS days). Place the cursor next to it and enter the following
statement:

? Operand1 / Operand2

The quotient of the two values will appear in the following line. The question mark is just a
shorthand notation for the Print command.

If you want to know the current value on the calculator’s display, enter the following
statement:

? lblDisplay.Text

This statement requests the value of a control’s property on the form. The current value of the
Label control’s Text property will appear in the following line.

You can also evaluate math expressions with statements such as the following:

? Math.Log(3/4)

Log() is the logarithm function and a method of the Math class. With time, you’ll discover
that the Immediate window is a handy tool for debugging applications. If you have a state-
ment with a complicated expression, you can request the values of the expression’s individual
components and make sure they can be evaluated.

Now move the pointer over the breakpoint and press F9 again. This will toggle the
breakpoint status, and the execution of the program won’t halt the next time this statement is
executed.

If the execution of the program doesn’t stop at a breakpoint, it means that the statement is
never reached. In this case, you must search for the bug in statements that are executed before
the breakpoint is reached. Chances are that the statement that was not reached was in an If
statement that wasn’t executed, or in a subroutine that has never been called. For example,
if you didn’t assign the proper value to the MathOperator variable, the Case clause for the sub-
traction operation will never be reached. You should place the breakpoint at the first executable
statement of the Click event handler for the Equals button to examine the values of all vari-
ables the moment this subroutine starts its execution. If all variables have the expected values,

BUILDING A CALCULATOR 155

you will continue testing the code forward. If not, you’d have to test the statements that lead to
this statement — the statements in the event handlers of the various buttons.

Another simple technique for debugging applications is to print the values of certain
variables in the Immediate window. Although this isn’t a debugging tool, it’s common
practice among VB programmers. Many programmers print the values of selected variables
before and after the execution of some complicated statements. To do so, use the statement
Debug.WriteLine followed by the name of the variable you want to print, or an expression:

Debug.WriteLine(Operand1)

This statement sends its output to the Immediate window. This is a simple technique, but it
works. You can also use it to test a function or method call. If you’re not sure about the syntax
of a function, pass an expression that contains the specific function to the Debug.WriteLine
statement as an argument. If the expected value appears in the Immediate window, you can go
ahead and use it in your code.

In the project’s folder, you will find the MoreFeatures.txt document, which describes how
to add more features to the math calculator. Such features include the inversion of a number
(the 1/x button), the negation of a number (the +/– button), and the usual math functions (log-
arithms, square roots, trigonometric functions, and so on).

Exception Handling
Crashing this application won’t be as easy as crashing the LoanCalculator application. If you
start multiplying very large numbers, you won’t get an overflow exception. Enter a very large
number by repeatedly typing the digit 9; then multiply this value with another equally large
value. When the result appears, click the multiplication symbol and enter another very
large value. Keep multiplying the result with very large numbers until you exhaust the value
range of the Double data type (that is, until the result is so large that it can’t be stored to a
variable of the Double type). When this happens, the string infinity will appear in the display.
This is Visual Basic’s way of telling you that it can’t handle very large numbers. This isn’t a
limitation of VB; it’s the way computers store numeric values: They provide a limited number
of bytes for each variable. (We discussed oddities such as infinity in Chapter 2.)

You can’t create an overflow exception by dividing a number by zero, either, because the
code will not even attempt to carry out this calculation. In short, the MathCalculator application
is pretty robust. However, we can’t be sure that users won’t cause the application to generate
an exception, so we must provide some code to handle all types of errors.

Exceptions versus Errors

Errors that occur during application execution are now called exceptions. They used to be
called errors in pre-.NET versions of Visual Basic. You can think of them as exceptions to the
normal (or intended) flow of execution. If an exception occurs, the program must execute
special statements to handle it — statements that wouldn’t be executed normally. I think
they’re called exceptions because error is a word nobody likes and most people can’t admit
they wrote code that contains errors. The term exception can be vague. What would you rather
tell your customers: that the application you wrote has errors or that your code has raised an
exception? You may not have noticed it, but the term bug is not used as frequently anymore;
bugs are now called known issues. The term debugging, however, hasn’t changed yet.

156 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

How do you prevent an exception raised by a calculation? Data validation won’t help. You
just can’t predict the result of an operation without actually performing the operation. And if
the operation causes an overflow, you can’t prevent it. The answer is to add a structured excep-
tion handler. Most of the sample application’s code is straightforward, and you can’t easily gen-
erate an exception for demonstration purposes. The only place where an exception may occur
is the handler of the Equals button, where the calculations take place. This is where you must
add an exception handler. The outline of the structured exception handler is the following:

Try
‘ statements block

Catch Exception
‘ handler block

Finally
‘ cleanup statements block

End Try

The program will attempt to perform the calculations, which are coded in the statements
block. If the program succeeds, it continues with the cleanup statements in the Finally section
of the handler. These statements are mostly cleanup code used to release reserved resources,
and the Finally section of the statement is optional. If it’s missing, the program execution con-
tinues with the statement following the End Try statement. If an error occurs in the first block
of statements, the Catch Exception section is activated and the statements in the handler block
are executed. If present, the Finally block is executed next. As you can see, the Finally block
is executed no matter the outcome of statements block execution; error or no error, you can be
certain that cleanup code is executed and important resources like database connections and file
handlers are released.

The Catch Exception block is where you handle the error. There’s not much you can do
about errors that result from calculations. All you can do is display a warning and give the user
a chance to change the values. There are other types of errors, however, that can be handled
much more gracefully. If your program can’t read a file from a CD drive, you can give the user
a chance to insert the CD and retry. In other situations, you can prompt the user for a missing
value and continue. If the application attempts to write to a read-only file, for example, chances
are that the user specified a file on a CD drive or a file with its read-only attribute set. You can
display a warning, exit the subroutine that saves the data, and give the user a chance to either
select another filename or change the read-only attribute of the selected file.

Exception Handling

A common programming mistake is to place the cleanup code inside the statements block
and to omit the Finally block altogether. Such code can result in a dreaded memory leak
problem. This way some precious computing resources end up without being recovered. When
unmanaged resources (like file handles and database connections) are accessed, they have to
be released explicitly or they will stay in memory and the program might eventually stall.
Unfortunately, since the cleanup code is placed inside the statements block, the program

BUILDING A CALCULATOR 157

executions will jump to the Catch block immediately after the error is raised, thus omitting
the cleanup statements.

What makes such memory leak problems even more sinister is the fact that they are produced
only under exceptional conditions. If everything goes well, all resources are recovered. If an
error is produced, however, resources are leaked. Under such circumstances a program can go
on without crashing for quite some time. Usual debugging techniques are often helpless under
such circumstances. You will typically have to employ some special tools like memory profilers
to pinpoint the exact block of code responsible for producing the memory leak.

The following snippet is a simplified illustration of such a scenario. The code assumes that
the SomeFile.txt file has an integer written on the first line. If this is true, the application
will correctly close the writer. However, if you encounter something else — for example, the
characters abc on the first line in the file — the error handler will prevent the application
from crashing but will not close the writer.

To test the snippet, create a new Console Application project. Change the name of Module1
to ResourceLeakingModule and make sure it is marked as a startup object. Copy the following
code to ResourceLeakingModule:

Imports System.IO

Module ResourceLeakingModule

Sub Main()
Dim fileReader As StreamReader
Dim firstNumber As Integer
Try

fileReader = File.OpenText("C:\SomeFile.txt")
firstNumber = fileReader.ReadLine
Console.WriteLine("At this point execution already " &

"jumped over to catch block")
fileReader.Close() ‘should go to Finally block

Catch ex As Exception
Console.WriteLine("fileReader has not been closed")
‘ Wait so that output can be read
Console.ReadLine()

End Try
End Sub

End Module

Now create a SomeFile.txt file in the root of your C drive and write abc on the first line of
the file. You can place the file in some other location as long as you modify the snippet so it
points to the correct location of the file.

The way you can resolve the memory leak problem in this case is to place a fileReader.
Close() statement inside the Finally block. Another way to release unmanaged resources
correctly is to employ Visual Basic’s Using statement. This statement is convenient as long
as you can release the resource inside the same block of code that you used to create the
resource.

158 CHAPTER 4 GUI DESIGN AND EVENT-DRIVEN PROGRAMMING

In general, there’s no unique method to handle all exceptions. You must consider all types
of exceptions that your application may cause and handle them on an individual basis. What’s
important about error handlers is that your application doesn’t crash; it simply doesn’t perform
the operation that caused the exception (this is also known as the offending operation, or offending
statement) and continues.

The error handler for the MathCalculator application must inform the user that an error
occurred and abort the calculations — it does not even attempt to display a result. If you open
the Equals button’s Click event handler, you will find the statements detailed in Listing 4.9.

Listing 4.9: Revised Equals button

Private Sub bttnEquals_Click(…) Handles bttnEquals.Click
Dim result As Double
Operand2 = Convert.ToDouble(lblDisplay.Text)
Try

Select Case MathOperator
Case "+"

result = Operand1 + Operand2
Case "-"

result = Operand1 - Operand2
Case "*"

result = Operand1 * Operand2
Case "/"

If Operand2 <> "0" Then result = Operand1 / Operand2
End Select
lblDisplay.Text = result

Catch exc As Exception
MsgBox(exc.Message)
result = "ERROR"

Finally
clearDisplay = True

End Try
End Sub

Most of the time, the error handler remains inactive and doesn’t interfere with the
operation of the program. If an error occurs, which most likely will be an overflow error,
the error-handling section of the Try…Catch…End Try statement will be executed. This code
displays a message box with the description of the error, and it also displays the string ERROR
on the calculator’s display. The Finally section is executed regardless of whether an exception
occurred. In this example, the Finally section sets the clearDisplay variable to True so that
when another digit button is clicked, a new number will appear on the display.

The Bottom Line

Design graphical user interfaces. A Windows application consists of a graphical user inter-
face and code. The interface of the application is designed with visual tools and consists of
controls that are common to all Windows applications. You drop controls from the Toolbox

THE BOTTOM LINE 159

window onto the form, size and align the controls on the form, and finally set their properties
through the Properties window. The controls include quite a bit of functionality right out of the
box, and this functionality is readily available to your application without a single line of code.

Master It Describe the process of aligning controls on a form.

Program events. Windows applications follow an event-driven model: We code the events to
which we want our application to respond. For example, an application reacts to Click events
of the various buttons. You select the actions to which you want your application to react and
program these events accordingly.

When an event is fired, the appropriate event handler is automatically invoked. Event handlers
are subroutines that pass two arguments to the application: the sender argument (which is
an object that represents the control that fired the event) and the e argument (which carries
additional information about the event).

Master It How will you handle certain keystrokes regardless of the control that receives
them?

Write robust applications with error handling. Numerous conditions can cause an applica-
tion to crash, but a well-written application should be able to detect abnormal conditions and
handle them gracefully. To begin with, you should always validate your data before you attempt
to use them in your code. A well-known computer term is ‘‘garbage in, garbage out,’’ which
means you shouldn’t perform any calculations on invalid data.

Master It How will you execute one or more statements in the context of a structured
exception handler?

Chapter 5

Basic Windows Controls

In previous chapters, we explored the environment of Visual Basic and the principles of
event-driven programming, which is the core of VB’s programming model. In the process, we
briefly explored a few basic controls through the examples. The .NET Framework provides
many more controls, and all of them have a multitude of trivial properties (such as Font,
BackgroundColor, and so on), which you can set either in the Properties window or from
within your code.

This chapter explores in depth the basic Windows controls: the controls you’ll use most
often in your applications because they are the basic building blocks of typical rich client-user
interfaces. Rather than look at the background and foreground color, font, and other trivial
properties of all controls, we’ll look at the properties unique to each control and see how
these properties are used in building functional, rich user interfaces.

In this chapter, you’ll learn how to do the following:

◆ Use the TextBox control as a data-entry and text-editing tool

◆ Use the ListBox, CheckedListBox, and ComboBox controls to present lists of items

◆ Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse

The TextBox Control
The TextBox control is the primary mechanism for displaying and entering text. It is a small
text editor that provides all the basic text-editing facilities: inserting and selecting text, scrolling
if the text doesn’t fit in the control’s area, and even exchanging text with other applications
through the Clipboard.

The TextBox control is an extremely versatile data-entry tool that can be used for entering
and editing single lines of text, such as a number or a password or an entire text file. Figure 5.1
shows a few typical examples. All the boxes in Figure 5.1 contain text — some a single line,
some several lines. The scroll bars you see in some text boxes are part of the control. You can
specify which scroll bars (vertical and/or horizontal) will be attached to the control, and they
appear automatically whenever the control’s contents exceed the visible area of the control.

162 CHAPTER 5 BASIC WINDOWS CONTROLS

Figure 5.1

Typical uses of the
TextBox control

Basic Properties
Let’s start with the properties that specify the appearance and, to some degree, the functionality
of the TextBox control; these properties are usually set at design time through the Properties
window. Then, we’ll look at the properties that allow you to manipulate the control’s contents
and interact with users from within your code.

TextAlign

This property sets (or returns) the alignment of the text on the control, and its value is a mem-
ber of the HorizontalAlignment enumeration: Left, Right, or Center. The TextBox control
doesn’t allow you to format text (mix different fonts, attributes, or colors), but you can set the
font in which the text will be displayed with the Font property as well as the control’s back-
ground color with the BackColor property.

MultiLine

This property determines whether the TextBox control will hold a single line or multiple lines
of text. Every time you place a TextBox control on your form, it’s sized for a single line of text
and you can change its width only. To change this behavior, set the MultiLine property to
True. When creating multiline TextBoxes, you will most likely have to set one or more of the
MaxLength, ScrollBars, and WordWrap properties in the Properties window.

MaxLength

This property determines the number of characters that the TextBox control will accept. Its
default value is 32,767, which was the maximum number of characters the VB 6 version of the
control could hold. Set this property to zero so that the text can have any length up to the con-
trol’s capacity limit — 2,147,483,647 characters, to be exact. To restrict the number of characters
that the user can type, set the value of this property accordingly.

The MaxLength property of the TextBox control is often set to a specific value in data-entry
applications to prevent users from entering more characters than can be stored in a database

THE TEXTBOX CONTROL 163

field. A TextBox control for entering international standard book numbers (ISBNs), for instance,
shouldn’t accept more than 13 characters.

ScrollBars

This property lets you specify the scroll bars you want to attach to the TextBox if the text
exceeds the control’s dimensions. Single-line text boxes can’t have a scroll bar attached, even
if the text exceeds the width of the control. Multiline text boxes can have a horizontal or a
vertical scroll bar or both.

If you attach a horizontal scroll bar to the TextBox control, the text won’t wrap automatically
as the user types. To start a new line, the user must press Enter. This arrangement is useful
for implementing code editors in which lines must break explicitly. If the horizontal scroll bar
is missing, the control inserts soft line breaks when the text reaches the end of a line, and the
text is wrapped automatically. You can change the default behavior by setting the WordWrap
property.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the right
edge of the control. The default value of this property is True. If the control has a horizontal
scroll bar, however, you can enter very long lines of text. The contents of the control will scroll
to the left, so the insertion point is always visible as you type. You can turn off the horizontal
scroll bar and still enter long lines of text; just use the left/right arrow keys to bring any part
of the text into view. You can experiment with the WordWrap and ScrollBars properties in the
TextPad sample application, which is described later in this chapter.

Notice that the WordWrap property has no effect on the actual line breaks. The lines are
wrapped automatically, and there are no hard breaks (returns) at the end of each line. Open
the TextPad project, enter a long paragraph, and resize the window — the text is automatically
adjusted to the new width of the control.

A Functional Text Editor by Design

A TextBox control with its MaxLength property set to 0, its MultiLine and WordWrap prop-
erties set to True, and its ScrollBars property set to Vertical is, on its own, a functional text
editor. Place a TextBox control with these settings on a form, run the application, and check
out the following:

◆ Enter text and manipulate it with the usual editing keys: Delete, Insert, Home, and End.

◆ Select multiple characters with the mouse or the arrow keys while holding down the Shift key.

◆ Move segments of text around with Copy (Ctrl+C), Cut (Ctrl+X), and Paste (Ctrl+V or
Shift+Insert) operations.

◆ Right-click the control to see its context menu; it contains all the usual text-editing commands
(and a few Unicode-related commands you’ll never use).

◆ Exchange data with other applications through the Clipboard.

164 CHAPTER 5 BASIC WINDOWS CONTROLS

You can do all this without a single line of code! If you use the My object, you can save and
load files by using two lines of code. Shortly, you’ll see what you can do with the TextBox
control if you add some code to your application, but first let’s continue our exploration of the
properties that allow us to manipulate the control’s functionality.

AcceptsReturn, AcceptsTab

These two properties specify how the TextBox control reacts to the Enter and Tab keys. The
Enter key activates the default button on the form, if there is one. The default button is usually
an OK button that can be activated with the Enter key, even if it doesn’t have the focus. In a
multiline TextBox control, however, we want to be able to use the Enter key to change lines.
The default value of the AcceptsReturn property is False, so pressing Enter does not create a
new line on the control. If you leave this property’s value set to False, users can still create new
lines in the TextBox control, but they’ll have to press Ctrl+Enter. If the form contains no default
button, the Enter key creates a new line regardless of the AcceptsReturn setting.

Likewise, the AcceptsTab property determines how the control reacts to the Tab key. Nor-
mally, the Tab key takes you to the next control in the Tab order, and we generally avoid
changing the default setting of the AcceptsTab property. In a multiline TextBox control, how-
ever, you may want the Tab key to insert a Tab character in the text of the control instead;
to do this, set the control’s AcceptsTab property to True (the default value is False). If you
change the default value, users can still move to the next control in the Tab order by pressing
Ctrl+Tab. Notice that the AcceptsTab property affects only the TextBox controls.

CharacterCasing

This property tells the control to change the casing of the characters as they’re entered by the
user. Its default value is Normal, and characters are displayed as typed. You can set it to Upper
or Lower to convert the characters to upper- or lowercase automatically.

PasswordChar

This property turns the characters typed into any character you specify. If you don’t want to
display the actual characters typed by the user (when entering a password, for instance), use
this property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the
characters as entered. If you set this value to an asterisk (*), for example, the user sees an aster-
isk in the place of every character typed. This property doesn’t affect the control’s Text prop-
erty, which contains the actual characters. If the PasswordChar property is set to any character,
the user can’t copy or cut the text on the control.

ReadOnly, Locked

If you want to display text on a TextBox control but prevent users from editing it (such as for
an agreement or a contract they must read, software installation instructions, and so on), you
can set the ReadOnly property to True. When ReadOnly is set to True, you can put text on the
control from within your code and users can view it yet they can’t edit it.

To prevent editing of the TextBox control with VB 6, you had to set the Locked property to
True. Oddly, the Locked property is also supported, but now it has a very different function.
The Locked property of VB 2010 locks the control at design time (so that you won’t move it or
change its properties by mistake as you design the form).

THE TEXTBOX CONTROL 165

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at runtime only.
The following sections present a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds the con-
trol’s text. You can set this property at design time to display some text on the control initially
and read it from within your code to obtain the user’s input and process it.

Notice that there are two methods of setting the Text property at design time. For single-line
TextBox controls, set the Text property to a short string, as usual. For multiline TextBox con-
trols, open the Lines property and enter the text in the String Collection Editor window, which
will appear. In this window, each paragraph is entered as a single line of text. When you’re
finished, click OK to close the window; the text you entered in the String Collection Editor win-
dow will be placed on the control. Depending on the width of the control and the setting of the
WordWrap property, paragraphs may be broken into multiple lines.

At runtime, use the Text property to extract the text entered by the user or to replace the
existing text. You can also manipulate it with the members of the String class. The following
expression returns the number of characters in the TextBox1 control:

Dim strLen As Integer = TextBox1.Text.Length

The IndexOf method of the String class will locate a specific string in the control’s text. The
following statement returns the location of the first occurrence of the string Visual in the text:

Dim location As Integer
location = TextBox1.Text.IndexOf("Visual")

For more information on locating strings in a TextBox control, see the section ‘‘VB 2010
at Work: The TextPad Project’’ later in this chapter, where we’ll build a text editor with
search-and-replace capabilities.

To store the control’s contents in a file, use a statement such as the following:

My.Computer.FileSystem.WriteAllText(
"MyText.txt", TextBox1.Text, False, System.Text.Encoding.UTF8)

The first argument is the name of the file where the text will be saved and the second
argument is the text to be saved. The following argument is a True/False value that indicates
whether the text will be appended to the file (if True) or whether it will replace the file’s
contents. That holds true if the file exists, of course. If the file doesn’t exist, a new one will be
created.

Similarly, you can read the contents of a text file into a TextBox control by using a statement
such as the following:

TextBox1.Text = My.Computer.FileSystem.ReadAllText("MyText.txt")

To locate all instances of a string in the text, use a loop like the one in Listing 5.1. This loop
locates successive instances of the string Basic and then continues searching from the character

166 CHAPTER 5 BASIC WINDOWS CONTROLS

following the previous instance of the word in the text. To locate the last instance of a string
in the text, use the LastIndexOf method. You can write a loop similar to the one in Listing 5.1
that scans the text backward.

Listing 5.1: Locating all instances of a string in a TextBox

Dim startIndex = -1
startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)
While startIndex > 0

Console.WriteLine "String found at " & startIndex
startIndex = TextBox1.Text.IndexOf("Basic", startIndex + 1)

End While

To test this code segment, place a multiline TextBox and a Button control on a form; then
enter the statements of the listing in the button’s Click event handler. Run the application
and enter some text on the TextBox control. Make sure the text contains the word Basic or
change the code to locate another word, and click the button. Notice that the IndexOf method
performs a case-sensitive search.

Use the Replace method to replace a string with another within the line, the Split method
to split the line into smaller components (such as words), and any other method exposed by
the String class to manipulate the control’s text.

The AppendText method appends the string specified by its argument to the control as is,
without any line breaks between successive calls. If you want to append individual paragraphs
to the control’s text, you must insert the line breaks explicitly, with a statement such as the fol-
lowing (vbCrLf is a constant for the carriage return/newline characters):

Dim newString = "enter some text here"
TextBox1.AppendText(newString & vbCrLf)

Lines

In addition to using the Text property, you can access the text on the control by using the
Lines property. The Lines property is a string array, and each element holds a paragraph of
text. You can iterate through the text lines with a loop such as the following:

Dim iLine As Integer
For iLine = 0 To TextBox1.Lines.Length - 1

‘ process string TextBox1.Lines(iLine)
Debug.WriteLine TextBox1.Lines(iLine)Next

Because the Lines property is an array, it supports the Length property, which returns the
number of items in the array. Each element of the Lines array is a string, and you can call any
of the String class’s methods to manipulate it. Just keep in mind that you can’t alter the text on
the control by editing the Lines array. However, you can set the control’s text by assigning an
array of strings to the Lines property at design time.

THE TEXTBOX CONTROL 167

Text-Selection Properties
The TextBox control provides three properties for manipulating the text selected by the user:
SelectedText, SelectionStart, and SelectionLength. Users can select a range of text with a
click-and-drag operation and the selected text will appear in reverse color. You can access the
selected text from within your code through the SelectedText property and its location in the
control’s text through the SelectionStart and SelectionLength properties.

SelectedText

This property returns the selected text, enabling you to manipulate the current selection from
within your code. For example, you can replace the selection by assigning a new value to the
SelectedText property. To convert the selected text to uppercase, use the ToUpper method of
the String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

SelectionStart, SelectionLength

Use these two properties to read the text selected by the user on the control or to select text
from within your code. The SelectionStart property returns or sets the position of the first
character of the selected text, somewhat like placing the cursor at a specific location in the text
and selecting text by dragging the mouse. The SelectionLength property returns or sets the
length of the selected text.

Suppose the user is seeking the word Visual in the control’s text. The IndexOf method
locates the string but doesn’t select it. The following statements select the word in the text,
highlight it, and bring it into view so that users can spot it instantly:

Dim seekString As String = "Visual"
Dim strLocation As Long
strLocation = TextBox1.Text.IndexOf(seekString)
If strLocation > 0 Then

TextBox1.SelectionStart = strLocation
TextBox1.SelectionLength = seekString.Length

End If
TextBox1.ScrollToCaret()

These lines locate the string Visual (or any user-supplied string stored in the seekString
variable) in the text and select it by setting the SelectionStart and SelectionLength prop-
erties of the TextBox control. If the located string lies outside the visible area of the control,
the user must scroll the text to bring the selection into view. The TextBox control provides the
ScrollToCaret method, which brings the section of the text with the cursor (the caret position)
into view.

The few lines of code shown previously form the core of a text editor’s Find command.
Replacing the current selection with another string is as simple as assigning a new value to
the SelectedText property, and this technique provides you with an easy implementation of
a Find and Replace operation.

168 CHAPTER 5 BASIC WINDOWS CONTROLS

Locating the Cursor Position in the Control

The SelectionStart and SelectionLength properties always have a value even if no text
is selected on the control. In this case, SelectionLength is 0, and SelectionStart is the
current position of the pointer in the text. If you want to insert some text at the pointer’s loca-
tion, simply assign it to the SelectedText property, even if no text is selected on the control.

In addition to using the SelectionStart and SelectionLength properties, you can select
text on the control with the Select method, which accepts as arguments the starting position
and the length of the selection:

TextBox1.Select(start, length)

A variation of the Select method is the SelectAll method, which selects all the text on the
control. Finally, the DeselectAll method deselects any text on the control.

HideSelection

The selected text in the TextBox does not remain highlighted when the user moves to another
control or form; to change this default behavior, set the HideSelection property to False. Use
this property to keep the selected text highlighted, even if another control, form, or a dialog
box, such as a Find & Replace dialog box, has the focus. Its default value is True, which means
that the text doesn’t remain highlighted when the TextBox loses the focus.

Undoing Edits
An interesting feature of the TextBox control is that it can automatically undo the most recent
edit operation. To undo an operation from within your code, you must first examine the value
of the CanUndo property. If it’s True, the control can undo the operation; then you can call the
Undo method to undo the most recent edit.

An edit operation is the insertion or deletion of characters. Entering text without deleting
any is considered a single operation and will be undone in a single step. Even if the user has
spent an hour entering text (without making any corrections), you can make all the text dis-
appear with a single call to the Undo method. Fortunately, the deletion of the text becomes the
most recent operation, which can be undone with another call to the Undo method. In effect, the
Undo method is a toggle. When you call it for the first time, it undoes the last edit operation. If
you call it again, it redoes the operation it previously undid. You can disable the redo operation
by calling the ClearUndo method, which clears the undo buffer of the control. You should call
it from within an Undo command’s event handler to prevent an operation from being redone. In
most cases, you should give users the option to redo an operation, especially because the Undo
method can delete an enormous amount of text from the control.

VB 2010 at Work: The TextPad Project
The TextPad application, shown in Figure 5.2, demonstrates most of the TextBox control’s
properties and methods described so far. TextPad is a basic text editor that you can incorporate
into your programs and customize for special applications. The TextPad project’s main form is
covered by a TextBox control, whose size is adjusted every time the user resizes the form. This

THE TEXTBOX CONTROL 169

feature doesn’t require any programming — just set the Dock property of the TextBox control to
Fill.

Figure 5.2

TextPad demonstrates
the most useful proper-
ties and methods of the
TextBox control.

The name of the application’s main form is frmTextPad, and the name of the Find & Replace
dialog box is frmFind. You can design the two forms as shown in the figures of this chapter,
or you can open the TextPad project. To design the application’s interface from scratch, place
a MenuStrip control on the form. The control will be docked to the top of the form automat-
ically. Then place a TextBox control on the main form, name it txtEditor, and set the fol-
lowing properties: Multiline to True, MaxLength to 0 (to edit text documents of any length),
HideSelection to False (so that the selected text remains highlighted even when the main form
doesn’t have the focus), and Dock to Fill, so that it will fill the form.

The menu bar of the form contains all the commands you’d expect to find in any text editing
application; they’re listed in Table 5.1.

The File menu commands are implemented with the Open and Save As dialog boxes,
the Font command with the Font dialog box, and the Color command with the Color dialog
box. These dialog boxes are discussed in the following chapters, and as you’ll see, you don’t
have to design them yourself. All you have to do is place a control on the form and set a few
properties; the Framework takes it from there. The application will display the standard Open
File/Save File/Font/Color dialog boxes, in which the user can select or specify a filename, or
select a font or color. Of course, we’ll provide a few lines of code to actually move the text
into a file (or read it from a file and display it on the control), change the control’s background
color, and so on. I’ll discuss the commands of the File menu in Chapter 7, ‘‘More Windows
Controls.’’

The Editing Commands

The options on the Edit menu move the selected text to and from the Clipboard. For the
TextPad application, all you need to know about the Clipboard is that the SetText method
places the currently selected text on the Clipboard and the GetText method retrieves
information from the Clipboard (see Figure 5.3).

170 CHAPTER 5 BASIC WINDOWS CONTROLS

Table 5.1: The TextPad form’s menu

Menu Command Description

File New Clears the text

Open Loads a new text file from disk

Save Saves the text to its file on disk

Save As Saves the text with a new filename on disk

Print Prints the text

Exit Terminates the application

Edit Undo/Redo Undoes/redoes the last edit operation

Copy Copies selected text to the Clipboard

Cut Cuts the selected text

Paste Pastes the Clipboard’s contents to the editor

Select All Selects all text in the control

Find & Replace Displays a dialog box with Find and Replace options

Process Convert To Upper Converts selected text to uppercase

Convert To Lower Converts selected text to lowercase

Number Lines Numbers the text lines

Format Font Sets the text’s font, size, and attributes

Page Color Sets the control’s background color

Text Color Sets the color of the text

WordWrap Toggle menu item that turns text wrapping on and off

The Copy command, for example, is implemented with a single line of code (txtEditor
is the name of the TextBox control). The Cut command does the same, and it also clears the
selected text. The code for these and for the Paste command, which assigns the contents of the
Clipboard to the current selection, is presented in Listing 5.2.

If no text is currently selected, the Clipboard’s text is pasted at the pointer’s current loca-
tion. If the Clipboard contains a bitmap (placed there by another application) or any other
type of data that the TextBox control can’t handle, the paste operation will fail; that’s why we
handle the Paste operation with an If statement. You could provide some hint to the user by
including an Else clause that informs them that the data on the Clipboard can’t be used with a
text-editing application.

THE TEXTBOX CONTROL 171

Figure 5.3

The Copy, Cut, and
Paste operations of the
TextPad application can
be used to exchange
text with any other
application.

Listing 5.2: The Cut, Copy, and Paste commands

Private Sub EditCopyItem_Click(…)
Handles EditCopyItem.Click

If txtEditor.SelectionLength > 0 Then
Clipboard.SetText(txtEditor.SelectedText)

End If
End Sub

Private Sub EditCutItem_Click(…)
Handles EditCutItem.Click

Clipboard.SetText(txtEditor.SelectedText)
txtEditor.SelectedText = ""

End Sub

Private Sub EditPasteItem_Click(…)
Handles EditPasteItem.Click

If Clipboard.ContainsText Then
txtEditor.SelectedText = Clipboard.GetText

End If
End Sub

The Process and Format Menus

The commands of the Process and Format menus are straightforward. The Format menu
commands open the Font or Color dialog box and change the control’s Font, ForeColor, and
BackColor properties. You will learn how to use these controls in the following chapter. The

172 CHAPTER 5 BASIC WINDOWS CONTROLS

Upper Case and Lower Case commands of the Process menu are also trivial: They select all
the text, convert it to uppercase or lowercase, respectively, and assign the converted text to the
control’s SelectedText property with the following statements:

txtEditor.SelectedText = txtEditor.SelectedText.ToLower
txtEditor.SelectedText = txtEditor.SelectedText.ToUpper

Notice that the code uses the SelectedText property to convert only the selected text, not
the entire document. The Number Lines command inserts a number in front of each text line
and demonstrates how to process the individual lines of text on the control. However, it doesn’t
remove the line numbers, and there’s no mechanism to prevent the user from editing the line
numbers or inserting/deleting lines after they have been numbered. Use this feature to create a
numbered listing or to number the lines of a file just before saving it or sharing it with another
user. Listing 5.3 shows the Number Lines command’s code and demonstrates how to iterate
through the TextBox control’s Lines array.

Listing 5.3: The Number Lines command

Private Sub ProcessNumberLinesItem_Click(…)
Handles ProcessNumberLines.Click

Dim iLine As Integer
Dim newText As New System.Text.StringBuilder()
For iLine = 0 To txtEditor.Lines.Length - 1

newText.Append((iLine + 1).ToString & vbTab &
txtEditor.Lines(iLine) & vbCrLf)

Next
txtEditor.SelectAll()
Clipboard.SetText(newText.ToString)
txtEditor.Paste()

End Sub

This event handler uses a StringBuilder variable. The StringBuilder class, discussed in
Chapter 11, ‘‘The Framework at Large,’’ is equivalent to the String class; it exposes similar
methods and properties, but it’s much faster at manipulating dynamic strings than the
String class.

Search and Replace Operations

The last option in the Edit menu — and the most interesting — displays a Find & Replace dialog
box (shown earlier in Figure 5.2). This dialog box works like the similarly named dialog box
of Microsoft Word and many other Windows applications. The buttons in the Find & Replace
dialog box are relatively self-explanatory:

Find The Find command locates the first instance of the specified string in the text after
the cursor location. If a match is found, the Find Next, Replace, and Replace All buttons
are enabled.

THE TEXTBOX CONTROL 173

Find Next This command locates the next instance of the string in the text. Initially, this but-
ton is disabled; it’s enabled only after a successful Find operation.

Replace This command replaces the current selection with the replacement string and then
locates the next instance of the same string in the text. Like the Find Next button, it’s disabled
until a successful Find operation occurs.

Replace All This command replaces all instances of the string specified in the Search For box
with the string in the Replace With box.

To design the Find & Replace form, add a new form to the project (select Add New Item
from the project’s context menu) and place the following controls on it:

◆ A TextBox control and the Search for Label control.

◆ A TextBox control and the Replace with Label control.

◆ A CheckBox control with the caption Case Sensitive.

◆ The Find, Find Next, Replace, and Replace All buttons.

Set the new form’s TopMost property to True; you want this form to remain on top of the
main form, even when it doesn’t have the focus. Whether the search is case sensitive or not
depends on the status of the Case Sensitive CheckBox control. If the string is found in the
control’s text, the program will highlight it by selecting it. In addition, the code will call the
TextBox control’s ScrollToCaret method to bring the selection into view. The Find Next
button takes into consideration the location of the pointer and searches for a match after the
current location. If the user moves the pointer somewhere else and then clicks the Find Next
button, the program will locate the first instance of the string after the current location of the
pointer — and not necessarily after the last match. Of course, you can always keep track of the
location of each match and continue the search from this location. The Find button executes the
code shown in Listing 5.4.

Listing 5.4: The Find button

Private Sub bttnFind_Click(…) Handles bttnFind.Click
Dim selStart As Integer
If chkCase.Checked = True Then

selStart =
frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text, StringComparison.Ordinal)

Else
selStart =

frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text,
StringComparison.OrdinalIgnoreCase)

End If
If selStart = -1 Then

MsgBox("Text not found")
Exit Sub

End If

174 CHAPTER 5 BASIC WINDOWS CONTROLS

frmTextPad.txtEditor.Select(
selStart, searchWord.Text.Length)

bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
frmTextPad.txtEditor.ScrollToCaret()

End Sub

The Find button examines the value of the chkCase CheckBox control, which specifies
whether the search will be case sensitive and calls the appropriate form of the IndexOf
method. The first argument of this method is the string we’re searching for; the second argu-
ment is the search mode, and its value is a member of the StringComparison enumeration:
Ordinal for case-sensitive searches and OrdinalIgnoreCase for case-insensitive searches. If
the IndexOf method locates the string, the program selects it by calling the control’s Select
method with the appropriate arguments. If not, it displays a message. Notice that after a
successful Find operation, the Find Next, Replace, and Replace All buttons on the form
are enabled.

The code of the Find Next button is the same, but it starts searching at the character follow-
ing the current selection:

selStart = frmTextPad.txtEditor.Text.IndexOf(
searchWord.Text,
frmTextPad.txtEditor.SelectionStart + 1,
StringComparison.Ordinal)

The Replace button replaces the current selection with the replacement string and then
locates the next instance of the find string. The Replace All button replaces all instances of the
search word in the document. Listing 5.5 presents the code behind the Replace and Replace All
buttons.

Listing 5.5: The Replace and Replace All operations

Private Sub bttnReplace_Click(…) Handles bttnReplace.Click
If frmTextPad.txtEditor.SelectedText <> "" Then

frmTextPad.txtEditor.SelectedText = replaceWord.Text
End If
bttnFindNext_Click(sender, e)

End Sub

Private Sub bttnReplaceAll_Click(…) Handles bttnReplaceAll.Click
Dim curPos, curSel As Integer
curPos = frmTextPad.txtEditor.SelectionStart
curSel = frmTextPad.txtEditor.SelectionLength
frmTextPad.txtEditor.Text =

frmTextPad.txtEditor.Text.Replace(
searchWord.Text.Trim, replaceWord.Text.Trim)

THE TEXTBOX CONTROL 175

frmTextPad.txtEditor.SelectionStart = curPos
frmTextPad.txtEditor.SelectionLength = curSel

End Sub

The Replace method is case sensitive, which means that it replaces instances of the search
argument in the text that have the exact same spelling as its first argument. For a case-
insensitive replace operation, you must write the code to perform consecutive case-insensitive
search-and-replace operations. Alternatively, you can use the Replace built-in function to
perform case-insensitive searches. Here’s how you’d call the Replace function to perform a
case-insensitive replace operation:

Replace(frmTextPad.txtEditor.Text, searchWord.Text.Trim,
replaceWord.Text.Trim, , , CompareMethod.Text)

The last, optional, argument determines whether the search will be case-sensitive (Compare-
Method.Binary) or case-insensitive (CompareMethod.Text).

When you’re searching for a string in the text, the active form is the frmFind form and any
selection you make from within your code in the main form’s TextBox control isn’t highlighted
by default. You must set the HideSelection property of the TextBox control to False to high-
light the selected text on a control that doesn’t currently have the focus. This is a common
property for many controls, and you should remember to change it to False if you want the
selection to remain visible even when the control loses the focus. (You will use this property
most often with the TextBox, ListBox, ListView, and TreeView controls.)

The Undo/Redo Commands

The Undo command (shown in Listing 5.6) is implemented with a call to the Undo method.
However, because the Undo method works like a toggle, we must also toggle its caption from
Undo to Redo (and vice versa) each time the command is activated.

Listing 5.6: The Undo/Redo command of the Edit menu

Private Sub EditUndoItem_Click(…)
Handles EditUndoItem.Click

If EditUndoItem.Text = "Undo" Then
If txtEditor.CanUndo Then

txtEditor.Undo()
EditUndoItem.Text = "Redo"

End If
Else

If txtEditor.CanUndo Then
txtEditor.Undo()
EditUndoItem.Text = "Undo"

End If
End If

End Sub

176 CHAPTER 5 BASIC WINDOWS CONTROLS

The TextBox control doesn’t provide more granular undo operations — unlike Word, which
keeps track of user actions (insertions, deletions, replacements, and so on) and then undoes
them in steps. If you edit the text after an undo operation, you can no longer redo the last undo
operation. This means that as soon as the contents of the TextBox control change, the caption of
the first command in the Edit menu must become Undo, even if it’s Redo at the time. To detect
the action of editing the control’s contents and reset the Undo command’s caption, insert the
following statement in the TextChanged event of the TextBox control:

EditUndoItem.Text = "Undo"

If you need a more-granular undo feature, you should use the RichTextBox control, which is
discussed in detail in Chapter 7. The RichTextBox control can display formatted text, but it can
also be used as an enhanced TextBox control.

Capturing Keystrokes
Another event that is quite commonly used in programming the TextBox control is the
KeyPress event, which occurs every time a key is pressed and reports the character that was
pressed. You can use this event to capture certain keys and modify the program’s behavior
depending on the character typed.

By capturing keystrokes, you can process the data as they are entered, in real time. For
example, you can make sure that a TextBox accepts only numeric or hexadecimal characters
and rejects all others. To implement a binary editor, use the KeyPress event handler shown in
Listing 5.7.

Listing 5.7: Handling keystrokes

Private Sub TextBox1_KeyPress(…) Handles TextBox1.KeyPress
If Char.IsLetterOrDigit(e.KeyChar) Then

Select Case UCase(e.KeyChar)
Case "1", "2", "3", "4", "5", "6", "7", "8", "9", "0"

TextBox1.SelectedText = e.KeyChar
Case "A", "B", "C", "D", "E", "F"

TextBox1.SelectedText = UCase(e.KeyChar)
End Select
e.Handled = True

End If
End Sub

The very first executable statement in the event handler examines the key that was pressed
and exits if it is a special editing key (Delete, Backspace, Ctrl+V, and so on). If so, the handler
exits without taking any action. The KeyChar property of the e argument of the KeyPress event
reports the key that was pressed. The code converts it to a string and then uses a Case state-
ment to handle individual keystrokes. If the user pressed the a or the 1 key, for example, the
code displays the corresponding uppercase character ("1" or "A"). If the character pressed is
not among the characters that may appear in hexadecimal values, the code skips it by setting
the Handled property to True.

THE TEXTBOX CONTROL 177

You can process the characters pressed from within the KeyDown event handler, only this
time you must set the SuppressKeyPress property to True:

Private Sub TextBox1_KeyDown(…) Handles TextBox1.KeyDown
Dim ch As Windows.Forms.Keys
ch = e.KeyCode
If Char.IsLetterOrDigit(Chr(ch)) Then

Select Case ch
Case Keys.D1, Keys.D2, Keys.D3, Keys.D4, Keys.D5,

Keys.D6, Keys.D7, Keys.D8, Keys.D9, Keys.D0
TextBox1.SelectedText = Chr(ch)

Case Keys.A, Keys.B, Keys.C, Keys.D, Keys.E, Keys.F
TextBox1.SelectedText = UCase(Chr(ch))

Case Else

End Select
e.SuppressKeyPress = True

End If
End Sub

Canceling Keystrokes

Before you exit the event handler, you must ‘‘kill’’ the original key that was pressed so it
won’t appear on the control. You do this by setting the Handled property to True, which
tells VB that it shouldn’t process the keystroke any further. If you omit this statement, the
special characters will be printed twice: once in their transformed format and once as regular
characters (Aa, Bb, and so on).

Capturing Function Keys

Another common feature used in all types of applications is the assignment of special opera-
tions to the function keys. The Notepad application, for example, uses the F5 function key to
insert the current date and time at the cursor’s location. You can do the same with the TextPad
application, but you can’t use the KeyPress event — the KeyChar argument doesn’t report
function keys. The events that can capture the function keys are the KeyDown and KeyUp events.
Also, unlike the KeyPress event, these two events don’t report the character pressed but
instead report the key’s code (a special number that distinguishes each key on the keyboard,
also known as the scancode) through the e.KeyCode property.

The keycode is unique for each key, not each character. Lower- and uppercase characters
have different ASCII values but the same keycode because they are on the same key. For
example, the number 4 and the $ symbol have the same keycode because the same key on the
keyboard generates both characters. Along with the key’s code, the KeyDown and KeyUp events
also report the state of the Shift, Ctrl, and Alt keys through the e.Shift, e.Alt, and e.Control
properties.

The KeyUp event handler shown in Listing 5.8 uses the F5 and F6 function keys to insert the
current date and time in the document. It also uses the F7 and F8 keys to insert two predefined
strings in the document.

178 CHAPTER 5 BASIC WINDOWS CONTROLS

Listing 5.8: KeyUp event examples

Private Sub txtEditor_KeyUp(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs)
Handles txtEditor.KeyUp

Select Case e.KeyCode
Case Keys.F5 :

txtEditor.SelectedText =
Now().ToLongDateString

Case Keys.F6 :
txtEditor.SelectedText =
Now().ToLongTimeString

Case Keys.F7 :
txtEditor.SelectedText =
"MicroWeb Designs, Inc."

Case Keys.F8 :
txtEditor.SelectedText =
"Another user-supplied string"

End Select
End Sub

Windows already uses some of the function keys (for example, the F1 key for help), and you
shouldn’t modify their original functions. With a little additional effort, you can provide users
with a dialog box that lets them assign their own strings to function keys. You’ll probably have
to take into consideration the status of the Shift, Control, and Alt properties of the event’s e
argument. To find out whether two of the modifier keys are pressed along with a key, use the
AND operator with the appropriate properties of the e argument. The following If clause detects
the Ctrl and Alt keys:

If e.Control AND e.Alt Then
{ Both Alt and Control keys were down}

End If

If you need to control the keystrokes from within your code (a rather common scenario in
an advanced, functional user interface design), you should be aware of the order of the events
fired every time a key is pressed. First, the KeyDown event is fired; this event is fired before the
keystroke is passed to the control. This is the event in which you should ‘‘kill’’ any keystrokes
that you don’t want to be processed normally by the control, or replace them with a different
key. Then the KeyPress event is fired, if the keystroke corresponds to a character, number, or
symbol but not a control key. Finally, the KeyUp event is fired. By that time, the keystroke has
already been processed by the control and it’s too late to kill or replace the original keystroke.
Can you guess what will happen if you insert the following statements in a TextBox control’s
(or Form’s) KeyDown event handler?

If e.KeyCode = Keys.A Then
e.SuppressKeyPress = True

End If

The A key will never be processed, as if the keyboard isn’t working with this application.

THE TEXTBOX CONTROL 179

Autocomplete Properties
One set of interesting properties of the TextBox control are the autocomplete properties. Have
you noticed how Internet Explorer prompts you with possible matches as soon as you start typ-
ing an address or your username in a text box (or in the address bar of the browser)? You can
easily implement such boxes with a single-line TextBox control and the autocomplete proper-
ties. Please note that these properties apply to single-line TextBoxes only.

Let me review the properties that relate to automatic completion. You may wish to open the
AutoCompleteTextBoxes project (available for download from www.sybex.com/go/mastering-
vb2010) to experiment with the settings of these properties while reading the text. The Auto-
CompleteMode property determines whether, and how, the TextBox control will prompt
users, and its setting is a member of the AutoCompleteMode enumeration: Suggest, Append,
SuggestAppend, and None. In Append mode, the TextBox control selects the first matching item
in the list of suggestions and completes the text. In SuggestAppend mode, the control suggests
the first matching item in the list, as before, but it also expands the list. In Suggest mode, the
control simply opens a list with the matching items but doesn’t select any of them. Regular
TextBox controls have their AutoCompleteMode property set to None.

The AutoCompleteSource property determines where the list of suggestions comes
from; its value is a member of the AutoCompleteSource enumeration, which is shown in
Table 5.2.

Table 5.2: The members of the AutoCompleteSource enumeration

Member Description

AllSystemSources The suggested items are the names of system resources.

AllUrl The suggested items are the URLs visited by the target computer. Does
not work if you’re deleting the recently viewed pages.

CustomSource The suggested items come from a custom collection.

FileSystem The suggested items are filenames.

HistoryList The suggested items come from the computer’s history list.

RecentlyUsedList The suggested items come from the Recently Used folder.

None The control doesn’t suggest any items.

To demonstrate the basics of the autocomplete properties, I’ve included the AutoComplete-
TextBoxes project, which you can download from www.sybex.com/go/masteringvb2010. The
main form of the project is shown in Figure 5.4. This project allows you to set the autocomplete
mode and source for a single-line TextBox control. The top TextBox control uses a custom list
of words, while the lower one uses one of the built-in autocomplete sources (file system, URLs,
and so on).

Once you set the AutoCompleteSource to CustomSource, you must also populate an
AutoCompleteStringCollection object with the desired suggestions and assign it to the

180 CHAPTER 5 BASIC WINDOWS CONTROLS

AutoCompleteCustomSource property. The AutoCompleteStringCollection is just a collection
of strings. Listing 5.9 shows statements in a form’s Load event that prepare such a list and use
it with the TextBox1 control.

Figure 5.4

Suggesting
words with the
AutoCompleteSource
property

Listing 5.9: Populating a custom AutoCompleteSource property

Private Sub Form1_Load(…) Handles MyBase.Load
Dim knownWords As New AutoCompleteStringCollection
knownWords.Add("Visual Basic 2008")
knownWords.Add("Visual Basic .NET")
knownWords.Add("Visual Basic 6")
knownWords.Add("Visual Basic")
knownWords.Add("Framework")
TextBox1.AutoCompleteCustomSource = knownWords
TextBox1.AutoCompleteSource = AutoCompleteSource.CustomSource
TextBox1.AutoCompleteMode = AutoCompleteMode.Suggest
TextBox2.AutoCompleteSource = AutoCompleteSource.RecentlyUsedList
TextBox2.AutoCompleteMode = AutoCompleteMode.Suggest

End Sub

The TextBox1 control on the form will open a drop-down list with all possible matches in
the knownWords collection as soon as the user starts typing in the control, as shown in the top
part of Figure 5.4.

THE TEXTBOX CONTROL 181

Data-Entry Applications

Typical business applications contain numerous forms for data entry, and the most common
element on data-entry forms is the TextBox control. Data-entry operators are very efficient
with the keyboard, and they should be able to use your application without reaching for the
mouse.

Seasoned data-entry operators can’t live without the Enter key; they reach for this key at the
end of each operation. In my experience, a functional interface should add intelligence to this
keystroke: the Enter key should perform the obvious or most likely operation at any time.
When data is being entered, for example, it should take the user to the next control in the Tab
order. Consider a data-entry screen like the one shown in the following image, which contains
several TextBox controls, a DataTimePicker control for entering dates, and two CheckBox
controls. This is the main form of the Simple Data Entry Form sample project, which you will
find at www.sybex.com/go/masteringvb2010 along with the other projects available for use
with this book.

The application demonstrates how to use the Enter key intelligently: Every time the Enter key
is pressed, the focus is moved to the next control in the Tab order. Even if the current control
is a CheckBox, this keystroke doesn’t change the status of the CheckBox controls; it simply
moves the focus forward.

You could program the KeyUp event of each control to react to the Enter key, but this app-
roach can lead to maintenance problems if you add new controls to an existing form. The best
approach is to intercept the Enter keystroke at the form level, before it reaches a control. To
do so, you must set the KeyPreview property of the form to True. This setting causes the key
events to be fired first at the form level and then at the control that has the focus. In essence,
it allows you to handle certain keystrokes for multiple controls at once. The KeyUp event
handler of the sample project’s main form intercepts the Enter keystroke and reacts to it by
moving the focus to the next control in the Tab order via the ProcessTabKey method. This
method simulates the pressing of the Tab key, and it’s called with a single argument, which is
a Boolean value: True moves the focus forward, and False moves it backward. Here’s the code
in the KeyDown event handler of the application’s form that makes the interface much more

182 CHAPTER 5 BASIC WINDOWS CONTROLS

functional and intuitive (you can open the DataEntry project, examine all of the code, and see
how it functions):

Private Sub frmDataEntry_KeyDown(
ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs)
Handles Me.KeyUp

If e.KeyCode = Keys.Enter And Not (e.Alt Or e.Control) Then
If Me.ActiveControl.GetType Is GetType(TextBox) Or

Me.ActiveControl.GetType Is GetType(CheckBox) Or
Me.ActiveControl.GetType Is
GetType(DateTimePicker) Then

If e.Shift Then
Me.ProcessTabKey(False)

Else
Me.ProcessTabKey(True)

End If
End If

End If
End Sub

It’s important to program the KeyDown event if you want to be able to process keystrokes
before the control captures them, or even if you want to cancel keystrokes. If you insert the
same code in the KeyUp event, the keystrokes will be processed by the control first and then
by your code. There are a couple of things you should notice about this handler. First, it
doesn’t react to the Enter key if it was pressed along with the Alt or Ctrl key. The Shift key,
on the other hand, is used to control the direction in the Tab order. The focus moves forward
with the Enter keystroke and moves backward with the Shift + Enter keystroke. Also, the
focus is handled automatically only for the TextBox, CheckBox, and DataTimePicker controls.
When the user presses the Enter key when a button has the focus, the program reacts as
expected by invoking the button’s Click event handler.

The ListBox, CheckedListBox, and ComboBox Controls
The ListBox, CheckedListBox, and ComboBox controls present lists of choices from which the
user can select one or more of the items. The first two are illustrated in Figure 5.5.

Figure 5.5

The ListBox and
CheckedListBox controls

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 183

The ListBox control occupies a user-specified amount of space on the form and is populated
with a list of items. If the list of items is longer than can fit on the control, a vertical scroll bar
appears automatically.

The CheckedListBox control is a variation of the ListBox control. It’s identical to the List-
Box control, but a check box appears in front of each item. The user can select any number of
items by checking or clearing the boxes. As you know, you can also select multiple items from
a ListBox control by pressing the Shift or Ctrl key.

The ComboBox control also contains multiple items but typically occupies less space on
the screen. The ComboBox control is an expandable ListBox control: The user can expand it to
make a selection and collapse it after the selection is made. The real advantage of the Combo-
Box control, however, is that the user can enter new information in the ComboBox rather than
being forced to select from the items listed.

To add items to any of the three controls at design time, locate the Items property in the
Properties window for the control and click the ellipsis button. When the String Collection
Editor window pops up, you can add the items you want to display in the list. Each item must
appear on a separate text line, and blank text lines will result in blank lines in the list. These
items will appear in the list when the form is loaded, but you can add more items (or remove
existing ones) from within your code at any time. They appear in the same order as entered on
the String Collection Editor window unless the control has its Sorted property set to True, in
which case the items are automatically sorted regardless of the order in which you’ve specified
them.

The next sections explore the ListBox control’s properties and methods. Later in the chapter,
you’ll see how the same properties and methods can be used with the ComboBox control.

Basic Properties
In the following sections, you’ll find the properties that determine the functionality of the List-
Box, CheckedListBox, and ComboBox controls. These properties are usually set at design time,
but you can change the settings from within your application’s code.

IntegralHeight

This property can be set to a True/False value that indicates whether the control’s height will
be adjusted to avoid the partial display of the last item. When IntegralHeight is set to True,
the control’s actual height changes in multiples of the height of a single line, so only an integer
number of rows are displayed at all times.

Items

The Items property is a collection that holds the list items for the control. At design time, you
can populate this list through the String Collection Editor window. At runtime, you can access
and manipulate the items through the methods and properties of the Items collection, which
are described in the section ‘‘Manipulating the Items Collection’’ later in this chapter.

MultiColumn

A ListBox control can display its items in multiple columns if you set its MultiColumn prop-
erty to True. The problem with multicolumn ListBoxes is that you can’t specify the column
in which each item will appear. ListBoxes (and CheckedListBoxes) with many items and the
MultiColumn property set to True expand horizontally, not vertically. A horizontal scroll bar

184 CHAPTER 5 BASIC WINDOWS CONTROLS

will be attached to a multicolumn ListBox so that users can bring any column into view. This
property does not apply to the ComboBox control.

SelectionMode

This property, which applies to the ListBox and CheckedListBox controls only, determines
how the user can select the list’s items. The possible values of this property — members of the
SelectionMode enumeration — are shown in Table 5.3.

Table 5.3: The SelectionMode enumeration

Value Description

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar) selects or
deselects an item in the list. You must click all the items you want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or press one of the
arrow keys) to select multiple contiguous items. This process highlights all the items
between the previously selected item and the current selection. Press Ctrl and click
the mouse to select or deselect multiple single items in the list.

Sorted

When this property is True, the items remain sorted at all times. The default is False because
it takes longer to insert new items in their proper location. This property’s value can be set at
design time as well as runtime. The items in a sorted ListBox control are sorted in ascending
and case-sensitive order, also known as phone book order. Because of this, the ListBox con-
trol won’t sort numeric data. The number 10 will appear in front of the number 5 because the
numeric value of the string 10 is smaller than the numeric value of the string 5. If the numbers
are formatted as 010 and 005, they will be sorted correctly.

Text

The Text property returns the selected text on the control. Although you can set the Text prop-
erty for the ComboBox control at design time, this property is available only at runtime for the
other two controls. Notice that the items need not be strings. By default, each item is an object.
For each object, however, the control displays a string, which is the same string returned by the
object’s ToString method.

Manipulating the Items Collection
To manipulate a ListBox control from within your application, you should be able to do the
following:

◆ Add items to the list

◆ Remove items from the list

◆ Access individual items in the list

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 185

The items in the list are represented by the Items collection. You use the members of the
Items collection to access the control’s items and to add or remove items. The Items property
exposes the standard members of a collection, which are described later in this section.

Each member of the Items collection is an object. In most cases, we use ListBox controls to
store strings, but it’s also common to store objects to this control. When you add an object to a
ListBox control, a string is displayed on the corresponding line of the control. This is the string
returned by the object’s ToString method. You can display any other property of the object by
setting the control’s ValueMember property to the name of the property.

If you add a Font object and a Rectangle object to the Items collection with the statements

ListBox1.Items.Add(New Font("Verdana", 12, FontStyle.Bold))
ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings appear on the first two lines of the control:

[Font: Name=Verdana, Size=12, Units=3, GdiCharSet=1, gdiVerticalFont=False]
{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects because the ListBox stores objects,
not their descriptions. The following statement prints the width of the Rectangle object (the out-
put produced by the statement is highlighted):

Debug.WriteLine(ListBox1.Items.Item(1).Width)
100

The expression in the preceding statement is late-bound, which means that the compiler
doesn’t know whether the first object in the Items collection is a Rectangle object and it can’t
verify the member Width. If you attempt to call the Width property of the first item in the
collection, you’ll get an exception at runtime indicating that the code has attempted to access a
missing member. The missing member is the Width property of the Font object.

The proper way to read the objects stored in a ListBox control is to examine the type of the
object first and then attempt to retrieve a property (or call a method) of the object, but only
if it’s of the appropriate type. Here’s how you would read the Width property of a Rectangle
object:

If ListBox1.Items.Item(0).GetType Is
GetType(Rectangle) Then

Debug.WriteLine(CType(ListBox1.Items.Item(0), Rectangle).Width)
End If

The Add Method

To add items to the list, use the Items.Add or Items.Insert method. The Add method accepts
as an argument the object to be added to the list. New items are appended to the end of the
list, unless the Sorted property has been set to True. The following loop adds the elements of
the array words to a ListBox control, one at a time:

Dim words(100) As String
{ statements to populate array }

186 CHAPTER 5 BASIC WINDOWS CONTROLS

Dim i As Integer
For i = 0 To 99

ListBox1.Items.Add(words(i))
Next

Then, to iterate through all the items on the control, use a loop such as the following:

Dim i As Integer
For i = 0 To ListBox1.Items.Count - 1

{ statements to process item ListBox1.Items(i) }
Next

You can also use the For Each…Next statement to iterate through the Items collection, as
shown here:

Dim itm As Object
For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }
Next

When you populate a ListBox control with a large number of items, call the BeginUpdate
method before starting the loop and call the EndUpdate method when you’re done. These
two methods turn off the visual update of the control while you’re populating it, and they
speed up the process considerably. When the EndUpdate method is called, the control is
redrawn with all the items.

The Insert Method

To insert an item at a specific location, use the Insert method, whose syntax is as follows:

ListBox1.Items.Insert(index, item)

Remember that you must declare the item prior to using it. If you don’t initialize it, you will
get a null ref.

The item parameter is the object to be added, and index is the location of the new item.
(The first item’s index in the list is zero).

The Clear Method

The Clear method removes all the items from the control. Its syntax is quite simple:

ListBox1.Items.Clear

The Count Property

This is the number of items in the list. If you want to access all the items with a For…Next
loop, the loop’s counter must go from 0 to ListBox.Items.Count – 1, as shown in the example
of the Add method.

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 187

The CopyTo Method

The CopyTo method of the Items collection retrieves all the items from a ListBox control and
stores them in the array passed to the method as an argument. The syntax of the CopyTo
method is as follows, where destination is the name of the array that will accept the items,
and index is the index of an element in the array where the first item will be stored:

ListBox1.CopyTo(destination, index)

The array that will hold the items of the control must be declared explicitly and must be large
enough to hold all the items.

The Remove and RemoveAt Methods

To remove an item from the list, you can simply call the Items collection’s Remove method,
passing the object to be removed as an argument. If the control contains strings, pass the string
to be removed. If the same string appears multiple times on the control, only the first instance
will be removed.

You can also remove an item by specifying its position in the list via the RemoveAt method,
which accepts as argument the position of the item to be removed:

ListBox1.Items.RemoveAt(index)

The index parameter is the order of the item to be removed, and the first item’s order is 0.

The Contains Method

The Contains method of the Items collection — not to be confused with the control’s Contains
method — accepts an object as an argument and returns a True/False value that indicates
whether the collection contains this object. Use the Contains method to avoid the insertion of
identical objects into the ListBox control. The following statements add a string to the Items
collection only if the string isn’t already part of the collection:

Dim itm As String = "Remote Computing"
If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)
End If

Selecting Items
The ListBox control allows the user to select either one or multiple items, depending on the set-
ting of the SelectionMode property. In a single-selection ListBox control, you can retrieve the
selected item by using the SelectedItem property and its index by using the SelectedIndex
property. SelectedItem returns the selected item, which is an object. The text of the selected
item is reported by the Text property.

If the control allows the selection of multiple items, they’re reported with the Selected-
Items property. This property is a collection of objects and exposes the same members as the
Items collection. Because the ComboBox does not allow the selection of multiple items, it pro-
vides only the SelectedIndex and SelectedItem properties.

188 CHAPTER 5 BASIC WINDOWS CONTROLS

To iterate through all the selected items in a multiselection ListBox control, use a loop such
as the following:

For Each itm As Object In ListBox1.SelectedItems
Debug.WriteLine(itm)

Next

The itm variable should be declared as Object because the items in the ListBox control are
objects. If they’re all of the same type, you can convert them to the specific type and then call
their methods. If all the items are of the Rectangle type, you can use a loop like the following
to print the area of each rectangle:

For Each itm As Rectangle In ListBox1.SelectedItems
Debug.WriteLine(itm.Width * itm.Height)

Next

VB 2010 at Work: The ListBox Demo Project
The ListBox Demo application (shown in Figure 5.6) demonstrates the basic operations of the
ListBox control. The two ListBox controls on the form operate slightly differently. The first has
the default configuration: Only one item can be selected at a time, and new items are appended
after the existing item. The second ListBox control has its Sorted property set to True and its
MultiSelect property set according to the values of the two RadioButton controls at the bot-
tom of the form.

Figure 5.6

ListBox Demo demon-
strates most of the
operations you’ll per-
form with ListBoxes.

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 189

The code for the ListBox Demo application contains much of the logic you’ll need in your
ListBox manipulation routines. It shows you how to do the following:

◆ Add and remove items at runtime

◆ Transfer items between lists at runtime

◆ Handle multiple selected items

◆ Maintain sorted lists

The Add Item Buttons

The Add Item buttons use the InputBox() function to prompt the user for input, and then they
add the user-supplied string to the ListBox control. The code is identical for both buttons (see
Listing 5.10).

Listing 5.10: The Add Item buttons

Private Sub bttnSourceAdd_Click(…)
Handles bttnSourceAdd.Click

Dim ListItem As String
ListItem = InputBox("Enter new item’s name")
If ListItem.Trim <> "" Then

sourceList.Items.Add(ListItem)
End If

End Sub

Notice that the subroutine examines the data entered by the user to avoid adding blank
strings to the list. The code for the Clear buttons is also straightforward; it simply calls the
Clear method of the Items collection to remove all entries from the corresponding list.

Removing Items from the Two Lists

The code for the Remove Selected Item button is different from that for the Remove Selected
Items button (both are presented in Listing 5.11). The code for the Remove Selected Item button
removes the selected item, while the Remove Selected Items buttons must scan all the items of
the left list and remove the selected one(s).

Listing 5.11: The Remove buttons

Private Sub bttnDestinationRemove_Click(…)
Handles bttnDestinationRemove.Click

destinationList.Items.Remove(destinationList.SelectedItem)
End Sub

190 CHAPTER 5 BASIC WINDOWS CONTROLS

Private Sub bttnSourceRemove_Click(…)
Handles bttnSourceRemove.Click

Dim i As Integer
For i = 0 To sourceList.SelectedIndices.Count - 1

sourceList.Items.RemoveAt(sourceList.SelectedIndices(0))
Next

End Sub

Notice that the code of the second event handler (the one that removes multiple selected
items) always removes the first item in the SelectedIndices collection. If you attempt to remove
the item SelectedIndices(i), you will remove the first selected item during the first itera-
tion. After an item is removed from the selection, the remaining items are no longer at the same
locations. (In effect, you have to refresh the SelectedIndices collection.) The second selected
item will take the place of the first selected item, which was just deleted, and so on. By remov-
ing the first item in the SelectedIndices collection, we make sure that all selected items, and
only those items, will be eventually removed.

Moving Items Between Lists

The two single-arrow buttons (located between the ListBox controls shown in Figure 5.6) trans-
fer selected items from one list to another. The button with the single arrow pointing to the
right transfers the items selected in the left list after it ensures that the list contains at least one
selected item. Its code is presented in Listing 5.12. First, it adds the item to the second list, and
then it removes the item from the original list. Notice that the code removes an item by passing
it as an argument to the Remove method because it doesn’t make any difference which one of
two identical objects will be removed.

Listing 5.12: Moving the selected items

Private Sub bttnSourceMove_Click(…)
Handles bttnSourceMove.Click

While sourceList.SelectedIndices.Count > 0
destinationList.Items.Add(sourceList.Items(

sourceList.SelectedIndices(0)))
sourceList.Items.Remove(sourceList.Items(

sourceList.SelectedIndices(0)))
End While

End Sub

The second single-arrow button transfers items in the opposite direction. The destination
control (the one on the right) doesn’t allow the selection of multiple items, so you can use the
SelectedIndex and SelectedItem properties. The event handler that moves a single item from
the right to the left ListBox is shown next:

sourceList.Items.Add(destinationList.SelectedItem)
destinationList.Items.RemoveAt(destinationList.SelectedIndex)

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 191

Searching the ListBox
Two of the most useful methods of the ListBox control are the FindString and FindString-
Exact methods, which allow you to quickly locate any item in the list. The FindString method
locates a string that partially matches the one you’re searching for; FindStringExact finds an
exact match. If you’re searching for Man and the control contains a name such as Mansfield,
FindString matches the item but FindStringExact does not.

Both the FindString and FindStringExact methods perform case-insensitive searches. If
you’re searching for visual and the list contains the item Visual, both methods will locate it. The
syntax for both methods is the same, where searchStr is the string you’re searching for:

itemIndex = ListBox1.FindString(searchStr)

An alternative form of both methods allows you to specify the index where the search begins:

itemIndex = ListBox1.FindString(searchStr,
startIndex)

The FindString and FindStringExact methods work even if the ListBox control is not
sorted. You need not set the Sorted property to True before you call one of the searching meth-
ods on the control. Sorting the list will help the search operation, but it takes the control less
than 100 milliseconds to find an item in a list of 100,000 items, so the time spent to sort the list
isn’t worth it. Before you load thousands of items in a ListBox control, however, you should
probably consider a more-functional interface.

VB 2010 at Work: The ListBoxFind Application

The application you’ll build in this section (seen in Figure 5.7) populates a list with a large
number of items and then locates any string you specify. Click the button Populate List to pop-
ulate the ListBox control with 10,000 random strings. This process will take a few seconds and
will populate the control with different random strings every time. Then, you can enter a string
in the TextBox control at the bottom of the form. As you type characters (or even delete charac-
ters in the TextBox), the program will locate the closest match in the list and select (highlight)
this item.

Figure 5.7

The ListBoxFind
application

192 CHAPTER 5 BASIC WINDOWS CONTROLS

The sample application reacts to each keystroke in the TextBox control and locates the string
you’re searching for as you enter characters. The Find Item button does the same, but I thought
I should demonstrate the efficiency of the ListBox control and the type of functionality you’d
expect in a rich client application.

The code (shown in Listing 5.13) attempts to locate an exact match via the FindStringExact
method. If it succeeds, it reports the index of the matching element. If not, it attempts to locate
a near match with the FindString method. If it succeeds, it reports the index of the near
match (which is the first item on the control that partially matches the search argument) and
terminates. If it fails to find either an exact or a near match, it reports that the string wasn’t
found in the list.

Listing 5.13: Searching the list

Private Sub TextBox1_TextChanged(…) Handles TextBox1.TextChanged
Dim srchWord As String = TextBox1.Text.Trim
If srchWord.Length = 0 Then Exit Sub
Dim wordIndex As Integer
wordIndex = ListBox1.FindStringExact(srchWord)
If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
wordIndex = ListBox1.FindString(srchWord)
If wordIndex >= 0 Then

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
Debug.WriteLine("Item " & srchWord &

" is not in the list")
End If

End If
End Sub

If you search for SAC, for example, and the control contains a string such as SAC or sac or
sAc, the program will return the index of the item in the list and will report an exact match. If
no exact match can be found, the program will return something like SACDEF, if such a string
exists on the control, as a near match. If none of the strings on the control starts with the char-
acters SAC, the search will fail.

The application is quite responsive even if you increase the size of the ListBox control to
100,000 items, except that the process of generating the random strings and populating the con-
trol takes considerably longer. In a practical application, however, you should never have to
display that many items to the user. (Consider an overhaul of your application interface before
you present the user with an enormous list.)

The Populate List button creates 10,000 random items with the help of the Random class.
First, it generates a random value in the range 1 through 20, which is the length of the string
(not all strings have the same length). Then the program generates as many random charac-
ters as the length of the string and builds the string by appending each character to it. These

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 193

random numbers are in the range of 65 to 91 and they’re the ANSI values of the uppercase
characters.

By the way, this technique for generating random strings is not a contrived sample of VB
code. I’ve used similar techniques on several occasions to populate large database tables with
data and optimize my queries and data-driven applications for performance.

The ComboBox Control
The ComboBox control is similar to the ListBox control in the sense that it contains multiple
items and the user may select one, but it typically occupies less space onscreen. The ComboBox
is practically an expandable ListBox control, which can grow when the user wants to make a
selection and retract after the selection is made. Normally, the ComboBox control displays one
line with the selected item because this control doesn’t allow multiple-item selection. The essen-
tial difference, however, between ComboBox and ListBox controls is that the ComboBox allows
the user to specify items that don’t exist in the list.

There are three types of ComboBox controls. The value of the control’s DropDownStyle prop-
erty determines which box is used; these values are shown in Table 5.4.

Table 5.4: DropDownStyle options for the ComboBox control

Value Effect

DropDown (Default) The control is made up of a drop-down list, which is visible at all
times, and a text box. The user can select an item from the list or type a new
one in the text box.

DropDownList This style is a drop-down list from which the user can select one of its items but
can’t enter a new one. The control displays a single item, and the list is expan-
ded as needed.

Simple The control includes a text box and a list that doesn’t drop down. The user can
select from the list or type in the text box.

The ComboBox Styles project, shown in Figure 5.8, demonstrates the three styles of the
ComboBox control. This is another common element of the Windows interface, and its pro-
perties and methods are identical to those of the ListBox control. Load the ComboBox Styles
project in the Visual Basic IDE and experiment with the three styles of the ComboBox control.

The DropDown and Simple ComboBox styles allow the user to select an item from the list or
enter a new one in the edit box of the control. Moreover, they’re collapsed by default and they
display a single item unless the user expands the list of items to make a selection. The Drop-
DownList style is similar to a ListBox control in the sense that it restricts the user to selecting
an item (the user cannot enter a new one). However, it takes much less space on the form than
a ListBox does because normally it displays a single item. When the user wants to make a selec-
tion, the DropDownList expands to display more items. After the user has made a selection,
the list contracts to a single line again. Finally, the DropDownList style of the control doesn’t

194 CHAPTER 5 BASIC WINDOWS CONTROLS

allow the user to enter a new string in the edit area; users are restricted to selecting one of the
existing items.

Figure 5.8

The ComboBox Styles
project

Most of the properties and methods of the ListBox control also apply to the ComboBox con-
trol, shown in Figure 5.9. The Items collection gives you access to the control’s items, and the
SelectedIndex and SelectedItem properties give you access to the current selection. You can
also use the FindString and FindStringExact methods to locate any item in the control from
within your code. Both methods return the index of the item you’re searching for on the con-
trol, or the value –1 if no such item exists.

Figure 5.9

You can use the
DropDownWidth prop-
erty to save space.

THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS 195

There’s one aspect worth mentioning regarding the operation of the control. Although the
edit box at the top allows you to enter a new string, the new string doesn’t become a new item
in the list. It remains there until you select another item or you clear the edit box. You can pro-
vide some code to add any string entered by the user in the control’s edit box to the list of
existing items.

The most common use of the ComboBox control is as a lookup table. The ComboBox control
takes up very little space on the form, but it can be expanded at will. You can save even more
space when the ComboBox is contracted by setting it to a width that’s too small for the longest
item. Use the DropDownWidth property, which is the width of the segment of the drop-down
list. By default, this property is equal to the control’s Width property. The second ComboBox
control in Figure 5.9 contains an unusually long item. The control is wide enough to display the
default selection. When the user clicks the arrow to expand the control, the drop-down section
of the control is wider than the default width so that the long items can be read.

Adding Items to a ComboBox at Runtime

Although the ComboBox control allows users to enter text in the control’s edit box, it doesn’t
provide a simple mechanism for adding new items at runtime. Let’s say you provide a Combo-
Box with city names. Users can type the first few characters and quickly locate the desired item.
But what if they want to specify a new city name? You can provide this capability with two
simple techniques. The simpler one is to place a button with an ellipsis (three periods) right
next to the control. When users want to add a new item to the control, they can click the button
and be prompted for the new item.

A more-elegant and user-friendly approach is to examine the control’s Text property as soon
as the control loses focus or the user presses the Enter key. If the string entered by the user
doesn’t match an item on the control, you must add a new item to the control’s Items collec-
tion and select the new item from within your code. The FlexComboBox project demonstrates
how to use both techniques in your code. The main form of the project, which is shown in
Figure 5.10, is a simple data-entry screen. It’s not the best data-entry form, but it’s meant for
demonstration purposes.

Figure 5.10

The FlexComboBox
project demonstrates
two techniques for
adding new items to
a ComboBox at runtime.

You can either enter a city name (or country name) and press the Tab key to move to
another control or click the button next to the control to be prompted for a new city/country

196 CHAPTER 5 BASIC WINDOWS CONTROLS

name. The application will let you enter any city/country combination. You should provide
code to limit the cities within the selected country, but this is a nontrivial task. You also need
to store the new city names entered on the first ComboBox control to a file (or a database
table) so users will find them there the next time they run the application. I haven’t made the
application elaborate; I’ve added the code only to demonstrate how to add new items to a
ComboBox control at runtime.

VB 2010 At Work: The FlexCombo Project

The ellipsis button next to the City ComboBox control prompts the user for the new item
via the InputBox() function. Then it searches the Items collection of the control via the
FindString method, and if the new item isn’t found, it’s added to the control. Then the code
selects the new item in the list. To do so, it sets the control’s SelectedIndex property to the
value returned by the Items.Add method or the value returned by the FindString method,
depending on whether the item was located or added to the list. Listing 5.14 shows the code
behind the ellipsis button.

Listing 5.14: Adding a new item to the ComboBox control at runtime

Private Sub Button1_Click(…) Button1.Click
Dim itm As String
itm = InputBox("Enter new item", "New Item")
If itm.Trim <> "" Then AddElement(ComboBox1, itm)

End Sub

The AddElement() subroutine, which accepts the control you are adding to and a string as
arguments and adds the string to the control, is shown in Listing 5.15. If the item doesn’t exist
in the control, it’s added to the Items collection. If the item is already a member of the Items
collection, it’s selected. As you will see, the same subroutine will be used by the second method
for adding items to the control at runtime.

Listing 5.15: The AddElement() subroutine

Sub AddElement(ByRef control As ComboBox, ByVal newItem As String)
Dim idx As Integer
If ComboBox1.FindString(newItem) > 0 Then

idx = control.FindString(newItem)
Else

idx = control.Items.Add(newItem)
End If
control.SelectedIndex = idx

End Sub

THE SCROLLBAR AND TRACKBAR CONTROLS 197

You can also add new items at runtime by adding the same code in the control’s LostFocus
event handler:

Private Sub ComboBox1_LostFocus(…) Handles ComboBox1.LostFocus
Dim newItem As String = ComboBox1.Text
AddElement(ComboBox1, newItem)

For an even more functional interface, capture the Enter keystroke in the control’s KeyUp
event, add the new item to the list (if needed), and then move the focus to the next control on
the form, as discussed earlier in this chapter.

The ScrollBar and TrackBar Controls
The ScrollBar and TrackBar controls let the user specify a magnitude by moving a selector
between its minimum and maximum values. In some situations, the user doesn’t know in
advance the exact value of the quantity to specify (and in this case, a text box would suffice),
so your application must provide a more-flexible mechanism for specifying a value along with
some type of visual feedback.

The vertical scroll bar that lets a user move up and down a long document is a typical
example of the use of the ScrollBar control. The scroll bar and visual feedback are the prime
mechanisms for repositioning the view in a long document or in a large picture that won’t fit
entirely in a window.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a continuous
range of values. The TrackBar control has a fixed number of tick marks and users can place the
slider’s indicator to the desired value.

In short, the ScrollBar control should be used when the exact value isn’t as important as the
value’s effect on another object or data element. The TrackBar control should be used when the
user can type a numeric value and the value your application expects is a number in a specific
range — for example, integers between 0 and 100 or a value between 0 and 5 inches in steps
of 0.1 inches (0.0, 0.1, 0.2 . . . 5.0). The TrackBar control is preferred to the TextBox control in
similar situations because there’s no need for data validation on your part. The user can specify
only valid numeric values with the mouse.

The ScrollBar Control
There’s no ScrollBar control per se in the Toolbox; instead, there are two versions of it: the
HScrollBar and VScrollBar controls. They differ only in their orientation, but because they share
the same members, I will refer to both controls collectively as ScrollBar controls. Actually, both
controls inherit from the ScrollBar control, which is an abstract control: It is used to imple-
ment vertical and horizontal scroll bars, but it can’t be used directly on a form. Moreover, the
HScrollBar and VScrollBar controls are not displayed in the Common Controls tab of the Tool-
box. You have to open the All Windows Forms tab to locate these two controls.

The ScrollBar control is a long stripe, which allows users to select a value between the two
ends of the control. The left (or bottom) end of the control corresponds to its minimum value;
the other end is the control’s maximum value. The current value of the control is determined
by the position of the indicator, which can be scrolled between the minimum and maximum
values. The basic properties of the ScrollBar control, therefore, are properly named Minimum,
Maximum, and Value.

198 CHAPTER 5 BASIC WINDOWS CONTROLS

Minimum The control’s minimum value. The default value is 0, but because this is an Integer
value, you can set it to negative values as well.

Maximum The control’s maximum value. The default value is 100, but you can set it to any
value that you can represent with the Integer data type.

Value The control’s current value, specified by the indicator’s position.

To cover a range of non-integers, you must supply the code to map the actual values to Inte-
ger values. For example, to cover a range from 2.5 to 8.5, set the Minimum property to 25, set
the Maximum property to 85, and divide the control’s value by 10. If the range you need is from
–2.5 to 8.5, set the Minimum property to –25 and the Maximum value to 85, and divide the Value
property by 10.

There are two more properties that allow you to control the movement of the indicator:
the SmallChange and LargeChange properties. The first property is the amount by which the
indicator changes when the user clicks one of the arrows at the two ends of the control. The
LargeChange property is the displacement of the indicator when the user clicks somewhere in
the scroll bar itself. You can manipulate a scroll bar by using the keyboard as well. Press the
arrow keys to move the indicator in the corresponding direction by SmallChange and the Page
Up/Page Down keys to move the indicator by LargeChange.

VB 2010 at Work: The Colors Project

Figure 5.11 shows the main form of the Colors sample project, which lets the user specify a
color by manipulating the value of its basic colors (red, green, and blue) through scroll bars.
Each basic color is controlled by a scroll bar and has a minimum value of 0 and a maximum
value of 255. By adjusting the value of each of the basic colors, you can create (almost) any
color imaginable. This is what the Colors application does.

Figure 5.11

The Colors application
demonstrates the use of
the ScrollBar control.

As the scroll bar is moved, the corresponding color is displayed, and the user can easily
specify a color without knowing the exact values of its primary components. All the user needs
to know is whether the desired color contains, for example, too much red or too little green.
With the help of the scroll bars and the immediate feedback from the application, the user can
easily pinpoint the desired color.

THE SCROLLBAR AND TRACKBAR CONTROLS 199

The ScrollBar Control’s Events

You can monitor the changes of the ScrollBar’s value from within your code by using two
events: ValueChanged and Scroll. Both events are fired every time the indicator’s position
is changed. If you change the control’s value from within your code, only the ValueChanged
event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling of
the indicator with the mouse, a click on one of the two buttons at the ends of the scroll bars,
and so on. If you want to know the action that caused this event, you can examine the Type
property of the second argument of the event handler. The value of the e.Type property is a
member of the ScrollEventType enumeration (LargeDecrement, SmallIncrement, Track, and
so on).

Handling the Events in the Colors Application

The two PictureBox controls display the color designed with the three scroll bars. The left
PictureBox is colored from within the Scroll event, whereas the other one is colored from
within the ValueChanged event. Both events are fired as the user scrolls the scroll bar’s indi-
cator, but in the Scroll event handler of the three scroll bars, the code examines the value of
the e.Type property and reacts to it only if the event was fired because the scrolling of the
indicator has ended. For all other actions, the event handler doesn’t update the color of the left
PictureBox.

If the user attempts to change the Color value by clicking the two arrows of the scroll bars
or by clicking in the area to the left or to the right of the indicator, both PictureBox controls are
updated. While the user slides the indicator or keeps pressing one of the end arrows, only the
PictureBox to the right is updated.

The conclusion from this experiment is that you can program either event to provide contin-
uous feedback to the user. If this feedback requires too many calculations, which would slow
down the reaction of the corresponding event handler, you can postpone the reaction until the
user has stopped scrolling the indicator. You can detect this condition by examining the value
of the e.Type property. When it’s ScrollEventType.EndScroll, you can execute the appropri-
ate statements. Listing 5.16 shows the code behind the Scroll and ValueChanged events of the
scroll bar that controls the red component of the color. The code of the corresponding events of
the other two controls is identical.

Listing 5.16: Programming the ScrollBar control’s scroll event

Private Sub redBar_Scroll(…) Handles redBar.Scroll
If e.Type = ScrollEventType.EndScroll Then

ColorBox1()
lblRed.Text = "RED " & redBar.Value.ToString("###")

End If
End Sub

Private Sub redBar_ValueChanged(…) Handles redBar.ValueChanged
ColorBox2()

End Sub

200 CHAPTER 5 BASIC WINDOWS CONTROLS

The ColorBox1() and ColorBox2() subroutines update the color of the two PictureBox con-
trols by setting their background colors. You can open the Colors project in Visual Studio and
examine the code of these two routines.

The TrackBar Control
The TrackBar control is similar to the ScrollBar control, but it lacks the granularity of ScrollBar.
Suppose that you want the user of an application to supply a value in a specific range, such as
the speed of a moving object. Moreover, you don’t want to allow extreme precision; you need
only a few distinct settings. The user can set the control’s value by sliding the indicator or by
clicking on either side of an indicator like the one shown in Figure 5.12.

Figure 5.12

The Inches application
demonstrates the use
of the TrackBar control
in specifying an exact
value in a specific range.

Granularity determines how specific you want to be in measuring. In measuring distances
between towns, a granularity of a mile is quite adequate. In measuring (or specifying) the
dimensions of a building, the granularity could be on the order of a foot or an inch. The
TrackBar control lets you set the type of granularity that’s necessary for your application.

Similar to the ScrollBar control, SmallChange and LargeChange properties are available.
SmallChange is the smallest increment by which the Slider value can change. The user can
change the slider by the SmallChange value only by sliding the indicator. (Unlike with the
ScrollBar control, there are no arrows at the two ends of the Slider control.) To change the
Slider’s value by LargeChange, the user can click on either side of the indicator.

VB 2010 at Work: The Inches Project

Figure 5.12 demonstrates a typical use of the TrackBar control. The form in the figure is an
element of a program’s user interface that lets the user specify a distance between 0 and 10
inches in increments of 0.2 inches. As the user slides the indicator, the current value is dis-
played on a Label control below the TrackBar. If you open the Inches application, you’ll notice
that there are more stops than there are tick marks on the control. This is made possible with
the TickFrequency property, which determines the frequency of the visible tick marks.

You might specify that the control has 50 stops (divisions) but that only 10 of them will be
visible. The user can, however, position the indicator on any of the 40 invisible tick marks. You
can think of the visible marks as the major tick marks and the invisible ones as the minor tick
marks. If the TickFrequency property is 5, only every fifth mark will be visible. The slider’s
indicator, however, will stop at all tick marks.

When using the TrackBar control on your interfaces, you should set the TickFrequency
property to a value that helps the user select the desired setting. Too many tick marks are con-
fusing and difficult to read. Without tick marks, the control isn’t of much help. You might also

THE BOTTOM LINE 201

consider placing a few labels to indicate the value of selected tick marks, as I have done in
this example.

The properties of the TrackBar control in the Inches application are as follows:

Minimum = 0
Maximum = 50
SmallChange = 1
LargeChange = 5
TickFrequency = 5

The TrackBar needs to cover a range of 10 inches in increments of 0.2 inches. If you set the
SmallChange property to 1, you have to set LargeChange to 5. Moreover, the TickFrequency
is set to 5, so there will be a total of five divisions in every inch. The numbers below the tick
marks were placed there with properly aligned Label controls.

The label at the bottom needs to be updated as the TrackBar’s value changes. This is sig-
naled to the application with the Change event, which occurs every time the value of the control
changes, either through scrolling or from within your code. The ValueChanged event handler of
the TrackBar control is shown next:

Private Sub TrackBar1_ValueChanged(…) Handles TrackBar1.ValueChanged
lblInches.Text = "Length in inches = " &

Format(TrackBar1.Value / 5, "#.00")
End Sub

The Label controls below the tick marks can also be used to set the value of the control.
Every time you click one of the labels, the following statement sets the TrackBar control’s value.
Notice that all the Label controls’ Click events are handled by a common handler. (There are
more event handlers following the Handles keyword in the listing.)

Private Sub Label_Click(…) Handles Label1.Click, Label2.Click, …
TrackBar1.Value = CInt(CType(sender, Label).text) * 5

End Sub

The code is a bit complicated, but it will compile with the Strict option on. The CType()
function converts its argument, which is an Object variable and may represent any of the
Labels on the form, to a Label object. Then it converts the Label’s caption to an integer value
(the string "1" to the numeric value 1, and so on) by calling the CInt() function. CInt() is
a VB function; the equivalent method of the Framework is System.Convert.ToInt32. The
captions of all Labels are numbers by design, so the conversion will never fail. This value is
then assigned to the Value property of the TrackBar control.

The Bottom Line

Use the TextBox control as a data-entry and text-editing tool. The TextBox control is the
most common element of the Windows interface, short of the Button control, and it’s used to
display and edit text. You can use a TextBox control to prompt users for a single line of text
(such as a product name) or a small document (a product’s detailed description). You can

202 CHAPTER 5 BASIC WINDOWS CONTROLS

actually implement a functional text editor by placing a TextBox control on a form and setting
a few of its properties.

Master It What are the most important properties of the TextBox control? Which ones
would you set in the Properties windows at design time?

Master It How would you implement a control that suggests lists of words matching the
characters entered by the user?

Use the ListBox, CheckedListBox, and ComboBox controls to present lists of items. The
ListBox control contains a list of items from which the user can select one or more, depending
on the setting of the SelectionMode property.

Master It How would you locate an item in a ListBox control?

Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse. The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling
a selector between its minimum and maximum values. The ScrollBar control uses some visual
feedback to display the effects of scrolling on another entity, such as the current view in a long
document.

Master It Which event of the ScrollBar control would you code to provide visual feedback
to the user?

Chapter 6

Working with Forms

In Visual Basic, the form is the container for all the controls that make up the user interface.
When a Visual Basic application is executing, each window it displays on the Desktop is a
form. The terms form and window describe the same entity. A window is what the user sees
on the Desktop when the application is running. A form is the same entity at design time. The
proper term is Windows form, as opposed to web form, but I will refer to them as forms. This
term includes both typical Windows forms and dialog boxes, which are simple forms you use
for very specific actions, such as to prompt the user for a particular piece of data or to display
critical information. A dialog box is a form with a small number of controls, no menus, and
usually an OK and a Cancel button to close it.

Forms have a built-in functionality that is always available without any programming effort
on your part. You can move a form around, resize it, and even cover it with other forms. You
do so with the mouse or with the keyboard through the Control menu.

In previous chapters, you concentrated on placing the elements of the user interface on
forms, setting their properties, and adding code behind selected events. Now you’ll look
at forms themselves and at a few related topics. In this chapter, you’ll learn how to do the
following:

◆ Use form properties

◆ Design applications with multiple forms

◆ Design dynamic forms

◆ Design menus

Forms have many trivial properties that won’t be discussed here. Instead, let’s jump directly
to the properties that are unique to forms and then look at how to manipulate forms from
within an application’s code.

The Appearance of Forms
Applications are made up of one or more forms — usually more than one. You should craft
your forms carefully, make them functional, and keep them simple and intuitive. You already
know how to place controls on the form, but there’s more to designing forms than populat-
ing them with controls. The main characteristic of a form is the title bar on which the form’s
caption is displayed (see Figure 6.1).

204 CHAPTER 6 WORKING WITH FORMS

Figure 6.1

The elements of the
form

Caption Title bar Minimize Maximize
or Restore

CloseControl menu icon

Control menu

Clicking the Control menu icon opens the Control menu, which contains the commands
listed in Table 6.1. On the right end of the title bar are three buttons: Minimize, Maximize, and
Close. Clicking these buttons performs the associated function. When a form is maximized, the
Maximize button is replaced by the Restore button. When clicked, the Restore button resets the
form to its size and position before it was maximized, and it’s replaced by the Maximize but-
ton. To access the Control menu from the keyboard, press Alt and then the down arrow key.

Table 6.1: Commands of the Control menu

Command Effect

Restore Restores a maximized form to the size it was before it was maximized;
available only if the form has been maximized.

Move Lets the user move the form around with the arrow keys.

Size Lets the user resize the form with the arrow keys.

Minimize Minimizes the form.

Maximize Maximizes the form.

Close Closes the current form. (Closing the application’s main form
terminates the application.)

Properties of the Form Object
You’re familiar with the appearance of forms, even if you haven’t programmed in the Windows
environment in the past; you have seen nearly all types of windows in the applications you’re
using every day. The floating toolbars used by many graphics applications, for example, are
actually forms with a narrow title bar. The dialog boxes that prompt for critical information or

THE APPEARANCE OF FORMS 205

prompt you to select the file to be opened are also forms. You can duplicate the look of any
window or dialog box through the following properties of the Form object.

AcceptButton, CancelButton

These two properties let you specify the default Accept and Cancel buttons. The Accept but-
ton is the one that’s automatically activated when you press Enter, no matter which control
has the focus at the time; it is usually the button with the OK caption. Likewise, the Cancel
button is the one that’s automatically activated when you hit the Esc key; it is usually the but-
ton with the Cancel caption. To specify the Accept and Cancel buttons on a form, locate the
AcceptButton and CancelButton properties of the form and select the corresponding con-
trols from a drop-down list, which contains the names of all the buttons on the form. For more
information on these two properties, see the section ‘‘Forms versus Dialog Boxes,’’ later in this
chapter.

AutoScaleMode

This property determines how the control is scaled, and its value is a member of the
AutoScaleMode enumeration: None (automatic scaling is disabled); Font (the controls on the
form are scaled relative to the size of the font); Dpi, which stands for dots per inch (the controls
on the form are scaled relative to the display resolution); and Inherit (the controls are scaled
according to the AutoScaleMode property of their parent class). The default value is Font; if
you change the form’s font size, the controls on it are scaled to the new font size. As a result,
the entire form is resized.

AutoScroll

The AutoScroll property is a True/False value that indicates whether scroll bars (as shown
in Figure 6.2) will be automatically attached to the form if the form is resized to a point that
not all its controls are visible. Use this property to design large forms without having to worry
about the resolution of the monitor on which they’ll be displayed. Scrolling forms are not
very common, but they’re easy to implement. The AutoScroll property is used in conjunction
with two other properties (described a little later in this section): AutoScrollMargin and
AutoScrollMinSize. Note that the AutoScroll property applies to a few controls as well,
including the Panel and SplitContainer controls. For example, you can create a form with a
fixed and a scrolling pane by placing two Panel controls on it and setting the AutoScroll
property of one of them (the Panel control you want to scroll) to True.

Figure 6.2

If the controls don’t
fit in a form’s visible
area, scroll bars can be
attached automatically.

206 CHAPTER 6 WORKING WITH FORMS

The AutoScroll property is rarely used with data-entry forms, but it’s used routinely to
display large images. You’ll see how to create a scrolling form for displaying large images later
in this chapter in the section on anchoring and docking controls.

AutoScrollPosition

This property is available from within your code only (you can’t set this property at design
time but it can be set at runtime from within your code), and it indicates the number of pixels
that the form was scrolled up or down. Its initial value is zero, and it takes on a value when
the user scrolls the form (provided that the AutoScroll property is True). Use this property
to find out the visible controls from within your code or to scroll the form from within your
application’s code to bring a specific control into view.

AutoScrollMargin

This is a margin, expressed in pixels, that’s added around all the controls on the form. If the
form is smaller than the rectangle that encloses all the controls adjusted by the margin, the
appropriate scroll bar(s) will be displayed automatically.

AutoScrollMinSize

This property lets you specify the minimum size of the form before the scroll bars are attached.
If your form contains graphics that you want to be visible at all times, set the Width and
Height members of the AutoScrollMinSize property to the dimensions of the graphics. (Of
course, the graphics won’t be visible at all times, but the scroll bars indicate that there’s more
to the form than can fit in the current window.) Notice that this isn’t the form’s minimum
size; users can make the form even smaller. To specify a minimum size for the form, use the
MinimumSize property, described later in this section.

Let’s say the AutoScrollMargin property of the form is 180×150. If the form is resized
to fewer than 180 pixels horizontally or 150 pixels vertically, the appropriate scroll bars will
appear automatically as long as the AutoScroll property is True. If you want to enable the
AutoScroll feature when the form’s width is reduced to anything fewer than 250 pixels, set the
AutoScrollMinSize property to (250, 0). In this example, setting AutoScrollMinSize.Width to
anything less than 180, or AutoScrollMinSize.Height to anything less than 150, will have no
effect on the appearance of the form and its scroll bars.

Bringing Selected Controls into View

In addition to the Autoscroll properties, the Form object provides a Scroll method,
which allows you to scroll a form programmatically, and ScrollControlIntoView, which
scrolls the form until the specified control comes into view. The Scroll method accepts
as arguments the horizontal and vertical displacements for the scrolling operation, whereas
ScrollControlIntoView accepts as an argument the control you want to bring into view.
Notice that activating a control with the Tab key automatically brings the next control into
view if it’s not already visible on the form. Finally, the Scroll event is fired every time a
form is scrolled.

THE APPEARANCE OF FORMS 207

FormBorderStyle

The FormBorderStyle property determines the style of the form’s border; its value is one of
the FormBorderStyle enumeration members, which are shown in Table 6.2. You can make
the form’s title bar disappear altogether by setting the form’s FormBorderStyle property to
FixedToolWindow, the ControlBox property to False, and the Text property (the form’s cap-
tion) to an empty string. However, a form like this can’t be moved around with the mouse and
will probably frustrate users.

Table 6.2: The FormBorderStyle enumeration

Value Effect

Fixed3D A window with a fixed visible border ‘‘raised’’ relative to the main
area. Unlike the None setting, this setting allows users to minimize and
close the window.

FixedDialog A fixed window used to implement dialog boxes.

FixedSingle A fixed window with a single-line border.

FixedToolWindow A fixed window with a Close button only. It looks like a toolbar
displayed by drawing and imaging applications.

None A borderless window that can’t be resized. This setting is rarely used.

Sizable (default) A resizable window that’s used for displaying regular forms.

SizableToolWindow Same as the FixedToolWindow, but it’s resizable. In addition, its
caption font is smaller than the usual.

Create a simple form and try out the various settings of the FormBorderStyle property to
find out how this property affects the appearance of the form.

ControlBox

This property is also True by default. Set it to False to hide the control box icon and disable the
Control menu. Although the Control menu is rarely used, Windows applications don’t disable
it. When the ControlBox property is False, the three buttons on the title bar are also disabled.
If you set the Text property to an empty string, the title bar disappears altogether.

MinimizeBox, MaximizeBox

These two properties, which specify whether the Minimize and Maximize buttons will appear
on the form’s title bar, are True by default. Set them to False to hide the corresponding buttons
on a form’s title bar.

MinimumSize, MaximumSize

These two properties read or set the minimum and maximum size of a form. When users resize
the form at runtime, the form won’t become any smaller than the dimensions specified by the

208 CHAPTER 6 WORKING WITH FORMS

MinimumSize property or any larger than the dimensions specified by the MaximumSize prop-
erty. The MinimumSize property is a Size object, and you can set it with a statement like the
following:

Me.MinimumSize = New Size(400, 300)

Or you can set the width and height separately:

Me.MinimumSize.Width = 400
Me.MinimumSize.Height = 300

The MinimumSize.Height property includes the height of the form’s title bar; you should
take that into consideration. If the minimum usable size of the form is 400×300, use the follow-
ing statement to set the MinimumSize property:

Me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

The default value of both properties is (0, 0), which means that no minimum or maximum
size is imposed on the form and the user can resize it as desired.

Use the SystemInformation Class to Read System Information

The height of the caption is not a property of the Form object, even though it’s used to
determine the useful area of the form (the total height minus the caption bar). Keep in mind
that the height of the caption bar is given by the CaptionHeight property of the System-
Information object. You should look up the SystemInformation object; it exposes a lot of useful
properties, such as BorderSize (the size of the form’s borders), Border3DSize (the size of
three-dimensional borders), CursorSize (the cursor’s size), and many more.

KeyPreview

This property enables the form to capture all keystrokes before they’re passed to the control
that has the focus. Normally, when you press a key, the KeyPress event of the control with the
focus is triggered (as well as the KeyUp and KeyDown events), and you can handle the keystroke
from within the control’s appropriate handler. In most cases, you let the control handle the
keystroke and don’t write any form code for that.

Some forms perform certain actions when you hit a specific key (the F5 key for refresh-
ing the form being a very common example), no matter which control on the form has the
focus. If you want to use these keystrokes in your application, you must set the KeyPreview
property to True. Doing so enables the form to intercept all keystrokes, so you can process
them from within the form’s keystroke event handlers. To handle a specific keystroke at the
form’s level, set the form’s KeyPreview property to True and insert the appropriate code in
the form’s KeyDown or KeyUp event handler (the KeyPress event isn’t fired for the function and
other non-character keys).

The same keystrokes are then passed to the control with the focus, unless you kill the
keystroke by setting its SuppressKeystroke property to True when you process it on the
form’s level. For more information on processing keystrokes at the form level and using special

THE APPEARANCE OF FORMS 209

keystrokes throughout your application, see the Contacts project later in this chapter as well as
the TextPad project discussed in Chapter 5, ‘‘The Basic Window Controls.’’

SizeGripStyle

This property gets or sets the style of the sizing handle to display in the lower-right corner of
the form. You can set it to a member of the SizeGripStyle enumeration: Auto (the size grip is
displayed as needed), Show (the size grip is displayed at all times), or Hide (the size grip is not
displayed, but users can still resize the form with the mouse).

StartPosition, Location

The StartPosition property, which determines the initial position of the form when it’s
first displayed, can be set to one of the members of the FormStartPosition enumeration:
CenterParent (the form is centered in the area of its parent form), CenterScreen (the form
is centered on the monitor), Manual (the position of the form is determined by the Location
property), WindowsDefaultLocation (the form is positioned at the Windows default location),
and WindowsDefaultBounds (the form’s location and bounds are determined by Windows
defaults). The Location property allows you to set the form’s initial position at design time or
to change the form’s location at runtime.

TopMost

This property is a True/False setting that lets you specify whether the form will remain on
top of all other forms in your application. Its default value is False, and you should change
it only on rare occasions. Some dialog boxes, such as the Find & Replace dialog box of any
text-processing application, are always visible, even when they don’t have the focus. For
more information on using the TopMost property, see the discussion of the TextPad project
in Chapter 5. You can also add a professional touch to your application by providing a
CheckBox control that determines whether a form should remain on top of all other forms of
the application.

Size

Use the Size property to set the form size at design time or at runtime. Normally, the form
width and height are controlled by the user at runtime. This property is usually set from within
the form Resize event handler to maintain a reasonable aspect ratio when the user resizes the
form. The Form object also exposes the Width and Height properties for controlling its size.

Placing Controls on Forms
The first step in designing your application interface is, of course, the analysis and careful plan-
ning of the basic operations you want to provide through your interface. The second step is
to design the forms. Designing a form means placing Windows controls on it and setting the
control properties (and finally, of course, writing code to handle the events of interest). Visual
Studio is a rapid application development (RAD) environment. This doesn’t mean that you’re
expected to develop applications rapidly. It has come to mean that you can rapidly prototype
an application and show something to the customer. And this is made possible through the
visual tools that come with Visual Studio, especially the new Form Designer.

To place controls on your form, you select them in the Toolbox and then draw, on the form,
the rectangle in which the control will be enclosed. Or you can double-click the control’s icon

210 CHAPTER 6 WORKING WITH FORMS

to place an instance of the control on the form. Or you can just drag the desired control from
the Toolbox and drop it on the form. All controls have a default size, and you can resize the
control on the form by using the mouse.

Each control’s dimensions can also be set in the Properties window through the Size prop-
erty. The Size property is a composite property that exposes the Width and Height fields,
which are expressed in pixels. Likewise, the Location property returns (or sets) the coordi-
nates of the top-left corner of the control. In ‘‘Building Dynamic Forms at Runtime’’ later in this
chapter, you’ll see how to create new controls at runtime and place them in a specific location
on a form from within your code.

As you place controls on the form, you can align them in groups with the relevant com-
mands from the Format menu. Select multiple controls on the form by using the mouse and
the Shift (or Ctrl) key, and then align their edges or center them vertically and horizontally
with the appropriate command from the Format menu. To align the left edges of a column of
TextBoxes, choose the Format � Align � Left command. You can also use the commands from
the Format � Make Same Size command to adjust the dimensions of the selected controls. (To
make them equal in size, make the widths or heights equal.)

As you move controls around with the mouse, a blue snap line appears when the controls
become aligned with another control. Release the mouse while the snap line is visible to leave
the control aligned with the one indicated by the snap lines. The blue snap lines indicate edge
alignment. Most of the time, you need to align not the edges of two controls but their baselines
(the baseline of the text on the control). The snap lines that indicate baseline alignment are red.
Figure 6.3 shows both types of snap lines. When you’re aligning a Label control with its match-
ing TextBox control on a form, you want to align their baselines, not their frames (especially
if you consider that the Label controls are always displayed without borders). If the control is
aligned with other controls in both directions, two snap lines will appear — a horizontal one
and a vertical one.

Figure 6.3

Edge alignment (verti-
cal) and baseline align-
ment (horizontal)

This snap line indicates
horizontal alignment.

This snap line indicates
vertical alignment.

One of the most important (and most overlooked) aspects of designing forms is the align-
ment of the controls on the form. Whether the form contains a lot of controls or just a few, the
application is more professional looking and easier for the end user to interact with when the
programmer spends the time to align the controls one to another and group them function-
ally. Try to group controls together based on their functionality. Try to present an uncluttered
interface to the end user. Once you have aligned the controls on the form as discussed in this
section, you can select them all and lock them in place by setting their Locked property to
True. When the Locked property is True, the designer won’t allow you to move them around
by mistake.

THE APPEARANCE OF FORMS 211

Setting the TabIndex Property
Another important issue in form design is the tab order of the controls on the form. As you
know, by default, pressing the Tab key at runtime takes you to the next control on a form. The
tab order of the controls is the order in which they were placed on the form, but this is hardly
ever what we want. When you design the application, you can specify the order in which the
controls receive the focus (the tab order, as it is known) with the help of the TabIndex prop-
erty. Each control has its own TabIndex setting, which is an integer value. When the Tab key is
pressed, the focus is moved to the control whose tab order immediately follows the tab order
of the current control (the one with the next larger TabIndex property value).

To specify the tab order of the various controls, you can set their TabIndex property in the
Properties window or you can choose the Tab Order command from the View menu. The tab
order of each control will be displayed on the corresponding control, as shown in Figure 6.4.
(The form shown in the figure is the Contacts application, which is discussed shortly.)

Figure 6.4

Setting the tab order of
the controls on the main
form of the Contacts
project

To set the tab order of the controls, click each control in the order in which you want them
to receive the focus. You must click all of them in the desired order, starting with the first
control in the tab order. Each control’s index in the tab order appears in the upper-left corner
of the control. When you’re finished, choose the Tab Order command from the View menu
again to hide the numbers. Note that Label controls never receive the focus, but they have their
own TabIndex value. When the next control to receive the focus is a Label control, the focus
is moved automatically to the next control in the tab order until a control that can actually
receive the focus is reached.

Design with the User in Mind

Designing functional forms is a crucial step in the process of developing Windows applications.
Most data-entry operators don’t work with the mouse, and you must make sure that all the
actions (such as switching to another control, opening a menu, clicking a button, and so on)
can be performed with the keyboard. This requirement doesn’t apply to graphics applications,

212 CHAPTER 6 WORKING WITH FORMS

of course, but most applications developed with VB are business applications, and users should
be able to perform most of the tasks with the keyboard, not with the mouse.

In my experience, the most important aspect of the user interface of a business application is
the handling of the Enter keystroke. When a TextBox control has the focus, the Enter keystroke
should advance the focus to the next control in the tab order; when a list control (such as the
ListBox or ListView control) has the focus, the Enter keystroke should invoke the same action
as double-clicking the current item. The idea is to package as much intelligence into the Enter
keystroke as possible. The sample project in the following section demonstrates many of the
features you’d expect from a data-entry application.

If you’re developing a data-entry form, you must take into consideration the needs of the
users. Make a prototype and ask the people who will use the application to test-drive it. Listen
to their objections carefully, collect all the information, and then use it to refine your applica-
tion’s user interface. Don’t defend your design — just learn from the users. They will uncover
all the flaws of the application and they’ll help you design the most functional interface. In
addition, they will accept the finished application with fewer objections and complaints if they
know what to expect.

VB 2010 at Work: The Contacts Project
I want to conclude with a simple data-entry application that demonstrates many of the topics
discussed here as well as a few techniques for designing easy-to-use forms. Figure 6.5 shows a
data-entry form for maintaining contact information, and I’m sure you will add your own fields
to make this application more useful.

Figure 6.5

A simple data-entry
screen

You can navigate through the contacts by clicking the arrow keys on the keyboard as well
as add new contacts or delete existing ones by clicking the appropriate buttons. When you’re
entering a new contact, the buttons shown in Figure 6.5 are replaced by the usual OK and
Cancel buttons. The action of adding a new contact, or editing an existing one, must end by
clicking one of these two buttons. After a new contact is committed or the action is canceled,
the usual navigation buttons appear again.

THE APPEARANCE OF FORMS 213

Now, it’s your turn to design the Contacts project. Create a new VB project and place the
controls you see in Figure 6.5 on the application’s form, align them appropriately, and lock
them in position. Or, if you prefer, open the Contacts sample project available for download
from www.sybex.com/go/masteringvb2010. After the controls are on the form, the next step
is to set their tab order. You must specify a value for the TabIndex property even for controls
that never receive focus, such as the Label controls. In addition to setting the tab order of the
controls, use shortcut keys to give the user quick access to the most common fields. The short-
cut keys are displayed as underlined characters on the corresponding labels. Notice that the
Label controls have shortcut keys, even though they don’t receive the focus. When you press
the shortcut key of a Label control, the focus is moved to the following control in the tab order,
which (on this form) is the TextBox control next to it.

If you open the application and run it now, you’ll see that the focus moves from one
TextBox to the next with the Tab key and that the labels are skipped. After the last TextBox
control, the focus is moved to the buttons and then back to the first TextBox control. To add a
shortcut key for the most common fields, determine which fields will have shortcut keys and
then which keys will be used for that purpose. Being the Internet buffs that we all are, let’s
assign shortcut keys to the Company, EMail, and URL fields. Locate each label’s Text property
in the Properties window and insert the & symbol in front of the character you want to act as
a shortcut for each Label. The Text property of the three controls should be &Company, &EMail,
and &URL.

Shortcut keys are activated at runtime by pressing the shortcut character while holding
down the Alt key. The shortcut key will move the focus to the corresponding Label control,
but because labels can’t receive the focus, the focus is moved immediately to the next control
in the tab order, which is the adjacent TextBox control.

The contacts are stored in an ArrayList object, which is similar to an array but a little more
convenient. We’ll discuss ArrayLists in Chapter 12, ‘‘Storing Data in Collections.’’ For now, you
can ignore the parts of the application that manipulate the contacts and focus on the design
issues.

Start by loading the sample data included with the application that you downloaded from
www.sybex.com/go/masteringvb2010. Open the File menu and choose Load. You won’t be
prompted for a filename; the application always opens the same file in its root folder (it’s the
CONTACTS.BIN file). After reading about the OpenFileDialog and SaveFileDialog controls, you
can modify the code so that it prompts the user to choose the file to read from or write to. Then
enter a new contact by clicking the Add button or edit an existing contact by clicking the Edit
button. Both actions must end with the OK or Cancel button. In other words, users must explic-
itly end the operation and cannot switch to another contact while adding or editing a contact
without committing or discarding the changes.

The code behind the various buttons is straightforward. The Add button hides all the nav-
igational buttons at the bottom of the form and clears the TextBoxes in anticipation of a new
contact record. The OK button saves the new contact to an ArrayList structure and redisplays
the navigational buttons. The Cancel button ignores the data entered by the user and likewise
displays the navigational buttons. In all cases, when the user switches back to the view mode,
the code locks all the TextBoxes by setting their ReadOnly property to True.

Handling Keystrokes

Although the Tab key is the Windows method of moving to the next control on the form, most
users will find it more convenient to use the Enter key for that purpose. The Enter key is the
most important one on the keyboard, and applications should handle it intelligently. When

214 CHAPTER 6 WORKING WITH FORMS

the user presses Enter in a single-line TextBox, for example, the obvious action is to move the
focus to the following control. I included a few statements in the KeyDown event handlers of the
TextBox controls to move the focus to the following one:

Private Sub txtAddress1_KeyDown(…) Handles txtAddress1.KeyDown
If e.KeyData = Keys.Enter Then

e.SuppressKeyPress = True
txtAddress2.Focus()

End If
End Sub

If you use the KeyUp event handler instead, the result won’t be any different, but an annoy-
ing beeping sound will be emitted with each keystroke. The beep occurs when the button is
depressed, so you must intercept the Enter key as soon as it happens and not after the control
receives the notification for the KeyDown event. The control will still catch the KeyUp event and
it will beep because it’s a single-line TextBox control (the beep is an audible warning that the
specific key shouldn’t be used in a single-line TextBox control). To avoid the beep sound, the
code ‘‘kills’’ the keystroke by setting the SuppressKeystroke property to True.

Processing Keys from within Your Code

The code shown in the preceding KeyDown event handler will work, but you must repeat it
for every TextBox control on the form. A more convenient approach is to capture the Enter
keystroke in the form’s KeyDown event handler and process it for all TextBox controls. First,
you must figure out whether the control with the focus is a TextBox control. The property
Me.ActiveControl returns a reference to the control with the focus. To find out the type
of the active control and compare it to the TextBox control’s type, use the following If
statement:

If Me.ActiveControl.GetType Is GetType(TextBox) Then
’ process the Enter key
End If

Once you can figure out the active control’s type, you need a method of simulating the Tab
keystroke from within your code so you don’t have to code every TextBox control’s KeyDown
event. An interesting method of the Form object is the ProcessTabKey method, which
imitates the Tab keystroke. Calling the ProcessTabKey method is equivalent to pressing the
Tab key from within your code. The method accepts a True/False value as an argument, which
indicates whether it will move the focus to the next control in the tab order (if True) or to the
previous control in the tab order.

Start by setting the form’s KeyPreview property to True and then insert the following
statements in the form’s KeyDown event handler:

If e.KeyCode = Keys.Enter Then
If Me.ActiveControl.GetType Is GetType(TextBox) Then

THE APPEARANCE OF FORMS 215

e.SuppressKeyPress = True
If e.Shift Then

Me.ProcessTabKey(False)
Else

Me.ProcessTabKey(True)
End If

End If
End If

The last topic demonstrated in this example is how to capture certain keystrokes regardless
of the control that has the focus. We’ll use the F10 keystroke to display the total number of
contacts entered so far. Assuming that you have already set the form’s KeyPreview property
to True, enter the following code in the form’s KeyDown event:

If e.Keycode = keys.F10 Then
MsgBox("There are " & MyContacts.Count.ToString & " contacts in the database")
e.Handled = True

End If

Listing 6.1 shows the complete handler for the form’s KeyDown event, which also allows you
to move to the next or previous contact by using the Alt+Plus or Alt+Minus keys, respectively.

Listing 6.1: Handling keystrokes in the form’s KeyDown event handler

Public Sub Form1_KeyDown(ByVal sender As Object,
ByVal e As System.WinForms.KeyEventArgs)

Handles Form1.KeyUp
If e.Keycode = Keys.F10 Then

MsgBox("There are " & MyContacts.Count.ToString &
" contacts in the database")

e.Handled = True
End If
If e.KeyCode = Keys.Subtract And e.Modifiers = Keys.Alt Then

bttnPrevious.PerformClick
End If
If e.KeyCode = Keys.Add And e.Modifiers = Keys.Alt Then

bttnNext.PerformClick
End If
If e.KeyCode = Keys.Enter Then

If Me.ActiveControl.GetType Is GetType(TextBox) Then
e.SuppressKeyPress = True
If e.Shift Then

Me.ProcessTabKey(False)
Else

Me.ProcessTabKey(True)

216 CHAPTER 6 WORKING WITH FORMS

End If
End If

End If
End Sub

Anchoring and Docking
A common issue in form design is the design of forms that can be properly resized. For
instance, you might design a nice form for a given size, but when it’s resized at runtime, the
controls are all clustered in the upper-left corner. Or a TextBox control that covers the entire
width of the form at design time suddenly ‘‘cringes’’ on the left when the user drags out the
window. If the user makes the form smaller than the default size, part of the TextBox could be
invisible because it’s outside the form. You can attach scroll bars to the form, but that doesn’t
really help — who wants to type text and have to scroll the form horizontally? It makes sense
to scroll vertically because you get to see many lines at once, but if the TextBox control is
wider than the form, you can’t read entire lines.

Visual Studio provides several techniques for designing forms that scale nicely. The two
most important of them are the Anchor and Dock properties.

Anchoring Controls

The Anchor property lets you attach one or more edges of the control to corresponding edges of
the form. The anchored edges of the control maintain the same distance from the corresponding
edges of the form.

Place a TextBox control on a new form, set its MultiLine property to True, and then open
the control’s Anchor property in the Properties window. You will see a rectangle within a
larger rectangle and four pegs that connect the small control to the sides of the larger box (see
Figure 6.6). The large box is the form, and the small one is the control. The four pegs are the
anchors, which can be either white or gray. The gray anchors denote a fixed distance between
the control and the edge of the form. By default, the control is placed at a fixed distance
from the upper-left corner of the form. When the form is resized, the control retains its size
and its distance from the upper-left corner of the form.

Figure 6.6

The settings for the
Anchor property

THE APPEARANCE OF FORMS 217

Let’s say you’re designing a simple form with a TextBox control that must fill the width of
the form, be anchored to the top of the form, and leave some space for a few buttons at the
bottom. You also want your form to maintain this arrangement regardless of its size. Make
the TextBox control as wide as the form (allowing, perhaps, a margin of a few pixels on either
side). Then place a couple of buttons at the bottom of the form and make the TextBox control
tall enough that it stops above the buttons. This is the form of the Anchor sample project.

Now open the TextBox control’s Anchor property and make all four anchors gray by clicking
them. This action tells the Form Designer to resize the control accordingly, so that the distances
between the sides of the control and the corresponding sides of the form remain the same as
those you set at design time. Select each button on the form and set their Anchor properties in
the Properties window: Anchor the left button to the left and bottom of the form and the right
button to the right and bottom of the form.

Resize the form at design time without running the project and you’ll see that all the con-
trols are resized and rearranged on the form at all times. Figure 6.7 shows the Anchor project’s
main form in two different sizes.

Figure 6.7

Use the Anchor property
of the various controls
to design forms that can
be resized gracefully at
runtime.

Yet, there’s a small problem: If you make the form very narrow, there will be no room for
both buttons across the form’s width. The simplest way to fix this problem is to impose a min-
imum size for the form. To do so, you must first decide the form’s minimum width and height
and then set the MinimumSize property to these values. You can also use the AutoScroll prop-
erties, but it’s not recommended that you add scroll bars to a small form like ours. Use the
AutoScroll properties for large forms with many controls that can’t be resized with the form.

Docking Controls

In addition to the Anchor property, most controls provide a Dock property, which determines
how a control will dock on the form. The default value of this property is None.

218 CHAPTER 6 WORKING WITH FORMS

Create a new form, place a multiline TextBox control on it, and then open the Dock property
for the control. The various rectangular shapes are the settings of the property. If you click the
middle rectangle, the control will be docked over the entire form: It will expand and shrink
both horizontally and vertically to cover the entire form. This setting is appropriate for simple
forms that contain a single control, usually a TextBox, and sometimes a menu. Try it out.

Let’s create a more complicated form with two controls (see the Docking sample project at
www.sybex.com/go/masteringvb2010). The form shown in Figure 6.8 contains a TreeView con-
trol on the left and a ListView control on the right. The two controls display folder and file data
on an interface that’s very similar to that of Windows Explorer. The TreeView control displays
the directory structure, and the ListView control displays the selected folder’s files.

Figure 6.8

Filling a form with two
controls

Place a TreeView control on the left side of the form and a ListView control on the right side
of the form. Then dock the TreeView to the left and the ListView to the right. If you run the
application now, as you resize the form, the two controls remain docked to the two sides of the
form — but their sizes don’t change. If you make the form wider, there will be a gap between
the two controls. If you make the form narrower, one of the controls will overlap the other.

End the application, return to the Form Designer, select the ListView control, and set its
Dock property to Fill. This time, the ListView will change size to take up all the space to the
right of the TreeView. The ListView control will attempt to fill the form, but it won’t take up
the space of another control that has been docked already. The TreeView and ListView controls
are discussed in the tutorial ‘‘The TreeView and ListView Controls,’’ which you can download
from www.sybex.com/go/masteringvb2010. That’s why I’ve populated them with some fake
data at design time. In the tutorial, you’ll learn how to populate these two controls at runtime
with folder names and filenames, respectively, and build a custom Windows Explorer.

Scrolling PictureBox

An interesting technique I should mention here is how to create a scrolling form for displaying
large images. The basic requirement is that the image can’t take up the entire form; you need
some space for a menu, a few buttons, or other controls to interact with the form. The image
must be displayed on a PictureBox control with its SizeMode property set to AutoSize. This
setting causes the PictureBox to adjust to the size of the image it contains. Place the various

THE APPEARANCE OF FORMS 219

controls you need for your interface on the form, as shown here, and then place a Panel on
the form. Anchor the Panel to all four edges of the form so that it’s resized along with the
form. Then set its AutoScroll property to True. Finally, place a PictureBox control on the
Panel and align its upper-left corner with the upper-left corner of the Panel control. Do not
anchor or dock this control, because its size will be determined by the size of the image it
contains, not by its container’s size. Now assign a large image to the PictureBox control (you
can use any of the images in the Sample Pictures folder).

If you run the application now, you will see as much of the upper-left corner of the image
as can fit on the Panel control. You can resize the form to see more of the image or scroll it
around with the two scroll bars to bring any segment of the image into view. This technique
allows you to display an image of any size on a form of any (usually smaller) size.

Splitting Forms into Multiple Panes
So far, the form for the Docking sample project you’ve designed behaves better than the initial
design, but it’s not what you really expect from a Windows application. The problem with the
form in Figure 6.8 is that users can’t change the relative widths of the controls. In other words,
they can’t make one of the controls narrower to make room for the other, which is a fairly com-
mon concept in the Windows interface.

The narrow bar that allows users to control the relative sizes of two controls is a splitter.
When the cursor hovers over a splitter, it changes to a double arrow to indicate that the
bar can be moved. By moving the splitter, you can enlarge one of the two controls while
shrinking the other. The Form Designer provides a special control for creating resizable panes
on a form: the SplitContainer control. We’ll design a new form with two TextBoxes and a
splitter between them so that users can change the relative size of the two controls.

Start by placing a SplitContainer control on the form. The SplitContainer consists of two
Panel controls, the Panel1 and Panel2 controls, and a vertical splitter between them. This is

220 CHAPTER 6 WORKING WITH FORMS

the default configuration; you can change the orientation of the splitter by using the control’s
Orientation property. Also by default, the two panels of the Splitter control are resized pro-
portionally as you resize the form. If you want to keep one of the panels fixed and have the
other one take up the remaining space of the form, set the control’s FixedPanel property to the
name of the panel you want to retain its size.

Next, place a TextBox control in the left panel of the SplitContainer control and set its
Multiline property to True. You don’t need to do anything about its size because we’ll dock
it in the panel to which it belongs. With the TextBox control selected, locate its Dock property
and set it to Fill. The TextBox control will fill the left panel of the SplitContainer control. Do
the same with another TextBox control, which will fill the right panel of the SplitContainer
control. Set this control’s Multiline property to True and its Dock property to Fill.

Now run the project and check out the functionality of the SplitContainer. Paste
some text on the two controls and then change their relative sizes by sliding the split-
ter between them, as shown in Figure 6.9. You will find this project, called Splitter1, at
www.sybex.com/go/masteringvb2010 among the sample projects for this chapter.

Figure 6.9

The SplitContainer con-
trol lets you change the
relative size of the con-
trols on either side.

Splitter

Splitter

Let’s design a more elaborate form with two SplitContainer controls, such as the one shown
in Figure 6.10. (It’s the form in the Splitter2 sample project.) This form, which resembles the
interface of Microsoft Office Outlook, consists of a TreeView control on the left (where the fold-
ers are displayed), a ListView control (where the selected folder’s items are displayed), and a
TextBox control (where the selected item’s details are displayed). Because we haven’t discussed
the ListView and TreeView controls yet, I’m using three TextBox controls with different back-
ground colors; the process of designing the form is identical regardless of the controls you put
on it.

Start by placing a SplitContainer control on the form. Then place a multiline TextBox con-
trol on the left panel of the SplitContainer control and set the TextBox control’s Dock property
to Fill. The TextBox control will fill the left panel of the SplitContainer control. Place another
SplitContainer in the right panel of the first SplitContainer control. This control will be auto-
matically docked in its panel and will fill it. Its orientation, however, is vertical, and the splitter

THE APPEARANCE OF FORMS 221

will separate the panel into two smaller vertical panes. Select the second SplitContainer control,
locate its Orientation property in the Properties window, and set it to Horizontal.

Figure 6.10

An elaborate form with
two splitter controls

Default splitter is vertical. Reorient the splitter for horizontal panes.

Now you can fill each of the panels with a TextBox control. Set each TextBox control’s
BackgroundColor to a different color, its MultiLine property to True, and its Dock property
to Fill. The TextBox controls will fill their containers, which are the panels of the two
SplitContainer controls, not the form. If you look up the properties of a SplitContainer control,
you’ll see that it’s made up of two Panel controls, which are exposed as properties of the
SplitContainer control, the Panel1 and Panel2 controls. You can set many of the properties
of these two constituent controls, such as their font and color, their minimum size, and so on.
They even expose an AutoScroll property so that users can scroll the contents of each one
independently of the other. You can also set other properties of the SplitContainer control, such
as the SplitterWidth property, which is the width of the splitter bar between the two panels
in pixels, and the SplitterIncrement property, which is the smallest number of pixels that the
splitter bar can be moved in either direction.

So far, you’ve seen what the Form Designer and the Form object can do for your application.
Let’s switch our focus to programming forms and explore the events triggered by the Form
object.

Form Events
The Form object triggers several events. The most important are Activated, Deactivate,
FormClosing, Resize, and Paint.

The Activated and Deactivate Events

When more than one form is displayed, the user can switch from one to the other by using the
mouse or by pressing Alt+Tab. Each time a form is activated, the Activated event takes place.
Likewise, when a form is activated, the previously active form receives the Deactivate event.
Insert the code you want to execute when a form is activated (set certain control properties, for
example) and when a form loses the focus or is deactivated in these two event handlers. These

222 CHAPTER 6 WORKING WITH FORMS

two events are the equivalents of the Enter and Leave events of the various controls. Notice
that there’s an inconsistency in the names of the two events: the Activated event takes place
after the form has been activated, whereas the Deactivate event takes place right before the
form is deactivated.

The FormClosing and FormClosed Events

The FormClosing event is fired when the user closes the form by clicking its Close button.
If the application must terminate because Windows is shutting down, the same event will be
fired. Users don’t always quit applications in an orderly manner, and a professional application
should behave gracefully under all circumstances. The same code you execute in the application
Exit command must also be executed from within the FormClosing event. For example, you
might display a warning if the user has unsaved data, you might have to update a database,
and so on. Place the code that performs these tasks in a subroutine and call it from within your
menu’s Exit command as well as from within the FormClosing event’s handler.

You can cancel the closing of a form by setting the e.Cancel property to True. The event
handler in Listing 6.2 displays a message box informing the user that the data hasn’t been
saved and gives them a chance to cancel the action and return to the application.

Listing 6.2: Canceling the closing of a form

Public Sub Form1_FormClosing (…) Handles Me.FormClosing
Dim reply As MsgBoxResult
reply = MsgBox("Document has been edited. " &

"OK to terminate application, Cancel to " &
"return to your document.", MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then
e.Cancel = True

End If
End Sub

The e argument of the FormClosing event provides the CloseReason property,
which reports how the form is closing. Its value is one of the following members of the
CloseReason enumeration: FormOwnerClosing, MdiFormClosing, None, TaskManagerClosing,
WindowsShutDown, ApplicationExitCall, and UserClosing. The names of the members are
self-descriptive, and you can query the CloseReason property to determine how the window is
closing.

The Resize, ResizeBegin, and ResizeEnd Events

The Resize event is fired every time the user resizes the form by using the mouse. In the past,
programmers had to insert quite a bit of code in the Resize event’s handler to resize the con-
trols and possibly rearrange them on the form. With the Anchor and Dock properties, much of
this overhead can be passed to the form itself. If you want the two sides of the form to main-
tain a fixed ratio, however, you have to resize one of the dimensions from within the Resize
event handler. Let’s say the form’s width-to-height ratio must be 3:4. Assuming that you’re

LOADING AND SHOWING FORMS 223

using the form’s height as a guide, insert the following statement in the Resize event handler
to make the width equal to three-fourths of the height:

Private Form1_Resize (…) Handles Me.Resize
Me.Width = (0.75 * Me.Height)

End Sub

The Resize event is fired continuously while the form is being resized. If you want to keep
track of the initial form’s size and perform all the calculations after the user has finished resiz-
ing the form, you can use the ResizeBegin and ResizeEnd events, which are fired at the begin-
ning and after the end of a resize operation, respectively. Store the form’s width and height to
two global variables in the ResizeBegin event and use these two variables in the ResizeEnd
event handler to adjust the positions of the various controls on the form.

The Scroll Event

The Scroll event is fired by forms that have the AutoScroll property set to True when the
user scrolls the form. The second argument of the Scroll event handler exposes the OldValue
and NewValue properties, which are the displacements of the form before and after the scroll
operation. This event can be used to keep a specific control in view when the form’s contents
are scrolled.

The AutoScroll property is handy for large forms, but it has a serious drawback: It scrolls
the entire form. In most cases, you want to keep certain controls in view at all times. Instead
of a scrollable form, you can create forms with scrollable sections by exploiting the AutoScroll
properties of the Panel and/or the SplitContainer controls. You can also reposition certain con-
trols from within the form’s Scroll event handler. Let’s say you have placed a few controls on
a Panel container and you want to keep this panel at the top of a scrolling form. The following
statements in the form’s Scroll event handler reposition the panel at the top of the form every
time the user scrolls the form:

Private Sub Form1_Scroll(…) Handles Me.Scroll
Panel1.Top = Panel1.Top + (e.NewValue - e.OldValue)

End Sub

The Paint Event

This event takes place every time the form must be refreshed, and we use its handler to exe-
cute code for any custom drawing on the form. When you switch to another form that partially
or totally overlaps the current one and then switch back to the first form, the Paint event will
be fired to notify your application that it must redraw the form. The form will refresh its con-
trols automatically, but any custom drawing on the form won’t be refreshed automatically. This
event is discussed in more detail in the tutorial ‘‘Drawing and Painting with Visual Basic 2008,’’
where the Framework’s drawing methods are presented. You can download the tutorial from
www.sybex.com/go/masteringvb2010.

Loading and Showing Forms
Most practical applications are made up of multiple forms and dialog boxes. One of the opera-
tions you’ll have to perform with multiform applications is to load and manipulate forms from
within other forms’ code. For example, you might want to display a second form to prompt the

224 CHAPTER 6 WORKING WITH FORMS

user for data specific to an application. You must explicitly load the second form and read the
information entered by the user when the auxiliary form is closed. Or you might want to main-
tain two forms open at once and let the user switch between them. A text editor and its Find &
Replace dialog box is a typical example.

You can access a form from within another form using its name. Let’s say that your appli-
cation has two forms, named Form1 and Form2, and that Form1 is the project’s startup form. To
show Form2 when an action takes place on Form1, call the Show method of the auxiliary form:

Form2.Show

This statement brings up Form2 and usually appears in a button’s or menu item’s Click
event handler. To exchange information between two forms, use the techniques described in
the section ‘‘Sharing Variables between Forms’’ later in this chapter.

The Show method opens a form in a modeless manner: The two forms are equal in stature
on the desktop, and the user can switch between them. You can also display the second form
in a modal manner, which means that users can’t return to the form from which they invoked it
without closing the second form. While a modal form is open, it remains on top of the desktop,
and you can’t move the focus to any other form of the same application (but you can switch to
another application). To open a modal form, use the ShowDialog method:

Form2.ShowDialog

A dialog box is simply a modal form. When you display forms as dialog boxes, change the
border of the forms to the setting FixedDialog and invoke them with the ShowDialog method.
Modeless forms are more difficult to program because the user may switch among them at any
time. Moreover, the two forms that are open at once must interact with one another. When the
user acts on one of the forms, it might necessitate changes in the other, and you’ll see shortly
how this is done. If the two active forms don’t need to interact, display one of them as a
dialog box.

When you’re finished with the second form, you can either close it by calling its Close
method or hide it by calling its Hide method. The Close method closes the form, and its
resources are returned to the system. The Hide method sets the form’s Visible property to
False; you can still access a hidden form’s controls from within your code, but the user can’t
interact with it.

The Startup Form
A typical application has more than a single form. When an application starts, the main form
is loaded. You can control which form is initially loaded by setting the startup object in the
project Properties window. To open this dialog box, right-click the project’s name in the Solu-
tion Explorer and select Properties. In the project’s Properties pages, switch to the Application
tab and select the appropriate item in the Startup Form combo box. By default, the IDE sug-
gests the name of the first form it created, which is Form1. If you change the name of the form,
Visual Basic will continue using the same form as the startup form with its new name.

You can also start an application by using a subroutine without loading a form. This sub-
routine is the MyApplication_Startup event handler, which is fired automatically when the
application starts. To display the AuxiliaryForm object from within the Startup event handler,
use the following statement:

LOADING AND SHOWING FORMS 225

Private Sub MyApplication_Startup (…) Handles Me.Startup
System.Windows.Forms.Application.Run(New AuxiliaryForm())

End Sub

To view the MyApplication_Startup event handler, click the View Application Events but-
ton at the bottom of the Application pane in the project’s Properties window. This action will
take you to the MyApplication code window, where you can select the MyApplication Events
item in the object list and the Startup item in the events list.

Controlling One Form from within Another
Loading and displaying a form from within another form’s code is fairly trivial. In some sit-
uations, this is all the interaction you need between forms. Each form is designed to operate
independently of the others, but they can communicate via public variables (see the following
section). In most situations, however, you need to control one form from within another’s code.
Controlling the form means accessing its controls and setting or reading values from within
another form’s code.

Sharing Variables between Forms

The preferred method for two forms to communicate with each other is through public
variables. These variables are declared in the form’s declarations section, outside any proce-
dure, with the keyword Public. If the following declarations appear in Form1, the variable
NumPoints and the array DataValues can be accessed by any procedure in Form1 as well as
from within the code of any form belonging to the same project:

Public NumPoints As Integer
Public DataValues(100) As Double

To access a public variable declared in Form1 from within another form’s code, you must
prefix the variable’s name by the name of the form, as in the following:

Form1.NumPoints = 99
Form1.DataValues(0) = 0.3395022

In effect, the two public variables have become properties of the form in which they were
declared. You can use the same notation to access the controls on another form. If Form1 con-
tains the TextBox1 control, you can use the following statement to read its text:

Form1.TextBox1.Text

The controls on a form can be accessed by the code in another form because the default
value of the Modifiers property of the controls on a form is Friend, which means that all
components in a solution can access them. Other settings of the Modifiers property are Public
(any application can access the control) and Private (the control is private to the form to which
it belongs and cannot be accessed from code outside its own form). There are two more values,
Protected and Protected Friend, which apply to inherited forms, a topic that’s not covered
in this book.

226 CHAPTER 6 WORKING WITH FORMS

If a button on Form1 opens the auxiliary form Form2, you can set selected controls to specific
values before showing the auxiliary form. The following statements should appear in a button’s
or menu item’s Click event handler:

Form2.TextBox1.Text = "some text"
Form2.DateTimePicker1.Value = Today
Form2.Show()

You can also create a variable to represent another form and access the auxiliary form
through this variable. Let’s say you want to access the resources of Form2 from within the code
of Form1. Declare the variable auxForm to represent Form2 and then access the resources of
Form2 with the following statements:

Dim auxForm As Form2
auxForm.TextBox1.Text = "some text"
auxForm.DateTimePicker1.Value = Today
auxForm.Show

Multiple Instances of a Single Form

Note that the variable that represents an auxiliary form is declared without the New keyword.
The auxForm variable represents an existing form. If we used the New keyword, we’d create
a new instance of the corresponding form. This technique is used when we want to display
multiple instances of the same form, as in an application that allows users to open multiple
documents of the same type.

Let’s say you’re designing an image-processing application or a simple text editor. Each
new document should be opened in a separate window. Obviously, you can’t design many
identical forms and use them as needed. The solution is to design a single form and create
new instances of it every time the user opens an existing document or creates a new one.
These instances are independent of one another and they may interact with the main form.

The approach described here is reminiscent of Multiple Document Interface (MDI) applica-
tions. The MDI interface requires that all windows be contained within a parent window, and
although once very popular, it’s going slowly out of style. The new interfaces open multiple
independent windows on the Desktop. Each window is an instance of a single form and
it’s declared with the New keyword. I’ve used this style of interface to redesign the TextPad
application of Chapter 5, and I’ve included the revised application in this chapter’s projects for
your reference. Open the project in Visual Studio and examine its code, which contains a lot
of comments.

Forms versus Dialog Boxes
Dialog boxes are special types of forms with very specific functionality that prompt the user
for data. The Open and Save dialog boxes are two of the most familiar dialog boxes in Win-
dows. They’re so common that they’re actually known as common dialog boxes. Technically,
a dialog box is a good old form with its FormBorderStyle property set to FixedDialog. Like

LOADING AND SHOWING FORMS 227

forms, dialog boxes might contain a few simple controls, such as Labels, TextBoxes, and But-
tons. Don’t overload a dialog box with controls and functionality; you’ll end up with a regular
form. Dialog boxes are supposed to present a few options and perform very simple tasks. There
are exceptions, of course, like the Printer Setup dialog box, but dialog boxes are usually simple
forms with a pair of OK/Cancel buttons.

Figure 6.11 shows a couple of dialog boxes you have certainly seen while working with Win-
dows applications. The Caption dialog box of Word is a modal dialog box: You must close it
before switching to your document. The Find and Replace dialog box is modeless: It allows you
to switch to your document, yet it remains visible while open even if it doesn’t have the focus.

Figure 6.11

Typical dialog boxes
used by Word

Notice that some dialog boxes, such as Open, Color, and even the humble MessageBox,
come with the Framework, and you can incorporate them in your applications without having
to design them.

A characteristic of dialog boxes is that they provide an OK and a Cancel button. The OK
button tells the application that you’re finished using the dialog box and the application can
process the information in it. The Cancel button tells the application that it should ignore the
information in the dialog box and cancel the current operation. As you will see, dialog boxes
allow you to quickly find out which buttons were clicked to close them so that your application
can take a different action in each case.

In short, the difference between forms and dialog boxes is artificial. If it were really impor-
tant to distinguish between the two, they’d be implemented as two different objects — but
they’re the same object. So, without any further introduction, let’s look at how to create and
use dialog boxes.

To create a dialog box, start with a Windows form, set its FormBorderStyle property to
FixedDialog, and set the ControlBox, MinimizeBox, and MaximizeBox properties to False.
Then add the necessary controls on the form and code the appropriate events, as you would
do with a regular Windows form.

Figure 6.12 shows a simple dialog box that prompts the user for an ID and a password (see
the Password sample project available for download from www.sybex.com/go/masteringvb2010).
The dialog box contains two TextBox controls (next to the appropriate labels) and the usual OK
and Cancel buttons.

Now, to design your own Password main form, start a new project, rename the form
MainForm, and place a button on it. This is the application main form, and we’ll invoke the
dialog box from within the button’s Click event handler. Then add a new form to the project,
name it PasswordForm, and place on it the controls shown in Figure 6.12.

228 CHAPTER 6 WORKING WITH FORMS

Figure 6.12

A simple dialog box
that prompts users for a
username and password

To display a modal form, you call the ShowDialog method instead of the Show method. You
already know how to read the values entered on the controls of the dialog box. You also need
to know which button was clicked to close the dialog box. To convey this information from the
dialog box back to the calling application, the Form object provides the DialogResult property.
This property can be set to one of the values shown in Table 6.3 to indicate which button was
clicked. The DialogResult.OK value indicates that the user has clicked the OK button on the
form. There’s no need to place an OK button on the form; just set the form’s DialogResult
property to DialogResult.OK.

Table 6.3: The DialogResult enumeration

Value Description

Abort The dialog box was closed with the Abort button.

Cancel The dialog box was closed with the Cancel button.

Ignore The dialog box was closed with the Ignore button.

No The dialog box was closed with the No button.

None The dialog box hasn’t been closed yet. Use this option to find out
whether a modeless dialog box is still open.

OK The dialog box was closed with the OK button.

Retry The dialog box was closed with the Retry button.

Yes The dialog box was closed with the Yes button.

The dialog box need not contain any of the buttons mentioned here. It’s your responsibil-
ity to set the value of the DialogResult property from within your code to one of the settings
shown in the table. This value can be retrieved by the calling application. The code behind the
two buttons in the dialog box is quite short:

Private Sub bttnOK_Click(…) Handles bttnOK.Click
Me.DialogResult = DialogResult.OK

LOADING AND SHOWING FORMS 229

Me.Close
End Sub

Private Sub bttnCancel_Click(…) Handles bttnCancel.Click
Me.DialogResult = DialogResult.Cancel
Me.Close

End Sub

The event handler of the button that displays this dialog box should contain an If statement
that examines the value returned by the ShowDialog method:

If PasswordForm.ShowDialog = DialogResult.OK Then
‘ { process the user selection }

End If

Depending on your application, you might allow the user to close the dialog box by
clicking more than two buttons. Some of them must set the DialogResult property to
DialogResult.OK, others to DialogResult.Cancel.

If the form contains an Accept and a Cancel button, you don’t have to enter a single
line of code in the modal form. The user can enter values on the various controls and then
close the dialog box by pressing the Enter or Cancel key. The dialog box will close and will
return the DialogResult.OK or DialogResult.Cancel value. The Accept button sets the
form’s DialogResult property to DialogResult.OK automatically, and the Cancel button sets
the same property to DialogResult.Cancel. Any other button must set the DialogResult
property explicitly. Listing 6.3 shows the code behind the Log In button on the sample project’s
main form.

Listing 6.3: Prompting the user for an ID and a password

Private Sub Button1_Click(…) Handles Button1.Click
If PasswordForm.ShowDialog() = DialogResult.OK Then

If PasswordForm.txtUserID.Text = "" Or
PasswordForm.txtPassword.Text = "" Then

MsgBox("Please specify a user ID and a password to connect")
Exit Sub

End If
MsgBox("You were connected as " & PasswordForm.txtUserID.Text)

Else
MsgBox("Connection failed for user " & PasswordForm.txtPassword.Text)

End If
End Sub

VB 2010 at Work: The MultipleForms Project

It’s time to write an application that puts together the topics discussed in this section. The
MultipleForms project, available for download from www.sybex.com/go/masteringvb2010,
consists of a main form, an auxiliary form, and a dialog box. All three components of the

230 CHAPTER 6 WORKING WITH FORMS

application interface are shown in Figure 6.13. The buttons on the main form display both the
auxiliary form and the dialog box.

Figure 6.13

The MultipleForms
project interface

Let’s review the various operations you want to perform — they’re typical for many situa-
tions, not for only this application. At first, you must be able to invoke both the auxiliary form
and the dialog box from within the main form; the Show Auxiliary Form and Show Dialog Box
buttons do this. The main form contains a variable declaration: strProperty. This variable is,
in effect, a property of the main form and is declared as public with the following statement:

Public strProperty As String = "Mastering VB 2010"

The main form calls the auxiliary form’s Show method to display it in a modeless manner.
The auxiliary form button with the caption Read Shared Variable In Main Form reads the
strProperty variable of the main form with the following statement:

Private Sub bttnReadShared_Click(…) Handles bttnReadShared.Click
MsgBox(MainForm.strProperty, MsgBoxStyle.OKOnly,

"Public Variable Value")
End Sub

Using the same notation, you can set this variable from within the auxiliary form. The fol-
lowing event handler prompts the user for a new value and assigns it to the shared variable of
the main form:

Private Sub bttnSetShared_Click(…) Handles bttnSetShared.Click
Dim str As String
str = InputBox("Enter a new value for strProperty")
MainForm.strProperty = str

End Sub

LOADING AND SHOWING FORMS 231

The two forms communicate with each other through public properties. Let’s make this com-
munication a little more elaborate by adding an event. Every time the auxiliary form sets the
value of the strProperty variable, it raises an event to notify the main form. The main form,
in turn, uses this event to display the new value of the string on the TextBox control as soon as
the code in the auxiliary form changes the value of the variable and before it’s closed.

To raise an event, you must declare the event name in the form’s declaration section. Insert
the following statement in the auxiliary form’s declarations section:

Event strPropertyChanged()

Now add a statement that fires the event. To raise an event, call the RaiseEvent statement
and pass the name of the event as an argument. This statement must appear in the Click event
handler of the Set Shared Variable In Main Form button, right after setting the value of the
shared variable. As soon as the user clicks the button, the auxiliary form notifies the main form
by raising the strPropertyChanged event. Listing 6.4 shows the revised event handler.

Listing 6.4: Raising an event

Private Sub bttnSetShared_Click(…) Handles bttnSetShared.Click
Dim str As String
str = InputBox("Enter a new value for strProperty")
MainForm.strProperty = str
RaiseEvent strPropertyChanged

End Sub

The event will be raised, but it will go unnoticed if you don’t handle it from within the main
form’s code. To handle the event, you must create a variable that represents the auxiliary form
with the WithEvents keyword:

Dim WithEvents FRM As New AuxiliaryForm()

The WithEvents keyword tells VB that the variable is capable of raising events and that
VB should listen for events from the specific form. If you expand the drop-down list with the
objects in the code editor, you will see the name of the FRM variable, along with the other con-
trols you can program. Select FRM in the list and then expand the list of events for the selected
item. In this list, you will see the strPropertyChanged event. Select it and the definition of an
event handler will appear. Enter these statements in this event’s handler:

Private Sub FRM_strPropertyChanged() Handles FRM.strPropertyChanged
TextBox1.Text = strProperty
Beep()

End Sub

It’s a simple handler, but it’s adequate for demonstrating how to raise and handle custom
events on the form level. If you want, you can pass arguments to the event handler by

232 CHAPTER 6 WORKING WITH FORMS

including them in the declaration of the event. To pass the original and the new value through
the strPropertyChanged event, use the following declaration:

Event strPropertyChanged(ByVal oldValue As String,
ByVal newValue As String)

If you run the application now, you’ll see that the value of the TextBox control in the main
form changes as soon as you change the property’s value in the auxiliary form. You can actu-
ally change the value of the variable several times before closing the auxiliary form, and each
time the current value will be displayed on the main form.

Of course, you can update the TextBox control on the main form directly from within the
auxiliary form’s code. Use the expression MainForm.TextBox1 to access the control and then
manipulate it as usual. Events are used to perform some actions on a form when an action
takes place. The benefit of using events, as opposed to accessing members of another form from
within your code, is that the auxiliary form need not know anything about the form that called
it. The auxiliary form raises the event, and it’s the calling form’s responsibility to handle it.
Moreover, the event handler in the main form may perform other actions in addition to set-
ting a control’s value; it may submit something to a database, log the action, and perform any
other operation suited for the application at hand.

Let’s see now how the main form interacts with the dialog box. What goes on between a
form and a dialog box is not exactly interaction; it’s a more timid type of behavior. The form
displays the dialog box and waits until the user closes the dialog box. Then it looks at the value
of the DialogResult property to find out whether it should even examine the values passed
back by the dialog box. If the user has closed the dialog box with the Cancel (or an equivalent)
button, the application ignores the dialog box settings. If the user closed the dialog box with
the OK button, the application reads the values and proceeds accordingly.

Before showing the dialog box, the code of the Show Dialog Box button sets the values of
certain controls on the dialog box. In the course of the application, it usually makes sense to
suggest a few values in the dialog box so that the user can accept the default values by pressing
the Enter key. The main form reads a date on the dialog box’s controls and then displays the
dialog box with the statements given in Listing 6.5.

Listing 6.5: Displaying a dialog box and reading its values

Protected Sub Button3_Click(…) Handles Button3.Click
’ Preselects the date 4/11/1980

AgeDialog.cmbMonth.Text = "4"
AgeDialog.cmbDay.Text = "11"
AgeDialog.CmbYear.Text = "1980"
AgeDialog.ShowDialog()
If AgeDialog.DialogResult = DialogResult.OK Then

MsgBox(AgeDialog.cmbMonth.Text & " " &
AgeDialog.cmbDay.Text & "," &
AgeDialog.cmbYear.Text)

Else
MsgBox("OK, we’ll protect your vital personal data")

BUILDING DYNAMIC FORMS AT RUNTIME 233

End If
End Sub

To close the dialog box, you can click the OK or Cancel button. Each button sets the
DialogResult property to indicate the action that closed the dialog box. The code behind the
two buttons is shown in Listing 6.6.

Listing 6.6: Setting a dialog box DialogResult property

Protected Sub bttnOK_Click(…) Handles bttnOK.Click
Me.DialogResult = DialogResult.OK

End Sub

Protected Sub bttnCancel_Click(…) Handles bttnCancel.Click
Me.DialogResult = DialogResult.Cancel

End Sub

Because the dialog box is modal, the code in the Show Dialog Box button is suspended at
the line that shows the dialog box. As soon as the dialog box is closed, the code in the main
form resumes with the statement following the one that called the ShowDialog method of the
dialog box. This is the If statement in Listing 6.5 that examines the value of the DialogResult
property and acts accordingly.

Building Dynamic Forms at Runtime
Sometimes you won’t know in advance how many instances of a given control might be
required on a form. Let’s say you’re designing a form for displaying the names of all tables
in a database. It’s practically impossible to design a form that will accommodate every
database users might throw at your application. Another typical example is a form for entering
family-related data, which includes the number of children in the family and their ages. As
soon as the user enters (or changes) the number of children, you should display as many
TextBox controls as there are children to collect their ages.

For these situations, it is possible to design dynamic forms, which are populated at runtime.
The simplest approach is to create more controls than you’ll ever need and set their Visible
properties to False at design time. At runtime, you can display the controls by switching their
Visible properties to True. As you know already, quick-and-dirty methods are not the most
efficient ones. You must still rearrange the controls on the form to make it look nice at all times.
The proper method to create dynamic forms at runtime is to add controls to and remove them
from your form as needed from within your code using the techniques discussed in the follow-
ing sections.

Just as you can create new instances of forms, you can also create new instances of any con-
trol and place them on a form. The Form object exposes the Controls property, which is a
collection that contains all the controls on the form. This collection is created automatically as
you place controls on the form at design time, and you can access the members of this collec-
tion from within your code. It is also possible to add new members to the collection, or remove
existing members, with the Add and Remove methods of the Form object accordingly.

234 CHAPTER 6 WORKING WITH FORMS

The Form’s Controls Collection
All the controls on a form are stored in the Controls collection, which is a property of the
Form object. The Controls collection exposes members for accessing and manipulating the con-
trols at runtime, and they’re the usual members of a collection:

Add Method The Add method adds a new element to the Controls collection. In effect, it adds
a new control on the current form. The Add method accepts a reference to a control as an argu-
ment and adds it to the collection. Its syntax is the following, where controlObj is an instance
of a control:

Controls.Add(controlObj)

To place a new Button control on the form, declare a variable of the Button type, set its proper-
ties, and then add it to the Controls collection:

Dim bttn As New System.Windows.Forms.Button
bttn.Text = "New Button"
bttn.Left = 100
bttn.Top = 60
bttn.Width = 80
Me.Controls.Add(bttn)

Remove Method The Remove method removes an element from the Controls collection. It
accepts as an argument either the index of the control to be removed or a reference to the con-
trol to be removed (a variable of the Control type that represents one of the controls on the
form). The syntax of these two forms of the Remove method is as follows:

Me.Controls.Remove(index)
Me.Controls.Remove(controlObj)

Count Property and All Method The Count property returns the number of elements in the
Controls collection. Notice that if there are container controls, such as a Panel control, the con-
trols in the containers are not included in the count. The Panel control has its own Controls
collection. The All method returns all controls on a form (or a container control) as an array of
the System.WinForms.Control type.

Clear Method The Clear method removes all the elements of the Controls array and effec-
tively clears the form.

The Controls collection is also a property of any control that can host other controls. As
you recall from our discussion of the Anchor and Dock properties, it’s customary to place con-
trols on a panel and handle them collectively as a section of the form. They are moved along
with the panel at design time, and they’re rearranged as a group at runtime. The Panel belongs
to the form’s Controls collection, and it provides its own Controls collection, which lets you
access the controls on the panel.

VB 2010 at Work: The ShowControls Project

The ShowControls project (shown in Figure 6.14) demonstrates the basic methods of
the Controls property. Download the ShowControls project from www.sybex.com/go/

BUILDING DYNAMIC FORMS AT RUNTIME 235

masteringvb2010, open it, and add any number of controls on the main form. You can place a
panel to act as a container for other controls as well. Just don’t remove the button at the top of
the form (the Scan Controls On This Form button); it contains the code to list all the controls.

Figure 6.14

Accessing the controls
on a form at runtime

The code behind the Scan Controls On This Form button enumerates the elements of the
form’s Controls collection. The code doesn’t take into consideration containers within contain-
ers. This would require a recursive routine, which would scan for controls at any depth. The
code that iterates through the form’s Controls collection and prints the names of the controls
in the Output window is shown in Listing 6.7.

Listing 6.7: Iterating the Controls collection

Private Sub Button1_Click(…) Handles Button1.Click
Dim Control As Windows.Forms.Control
For Each Control In Me.Controls

Debug.WriteLine(Control.ToString)
If Control.GetType Is GetType(System.Windows.Forms.Panel) Then

Dim nestedControl As Windows.Forms.Control
For Each nestedControl In Control.Controls

Debug.WriteLine(" " & nestedControl.ToString)
Next

End If
Next

End Sub

236 CHAPTER 6 WORKING WITH FORMS

The form shown in Figure 6.15 produced the following (partial) output (the controls on the
Panel are indented to stand out in the listing):

Panel1: System.Windows.Forms.Panel,
BorderStyle: System.Windows.Forms.BorderStyle.FixedSingle

CheckBox4: System.Windows.Forms.CheckBox, CheckState: 0
CheckBox3: System.Windows.Forms.CheckBox, CheckState: 0

HScrollBar1: System.Windows.Forms.HScrollBar,
Minimum: 0, Maximum: 100, Value: 0

CheckedListBox1: System.Windows.Forms.CheckedListBox,
Items.Count: 3, Items[0]: Item 1

TextBox2: System.Windows.Forms.TextBox,
Text: TextBox2

To find out the type of individual controls, call the GetType method. The following state-
ment examines whether the control in the first element of the Controls collection is a TextBox:

If Me.Controls(0).GetType Is GetType(System.Windows.Forms.TextBox) Then
MsgBox("It’s a TextBox control")

End If

Notice the use of the Is operator in the preceding statement. The equals operator would
cause an exception because objects can be compared only with the Is operator. (You’re com-
paring instances, not values.)

To access other properties of the control represented by an element of the Controls col-
lection, you must first cast it to the appropriate type. If the first control of the collection is a
TextBox control, use the CType() function to cast it to a TextBox variable and then request its
SelectedText property:

If Me.Controls(0).GetType Is GetType(System.Windows.Forms.TextBox) Then
Debug.WriteLine(CType(Me.Controls(0), TextBox).SelectedText)

End If

The If statement is necessary, unless you can be sure that the first control is a TextBox con-
trol. If you omit the If statement and attempt to convert the control to a TextBox, a runtime
exception will be thrown if the object Me.Controls(0) isn’t a TextBox control.

VB 2010 at Work: The DynamicForm Project

To demonstrate how to handle controls at runtime from within your code, I included the
DynamicForm project (Figure 6.15) on www.sybex.com/go/masteringvb2010. It’s a simple
data-entry window for a small number of data points. The user can specify at runtime the
number of data points she wants to enter, and the number of TextBoxes on the form is adjusted
automatically.

The control you see at the top of the form is the NumericUpDown control. All you
really need to know about this control is that it displays an integer in the range specified
by its Minimum and Maximum properties and allows users to select a value. It also fires the
ValueChanged event every time the user clicks one of the two arrows or types another value
in its edit area. This event handler’s code adds or removes controls on the form so that the

BUILDING DYNAMIC FORMS AT RUNTIME 237

number of text boxes (as well as the number of corresponding labels) matches the value on
the control. Listing 6.8 shows the handler for the ValueChanged event of the NumericUpDown1
control.

Figure 6.15

The DynamicForm
project

Listing 6.8: Adding and removing controls at runtime

Private Sub NumericUpDown1_ValueChanged(…) Handles NumericUpDown1.ValueChanged
Dim TB As New TextBox()
Dim LBL As New Label()
Dim i, TBoxes As Integer
‘ Count all TextBox controls on the Form
For i = 0 To Me.Controls.Count - 1

If Me.Controls(i).GetType Is
GetType(System.Windows.Forms.TextBox) Then

TBoxes = TBoxes + 1
End If

Next
‘ Add new controls if number of controls on the Form is less
‘ than the number specified with the NumericUpDown control
If TBoxes < NumericUpDown1.Value Then

TB.Left = 100: TB.Width = 120
TB.Text = ""
For i = TBoxes To CInt(NumericUpDown1.Value) - 1

TB = New TextBox()
LBL = New Label()
If NumericUpDown1.Value = 1 Then

TB.Top = 20: TB.TabIndex = 0
Else

TB.Top = Me.Controls(Me.Controls.Count - 2).Top + 25
End If

‘ Set the trivial properties of the new controls
LBL.Left = 20: LBL.Width = 80
LBL.Text = "Data Point " & i
LBL.Top = TB.Top + 3
TB.Left = 100: TB.Width = 120

238 CHAPTER 6 WORKING WITH FORMS

TB.Text = ""
‘ add controls to the form
Me.Controls.Add(TB)
Me.Controls.Add(LBL)
TB.TabIndex = Convert.ToInt32(NumericUpDown1.Value)
‘ and finally connect their GotFocus/LostFocus events
‘ to the appropriate handler
AddHandler TB.Enter,

New System.EventHandler(AddressOf TBox_Enter)
AddHandler TB.Leave,

New System.EventHandler(AddressOf TBox_Leave)
Next

Else
For i = Me.Controls.Count - 1 To Me.Controls.Count -

2 * (TBoxes - CInt(NumericUpDown1.Value)) Step -2
Me.Controls.Remove(Controls(i))
Me.Controls.Remove(Controls(i - 1))

Next
End If

End Sub

The code is lengthy but straightforward; most of the statements just set the basic proper-
ties of the Label and TextBox controls on the form. Ignore the AddHandler statements for now;
they’re discussed in the following section. First, the code counts the number of TextBoxes on
the form; then it figures out whether it should add or remove elements from the Controls
collection. To remove controls, the code iterates through the last n controls on the form and
removes them. The number of controls to be removed is the following, where TBoxes is the
total number of controls on the form minus the value specified in the NumericUpDown control:

2 * (TBoxes - NumericUpDown1.Value)

If the value entered in the NumericUpDown control is less than the number of TextBox con-
trols on the form, the code removes the excess controls from within a loop. At each step, it
removes two controls, one of them a TextBox and the other a Label control with the matching
caption. (That’s why the loop variable is decreased by two.) The code also assumes that the first
two controls on the form are the Button and the NumericUpDown controls. If the value entered
by the user exceeds the number of TextBox controls on the form, the code adds the necessary
pairs of TextBox and Label controls to the form.

To add controls, the code initializes a TextBox (TB) and a Label (LBL) variable. Then, it sets
their locations and the label’s caption. The left coordinate of all labels is 20, their width is 80,
and their Text property (the label’s caption) is the order of the data item. The vertical coordi-
nate is 20 pixels for the first control, and all other controls are 3 pixels below the control on the
previous row. After a new control is set up, it’s added to the Controls collection with one of
the following statements:

Me.Controls.Add(TB) ‘ adds a TextBox control
Me.Controls.Add(LBL) ‘ adds a Label control

BUILDING DYNAMIC FORMS AT RUNTIME 239

To use the values entered by the user on the dynamic form, we must iterate the Controls
collection, extract the values in the TextBox controls, and read their values. Listing 6.9 shows
how the Process Values button scans the TextBox controls on the form and performs some basic
calculations with them (counting the number of data points and summing their values).

Listing 6.9: Reading the controls on the form

Private Sub Button1_Click(…) Handles Button1.Click
Dim TBox As TextBox
Dim Sum As Double = 0, points As Integer = 0
Dim iCtrl As Integer
For iCtrl = 0 To Me.Controls.Count - 1

If Me.Controls(iCtrl).GetType Is
GetType(System.Windows.Forms.TextBox) Then

TBox = CType(Me.Controls(iCtrl), TextBox)
If IsNumeric(TBox.Text) Then

Sum = Sum + Val(TBox.Text)
points = points + 1

End If
End If

Next
MsgBox("The sum of the " & points.ToString &

" data points is " & Sum.ToString)
End Sub

Handling Repeated Data Items

Dynamic forms are actually quite common even in business-line applications. There are situ-
ations where users are expected to enter or review multiple items of information on a single
form. If each data item consists of several fields (such as names, ages, and the like), your best
bet is to design a form like the following one.

This form, which is part of the DynamicDataEntry project, is a more typical example of a
dynamic form, which allows users to enter an unknown number of dependant members (or
any other entity, for that matter). Although you can create an auxiliary form where the user
can enter each entry, the form shown here works better because it allows the user to focus on
a single form.

Initially the form is populated with the appropriate controls for entering a single member.
Users can click the ‘‘Add new member’’ link to create a new entry. On the left you see the
form in its initial state and on the right you see the same form after adding four members.
The ‘‘Remove member’’ link removes the last member from the form. Users can enter any
number of dependant members on this form by adding new entries. If the number of entries

240 CHAPTER 6 WORKING WITH FORMS

exceeds the height of the form, a scroll bar appears. Notice that the scroll bar scrolls the
entries for the members and not the fixed items on the form, which are the two links at the
top and the Done Entering Members button at the bottom. You can change the structure of
each entry to enable other types of data (such as room types in a hotel reservation system, a
student’s courses and grades, the statistics of various teams, and so on).

I will not present the full code for the application here; it is well documented and you can
examine it on your own. The individual entries are made up of a number of controls, all on
a Panel control. This allows you to use the same name for the controls. There’s no naming
conflict since the controls belong to a different Panel. All individual panels are placed on
another larger Panel control, which is anchored to all four sides of the form and resizes nicely
along with the form. The AutoScroll property on this Panel control was set to True so that
the appropriate scroll bars appear automatically should the user have a large number of
members to enter.

Adding and removing entries is quite straightforward. I will show you only the code that
iterates through all entries and processes them:

For Each ctrl As Control In Me.Controls("pnlAllMembers").Controls
If ctrl.GetType Is GetType(System.Windows.Forms.Panel) Then

Name = ctrl.Controls("txtName").Text
Age = CType(ctrl.Controls("cbAge"), ComboBox).SelectedItem
If CType(ctrl.Controls("rdMale"), RadioButton).Checked

Then sex = "Male"
If CType(ctrl.Controls("rdFemale"), RadioButton).Checked

Then sex = "Female"
message &= "NAME: " & Name & vbCrLf &

"AGE: " & Age & vbCrLf &
"SEX: " & sex & vbCrLf &

BUILDING DYNAMIC FORMS AT RUNTIME 241

"-----------------------------" & vbCrLf
End If

Next

The outer loop goes through the controls on the pnlAllMembers Panel control, which is the
large panel with the entries. If the current control is a Panel, we can process it. Normally, all
child controls on the pnlAllMembers Panel will be also Panel controls; you may choose to
add other control as well. Then the code accesses each individual control by name. txtName is
the name of the TextBox control for the member’s name and it’s always the same regardless
of the entry to which it belongs. The code gradually builds a string with the data of the
dependant members and displays them. A real-world application would submit the same data
to a database, convert it to XML format, and store it locally or process the data in some other
meaningful way. You can open the DynamicDataEntry project and examine its code, which is
actually quite short considering all the flexibility.

If you make the form wide, the various entries will still be lined up in a single column,
leaving most of the form empty. How about entering some code in the form’s resizing events
to display the entries in multiple columns depending on the width of the form?

Creating Event Handlers at Runtime
You saw how to add controls on your forms at runtime and how to access the properties of
these controls from within your code. In many situations, this is all you need: a way to access
the properties of the controls (the text on a TextBox control or the status of a CheckBox or
RadioButton control). What good is a Button control, however, if it can’t react to the Click
event? The only problem with the controls you add to the Controls collection at runtime is
that they don’t react to events. It’s possible, though, to create event handlers at runtime, and
this is what you’ll learn in this section.

To create an event handler at runtime, create a subroutine that accepts two arguments — the
usual sender and e arguments — and enter the code you want to execute when a specific con-
trol receives a specific event. The type of the e argument must match the definition of the sec-
ond argument of the event for which you want to create a handler. Let’s say that you want to
add one or more buttons at runtime on your form and these buttons should react to the Click
event. Create the ButtonClick() subroutine and enter the appropriate code in it. The name of
the subroutine can be anything; you don’t have to make up a name that includes the control’s
or the event’s name.

After the subroutine is in place, you must connect it to an event of a specific control. The
ButtonClick() subroutine, for example, must be connected to the Click event of a Button con-
trol. The statement that connects a control’s event to a specific event handler is the AddHandler
statement, whose syntax is as follows:

AddHandler control.event, New System.EventHandler(AddressOf ButtonClick)

Consider, for example, an application that performs certain calculations with an existing sub-
routine. To connect the ProcessNow() subroutine to the Click event of the Calculate button,
use the following statement:

AddHandler Calculate.Click,
New System.EventHandler(AddressOf ProcessNow)

242 CHAPTER 6 WORKING WITH FORMS

You can use similar statements to connect the same subroutine to other control event
handlers. You can also associate multiple controls’ Click event handler with the ProcessNow()
subroutine.

Let’s add a little more complexity to the DynamicForm application. I’ll program the Enter
and Leave events of the TextBox controls added to the form at runtime. When a TextBox con-
trol receives the focus, I’ll change its background color to a light yellow, and when it loses
the focus, I’ll restore the background to white so the user knows which box has the focus at
any time. I’ll use the same handlers for all TextBox controls. (The code for the two handlers is
shown in Listing 6.10.)

Listing 6.10: Event handlers added at runtime

Private Sub TBox_Enter(ByVal sender As Object,
ByVal e As System.EventArgs)

CType(sender, TextBox).BackColor = color.LightCoral
End Sub

Private Sub TBox_Leave(ByVal sender As Object,
ByVal e As System.EventArgs)

CType(sender, TextBox).BackColor = color.White
End Sub

The two subroutines use the sender argument to find out which TextBox control received
or lost the focus, and they set the appropriate control’s background color. (These subroutines
are not event handlers yet because they’re not followed by the Handles keyword — at least,
not before we associate them with an actual control and a specific event.) This process is done
in the same segment of code that sets the properties of the controls we create dynamically at
runtime. After adding the control to the Me.Controls collection, call the following statements
to connect the new control’s Enter and Leave events to the appropriate handlers:

AddHandler TB.Enter, New System.EventHandler(AddressOf TBox_Enter)
AddHandler TB.Leave, New System.EventHandler(AddressOf TBox_Leave)

Note that you don’t have to raise the event from within your code; neither do you specify
the arguments to the event. Since you’ve associated the two routines with the Click event han-
dler, the compiler knows that they’re Click event handlers and passes the appropriate argu-
ments to them. All you have to do is make sure the signatures of the two routines match the
signature of the Click event handler.

Run the DynamicForm application and see how the TextBox controls handle the
focus-related events. With a few statements and a couple of subroutines, we were able to create
event handlers at runtime from within our code.

Designing an Application Generator

In the preceding sections of this chapter, you learned how to create new forms from within
your code and how to instantiate them. In effect, you have the basic ingredients for designing

DESIGNING MENUS 243

applications from within your code. Designing an application from within the code is not a
trivial task, but now you have a good understanding of how an application generator works.
You can even design a wizard that prompts the user for information about the appearance of
the form and then design the form from within your code.

Designing Menus
Menus are among the most common and most characteristic elements of the Windows user
interface. Even in the old days of character-based displays, menus were used to display
methodically organized choices and guide the user through an application. Despite the visually
rich interfaces of Windows applications and the many alternatives, menus are still the most
popular means of organizing a large number of options. Many applications duplicate some or
all of their menus in the form of toolbar icons, but the menu is a standard fixture of a form.
You can turn the toolbars on and off, but not the menus.

The Menu Editor
Menus can be attached only to forms, and they’re implemented through the MenuStrip control.
The items that make up the menu are ToolStripMenuItem objects, which belong to a MenuStrip
control (they’re the menu options) or to another ToolStripMenuItem (they form submenus). As
you will see, the MenuStrip control and ToolStripMenuItem objects give you absolute control
over the structure and appearance of the menus of your application. The MenuStrip control is a
variation of the Strip control, which is the base of menus, toolbars, and status bars.

You can design menus visually and then program their Click event handlers. In principle,
that’s all there is to a menu: You specify its items (the menu commands) and then you program
each command’s actions, as if the menu items were buttons. Depending on the needs of your
application, you might want to enable and disable certain commands, add context menus to
some of the controls on your form, and so on. Because each item in a menu is represented by
a ToolStripMenuItem object, you can control the application’s menus from within your code by
manipulating the properties of the ToolStripMenuItem objects. Let’s start by designing a simple
menu, and I’ll show you how to manipulate the menu objects from within your code as we go
along.

Double-click the MenuStrip icon in the Toolbox. (You’ll find the MenuStrip control in the
Menus & Toolbars tab of the Toolbox.) An instance of the MenuStrip control will be added to
the form, and a single menu command will appear on your form. Its caption will be Type Here.
If you don’t see the first menu item on the form right away, select the MenuStrip control in the
Components tray below the form. Do as the caption says: Click it and enter the first command
caption, File, as shown in Figure 6.16. To add items under the File menu, press Enter. To enter
another command in the main menu, press Tab. Depending on your action, another box will
be added and you can type the caption of the next command in it. Press Enter to move to the
next item vertically and Tab to move to the next item horizontally. To insert a separator enter a
hyphen (-) as the item’s caption.

When you hover the pointer over a menu item, a drop-down button appears to the right of
the item. Click this button to select the type of item you’ll place on the menu. This item can be
a MenuItem object, a separator, a ComboBox, or a TextBox. In this chapter, I’ll focus on menu
items, which are by far the most common elements on a menu. The last two options, however,
allow you to build elaborate menus, reminiscent of the Office menus.

244 CHAPTER 6 WORKING WITH FORMS

Figure 6.16

Designing a menu on
the form

Enter the items you wish to include in the File menu — New, Open, Save, SaveAs, and
Exit — and then click somewhere on the form. All the temporary items (the ones with the
Type Here caption) will disappear, and the menu will be finalized on the form.

To add the Edit menu, select the MenuStrip icon to activate the visual menu editor and then
click the File item. In the new item that appears next to the File item on the control, enter the
string Edit. Press Enter and you’ll switch to the first item of the Edit menu. Fill the Edit menu
with the usual editing commands. Table 6.4 shows the captions (property Text) and names
(property Name) for each menu and each command. You can also insert a standard menu with
the Insert Standard Items command of the MenuStrip object’s context menu.

Table 6.4: The captions and names of the File and Edit menus

Caption Name Caption Name

File FileMenu Tools ToolsMenu

New FileNew Edit EditMenu

Open FileOpen Undo EditCopy

Save FileSave Redo EditRedo

Save As FileSaveAs Cut EditCut

Print FilePrint Copy EditCopy

Print Preview FilePrintPreview Paste EditPaste

Exit FileExit Select All EditSelectAll

Help HelpMenu

The bold items in Table 6.4 are the names of the first-level menus (File and Edit); the cap-
tions that are indented in the table are the commands on these two menus. The default names
of the menu items you add visually to the application’s menu are based on the item’s caption
followed by the suffix ToolStripMenuItem (FileToolStripMenuItem, NewToolStripMenuItem,

DESIGNING MENUS 245

and so on). You’ll probably want to change the default names to something less redundant.
To do so, change the Name property in the Properties window. To view the properties of a
menu item, right-click it and select Properties from the context menu. One of the properties
you should try out is the LayoutStyle property, which determines the orientation of the menu.

The most convenient method of editing a menu is to use the Items Collection Editor win-
dow, which is shown in Figure 6.17. This isn’t a visual editor, but you can set all the properties
of each menu item in the dialog box without having to switch to the Properties window.

Figure 6.17

Editing a menu with the
Items Collection Editor

The Add button adds to the menu an item of the type specified in the combo box next to it
(a menu item, combo box, or text box). To insert an item at a different location, add it to the
menu and then use the arrow buttons to move it up or down. As you add new items, you
can set their Text and Name properties on the right pane of the editor. You can also set their
font, set the alignment and orientation of the text, and specify an image to be displayed along
with the text. To add an image to a menu item, locate the Image property and click the ellipsis
button. A dialog box in which you can select the appropriate resource will appear. Notice that
all the images you use on your form are stored as resources of the project. You can add all the
images and icons you might need in a project to the same resource file and reuse them at will.
The TextImageRelation property allows you to specify the relative positions of the text and
the image. You can also select to display text only, images only, or text and images for each
menu item with the DisplayStyle property.

If the menu item leads to a submenu, you must also specify the submenu’s items. Locate
the DropDownItems property and click the ellipsis button. An identical window will appear, in
which you can enter the drop-down items of the current menu item. Notice that the menu on
the form is continuously updated while you edit it in the Items Collection Editor window, so
you can see the effects of your changes on the form. Personally, I’m more productive with the
editor than with the visual tools, mainly because all the properties are right there and I don’t
have to switch between the design surface and the Properties window.

Note that except for MenuItems, you can add ComboBoxes and TextBoxes to a menu. The
TextBox control can be used to facilitate search operations, similar to the Search box of the
browsers. You can also display a number of options in a ComboBox control on the menu.
The advantage of the ComboBox menu item is that the selected option is visible at all times.

246 CHAPTER 6 WORKING WITH FORMS

ComboBoxes are used in the menus of Office applications a lot (a typical example is the
Font name and size ComboBoxes that allow you to change the current selections’ font name
and size).

The ToolStripMenuItem Properties
The ToolStripMenuItem class represents a menu command, at any level. If a command leads to
a submenu, it’s still represented by a ToolStripMenuItem object, which has its own collection
of ToolStripMenuItem objects: the DropDownItems property, which is a collection and it’s
made up of ToolStripMenuItem objects. The ToolStripMenuItem class provides the following
properties, which you can set in the Properties window at design time or manipulate from
within your code:

Checked Some menu commands act as toggles, and they are usually selected (checked) to
indicate that they are on or deselected (unchecked) to indicate that they are off. To initially dis-
play a check mark next to a menu command, set its Checked property to True. You can also
access this property from within your code to change the checked status of a menu command
at runtime. For example, to toggle the status of a menu command called FntBold, use this
statement:

FntBold.Checked = Not FntBold.Checked

Enabled Some menu commands aren’t always available. The Paste command, for example,
has no meaning if the Clipboard is empty (or if it contains data that can’t be pasted in the cur-
rent application). To indicate that a command can’t be used at the time, you set its Enabled
property to False. The command then appears grayed out in the menu, and although it can be
highlighted, it can’t be activated.

IsOnDropDown If the menu command represented by a ToolStripMenuItem object belongs to
a submenu, its IsOnDropDown property is True; otherwise, it’s False. The IsOnDropDown prop-
erty is read-only and False for the items on the first level of the menu.

Visible To remove a command temporarily from the menu, set the command’s Visible
property to False. The Visible property isn’t used frequently in menu design. In general, you
should prefer to disable a command to indicate that it can’t be used at the time (some other
action is required to enable it). Making a command invisible frustrates users, who might spend
time trying to locate the command in another menu.

Programming Menu Commands

When a menu item is selected by the user, it triggers a Click event. To program a menu item,
insert the appropriate code in the item’s Click event handler. The Exit command’s code would
be something like the following:

Sub menuExit(…) Handles menuExit.Click
End

End Sub

If you need to execute any cleanup code before the application ends, place it in the
CleanUp() subroutine and call this subroutine from within the Exit item’s Click event handler:

DESIGNING MENUS 247

Sub menuExit(…) Handles menuExit.Click
CleanUp()
End

End Sub

The same subroutine must also be called from within the FormClosing event handler of the
application’s main form because some users might terminate the application by clicking the
form’s Close button.

An application’s Open menu command contains the code that prompts the user to select a
file and then open it. You will see many examples of programming menu commands in the
following chapters. All you really need to know now is that each menu item is a ToolStrip-
MenuItem object and each fires the Click event every time it’s selected with the mouse or the
keyboard. In most cases, you can treat the Click event handler of a ToolStripMenuItem object
just like the Click event handler of a Button.

Another interesting event of the ToolStripMenuItem is the DropDownOpened event, which is
fired when the user opens a menu or submenu (in effect, when the user clicks a menu item that
leads to a submenu). In this event’s handler, you can insert code to modify the submenu. The
Edit menu of just about any application contains the ubiquitous Cut/Copy/Paste commands.
These commands are not meaningful at all times. If the Clipboard doesn’t contain text, the
Paste command should be disabled. If no text is selected, the Copy and Cut commands should
also be disabled. Here’s how you could change the status of the Paste command from within
the DropDownOpened event handler of the Edit menu:

If My.Computer.Clipboard.ContainsText Then
PasteToolStripMenuItem.Enabled = True

Else
PasteToolStripMenuItem.Enabled = True

End If

Likewise, to change the status of the Cut and Copy commands, use the following statements
in the DropDownOpened event of the ToolStripMenuItem that represents the Edit menu:

If txtEditor.SelectedText.Trim.Length > 0 Then
CopyToolStripMenuItem.Enabled = True
CutToolStripMenuItem.Enabled = True

Else
CopyToolStripMenuItem.Enabled = False
CutToolStripMenuItem.Enabled = False

End If

Using Access and Shortcut Keys

Menus provide a convenient way to display a large number of choices to the user. They
allow you to organize commands in groups, according to their functions, and are available
at all times. Opening menus and selecting commands with the mouse, however, can be an
inconvenience. When using a word processor, for example, you don’t want to have to take
your hands off the keyboard and reach for the mouse. To simplify menu access, Windows
forms support access keys and shortcut keys.

248 CHAPTER 6 WORKING WITH FORMS

Access Keys

Access keys allow the user to open a menu by pressing the Alt key and a letter key. To open
the Edit menu in all Windows applications, for example, you can press Alt+E. E is the Edit
menu’s access key. After the menu is open, the user can select a command with the arrow keys
or by pressing another key, which is the command’s access key, without holding down the Alt
key.

Access keys are designated by the designer of the application and are marked with an
underline character. To assign an access key to a menu item, insert the ampersand symbol (&)
in front of the character you want to use as an access key in the ToolStripMenuItem’s Text
property.

Default Access Keys Are Based on Item Captions

If you don’t designate access keys, Visual Basic will use the first character in the caption
of each top-level menu as its access key. The user won’t see the underline character under
the first character but can open the menu by pressing the first character of its caption while
holding down the Alt key. If two or more menu captions begin with the same letter, the first
(leftmost and topmost) menu will open.

Because the & symbol has a special meaning in menu design, you can’t use it in a menu
item’s caption. To actually display the & symbol in a caption, prefix it with another & symbol.
For example, the caption &Drag produces a command with the caption Drag (the first char-
acter is underlined because it’s the access key). The caption Drag && Drop will create another
command whose caption will be Drag & Drop. Finally, the string &Drag && Drop will create
another command with the caption Drag & Drop (note the underline character in front of the
first uppercase D in the string).

Shortcut Keys

Shortcut keys are similar to access keys, but instead of opening a menu, they run a command
when pressed. Assign shortcut keys to frequently used menu commands so that users can reach
them with a single keystroke. Shortcut keys are combinations of the Ctrl key and a function or
character key. For example, the usual access key for the Close command (after the File menu is
opened with Alt+F) is C, but the usual shortcut key for the Close command is Ctrl+W.

To assign a shortcut key to a menu command, drop down the ShortcutKeys list in the
ToolStripMenuItem’s Properties window and select a keystroke. Specify a modifier (Shift,
Ctrl, or Alt) and a key. When assigning access and shortcut keys, take into consideration the
well-established Windows standards. Users expect Alt+F to open the File menu, so don’t
use Alt+F for the Format menu. Likewise, pressing Ctrl+C universally performs the Copy
command; don’t use Ctrl+C as a shortcut for the Cut command.

Manipulating Menus at Runtime
Dynamic menus change at runtime to display more or fewer commands, depending on the cur-
rent status of the program. The following sections explore two techniques for implementing
dynamic menus:

◆ Creating short and long versions of the same menu

◆ Adding and removing menu commands at runtime

DESIGNING MENUS 249

Creating Short and Long Menus

A common technique in menu design is to create long and short versions of a menu. If a menu
contains many commands and most of the time only a few of them are needed, you can create
one menu with all the commands and another with the most common ones. The first menu is
the long one, and the second is the short one. The last command in the long menu should be
Short Menu, and when selected, it should display the short version. The last command in the
short menu should be Long Menu (or Full Menu), and it should display the long version.

Figure 6.18 shows a long and a short version of the same menu from the LongMenu project.
The short version omits infrequently used commands and is easier to handle.

Figure 6.18

The two versions of the
Format menu of the
LongMenu application

To implement the LongMenu command, start a new project and create a menu with the
options shown in Figure 6.18. Listing 6.11 is the code that shows/hides the long menu in the
MenuSize command’s Click event.

Listing 6.11: The MenuSize menu item’s Click event

Private Sub mnuSize_Click(…) Handles mnuSize.Click
If mnuSize.Text = "Short Menu" Then

mnuSize.Text = "Long Menu"
Else

mnuSize.Text = "Short Menu"
End If
mnuUnderline.Visible = Not mnuUnderline.Visible
mnuStrike.Visible = Not mnuStrike.Visible
mnuSmallCaps.Visible = Not mnuSmallCaps.Visible
mnuAllCaps.Visible = Not mnuAllCaps.Visible

End Sub

The subroutine in Listing 6.11 doesn’t do much. It simply toggles the Visible property of
certain menu commands and changes the command’s caption to Short Menu or Long Menu,
depending on the menu’s current status.

250 CHAPTER 6 WORKING WITH FORMS

Adding and Removing Commands at Runtime

I conclude the discussion of menu design with a technique for building dynamic menus, which
grow and shrink at runtime. Many applications maintain a list of the most recently opened files
in the File menu. When you first start the application, this list is empty, and as you open and
close files, it starts to grow.

The RunTimeMenu project, available for download from www.sybex.com/go/mastering
vb2010, demonstrates how to add items to and remove items from a menu at runtime. The
main menu of the application’s form contains the Run Time Menu submenu, which is initially
empty.

The two buttons on the form add commands to and remove commands from the Run
Time Menu. Each new command is appended at the end of the menu, and the commands are
removed from the bottom of the menu first (the most recently added commands are removed
first). To change this order and display the most recent command at the beginning of the
menu, use the Insert method instead of the Add method to insert the new item. Listing 6.12
shows the code behind the two buttons that add and remove menu items.

Listing 6.12: Adding and removing menu items at runtime

Private Sub bttnAddItem_Click(…) Handles bttnAddItem.Click
Dim Item As New ToolStripMenuItem
Item.Text = "Run Time Option" &

RunTimeMenuToolStripMenuItem.DropDownItems.Count.ToString
RunTimeMenuToolStripMenuItem.DropDownItems.Add(Item)
AddHandler Item.Click, New System.EventHandler(AddressOf OptionClick)

End Sub

Private Sub bttnRemoveItem_Click(…) Handles bttnRemoveItem.Click
If RunTimeMenuToolStripMenuItem.DropDownItems.Count > 0 Then

Dim mItem As ToolStripItem
Dim items As Integer =

RunTimeMenuToolStripMenuItem.DropDownItems.Count
mItem = RunTimeMenuToolStripMenuItem.DropDownItems(items - 1)

RunTimeMenuToolStripMenuItem.DropDownItems.Remove(mItem)
End If

End Sub

The Remove button’s code uses the Remove method to remove the last item in the menu by
its index after making sure the menu contains at least one item. The Add button adds a new
item and sets its caption to Run Time Option n, where n is the item’s order in the menu. In
addition, it assigns an event handler to the new item’s Click event. This event handler is the
same for all the items added at runtime; it’s the OptionClick() subroutine. All the runtime
options invoke the same event handler — it would be quite cumbersome to come up with a
separate event handler for different items. In the single event handler, you can examine the
name of the ToolStripMenuItem object that invoked the event handler and act accordingly.
The OptionClick() subroutine used in Listing 6.13 displays the name of the menu item that
invoked it. It doesn’t do anything, but it shows you how to figure out which item of the Run
Time Menu was clicked.

THE BOTTOM LINE 251

Listing 6.13: Programming dynamic menu items

Private Sub OptionClick(…)
Dim itemClicked As New ToolStripMenuItem
itemClicked = CType(sender, ToolStripMenuItem)
MsgBox("You have selected the item " & itemClicked.Text)

End Sub

Creating Context Menus

Nearly every Windows application provides a context menu that the user can invoke by
right-clicking a form or a control. (It’s sometimes called a shortcut menu or pop-up menu.)
This is a regular menu, but it’s not anchored on the form. It can be displayed anywhere on the
form or on specific controls. Different controls can have different context menus, depending on
the operations you can perform on them at the time.

To create a context menu, place a ContextMenuStrip control on your form. The new context
menu will appear on the form just like a regular menu, but it won’t be displayed there at run-
time. You can create as many context menus as you need by placing multiple instances of the
ContextMenuStrip control on your form and adding the appropriate commands to each one. To
associate a context menu with a control on your form, set the ContextMenu property for that
control to the name of the corresponding context menu.

Designing a context menu is identical to designing a regular menu. The only difference is
that the first command in the menu is always ContextMenuStrip and it’s not displayed along
with the menu.

The Bottom Line

Visual form design Forms expose a lot of trivial properties for setting their appearance. In
addition, they expose a few properties that simplify the task of designing forms that can be
resized at runtime. The Anchor property causes a control to be anchored to one or more edges
of the form to which it belongs. The Dock property allows you to place on the form controls
that are docked to one of its edges. To create forms with multiple panes that the user can resize
at runtime, use the SplitContainer control. If you just can’t fit all the controls in a reasonably
sized form, use the AutoScroll properties to create a scrollable form.

Master It You’ve been asked to design a form with three distinct sections. You should also
allow users to resize each section. How will you design this form?

Design applications with multiple forms. Typical applications are made up of multiple
forms: the main form and one or more auxiliary forms. To show an auxiliary form from within
the main form’s code, call the auxiliary form’s Show method, or the ShowDialog method if you
want to display the auxiliary form modally (as a dialog box).

Master It How will you set the values of selected controls in a dialog box, display them,
and then read the values selected by the user from the dialog box?

252 CHAPTER 6 WORKING WITH FORMS

Design dynamic forms. You can create dynamic forms by populating them with controls at
runtime through the form’s Controls collection. First, create instances of the appropriate con-
trols by declaring variables of the corresponding type. Then set the properties of each of these
variables that represent controls. Finally, place the control on the form by adding the corre-
sponding variable to the form’s Controls collection.

Master It How will you add a TextBox control to your form at runtime and assign a han-
dler to the control’s TextChanged event?

Design menus. Both form menus and context menus are implemented through the Menu-
Strip control. The items that make up the menu are ToolStripMenuItem objects. The ToolStrip-
MenuItem objects give you absolute control over the structure and appearance of the menus of
your application.

Master It What are the two basic events fired by the ToolStripMenuItem object?

Chapter 7

More Windows Controls

In this chapter, I will continue the discussion of the Windows controls. I’ll start with the con-
trols that implement the common dialog boxes and the RichTextBox control. Then I will deal
with two more advanced controls, TreeView and ListView.

The .NET Framework provides a set of controls for displaying common dialog boxes, such
as the Open and Color dialog boxes. Each of these controls encapsulates a large amount of
functionality that would take a lot of code to duplicate. The common dialog controls are fun-
damental components because they enable you to design user interfaces with the look and feel
of a Windows application.

You’ll also explore the RichTextBox control, which is an advanced version of the TextBox
control. The RichTextBox control provides all the functionality you’ll need to build a word pro-
cessor — WordPad is actually built around the RichTextBox control. The RichTextBox control al-
lows you to format text by mixing fonts and attributes, aligning paragraphs differently, and so on.

The TreeView and ListView controls implement two of the more-advanced data structures.
TreeView can be used to present a hierarchical list — a tree in which items that belong to
other items appear under their parent with the proper indentation. For instance, a list of
city and state names should be structured so that each city appears under the corresponding
state. ListView can be used to present a ‘‘flat’’ structure where each item has a number of
subitems. A typical example is a file, whose most important attributes are name, size, type, and
modification date. These attributes can be presented as subitems in a list of files.

The TreeView and ListView controls were designed to hide much of the complexity of these
structures, and they do this very well. They are among the more-advanced controls, and they
are certainly more difficult to program than the ones discussed in the preceding chapters. These
two controls, however, are the basic makings of unique user interfaces, as you’ll see in this
chapter’s examples.

In this chapter you’ll learn how to do the following:

◆ Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames.

◆ Use ColorDialog and FontDialog controls to prompt users for colors and typefaces.

◆ Use the RichTextBox control as an advanced text editor to present richly formatted text.

◆ Use the TreeView and ListView controls to present hierarchical lists and lists of structured
items.

254 CHAPTER 7 MORE WINDOWS CONTROLS

The Common Dialog Controls
A rather tedious, but quite common, task in nearly every application is to prompt the user
for filenames, font names and sizes, or colors to be used by the application. Designing your
own dialog boxes for these purposes would be a hassle, not to mention that your applications
wouldn’t conform to the basic Windows interface design principles. Truth be told, users are
not fond of surprises, and all your creative effort will most likely backfire. Unexpected interface
features are guaranteed to curb GUI usability and result in a number of frustrated users. In fact,
all Windows applications use standard dialog boxes for common operations; two of them are
shown in Figure 7.1. These dialog boxes are implemented as standard controls in the Toolbox.
To use any of the common dialog controls in your interface, just place the appropriate control
from the Dialogs section of the Toolbox on your form and activate it from within your code by
calling the ShowDialog method.

Figure 7.1

The Open and Font com-
mon dialog boxes

The common dialog controls are invisible at runtime, and they’re not placed on your forms
because they’re implemented as modal dialog boxes and they’re displayed as needed. You sim-
ply add them to the project by double-clicking their icons in the Toolbox; a new icon appears in
the components tray of the form, just below the Form Designer. The following common dialog
controls are in the Toolbox under the Dialogs tab:

OpenFileDialog Lets users select a file to open. It also allows the selection of multiple files
for applications that must process many files at once.

THE COMMON DIALOG CONTROLS 255

SaveFileDialog Lets users select or specify the path of a file in which the current document
will be saved.

FolderBrowserDialog Lets users select a folder (an operation that can’t be performed with
the OpenFileDialog control).

ColorDialog Lets users select a color from a list of predefined colors or specify custom colors.

FontDialog Lets users select a typeface and style to be applied to the current text selection.
The Font dialog box has an Apply button, which you can intercept from within your code and
use to apply the currently selected font to the text without closing the dialog box.

There are three more common dialog controls: the PrintDialog, PrintPreviewDialog, and
PageSetupDialog controls. These controls are discussed in detail in the tutorial ‘‘Printing with
Visual Basic 2010,’’ available for download from www.sybex.com/go/masteringvb2010, in the
context of VB’s printing capabilities.

Using the Common Dialog Controls
To display any of the common dialog boxes from within your application, you must first add
an instance of the appropriate control to your project. Then you must set some basic properties
of the control through the Properties window. Most applications set the control’s properties
from within the code because common dialogs interact closely with the application. When you
call the Color common dialog, for example, you should preselect a color from within your
application and make it the default selection on the control. When prompting the user for the
color of the text, the default selection should be the current setting of the control’s ForeColor
property. Likewise, the Save dialog box must suggest a filename when it first pops up (or the
filename’s extension, at least).

To display a common dialog box from within your code, you simply call the control’s
ShowDialog method, which is common for all controls. Note that all common dialog controls
can be displayed only modally and they don’t expose a Show method. As soon as you call the
ShowDialog method, the corresponding dialog box appears onscreen, and the execution of the
program is suspended until the box is closed. Using the Open, Save, and FolderBrowser dialog
boxes, users can traverse the entire structure of their drives and locate the desired filename or
folder. When the user clicks the Open or Save button, the dialog box closes and the program’s
execution resumes. The code should read the name of the file selected by the user through
the FileName property and use it to open the file or store the current document there. The
folder selected in the FolderBrowserDialog control is returned to the application through the
SelectedPath property.

Here is the sequence of statements used to invoke the Open common dialog and retrieve the
selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
fileName = OpenFileDialog1.FileName
‘ Statements to open the selected file

End If

The ShowDialog method returns a value indicating how the dialog box was closed. You
should read this value from within your code and ignore the settings of the dialog box if the
operation was cancelled.

256 CHAPTER 7 MORE WINDOWS CONTROLS

The variable fileName in the preceding code segment is the full pathname of the file
selected by the user. You can also set the FileName property to a filename, which will be
displayed when the Open dialog box is first opened:

OpenFileDialog1.FileName =
"C:\WorkFiles\Documents\Document1.doc"

If OpenFileDialog1.ShowDialog =
Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName
‘ Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by
using the following statements:

ColorDialog1.Color = TextBox1.BackColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color
End If

The ShowDialog method is common to all controls. The Title property is also common to
all controls and it’s the string displayed in the title bar of the dialog box. The default title is the
name of the dialog box (for example, Open, Color, and so on), but you can adjust it from within
your code with a statement such as the following:

ColorDialog1.Title = "Select Drawing Color"

The ColorDialog Control
The Color dialog box, shown in Figure 7.2, is one of the simplest dialog boxes. Its Color
property returns the color selected by the user or sets the initially selected color when the user
opens the dialog box.

Figure 7.2

The Color dialog box

THE COMMON DIALOG CONTROLS 257

The following statements set the initial color of the ColorDialog control, display the dialog
box, and then use the color selected in the control to fill the form. First, place a ColorDialog
control in the form and then insert the following statements in a button’s Click event handler:

Private Sub Button1_Click(…) Handles Button1.Click
ColorDialog1.Color = Me.BackColor
If ColorDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

Me.BackColor = ColorDialog1.Color
End If

End Sub

The following sections discuss the basic properties of the ColorDialog control.

AllowFullOpen

Set this property to True if you want users to be able to open the dialog box and define their
own custom colors, as you can in the one shown in Figure 7.2. The AllowFullOpen property
doesn’t open the custom section of the dialog box; it simply enables the Define Custom Colors
button in the dialog box. Otherwise, this button is disabled.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all available
colors in the set of basic colors.

Color

This is the color specified on the control. You can set it to a color value before showing the
dialog box to suggest a reasonable selection. On return, read the value of the same property
to find out which color was picked by the user in the control:

ColorDialog1.Color = Me.BackColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color
End If

CustomColors

This property indicates the set of custom colors that will be shown in the dialog box. The Color
dialog box has a section called Custom Colors, in which you can display 16 additional custom
colors. The CustomColors property is an array of integers that represent colors. To display three
custom colors in the lower section of the Color dialog box, use a statement such as the following:

Dim colors() As Integer = {222663, 35453, 7888}
ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s
not. You can’t create the array CustomColors with a statement such as this one:

Dim colors() As Color =
{Color.Azure, Color.Navy, Color.Teal}

258 CHAPTER 7 MORE WINDOWS CONTROLS

Because it’s awkward to work with numeric values, you should convert color values to inte-
ger values by using a statement such as the following:

Color.Navy.ToArgb

The preceding statement returns an integer value that represents the color navy. This value,
however, is negative because the first byte in the color value represents the transparency of
the color. To get the value of the color, you must take the absolute value of the integer value
returned by the previous expression. To create an array of integers that represent color values,
use a statement such as the following:

Dim colors() As Integer =
{Math.Abs(Color.Gray.ToArgb),
Math.Abs(Color.Navy.ToArgb),
Math.Abs(Color.Teal.ToArgb)}

Now you can assign the colors array to the CustomColors property of the control and the
colors will appear in the Custom Colors section of the Color dialog box.

SolidColorOnly

This indicates whether the dialog box will restrict users to selecting solid colors only. This setting
should be used with systems that can display only 256 colors. Although today few systems can’t
display more than 256 colors, some interfaces are limited to this number. When you run an app-
lication through Remote Desktop, for example, only the solid colors are displayed correctly on the
remote screen regardless of the remote computer’s graphics card (and that’s for efficiency reasons).

The FontDialog Control
The Font dialog box, shown in Figure 7.3, lets the user review and select a font and then set
its size and style. Optionally, by clicking the Apply button users can also select the font’s color
and even apply the current settings to the selected text on a control of the form without closing
the dialog box. This button isn’t displayed by default; to show this button, you must set the
control’s ShowApply property to True. To see how the Apply button is used, see the description
of the ShowApply property a little later in this section.

Figure 7.3

The Font dialog box

THE COMMON DIALOG CONTROLS 259

When the dialog is closed by clicking the OK button, you can retrieve the selected font by
using the control’s Font property. In addition to the OK button, the Font dialog box may con-
tain the Apply button, which reports the current setting to your application. You can intercept
the Click event of the Apply button and adjust the appearance of the text on your form while
the common dialog is still visible.

The main property of this control is the Font property, which sets the initially selected font
in the dialog box and retrieves the font selected by the user. The following statements display
the Font dialog box after setting the initial font to the current font of the TextBox1 control.
When the user closes the dialog box, the code retrieves the selected font and assigns it to the
same TextBox control:

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

Use the following properties to customize the Font dialog box before displaying it.

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be displayed
in the Font dialog box. This combo box allows the user to change the current character set and
select a non-Western language (such as Greek, Hebrew, Cyrillic, and so on).

AllowVerticalFonts

This property is a Boolean value that indicates whether the dialog box allows the display and
selection of both vertical and horizontal fonts. Its default value is False, which displays only
horizontal fonts.

Color, ShowColor

The Color property sets or returns the selected font color. To enable users to select a color for
the font, you must also set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the
selection of fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and
variable-pitch fonts) are displayed in the Font dialog box. Fixed-pitch fonts, or monospaced
fonts, consist of characters of equal widths that are sometimes used to display columns of
numeric values so that the digits are aligned vertically.

Font

This property is a Font object. You can set it to the preselected font before displaying the dialog
box and assign it to a Font property upon return. You’ve already seen how to preselect a font
and how to apply the selected font to a control from within your application.

260 CHAPTER 7 MORE WINDOWS CONTROLS

You can also create a new Font object and assign it to the control’s Font property. Upon
return, the TextBox control’s Font property is set to the selected font:

Dim newFont As New Font("Verdana", 12, FontStyle.Underline)
FontDialog1.Font = newFont
If FontDialog1.ShowDialog() = DialogResult.OK Then

TextBox1.ForeColor = FontDialog1.Color
End If

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the selection of
an existing font. If the user enters a font name that doesn’t correspond to a name in the list
of available fonts, a warning is displayed. Its default value is True, and there’s no reason to
change it.

MaxSize, MinSize

These two properties are integers that determine the minimum and maximum point size the
user can specify in the Font dialog box. Use these two properties to prevent the selection
of extremely large or extremely small font sizes because these fonts might throw off a
well-balanced interface (text will overflow in labels, for example).

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an Apply but-
ton. Its default value is False, so the Apply button isn’t normally displayed. If you set this prop-
erty to True, you must also program the control’s Apply event — the changes aren’t applied
automatically to any of the controls in the current form.

The following statements display the Font dialog box with the Apply button:

Private Sub Button2_Click(…) Handles Button2.Click
FontDialog1.Font = TextBox1.Font
FontDialog1.ShowApply = True
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

End Sub

The FontDialog control raises the Apply event every time the user clicks the Apply button.
In this event’s handler, you must read the currently selected font and use it in the form so that
users can preview the effect of their selection:

Private Sub FontDialog1_Apply(…) Handles FontDialog1.Apply
TextBox1.Font = FontDialog1.Font

End Sub

ShowEffects

This property is a Boolean value that indicates whether the dialog box allows the selection
of special text effects, such as strikethrough and underline. The effects are returned to the

THE COMMON DIALOG CONTROLS 261

application as attributes of the selected Font object, and you don’t have to do anything special
in your application.

The OpenDialog and SaveDialog Controls
Open and Save As, the two most widely used common dialog boxes (see Figure 7.4), are imple-
mented by the OpenFileDialog and SaveFileDialog controls. Nearly every application prompts
users for filenames, and the .NET Framework provides two controls for this purpose. The two
dialog boxes are nearly identical, and most of their properties are common, so we’ll start with
the properties that are common to both controls.

Figure 7.4

The Open and Save As
common dialog boxes

When either of the two controls is displayed, it rarely displays all the files in any given
folder. Usually the files displayed are limited to the ones that the application recognizes so that
users can easily spot the file they want. The Filter property limits the types of files that will
appear in the Open or Save As dialog box.

It’s also standard for the Windows interface not to display the extensions of filenames
(although Windows distinguishes files by their filename extensions). The file type ComboBox,
which appears at the bottom of the form next to the File Name box, contains the various file

262 CHAPTER 7 MORE WINDOWS CONTROLS

types recognized by the application. The various file types can be described in plain English
with long descriptive names and without their filename extensions.

The extension of the default file type for the application is described by the DefaultExten-
sion property, and the list of the file types displayed in the Save As Type box is determined by
the Filter property.

To prompt the user for a file to be opened, use the following statements. The Open dialog
box displays the files with the filename extension .bin only:

OpenFileDialog1.DefaultExt = ".bin"
OpenFileDialog1.AddExtension = True
OpenFileDialog1.Filter = "Binary Files|*.bin"
If OpenFileDialog1.ShowDialog() =

Windows.Forms.DialogResult.OK Then
Debug.WriteLine(OpenFileDialog1.FileName)

End If

The following sections describe the properties of the OpenFileDialog and SaveFileDialog
controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically adds an
extension to a filename if the user omits it. The extension added automatically is the one spec-
ified by the DefaultExtension property, which you must set before calling the ShowDialog
method. This is the default filename extension of the files recognized by your application.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the
user enters the name of a file that does not exist in the Open dialog box or if the user enters the
name of a file that exists in the Save dialog box.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the
user specifies a path that does not exist as part of the user-supplied filename.

DefaultExt

This property sets the default extension for the filenames specified on the control. Use this
property to specify a default filename extension, such as .txt or .doc, so that when a file with
no extension is specified by the user, the default extension is automatically appended to the
filename. You must also set the AddExtension property to True. The default extension property
starts with the period, and it’s a string — for example, .bin.

DereferenceLinks

This property indicates whether the dialog box returns the location of the file referenced by
the shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your
Desktop when the DereferenceLinks property is set to False, the dialog box will return to

THE COMMON DIALOG CONTROLS 263

your application a value such as C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the
shortcut, not the name of the file represented by the shortcut. If you set the DereferenceLinks
property to True, the dialog box will return the actual filename represented by the shortcut,
which you can use in your code.

FileName

Use this property to retrieve the full path of the file selected by the user in the control. If you
set this property to a filename before opening the dialog box, this value will be the proposed
filename. The user can click OK to select this file or select another one in the control. The two
controls provide another related property, the FileNames property, which returns an array of
filenames. To find out how to allow the user to select multiple files, see the discussion of the
MultiSelect and FileNames properties later in this chapter.

Filter

This property is used to specify the type(s) of files displayed in the dialog box. To display
text files only, set the Filter property to Text files|*.txt. The pipe symbol separates
the description of the files (what the user sees) from the actual filename extension (how the
operating system distinguishes the various file types).

If you want to display multiple extensions, such as .bmp, .gif, and .jpg, use a semi-
colon to separate extensions with the Filter property. Set the Filter property to the string
Images|*.bmp;*.gif;*.jpg to display all the files of these three types when the user selects
Images in the Save As Type combo box under the box with the filename.

Don’t include spaces before or after the pipe symbol because these spaces will be displayed
on the dialog box. In the Open dialog box of an image-processing application, you’ll probably
provide options for each image file type as well as an option for all images:

OpenFileDialog1.Filter =
"Bitmaps|*.bmp|GIF Images|*.gif|" &
"JPEG Images|*.jpg|All Images|*.bmp;*.gif;*.jpg"

FilterIndex

When you specify more than one file type when using the Filter property of the Open dia-
log box, the first file type becomes the default. If you want to use a file type other than the first
one, use the FilterIndex property to determine which file type will be displayed as the default
when the Open dialog box is opened. The index of the first type is 1, and there’s no reason to
ever set this property to 1. If you use the Filter property value of the example in the preced-
ing section and set the FilterIndex property to 2, the Open dialog box will display GIF files
by default.

InitialDirectory

This property sets the initial folder whose files are displayed the first time that the Open and
Save dialog boxes are opened. Use this property to display the files of the application’s folder
or to specify a folder in which the application stores its files by default. If you don’t specify
an initial folder, the dialog box will default to the last folder where the most recent file was

264 CHAPTER 7 MORE WINDOWS CONTROLS

opened or saved. It’s also customary to set the initial folder to the application’s path by using
the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application’s
executable file resides.

RestoreDirectory

Every time the Open and Save As dialog boxes are displayed, the current folder is the one
that was selected by the user the last time the control was displayed. The RestoreDirectory
property is a Boolean value that indicates whether the dialog box restores the current directory
before closing. Its default value is False, which means that the initial directory is not restored
automatically. The InitialDirectory property overrides the RestoreDirectory property.

FileNames

If the Open dialog box allows the selection of multiple files (you have set the MultiSelect
property to True), the FileNames property contains the pathnames of all selected files.
FileNames is a collection, and you can iterate through the filenames with an enumerator. This
property should be used only with the OpenFileDialog control, even though the SaveFileDialog
control exposes a FileNames property.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files in the
dialog box. Its default value is False, and users can select a single file. When the MultiSelect
property is True, the user can select multiple files, but they must all come from the same folder
(you can’t allow the selection of multiple files from different folders). This property is unique
to the OpenFileDialog control. This and the following two properties are unique to the Open-
FileDialog control.

ReadOnlyChecked, ShowReadOnly

The ReadOnlyChecked property is a Boolean value that indicates whether the Read-Only check
box is selected when the dialog box first pops up (the user can clear this box to open a file
in read/write mode). You can set this property to True only if the ShowReadOnly property is
also set to True. The ShowReadOnly property is also a Boolean value that indicates whether the
Read-Only check box is available. If this check box appears on the form, the user can select it
so the file will be opened as read-only. Files opened as read-only shouldn’t be saved with the
same filename — always prompt the user for a new filename.

The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly
open the selected file. Likewise, the SaveFileDialog control exposes the SaveFile method,
which allows you to quickly save a document to the selected file. Normally, after retriev-
ing the name of the file selected by the user, you must open this file for reading (in

THE COMMON DIALOG CONTROLS 265

the case of the Open dialog box) or writing (in the case of the Save dialog box). The
topic of reading from or writing to files is discussed in detail in the tutorial ‘‘Access-
ing Files and Folders with the System.IO Class,’’ which is available for download at
www.sybex.com/go/masteringvb2010.

When this method is applied to the Open dialog box, the file is opened with read-only per-
mission. The same method can be applied to the SaveFile dialog box, in which case the file is
opened with read-write permission. Both methods return a Stream object, and you can call this
object’s Read and Write methods to read from or write to the file.

VB 2010 at Work: Multiple File Selection

The Open dialog box allows the selection of multiple files. This feature can come in handy
when you want to process files en masse. You can let the user select many files, usually of the
same type, and then process them one at a time. Or, you might want to prompt the user to
select multiple files to be moved or copied.

To allow the user to select multiple files in the Open dialog box, set the MultiSelect prop-
erty to True. The user can then select multiple files with the mouse by holding down the Shift
or Ctrl key. The names of the selected files are reported by the property FileNames, which is
an array of strings. The FileNames array contains the pathnames of all selected files, and you
can iterate through them and process each file individually.

One of this chapter’s sample projects is the MultipleFiles project, which demonstrates how
to use the FileNames property. The application’s form is shown in Figure 7.5. The button at
the top of the form, Show Files in Folder, displays the Open dialog box, where you can select
multiple files. After closing the dialog box by clicking the Open button on the Open dialog box,
the application displays the pathnames of the selected files on a ListBox control.

Figure 7.5

The MultipleFiles
project lets the user
select multiple files in
the Open dialog box.

The code behind the Open Files button is shown in Listing 7.1. In this example, I used
the array’s enumerator to iterate through the elements of the FileNames array. You can use

266 CHAPTER 7 MORE WINDOWS CONTROLS

any of the methods discussed in Chapter 2, ‘‘VB Programming Essentials’’ to iterate through
the array.

Listing 7.1: Processing multiple selected files

Private Sub bttnFile_Click(…) Handles bttnFile.Click
OpenFileDialog1.Multiselect = True
OpenFileDialog1.ShowDialog()
Dim filesEnum As IEnumerator
ListBox1.Items.Clear()
filesEnum = OpenFileDialog1.FileNames.GetEnumerator()
While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)
End While

End Sub

The FolderBrowserDialog Control
Sometimes we need to prompt users for a folder rather than a filename. An application that
processes files in batch mode shouldn’t force users to select the files to be processed. Instead, it
should allow users to select a folder and process all files of a specific type in the folder (it could
encrypt all text documents or resize all image files, for example). As elaborate as the File Open
dialog box might be, it doesn’t allow the selection of a folder. To prompt users for a folder’s
path, use the FolderBrowser dialog box, which is a very simple one; it’s shown in Figure 7.6. The
FolderBrowserDialog control exposes a small number of properties, which are discussed next.

Figure 7.6

Selecting a folder via
the FolderBrowser dialog
box

FolderBrowserDialog control

Resulting Browse For Folder dialog box

THE COMMON DIALOG CONTROLS 267

RootFolder

This property indicates the initial folder to be displayed when the dialog box is shown. It is
not necessarily a string; it can also be a member of the SpecialFolder enumeration. To see the
members of the enumeration, enter the following expression:

FolderBrowserDialog1.RootFolder =

As soon as you enter the equals sign, you will see the members of the enumeration. The
most common setting for this property is My Computer, which represents the target computer’s
file system. You can set the RootFolder property to a number of special folders (for example,
Personal, Desktop, ApplicationData, LocalApplicationData, and so on). You can also set this
property to a string with the desired folder’s pathname.

SelectedPath

After the user closes the FolderBrowser dialog box by clicking the OK button, you can retrieve
the name of the selected folder with the SelectedPath property, which is a string, and you
can use it with the methods of the System.IO namespace to access and manipulate the selected
folder’s files and subfolders.

ShowNewFolderButton

This property determines whether the dialog box will contain a New button; its default value
is True. When users click the New button to create a new folder, the dialog box prompts them
for the new folder’s name and creates a new folder with the specified name under the selected
folder.

VB 2010 at Work: Folder Browsing Demo Project

The FolderBrowser control is a trivial control, but I’m including a sample application,
available for download from www.sybex.com/go/masteringvb2010, to demonstrate
its use. The same application demonstrates how to retrieve the files and subfolders of
the selected folder and how to create a directory listing in a RichTextBox control, like
the one shown in Figure 7.6. The members of the System.IO namespace, which allow
you to access and manipulate files and folders from within your code, are discussed in
detail in the tutorial ‘‘Accessing Files and Folders,’’ which is available for download at
www.sybex.com/go/masteringvb2010.

The FolderBrowser dialog box is set to display the entire file system of the target computer
and is invoked with the following statements:

FolderBrowserDialog1.RootFolder = Environment.SpecialFolder.MyComputer
FolderBrowserDialog1.ShowNewFolderButton = False
If FolderBrowserDialog1.ShowDialog = DialogResult.OK Then
’ process files in selected folder
End If

As usual, we examine the value returned by the ShowDialog method of the control
and we proceed if the user has closed the dialog box by clicking the OK button. The code
that iterates through the selected folder’s files and subfolders, shown in Listing 7.2, is

268 CHAPTER 7 MORE WINDOWS CONTROLS

basically a demonstration of some members of the System.IO namespace, but I’ll review it
briefly here.

Listing 7.2: Scanning a folder

Private Sub bttnSelectFiles_Click(…) Handles bttnSelectFiles.Click
FolderBrowserDialog1.RootFolder =

Environment.SpecialFolder.MyComputer
FolderBrowserDialog1.ShowNewFolderButton = False
If FolderBrowserDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

RichTextBox1.Clear()
‘ Retrieve initial folder
Dim initialFolder As String =

FolderBrowserDialog1.SelectedPath
Dim InitialDir As New IO.DirectoryInfo(

FolderBrowserDialog1.SelectedPath)
‘ and print its name w/o any indentation
PrintFolderName(InitialDir, "")
‘ and then print the files in the top folder
If InitialDir.GetFiles("*.*").Length = 0 Then

SwitchToItalics()
RichTextBox1.AppendText(

"folder contains no files" & vbCrLf)
SwitchToRegular()

Else
PrintFileNames(InitialDir, "")

End If
Dim DI As IO.DirectoryInfo
‘ Iterate through every subfolder and print it
For Each DI In InitialDir.GetDirectories

PrintDirectory(DI)
Next

End If
End Sub

The selected folder’s name is stored in the initialFolder variable and is passed as an
argument to the constructor of the DirectoryInfo class. The InitialDir variable represents the
specified folder. This object is passed to the PrintFolderName() subroutine, which prints the
folder’s name in bold. Then the code iterates through the same folder’s files and prints them
with the PrintFileNames() subroutine, which accepts as an argument the DirectoryInfo object
that represents the current folder and the indentation level. After printing the initial folder’s
name and the names of the files in the folder, the code iterates through the subfolders of the
initial folder. The GetDirectories method of the DirectoryInfo class returns a collection of
objects, one for each subfolder under the folder represented by the InitialDir variable. For
each subfolder, it calls the PrintDirectory() subroutine, which prints the folder’s name and

THE RICHTEXTBOX CONTROL 269

the files in this folder, and then iterates through the folder’s subfolders. The code that iterates
through the selected folder’s files and subfolders is shown in Listing 7.3.

Listing 7.3: The PrintDirectory() subroutine

Private Sub PrintDirectory(ByVal CurrentDir As IO.DirectoryInfo)
Static IndentationLevel As Integer = 0
IndentationLevel += 1
Dim indentationString As String = ""
indentationString =

New String(Convert.ToChar(vbTab), IndentationLevel)
PrintFolderName(CurrentDir, indentationString)
If CurrentDir.GetFiles("*.*").Length = 0 Then

SwitchToItalics()
RichTextBox1.AppendText(indentationString &

"folder contains no files" & vbCrLf)
SwitchToRegular()

Else
PrintFileNames(CurrentDir, indentationString)

End If
Dim folder As IO.DirectoryInfo
For Each folder In CurrentDir.GetDirectories

PrintDirectory(folder)
Next
IndentationLevel -= 1

End Sub

The code that iterates through the subfolders of a given folder is discussed in detail in
the tutorial ‘‘Accessing Files and Folders,’’ available for download from www.sybex.com
/go/masteringvb2010, so you need not worry if you can’t figure out how it works yet. In the
following sections, you’ll learn how to display formatted text in the RichTextBox control.

The RichTextBox Control
The RichTextBox control is the core of a full-blown word processor. It provides all the func-
tionality of a TextBox control; it can handle multiple typefaces, sizes, and attributes and offers
precise control over the margins of the text (see Figure 7.7). You can even place images in your
text on a RichTextBox control (although you won’t have the kind of control over the embedded
images that you have with Microsoft Word).

The fundamental property of the RichTextBox control is its Rtf property. Similar to the Text
property of the TextBox control, this property is the text displayed on the control. Unlike the
Text property, however, which returns (or sets) the text of the control but doesn’t contain for-
matting information, the Rtf property returns the text along with any formatting information.

270 CHAPTER 7 MORE WINDOWS CONTROLS

Therefore, you can use the RichTextBox control to specify the text’s formatting, including para-
graph indentation, font, and font size or style.

Figure 7.7

A word processor based
on the functionality of
the RichTextBox control

RTF, which stands for Rich Text format, is a standard for storing formatting information
along with the text. The beauty of the RichTextBox control for programmers is that they don’t
need to supply the formatting codes. The control provides simple properties to change the font
of the selected text, change the alignment of the current paragraph, and so on. The RTF code is
generated internally by the control and used to save and load formatted files. It’s possible to
create elaborately formatted documents without knowing the RTF specification.

The WordPad application that comes with Windows is based on the RichTextBox control.
You can easily duplicate every bit of WordPad’s functionality with the RichTextBox control, as
you will see later in this chapter.

The RTF Language
A basic knowledge of the Rich Text format, its commands, and how it works will certainly
help you understand the RichTextBox control’s inner workings. RTF is a language that uses
simple commands to specify the formatting of a document. These commands, or tags, are
ASCII strings, such as \par (the tag that marks the beginning of a new paragraph) and \b
(the tag that turns on the bold style). And this is where the value of the Rich Text format lies.
RTF documents don’t contain special characters and can be easily exchanged among different
operating systems and computers, as long as there is an RTF-capable application to read the
document.

RTF is similar to Hypertext Markup Language (HTML), and if you’re familiar with HTML,
a few comparisons between the two standards will provide helpful hints and insight into the
RTF language. Like HTML, RTF was designed to create formatted documents that could be dis-
played on different systems. The following RTF segment displays a sentence with a few words
in italic:

\bRTF\b0 (which stands for Rich Text Format) is a \i
document formatting language\i0 that uses simple
commands to specify the formatting of the document.

THE RICHTEXTBOX CONTROL 271

The following is the equivalent HTML code:

RTF (which stands for Rich Text Format) is a
<i>document formatting language</i> that uses simple
commands to specify the formatting of the document.

The and <i> tags of HTML, for example, are equivalent to the \b and \i tags of RTF.
The closing tags in RTF are \b0 and \i0, respectively.

Although you don’t need to understand the RTF specifications to produce formatted text
with the RichTextBox control, if you want to generate RTF documents from within your code,
visit the RTF Cookbook site at http://search.cpan.org/∼sburke/RTF-Writer/lib/RTF/
Cookbook.pod. There’s also a Microsoft resource on RTF at http://msdn2.microsoft.com/
en-us/library/aa140277(office.10).aspx.

Text Manipulation and Formatting Properties
The RichTextBox control provides properties for manipulating the selected text on the con-
trol. The names of these properties start with the Selection or Selected prefix, and the most
commonly used ones are shown in Table 7.1. Some of these properties are discussed in further
detail in following sections.

Table 7.1: RichTextBox properties for manipulating selected text

Property What It Manipulates

SelectedText The selected text

SelectedRtf The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

SelectionBackColor The background color of the selected text

SelectionAlignment The alignment of the selected text

SelectionIndent, SelectionRightIndent,
SelectionHangingIndent

The indentation of the selected text

RightMargin The distance of the text’s right margin from the
left edge of the control

SelectionTabs An array of integers that sets the tab stop
positions in the control

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

272 CHAPTER 7 MORE WINDOWS CONTROLS

SelectedText

The SelectedText property represents the selected text, whether it was selected by the user via
the mouse or from within your code. To assign the selected text to a variable, use the following
statement:

selText=RichTextbox1.SelectedText

You can also modify the selected text by assigning a new value to the SelectedText prop-
erty. The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText =
RichTextbox1.SelectedText.ToUpper

You can assign any string to the SelectedText property. If no text is selected at the time,
the statement will insert the string at the location of the pointer.

SelectionStart, SelectionLength

To simplify the manipulation and formatting of the text on the control, two additional prop-
erties, SelectionStart and SelectionLength, report (or set) the position of the first selected
character in the text and the length of the selection, respectively, regardless of the formatting of
the selected text. One obvious use of these properties is to select (and highlight) some text on
the control:

RichTextBox1.SelectionStart = 0
RichTextBox1.SelectionLength = 100

You can also use the Select method, which accepts as arguments the starting location and
the length of the text to be selected.

SelectionAlignment

Use this property to read or change the alignment of one or more paragraphs. This property’s
value is one of the members of the HorizontalAlignment enumeration: Left, Right, and Center.
Users don’t have to select an entire paragraph to align it; just placing the pointer anywhere in
the paragraph will do the trick because you can’t align part of the paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent

These properties allow you to change the margins of individual paragraphs. The Selection-
Indent property sets (or returns) the amount of the text’s indentation from the left edge of the
control. The SelectionRightIndent property sets (or returns) the amount of the text’s inden-
tation from the right edge of the control. The SelectionHangingIndent property indicates the
indentation of each paragraph’s first line with respect to the following lines of the same para-
graph. All three properties are expressed in pixels.

THE RICHTEXTBOX CONTROL 273

The SelectionHangingIndent property includes the current setting of the SelectionIndent
property. If all the lines of a paragraph are aligned to the left, the SelectionIndent property
can have any value (this is the distance of all lines from the left edge of the control), but the
SelectionHangingIndent property must be zero. If the first line of the paragraph is shorter
than the following lines, the SelectionHangingIndent has a negative value. Figure 7.8 shows
several differently formatted paragraphs. The settings of the SelectionIndent and Selection-
HangingIndent properties are determined by the two sliders at the top of the form.

Figure 7.8

Various combinations of
the SelectionIndent
and SelectionHanging
Indent properties pro-
duce all possible para-
graph styles.

SelectionBullet, BulletIndent

You use these properties to create a list of bulleted items. If you set the SelectionBullet prop-
erty to True, the selected paragraphs are formatted with a bullet style, similar to the tag
in HTML. To create a list of bulleted items, select them from within your code and assign the
value True to the SelectionBullet property. To change a list of bulleted items back to normal
text, make the same property False.

The paragraphs formatted as bullets are also indented from the left by a small amount. To
set the amount of the indentation, use the BulletIndent property, which is also expressed in
pixels.

SelectionTabs

Use this property to set the tab stops in the RichTextBox control. The Selection tab should be set
to an array of integer values, which are the absolute tab positions in pixels. Use this property
to set up a RichTextBox control for displaying tab-delimited data.

274 CHAPTER 7 MORE WINDOWS CONTROLS

Using the RichTextBox Control to Display Delimited Data

As a developer I tend to favor the RichTextBox control over the TextBox control, even though
I don’t mix font styles or use the more-advanced features of the RichTextBox control. I sug-
gest that you treat the RichTextBox control as an enhanced TextBox control and use it as a
substitute for the TextBox control. One of the features of the RichTextBox control that I find
very handy is its ability to set the tab positions and display tabular data. You can also display
tabular data on a ListView control, as you will see later in the chapter, but it’s simpler to
use a RichTextBox control with its ReadOnly property set to True and its SelectionTabs
property set to an array of values that will accommodate your data. Here’s how to set up a
RichTextBox control to display a few rows of tab-delimited data:

RichTextBox1.ReadOnly = True
RichTextBox1.SelectionTabs = New Integer() {100, 160, 340}
RichTextBox1.AppendText("R1C1" & vbTab &

"R1C2" & vbTab &
"R1C3" & vbCrLf)

RichTextBox1.AppendText("R2C1" & vbTab &
"R2C2" & vbTab &
"R2C3" & vbCrLf)

This technique is a lifesaver when I have to read the delimited data from a file. I just set up
the tab positions and then load the data with the LoadFile method, which is discussed in the
next section.

Methods
The first two methods of the RichTextBox control you need to know are SaveFile and
LoadFile. The SaveFile method saves the contents of the control to a disk file, and the
LoadFile method loads the control from a disk file.

SaveFile

The syntax of the SaveFile method is as follows, where path is the path of the file in which
the current document will be saved:

RichTextBox1.SaveFile(path, filetype)

By default, the SaveFile method saves the document in RTF format and uses the .rtf exten-
sion. You can specify a different format by using the second optional argument, which can take
on the value of one of the members of the RichTextBoxStreamType enumeration, described in
Table 7.2.

LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is identical to
the syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

THE RICHTEXTBOX CONTROL 275

Table 7.2: The RichTextBoxStreamType enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObjs Stores the text without any formatting and ignores any embedded OLE (Object
Linking and Embedding) objects

RichText Stores the text in RTF format (text with embedded RTF commands)

TextTextOLEObjs Stores the text along with the embedded OLE objects

UnicodePlainText Stores the text in Unicode format

The filetype argument is optional and can have one of the values of the RichTextBox-
StreamType enumeration. Saving and loading files to and from disk files is as simple as pre-
senting a Save or Open common dialog to the user and then calling one of the SaveFile or
LoadFile methods with the filename returned by the common dialog box.

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the Selection-
Start and SelectionLength properties. The Select method accepts two arguments, the loca-
tion of the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and it selects all the text on the control.

Advanced Editing Features
The RichTextBox control provides all the text-editing features you’d expect to find in a
text-editing application, similar to the TextBox control. Among its more-advanced features,
the RichTextBox control provides the AutoWordSelection property, which controls how the
control selects text. If it’s True, the control selects a word at a time.

In addition to formatted text, the RichTextBox control can handle object linking and embed-
ding (OLE) objects. You can insert images in the text by pasting them with the Paste method.
The Paste method doesn’t require any arguments; it simply inserts the contents of the Clip-
board at the current location (the location of the cursor) in the document.

Unlike the plain TextBox control, the RichTextBox control encapsulates undo and redo
operations at multiple levels. Each operation has a name (Typing, Deletion, and so on), and
you can retrieve the name of the next operation to be undone or redone and display it on
the menu. Instead of a simple Undo or Redo caption, you can change the captions of the Edit
menu to something like Undo Delete or Redo Typing. To program undo and redo operations
from within your code, you must use the properties and methods discussed in the following
sections.

276 CHAPTER 7 MORE WINDOWS CONTROLS

CanUndo, CanRedo

These two properties are Boolean values you can read to find out whether there’s an operation
that can be undone or redone. If they’re False, you must disable the corresponding menu com-
mand from within your code. The following statements disable the Undo command if there’s
no action to be undone at the time (EditUndo is the name of the Undo command on the Edit
menu):

If RichTextBox1.CanUndo Then
EditUndo.Enabled = True

Else
EditUndo.Enabled = False

End If

These statements should appear in the menu item’s Select event handler (not in the Click
event handler) because they must be executed before the menu is displayed. The Select event
is triggered when a menu is opened. As a reminder, the Click event is fired when you click an
item and not when you open a menu. For more information on programming the events of a
menu, see Chapter 6, ‘‘Working with Forms.’’

UndoActionName, RedoActionName

These two properties return the name of the action that can be undone or redone. The most
common value of both properties is Typing, which indicates that the Undo command will
delete a number of characters. Another common value is Delete, and some operations are
named Unknown. If you change the indentation of a paragraph on the control, this action’s
name is Unknown. Even when an action’s name is Unknown the action can be undone with the
Undo method.

The following statement sets the caption of the Undo command to a string that indicates the
action to be undone (Editor is the name of a RichTextBox control):

If Editor.CanUndo Then
EditUndo.Text = "Undo " & Editor.UndoActionName

End If

Undo, Redo

These two methods undo or redo an action. The Undo method cancels the effects of the last
action of the user on the control. The Redo method redoes the most recent undo action. The
Redo method does not repeat the last action; it applies to undo operations only.

Cutting, Copying, and Pasting
To cut, copy, and paste text in the RichTextBox control, you can use the same techniques you
use with the regular TextBox control. For example, you can replace the current selection by
assigning a string to the SelectedText property. The RichTextBox, however, provides a few
useful methods for performing these operations. The Copy, Cut, and Paste methods perform
the corresponding operations. The Cut and Copy methods are straightforward and require no
arguments. The Paste method accepts a single argument, which is the format of the data to be
pasted. Because the data will come from the Clipboard, you can extract the format of the data

THE RICHTEXTBOX CONTROL 277

in the Clipboard at the time and then call the CanPaste method to find out whether the control
can handle this type of data. If so, you can then paste them in the control by using the Paste
method.

This technique requires a bit of code because the Clipboard class doesn’t return the format
of the data in the Clipboard. You must call the following method of the Clipboard class to find
out whether the data is of a specific type and then paste it on the control:

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Text) Then
RichTextBox1.Paste(DataFormats.GetFormat("Text")

End If

This is a very simple case because we know that the RichTextBox control can accept
text. For a robust application, you must call the GetDataPresent method for each type
of data your application should be able to handle. (You may not want to allow users to
paste all types of data that the control can handle.) By the way, you can simplify the code
with the help of the ContainsText/ContainsImage and GetText/GetImage methods of the
My.Application.Clipboard object.

In the RTFPad project in this chapter, we’ll use a structured exception handler to allow users
to paste anything in the control. If the control can’t handle it, the data won’t be pasted in the
control.

VB 2010 at Work: The RTFPad Project
Creating a functional — even fancy — word processor based on the RichTextBox control is
unexpectedly simple. The challenge is to provide a convenient interface that lets the user
select text, apply attributes and styles to it, and then set the control’s properties accordingly.
The RTFPad sample application of this section does just that. You can download a copy from
www.sybex.com/go/masteringvb2010.

The RTFPad application (refer to Figure 7.7) is based on the TextPad application developed
in Chapter 5, ‘‘Basic Windows Controls.’’ It contains the same text-editing commands and some
additional text-formatting commands that can be implemented only with the RichTextBox con-
trol; for example, it allows you to apply multiple fonts and styles to the text and, of course,
multiple Undo/Redo operations.

The two TrackBar controls above the RichTextBox control manipulate the indentation of the
text. We already explored this arrangement in the discussion of the TrackBar control in Chapter
5, but let’s review the operation of the two controls again. Each TrackBar control has a width
of 816 pixels, which is equivalent to 8.5 inches on a monitor that has a resolution of 96 dots
per inch (dpi). The height of the TrackBar controls is 42 pixels, but unfortunately they can’t be
made smaller. The Minimum property of both controls is 0, and the Maximum property is 16. The
TickFrequency is 1. With these values, you can adjust the indentation in steps of 1

2 inch. Set
the Maximum property to 32 and you’ll be able to adjust the indentation in steps of 1

4 inch. It’s
not the perfect interface, as it’s built for A4 pages in portrait orientation only. You can experi-
ment with this interface to build an even more functional word processor.

Each time the user slides the top TrackBar control, the code sets the SelectionIndent prop-
erty to the proper percentage of the control’s width. Because the SelectionHangingIndent
includes the value of the SelectionIndent property, it also adjusts the setting of the Selec-
tionHangingIndent property. Listing 7.4 is the code that’s executed when the upper TrackBar
control is scrolled.

278 CHAPTER 7 MORE WINDOWS CONTROLS

Listing 7.4: Setting the SelectionIndent property

Private Sub TrackBar1_Scroll(…) Handles TrackBar1.Scroll
Editor.SelectionIndent = Convert.ToInt32(Editor.Width *

(TrackBar1.Value / TrackBar1.Maximum))
Editor.SelectionHangingIndent =

Convert.ToInt32(Editor.Width *
(TrackBar2.Value / TrackBar2.Maximum) –
Editor.SelectionIndent)

End Sub

Editor is the name of the RichTextBox control on the form. The code sets the control’s
indentation to the same percentage of the control’s width, as indicated by the value of the top
TrackBar control. It also does the same for the SelectionHangingIndent property, which is
controlled by the lower TrackBar control. If the user has scrolled the lower TrackBar control,
the code sets the RichTextBox control’s SelectionHangingIndent property in the event
handler, as presented in Listing 7.5.

Listing 7.5: Setting the SelectionHangingIndent property

Private Sub TrackBar2_Scroll(…) Handles TrackBar2.Scroll
Editor.SelectionHangingIndent =

Convert.ToInt32(Editor.Width *
(TrackBar2.Value / TrackBar2.Maximum) -
Editor.SelectionIndent)

End Sub

Enter a few lines of text in the control, select one or more paragraphs, and check out the
operation of the two sliders.

The Scroll events of the two TrackBar controls adjust the text’s indentation. The opposite
action must take place when the user rests the pointer on another paragraph: The sliders’ posi-
tions must be adjusted to reflect the indentation of the selected paragraph. The selection of a
new paragraph is signaled to the application by the SelectionChanged event. The statements
of Listing 7.6, which are executed from within the SelectionChanged event, adjust the two
slider controls to reflect the indentation of the text.

Listing 7.6: Setting the slider controls

Private Sub Editor_SelectionChanged(…)
Handles Editor.SelectionChanged

If Editor.SelectionIndent = Nothing Then
TrackBar1.Value = TrackBar1.Minimum
TrackBar2.Value = TrackBar2.Minimum

Else

THE RICHTEXTBOX CONTROL 279

TrackBar1.Value = Convert.ToInt32(
Editor.SelectionIndent *
TrackBar1.Maximum / Editor.Width)

TrackBar2.Value = Convert.ToInt32(_
(Editor.SelectionHangingIndent /
Editor.Width) *
TrackBar2.Maximum + TrackBar1.Value)

End If
End Sub

If the user selects multiple paragraphs with different indentations, the SelectionIndent
property returns Nothing. The code examines the value of this property and, if it’s Nothing,
moves both controls to the left edge. This way, the user can slide the controls and set the inden-
tations for multiple paragraphs. Some applications make the handles gray to indicate that the
selected text doesn’t have uniform indentation, but unfortunately you can’t gray the sliders and
keep them enabled. Of course, you can always design a custom control. This wouldn’t be a bad
idea, especially if you consider that the TrackBar controls are too tall for this type of interface
and can’t be made very narrow (as a result, the interface of the RTFPad application isn’t very
elegant).

The File Menu

The RTFPad application’s File menu contains the usual Open, Save, and Save As commands,
which are implemented with the control’s LoadFile and SaveFile methods. Listing 7.7 shows
the implementation of the Open command in the File menu.

Listing 7.7: The Open command

Private Sub OpenToolStripMenuItem_Click(…) Handles
OpenToolStripMenuItem.Click

If DiscardChanges() Then
OpenFileDialog1.Filter =

"RTF Files|*.RTF|DOC Files|*.DOC|" &
"Text Files|*.TXT|All Files|*.*"

If OpenFileDialog1.ShowDialog() =
DialogResult.OK Then

fName = OpenFileDialog1.FileName
Editor.LoadFile(fName)
Editor.Modified = False

End If
End If

End Sub

The fName variable is declared on the form’s level and holds the name of the currently open
file. This variable is set every time a new file is successfully opened, and it’s used by the Save
command to automatically save the open file without prompting the user for a filename.

280 CHAPTER 7 MORE WINDOWS CONTROLS

DiscardChanges() is a function that returns a Boolean value, depending on whether the
control’s contents can be discarded. The function examines the Editor control’s Modified prop-
erty. If True, it prompts users as to whether they want to discard the edits. Depending on the
value of the Modified property and the user response, the function returns a Boolean value. If
the DiscardChanges() function returns True, the program goes on and opens a new document.
If the function returns False, the program aborts the operation to give the user a chance to save
the document. Listing 7.8 shows the DiscardChanges() function.

Listing 7.8: The DiscardChanges() function

Function DiscardChanges() As Boolean
If Editor.Modified Then

Dim reply As MsgBoxResult
reply = MsgBox(

"Text hasn’t been saved. Discard changes?",
MsgBoxStyle.YesNo)

If reply = MsgBoxResult.No Then
Return False

Else
Return True

End If
Else

Return True
End If

End Function

The Modified property becomes True after the first character is typed and isn’t reset back
to False. The RichTextBox control doesn’t handle this property very intelligently and doesn’t
reset it to False even after saving the control’s contents to a file. The application’s code sets the
Editor.Modified property to False after creating a new document as well as after saving the
current document.

The Save As command (see Listing 7.9) prompts the user for a filename and then stores the
Editor control’s contents to the specified file. It also sets the fName variable to the file’s path so
that the Save command can use it.

Listing 7.9: The Save As command

Private Sub SaveAsToolStripMenuItem_Click(…)
Handles SaveAsToolStripMenuItem.Click

SaveFileDialog1.Filter =
"RTF Files|*.RTF|DOC Files" &
"|*.DOC|Text Files|*.TXT|All Files|*.*"

SaveFileDialog1.DefaultExt = "RTF"
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

fName = SaveFileDialog1.FileName

THE RICHTEXTBOX CONTROL 281

Editor.SaveFile(fName)
Editor.Modified = False

End If
End Sub

The Save command’s code is similar, only it doesn’t prompt the user for a filename. It calls
the SaveFile method, passing the fName variable as an argument. If the fName variable has no
value (in other words, if a user attempts to save a new document by using the Save command),
the code activates the event handler of the Save As command automatically and resets the con-
trol’s Modified property to False. Listing 7.10 shows the code behind the Save command.

Listing 7.10: The Save command

Private Sub SaveToolStripMenuItem_Click(…)
Handles SaveToolStripMenuItem.Click

If fName <> "" Then
Editor.SaveFile(fName)
Editor.Modified = False

Else
SaveAsToolStripMenuItem_Click(sender, e)

End If
End Sub

The Edit Menu

The Edit menu contains the usual commands for exchanging data through the Clipboard (Copy,
Cut, Paste), Undo/Redo commands, and a Find command to invoke the Search & Replace dia-
log box. All the commands are almost trivial, thanks to the functionality built into the control.
The basic Cut, Copy, and Paste commands call the RichTextBox control’s Copy, Cut, and Paste
methods to exchange data through the Clipboard. Listing 7.11 shows the implementation of the
Paste command.

Listing 7.11: The Paste command

Private Sub PasteToolStripMenuItem_Click(…)
Handles PasteToolStripMenuItem.Click

Try
Editor.Paste()

Catch exc As Exception
MsgBox(

"Can’t paste current clipboard’s contents. " &
"Try pasting the data in some other format.")

End Try
End Sub

282 CHAPTER 7 MORE WINDOWS CONTROLS

As you may recall from the discussion of the Paste command, using the CanPaste method
isn’t trivial, you have to handle each data type differently. By using an exception handler, you
allow the user to paste all types of data that the RichTextBox control can accept and display
a message when an error occurs. Using exceptions for programming application logic can be
quite costly, but in this case it’s acceptable because the RTFPad editor is a desktop applica-
tion serving a single user. A delay of a few milliseconds in this case should not make a huge
difference.

For a more robust solution though, you might wish to handle each data type separately
using the CanPaste method. That way, you can provide the user with much more precise feed-
back over the problem that caused the error; that is, the exact format of the data in the Clip-
board they are trying to paste but the RichTextBox is not able to handle. That way you can save
the user from having to guess the format your application can handle.

The Undo and Redo commands of the Edit menu are coded as follows. First, the name of the
action to be undone or redone is displayed in the Edit menu. When the Edit menu is selected,
the DropDownOpened event is fired. This event takes place before the Click event, so I inserted
a few lines of code that read the name of the most recent action that can be undone or redone
and print it next to the Undo or Redo command’s caption. If there’s no such action, the pro-
gram will disable the corresponding command. Listing 7.12 is the code that’s executed when
the Edit menu is dropped.

Listing 7.12: Setting the captions of the Undo and Redo commands

Private Sub EditToolStripMenuItem_DropDownOpened(…) Handles
EditToolStripMenuItem.DropDownOpened

If Editor.UndoActionName <> "" Then
UndoToolStripMenuItem.Text =

"Undo " & Editor.UndoActionName
UndoToolStripMenuItem.Enabled = True

Else
UndoToolStripMenuItem.Text = "Undo"
UndoToolStripMenuItem.Enabled = False

End If
If Editor.RedoActionName <> "" Then

RedoToolStripMenuItem.Text =
"Redo" & Editor.RedoActionName

RedoToolStripMenuItem.Enabled = True
Else

RedoToolStripMenuItem.Text = "Redo"
RedoToolStripMenuItem.Enabled = False

End If
End Sub

When the user selects one of the Undo or Redo commands, the code simply calls the appro-
priate method from within the menu item’s Click event handler, as shown in Listing 7.13.

THE RICHTEXTBOX CONTROL 283

Listing 7.13: Undoing and redoing actions

Private Sub RedoToolStripMenuItem_Click(…) Handles
RedoToolStripMenuItem.Click

If Editor.CanRedo Then Editor().Redo()
End Sub

Private Sub UndoToolStripMenuItem_Click(…) Handles
UndoToolStripMenuItem.Click

If Editor.CanUndo Then Editor.Undo()
End Sub

Calling the CanUndo and CanRedo method is unnecessary; if the corresponding action can’t
be performed, the two menu items will be disabled, but an additional check does no harm.

The Format Menu

The commands of the Format menu control the alignment and the font attributes of the current
selection. The Font command displays the Font dialog box and then assigns the font selected by
the user to the current selection. Listing 7.14 shows the code behind the Font command.

Listing 7.14: The Font command

Private Sub FontToolStripMenuItem_Click(…) Handles
FontToolStripMenuItem.Click

If Not Editor.SelectionFont Is Nothing Then
FontDialog1.Font = Editor.SelectionFont

Else
FontDialog1.Font = Nothing

End If
FontDialog1.ShowApply = True
If FontDialog1.ShowDialog() = DialogResult.OK Then

Editor.SelectionFont = FontDialog1.Font
End If

End Sub

Notice that the code preselects a font in the dialog box, the font of the current selection. If
the current selection isn’t formatted with a single font, no font is preselected.

To enable the Apply button of the Font dialog box, set the control’s ShowApply property to
True and insert the following statement in its Apply event handler:

Private Sub FontDialog1_Apply(...) Handles FontDialog1.Apply
Editor.SelectionFont = FontDialog1.Font
Editor.SelectionColor = FontDialog1.Color

End Sub

284 CHAPTER 7 MORE WINDOWS CONTROLS

The options of the Align menu set the RichTextBox control’s SelectionAlignment property
to different members of the HorizontalAlignment enumeration. The Align � Left command,
for example, is implemented with the following statement:

Editor.SelectionAlignment = HorizontalAlignment.Left

The Search & Replace Dialog Box

The Find command in the Edit menu opens the dialog box shown in Figure 7.9, which
performs search-and-replace operations (whole-word or case-sensitive match or both). The
Search & Replace form (it’s the frmFind form in the project) has its TopMost property set
to True so that it remains visible while it’s open, even if it doesn’t have the focus. The code
behind the buttons on this form is quite similar to the code for the Find & Replace dialog
box of the TextPad application, with one basic difference: the RTFPad project’s code uses the
RichTextBox control’s Find method; the simple TextBox control doesn’t provide an equivalent
method and we had to use the methods of the String class to perform the same operations. The
Find method of the RichTextBox control performs all types of searches, and some of its options
are not available with the IndexOf method of the String class.

Figure 7.9

The Search & Replace
dialog box of the RTFPad
application

To invoke the Search & Replace dialog box, the code calls the Show method of the frmFind
form, as discussed in Chapter 5, via the following statement:

frmFind.Show()

The Find method of the RichTextBox control allows you to perform case-sensitive or
-insensitive searches as well as search for whole words only. These options are specified
through an argument of the RichTextBoxFinds type. The SetSearchMode() function (see
Listing 7.15) examines the settings of the two check boxes at the bottom of the form and sets
the mode variable, which represents the Find method’s search mode.

THE RICHTEXTBOX CONTROL 285

Listing 7.15: Setting the search options

Function SetSearchMode() As RichTextBoxFinds
Dim mode As RichTextBoxFinds =

RichTextBoxFinds.None
If chkCase.Checked = True Then

mode = mode Or RichTextBoxFinds.MatchCase
End If
If chkWord.Checked = True Then

mode = mode Or RichTextBoxFinds.WholeWord
End If
Return mode

End Function

The Click event handlers of the Find and Find Next buttons call this function to retrieve
the constant that determines the type of search specified by the user on the form. This value is
then passed to the Find method. Listing 7.16 shows the code behind the Find and Find Next
buttons.

Listing 7.16: The Find and Find Next commands

Private Sub bttnFind_Click(…) Handles bttnFind.Click
Dim wordAt As Integer
Dim srchMode As RichTextBoxFinds
srchMode = SetSearchMode()
wordAt = frmEditor.Editor.Find(

txtSearchWord.Text, 0, srchMode)
If wordAt = -1 Then

MsgBox("Can’t find word")
Exit Sub

End If
frmEditor.Editor.Select(wordAt, txtSearchWord.Text.Length)
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
frmEditor.Editor.ScrollToCaret()

End Sub

Private Sub bttnFindNext_Click(…) Handles bttnFindNext.Click
Dim selStart As Integer
Dim srchMode As RichTextBoxFinds
srchMode = SetSearchMode()
selStart = frmEditor.Editor.Find(

txtSearchWord.Text,
frmEditor.Editor.SelectionStart + 2,
srchMode)

286 CHAPTER 7 MORE WINDOWS CONTROLS

If selStart = -1 Then
MsgBox("No more matches")
Exit Sub

End If
frmEditor.Editor.Select(

selStart, txtSearchWord.Text.Length)
frmEditor.Editor.ScrollToCaret()

End Sub

Notice that both event handlers call the ScrollToCaret method to force the selected text to
become visible — should the Find method locate the desired string outside the visible segment
of the text.

The TreeView and ListView Controls
The TreeView and ListView controls are among the more advanced Windows controls and
they certainly are more difficult to program than the others discussed. However, these two
controls are the basic makings of unique user interfaces, as you will see in the examples
in the following sections. The ListView and TreeView controls are discussed in detail in
the tutorial ‘‘The ListView and TreeView controls,’’ which is available for download from
www.sybex.com/go/masteringvb2010. In this chapter, you will find an introduction to these
two controls and their basic properties and methods. For more information on using these
controls in your interface and interesting examples, please read the tutorial.

Figure 7.10 shows the TreeView and ListView controls used in tandem. What you see in
Figure 7.10 is Windows Explorer, a utility for examining and navigating your hard disk’s struc-
ture. The left pane, where the folders are displayed, is a TreeView control. The folder names are
displayed in a manner that reflects their structure on the hard disk. You can expand and con-
tract certain branches and view only the segment(s) of the tree structure you’re interested in.

Figure 7.10

Windows Explorer is
made up of a Tree-
View (left pane) and
a ListView (right pane)
control.

THE TREEVIEW AND LISTVIEW CONTROLS 287

The right pane is a ListView control. The items on the ListView control can be displayed in
five ways (as large or small icons, as a list, on a grid, or tiled). They are the various views you
can set through the View menu of Windows Explorer. Although most people prefer to look at
the contents of the folders as icons, the most common view is the Details view, which displays
not only filenames, but also their attributes. In the Details view, the list can be sorted according
to any of its columns, making it easy for the user to locate any item based on various criteria
(file type, size, creation date, and so on).

Tree and List Structures
The TreeView control implements a data structure known as a tree. A tree is the most appro-
priate structure for storing hierarchical information. The organizational chart of a company, for
example, is a tree structure. Every person reports to another person above him or her, all the
way to the president or CEO. Figure 7.11 depicts a possible organization of continents, coun-
tries, and cities as a tree. Every city belongs to a country, and every country to a continent. In
the same way, every computer file belongs to a folder that may belong to an even bigger folder,
and so on up to the drive level. You can’t draw large tree structures on paper, but it’s possible
to create a similar structure in the computer’s memory without size limitations.

Figure 7.11

The world viewed
as a tree

Globe Root node

First-level nodes

Second-level nodes

Third-level nodes

Africa Asia Europe...

...

...

Germany France Spain

Berlin Munich Frankfurt

S. America

Each item in the tree of Figure 7.11 is called a node, and nodes can be nested to any level.
Oddly, the top node is the root of the tree, and the subordinate nodes are called child nodes. If
you try to visualize this structure as a real tree, think of it as an upside-down tree with the
branches emerging from the root. The end nodes, which don’t lead to any other nodes, are
called leaf nodes or end nodes.

To locate a city, you must start at the root node and select the continent to which the city
belongs. Then you must find the country (in the selected continent) to which the city belongs.
Finally, you can find the city you’re looking for. If it’s not under the appropriate country node,
it doesn’t exist.

TreeView Items Are Just Strings

The items displayed on a TreeView control are just strings. Moreover, the TreeView control
doesn’t require that the items be unique. You can have identically named nodes in the same
branch — as unlikely as this might be for a real application. There’s no property that makes a
node unique in the tree structure or even in its own branch.

288 CHAPTER 7 MORE WINDOWS CONTROLS

You can also start with a city and find its country. The country node is the city node’s parent
node. Notice that there is only one route from child nodes to their parent nodes, which means
that you can instantly locate the country or continent of a city. The data shown in Figure 7.11 is
shown in Figure 7.12 in a TreeView control. Only the nodes we’re interested in are expanded.
The plus sign indicates that the corresponding node contains child nodes. To view them, end
users click the button with the plus sign and expand the node.

Figure 7.12

The nodes shown in
Figure 7.11 implemented
with a TreeView control

The tree structure is ideal for data with parent-child relations (relations that can be described
as belongs to or owns). The continents-countries-cities data is a typical example. The folder struc-
ture on a hard disk is another typical example. Any given folder is the child of another folder
or the root folder.

Maintaining a tree structure is a fundamental operation in software design; computer sci-
ence students spend a good deal of their time implementing tree structures. Fortunately, with
Visual Basic you don’t have to implement tree structures on your own. The TreeView control is
a mechanism for storing hierarchically structured data in a control with a visible interface. The
TreeView control hides (or encapsulates, in object-oriented terminology) the details of the imple-
mentation and allows you to set up tree structures with a few lines of code — in short, all the
gain without the pain (almost).

The ListView control implements a simpler structure, known as a list. A list’s items aren’t
structured in a hierarchy; they are all on the same level and can be traversed serially, one
after the other. You can also think of the list as a multidimensional array, but the list offers
more features. A list item can have subitems and can be sorted according to any column. For
example, you can set up a list of customer names (the list’s items) and assign a number of
subitems to each customer: a contact, an address, a phone number, and so on. Or you can set
up a list of files with their attributes as subitems. Figure 7.13 shows a Windows folder mapped
on a ListView control. Each file is an item, and its attributes are the subitems. As you already
know, you can sort this list by filename, size, file type, and so on. All you have to do is click
the header of the corresponding column.

The ListView control is a glorified ListBox control. If all you need is a control to store
sorted objects, use a ListBox control. If you want more features, such as storing multiple
items per row, sorting them in different ways, or locating them based on any subitem’s

THE TREEVIEW AND LISTVIEW CONTROLS 289

value, you must consider the ListView control. You can also look at the ListView control as a
view-only grid.

Figure 7.13

A folder’s files displayed
in a ListView control
(Details view)

The TreeView and ListView controls are commonly used along with the ImageList control.
The ImageList control is a simple control for storing images so they can be retrieved quickly
and used at runtime. You populate the ImageList control with the images you want to use on
your interface, usually at design time, and then you recall them by an index value at runtime.

The TreeView Control
Let’s start our discussion of the TreeView control with a few simple properties that you can
set at design time. To experiment with the properties discussed in this section, open the Tree-
ViewDemo project, available for download from www.sybex.com/go/masteringvb2010. The
project’s main form is shown in Figure 7.14. After setting some properties (they are discussed
next), run the project and click the Populate button to populate the control. After that, you can
click the other buttons to see the effect of the various property settings on the control.

Figure 7.14

The TreeViewDemo
project demonstrates
the basic properties and
methods of the Tree-
View control.

290 CHAPTER 7 MORE WINDOWS CONTROLS

Here are the basic properties that determine the appearance of the control:

CheckBoxes If this property is True, a check box appears in front of each node. If the con-
trol displays check boxes, you can select multiple nodes; otherwise, you’re limited to a single
selection.

FullRowSelect This True/False value determines whether a node will be selected even if the
user clicks outside the node’s caption.

HideSelection This property determines whether the selected node will remain highlighted
when the focus is moved to another control. By default, the selected node doesn’t remain high-
lighted when the control loses the focus.

HotTracking This property is another True/False value that determines whether nodes are
highlighted as the pointer hovers over them. When it’s True, the TreeView control behaves like
a web document with the nodes acting as hyperlinks — they turn blue while the pointer hovers
over them. Use the NodeMouseHover event to detect when the pointer hovers over a node.

Indent This property specifies the indentation level in pixels. The same indentation applies
to all levels of the tree — each level is indented by the same number of pixels with respect to its
parent level.

PathSeparator A node’s full name is made up of the names of its parent nodes separated by
a backslash. To use a different separator, set this property to the desired symbol.

ShowLines The ShowLines property is a True/False value that determines whether the con-
trol’s nodes will be connected to its parent items with lines. These lines help users visualize the
hierarchy of nodes, and it’s customary to display them.

ShowPlusMinus The ShowPlusMinus property is a True/False value that determines whether
the plus/minus button is shown next to the nodes that have children. The plus button is dis-
played when the node is collapsed, and it causes the node to expand when clicked. Likewise,
the minus sign is displayed when the node is expanded, and it causes the node to collapse
when clicked. Users can also expand the current node by pressing the left-arrow button and
collapse it with the right-arrow button.

ShowRootLines This is another True/False property that determines whether there will
be lines between each node and root of the tree view. Experiment with the ShowLines and
ShowRootLines properties to find out how they affect the appearance of the control.

Sorted This property determines whether the items in the control will be automatically
sorted. The control sorts each level of nodes separately. In our globe example, it will sort the
continents, then the countries within each continent, and then the cities within each country.

Adding Nodes at Design Time

Let’s look now at the process of populating the TreeView control. Adding an initial collection
of nodes to a TreeView control at design time is trivial. Locate the Nodes property in the Prop-
erties window, and you’ll see that its value is Collection. To add items, click the ellipsis button,
and the TreeNode Editor dialog box will appear, as shown in Figure 7.15. To add a root item,
just click the Add Root button. The new item will be named Node0 by default. You can change
its caption by selecting the item in the list and setting its Text property accordingly. You can
also change the node’s Name property, and you can change the node’s appearance by using the
NodeFont, FontColor, and ForeColor properties.

THE TREEVIEW AND LISTVIEW CONTROLS 291

Figure 7.15

The TreeNode Editor
dialog box

Follow these steps to enter the root node with the string Globe, a child node for Europe, and
two more nodes under Europe: Germany and Italy. I’m assuming that you’re starting with a
clean control. If your TreeView control contains any items, clear them all by selecting one item
at a time in the list and pressing the Delete key, or click the delete button (the one with the X
icon) on the dialog box.

Click the Add Root button first to add the node Node0. Select it with the mouse, and its
properties appear in the right pane of the TreeNode Editor window. Here you can change the
node’s Text property to Globe. You can specify the appearance of each node by setting its font
and fore/background colors.

Then click the Add Child button, which adds a new node under the Globe root node. Select
it with the mouse as before, and change its Text property to Europe. Then select the newly
added node in the list and click the Add Child button again. Name the new node Germany.
You’ve successfully added a small hierarchy of nodes. To add another node under Europe,
select the Europe node in the list and click the Add Child button again. Name the new item
Italy. Continue adding a few cities under each country to complete the tree.

Click the OK button to close the TreeNode Editor’s window and return to your form. The
nodes you added to the TreeView control are there, but they’re collapsed. Only the root nodes
are displayed with the plus sign in front of their names. Click the plus sign to expand the tree
and see its child nodes. The TreeView control behaves the same at design time as it does at
runtime — as far as navigating the tree goes, at least.

Adding Nodes at Runtime

Adding items to the control at runtime is a bit more involved. All the nodes belong to the con-
trol’s Nodes collection, which is made up of TreeNode objects. To access the Nodes collection,
use the following expression, where TreeView1 is the control’s name and Nodes is a collection
of TreeNode objects:

TreeView1.Nodes

292 CHAPTER 7 MORE WINDOWS CONTROLS

This expression returns a collection of TreeNode objects and exposes the proper members for
accessing and manipulating the individual nodes. The control’s Nodes property is the collection
of all root nodes.

The following statements print the strings shown highlighted below them (these strings are
not part of the statements; they’re the output that the statements produce):

Debug.WriteLine(TreeView1.Nodes(0).Text)
Globe
Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)
Europe
Debug.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)
Italy

Adding New Nodes

To add a new node to the Nodes collection use the Add method, which accepts as an argument
a string or a TreeNode object, and returns a TreeNode object that represents the newly added
node. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control. Another form of the Add
method allows you to add a TreeNode object directly (nodeObj is a properly initialized Tree-
Node variable):

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode
nodeObj.Text = "Tree Node"
nodeObj.ForeColor = Color.BlueViolet
TreeView1.Nodes.Add(nodeObj)

The last overloaded form of the Add method allows you to specify the index in the current
Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj TreeNode object must be initialized as usual.
To add a child node to the root node, use a statement such as the following:

TreeView1.Nodes(0).Nodes.Add("Asia")

To add a country under Asia, use a statement such as the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add("Japan")

THE TREEVIEW AND LISTVIEW CONTROLS 293

The expressions can get quite lengthy. The proper way to add child items to a node is to
create a TreeNode variable that represents the parent node, under which the child nodes will
be added. Let’s say that the ContinentNode variable in the following example represents the
node Europe:

Dim ContinentNode As TreeNode
ContinentNode = TreeView1.Nodes(0).Nodes(2)

Then you can add child nodes to the ContinentNode node:

ContinentNode.Nodes.Add("France")
ContinentNode.Nodes.Add("Germany")

To add yet another level of nodes, the city nodes, create a new variable that represents a
specific country. The Add method actually returns a TreeNode object that represents the newly
added node, so you can add a country and a few cities by using statements such as the following:

Dim CountryNode As TreeNode
CountryNode = ContinentNode.Nodes.Add("Germany")
CountryNode.Nodes.Add("Berlin")
CountryNode.Nodes.Add("Frankfurt")

The ListView Control
The ListView control is similar to the ListBox control except that it can display its items in
many forms, along with any number of subitems for each item. To use the ListView control in
your project, place an instance of the control on a form and then set its basic properties, which
are described in the following list:

View and Alignment Two properties determine how the various items will be displayed on
the control: the View property, which determines the general appearance of the items, and the
Alignment property, which determines the alignment of the items on the control’s surface. The
View property can have one of the values shown in Table 7.3.

Table 7.3: View property settings

Setting Description

LargeIcon (Default) Each item is represented by an icon and a caption below the icon.

SmallIcon Each item is represented by a small icon and a caption that appears to the right of
the icon.

List Each item is represented by a caption.

Details Each item is displayed in a column with its subitems in adjacent columns.

Tile Each item is displayed with an icon and its subitems to the right of the icon. This
view is available only on Windows XP and Windows Server 2003.

294 CHAPTER 7 MORE WINDOWS CONTROLS

The Alignment property can have one of the settings shown in Table 7.4.

Table 7.4: Alignment property settings

Setting Description

Default When an item is moved on the control, the item remains where it is dropped.

Left Items are aligned to the left side of the control.

SnapToGrid Items are aligned to an invisible grid on the control. When the user moves an item,
the item moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

HeaderStyle This property determines the style of the headers in Details view. It has no
meaning when the View property is set to anything else because only the Details view has
columns. The possible settings of the HeaderStyle property are shown in Table 7.5.

Table 7.5: HeaderStyle property settings

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable (Default) Visible column header that does not respond to clicking

None No visible column header

AllowColumnReorder This property is a True/False value that determines whether the user
can reorder the columns at runtime, and it’s meaningful only in Details view. If this property
is set to True, the user can move a column to a new location by dragging its header with the
mouse and dropping it in the place of another column.

Activation This property, which specifies how items are activated with the mouse, can have
one of the values shown in Table 7.6.

Table 7.6: Activation property settings

Setting Description

OneClick Items are activated with a single click. When the cursor is over an item, it changes
shape and the color of the item’s text changes.

Standard (Default) Items are activated with a double-click. No change in the selected item’s
text color takes place.

TwoClick Items are activated with a double-click and their text changes color as well.

THE TREEVIEW AND LISTVIEW CONTROLS 295

FullRowSelect This property is a True/False value, indicating whether the user can select an
entire row or just the item’s text, and it’s meaningful only in Details view. When this property
is False, only the first item in the selected row is highlighted.

GridLines Another True/False property. If it’s True, grid lines between items and subitems
are drawn. This property is meaningful only in Details view.

Groups The items of the ListView control can be grouped into categories. To use this feature,
you must first define the groups by using the control’s Groups property, which is a collection
of strings. You can add as many members to this collection as you want. After that, as you add
items to the ListView control, you can specify the group to which they belong. The control will
group the items of the same category together and display the group title above each group.
You can easily move items between groups at runtime by setting the Groups property for the
corresponding item to the name of the desired group.

LabelEdit The LabelEdit property lets you specify whether the user will be allowed to edit
the text of the items. The default value of this property is False. Notice that the LabelEdit
property applies to the item’s Text property only; you can’t edit the subitems (unfortunately,
you can’t use the ListView control as an editable grid).

MultiSelect A True/False value, indicating whether the user can select multiple items from
the control. To select multiple items, click them with the mouse while holding down the Shift
or Ctrl key. If the control’s ShowCheckboxes property is set to True, users can select multiple
items by marking the check box in front of the corresponding item(s).

Scrollable A True/False value that determines whether the scroll bars are visible. Even
if the scroll bars are invisible, users can still bring any item into view. All they have to do is
select an item and then press the arrow keys as many times as needed to scroll the desired item
into view.

Sorting This property determines how the items will be sorted, and its setting can be None,
Ascending, or Descending. To sort the items of the control, call the Sort method, which sorts
the items according to their caption. It’s also possible to sort the items according to any of their
subitems, as explained later in this chapter.

The Columns Collection

To display items in Details view, you must first set up the appropriate columns. The first
column corresponds to the item’s caption, and the following columns correspond to its
subitems. If you don’t set up at least one column, no items will be displayed in Details view.
Conversely, the Columns collection is meaningful only when the ListView control is used in
Details view.

The items of the Columns collection are of the ColumnHeader type. The simplest way to set
up the appropriate columns is to do so at design time by using a visual tool. Locate and select
the Columns property in the Properties window, and click the ellipsis button next to the prop-
erty. The ColumnHeader Collection Editor dialog box, shown in Figure 7.16, will appear, and
you can use it to add and edit the appropriate columns.

Adding columns to a ListView control and setting their properties through the dialog
box shown in Figure 7.16 is quite simple. Don’t forget to size the columns according to the data
you anticipate storing in them and to set their headers. You can also add columns from within
your code at runtime, a topic that’s discussed in the tutorial ‘‘The ListView and TreeView
Controls,’’ available for download from www.sybex.com/go/masteringvb2010.

296 CHAPTER 7 MORE WINDOWS CONTROLS

Figure 7.16

The ColumnHeader
Collection Editor
dialog box

ListView Items and Subitems

As with the TreeView control, the ListView control can be populated either at design time or at
runtime. To add items at design time, click the ellipsis button next to the ListItems property
in the Properties window. When the ListViewItem Collection Editor dialog box pops up, you
can enter the items, including their subitems, as shown in Figure 7.17.

Figure 7.17

The ListViewItem
Collection Editor
dialog box

Click the Add button to add a new item. Each item has subitems, which you can specify as
members of the SubItems collection. To add an item with three subitems, you must populate
the item’s SubItems collection with the appropriate elements. Click the ellipsis button next to
the SubItems property in the ListViewItem Collection Editor; the ListViewSubItem Collection

THE TREEVIEW AND LISTVIEW CONTROLS 297

Editor will appear. This dialog box is similar to the ListViewItem Collection Editor dialog box,
and you can add each item’s subitems. Assuming that you have added the item called Item 1
in the ListViewItem Collection Editor, you can add these subitems: Item 1-a, Item 1-b, and
Item 1-c. The first subitem (the one with zero index) is actually the main item of the control.

Notice that you can set other properties such as the color and font for each item, the check
box in front of the item that indicates whether the item is selected, and the image of the item.
Use this window to experiment with the appearance of the control and the placement of the
items, especially in Details view because subitems are visible only in this view. Even then, you
won’t see anything unless you specify headers for the columns. Note that you can add more
subitems than there are columns in the control. Some of the subitems will remain invisible.

Unlike the TreeView control, the ListView control allows you to specify a different appear-
ance for each item and each subitem. To set the appearance of the items, use the Font, Back-
Color, and ForeColor properties of the ListViewItem object.

The Items Collection

All the items on the ListView control form a collection: the Items collection. This collection
exposes the typical members of a collection that let you manipulate the control’s items. These
members are discussed next.

Add method This method adds a new item to the Items collection. The syntax of the Add
method is as follows:

ListView1.Items.Add(caption)

You can also specify the index of the image to be used, along with the item and a collection
of subitems to be appended to the new item, by using the following form of the Add method,
where imageIndex is the index of the desired image on the associated ImageList control:

ListView1.Items.Add(caption, imageIndex)

Finally, you can create a ListViewItem object in your code and then add it to the ListView con-
trol by using the following form of the Add method:

ListView1.Items.Add(listItemObj)

The following statements create a new item, set its individual subitems, and then add the
newly created ListViewItem object to the control:

Dim LItem As New ListViewItem
LItem.Text = "new item"
LItem.SubItems.Add("sub item 1a")
LItem.SubItems.Add("sub item 1b")
LItem.SubItems.Add("sub item 1c")
ListView1.Items.Add(LItem)

Count property Returns the number of items in the collection.

Item property Retrieves an item specified by an index value.

Clear method Removes all the items from the collection.

Remove method Removes an item from the collection.

298 CHAPTER 7 MORE WINDOWS CONTROLS

The SubItems Collection

Each item in the ListView control may have one or more subitems. You can think of the item
as the key of a record and the subitems as the other fields of the record. The subitems are dis-
played only in Details mode, but they are available to your code in any view. For example, you
can display all items as icons and, when the user clicks an icon, show the values of the selected
item’s subitems on other controls.

To access the subitems of a given item, use its SubItems collection. The following statements
add an item and three subitems to the ListView1 control:

Dim LItem As ListViewItem
LItem = ListView1.Items.Add("Alfred’s Futterkiste")
LItem.SubItems.Add("Maria Anders")
LItem.SubItems.Add("030-0074321")
LItem.SubItems.Add("030-0076545")

To access the SubItems collection, you need a reference to the item to which the subitems
belong. The Add method returns a reference to the newly added item, the LItem variable, which
is then used to access the item’s subitems, as shown in the preceding code segment.

Displaying the subitems on the control requires some overhead. Subitems are displayed only
in Details view mode. However, setting the View property to Details is not enough. You must
first create the columns of the Details view, as explained earlier. The ListView control displays
only as many subitems as there are columns in the control. The first column, with the header
Company, displays the items of the list. The following columns display the subitems. More-
over, you can’t specify which subitem will be displayed under each header. The first subitem
(Maria Anders in the preceding example) will be displayed under the second header, the sec-
ond subitem (030-0074321 in the same example) will be displayed under the third header, and
so on. At runtime, the user can rearrange the columns by dragging them with the mouse. To
disable the rearrangement of the columns at runtime, set the control’s AllowColumnReorder
property to False (its default value is True).

Unless you set up each column’s width, they will all have the same width. The width of
individual columns is specified in pixels, and you can set it to a percentage of the total width
of the control, especially if the control is docked to the form. The following code sets up a
ListView control with four headers, all having the same width:

Dim LWidth = ListView1.Width - 5
Dim headers =

{
New ColumnHeader() With {.Text = "Company", .Width = LWidth / 4},
New ColumnHeader() With {.Text = "Contact", .Width = LWidth / 4},
New ColumnHeader() With {.Text = "Phone", .Width = LWidth / 4},
New ColumnHeader() With {.Text = "Fax", .Width = LWidth / 4}

}
ListView1.Columns.AddRange(headers)
ListView1.View = View.Details

The first header corresponds to the item (not a subitem). The number of headers you set up
must be equal to the number of subitems you want to display on the control, plus one. The
constant 5 is subtracted to compensate for the width of the column separators. If the control

THE TREEVIEW AND LISTVIEW CONTROLS 299

is anchored to the vertical edges of the form, you must execute these statements from within
the form’s Resize event handler so that the columns are resized automatically as the control is
resized.

You can also sort a ListView control with the Sort method, which sorts the list’s items, and
the Sorting property, which determines how the items will be sorted. For more information on
sorting the control’s items, see the tutorial ‘‘The ListView and TreeView Controls,’’ available for
download from www.sybex.com/go/masteringvb2010.

Processing Selected Items

The user can select multiple items from a ListView control by default. Even though you can
display a check mark in front of each item, it’s not customary. Multiple items in a ListView
control are selected with the mouse while holding down the Ctrl or Shift key.

The selected items form the SelectedListItemCollection collection, which is a property
of the control. You can iterate through this collection with a For … Next loop or through the
enumerator object exposed by the collection. Listing 7.17 is the code behind the Selected Items
button of the ListViewDemo project. It goes through the selected items with a For Each … Next
loop and displays each one of them, along with its subitems, in the Output window. Notice
that you can select multiple items in any view, even when the subitems are not visible. They’re
still there, however, and they can be retrieved through the SubItems collection.

Listing 7.17: Iterating the selected items on a ListView control

Private Sub bttnIterate_Click(…) Handles bttnIterate.Click
Dim LItem As ListViewItem
Dim LItems As ListView.SelectedListViewItemCollection
LItems = ListView1.SelectedItems
For Each LItem In LItems

Debug.Write(LItem.Text & vbTab)
Debug.Write(LItem.SubItems(0).ToString & vbTab)
Debug.Write(LItem.SubItems(1).ToString & vbTab)
Debug.WriteLine(LItem.SubItems(2).ToString & vbTab)

Next
End Sub

VB 2010 at Work: The CustomExplorer Project
To demonstrate how to use the ListView and TreeView controls in tandem, which is how they
commonly used, see the discussion of the CustomExplorer sample application, which is dis-
cussed in the tutorial ‘‘The ListView and TreeView controls.’’ It’s a fairly advanced example,
but I included it for the most ambitious readers. It can also be used as the starting point for
many custom applications, so give it a try.

The CustomExplorer project, shown in Figure 7.18, displays a structured list of folders in the
left pane and the files in the selected folder in the right pane. The left pane is populated when
the application starts. You can expand any folder in this pane and view its subfolders. To view
the files in a folder, click the folder name and the right pane will be populated with the names
of the selected folder’s files along with other data, such as the file size, date of creation, and
date of last modification.

300 CHAPTER 7 MORE WINDOWS CONTROLS

Figure 7.18

The CustomExplorer
project demonstrates
how to combine
a TreeView and a
ListView control on the
same form.

The CustomExplorer project is not limited to displaying folders and files; you can populate
the two controls with data from several sources. For example, you can display customers in the
left pane (and organize them by city or state) and display their related data, such as invoices
and payments, in the right pane. Or you can populate the left pane with product names and
the right pane with the respective sales. In general, you can use the project as an interface for
many types of applications. You can even use it as a custom Explorer to add features that are
specific to your applications.

The Bottom Line

Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames.
Windows applications use certain controls to prompt users for common information, such as
filenames, colors, and fonts. Visual Studio provides a set of controls that are grouped in the
Dialogs section of the Toolbox. All common dialog controls provide a ShowDialog method,
which displays the corresponding dialog box in a modal way. The ShowDialog method returns
a value of the DialogResult type, which indicates how the dialog box was closed, and you
should examine this value before processing the data.

Master It Your application needs to open an existing file. How will you prompt users for
the file’s name?

Master It You’re developing an application that encrypts multiple files (or resizes many
images) in batch mode. How will you prompt the user for the files to be processed?

Use the ColorDialog and FontDialog controls to prompt users for colors and typefaces. The
Color and Font dialog boxes allow you to prompt users for a color value and a font, respec-
tively. Before showing the corresponding dialog box, set its Color or Font property according
to the current selection, and then call the control’s ShowDialog method.

THE BOTTOM LINE 301

Master It How will you display color attributes in the Color dialog box when you open it?
How will you display the attributes of the selected text’s font in the Font dialog box when
you open it?

Use the RichTextBox control as an advanced text editor to present richly formatted text.
The RichTextBox control is an enhanced TextBox control that can display multiple fonts and
styles, format paragraphs with different styles, and provide a few more-advanced text-editing
features. Even if you don’t need the formatting features of this control, you can use it as an
alternative to the TextBox control. At the very least, the RichTextBox control provides more
editing features, a more-useful undo function, and more-flexible search features.

Master It You want to display a document with a title in large, bold type, followed by a
couple of items in regular style. Which statements will you use to create a document like
this on a RichTextBox control?

Document’s Title

Item 1 Description for item 1

Item 2 Description for item 2

Create and present hierarchical lists by using the TreeView control. The TreeView con-
trol is used to display a list of hierarchically structured items. Each item in the TreeView con-
trol is represented by a TreeNode object. To access the nodes of the TreeView control, use the
TreeView.Nodes collection. The nodes under a specific node (in other words, the child nodes)
form another collection of Node objects, which you can access by using the expression Tree-
View.Nodes(i).Nodes. The basic property of the Node object is the Text property, which
stores the node’s caption. The Node object exposes properties for manipulating its appearance
(its foreground/background color, its font, and so on).

Master It How will you set up a TreeView control with a book’s contents at design time?

Create and present lists of structured items by using the ListView control. The ListView
control stores a collection of ListViewItem objects, which form the Items collection, and can dis-
play them in several modes, as specified by the View property. Each ListViewItem object has a
Text property and the SubItems collection. The subitems are not visible at runtime unless you
set the control’s View property to Details and set up the control’s Columns collection. There
must be a column for each subitem you want to display on the control.

Master It How will you set up a ListView control with three columns to display names,
email addresses, and phone numbers at design time?

Master It How would you populate the same control with the same data at runtime?

Part 3

Working with Custom
Classes and Controls
◆ Chapter 8: Working with Objects

◆ Chapter 9: Building Custom Windows Controls

◆ Chapter 10: Applied Object-Oriented Programming

Chapter 8

Working with Objects

Classes are practically synonymous with objects and they’re at the very heart of programming
with Visual Basic. The controls you use to build the visible interface of your application are
objects, and the process of designing forms consists of setting the properties of these objects,
mostly with point-and-click operations. The Framework itself is an enormous compendium of
classes, and you can import any of them into your applications and use them as if their mem-
bers were part of the language. You simply declare a variable of the specific class type, initialize
it, and then use it in your code.

Controls are also objects; they differ from other classes in that controls provide a visual
interface, whereas object variables don’t. However, you manipulate all objects by setting their
properties and calling their methods.

In this chapter, you’ll learn how to do the following:

◆ Build your own classes

◆ Use custom classes in your projects

◆ Customize the usual operators for your classes

Classes and Objects
When you create a variable of any type, you’re creating an instance of a class. The variable
lets you access the functionality of the class through its properties and methods. Even
base data types are implemented as classes (the System.Integer class, System.Double, and
so on). An integer value, such as 3, is an instance of the System.Integer class, and you
can call the properties and methods of this class by using its instance. Expressions such
as Convert.ToDecimal(3).MinValue and #1/1/2000#.Today are odd but valid. The first
expression returns the minimum value you can represent with the Decimal data type, whereas
the second expression returns the current date. The DataTime data type exposes the Today
property, which returns the current date. The expression #1/1/2000# is a value of the
DataTime type, so you can find out the current date by calling its Today property. If you enter
either one of the preceding expressions in your code, you’ll get a warning, but they will be
executed.

Classes are used routinely in developing applications, and you should get into the habit of
creating and using custom classes, even with simple projects. In team development, classes are
a necessity because they allow developers to share their work easily. If you’re working in a cor-
porate environment, where different programmers code different parts of an application, you

306 CHAPTER 8 WORKING WITH OBJECTS

can’t afford to repeat work that someone else has already done. You should be able to get their
code and use it in your application as is. That’s easier said than done because you can guess
what will happen as soon as a small group of programmers start sharing code — they’ll end
up with dozens of different versions for each function, and every time a developer upgrades a
function, they will most likely break the applications that were working with the old version.
Or each time they revise a function, they must update all the projects by using the old version
of the function and test them. It just doesn’t work.

The major driving force behind object-oriented programming (OOP) is code reuse. Classes
allow you to write code that can be reused in multiple projects. You already know that classes
don’t expose their source code. The Framework itself is a huge collection of classes, which
you can use without ever seeing its source code. As you’ll learn in Chapter 10, ‘‘Applied
Object-Oriented Programming,’’ you can even expand the functionality of an existing class
without having access to its code. In other words, you can use a class without having access to
its code, and therefore you can’t affect any other projects that use the class. You also know that
classes implement complicated operations and make these operations available to programmers
through properties and methods. The Array class, for example, exposes a Sort method, which
sorts its elements. This is not a simple operation, but fortunately you don’t have to know
anything about sorting. Someone else has done it for you and made this functionality available
to your applications. This is called encapsulation. Some functionality has been built into the
class (or encapsulated into the class), and you can access it from within your applications by
using a simple method call. The System.Security.Cryptography class of the Framework (which
isn’t discussed in this book) provides all the functionality you need to encrypt a secret code,
or an entire document, by calling a method. Encryption is a very complicated operation, but
you don’t have to know anything about it except how to call the appropriate method and pass
a secret key to it.

What Is a Class?
A class can be thought of as a program that doesn’t run on its own; it’s a collection of prop-
erties and methods that must be used by another application. We exploit the functionality of
the class by creating a variable of the same type as the class and then calling the class’s proper-
ties and methods through this variable. The methods and properties of the class, as well as its
events, constitute the class’s interface. It’s not a visible interface, like the ones you’ve learned to
design so far, because the class doesn’t interact directly with the user. To interact with the class,
the application uses the class’s interface, just as users will be interacting with your application
through its visual interface.

You have already learned how to use classes. Now is the time to understand what goes on
behind the scenes when you interact with a class and its members. Every object is an instance
of a class. When you declare an array, a Color object, or a collection, some code is executed in
the background to create the variable. It’s the code that actually implements the class. When
you declare an array, you’re invoking the System.Array class, which contains all the code for
manipulating arrays (the method to sort the array’s elements, another method to reverse the
order of the elements in the array, and so on). Even simple variables of the Integer or String
type are implemented as classes.

The first time you use an object in your code, you’re instantiating the class that implements
it. The class’s code is loaded into memory, initializes its variables, and is ready to execute. The
image of the class in memory is said to be an instance of the class, and this is an object.

WHAT IS A CLASS? 307

Classes versus Objects

Two of the most misused terms in OOP are object and class, and most people use them
interchangeably. You should think of the class as the template for the object. There’s only
one System.Array class, but you can declare any number of arrays in your code. Every array
is an instance of the System.Array class. All arrays in an application are implemented by the
same code, but they store different data. Each instance of a class is nothing more than a set
of variables: The same code acts on different sets of variables, and each set of variables is a
separate and distinct instance of the class.

Consider three TextBox controls on the same form. They are all instances of the Sys-
tem.Windows.Forms.TextBox class, but changing any property of a TextBox control doesn’t
affect the other two controls. Every time you set the Text property of a TextBox control,
you’re modifying a variable of a specific instance of the TextBox class. Classes are the
blueprints on which objects are based. You can use the same blueprint to build multiple
buildings with the same structural characteristics but apply different properties (wall colors,
doors, and so on) to individualize each structure.

Objects are similar to Windows controls except that they don’t have a visible interface. Con-
trols are instantiated when the form loads. To use a control, you make it part of the project by
adding its icon to the Toolbox, if it’s not already there. To manipulate a control from within
your code, you call its properties and methods. You do the same with classes. To use a class,
first declare it, then instantiate it (most commonly by using a New statement), then use its
properties and methods. Finally, you program the various events raised by the controls to
interact with the users of your applications. Most classes don’t expose any events because the
user can’t interact with them, but some classes do raise events, which you can program just
as you program the events of Windows controls.

At the beginning of this section I mentioned that classes can be thought of as ‘‘programs that
can’t be executed on their own.’’ This is an oversimplification, which I can remedy now. Classes
are made up of code, not visual elements, and are used as templates for objects. For example,
there’s a single System.Array class and this class is invoked every time you create an array in
your code. The arrays you declare in your code are instances of the class. Yet, there’s only one
class that implements arrays and all arrays are ‘‘serviced’’ by the same class.

Classes Combine Code with Data
Another way to view classes is to understand how they combine code and data. This simple
idea is the very essence of object-oriented programming. Data is data, and procedural lan-
guages allow you to manipulate data in any way. Meaningful data, however, is processed in
specific ways.

Let’s consider accounting data. You can add or subtract amounts to or from an account,
sum similar accounts (such as training and travel expenses), calculate taxes on certain account
amounts, and the like. Other types of processing may not be valid for this type of data. You
never multiply the amounts from two different accounts or calculate logarithms of account
balances. These types of processing are quite meaningful with different data, but not with
accounting data.

Because the nature of the data itself determines to a large extent the type of processing that
will take place on the data, why not ‘‘package’’ the data along with the code for processing it?

308 CHAPTER 8 WORKING WITH OBJECTS

Instead of simply creating structures for storing our data, we also write the code to process
them. The data and the code are implemented in a single unit, a class, and the result is an
object. After the class has been built, we no longer write code for processing the data; we sim-
ply create objects of this type and call their methods. To transfer an amount from one account
to another, we call a method that knows how to transfer the amount, and the same method
also makes sure the amount isn’t subtracted from one account unless it has been added to the
other account (and vice versa). By the way, the process of completing multiple operations in
a single step or canceling all the operations if one of them fails is known as a transaction. A
transaction will not subtract an amount from one account unless it has added the same amount
to another account, and it won’t credit an account without debiting another one by the same
amount. You’ll learn more about transactions later in this book, when we’ll explore database
programming.

To better understand how classes combine code with data, let’s take a close look at a class
we’re all too familiar with, the Array class. The role of the array is to store sets of data. In
addition to holding data, the Array class also knows how to process data: how to retrieve an
element, how to extract a segment of the array, and even how to sort its elements. All these
operations require a substantial amount of code. The mechanics of storing data in the array,
the code that implements the properties, and the methods of the array are hidden from you,
the developer. You can instruct the array to perform certain tasks by using simple statements.
When you call the Sort method, you’re telling the array to execute some code that will sort
its elements. As a developer, you don’t know how the data are stored in the array or how
the Sort method works. An overloaded form of the method allows you to sort a segment of
the array by specifying the index of the first and last elements to be sorted. All you have to
know is how to call the Sort method, not how it works. Classes abstract many operations by
hiding the implementation details; developers manipulate arrays by calling methods. And you
certainly can’t access the code of the class and edit it to accommodate the requirements of a
specific application.

With LINQ, a new technology for querying collections that was introduced with version 3.5
of the Framework, the Array class was enhanced with a few new methods, like the Sum method
that calculates the sum of the elements in a numeric array and the Select method that allows
you to select elements that meet certain criteria, and a few more. You’ll learn a lot more about
these methods (they’re called extension methods) in Chapter 14, ‘‘An Introduction to LINQ.’’
Although this is something you’ll understand better in Chapter 14, let me just mention that the
team that implemented LINQ did not have access to the source of the Array class!

In the following sections, you’ll learn how data and code coexist in a class and how you can
manipulate the data through the properties and methods exposed by the class. In Chapter 3,
‘‘Visual Basic Programming Essentials,’’ you learned how to create structures to store data.
Classes are similar to structures in that they represent custom data structures. In this chapter,
I’ll take the idea of defining custom data structures one step further, by adding properties and
methods for manipulating the custom data, something you can’t do with structures. Let’s start
by building a custom class and then using it in an application.

Building the Minimal Class
My first example is the Minimal class; I’ll start with the minimum functionality class and keep
adding features to it. The name of the class can be anything — just make sure that it’s sugges-
tive of the class’s functionality.

A class may reside in the same file as a form, but it’s customary to implement custom
classes in a separate module, a Class module. You can also create a Class project, which con-
tains one or more classes. However, a class doesn’t run on its own and you can’t test it without

BUILDING THE MINIMAL CLASS 309

Figure 8.1

Adding a class item
to a project

a form. Start a new Windows project and name it SimpleClass (or open the SimpleClass
sample project available for download from www.sybex.com/go/masteringvb2010). Then
create a new class by adding a Class component to your project. Right-click the project name in
the Solution Explorer window and choose Add � Class from the context menu. In the dialog
box that pops up, select the Class item and enter a name for the class. Set the class’s name to
Minimal, as shown in Figure 8.1.

The sample project contains a main form, as usual, the Form1 form. The code that imple-
ments the class resides in the Minimal.vb file, which is part of the project, and you’ll use the
project’s main form to test your class. After you have tested and finalized the class code, you
no longer need the form and you can remove it from the project.

When you open the class by double-clicking its icon in the Project Explorer window, you
will see the following lines in the code window:

Public Class Minimal

End Class

If you’d rather create a class in the same file as the application’s form, enter the Class key-
word followed by the name of the class after the existing End Class in the form’s code window.
The editor will insert the matching End Class for you. Insert a class definition in the form’s
code window if the class is specific to this form only and no other part of the application will
use it. At this point, you already have a class, even if it doesn’t do anything.

Switch back to the Form Designer, add a button to the test form, and insert the following
code in its Click event handler:

Dim obj1 As Minimal

Press Enter and type the name of the variable, obj1, followed by a period, on the following
line. will see a list of the methods your class exposes already:

Equals
GetHashCode

310 CHAPTER 8 WORKING WITH OBJECTS

GetType
ReferenceEqual
ToString

If you don’t see all of these members, switch to the All Members tab of the IntelliSense
drop-down box.

These methods are provided by the Common Language Runtime (CLR), and you don’t
have to implement them on your own (although you will probably have to provide a new,
nongeneric implementation for some of them). They don’t expose any real functionality; they
simply reflect the way VB handles all classes. To see the kind of functionality that these
methods expose, enter the following lines in the Button’s Click event handler and then run the
application:

Dim obj1 As New Minimal
Debug.WriteLine(obj1.ToString)
Debug.WriteLine(obj1.GetType)
Debug.WriteLine(obj1.GetHashCode)
Dim obj2 As New Minimal
Debug.WriteLine(obj1.Equals(obj2))
Debug.WriteLine(Minimal.ReferenceEquals(obj1, obj2))

The following lines will be printed in the Immediate window:

SimpleClass.Minimal
SimpleClass.Minimal
18796293
False
False

The name of the object is the same as its type, which is all the information about your
new class that’s available to the CLR. Shortly you’ll see how you can implement your own
ToString method and return a more-meaningful string. The hash value of the obj1 variable
is an integer value that uniquely identifies the object variable in the context of the current
application. (It happens to be 18796293, but the actual value is of no consequence for our
discussion. It’s a standard member, but it’s good to know that the functionality is built into the
control.)

The next line tells you that two variables of the same type are not equal. But why aren’t they
equal? We haven’t differentiated them at all, yet they’re different because they point to two
different objects, and the compiler doesn’t know how to compare them. All it can do is figure
out whether the variables point to the same object. If you want to understand how objects are
compared, add the following statement after the line that declares obj2:

obj2 = obj1

When you run the application again, the last two statements will display True in the Out-
put window. The Equals method compares the two objects and returns a True/False value.
Because you haven’t told the class how to compare two instances of the class yet, it compares
their references, just as the ReferenceEquals method does. The ReferenceEquals method

BUILDING THE MINIMAL CLASS 311

checks for reference equality; that is, it returns True if both variables point to the same object
(the same instance of the class). If you change a property of the obj1 variable, the changes will
affect obj2 as well, because both variables point to the same object. We can’t modify the object
because it doesn’t expose any members that we can set to differentiate it from another object of
the same type. We’ll get to that shortly.

Most classes expose a custom Equals method, which knows how to compare two objects of
the same type (two objects based on the same class). The custom Equals method usually com-
pares the properties of the two instances of the class and returns True if a set of basic properties
(or all of them) are the same. You’ll learn how to customize the default members of any class
later in this chapter.

Notice the full name of the class: SimpleClass.Minimal. Within the current project, you can
access it as Minimal. Other projects can either import the Minimal class and access it as Min-
imal or specify the complete name of the class, which is the name of the project it belongs to
followed by the class name. To use the Minimal class in another project, however, you must
add a reference to it. (You’ll learn shortly how to reuse classes in other projects.)

Adding Code to the Minimal Class
Let’s add some functionality to our bare-bones class. We’ll begin by adding two trivial proper-
ties and two methods to perform simple operations. The two properties are called strProperty
(a string) and dblProperty (a double). To expose these two members as properties, you can
simply declare them as public variables. This isn’t the best method of implementing properties,
but it really doesn’t take more than declaring something as public to make it available to code
outside the class. The following statement exposes the two properties of the class:

Public strProperty As String, dblProperty As Double

The two methods you’ll implement in your sample class are the ReverseString and
NegateNumber methods. The first method reverses the order of the characters in strProperty
and returns the new string. The NegateNumber method returns the negative of dblProperty.
They’re two simple methods that don’t accept any arguments; they simply operate on the
values of the properties. Methods are exposed as public procedures (functions or subroutines),
just as properties are exposed as public variables. Enter the function declarations of Listing 8.1
between the Class Minimal and End Class statements in the class’s code window. (I’m
showing the entire listing of the class here.)

Listing 8.1: Adding a few members to the Minimal class

Public Class Minimal
Public strProperty As String, dblProperty As Double
Public Function ReverseString() As String

Return (StrReverse(strProperty))
End Function
Public Function NegateNumber() As Double

Return (-dblProperty)
End Function

End Class

312 CHAPTER 8 WORKING WITH OBJECTS

Figure 8.2

The members of the
class are displayed
automatically by the
IDE, as needed.

Let’s test the members we’ve implemented so far. Switch back to your form and enter the
lines shown in Listing 8.2 in a new button’s Click event handler. The obj variable is of the
Minimal type and exposes the public members of the class, as shown in Figure 8.2. You can set
and read its properties and call its methods. Your code doesn’t see the class’s code, just as it
doesn’t see any of the built-in classes’ code. You trust that the class knows what it is doing and
does it right.

Listing 8.2: Testing the Minimal class

Dim obj As New Minimal
obj.strProperty = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
obj.dblProperty = 999999
Debug.WriteLine(obj.ReverseString)
Debug.WriteLine(obj.NegateNumber)

The New Keyword

The New keyword tells VB to create a new instance of the Minimal class. If you omit the New
keyword, you’re telling the compiler that you plan to store an instance of the Minimal class
in the obj variable but the class won’t be instantiated. All the compiler can do is prevent you
from storing an object of any other type in the obj variable. You must still initialize the obj
variable with the New keyword on a separate line:

obj = New Minimal

It’s the New keyword that creates the object in memory. If you omit the New keyword, a
null reference exception will be thrown when the code attempts to use the variable. This
means that the variable is Nothing — it hasn’t been initialized yet. Even as you work in the

BUILDING THE MINIMAL CLASS 313

editor’s window, the name of the variable will be underlined and the following warning will
be generated: Variable ‘obj’ is used before it has been assigned a value. A null reference exception
could result at runtime. You can compile the code and run it if you want, but everything will
proceed as predicted: As soon as the statement that produced the warning is reached, the
runtime exception will be thrown.

Using Property Procedures
The strProperty and dblProperty properties will accept any value as long as the type is
correct and the value of the numeric property is within the acceptable range. But what if the
generic properties were meaningful entities, such as email addresses, ages, or zip codes? We
should be able to invoke some code to validate the values assigned to each property. To do so,
we implement each property as a special type of procedure: the so-called property procedure.

Properties are implemented with a special type of procedure that contains a Get and a Set
section (frequently referred to as the property’s getter and setter, respectively). The Set section
of the procedure is invoked when the application attempts to set the property’s value; the Get
section is invoked when the application requests the property’s value. The value passed to the
property is usually validated in the Set section and, if valid, is stored to a local variable. The
same local variable’s value is returned to the application when it requests the property’s value,
from the property’s Get section. Listing 8.3 shows what the implementation of an Age property
might look like.

Listing 8.3: Implementing properties with property procedures

Private m_Age As Integer
Property Age() As Integer

Get
Age = m_Age

End Get
Set (ByVal value As Integer)

If value < 0 Or value >= 100 Then
MsgBox("Age must be positive and less than 100")

Else
m_Age = value

End If
End Set

End Property

The local variable where the age is stored is m_Age. When a statement such as the following
is executed in the application that uses your class, the Set section of the property procedure is
invoked:

obj.Age = 39

314 CHAPTER 8 WORKING WITH OBJECTS

Because the property value is valid, it is stored in the m_Age local variable. Likewise, when a
statement such as the following one is executed, the Get section of the property procedure is
invoked, and the value 39 is returned to the application:

Debug.WriteLine(obj.Age)

The value argument of the Set segment represents the actual value that the calling code is
attempting to assign to the property. The m_Age variable is declared as private because we
don’t want any code outside the class to access it directly. The Age property is, of course, public
so that other applications can set it, and external applications shouldn’t bypass the validation
performed by the property’s setter.

Fields versus Properties

Technically, any variables that are declared as Public in a class are called fields. Fields behave
just like properties in the sense that you can assign values to them and read their values, but
there’s a critical distinction between fields and properties: When a value is assigned to a field,
you can’t validate that value from within your code. Properties should be implemented with
a property procedure so you can validate their values, as you saw in the preceding example.
Not only that, you can set other values from within your code. Consider a class that represents
a contract with a starting and ending date. Every time the user changes the starting date, the
code can adjust the ending date accordingly (which is something you can’t do with fields).
If the two dates were implemented as fields, users of the class could potentially specify an
ending date prior to the starting date.

Enter the property procedure for the Age property in the Minimal class and then switch to
the form to test it. Open the button’s Click event handler and add the following lines to the
existing ones:

Dim obj As New Minimal
obj.Age = 39
Debug.WriteLine("after setting the age to 39, age is " &

obj.Age.ToString)
obj.Age = 199
Debug.WriteLine("after setting the age to 199, age is " &

obj.Age.ToString)

The value 39 will appear twice in the Output window, which means that the class accepts the
value 39. When the third statement is executed, a message box will appear with the error’s
description:

Age must be positive and less than 100

The value 39 will appear in the Output window again. The attempt to set the age to 199 failed,
so the property retains its previous value. You will also see the message box with the warning,
which is invoked from within the class’s code.

BUILDING THE MINIMAL CLASS 315

Throwing Exceptions

The error-trapping code works fine, but what good is a message box displayed from within a
class? As a developer using the Minimal class in your code, you’d rather receive an exception
and handle it from within your code, unless you’re writing classes to use in your own applica-
tions. Normally, you don’t know who’s going to use your class, or how, so you can’t assume
that any messages displayed from within your class’s code will be seen by the end user. The
class may be invoked on a remote server, in which case the error message will go unnoticed. So
let’s change the implementation of the Age property a little. The property procedure for the Age
property (Listing 8.4) throws an InvalidArgument exception if an attempt is made to assign
an invalid value to it. The InvalidArgument exception is one of the existing exceptions, and
you can reuse it in your code. Later in this chapter, you’ll learn how to create and use custom
exceptions.

Listing 8.4: Throwing an exception from within a property procedure

Private m_Age As Integer
Property Age() As Integer

Get
Age = m_Age

End Get
Set (ByVal value As Integer)

If value < 0 Or value >= 100 Then
Dim AgeException As New ArgumentException()
Throw AgeException

Else
M_Age = value

End If
End Set

End Property

You can test the revised property definition in your application; switch to the test form, and
enter the statements from Listing 8.5 in a new button’s Click event handler. (This is the code
behind the Handle Exceptions button on the test form.)

Listing 8.5: Catching the Age property’s exception

Dim obj As New Minimal
Dim userAge as Integer
UserAge = InputBox("Please enter your age")
Try

obj.Age = userAge
Catch exc as ArgumentException

MsgBox("Can’t accept your value, " & userAge.ToString & VbCrLf &
"Will continue with default value of 30")

obj.Age = 30
End Try

316 CHAPTER 8 WORKING WITH OBJECTS

This is a much better technique for handling errors in your class. The exceptions can be
intercepted by the calling application, and developers using your class can write robust applica-
tions by handling the exceptions in their code. When you develop custom classes, keep in mind
that you can’t handle most errors from within your class because you don’t know how other
developers will use your class.

Handling Errors in a Class

When you design classes, keep in mind that you don’t know how another developer may use
them. In fact, you may have to use your own classes in a way that you didn’t consider when
you designed them. A typical example is using an existing class with a web application. If
your class displays a message box, it will work fine as part of a Windows Forms application,
but in the context of a web application, the message box won’t be displayed anywhere. Even
if you don’t plan to use a custom class with a web application, never interact with the user
from within the class’s code. Make your code as robust as you can, but don’t hesitate to
throw exceptions for all conditions you can’t handle from within your code (as shown here).
In general, a class’s code should detect abnormal conditions, but it shouldn’t attempt to
remedy them.

The application that uses your class may inform the user about an error condition and give
the user a chance to correct the error by entering new data, disabling some options on the
interface, and so on. As a class developer, you can’t make this decision — another developer
might prompt the user for another value, and a sloppy developer might let their application
crash (but this isn’t your problem). To throw an exception from within your class’s code,
call the Throw statement with an Exception object as an argument. To play well with the
Framework, you should try to use one of the existing exceptions (and the Framework provides
quite a few of them). You can also throw custom exceptions by passing an error message to
the Exception class’ constructor with a statement such as the following:

Throw New Exception("your exception’s description")

BUILDING THE MINIMAL CLASS 317

Implementing Read-Only Properties

Let’s make our class a little more complicated. Age is not usually requested on official docu-
ments because it’s valid only for a year (or less) after filling out a questionnaire. Instead, you
are asked to furnish your date of birth, from which your current age can be calculated at any
time. We’ll add a BDate property in our class and make Age a read-only property.

To make a property read-only, you simply declare it as ReadOnly and supply code for
the Get procedure only. Revise the Age property code in the Minimal class to that shown in
Listing 8.6. Then, enter the property procedure from Listing 8.7 for the BDate property.

Listing 8.6: Implementing a read-only property

Private m_Age As Integer
ReadOnly Property Age() As Integer

Get
Age = m_Age

End Get
End Property

Listing 8.7: The BDate property

Private m_BDate As DateTime
Private m_Age As Integer
Property BDate() As DateTime

Get
BDate = m_BDate

End Get
Set(ByVal value As Date)

If value > Now() Or _
DateDiff(DateInterval.Year, value, Now()) >= 100 Then

Dim AgeException As New Exception
("Can’t accept the birth date you specified")

Throw AgeException
Else

m_BDate = value
m_Age = DateDiff(DateInterval.Year, value, Now())

End If
End Set

End Property

As soon as you enter the code for the revised Age property, two error messages will appear
in the Error List window. The code in the application form is attempting to set the value of a
read-only property, so the editor produces the following error message twice: Property ‘Age’ is
‘ReadOnly.’ As you probably figured out, we must set the BDate property in the code instead of

318 CHAPTER 8 WORKING WITH OBJECTS

the Age property. The two errors are the same, but they refer to two different statements that
attempt to set the Age property.

The code checks the number of years between the date of birth and the current date. If it’s
negative (which means that the person hasn’t been born yet) or more than 100 years (we’ll
assume that people over 100 will be treated as being 100 years old), it rejects the value. Other-
wise, it sets the value of the m_BDate local variable and calculates the value of the m_Age local
variable.

You can implement write-only properties with the WriteOnly keyword and a Set section
only, but write-only properties are rarely used — in my experience, only for storing passwords.

Calculating Property Values on the Fly

There’s still a serious flaw in the implementation of the Age property. Can you see it? The per-
son’s age is up-to-date the moment the birth date is entered, but what if we read it back from a
file or database three years later? It will still return the original value, which will no longer be
the correct age. The Age property’s value shouldn’t be stored anywhere; it should be calculated
from the person’s birth date as needed. If we avoid storing the age to a local variable and cal-
culate it on the fly, users will always see the correct age. Revise the Age property code to match
Listing 8.8 and the property will now calculate the difference between the date of birth and the
current date and return the correct person’s age every time it’s called.

Listing 8.8: A calculated property

ReadOnly Property Age() As Integer
Get

Age = Convert.ToInt32(DateDiff(DateInterval.Year, m_BDate , Now()))
End Get

End Property

Notice also that you no longer need the m_Age local variable because the age is calculated on
the fly when requested, so remove its declaration from the class and remove the statement that
sets the value of the m_Age variable in the BDate property’s setter. As you can see, you don’t
always have to store property values to local variables. A property that returns the number
of files in a directory, for example, also doesn’t store its value in a local variable. It retrieves
the requested information on the fly and furnishes it to the calling application. By the way, the
calculations might still return a negative value if the user has changed the system’s date, but
this is a rather far-fetched scenario.

Your Minimal class is no longer so minimal. It exposes some functionality, and you can
easily add more. Add properties for name, profession, and income, and add methods to calcu-
late insurance rates based on a person’s age and anything you can think of. Experiment with
a few custom members, add the necessary validation code in your property procedures, and
you’ll soon find out that building and reusing custom classes is a simple and straightforward
process. Of course, there’s a lot more to learn about classes, but you already have a good
understanding of the way classes combine code with data. Before continuing, let me introduce
auto-implemented properties, which are a major convenience when you implement custom
classes.

BUILDING THE MINIMAL CLASS 319

Auto-Implemented Properties

Quite often, actually more often than not, properties are implemented with straightforward
code, without any validation code — just straight setters and getters like the following:

Private m_Occupation As String
Property Occupation() As String

Get
Return (m_Occupation)

End Get
Set (value As String)

m_Occupation = value
End Property

The definition of many properties is based on a standard template, or boilerplate, which is
always the same, except for the names of the properties and the corresponding local variables.
If you don’t need any additional code, shouldn’t there be a simple method of defining a prop-
erty? Indeed, with VB 2010 you can supply the name of the property and its type in a single
statement like the following:

Public Property Occupation As String

And that’s all it takes to create a straightforward property. Properties declared this way
are known as auto-implemented properties, and they can simplify the coding of large classes
considerably because most properties are usually implemented with the default setter and
getter. Behind the scenes, the VB compiler generates the appropriate Get and Set segments of
the property for you. As for the matching local variable, the compiler uses the same name
as the property prefixed with an underscore. You can access this local variable from within the
code that implements other properties, as in the following example:

Public Class Contact
Public Property Name As String
Public Property Company As String
Public Property Occupation As String
Private _Title
Public Property Title() As String

Get
If _Occupation.Trim.Length > 0 Then

Return _Occupation & "/" & _Title
Else

Return _Title
End If

End Get
Set(ByVal value As String)

_Title = value
End Set

End Property
End Class

320 CHAPTER 8 WORKING WITH OBJECTS

The Contact class exposes three auto-implemented properties, the Name, Company, and
Occupation properties and a fully implemented property, the Title property. Note that the
Title property’s Get segment takes into consideration the _Occupation local variable that
holds the value of the Occupation auto-implemented property. Although the _Occupation
variable is not declared anywhere in the class, it’s being used in the Title property’s
implementation.

Auto-implemented properties are just a shorthand notation for properties, and they’re
converted into actual code by the compiler on the fly. Actually, when you type the
statement

Public Property Company As String

the editor won’t insert the stubs for the Get and Set segments; you must type the Get keyword
on the following line and then press Enter for the editor to emit the stubs for the two segments
of the property procedure.

Customizing Default Members
As you recall, when you created the Minimal class for the first time, before adding any code,
the class exposed a few members — the default members, such as the ToString method (which
returns the name of the class) and the Equals method (which compares two objects for refer-
ence equality). You can (and should) provide your custom implementation for these members;
this is what I’m going to do in the following sections.

Customizing the ToString Method

The custom ToString method is implemented as a public function, and it must override the
default implementation. The implementation of a custom ToString method is shown next:

Public Overrides Function ToString() As String
Return "The infamous Minimal class"

End Function

As soon as you enter the keyword Overrides, the editor will suggest the names of the three
members you can override: ToString, Equals, and GetHashCode. Select the ToString method,
and the editor will insert a default implementation for you. The default implementation returns
the string MyBase.ToString. Just replace the statement inserted by the editor with the one
shown in the preceding code segment.

The Overrides keyword tells the compiler that this implementation overwrites the default
implementation of the class. The original method’s code isn’t exposed, and you can’t revise
it. The Overrides keyword tells the compiler to ‘‘hide’’ the original implementation and use
your custom ToString method instead. After you override a method in a class, the application
using the class can no longer access the original method. Ours is a simple method, but you can
return any string you can build in the function. For example, you can incorporate the value of
the BDate property in the string:

Return("MINIMAL: " & m_BDate.ToShortDateString)

BUILDING THE MINIMAL CLASS 321

The value of the local variable m_BDate is the value of the BDate property of the current
instance of the class. Change the BDate property, and the ToString method will return a
different string.

Customizing the Equals Method

The Equals method exposed by most of the built-in objects can compare values, not references.
Two Rectangle objects, for example, are equal if their dimensions and origins are the same. The
following two rectangles are equal:

Dim R1 As New Rectangle(0, 0, 30, 60)
Dim R2 As New Rectangle
R2.X = 0
R2.Y = 0
R2.Width = 30
R2.Height = 60
If R1.Equals(R2) Then

MsgBox("The two rectangles are equal")
End If

If you execute these statements, a message box confirming the equality of the two objects
will pop up. The two variables point to different objects (that is, different instances of the same
class), but the two objects are equal because they have the same origin and same dimensions.
The Rectangle class provides its own Equals method, which knows how to compare two Rect-
angle objects. If your class doesn’t provide a custom Equals method, all the compiler can do
is compare the objects referenced by the two variables. In the case of our Minimal class, the
Equals method returns True if the two variables point to the same object (which is the same
instance of the class). If the two variables point to two different objects, the default Equals
method will return False, even if the two objects are the same.

You’re probably wondering what makes two objects equal. Is it all their properties or per-
haps some of them? Two objects are equal if the Equals method says so. You should compare
the objects in a way that makes sense, but you’re in no way limited as to how you do this. In
a very specific application, you might decide that two rectangles are equal because they have
the same area, or perimeter, regardless of their dimensions and origin, and override the Rect-
angle object’s Equals method. In the Minimal class, for example, you might decide to compare
the birth dates and return True if they’re equal. Listing 8.9 is the implementation of a possible
custom Equals method for the Minimal class.

Listing 8.9: A custom Equals method

Public Overrides Function Equals(ByVal obj As Object) As Boolean
Dim O As Minimal = CType(obj, Minimal)
If O.BDate = m_BDate Then

Equals = True
Else

Equals = False
End If

End Function

322 CHAPTER 8 WORKING WITH OBJECTS

Know What You Are Comparing

The Equals method shown in Listing 8.9 assumes that the object you’re trying to compare
to the current instance of the class is of the same type. Because you can’t rely on developers
to catch all their mistakes, you should know what you’re comparing before you attempt to
perform the comparison. A more-robust implementation of the Equals method is shown
in Listing 8.10. This implementation tries to convert the argument of the Equals method to
an object of the Minimal type and then compares it to the current instance of the Minimal
class. If the conversion fails, an InvalidCastException is thrown and no comparison is
performed.

Listing 8.10: A more-robust Equals method

Public Overrides Function Equals(ByVal obj As Object) As Boolean
Dim O As New Minimal()
Try

O = DirectCast(obj, Minimal)
Catch typeExc As InvalidCastException

Throw typeExc
Exit Function

End Try
If O.BDate = m_BDate Then

Equals = True
Else

Equals = False
End If

End Function

The Is Operator

The equals (=) operator can be used in comparing all built-in objects. The following statement
is quite valid, as long as the R1 and R2 variables were declared of the Rectangle type:

If R1 = R2 Then
MsgBox("The two rectangles are equal")

End If

This operator, however, can’t be used with the Minimal custom class. Later in this chapter,
you’ll learn how to customize operators in your class. In the meantime, you can use only the Is
operator, which compares for reference equality (whether the two variables reference the same
object), and the Equals method. If the two variables R1 and R2 point to the same object, the
following statement will return True:

If R1 Is R2 Then
MsgBox("The two variables reference the same object")

End If

BUILDING THE MINIMAL CLASS 323

The Is operator tells you that the two variables point to a single object. There’s no compari-
son here; the compiler simply figures out whether they point to same object in memory. It will
return True if a statement such as the following has been executed before the comparison:

obj2 = obj1

If the Is operator returns True, there’s only one object in memory and you can set its prop-
erties through either variable.

Custom Enumerations
Let’s add a little more complexity to our class. Because we’re storing birth dates to our cus-
tom objects, we can classify persons according to their age. Most BASIC developers will see
an opportunity to use constants here. Instead of using constants to describe the various age
groups, we’ll use an enumeration with the following group names:

Public Enum AgeGroup
Infant
Child
Teenager
Adult
Senior
Overaged

End Enum

These statements must appear outside any procedure in the class, and we usually place them
at the beginning of the file, right after the declaration of the class. Public is an access modi-
fier (we want to be able to access this enumeration from within the application that uses the
class). Enum is a keyword: It specifies the beginning of the declaration of an enumeration and
it’s followed by the enumeration’s name. The enumeration itself is a list of integer values, each
one mapped to a name. In our example, the name Infant corresponds to 0, the name Child
corresponds to 1, and so on. The list of the enumeration’s members ends with the End Enum
keyword. You don’t really care about the actual values of the names because the very reason
for using enumerations is to replace numeric constants with more-meaningful names. You’ll see
shortly how enumerations are used both in the class and the calling application.

Now add to the class the GetAgeGroup method (Listing 8.11), which returns the name of the
age group to which the person represented by an instance of the Minimal class belongs. The
name of the group is a member of the AgeGroup enumeration.

Listing 8.11: Using an enumeration

Public Function GetAgeGroup() As AgeGroup
Select Case m_Age

Case Is < 3 : Return (AgeGroup.Infant)
Case Is < 10 : Return (AgeGroup.Child)
Case Is < 21 : Return (AgeGroup.Teenager)
Case Is < 65 : Return (AgeGroup.Adult)

324 CHAPTER 8 WORKING WITH OBJECTS

Case Is < 100 : Return (AgeGroup.Senior)
Case Else : Return (AgeGroup.Overaged)

End Select
End Function

The GetAgeGroup method returns a value of the AgeGroup type and you can compare it to
members of the same enumeration. Switch to the form’s code window, add a new button, and
enter the statements from Listing 8.12 in its event handler.

Listing 8.12: Using the enumeration exposed by the class

Protected Sub Button1_Click(…)
Handles Button1.Click

Dim obj As Minimal
obj = New Minimal()
Try

obj.BDate = InputBox("Please Enter your birthdate")
Catch ex As ArgumentException

MsgBox(ex.Message)
Exit Sub

End Try
Debug.WriteLine(obj.Age)
Dim discount As Single
Dim grp As Minimal.AgeGroup = obj.GetAgeGroup
Select Case grp

Case Minimal.AgeGroup.Infant, Minimal.AgeGroup.Child
discount = 0.4

Case Minimal.AgeGroup.Teenager
discount = 0.5

Case Minimal.AgeGroup.Senior
discount = 0.2

Case Else
End Select

MsgBox("Your age is " & obj.Age.ToString &
" and you belong to the " &
obj.GetAgeGroup.ToString &
" group" & vbCrLf & "Your discount is " &
Format(discount, "Percent"))

End Sub

This routine calculates discounts based on the person’s age. Notice that we don’t use
numeric constants in our code, just descriptive names. Moreover, the possible values of the
enumeration are displayed in a drop-down list by the IntelliSense feature of the IDE as needed
(Figure 8.3), and you don’t have to memorize them or look them up as you would with

BUILDING THE MINIMAL CLASS 325

Figure 8.3

The members of an
enumeration are dis-
played automatically in
the IDE as you type.

constants. I’ve used an implementation with multiple If statements in this example, but you
can perform the same comparisons by using a Select Case statement.

You’ve seen the basics of working with custom classes in a VB application. Let’s switch to a
practical example that demonstrates not only the use of a real-world class, but also how classes
can simplify the development of a project.

VB 2010 at Work: The Contacts Project

In Chapter 6, ‘‘Working with Forms,’’ I briefly discussed the Contacts application. This appli-
cation uses a custom structure to store the contacts and provides four navigational buttons to
allow users to move to the first, last, previous, and next contact. Now that you have learned
how to program the ListBox control and how to use custom classes in your code, you can revise
the Contacts application. First, you’ll implement a class to represent each contact. The fields of
each contact (company and contact names, addresses, and so on) will be implemented as prop-
erties and they will be displayed in the TextBox controls on the form.

You’ll also improve the user interface of the application. Instead of the rather simplistic nav-
igational buttons, you’ll place all the company names in a sorted ListBox control. The user can
easily locate the desired company and select it from the list to view its fields. The editing but-
tons at the bottom of the form work as usual, but you no longer need the navigational buttons.
Figure 8.4 shows the revised Contacts application.

Figure 8.4

The interface of the
Contacts application
based on the ListBox
control

326 CHAPTER 8 WORKING WITH OBJECTS

Copy the contents of the Contacts folder you used when you worked on the Contacts
project in Chapter 6 under a new folder and open the project by double-clicking the solution’s
name, Contacts.sln. You will also find the revised project in this chapter’s projects. First,
delete the declaration of the Contact structure and add a class to the project. Name the new
class Contact and enter the code from Listing 8.13 into it. The names of the private members
of the class are the same as the actual property names, and they begin with an underscore.
(This is a good convention that lets you easily distinguish whether a variable is private and the
property value it stores.) The implementation of the properties is trivial, so I’m not showing
the code for all of them.

Listing 8.13: The Contact class

<Serializable()> Public Class Contact
Private _companyName As String
Private _email As String

Property CompanyName() As String
Get

CompanyName = _companyName
End Get
Set(ByVal value As String)

If value Is Nothing Or value = "" Then
Throw New Exception("Company Name field can’t be empty")
Exit Property

End If
_companyName = value

End Set
End Property

Property ContactName As String

Property Address1 As String

Property Address2 As String

Property City As String

Property State As String

Property ZIP As String

Property tel As String

Property EMail As String
Get

EMail = _email
End Get
Set(ByVal value As String)

BUILDING THE MINIMAL CLASS 327

If value.Contains("@") Or value.Trim.Length = 0 Then
_email = Value

Else
Throw New Exception("Invalid e-mail address!")

End If
End Set

End Property

Property URL As String

Overrides Function ToString() As String
If _contactName = "" Then

Return _companyName
Else

Return _companyName & vbTab & "(" & _contactName & ")"
End If

End Function

Public Sub New()
MyBase.New()

End Sub

Public Sub New(ByVal CompanyName As String,
ByVal LastName As String, ByVal FirstName As String)

MyBase.New()
Me.ContactName = LastName & ", " & FirstName
Me.CompanyName = CompanyName

End Sub

Public Sub New(ByVal CompanyName As String)
MyBase.New()
Me.CompanyName = CompanyName

End Sub
End Class

The first thing you’ll notice is that the class’s definition is prefixed by the <Serializable()>
keyword. The topic of serialization is discussed in Chapter 13, ‘‘XML in Modern Program-
ming,’’ but for now all you need to know is that the .NET Framework can convert objects to
a text or binary format and then store them in files. Surprisingly, this process is quite simple;
as you will see, we’ll be able to dump an entire collection of Contact objects to a file with a
single statement. The <Serializable()> keyword is an attribute of the class, and (as you will
see later in this book) there are more attributes you can use with your classes — or even with
your methods. The most prominent method attribute is the <WebMethod> attribute, which turns
a regular function into a web method.

The various fields of the Contact structure are now properties of the Contact class. The
implementation of the properties is trivial except for the CompanyName and EMail properties,
which contain some validation code. The Contact class requires that the CompanyName property

328 CHAPTER 8 WORKING WITH OBJECTS

have a value; if it doesn’t, the class throws an exception. Likewise, the EMail property must
contain the symbol @. Finally, the class provides its own ToString method, which returns the
name of the company followed by the contact name in parentheses. All other properties are
auto-implemented.

The ListBox control, in which we’ll store all contacts, displays the value returned by the
object’s ToString method, which is why you have to provide your own implementation of this
method to describe each contact. The company name should be adequate, but if there are two
companies by the same name, you can use another field to differentiate them. I used the contact
name, but you can use any of the other properties (the URL would be a good choice).

Although the ListBox displays a string, it stores the object itself. In essence, it’s used not
only as a navigational tool, but also as a storage mechanism for our contacts. Now, we must
change the code of the main form a little. Start by removing the navigational buttons; we no
longer need them. Their function will be replaced by a few lines of code in the ListBox control’s
SelectedIndexChanged event. Every time the user selects another item on the list, the state-
ments shown in Listing 8.14 display the contact’s properties in the various TextBox controls on
the form. The currentContact variable is an integer that represents the index of the currently
selected item, and it must be declared outside the subroutine because it must be accessed by
other event handlers as well.

Listing 8.14: Displaying the fields of the selected Contact object

Private Sub ListBox1_SelectedIndexChanged(…)
Handles ListBox1.SelectedIndexChanged

currentContact = ListBox1.SelectedIndex
ShowContact()

End Sub

The ShowContact() subroutine reads the object stored at the location specified by the
currentContact variable and displays its properties in the various TextBox controls on the
form. The TextBox controls are normally read-only, except when users are editing a contact.
This action is signaled to the application when the user clicks the Edit or the Add button on
the form.

When a new contact is added, the code reads its fields from the controls on the form,
creates a new Contact object, and adds it to the ListBox control. When a contact is edited, a
new Contact object replaces the currently selected object on the control. The code is similar to
the code of the Contacts application. I should mention that the ListBox control is locked while
a contact is being added or edited because it doesn’t make sense to select another contact at
that time.

Adding, Editing, and Deleting Contacts

To delete a contact (Listing 8.15), we simply remove the currently selected object from the
ListBox control. In addition, we must select the next contact on the list (or the first contact
if the deleted one was last in the list). The code of this event handler makes use of the
currentContact variable to remove the currently selected item from the list.

BUILDING THE MINIMAL CLASS 329

Listing 8.15: Deleting an object from the ListBox

Private Sub bttnDelete_Click(…) Handles bttnDelete.Click
If currentContact > -1 Then

ListBox1.Items.RemoveAt(currentContact)
currentContact = ListBox1.Items.Count - 1
If currentContact = -1 Then

ClearFields()
MsgBox("There are no more contacts")

Else
ShowContact()

End If
Else

MsgBox("No current contacts to delete")
End If

End Sub

When you add a new contact, the following code is executed in the Add button’s Click
event handler:

Private Sub bttnAdd_Click(…) Handles bttnAdd.Click
adding = True
ClearFields()
HideButtons()
ListBox1.Enabled = False

End Sub

The controls are cleared in anticipation of the new contact’s fields, and the adding variable
is set to True. The OK button is clicked to end either the addition of a new record or an edit
operation. The code behind the OK button is shown in Listing 8.16.

Listing 8.16: Committing a new or edited record

Private Sub bttnOK_Click(…) Handles bttnOK.Click
If SaveContact() Then

ListBox1.Enabled = True
ShowButtons()

End If
End Sub

As you can see, the same subroutine handles both the insertion of a new record and the editing
of an existing one. All the work is done by the SaveContact() subroutine, which is shown in
Listing 8.17.

330 CHAPTER 8 WORKING WITH OBJECTS

Listing 8.17: The SaveContact() subroutine

Private Function SaveContact() As Boolean
Dim contact As New Contact
Try

contact.CompanyName = txtCompany.Text
contact.ContactName = txtContact.Text
contact.Address1 = txtAddress1.Text
contact.Address2 = txtAddress2.Text
contact.City = txtCity.Text
contact.State = txtState.Text
contact.ZIP = txtZIP.Text
contact.tel = txtTel.Text
contact.EMail = txtEMail.Text
contact.URL = txtURL.Text

Catch ex As Exception
MsgBox(ex.Message)
Return False

End Try
If adding Then

ListBox1.Items.Add(contact)
Else

ListBox1.Items(currentContact) = contact
End If
Return True

End Function

The SaveContact() function uses the adding variable to distinguish between an add and
an edit operation and either adds the new record to the ListBox control or replaces the cur-
rent item in the ListBox with the values on the various controls. Because the ListBox is sorted,
new contacts are automatically inserted in the correct order. If an error occurs during the opera-
tion, the SaveContact() function returns False to alert the calling code that the operation failed
(most likely because one of the assignment operations caused a validation error in the class’s
code). Note that the SaveContact routine uses the currentContact variable to determine the
selected item on the list.

The last operation of the application is the serialization and deserialization of the items in
the ListBox control. Serialization is the process of converting an object to a stream of bytes for
storing to a disk file, and deserialization is the opposite process. To serialize objects, we first
store them into an ArrayList object, which is a dynamic array that stores objects and can be
serialized as a whole. Likewise, the disk file is deserialized into an ArrayList to reload the per-
sisted data back to the application; then each element of the ArrayList is moved to the Items
collection of the ListBox control. ArrayLists and other Framework collections are discussed in
Chapter 12, ‘‘Storing Data in Collections,’’ and object serialization is discussed in Chapter 13.
You can use these features to test the application and examine the corresponding code after
you read about ArrayLists and serialization.

BUILDING THE MINIMAL CLASS 331

Making the Most of the ListBox Control

This section’s sample application demonstrates an interesting technique for handling a set of
data at the client. We usually need an efficient mechanism to store data at the client, where
all the processing takes place — even if the data comes from a database. In this example,
we used the ListBox control because each item of the control can be an arbitrary object.
Because the control displays the string returned by the object’s ToString method, we’re able
to customize the display by providing our own implementation of the ToString method.
As a result, we’re able to use the ListBox control both as a data-storage mechanism and as a
navigational tool. As long as the strings displayed on the control are meaningful descriptions
of the corresponding objects and the control’s items are sorted, the ListBox control can be
used as an effective navigational tool. If you have too many items to display on the control,
you should also provide a search tool to help users quickly locate an item in the list with-
out having to scroll up and down a long list of items. Review the ListBoxFind project from
Chapter 5, ‘‘Basic Windows Controls,’’ for information on searching the contents of the ListBox
control.

When data are being edited, you have to cope with another possible problem. The user may
edit the data for hours and forget to save the edits every now and then. If the computer
(or, even worse, the application) crashes, a lot of work will be wasted. Sure the application
provides a Save command, but you should always try to protect users from their mistakes. It
would be nice if you could save the data to a temporary file every time the user edits, deletes,
or adds an item to the list. This way, if the computer crashes, users won’t lose their edits.
When the application starts, it should automatically detect the presence of the temporary file
and reload it. Every time the user saves the data by using the application’s Save command or
terminates the application, the temporary file should be removed.

Object Constructors
Let’s switch to a few interesting topics in programming with objects. Objects are instances of
classes, and classes are instantiated with the New keyword. The New keyword can be used with
a number of arguments, which are the initial values of some of the object’s basic properties. To
construct a rectangle, for example, you can use either of two statements. You can use this one:

Dim shape1 As Rectangle = New Rectangle()
shape1.Width = 100
shape1.Height = 30

Or you can use the following one:

Dim shape1 As Rectangle = New Rectangle(100, 30)

The objects in the Minimal class can’t be initialized to specific values of their properties, and
they expose the simple form of the New constructor — the so-called parameterless constructor.

332 CHAPTER 8 WORKING WITH OBJECTS

Every class has a parameterless constructor, even if you don’t specify it. You can implement
parameterized constructors, which allow you to pass arguments to an object as you declare
it. These arguments are usually the values of the object’s basic properties. Parameterized con-
structors don’t pass arguments for all the properties of the object; they expect only enough
parameter values to make the object usable.

Parameterized constructors are implemented via public subroutines that have the name
New(). You can have as many overloaded forms of the New() subroutine as needed. Most of
the built-in classes provide a parameterless constructor, but the purists of OOP will argue
against parameterless constructors. Their argument is that you shouldn’t allow users of your
class to create invalid instances of it. A class for describing customers, for example, should
expose at least a Name property. A class for describing books should expose a Title and an
ISBN property. If the corresponding constructor requires that these properties be specified
before you create an instance of the class, you’ll never create objects with invalid data. There
are cases, however, where this isn’t possible. When you call a function that returns a custom
object, for example, you must declare a variable of the same type and assign the function to
this variable:

Dim C As Contact
C = ListBox1.SelectedItem

Here we can’t create a new Contact object because we want to store in the C variable an
existing object. Is there a good reason to create an object variable before you have an object to
store in it?

Let’s add a parameterized constructor to our Contact class. Each contact should have at least
a name; here’s a parameterized constructor for the Contact class:

Public Sub New(ByVal CompanyName As String)
MyBase.New()
Me.CompanyName = CompanyName

End Sub

The code is trivial, with the exception of the statement that calls the MyBase.New() sub-
routine. MyBase is an object that lets you access the members of the base class (a topic that’s
discussed in detail later in this chapter). The reason you must call the New method of the base
class is that the base class might have its own constructor, which can’t be called directly. You
must always insert this statement in your constructors to make sure any initialization tasks
that must be performed by the base class will not be skipped.

The Contact class’s constructor accepts a single argument: the company name (this property
can’t be a blank string). Another useful constructor for the same class accepts two additional
arguments, the contact’s first and last names, as follows:

Public Sub New(ByVal CompanyName As String,
ByVal LastName As String, ByVal FirstName As String)

MyBase.New()
Me.ContactName = LastName & ", " & FirstName
Me.CompanyName = CompanyName

End Sub

BUILDING THE MINIMAL CLASS 333

With the two parameterized constructors in place, you can create new instances of the Con-
tact class by using a statement such as the following:

Dim contact1 As New Contact("Around the Horn")

Or you can use a statement such as this:

Dim contact1 As New Contact("Around the Horn", "Hardy", "Thomas")

Notice the lack of the Overloads (or Overrides) keyword. Constructors can have multiple
forms and don’t require the use of Overloads — just supply as many implementations of the
New() subroutine as you need.

One last but very convenient technique to initialize objects allows you to supply values for
as many properties of the new object as you wish, using the With keyword. The With key-
word is followed by the names of the properties you want to initialize and their values in a
comma-separated list, as shown in the following statements, which create two new instances of
the Person class, and they initialize each one differently:

Dim P1 As New Person With
{.LastName = "Doe", .FirstName = "Joe"})

Dim P2 As New Person With
{.LastName = "Doe", .Email = "Doe@xxx.com"})

Note that the property names are prefixed with the period. The With statement is a short-
hand notation for accessing multiple members of an instance of a class without having to repeat
the class’s name. This syntax allows you to quickly initialize new objects regardless of their
constructors; in effect, you can create your own constructor for any class. This technique will
be handy when combining object initialization with other statements, such as in the following
example, which adds a new object to a list:

Persons.Add(New Person With {.LastName = "Doe", .FirstName = "Joe"})

While the New function is the class constructor, the syntax with the With keyword is not a
constructor, although it creates a new instance of the class and initializes its properties. The
process of initializing an instance of a class is known as object initialization. An advantage of
the With keyword is that as soon as you type the opening bracket, the editor will display the
list of properties you can initialize in the IntelliSense box.

Using the SimpleClass in Other Projects
The projects we built in this section are Windows applications that contain a Class module. The
class is contained within the project, and it’s used by the project’s main form. What if you want
to use this class in another project?

First, you must change the type of the project. A Windows project can’t be used as a
component in another project. Right-click the SimpleClass project and choose Properties. In
the project’s Property Pages dialog box, switch to the Application tab, locate the Application
Type drop-down list, and change the project’s type from Windows Forms Application to
Class Library, as shown in Figure 8.5. Then close the dialog box. When you return to the

334 CHAPTER 8 WORKING WITH OBJECTS

Figure 8.5

Setting a project’s prop-
erties through the Prop-
erty Pages dialog box

project, right-click the TestForm and select Exclude From Project. A class doesn’t have a visible
interface, and there’s no reason to include the test form in your project.

From the main menu, choose Build � Build SimpleClass. This command will compile the
SimpleClass project and create a DLL file (the file that contains the class’s code and the file you
must use in any project that needs the functionality of the SimpleClass class). The DLL file will
be created in the \bin\Release folder under the project’s folder.

Let’s use the SimpleClass.dll file in another project. Start a new Windows application,
open the Project menu, and add a reference to the SimpleClass. Choose Project � Add Refer-
ence and switch to the Projects tab in the dialog box that appears. Switch to the Browse tab
and locate the SimpleClass.dll file (see Figure 8.6). Select the name of the file and click OK to
close the dialog box.

The compiler will place the DLL in the folder obj\x86\Debug under the project’s folder. The
SimpleClass component will be added to the project. You can now declare a variable of the
SimpleClass.Minimal type and call its properties and methods:

Dim obj As New SimpleClass.Minimal
obj.BDate = #10/15/1992#
obj.strProperty = 5544
MsgBox(obj.NegateNumber())

If you want to keep testing the SimpleClass project, add the TestForm to the original project
(right-click the project’s name, choose Add � Add Existing Item, and select the TestForm in
the project’s folder). Change the project’s type back to Windows Forms Application and then
change its configuration from Release to Debug.

Adding references to multiple DLLs scattered through your disk or local network can
become a nightmare, especially if multiple developers are working on the same projects. All

BUILDING THE MINIMAL CLASS 335

Figure 8.6

Adding a reference to an
existing class to a new
project

related items should belong to the same solution, so don’t be afraid to add multiple classes to
the same project. Actually, this is the recommended practice and it will simplify the task of
referencing the classes from within the other projects.

Firing Events
In addition to methods and properties, classes can also fire events. You will find that events
are not quite as common with classes. Controls have many events because they expose a visible
interface and the user interacts through this interface (clicks, drags and drops, and so on). But
classes can also raise events. Class events can come from three different sources:

Progress events A class might raise an event to indicate the progress of a lengthy process or
indicate that an internal variable or property has changed value. The PercentDone event is
a typical example. A process that takes a while to complete reports its progress to the calling
application with this event, which is fired periodically. These events, which are called progress
events, are the most common type of class events.

Time events Time events are based on a timer. They’re not very common, but you can imple-
ment alarms, job schedulers, and similar applications. You can set an alarm for a specific time
or an alarm that will go off after a specified interval.

External events External events, such as the completion of an asynchronous operation, can
also fire events. For example, a class might initiate a file download and notify the application
when the file arrives.

To fire an event from within a class, you must do the following:

1. First you must declare the event and its signature in your class. The declaration must
appear in the class, not in any procedure. A simple event, with no arguments, should

336 CHAPTER 8 WORKING WITH OBJECTS

be declared as follows (ShiftEnd is the name of the event — an event that signals the
process):

Public Event ProcessCompleted()

2. Fire the event from within your class code with the RaiseEvent method:

RaiseEvent ProcessCompleted()

That’s all as far as the class is concerned.

3. The application that uses the custom class must declare it with the WithEvents keyword.
Otherwise, it will still be able to use the class’s methods and properties, but the events
raised by the class will go unnoticed. The following statement creates an instance of the
class and listens for any event:

Dim WithEvents obj As New Minimal

4. Finally, the calling application must provide a handler for the specific event. Because
the class was declared with the WithEvents keyword, its name will appear in the list
of objects in the editor window and its ProcessCompleted event will appear in the list
of events (Figure 8.7). Insert the code you want to handle this event in the procedure
obj.ProcessCompleted.

Events usually pass information to the calling application. In VB, all events pass two argu-
ments to the application: a reference to the object that fired the event and another argument,
which is an object that contains information specific to the event.

The arguments of an event are declared just as the arguments of a procedure are declared.
The following statement declares an event that’s fired every few seconds to report the progress

Figure 8.7

Programming a custom
class’s event

BUILDING THE MINIMAL CLASS 337

of a process as a percent complete value. The event passes a single parameter value to the
application that intercepts it:

Public Event ProcessProgress(ByVal percent As Integer)

The progress is reported as an integer between 0 and 100. To raise this event from within a
class code, call the RaiseEvent statement as before, passing a value of the appropriate type,
as shown next, where the iProgress variable is maintained by the class code and is increased
with every iteration:

RaiseEvent PercentProgress(iProgress)

A Class That Manipulates Files

When coding the event’s handler, you can access the arguments and use them as you wish.
Alternatively, you could create a new object and pass multiple values to the calling appli-
cation, as most event handlers in Visual Basic do. Consider a class that manipulates a large
number of files (changes the format of many files, locates and moves images around, and so
on). You may not know how many files you’ll process, in which case the class can report the
number of files processed thus far but not the percent of the work done. The following object
exposes as properties the percent of the work completed so far as well as the number of files
processed and their total size (as well as the current folder):

Public Class FilesProcessedArgument
Public Files As Integer
Public TotalSize As Long
Public Percent As Integer
Public CurrentFolder As String

End Class

Then you can declare the event’s signature by using the FilesProcessedArgument type in the
argument list:

Public Event PercentProgress(ByVal sender As Object,
ByVal e As FilesProcessedArgument)

To fire the PercentProgress event from within your class’s code, create an instance of the
FilesProcessedArgument class, set its properties, and then call the RaiseEvent method, as
shown here:

Dim DArgument As New sFilesProcessedArgument
DArgument.Files = tmpTotalFiles
DArgument.TotalSize = tmpTotalSize
DArgument.Percent = Nothing
DArgument.CurrentFolder = tmpCurrentFolder

338 CHAPTER 8 WORKING WITH OBJECTS

RaiseEvent PercentProgress(Me, DArgument)

To intercept this event in your test application, declare an object of the appropriate type with
the WithEvents keyword and write an event handler for the PercentProgress event:

Public WithEvents obj As New EventFiringClass
Private Sub obj_Fired(ByVal sender As Object,

ByVal e As Firing.FilesProcessedArgument)
Handles obj.PercentProgress

MsgBox("Event fired" & vbCrLf &
e.Files.ToString & vbCrLf &
e.TotalSize.ToStrng & vbCrLf &
e.CurrentFolder)

End Sub

That’s all it takes to fire an event from within your custom class. In Chapter 9, ‘‘Building
Custom Windows Controls,’’ you will find several examples of custom events.

Some events expose a Cancel argument, which you can set to True to cancel an operation
that takes place in the background. For example, users should be able to abort the process of
counting the files in a volume, which can take minutes depending on the size of the volume. In
the SimpleClass project (available for download from www.sybex.com/go/masteringvb2010),
you will find the Form2. Form2 implements a method for counting files (the ProcessFiles
method). This method raises the PercentProgress event every time it starts processing a
different folder. The PercentProgress event exposes the Cancel argument, which the calling
application can set to True to end the operation. Make Form2 the startup of the project to
experiment with a class that interacts with the calling application with events. The process
takes a while, but you can interrupt it by pressing the Escape key. The code is adequately
documented and will help you understand how to retrieve multiple parameters through an
event handler as well as how to pass information back to the class through its events.

Instance and Shared Methods
As you have seen in earlier chapters, some classes allow you to call some of their members
without first creating an instance of the class. The DateTime class, for example, exposes the
IsLeapYear method, which accepts as an argument a numeric value and returns a True/False
value that indicates whether the year is a leap year. You can call this method through the Date-
Time (or Date) class without having to create a variable of the DateTime type, as shown in the
following statement:

If DateTime.IsLeapYear(1999) Then
{ process a leap year}

End If

A typical example of classes that can be used without explicit instances is the Math class. To
calculate the logarithm of a number, you can use an expression such as this one:

Math.Log(3.333)

BUILDING THE MINIMAL CLASS 339

The properties and methods that don’t require you to create an instance of the class before
you call them are called shared methods. Methods that must be applied to an instance of the
class are called instance methods. By default, all methods are instance methods. To create a
shared method, you must prefix the corresponding function declaration with the Shared key-
word, just as you would a shared property.

Why do we need shared methods, and when should we create them? If a method doesn’t
apply to a specific instance of a class, make it shared. In other words, if a method doesn’t act on
the properties of the current instance of the class, it should be shared. Let’s consider the Date-
Time class. The DaysInMonth method returns the number of days in the month (of a specific
year) that is passed to the method as an argument. You don’t really need to create an instance
of a Date object to find out the number of days in a specific month of a specific year, so the
DaysInMonth method is a shared method and can be called as follows:

DateTime.DaysInMonth(2010, 2)

Think of the DaysInMonth method this way: Do I need to create a new date to find out if
a specific month has 30 or 31 days? If the answer is no, then the method is a candidate for a
shared implementation.

The AddDays method, on the other hand, is an instance method. We have a date to which we
want to add a number of days and construct a new date. In this case, it makes sense to apply
the method to an instance of the class — the instance that represents the date to which we add
the number of days — rather than passing the date as argument to the AddDays method.

If you take a moment to reflect on shared and instance members, you’ll come to the conclu-
sion that all members could have been implemented as shared members and accept the data
they act upon as arguments. This approach, however, would reduce classes to collections of
functions, just like the built-in functions of Visual Basic. The idea behind classes, however, is
to combine data with code. If you implement a class with shared members, you lose one of the
major advantages of OOP. One of the reasons for turning to object-oriented programming was
that languages were being enhanced with every new version to a point that they were bloated
and developers couldn’t memorize all the functions.

The SharedMembers sample project (available for download from www.sybex.com/go/mas-
teringvb2010) is a simple class that demonstrates the differences between a shared and an
instance method. Both methods do the same thing: They reverse the characters in a string. The
IReverseString method is an instance method; it reverses the current instance of the class,
which is a string. The SReverseString method is a shared method; it reverses its argument.
Listing 8.18 shows the code that implements the SharedMembersClass component.

Listing 8.18: A class with a shared and an instance method

Public Class SharedMembersClass
Private _strProperty As String

Sub New(ByVal str As String)
_strProperty = str

End Sub

Sub New()

340 CHAPTER 8 WORKING WITH OBJECTS

End Sub

Public Property strProperty As String
Get

Return(_strProperty)
End Get
Set (ByVal value As String)

_strProperty = value
End Set

End Property
Public Function IReverseString() As String

Return (StrReverse(strProperty))
End Function

Public Shared Function SReverseString(ByVal str As String) As String
Return (StrReverse(str))

End Function
End Class

Note that I had to declare the parameterless constructor in the class. This form of the con-
structor should be included only if you add multiple forms of the constructor. If you don’t care
about constructors that accept parameters, you don’t have to list the default constructor explic-
itly. The instance method acts on the current instance of the class. This means that the class
must be initialized to a string, and this is why the New constructor requires a string argument.
To test the class, add a form to the project, make it the Startup object, and add two buttons to
it. The code behind the two buttons is shown next:

Private Sub Button1_Click(…) Handles Button1.Click
Dim testString As String = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Dim obj As New SharedMembersClass(testString)
Debug.WriteLine(obj.IReverseString)

End Sub

Private Sub Button2_Click(…) Handles Button2.Click
Dim testString As String = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Debug.WriteLine(SharedMembersClass.SReverseString(testString))

End Sub

The code behind the first button creates a new instance of the SharedMembersClass and calls
its IReverseString method. The second button calls the SReverseString method through the
class’s name and passes the string to be reversed as an argument to the method.

A class can also expose shared properties. There are situations in which you want all
instances of a class to see the same property value. Let’s say you want to keep track of the
users currently accessing your class. You can declare a method that must be called to enable
the class, and this method signals that another user has requested your class. This method
could establish a connection to a database or open a file. We’ll call it the Connect method.
Every time an application calls the Connect method, you can increase an internal variable
by one. Likewise, every time an application calls the Disconnect method, the same internal

BUILDING THE MINIMAL CLASS 341

variable is decreased by one. This internal variable can’t be private because it will be initialized
to zero with each new instance of the class. You need a variable that is common to all instances
of the class. Such a variable should be declared with the Shared keyword.

Let’s add a shared variable to our Minimal class. We’ll call it LoggedUsers, and it will be
read-only. Its value is reported via the Users property, and only the Connect and Disconnect
methods can change its value. Listing 8.19 is the code you must add to the Minimal class to
implement a shared property.

Listing 8.19: Implementing a shared property

Shared LoggedUsers As Integer
ReadOnly Property Users() As Integer

Get
Users = LoggedUsers

End Get
End Property

Public Function Connect() As Integer
LoggedUsers = LoggedUsers + 1
‘ { your own code here}

End Function

Public Function Disconnect() As Integer
If LoggedUsers > 1 Then

LoggedUsers = LoggedUsers - 1
End If
‘ { your own code here}

End Function

To test the shared variable, add a new button to the form and enter the code in Listing 8.20
in its Click event handler. (The lines with the bold numbers are the values reported by the
class; they’re not part of the listing.)

Listing 8.20: Testing the LoggedUsers shared property

Private Sub Button3_Click(ByVal sender As Object,
ByVal e As System.EventArgs)

Dim obj1 As New SharedMembersClass
obj1.Connect()
Debug.WriteLine(obj1.Users)

1
obj1.Connect()
Debug.WriteLine(obj1.Users)

2
Dim obj2 As New SharedMembersClass

342 CHAPTER 8 WORKING WITH OBJECTS

obj2.Connect()
Debug.WriteLine(obj1.Users)

3
Debug.WriteLine(obj2.Users)

3
Obj2.Disconnect()
Debug.WriteLine(obj2.Users)

2
End Sub

If you run the application, you’ll see the values displayed under each Debug.WriteLine
statement in the Output window. As you can see, both the obj1 and obj2 variables access the
same value of the Users property. Shared variables are commonly used in classes that run on
a server and service multiple applications. In effect, they’re the class’s global variables, which
can be shared among all the instances of a class. You can use shared variables to keep track of
connection time, the total number of rows accessed by all users of the class in a database, and
other similar quantities.

A ‘‘Real’’ Class
The StringTools project, which is included with this chapter’s projects, contains the String-
Tools class, which exposes a few interesting methods. The first two methods are the
ExtractPathName and ExtractFileName methods, which extract the filename and pathname
from a full filename. If the full name of a file is C:\Documents\Recipes\Chinese\Won Ton.txt,
the ExtractPathName method will return the substring C:\Documents\Recipes\Chinese\,
and the ExtractFileName method will return the substring Won Ton.txt.

A third method, called Num2String, converts numeric values (amounts) to the equivalent
strings. For example, it can convert the amount $12,544 to the string Twelve Thousand, Five
Hundred And Forty Four dollars. No other class in the Framework provides this functionality,
and any program that prints checks can use this class.

The Num2String method uses three properties of the StringTools class: the Case, Delimiter,
and Padding properties. The Case property determines the case of the characters in the string
returned by the method. The Delimiter property specifies the special characters that should
appear before and after the string. Finally, the Padding property specifies the character that
will appear between groups of digits. The values each of these properties can take on are mem-
bers of the appropriate enumeration:

PaddingEnum DelimiterEnum CaseEnum

paddingCommas delimiterNone caseCaps

paddingSpaces delimiterAsterisk caseLower

paddingDashes delimiter3Asterisks caseUpper

The values for each of these properties are implemented as enumerations, and you need
not memorize their names. As you enter the name of the property followed by the equal sign,
the appropriate list of values will pop up and you can select the desired member. Listing 8.21
presents the UseCaseEnum enumeration and the implementation of the UseCase property.

A ‘‘REAL’’ CLASS 343

Listing 8.21: The CaseEnum enumeration and the UseCase property

Enum CaseEnum
caseCaps
caseLower
caseUpper

End Enum

Private varUseCase As CaseEnum
Public Property [Case]() As CaseEnum

Get
Return (varUseCase)

End Get
Set

varUseCase = Value
End Set

End Property

Notice that the name of the Case property is enclosed in square brackets. This is necessary
when you’re using a reserved keyword as a variable, property, method, or enumeration mem-
ber name. Alternatively, you can use a different name for the property to avoid the conflict
altogether.

To test the StringTools class, create a test form like the one shown in Figure 8.8. Then enter
the code from Listing 8.22 in the Click event handler of the two buttons.

Listing 8.22: Testing the StringTools class

Protected Sub Button1_Click(…) Handles Button1.Click
TextBox1.Text = Convert.ToDecimal(

TextBox1.Text).ToString("#,###.00")
Dim objStrTools As New StringTools()
objStrTools.Case = StringTools.CaseEnum.CaseCaps
objStrTools.Delimiter = StringTools.DelimitEnum.DelimiterNone
objStrTools.Padding = StringTools.PaddingEnum.PaddingCommas
TextBox2.Text = objStrTools.Num2String(Convert.ToDecimal(TextBox1.Text))

End Sub

Protected Sub Button2_Click(…) Handles Button2.Click
Dim objStrTools As New StringTools()
openFileDialog1.ShowDialog()
Dim fName as String
fName = OpenFileDialog1.FileName
Debug.writeline(objStrTools.ExtractPathName(fName))
Debug.WriteLine(objStrTools.ExtractFileName(fName))

End Sub

344 CHAPTER 8 WORKING WITH OBJECTS

Figure 8.8

The test form for the
StringTools class

Nesting Classes
In the examples so far, we used simple classes with properties that are basic data types. Prac-
tical classes use nested classes and their properties are not basic data types. The very essence
of a class is to encapsulate the complexity of an entity and present a simplified view of that
particular entity. Let’s consider a simple, yet quite practical example.

Stocking a Product

A class for representing products should expose properties like the product name, its price, the
number of items in stock, and so on. Here’s a typical class that represents a product:

Public Class Product
Public Property ProductName As String
Public Property ProductPrice As Decimal
Public Property InStock As Integer
Public Property OnOrder As Integer

End Class

This class is as straightforward as it gets. But you may notice that the last two properties are
related to stocking. What if you created a class to represent a product’s in-stock and on-order
status and used it in the definition of the Product class? Consider the following Stock class,
which represents both the in-stock and on-order quantities of a product:

Public Class Stock
Public Property InStock As Integer
Public Property OnOrder As Integer

End Class

With the Stock class in place, you can create a property of the Stock type in the Product class:

Public Class Product
Public Property ProductName As String
Public Property ProductPrice As Decimal

A ‘‘REAL’’ CLASS 345

Public Property ProductStock As Stock
End Class

The ProductStock property encapsulates all the complexity of the product’s stock. The Stock
property could also contain the units that are reserved for orders that haven’t been shipped
yet (and therefore are not available for sale, even though they belong to the actual stock) and
methods for manipulating the stock. By defining a custom class, ProductStock, we’ve isolated
the stocking details from the product. When we create a new instance of the Product class, we
can assign value to the ProductStock property with statements like the following:

Dim P As New Product
P.ProductName = "New product"
P.ProductPrice = 99.99
P.ProductStock.InStock = 9
P.ProductStock.OnOrder = 24

One item of interest here is where you should define the Stock class. Should you embed its
definition in the Product class, or should you implement it as an independent class? Here are
the two possible ways to implementing the Product and Stock classes:

Public Class Product
Public Property ProductName As String
Public Property Price As Decimal
Public Property ProductStock As Stock
Public Class Stock

Public Property InStock As Integer
Public Property OnOrder As Integer

End Class
End Class

Public Class Product
Public Property ProductName As String
Public Property Price As Decimal
Public Property ProductStock As Stock

End Class
Public Class Stock

Public Property InStock As Integer
Public Property OnOrder As Integer

End Class

If the Stock class will be used only in conjunction with the Product class, you can embed its
definition in the definition of the larger class. If the Stock class may be used by several other
classes, then it should be defined as a separate class. The difference between the two methods
of nesting classes is in the way you create new instances of the nested class. If the Stock class
is embedded in the Product class, its type is Product.Stock. Otherwise, it’s type is just Stock.

The Stock class example is fairly simple, but it demonstrates the use of nested classes. Typ-
ically, an application uses high-level classes, such as Customer, Invoice, Product, and so on.
These classes are usually too complicated to be built with the basic data types, so we nest the

346 CHAPTER 8 WORKING WITH OBJECTS

classes in many levels, creating a hierarchy of classes that reflects the hierarchy of the entities
we’re modeling. Consider the Address property of the Customer class. Doesn’t it make sense
to create an Address class with the details of the address and reuse it in the Customer class?
We could also use it with the Supplier class and possibly other entities that have addresses. An
even better example is that of an invoice. The invoice’s body contains the items sold: product
codes and names, prices, units, and so on.

Let’s create a Detail class that represents the details of an invoice:

Public Class Detail
Public Property ProductID As String
Public Property ProductName As String
Public Property UnitPrice As Decimal
Public Property Units As Integer

End Class

Then, we can create a class that represents the entire invoice and make use of the Detail class:

Public Class Invoice
Public InvoiceNumber As String
Public CustomerID As Long
Public InvoiceDate As DateTime
Public Details() As Detail

Public Class Detail
Public Property ProductID As String
Public Property ProductName As String
Public Property UnitPrice As Decimal
Public Property Units As Integer

End Class
End Class

Since we’re on the topic of nesting classes, you should try to combine the ProductID and
ProductName properties into a new class, the Product class, and use this class in the definition
of the Detail class.

One more interesting topic I should mention briefly here is how to initialize objects with
nontrivial members. Let’s consider an Invoice class, which exposes a member that is an array of
custom objects. Could you initialize an instance of the Invoice class in a single statement? You
may wish to give this a try before you look at the code.

The statement is a bit complicated, so let me introduce it gradually. To create an instance of
the Invoice class, you’d use a statement like the following:

Dim detail = New Invoice.Detail With {.ProductID = 11, .ProductName = "item1",
.UnitPrice = 9.95, .Units = 3}

To populate the Invoice.Detail property, you must create an array with as many elements
as there are detail lines in the invoice. The array’s type should be of the Invoice.Detail type, as
in the following example:

OPERATOR OVERLOADING 347

Dim details(1) As Invoice.Detail
Details(0) = New Invoice.Detail With {.ProductID = 101, .ProductName = "item1",

.UnitPrice = 9.95, .Units = 3}
Details(1) = New Invoice.Detail With {.ProductID = 102, .ProductName = "item2",

.UnitPrice = 4.45, .Units = 12}

Finally, you can combine all initialization statements into a single statement that initialized
an invoice object:

Dim inv As New Invoice With
{.CustomerID = 1001, .InvoiceDate = Now,
.InvoiceNumber = "101-1",
.Details = {New Invoice.Detail With

{.ProductID = 101, .ProductName = "item1",
.UnitPrice = 9.95, .Units = 3},
New Invoice.Det0ail With

{.ProductID = 102, .ProductName = "item2",
.UnitPrice = 4.45, .Units = 12}}}

The code is probably simpler to write than it is to read. Start with simple elements, like inte-
gers, that will help you get the brackets right, and then replace each simple value with the
appropriate object constructor. You can also count on IntelliSense, which will show you the
members available at each stage every time you type the period in a With clause.

Operator Overloading
In this section you’ll learn about an interesting (but quite optional) feature of class design: how
to customize the usual operators. Some operators in Visual Basic act differently on various
types of data. The addition operator (+) is the most typical example. When used with numbers,
the addition operator adds them. When used with strings, however, it concatenates the strings.
The same operator can perform even more complicated calculations with the more-elaborate
data types. When you add two variables of the TimeSpan type, the addition operator adds their
durations and returns a new TimeSpan object. Each instance of the TimeSpan class is initialized
with three integer values, which are the number of hours, minutes, and seconds in the time
interval. If you execute the following statements, the value 3882 will be printed in the Out-
put window (this value is the number of seconds in a time span of 1 hour, 4 minutes, and
42 seconds):

Dim TS1 As New TimeSpan(1, 0, 30)
Dim TS2 As New TimeSpan(0, 4, 12)
Debug.WriteLine((TS1 + TS2).TotalSeconds.ToString)

The TimeSpan class is discussed in detail in Chapter 11, ‘‘The Framework at Large,’’ but
for the purposes of the preceding example, all you need to know is that variable TS1 repre-
sents a time span of 1 hour and 30 seconds, while TS2 represents a time span of 4 minutes
and 12 seconds. Their sum is a new time span of 1 hour, 4 minutes, and 42 seconds. So far you
have seen how to overload methods and how the overloaded forms of a method can simplify

348 CHAPTER 8 WORKING WITH OBJECTS

development. Sometimes it makes sense to alter the default function of an operator. Let’s say
you designed a class for representing lengths in meters and centimeters, something like the
following:

Dim MU As New MetricUnits
MU.Meters = 1
MU.Centimeters = 78

The MetricUnits class allows you to specify lengths as an integer number of meters and
centimeters (presumably you don’t need any more accuracy). The most common operation
you’ll perform with this class is to add and subtract lengths. However, you can’t directly add
two objects of the MetricUnits type by using a statement such as this:

TotalLength = MU1 + MU2

Wouldn’t it be nice if you could add two custom objects by using the addition operator? For
this to happen, you should be able to overload the addition operator, just as you can overload
a method. Indeed, it’s possible to overload an operator for your custom classes and write state-
ments like the preceding one. Let’s design a class to express lengths in metric and English units
and then overload the basic operators for this class.

To overload an operator, you must create an Operator procedure, which is basically a func-
tion with an odd name: the name (this is usually a symbol) of the operator you want to over-
load. The Operator procedure accepts as arguments two values of the custom type (the type
for which you’re overloading the operator) and returns a value of the same type. Here’s the
outline of an Operator procedure that overloads the addition operator:

Public Shared Operator + (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

End Operator

The procedure’s body contains the statements that add the two arguments as units of length,
not as numeric values. Overloading operators is a straightforward process that can help you
create elegant classes that can be manipulated with the common operators.

VB 2010 at Work: The LengthUnits Class
To demonstrate the overloading of common operators, I included the LengthUnits project,
which is a simple class for representing distances in English and metric units. Listing 8.23
shows the definition of the MetricUnits class, which represents lengths in meters and
centimeters.

Listing 8.23: The MetricUnits class

Public Class MetricUnits
Private _Meters As Integer
Private _Centimeters As Integer

OPERATOR OVERLOADING 349

Public Sub New()

End Sub

Public Sub New(ByVal meters As Integer, ByVal centimeters As Integer)
Me.Meters = meters
Me.Centimeters = centimeters

End Sub

Public Property Meters As Integer

Public Property Centimeters() As Integer

Get
Return _Centimeters

End Get
Set(ByVal Value As Integer)

If value > 100 Then
_Meters += Convert.ToInt32(Math.Floor(Value / 100))
_Centimeters = (Value Mod 100)

Else
_Centimeters = value

End If
End Set

End Property

Public Overloads Function Tostring() As String
Dim str As String = Math.Abs(_Meters).ToString & " meters, " &

Math.Abs(_Centimeters).ToString & " centimeters"
If _Meters < 0 Or (_Meters = 0 And _Centimeters < 0) Then

str = "-" & str
End If
Return str

End Function
End Class

The class uses the private variables _Meters and _Centimeters to store the two values that
determine the length of the current instance of the class. These variables are exposed as the
Meters and Centimeters properties. Notice the two forms of the constructor and the custom
ToString method. Because the calling application may supply a value that exceeds 100 for the
Centimeters property, the code that implements the Centimeters property checks for this con-
dition and increases the Meters property, if needed. It allows the calling application to set the
Centimeters property to 252, but internally it increases the _Meters local variable by 2 and
sets the _Centimenters local variable to 52. The ToString method returns the value of the cur-
rent instance of the class as a string such as 1.98, but it inserts a minus sign in front of it if it’s
negative. If you open the sample project, you’ll find the implementation of the EnglishUnits

350 CHAPTER 8 WORKING WITH OBJECTS

class, which represents lengths in feet and inches. The code is quite similar and I won’t repeat
it here.

There’s nothing out of the ordinary so far; it’s actually a trivial class. We can turn it into
a highly usable class by overloading the basic operators for the MetricUnits class: namely the
addition and subtraction operators. Add the Operator procedures shown in Listing 8.24 to the
class’s code to overload the addition (+) and subtraction (-) operators. By the way, you can’t
use these operators with variable of the Metric type; the compiler just doesn’t know how to
add two instances of this class.

Listing 8.24: Overloading operators for the MetricUnits class

Public Shared Operator + (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

Dim result As New metricUnits
result.Meters = 0
result.Centimeters =

length1.Meters * 100 + length1.Centimeters +
length2.Meters * 100 + length2.Centimeters

Return result
End Operator

Public Shared Operator - (
ByVal length1 As MetricUnits,
ByVal length2 As MetricUnits) As MetricUnits

Dim result As New MetricUnits
result.Meters = 0
result.Centimeters =

length1.Meters * 100 + length1.Centimeters -
length2.Meters * 100 - length2.Centimeters

Return result
End Operator

These two procedures turn an ordinary class into an elegant custom data type. You can now
create MetricUnits variables in your code and manipulate them with the addition and subtrac-
tion operators as if they were simple numeric data types. The following code segment exercises
the MetricUnits class:

Dim MU1 As New MetricUnits
MU1.Centimeters = 194
Debug.WriteLine("194 centimeters is " & MU1.Tostring & " meters")
194 centimeters is 1.94 meters
Dim MU2 As New MetricUnits
MU2.Meters = 1

OPERATOR OVERLOADING 351

MU2.Centimeters = 189
Debug.WriteLine("1 meter and 189 centimeters is " & MU2.Tostring & " meters")
1 meter and 189 centimeters is 2.89 meters
Debug.WriteLine("194 + 289 centimeters is " & (MU1 + MU2).Tostring & " meters")
194 + 289 centimeters is 4.83 meters
Debug.WriteLine("194 - 289 centimeters is " & (MU1 - MU2).Tostring & " meters")
The negative of 1.94 is -1.94
MU1.Meters = 4
MU1.Centimeters = 63
Dim EU1 As EnglishUnits = CType(MU1, EnglishUnits)
Debug.WriteLine("4.62 meters are " & EU1.Tostring)
4.62 meters are 15’ 2"
MU1 = CType(EU1, MetricUnits)
Debug.WriteLine(EU1.Tostring & " are " & MU1.Tostring & " meters")
15’ 2" are 4.62 meters

If you execute the preceding statements, the highlighted values will appear in
the Output window. (The LengthUnits sample project, available for download from
www.sybex.com/go/masteringvb2010, uses a TextBox control to display its output.) Figure 8.9
shows the test project for the MetricUnits and EnglishUnits classes. The last few statements
convert values between metric and English units, and you’ll see the implementation of these
operations momentarily.

Figure 8.9

Exercising the members
of the MetricUnits class

Implementing Unary Operators

In addition to being the subtraction operator, the minus symbol is also a unary operator (it
negates the following value). If you attempt to negate a MetricUnits variable, an error will
be generated because the subtraction operator expects two values — one on either side of it. In
addition to the subtraction operator (which is a binary operator because it operates on two val-
ues), we must define the negation operator (which is a unary operator because it operates on

352 CHAPTER 8 WORKING WITH OBJECTS

a single value). The unary minus operator negates the following value, so a new definition of
the subtraction Operator procedure is needed. This definition will overload the existing one, as
follows:

Public Overloads Shared Operator -(
ByVal length1 As MetricUnits) As MetricUnits

Dim result As New MetricUnits
result.Meters = -length1.Meters
result.Centimeters = -length1.Centimeters
Return result

End Operator

To negate a length unit stored in a variable of the MetricUnits type in your application’s
code, use statements such as the following:

MU2 = -MU1
Debug.Write(MU2.Tostring)
Debug.Write((-MU1).Tostring)

Both statements will print the following in the Output window:

-1 meters, -94 centimeters

There are several unary operators, which you can overload in your custom classes as
needed. There’s the unary + operator (not a common operator), and the Not, IsTrue, and
IsFalse operators, which are logical operators. The last unary operator is the CType operator,
which is exposed as a method of the custom class and is explained next.

Handling Variants

To make your custom data type play well with the other data types, you must also provide a
CType() function that can convert a value of the MetricUnits type to any other type. It doesn’t
make much sense to convert metric units to dates or any of the built-in objects, but let’s say
you have another class: the EnglishUnits class. This class is similar to the MetricUnits class, but
it exposes the Inches and Feet properties in place of the Meters and Centimeters properties.
The CType() function of the MetricUnits class, which will convert metric units to English units,
is shown next:

Public Overloads Shared Widening Operator
CType(ByVal MU As MetricUnits) As EnglishUnits

Dim EU As New EnglishUnits
EU.Inches = Convert.ToInt32(

(MU.Meters * 100 + MU.Centimeters) / 2.54)
Return EU

End Operator

Do you remember the implicit narrowing and widening conversions we discussed in
Chapter 2, ‘‘Handling Data’’? An attempt to assign an integer value to a decimal variable will
produce a warning, but the statement will be executed because it’s a widening conversion
(no loss of accuracy will occur). The opposite is not true. If the Strict option is on, the

THE BOTTOM LINE 353

compiler won’t allow narrowing conversions because not all decimal values can be mapped
to integers. To help the compiler enforce strict types, you can use the appropriate keyword to
specify whether the CType() function performs a widening or a narrowing conversion. The
CType() procedure is shared and overloads the default implementation, which explains all the
keywords prefixing its declaration. The following statements exercise the CType method of the
MetricUnits class:

Debug.Write(MU1.Tostring)
1 meters, 94 centimeters
Debug.WriteLine(CType(MU1, EnglishUnits).Tostring)
6 feet, 4 inches

The output of the two statements is highlighted. In this code both classes expose integer
properties, so the Widening or Narrowing keyword isn’t really important. In other situations,
you must carefully specify the type of the conversion to help the compiler generate the appro-
priate warnings (or exceptions, if needed).

The CType operator we added to the MetricUnits class can only convert values of the Met-
ricUnit type to values of the EnglishUnit type. If it makes sense to convert MetricUnits vari-
ables to other types, you must provide more overloaded forms of the CType() procedure. For
example, you can convert them to numeric values (the numeric value could be the length in
centimeters or a double value that represents the same length in meters). The compiler sees
the return type(s) of the various overloaded forms of the CType operator, and since it knows
whether the requested conversion is possible, it will generate the appropriate exception.

In short, operator overloading isn’t complicated, adds a touch of elegance to a custom class,
and enables variables of this type to mix well with the other data types. If you like math, you
could implement classes to represent matrices, or complex numbers, and overload the usual
operators for addition, multiplication, and so on. The downside of operator overloading (at
least in its current implementation) is that it requires quite a bit of code. Even so, the code is
straightforward. The LengthUnits sample application contains quite a bit of code that I haven’t
discussed in this chapter, but I suggest you take a look at the application as it implements
many operators, including equals (=), not equals (<>), greater than, and less than.

The Bottom Line

Build your own classes. Classes contain code that executes without interacting with the user.
The class’s code is made up of three distinct segments: the declaration of the private variables,
the property procedures that set or read the values of the private variables, and the methods,
which are implemented as public subroutines or functions. Only the public entities (proper-
ties and methods) are accessible by any code outside the class. Optionally, you can implement
events that are fired from within the class’s code. Classes are referenced through variables of
the appropriate type, and applications call the members of the class through these variables.
Every time a method is called, or a property is set or read, the corresponding code in the class
is executed.

Master It How do you implement properties and methods in a custom class?

Master It How would you use a constructor to allow developers to create an instance of
your class and populate it with initial data?

354 CHAPTER 8 WORKING WITH OBJECTS

Master It Which are the default methods of a custom class that you will most likely over-
ride with more meaningful definitions?

Master It How should you handle exceptions in a class?

Overloading operators. Overloading is a common theme in coding classes (or plain proce-
dures) with Visual Basic. In addition to overloading methods, you can overload operators.
In other words, you can define the rules for adding or subtracting two custom objects, if this
makes sense for your application.

Master It When should you overload operators in a custom class, and why?

Chapter 9

Building Custom Windows Controls

Just as you can design custom classes, you can use Visual Studio to design custom controls.
The process is very similar, in the sense that custom controls have properties, methods, and
events, which are implemented with code that’s identical to the code you’d use to implement
these members with classes. The difference is that controls have a visual interface and interact
with the user. In short, you must provide the code to draw the control’s surface as well as react
to selected user actions from within the control’s code.

In this chapter, you’ll learn how to enhance the functionality of existing controls, a common
practice among developers, as well as how to build custom controls from scratch. Specifically,
you will learn how to do the following:

◆ Extend the functionality of existing Windows Forms controls with inheritance

◆ Build compound custom controls that combine multiple existing controls

◆ Build custom controls from scratch

◆ Customize the rendering of the items in a ListBox control

On Designing Windows Controls
Before I get to the details of how to build custom controls, I want to show you how they relate
to other types of projects. I’ll discuss briefly the similarities and differences among Windows
controls, classes, and Windows projects. This information will help you get the big picture and
put together the pieces of the following sections.

An application interacts with the user through its interface. The developer decides how the
forms interact with the user, and the user has to follow the rules. Something similar happens
with custom controls. The custom control provides a well-defined interface, which consists of
properties and methods. This is the only way to manipulate the control. Just as users of your
applications don’t have access to the source code and can’t modify the application, develop-
ers can’t see the control’s source code and must access it through the interface exposed by the
control. After an instance of the custom control is placed on the form, the developer can manip-
ulate it through its properties and methods, but you never get to see the code.

In preceding chapters, you learned how to implement interfaces consisting of properties and
methods and how to raise events from within a class. This is how you build the interface of a
custom Windows control: You implement properties with Property procedures, and you imple-
ment methods as Public procedures. Although a class can provide a few properties and any
number of methods, a control must provide a large number of properties. A developer who

356 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

places a custom control on a form expects to see the properties that are common to all the con-
trols (properties to set the control dimensions, the color, and the text font; the Index and Tag
properties; and so on). Fortunately, many of the standard properties are exposed automatically.
The developer also expects to be able to program all the common events, such as the mouse
and keyboard events, as well as some events that are unique to the custom control.

The design of a Windows control is similar to the design of a form. You place controls on
a form-like object, called UserControl, which is the control’s surface. It provides nearly all the
methods of a standard form, and you can adjust its appearance with the drawing methods. In
other words, you can use familiar programming techniques to draw a custom control or you
can use existing controls to build a custom control.

The major difference between forms and custom controls is that custom controls can exist
in two runtime modes. When the developer places a control on a form, the control is actually
running. When you set properties through the Properties window, something happens to the
control — its appearance changes or the control rejects the changes. It means that the code
of the custom control is executing, even though the project in which the control is used is in
design mode. When the developer starts the application, the custom control is already running.
However, the control must be able to distinguish when the project is in design or execution
mode and behave accordingly. Here’s the first property of the UserControl object you will be
using quite frequently in your code: the DesignMode property. When the control is positioned
on a form and used in the Designer, the DesignMode property is True. When the developer
starts the project that contains the control, the DesignMode property is False.

This dual runtime mode of a Windows control is something you’ll have to get used to.
When you design custom controls, you must also switch between the roles of Windows
control developer (the programmer who designs the control) and application developer (the
programmer who uses the control).

In summary, a custom control is an application with a visible user interface as well as an
invisible programming interface. The visible interface is what the developer sees when an
instance of the control is placed on the form, and it’s also what the user sees on the form
when the project is placed in runtime mode. The developer using the control can manipulate
it through its properties and methods. The control’s properties can be set at both design time
and runtime, whereas methods must be called from within the code of the application that
uses the control. The properties and methods constitute the control’s invisible interface (or the
developer interface, as opposed to the user interface). You, the control developer, will develop
the visible user interface on a UserControl object, which is almost identical to the Form object;
it’s like designing a standard application. As far as the control’s invisible interface goes, it’s like
designing a class.

Enhancing Existing Controls
The simplest type of custom Windows control you can build is one that enhances the function-
ality of an existing control. Fortunately, they’re the most common types of custom controls, and
many developers have their own collections of enhanced Windows controls. The Windows con-
trols are quite functional, but you won’t be hard-pressed to come up with ideas to make them
better.

The TextBox control, for example, is a text editor on its own, and you have seen how easy
it is to build a text editor by using the properties and methods exposed by this control. Many
programmers add code to their projects to customize the appearance and the functionality of
the TextBox control.

Let’s say you’re building data-entry forms composed of many TextBox controls. To help
the user identify the current control on the form, it would be nice to change its color while

ENHANCING EXISTING CONTROLS 357

it has the focus. If the current control has a different color from all others, users will quickly
locate it.

Another thing you can do with the TextBox control is format its contents as soon as it loses
focus. Let’s consider a TextBox control that must accept dollar amounts. After the user enters
a numeric value, the control could automatically format the numeric value as a dollar amount
and perhaps change the text’s color to red for negative amounts. When the control receives the
focus again, you can display the amount without any special formatting so that users can edit
it quickly. As you will see, it’s not only possible but actually quite easy to build a control that
incorporates all the functionality of a TextBox and some additional features that you provide
through the appropriate code. You already know how to add features such as the ones described
here to a TextBox from within the application’s code. But what if you want to enhance multiple
TextBox controls on the same form or reuse your code in multiple applications?

The best approach is to create a new Windows control with all the desired functionality and
then reuse it in multiple projects. To use the proper terminology, you can create a new cus-
tom Windows control that inherits the functionality of the TextBox control. The derived control
includes all the functionality being inherited from the control, plus any new features you care
to add to it. This is exactly what we’re going to do in this section.

Building the FocusedTextBox Control
Let’s call our new custom control FocusedTextBox. Start a new project, and in the New Project
dialog box, select the template Windows Forms Control Library. Name the project Focused-
TextBox. The Solution Explorer for this project contains a single item, the UserControl1 item.
UserControl1 (see Figure 9.1) is the control’s surface — in a way, it’s the control’s form. This
is where you’ll design the visible interface of the new control using the same techniques you
would use to design a Windows form.

Figure 9.1

A custom control in
design mode

358 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Start by renaming the UserControl1 object to FocusedTextBox. Then save the project by
choosing File � Save All. To inherit all the functionality of the TextBox control into our new
control, we must insert the appropriate Inherits statement in the control’s code. Click the
Show All button in the Solution Explorer to see all the files that make up the project. Under
the FocusedTextBox.vb file is the FocusedTextBox.Designer.vb file. Open this file by
double-clicking its name and you’ll see that it begins with the following two statements:

Partial Public Class FocusedTextBox
Inherits System.Windows.Forms.UserControl

The first statement says that the entire file belongs to the FocusedTextBox class; it’s the part
of the class that contains initialization code and other statements that the user does not need to
see because it’s left unchanged in most cases. To design an inherited control, we must change
the second statement to the following:

Inherits System.Windows.Forms.TextBox

This statement tells the compiler that we want our new control to inherit all the func-
tionality of the TextBox control. You must also modify the InitializeComponent method
in the FocusedTextBox.Designer.vb file by removing the statement that sets the control’s
AutoScaleMode property. This statement applies to the generic UserControl object but not to
the TextBox control.

As soon as you specify that your custom control inherits the TextBox control, the UserCon-
trol object will disappear from the Designer. The Designer knows exactly what the new control
must look like (it will look and behave exactly like a TextBox control), and you’re not allowed
to change its appearance.

If you switch to the FocusedTextBox.vb file, you’ll see that it’s a public class called
FocusedTextBox. The Partial class by the same name is part of this class; it contains the code
that was generated automatically by Visual Studio. When compiled, both classes will produce
a single DLL file. Sometimes we need to split a class’s code into two files, and one of them
should contain the Partial modifier. This keyword signifies that the file contains part of the
class. The FocusedTextBox.vb file is where you will insert your custom code. The Partial class
contains the code emitted by Visual Studio, and you’re not supposed to touch it. Inherited con-
trols are an exception to this rule because we have to be able to modify the Inherits statement,
but the role of the Partial modifier is to enable us to split classes into two separate files.

Let’s test the control and verify that it exposes the same functionality as the TextBox
control. Figure 9.2 shows the IDE while you’re developing an inherited control. Notice that
the FocusedTextBox control has inherited all the properties of the TextBox control, such as the
MaxLength and PasswordChar properties.

To test the control, you must add it to a form. A control can’t be executed outside the
context of a host application. Add a new project to the solution (a Windows Forms Application
project) with the File � Add � New Project command. When the Add New Project dialog
box appears, select the Windows Forms Application template and set the project’s name to
TestProject. A new folder will be created under the project folder TextBox — the TestProject
folder — and the new project will be stored there. The TestProject must also become the
solution’s startup object. (This is the very reason we added the project to our solution: to have
an executable for testing the custom control.) Right-click the test project’s name in the Solution
Explorer and select Set As StartUp Object in the context menu.

ENHANCING EXISTING CONTROLS 359

Figure 9.2

The IDE during the
design of an inherited
control

To test the control you just designed, you need to place an instance of the custom control on
the form of the test project. First, you must build the control. Select the FocusedTextBox item
in the Solution Explorer, and from the Build menu, select the Build FocusedTextBox command
(or right-click the FocusedTextBox component in the Solution Explorer and select Build from
the context menu). The build process will create a DLL file with the control’s executable code
in the Bin folder under the project’s folder.

Then switch to the test project’s main form and open the Toolbox. You will see a new tab,
the FocusedTextBox Components tab, which contains all the custom components of the cur-
rent project. The new control has already been integrated into the design environment, and you
can use it as you would any of the built-in Windows controls. Every time you edit the code
of the custom control, you must rebuild the control’s project for the changes to take effect and
update the instances of the custom control on the test form. The icon that appears before the
custom control’s name is the default icon for all custom Windows controls. You can associate a
different icon with your custom control, as explained in the section ‘‘Classifying the Control’s
Properties,’’ later in this chapter.

Place an instance of the FocusedTextBox control on the form and check it out. It looks, feels,
and behaves just like a regular TextBox. In fact, it is a TextBox control by a different name.
It exposes all the members of the regular TextBox control: You can move it around, resize it,
change its Multiline and WordWrap properties, set its Text property, and so on. It also exposes
all the methods and events of the TextBox control.

Adding Functionality to Your Custom Control

As you can see, it’s quite trivial to create a new custom control by inheriting any of the built-in
Windows controls. Of course, what good is a control that’s identical to an existing one? The
idea is to add some extra functionality to the TextBox control, so let’s do it. Switch to the

360 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

control project and view the FocusedTextBox object’s code. In the code editor’s pane, expand
the Objects list and select the item FocusedTextBox Events. This list contains the events of the
TextBox control because it is the base control for our custom control.

Expand the Events drop-down list and select the Enter event. The following event handler
declaration will appear:

Private Sub FocusedTextBox_Enter(…) Handles Me.Enter

End Sub

This event takes place every time our custom control gets the focus. To change the color of
the current control, insert the following statement in the event handler:

Me.BackColor = Color.Cyan

(Or use any other color you like; just make sure it mixes well with the form’s default back-
ground color. You can also use the members of the SystemColors enumeration, to help ensure
that it mixes well with the background color.) We must also program the Leave event so that
the control’s background color is reset to white when it loses the focus. Enter the following
statement in the Leave event’s handler:

Private Sub FocusedTextBox_Leave(…) Handles Me.Leave
Me.BackColor = Color.White

End Sub

Having a hard time picking the color that signifies that the control has the focus? Why not
expose this value as a property so that you (or other developers using your control) can set it
individually in each project? Let’s add the EnterFocusColor property, which is the control’s
background color when it has the focus.

Because our control is meant for data-entry operations, we can add another neat feature.
Some fields on a form are usually mandatory, and some are optional. Let’s add some visual
indication for the mandatory fields. First, we need to specify whether a field is mandatory with
the Mandatory property. If a field is mandatory, its background color will be set to the value
of the MandatoryColor property, but only if the control is empty.

Here’s a quick overview of the control’s custom properties:

EnterFocusColor When the control receives the focus, its background color is set to this
value. If you don’t want the currently active control to change color, set its EnterFocusColor
property to white.

Mandatory This property indicates whether the control corresponds to a required field if
Mandatory is True or to an optional field if Mandatory is False.

MandatoryColor This is the background color of the control if its Mandatory property is set
to True. The MandatoryColor property overwrites the control’s default background color. In
other words, if the user skips a mandatory field, the corresponding control is painted with the
color specified by the MandatoryColor property, and it’s not reset to the control’s default back-
ground color. Required fields behave like optional fields after they have been assigned a value.

ENHANCING EXISTING CONTROLS 361

If you read the previous chapter, you should be able to implement these properties easily.
Listing 9.1 is the code that implements the four custom properties. The values of the properties
are stored in the private variables declared at the beginning of the listing. Then the control’s
properties are implemented as Property procedures.

Listing 9.1: The Property procedures of the FocusedTextBox custom control

Dim _mandatory As Boolean
Dim _enterFocusColor, _leaveFocusColor As Color
Dim _mandatoryColor As Color

Property Mandatory() As Boolean
Get

Mandatory = _mandatory
End Get
Set(ByVal value As Boolean)

_mandatory = Value
End Set

End Property

Property EnterFocusColor() As System.Drawing.Color
Get

Return _enterFocusColor
End Get
Set(ByVal value As System.Drawing.Color)

_enterFocusColor = value
End Set

End Property

Property MandatoryColor() As System.Drawing.Color
Get

Return _mandatoryColor
End Get
Set(ByVal value As System.Drawing.Color)

_mandatoryColor = value
End Set

End Property

The last step is to use these properties in the control’s Enter and Leave events. When the
control receives the focus, it changes its background color to EnterFocusColor to indicate that
it’s the active control on the form (the control with the focus). When it loses the focus, its back-
ground is restored to the usual background color, unless it’s a required field and the user has
left it blank. In this case, its background color is set to MandatoryColor. Listing 9.2 shows the
code in the two focus-related events of the UserControl object.

362 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Listing 9.2: Enter and Leave events

Private _backColor As Color
Private Sub FocusedTextBox_Enter(…) Handles MyBase.Enter

_backColor = Me.BackColor
Me.BackColor = _enterFocusColor

End Sub

Private Sub FocusedTextBox_Leave(…) Handles MyBase.Leave
If Trim(Me.Text).Length = 0 And _mandatory Then

Me.BackColor = _mandatoryColor
Else

Me.BackColor = _backColor
End If

End Sub

Testing the FocusedTextBox Control

Build the control again with the Build � Build FocusedTextBox command and switch to the test
form. (To see the Build FocusedTextBox command in the menu, you must select the Windows
Control project in the Solution Explorer; otherwise, you will see the command Build TestPro-
ject). Place several instances of the custom control on the form, align them, and then select each
one and set its properties in the Properties window. The new properties are appended at the
bottom of the Properties window, on the Misc tab (for miscellaneous properties). You will see
shortly how to add each property under a specific category, as shown in Figure 9.3. Set the cus-
tom properties of a few controls on the form and then press F5 to run the application. See how
the FocusedTextBox controls behave as you move the focus from one to the other and how they
handle the mandatory fields.

Figure 9.3

Custom properties of
the FocusedTextBox con-
trol in the Properties
window

ENHANCING EXISTING CONTROLS 363

Pretty impressive, isn’t it? Even if you have no use for an enhanced TextBox control, you’ll
agree that building it was quite simple. Next time you need to enhance one of the Windows
controls, you’ll know how to do it. Just build a new control that inherits from an existing con-
trol, add some custom members, and use it. Create a project with all the ‘‘enhanced’’ controls
and use them regularly in your projects. All you have to do is add a reference to the DLL that
implements the control in a new project, just like reusing a custom class.

Classifying the Control’s Properties

Let’s go back to the FocusedTextBox control — there are some loose ends to take care of. First,
you must specify the category in the Properties window under which each custom property
appears. By default, all the properties you add to a custom control are displayed in the Misc
section of the Properties window. To specify that a property be displayed in a different section,
use the Category attribute of the Property procedure. As you will see, properties have other
attributes too, which you can set in your code as you design the control.

Properties have attributes, which appear in front of the property name and are enclosed
in a pair of angle brackets. All attributes are members of the System.ComponentModel class,
and you must import this class to the module that contains the control’s code. The following
attribute declaration in front of the property’s name determines the category of the Properties
window in which the specific property will appear:

<Category("Appearance")> Public Property

If none of the existing categories suits a specific property, you can create a new category
in the Properties window by specifying its name in the Category attribute. If you have a few
properties that should appear in a section called Conditional, insert the following attribute in
front of the declarations of the corresponding properties:

<Category("Conditional")> Public Property

When this control is selected, the Conditional section will appear in the Properties window, and
all the properties with this attribute will be under it.

Another attribute is the Description attribute, which determines the property’s description
that appears at the bottom of the Properties window when the property is selected. You can
specify multiple attributes as follows:

<Description("Indicates whether the control can be left blank")>
<Category("Appearance")>
Property Mandatory() As Boolean

‘ the property procedure’s code
End Property

The most important attribute is the DefaultValue attribute, which determines the property’s
default (initial) value. The DefaultValue attribute must be followed by the default value in
parentheses:

<Description("Indicates whether the control can be left blank")>
<Category("Appearance"), DefaultValue(False)>
Property Mandatory() As Boolean

‘ the property procedure’s code
End Property

364 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Some attributes apply to the class that implements the custom controls. The DefaultProperty
and DefaultEvent attributes determine the control’s default property and event. To specify
that Mandatory is the default property of the FocusedTextBox control, replace the class
declaration with the following:

<DefaultProperty("Mandatory")> Public Class FocusedTextBox

Events are discussed later in the chapter, but you already know how to raise an event from
within a class. Raising an event from within a control’s code is quite similar. Open the Focused-
TextBox project, examine its code, and experiment with new properties and methods.

As you may have noticed, all custom controls appear in the Toolbox with the same icon.
You can specify the icon to appear in the Toolbox with the ToolboxBitmap attribute, whose
syntax is as follows, where imagepath is a string with the absolute path to a 16×16-pixel
bitmap:

<ToolboxBitmap(imagepath)> Public Class FocusedTextBox

The bitmap is actually stored in the control’s DLL and need not be distributed along with the
control.

Now we’re ready to move on to something more interesting. This time, we’ll build a con-
trol that combines the functionality of several controls, which is another common scenario. You
will literally design its visible interface by dropping controls on the UserControl object, just like
designing the visible interface of a Windows form.

Building Compound Controls
A compound control provides a visible interface that consists of multiple Windows controls. The
controls that make up a compound control are known as constituent controls. As a result, this
type of control doesn’t inherit the functionality of any specific control. You must implement its
properties and methods with custom code. This isn’t as bad as it sounds, because a compound
control inherits the UserControl object, which exposes quite a few members of its own (the
Anchoring and Docking properties, for example, are exposed by the UserControl object,
and you need not implement these properties — thank Microsoft). You will add your own
members, and in most cases you’ll be mapping the properties and methods of the compound
controls to a property or method of one of its constituent controls. If your control contains
a TextBox control, for example, you can map the custom control’s WordWrap property to
the equivalent property of the TextBox. The following property procedure demonstrates
how to do it:

Property WordWrap() As Boolean
Get

WordWrap = TextBox1.WordWrap
End Get
Set(ByVal Value As Boolean)

TextBox1.WordWrap = Value
End Set

End Property

BUILDING COMPOUND CONTROLS 365

You don’t have to maintain a private variable for storing the value of the custom control’s
WordWrap property. When this property is set, the Property procedure assigns the property’s
value to the TextBox1.WordWrap property. Likewise, when this property’s value is requested,
the procedure reads it from the constituent control and returns it. In effect, the custom control’s
WordWrap property affects directly the functionality of one of the constituent controls.

The same logic applies to events. Let’s say your compound control contains a TextBox and
a ComboBox control, and you want to raise the TextChanged event when the user edits the
TextBox control and the SelectionChanged event when the user selects another item in the
ComboBox control. First, you must declare the two events:

Event TextChanged
Event SelectionChanged

Then, you must raise the two events from within the appropriate event handlers:
the TextChanged event from the TextBox1 control’s TextChanged event handler and the
SelectionChanged event from the ComboBox1 control’s SelectedIndexChanged event
handler:

Private Sub TextBox1_TextChanged(…)
Handles FocusedTextBox1.TextChanged

RaiseEvent TextChanged()
End Sub

Private Sub ComboBox1_SelectedIndexChanged(…)
Handles ComboBox1.SelectedIndexChanged

RaiseEvent SelectionChanged()
End Sub

VB 2010 at Work: The ColorEdit Control
In this section, you’re going to build a compound control that’s similar to the Color dialog box.
The ColorEdit control allows you to specify a color by adjusting its red, green, and blue com-
ponents with three scroll bars or to select a color by name. The control’s surface at runtime on
a form is shown in Figure 9.4.

Figure 9.4

The ColorEdit control on
a test form

Create a new Windows Control Library project, the ColorEdit project. Save the solution
and then add a new Windows Application project, the TestProject, and make it the solution’s
startup project, just as you did with the first sample project of this chapter.

366 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Now, open the UserControl object and design its interface as shown in Figure 9.4. Place the
necessary controls on the UserControl object’s surface and align them just as you would do
with a Windows form. The three ScrollBar controls are named RedBar, GreenBar, and BlueBar,
respectively. The Minimum property for all three controls is 0; the Maximum for all three is 255.
This is the valid range of values for a color component. The control at the top-left corner is a
Label control with its background color set to black. (We could have used a PictureBox control
in its place.) The role of this control is to display the selected color.

The ComboBox at the bottom of the custom control is the NamedColors control, which is
populated with color names when the control is loaded. The Color class exposes 140 properties,
which are color names (beige, azure, and so on). Don’t bother entering all the color names in
the ComboBox control; just open the ColorEdit project and you will find the AddNamedColors()
subroutine, which does exactly that.

The user can specify a color by sliding the three ScrollBar controls or by selecting an item
in the ComboBox control. In either case, the Label control’s background color will be set to
the selected color. If the color is specified with the ComboBox control, the three ScrollBars will
adjust to reflect the color’s basic components (red, green, and blue). Not all possible colors that
you can specify with the three ScrollBars have a name (there are approximately 16 million col-
ors). That’s why the ComboBox control contains the Unknown item, which is selected when the
user specifies a color by setting its basic components.

Finally, the ColorEdit control exposes two properties: NamedColor and SelectedColor. The
NamedColor property retrieves the selected color’s name. If the color isn’t selected from the
ComboBox control, the value Unknown will be returned. The SelectedColor property returns
or sets the current color. Its type is Color, and it can be assigned any expression that repre-
sents a color value. The following statement will assign the form’s BackColor property to the
SelectedColor property of the control:

UserControl1.SelectedColor = Me.BackColor

You can also specify a color value with the FromARGB method of the Color object:

UserControl1.SelectedColor = Color.FromARGB(red, green, blue)

The implementation of the SelectedColor property (shown in Listing 9.3) is straight-
forward. The Get section of the procedure assigns the Label’s background color to the
SelectedColor property. The Set section of the procedure extracts the three color components
from the value of the property and assigns them to the three ScrollBar controls. Then it
calls the ShowColor subroutine to update the display. (You’ll see shortly what this sub-
routine does.)

Listing 9.3: SelectedColor property procedure

Property SelectedColor() As Color
Get

SelectedColor = Label1.BackColor
End Get
Set(ByVal Value As Color)

HScrollBar1.Value = Value.R

BUILDING COMPOUND CONTROLS 367

HScrollBar2.Value = Value.G
HScrollBar3.Value = Value.B
ShowColor()

End Set
End Property

The NamedColor property (see Listing 9.4) is read-only and is marked with the ReadOnly
keyword in front of the procedure’s name. This property retrieves the value of the ComboBox
control and returns it.

Listing 9.4: NamedColor property procedure

ReadOnly Property NamedColor() As String
Get

NamedColor = ComboBox1.SelectedItem
End Get

End Property

When the user selects a color name in the ComboBox control, the code retrieves the corre-
sponding color value with the Color.FromName method. This method accepts a color name as
an argument (a string) and returns a color value, which is assigned to the namedColor variable.
Then the code extracts the three basic color components with the R, G, and B properties. (These
properties return the red, green, and blue color components, respectively.) Listing 9.5 shows the
code behind the ComboBox control’s SelectedIndexChanged event, which is fired every time a
new color is selected by name.

Listing 9.5: Specifying a color by name

Private Sub ComboBox1_SelectedIndexChanged(…) Handles ComboBox1.SelectedIndexChanged
Dim namedColor As Color
Dim colorName As String
colorName = ComboBox1.SelectedItem
If colorName <> "Unknown" Then

namedColor = Color.FromName(colorName)
HScrollBar1.Value = namedColor.R
HScrollBar2.Value = namedColor.G
HScrollBar3.Value = namedColor.B
ShowColor()

End If
End Sub

The ShowColor() subroutine simply sets the Label’s background color to the value specified
by the three ScrollBar controls. Even when you select a color value by name, the control’s code

368 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

sets the three ScrollBars to the appropriate values. This way, we don’t have to write additional
code to update the display. The ShowColor() subroutine is quite trivial:

Sub ShowColor()
Label1.BackColor = Color.FromARGB(255, HScrollBar1.Value,

HScrollBar2.Value, HScrollBar3.Value)
End Sub

The single statement in this subroutine picks up the values of the three basic colors from
the ScrollBar controls and creates a new color value with the FromARGB method of the Color
object. The first argument is the transparency of the color (the alpha channel), and we set it to
255 for a completely opaque color. You can edit the project’s code to take into consideration the
transparency channel as well. If you do, you must replace the Label control with a PictureBox
control and display an image in it. Then draw a rectangle with the specified color on top of
it. If the color isn’t completely opaque, you’ll be able to see the underlying image and visually
adjust the transparency channel.

Testing the ColorEdit Control

To test the new control, you must place it on a form. Build the ColorEdit control and switch to
the test project (add a new project to the current solution if you haven’t done so already). Add
an instance of the new custom control to the form. You don’t have to enter any code in the test
form. Just run it and see how you specify a color, either with the scroll bars or by name. You
can also read the value of the selected color through the SelectedColor property. The code
behind the Color Form button on the test form does exactly that (it reads the selected color and
paints the form with this color):

Private Sub Button1_Click(…) Handles Button1.Click
Me.BackColor = ColorEdit1.SelectedColor

End Sub

Building User-Drawn Controls
This is the most complicated but most flexible type of control. A user-drawn control consists
of a UserControl object with no constituent controls. You are responsible for updating the
control’s visible area with the appropriate code, which you must insert in the control’s OnPaint
method. (This method is invoked automatically every time the control’s surface must be
redrawn.)

To demonstrate the design of user-drawn controls, we’ll develop the Label3D control, which
is an enhanced Label control and is shown in Figure 9.5. It provides all the members of the
Label control plus the capability to render its caption in three-dimensional type. The new cus-
tom control is called Label3D, and its project is the FlexLabel project. It contains the Label3D
project (which is a Windows Control Library project) and the usual test project (which is a Win-
dows Application project).

At this point, you’re probably thinking about the code that aligns the text and renders it as
carved or raised. A good idea is to start with a Windows project, which displays a string on
a form and aligns it in all possible ways. A control is an application packaged in a way that
allows it to be displayed on a form instead of on the Desktop. As far as the functionality is
concerned, in most cases it can be implemented on a regular form. Conversely, if you can dis-
play 3D text on a form, you can do so with a custom control.

BUILDING USER-DRAWN CONTROLS 369

Figure 9.5

The Label3D control is
an enhanced Label
control.

Designing a Windows form with the same functionality is fairly straightforward. You
haven’t seen the drawing methods yet, but this control doesn’t involve any advanced drawing
techniques. All we need is a method to render strings on the control. To achieve the 3D effect,
you must display the same string twice, first in white and then in black on top of the white.
The two strings must be displaced slightly, and the direction of the displacement determines
the effect (whether the text will appear as raised or carved). The amount of displacement
determines the depth of the effect. Use a displacement of 1 pixel for a light effect and a
displacement of 2 pixels for a heavy one.

VB 2010 at Work: The Label3D Control
The first step of designing a user-drawn custom control is to design the control’s interface: what
it will look like when placed on a form (its visible interface) and how developers can access
this functionality through its members (the programmatic interface). Sure, you’ve heard the
same advice over and over, and many of you still start coding an application without spending
much time designing it. In the real world, especially if they are not a member of a program-
ming team, people design as they code (or the other way around).

The situation is quite different with Windows controls. Your custom control must provide
properties, which will be displayed automatically in the Properties window. The developer
should be able to adjust every aspect of the control’s appearance by manipulating the settings
of these properties. In addition, developers expect to see the standard properties shared by
most controls (such as the background color, the text font, and so on) in the Properties window.
You must carefully design the methods so that they expose all the functionality of the control
that should be accessed from within the application’s code, and the methods shouldn’t overlap.
Finally, you must provide the events necessary for the control to react to external events. Don’t
start coding a custom control unless you have formulated a clear idea of what the control will
do and how developers will use it at design time.

Label3D Control Specifications

The Label3D control displays a caption like the standard Label control, so it must provide a
Font property, which lets the developer determine the label’s font. The UserControl object
exposes its own Font property, so we need not implement it in our code. In addition, the
Label3D control can align its caption both vertically and horizontally. This functionality will
be exposed by the Alignment property, whose possible settings are the members of the Align
enumeration: TopLeft, TopMiddle, TopRight, CenterLeft, CenterMiddle, CenterRight,
BottomLeft, BottomMiddle, and BottomRight. The (self-explanatory) values are the names that
will appear in the drop-down list of the Alignment property in the Properties window.

370 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Similarly, the text effect is manipulated through the Effect property, whose possible
settings are the members of the Effect3D custom enumeration: None, Carved, CarvedHeavy,
Raised, and RaisedHeavy. There are basically two types of effects (raised and carved text) and
two variations on each effect (normal and heavy).

In addition to the custom properties, the Label3D control should also expose the standard
properties of a Label control, such as Tag, BackColor, and so on. Developers expect to see
standard properties in the Properties window, and you should implement them. The Label3D
control doesn’t have any custom methods, but it should provide the standard methods of
the Label control, such as the Move method. Similarly, although the control doesn’t raise any
special events, it must support the standard events of the Label control, such as the mouse and
keyboard events.

Most of the custom control’s functionality exists already, and there should be a simple tech-
nique to borrow this functionality from other controls instead of implementing it from scratch.
This is indeed the case: The UserControl object, from which all user-drawn controls inherit,
exposes a large number of members.

Designing the Custom Control

Start a new project of the Windows Control Library type, name it FlexLabel, and then rename
the UserControl1 object Label3D. Open the UserControl object’s code window and change the
name of the class from UserControl1 to Label3D.

Every time you place a Windows control on a form, it’s named according to the UserCon-
trol object’s name and a sequence digit. The first instance of the custom control you place on a
form will be named Label3D1, the next one will be named Label3D2, and so on. Obviously, it’s
important to choose a meaningful name for your UserControl object. Note that although this
custom control is basically a Label control, it won’t inherit from an existing control. You must
implement it from scratch in your code.

As you will soon see, the UserControl is the ‘‘form’’ on which the custom control will be
designed. It looks, feels, and behaves like a regular VB form, but it’s called a UserControl. User-
Control objects have additional unique properties that don’t apply to a regular form, but to
start designing new controls, think of them as regular forms.

You’ve set the scene for a new user-drawn Windows control. Start by declaring the Align
and Effect3D enumerations, as shown in Listing 9.6.

Listing 9.6: Align and Effect3D enumerations

Public Enum Align
TopLeft
TopMiddle
TopRight
CenterLeft
CenterMiddle
CenterRight
BottomLeft
BottomMiddle
BottomRight

End Enum

BUILDING USER-DRAWN CONTROLS 371

Public Enum Effect3D
None
Raised
RaisedHeavy
Carved
CarvedHeavy

End Enum

The next step is to implement the Alignment and Effect properties. Each property’s type is
an enumeration. Listing 9.7 shows the implementation of the two properties.

Listing 9.7: Alignment and Effect properties

Private Shared mAlignment As Align
Private Shared mEffect As Effect3D
Public Property Alignment() As Align

Get
Alignment = mAlignment

End Get
Set(ByVal Value As Align)

mAlignment = Value
Invalidate()

End Set
End Property

Public Property Effect() As Effect3D
Get

Effect = mEffect
End Get
Set(ByVal Value As Effect3D)

mEffect = Value
Invalidate()

End Set
End Property

The current settings of the two properties are stored in the private variables mAlignment
and mEffect. When either property is set, the Property procedure’s code calls the Invalidate
method of the UserControl object to force a redraw of the string on the control’s surface. The
call to the Invalidate method is required for the control to operate properly in design mode.
You can provide a method to redraw the control at runtime (although developers shouldn’t
have to call a method to refresh the control every time they set a property), but this isn’t
possible at design time. In general, when a property is changed in the Properties window, the
control should be able to update itself and reflect the new property setting, and this is done
with a call to the Invalidate method. Shortly, you’ll see an even better way to automatically
redraw the control every time a property is changed.

372 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Finally, you must add one more property, the Caption property, which is the string to be
rendered on the control. Declare a private variable to store the control’s caption (the mCaption
variable) and enter the code from Listing 9.8 to implement the Caption property.

Listing 9.8: Caption Property procedure

Private mCaption As String
Property Caption() As String

Get
Caption = mCaption

End Get
Set(ByVal Value As String)

mCaption = Value
Invalidate()

End Set
End Property

The core of the control’s code is in the OnPaint method, which is called automatically before
the control repaints itself. The same event’s code is also executed when the Invalidate method
is called, and this is why we call this method every time one of the control’s properties changes
value. The OnPaint method enables you to take control of the paint process and supply your
own code for painting the control’s surface. The single characteristic of all user-drawn controls
is that they override the default OnPaint method. This is where you must insert the code to
draw the control’s surface — that is, draw the specified string, taking into consideration the
Alignment and Effect properties. The OnPaint method’s code is shown in Listing 9.9.

Listing 9.9: UserControl object’s OnPaint method

Protected Overrides Sub OnPaint(
ByVal e As System.Windows.Forms.PaintEventArgs)

Dim lblFont As Font = Me.Font
Dim lblBrush As New SolidBrush(Color.Red)
Dim X, Y As Integer
Dim textSize As SizeF =

e.Graphics.MeasureString(mCaption, lblFont)
Select Case mAlignment

Case Align.BottomLeft
X = 2
Y = Convert.ToInt32(Me.Height - textSize.Height)

Case Align.BottomMiddle
X = CInt((Me.Width - textSize.Width) / 2)
Y = Convert.ToInt32(Me.Height - textSize.Height)

Case Align.BottomRight
X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = Convert.ToInt32(Me.Height - textSize.Height)

BUILDING USER-DRAWN CONTROLS 373

Case Align.CenterLeft
X = 2
Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)

Case Align.CenterMiddle
X = Convert.ToInt32((Me.Width - textSize.Width) / 2)
Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)

Case Align.CenterRight
X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = Convert.ToInt32((Me.Height - textSize.Height) / 2)

Case Align.TopLeft
X = 2
Y = 2

Case Align.TopMiddle
X = Convert.ToInt32((Me.Width - textSize.Width) / 2)
Y = 2

Case Align.TopRight
X = Convert.ToInt32(Me.Width - textSize.Width - 2)
Y = 2

End Select
Dim dispX, dispY As Integer
Select Case mEffect

Case Effect3D.None : dispX = 0 : dispY = 0
Case Effect3D.Raised : dispX = 1 : dispY = 1
Case Effect3D.RaisedHeavy : dispX = 2 : dispY = 2
Case Effect3D.Carved : dispX = -1 : dispY = -1
Case Effect3D.CarvedHeavy : dispX = -2 : dispY = -2

End Select
lblBrush.Color = Color.White
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X, Y)
lblBrush.Color = Me.ForeColor
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X + dispX, Y + dispY)

End Sub

This subroutine calls for a few explanations. The Paint method passes a PaintEventArgs
argument (the ubiquitous e argument). This argument exposes the Graphics property, which
represents the control’s surface. The Graphics object exposes all the methods you can call to
create graphics on the control’s surface. The Graphics object is discussed briefly in Chapter 11
and in more detail in the tutorial ‘‘Drawing and Painting with Visual Basic 2010,’’ but for this
chapter all you need to know is that the MeasureString method returns the dimensions of a
string when rendered in a specific font and the DrawString method draws the string in the
specified font. The first Select Case statement calculates the coordinates of the string’s origin
on the control’s surface, and these coordinates are calculated differently for each type of align-
ment. Then another Select Case statement sets the displacement between the two strings so
that when superimposed they produce a three-dimensional effect. Finally, the code draws the
string of the Caption property on the Graphics object. It draws the string in white first, then
in black. The second string is drawn dispX pixels to the left and dispY pixels below the first
one to give the 3D effect. The values of these two variables are determined by the setting of the
Effect property.

374 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

The event handler of the sample project contains a few more statements that are not shown
here. These statements print the strings DesignTime and RunTime in a light color on the con-
trol’s background, depending on the current status of the control. They indicate whether the
control is currently in design (if the DesignMode property is True) or runtime (if DesignMode is
False), and you will remove them after testing the control.

Testing Your New Control

To test your new control, you must first add it to the Toolbox and then place instances of it on
the test form. You can add a form to the current project and test the control, but you shouldn’t
add more components to the control project. It’s best to add a new project to the current
solution.

A Quick Way to Test Custom Windows Controls

Visual Studio supports a simple method of testing custom controls. Instead of using a test
project, you can press F5 to ‘‘run’’ the Windows Control project. Right-click the name of the
Label3D project (the Windows Control project in the solution) in Solution Explorer, and from
the context menu choose Set As Startup Project. Then press F5 to start the project. A dialog
box (shown in the following screen shot) will appear with the control at runtime and its
Properties window.

In this dialog box, you can edit any of the control’s properties and see how they affect the
control at runtime. If the control reacts to any user actions, you can see how the control’s
code behaves at runtime.

BUILDING USER-DRAWN CONTROLS 375

You can’t test the control’s methods, or program its events, but you’ll get an idea of how the
control will behave when placed on a form. Use this dialog box while you’re developing the
control’s interface to see how it will behave when placed on a test form and how it reacts
when you change its properties. When you’re happy with the control’s interface, you should
test it with a Windows project from which you can call its methods and program its events.

Add the TestProject to the current solution and place on its main form a Label3D control as
well as the other controls shown earlier in Figure 9.5. If the Label3D icon doesn’t appear in the
Toolbox, build the control’s project and a new item will be added to the FlexLabel Components
tab of the Toolbox.

Now double-click the Label3D control on the form to see its events. Your new control has
its own events, and you can program them just as you would program the events of any other
control. Enter the following code in the control’s Click event:

Private Sub Label3D1_Click(…) Handles Label3D1.Click
MsgBox("My properties are " & vbCrLf &

"Caption = " Label3D1.Caption.ToString & vbCrLf &
"Alignment = " Label3D1.Alignment.ToString & vbCrLf &
"Effect = " Label3D1.Effect.ToString)

End Sub

To run the control, press F5 and then click the control. You will see the control’s properties
displayed in a message box.

The other controls on the test form allow you to set the appearance of the custom control
at runtime. The two ComboBox controls are populated with the members of the appropriate
enumeration when the form is loaded. In their SelectedIndexChanged event handler, you must
set the corresponding property of the FlexLabel control to the selected value, as shown in the
following code:

Private Sub AlignmentBox_SelectedIndexChanged(…)
Handles AlignmentBox.SelectedIndexChanged

Label3D1.Alignment = AlignmentBox.SelectedItem
End Sub

Private Sub EffectsBox_SelectedIndexChanged(…)
Handles EffectsBox.SelectedIndexChanged

Label3D1.Effect = EffectsBox.SelectedItem
End Sub

The TextBox control at the bottom of the form stores the Caption property. Every time you
change this string, the control is updated because the Set procedure of the Caption property
calls the Invalidate method.

Changed Events

The UserControl object exposes many of the events you need to program the control, such as
the key and mouse events, and you need not insert a single line of code in the custom control’s
code. In addition, you can raise custom events. The Windows controls raise an event every time

376 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

a property value is changed. If you examine the list of events exposed by the Label3D con-
trol, you’ll see the FontChanged and SizeChanged events. These events are provided by the
UserControl object. As a control developer, you should expose similar events for your custom
properties, the OnAlignmentChanged, OnEffectChanged, and OnCaptionChanged events. This
isn’t difficult to do, but you must follow a few steps. Start by declaring an event handler for
each of the Changed events:

Private mOnAlignmentChanged As EventHandler
Private mOnEffectChanged As EventHandler
Private mOnCaptionChanged As EventHandler

Then declare the actual events and their handlers:

Public Event AlignmentChanged(ByVal sender As Object, ByVal ev As EventArgs)
Public Event EffectChanged(ByVal sender As Object, ByVal ev As EventArgs)
Public Event CaptionChanged(ByVal sender As Object, ByVal ev As EventArgs)

When a property changes value, you must call the appropriate method. In the Set section of
the Alignment Property procedure, insert the following statement:

OnAlignmentChanged(EventArgs.Empty)

And finally, invoke the event handlers from within the appropriate OnEventName method:

Protected Overridable Sub OnAlignmentChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnAlignmentChanged Is Nothing) Then

mOnAlignmentChanged.Invoke(Me, e)
End Sub

Protected Overridable Sub OnEffectChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnEffectChanged Is Nothing) Then

mOnEffectChanged.Invoke(Me, e)
End Sub

Protected Overridable Sub OnCaptionChanged(ByVal e As EventArgs)
Invalidate()
If Not (mOnCaptionChanged Is Nothing) Then

mOnCaptionChanged.Invoke(Me, e)
End Sub

As you can see, the OnPropertyChanged events call the Invalidate method to redraw
the control when a property’s value is changed. As a result, you can now remove the call
to the Invalidate method from the Property Set procedures. If you switch to the test form,
you will see that the custom control exposes the AlignmentChanged, EffectChanged, and
CaptionChanged events. The OnCaptionChanged method is executed automatically every time
the Caption property changes value, and it fires the CaptionChanged event. The developer
using the Label3D control shouldn’t have to program this event.

BUILDING USER-DRAWN CONTROLS 377

Raising Custom Events
When you select the custom control in the Objects drop-down list of the editor and expand the
list of events for this control, you’ll see all the events that the UserControl object may fire. Let’s
add a custom event for our control. To demonstrate how to raise events from within a custom
control, we’ll return for a moment to the ColorEdit control you developed a little earlier in this
chapter.

Let’s say you want to raise an event (the ColorClick event) when the user clicks the Label
control displaying the selected color. To raise a custom event, you must declare it in your con-
trol and call the RaiseEvent method. Note that the same event may be raised from many dif-
ferent places in the control’s code.

To declare the ColorClick event, enter the following statement in the control’s code. This
line can appear anywhere, but placing it after the private variables that store the property val-
ues is customary:

Public Event ColorClick(ByVal sender As Object, ByVal e As EventArgs)

To raise the ColorClick event when the user clicks the Label control, insert the following
statement in the Label control’s Click event handler:

Private Sub Label1_Click(…) Handles Label1.Click
RaiseEvent ColorClick(Me, e)

End Sub

Raising a custom event from within a control is as simple as raising an event from within
a class. It’s actually simpler to raise a custom event than to raise the usual PropertyChanged
events, which are fired from within the OnPropertyChanged method of the base control.

The RaiseEvent statement in the Label’s Click event handler maps the Click event of the
Label control to the ColorClick event of the custom control. If you switch to the test form and
examine the list of events of the ColorEdit control on the form, you’ll see that the new event
was added. The ColorClick event doesn’t convey much information. When raising custom
events, it’s likely that you’ll want to pass additional information to the developer.

Let’s say you want to pass the Label control’s color to the application through the second
argument of the ColorClick event. The EventArgs type doesn’t provide a Color property,
so we must build a new type that inherits all the members of the EventArgs type and adds
a property: the Color property. You can probably guess that we’ll create a custom class that
inherits from the EventArgs class and adds the Color member. Enter the statements of Listing
9.10 at the end of the file (after the existing End Class statement).

Listing 9.10: Declaring a custom event type

Public Class ColorEvent
Inherits EventArgs
Public color As Color

End Class

Then, declare the following event in the control’s code:

Public Event ColorClick(ByVal sender As Object, ByVal e As ColorEvent)

378 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

And finally, raise the ColorClick event from within the Label’s Click event handler (see
Listing 9.11).

Listing 9.11: Raising a custom event

Private Sub Label1_Click(…) Handles Label1.Click
Dim clrEvent As ColorEvent
clrEvent.color = Label1.BackColor
RaiseEvent ColorClick(Me, clrEvent)

End Sub

Not all events fired by a custom control are based on property value changes. You can fire
events based on external conditions or a timer, as discussed in Chapter 8.

Using the Custom Control in Other Projects
By adding a test project to the Label3D custom control project, we designed and tested the con-
trol in the same environment. A great help, indeed, but the custom control can’t be used in
other projects. If you start another instance of Visual Studio and attempt to add your custom
control to the Toolbox, you won’t see the Label3D entry there.

To add your custom component in another project, open the Choose Toolbox Items dia-
log box and then click the .NET Framework Components tab. Be sure to carry out the steps
described here while the .NET Framework Components tab is visible. If the COM Components
tab is visible instead, you can perform the same steps, but you’ll end up with an error message
(because the custom component is not a COM component).

Click the Browse button in the dialog box and locate the FlexLabel.dll file. It’s in the Bin
folder under the FlexLabel project’s folder. The Label3D control will be added to the list of
.NET Framework components, as shown in Figure 9.6. Select the check box in front of the con-
trol’s name; then click the OK button to close the dialog box and add Label3D to the Toolbox.
Now you can use this control in your new project.

Figure 9.6

Adding the Label3D con-
trol to another project’s
Toolbox

DESIGNING IRREGULARLY SHAPED CONTROLS 379

Designing Irregularly Shaped Controls
The UserControl object has a rectangular shape by default. However, a custom control
need not be rectangular. It’s possible to create irregularly shaped forms too, but unlike
irregularly shaped controls, an irregularly shaped form is still quite uncommon. Irregularly
shaped controls are used in fancy interfaces, and they usually react to movement of the
mouse. (They may change color when the mouse is over them or when they’re clicked, for
example.)

To change the default shape of a custom control, you must use the Region object, which is
another graphics-related object that specifies a closed area. You can even use Bezier curves to
make highly unusual and smooth shapes for your controls. In this section, we’ll do something
less ambitious: We’ll create controls with the shape of an ellipse, as shown in the upper half
of Figure 9.7. To follow the code presented in this section, open the NonRectangularControl
project; the custom control is the RoundControl Windows Control Library project, and Form1
is the test form for the control.

Figure 9.7

A few instances of an
ellipse-shaped control

You can turn any control to any shape you like by creating the appropriate Region object
and then applying it to the Region property of the control. This must take place from within
the control’s Paint event. Listing 9.12 shows the statements that change the shape of the
control.

Listing 9.12: Creating a nonrectangular control

Protected Sub PaintControl(ByVal sender As Object,
ByVal pe As PaintEventArgs) Handles Me.Paint

pe.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)

End Sub

380 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

First, we retrieve the Graphics object of the UserControl; then we create a GraphicsPath
object, the roundPath variable, and add an ellipse to it. The ellipse is based on the enclosing
rectangle. The R object is used temporarily to specify the ellipse. The new path is then used to
create a Region object, which is assigned to the Region property of the UserControl object. This
gives our control the shape of an ellipse.

Listing 9.12 shows the statements that specify the control’s shape. In addition, you must
insert a few statements to display the control’s caption, which is specified by the control’s
Caption property. The caption is rendered normally in yellow unless the mouse is hovering
over the control, in which case the same caption is rendered with a 3D effect. You already
know how to achieve this effect: by printing the same string twice in different colors with a
slight displacement between them.

Listing 9.13 shows the code in the control’s MouseEnter and MouseLeave events. When the
mouse enters the control’s area (this is detected by the control automatically — you won’t have
to write a single line of code for it), the currentState variable is set to State.Active (State
is an enumeration in the project’s code), and the control’s caption appears in raised type. In the
control’s MouseLeave event handler, the currentState variable is reset to State.Inactive and
the control’s caption appears in regular font. In addition, each time the mouse enters and leaves
the control, the MouseInsideControl and MouseOutsideControl custom events are fired.

Listing 9.13: RoundButton control’s MouseEnter and MouseLeave events

Private Sub RoundButton_MouseEnter(…) Handles MyBase.MouseEnter
currentState = State.Active
Me.Refresh()
RaiseEvent MouseInsideButton(Me)

End Sub

Private Sub RoundButton_MouseLeave(…) Handles MyBase.MouseLeave
currentState = State.Inactive
Me.Refresh()
RaiseEvent MouseOusideButton(Me)

End Sub

These two events set up the appropriate variables, and the drawing of the control takes
place in the Paint event’s handler, which is shown in Listing 9.14.

Listing 9.14: RoundButton control’s Paint event handler

Protected Sub PaintControl(ByVal sender As Object,
ByVal pe As PaintEventArgs) Handles Me.Paint

pe.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)

DESIGNING IRREGULARLY SHAPED CONTROLS 381

Dim Path As New GraphicsPath
Path.AddEllipse(R)
Dim grBrush As LinearGradientBrush
If currentState = State.Active Then

grBrush = New LinearGradientBrush(
New Point(0, 0),
New Point(R.Width, R.Height),
Color.DarkGray, Color.White)

Else
grBrush = New LinearGradientBrush(

New Point(R.Width, R.Height),
New Point(0, 0), Color.DarkGray,
Color.White)

End If
pe.Graphics.FillPath(grBrush, Path)
Dim X As Integer =

(Me.Width - pe.Graphics.MeasureString(
currentCaption, currentFont).Width) / 2

Dim Y As Integer = (Me.Height - pe.Graphics.MeasureString(
currentCaption, currentFont).Height) / 2

If currentState = State.Active Then
pe.Graphics.DrawString(currentCaption,

currentFont, Brushes.Black, X, Y)
pe.Graphics.DrawString(currentCaption,

currentFont,
New SolidBrush(currentCaptionColor), X - 1, Y - 1)

Else
pe.Graphics.DrawString(currentCaption,

currentFont,
New SolidBrush(currentCaptionColor), X, Y)

End If
End Sub

The OnPaint method uses graphics methods to fill the control with a gradient and center the
string on the control. They’re the same methods we used in the example of the user-drawn con-
trol earlier in this chapter. The drawing methods are discussed in detail in the tutorial ‘‘Draw-
ing with VB 2010,’’ which can be found at www.sybex.com/go/masteringvb2010.

The code uses the currentState variable, which can take on two values: Active and
Inactive. These two values are members of the State enumeration, which is shown next:

Public Enum State
Active
Inactive

End Enum

The test form of the project shows how the RoundButton control behaves on a form. You
can use the techniques described in this section to make a series of round controls for a totally
different look and feel.

382 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

The Play button’s Click event handler in the test form changes the caption of the button
according to the control’s current state. It also disables the other RoundButton controls on the
test form. Here’s the Click event handler of the Play button:

Private Sub bttnplay_Click(…) Handles bttnPlay.Click
If bttnPlay.Caption = "Play" Then

Label1.Text = "Playing…"
bttnPlay.Caption = "STOP"
bttnPlay.Color = Color.Red
bttnRecord.Enabled = False
bttnClose.Enabled = False

Else
Label1.Text = "Stopped Playing"
bttnPlay.Caption = "Play"
bttnPlay.Color = Color.Yellow
bttnRecord.Enabled = True
bttnClose.Enabled = True

End If
End Sub

There are many methods for drawing shapes and paths, and you may wish to experiment
with other oddly shaped controls. How about a progress indicator control that looks like a ther-
mometer? Or a button with an LED that turns on or changes color when you press the button,
like the buttons in the lower half of Figure 9.7? The two rectangular buttons are instances of the
LEDButton custom control, which is included in the NonRectangularControl project. Open the
project in Visual Studio and examine the code that renders the rectangular buttons emulating
an LED in the left corner of the control.

Customizing List Controls
Next, I’ll show you how to customize the list controls (such as the ListBox, ComboBox, and
TreeView controls). You won’t build new custom controls; actually, you’ll hook custom code
into certain events of a control to take charge of the rendering of its items.

Some of the Windows controls can be customized far more than it is possible through their
properties. These are the list controls that allow you to supply your own code for drawing each
item. You can use this technique to create a ListBox control that displays its items in different
fonts, uses alternating background colors, and so on. You can even put bitmaps on the back-
ground of each item, draw the text in any color, and create items of varying heights. This is
an interesting technique because without it, as you recall from our discussion of the ListBox
control, all items have the same height and you must make the control wide enough to fit the
longest item (if this is known at design time). The controls that allow you to take charge of the
rendering process of their items are the ListBox, CheckedListBox, ComboBox, and TreeView
controls.

To create an owner-drawn control, you must program two events: the MeasureItem and
DrawItem events. In the MeasureItem event, you determine the dimensions of the rectangle in
which the drawing will take place. In the DrawItem event, you insert the code for rendering the
items on the control. Every time the control is about to display an item, it fires the MeasureItem

CUSTOMIZING LIST CONTROLS 383

event first and then the DrawItem event. By inserting the appropriate code in the two event
handlers, you can take control of the rendering process.

These two events don’t take place unless you set the DrawMode property of the control
accordingly. Because only controls that expose the DrawMode property can be owner drawn,
you have a quick way of figuring out whether a control’s appearance can be customized with
the techniques discussed in this section. The DrawMode property can be set to Normal (the
control draws its own surface), OwnerDrawnFixed (you can draw the control, but the height of
the drawing area remains fixed), or OwnerDrawnVariable (you can draw the control and use a
different height for each item). The same property for the TreeView control has three different
settings: None, OwnerDrawText (you provide the text for each item), and OwnerDrawAll (you’re
responsible for drawing each node’s rectangle).

Designing Owner-Drawn ListBox Controls
The default look of the ListBox control will work fine with most applications, but you might
have to create owner-drawn ListBoxes if you want to use different colors or fonts for different
types of items or populate the list with items of widely different lengths.

The example you’ll build in this section, shown in Figure 9.8, uses an alternating back-
ground color, and each item has a different height, depending on the string it holds. Lengthy
strings are broken into multiple lines at word boundaries. Because you’re responsible for
breaking the string into lines, you can use any other technique — for example, you can place
an ellipsis to indicate that the string is too long to fit on the control, use a smaller font, and so
on. The fancy ListBox of Figure 9.8 was created with the OwnerDrawnList project.

Figure 9.8

An unusual, but quite
functional, ListBox
control

To custom-draw the items in a ListBox control (or a ComboBox, for that matter), you use the
MeasureItem event to calculate the item’s dimensions and the DrawItem event to actually draw
the item. Each item is a rectangle that exposes a Graphics object, and you can call any of the
Graphics object’s drawing methods to draw on the item’s area. The drawing techniques we’ll
use in this example are similar to the ones we used in the previous section.

Each time an item is about to be drawn, the MeasureItem and DrawItem events are fired
in this order. In the MeasureItem event handler, we set the dimensions of the item with the
statements shown in Listing 9.15.

384 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Listing 9.15: Setting up an item’s rectangle in an owner-drawn ListBox control

Private Sub ListBox1_MeasureItem(ByVal sender As Object,
ByVal e As System.Windows.Forms.MeasureItemEventArgs)
Handles ListBox1.MeasureItem

If fnt Is Nothing Then Exit Sub
Dim itmSize As SizeF
Dim S As New SizeF(ListBox1.Width, 200)
itmSize = e.Graphics.MeasureString(ListBox1.Items(e.Index).ToString, fnt, S)
e.ItemHeight = itmSize.Height
e.ItemWidth = itmSize.Width

End Sub

The MeasureString method of the Graphics object accepts as arguments a string, the font in
which the string will be rendered, and a SizeF object. The SizeF object provides two properties:
the Width and Height properties, which you use to pass to the method information about the
area in which you want to print the string. In our example, we’ll print the string in a rectan-
gle that’s as wide as the ListBox control and as tall as needed to fit the entire string. I’m using
a height of 200 pixels (enough to fit the longest string that users might throw at the control).
Upon return, the MeasureString method sets the members of the SizeF object to the width and
height actually required to print the string.

The two properties of the SizeF object are then used to set the dimensions of the current
item (properties e.ItemWidth and e.ItemHeight). The custom rendering of the current item
takes place in the ItemDraw event handler, which is shown in Listing 9.16. The Bounds property
of the handler’s e argument reports the dimensions of the item’s cell as you calculated them in
the MeasureItem event handler.

Listing 9.16: Drawing an item in an owner-drawn ListBox control

Private Sub ListBox1_DrawItem(ByVal sender As Object,
ByVal e As System.Windows.Forms.DrawItemEventArgs)
Handles ListBox1.DrawItem

If e.Index = -1 Then Exit Sub
Dim txtBrush As SolidBrush
Dim bgBrush As SolidBrush
Dim txtfnt As Font
If e.Index / 2 = CInt(e.Index / 2) Then
‘ color even numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.LightYellow)

Else
‘ color odd numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.Cyan)

End If
If e.State And DrawItemState.Selected Then

THE BOTTOM LINE 385

‘ use red color and bold for the selected item
txtBrush = New SolidBrush(Color.Red)
txtfnt = New Font(fnt.Name, fnt.Size, FontStyle.Bold)

Else
txtfnt = fnt

End If
e.Graphics.FillRectangle(bgBrush, e.Bounds)
e.Graphics.DrawRectangle(Pens.Black, e.Bounds)
Dim R As New RectangleF(e.Bounds.X, e.Bounds.Y,

e.Bounds.Width, e.Bounds.Height)
e.Graphics.DrawString(ListBox1.Items(e.Index).ToString, txtfnt, txtBrush, R)
e.DrawFocusRectangle()

End Sub

To test the custom-drawn ListBox control, place two buttons on the form, as shown in
Figure 9.8. The Add New Item button prompts the user for a new item (a string) and adds it to
the control’s Items collection. Listing 9.17 shows the code that adds a new item to the list. Note
that the code is identical to the code you’d use to add items to a regular ListBox control.

Listing 9.17: Adding an item to the list at runtime

Private Sub Button1_Click(…) Handles Button1.Click
Dim newItem As String
newItem = InputBox("Enter item to add to the list")
ListBox1.Items.Add(newItem)

End Sub

The Bottom Line

Extend the functionality of existing Windows Forms controls with inheritance. The sim-
plest type of control you can build is one that inherits an existing control. The inherited control
includes all the functionality of the original control plus some extra functionality that’s specific
to an application and that you implement with custom code.

Master It Describe the process of designing an inherited custom control.

Build compound controls that combine multiple existing controls. A compound control
provides a visible interface that combines multiple Windows controls. As a result, this type of
control doesn’t inherit the functionality of any specific control; you must expose its properties
by providing your own code. The UserControl object, on which the compound control is based,
already exposes a large number of members, including some fairly advanced ones such as the
Anchoring and Docking properties, and the usual mouse and key events.

Master It How will you map certain members of a constituent control to custom members
of the compound control?

386 CHAPTER 9 BUILDING CUSTOM WINDOWS CONTROLS

Build custom controls from scratch. User-drawn controls are the most flexible custom con-
trols because you’re in charge of the control’s functionality and appearance. Of course, you
have to implement all the functionality of the control from within your code, so it takes sub-
stantial programming effort to create user-drawn custom controls.

Master It Describe the process of developing a user-drawn custom control.

Customize the rendering of items in a ListBox control. The Windows controls that present
lists of items display their items in a specific manner. The Framework allows you to take con-
trol of the rendering process and change completely the default appearance of the items on
these controls. The controls that allow you to take charge of the rendering process of their items
are the ListBox, CheckedListBox, ComboBox, and TreeView controls.

To create an owner-drawn control, you must set the DrawMode property to a member of
the DrawMode enumeration and insert the appropriate code in the events MeasureItem and
DrawItem. The MeasureItem event is where you decide about the dimensions of the rectangle
in which the drawing will take place. The DrawItem event is where you insert the code for
rendering the items on the control.

Master It Outline the process of creating a ListBox control that wraps the contents of
lengthy items.

Chapter 10

Applied Object-Oriented
Programming

This chapter continues the discussion of object-oriented programming (OOP) and covers some
of its more-advanced, but truly useful, concepts: inheritance and polymorphism. Instead of
jumping to the topic of inheritance, I’ll start with a quick overview of what you learned in the
previous chapter and how to apply this knowledge.

Inheritance is discussed later in this chapter, along with polymorphism, another powerful
OOP technique, and interfaces. But first make sure you understand the basics of OOP because
things aren’t always as simple as they look (but are quite often simpler than you think).

In this chapter, you’ll learn how to do the following:

◆ Extend existing classes using inheritance

◆ Develop flexible classes using polymorphism

Issues in Object-Oriented Programming
Building classes and using them in your code is fairly simple, but there are a few points about
OOP that can cause confusion. To help you make the most of OOP and get up to speed, I’m
including a list of related topics that are known to cause confusion to programmers — and not
only beginners. If you understand the topics of the following sections and how they relate to
the topics discussed in the previous chapter, you’re more than familiar with the principles of
OOP and you can apply them to your projects immediately.

Classes versus Objects
Classes are templates that we use to create new objects. The class contains code and the local
variables, and every time you create a new variable based on a specific class, the compiler gen-
erates a new set of local variables, where the object’s properties will be stored. The code is
always the same for all variables of this type. In effect, classes are the blueprints used to man-
ufacture objects in your code. You can also think of classes as custom types. After you add
the class Customer to your project (or a reference to the DLL that implements the Customer
class), you can declare variables of the Customer type, just as you declare integers and strings.
The code for the class is loaded into the memory, and a new set of local variables is created.
This process is referred to as class instantiation: Creating an object of a custom type is the same
as instantiating the class that implements the custom type. For each object of the Customer

388 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

type, there’s a set of local variables, as they’re declared in the class code. The various proce-
dures of the class are invoked as needed by the Common Language Runtime (CLR) and they
act on the set of local variables that correspond to the current instance of the class. Some of
the local variables may be common among all instances of a class: These are the variables that
correspond to shared properties (properties that are being shared by all instances of a class).

When you create a new variable of the Customer type, the New() procedure of the Cus-
tomer class is invoked. The New() procedure is known as the class constructor. Each class has
a default constructor that accepts no arguments, even if the class doesn’t contain a New() sub-
routine. This default constructor is invoked every time a statement similar to the following is
executed:

Dim cust As New Customer

You can overload the New() procedure by specifying arguments, and you should try to pro-
vide one or more parameterized constructors. Parameterized constructors allow you (or any
developer using your class) to create meaningful instances of the class. Sure, you can create
a new Customer object with no data in it, but a Customer object with a name and company
makes more sense. The parameterized constructor initializes some of the most characteristic
properties of the object.

Objects versus Object Variables
All variables that refer to objects are called object variables. (The other type of variables are
value variables, which store base data types, such as characters, integers, strings, and dates.)
In declaring object variables, we usually use the New keyword, which is the only way to cre-
ate a new object. If you omit this keyword from a declaration, only a variable of the Customer
type will be created, but no instance of the Customer class will be created in memory, and the
variable won’t point to an actual object. The following statement declares a variable of the Cus-
tomer type, but doesn’t create an object:

Dim Cust As Customer

If you attempt to access a member of the Customer class through the Cust variable, the infa-
mous NullReferenceException will be thrown. The description of this exception is Object
reference not set to an instance of an object, which means that the Cust variable doesn’t point to
an instance of the Customer class. Actually, the editor will catch this error and will underline
the name of the variable. If you hover over the name of the variable in question, the follow-
ing explanation will appear on a ToolTip box: Variable Cust is used before it has been assigned a
value. A Null Reference exception could result at runtime. Why bother declaring variables that don’t
point to specific objects? The Cust variable can be set later in the code to reference an existing
instance of the class:

Dim Cust As Customer
Dim Cust2 As New Customer
Cust = Cust2

After the execution of the preceding statements, both variables point to the same object in
memory, and you can set the properties of this object through either variable. You have two
object variables but only one object in memory because only one of them was declared with the

ISSUES IN OBJECT-ORIENTED PROGRAMMING 389

New keyword. To set the Company property, you can use either one of the following statements
because they both point to the same object in memory:

Cust.CompanyName = "New Company Name"

or

Cust2.CompanyName = "New Company Name"

The Cust variable is similar to a shortcut. When you create a shortcut to a specific file on
your desktop, you’re creating a reference to the original file. You do not create a new file or
a copy of the original file. You can use the shortcut to access the original file, just as you can
use the Cust variable to manipulate the properties of the Cust2 object in the preceding code
sample.

It’s also common to declare object variables without the New keyword when you know
you’re going to use them later in your code, as shown in the following loop, which creates 20
items and adds them to a ListView control:

Dim LI As ListViewItem
For row = 0 To 20

LI = New ListViewItem
LI.Text = "..."
‘ more statements to set up the LI variable
ListView1.Items.Add(LI)

Next

The LI variable is declared once, and the code initializes it many times in the following loop.
The first statement in the loop creates a new ListViewItem object, and the last statement adds
it to the ListView control. Another common scenario is to declare an object variable without
initializing it at the form’s level and initialize it in a procedure while using its value in several
procedures.

When to Use the New Keyword

Many programmers are confused by the fact that most object variables must be declared with
the New keyword, whereas some types don’t support the New keyword. If you want to create a
new object in memory (which is an instance of a class), you must use the New keyword. When
you declare a variable without the New keyword, you’re creating a reference to an object, but
not a new object. Only shared classes must be declared without the New keyword. If in doubt,
use the New keyword anyway, and the compiler will let you know immediately whether the
class you’re instantiating has a constructor. If the New keyword is underlined in error, you
know that you must delete it from the declaration. The Math class, for example, is shared
and you cannot create a new instance of it; instead, you can call its members as Math.Log,
Math.Exp, and so on.

390 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Uninitialized and Nullable Variables

As you already know, an object variable may exist but not be initialized. The following state-
ment creates a new variable for storing a Brush object (one of the drawing objects discussed in
the tutorial on graphics that accompanies this book):

Dim B As SolidBrush

The B variable’s value is Nothing because it hasn’t been initialized yet. After execut-
ing the following statement, the B variable will have a value and can be used to draw
something:

B = New SolidBrush(Color.Blue)

To find out whether a variable has been initialized or not, we use the Is operator to com-
pare the variable to Nothing:

If B Is Nothing Then
MsgBox("Uninitialized Brush variable")

End If

Alternatively, you can use the IsNot operator before attempting to use the B variable:

If B IsNot Nothing Then
‘ draw something with the brush

End If

When a variable is Nothing, we know that it has not been initialized yet — the variable has
no value. In my view, this is a state of a variable: a variable may have a value (any value) or
not have a value. Let’s consider an Integer and a String variable declared as follows:

Dim Age As Integer
Dim Name As String

The Age and Name variables have not been initialized explicitly, but they do have a value.
Integers are initialized to zero and strings are initialized to empty strings. But is this what we
really need? In many cases we want to know whether a variable has been initialized or not,
and a default value just doesn’t cut it. A variable that has no value is not necessarily a numeric
zero or an empty string. To differentiate between the default values and the lack of value, the
Framework supports the Nullable type, which indicates a variable of any of the basic types that
will not be initialized implicitly. The Nullable keyword is followed by a pair of parentheses
and the Of keyword, followed by the actual type. The following statement declares an Integer
variable that is not initialized:

Dim Age As Nullable(Of Integer)

Unfortunately, strings are not nullable. The advantage of using Nullable types in your code
is that this type exposes the HasValue property, which returns True if the variable has been

ISSUES IN OBJECT-ORIENTED PROGRAMMING 391

initialized, and the Value property that returns the actual variable type. This is how you would
process the Age variable in your code:

Dim Age As Nullable(Of Integer)
’ other statements
Dim Qualifies As Boolean
If Age.HasValue Then

If Age.Value < 16 Then
Qualifies = False

Else
Qualifies = True

End If

There’s also a shorthand notation for declaring Nullable types; just append a question mark
to the variable’s name as in the following statement:

Dim Age? As Integer

Missing Information

As for a practical example of variables that might not have values, there are plenty. Databases
use a special value to indicate that a field has no specific value, the Null value. If a product’s
price is not known yet, or if a book’s page count is unknown, this doesn’t mean the product
will be sold at no cost or that we’ll display that the book has zero pages when customers look
it up. These fields have a Null value and should be handled differently, as you will see in
Chapter 15, ‘‘Programming with ADO.NET.’’ The same is true for data we read from external
sources. An XML file with customer information may contain one or more entries without
a value for the EMail field. This customer’s email address is missing (Null or Nothing) and
certainly not an empty string. When you set up variables to receive data from a database, you
will find the Nullable type very accommodating because it allows you to match not only the
usual values, but also the lack of a specific value.

Exploring Value Types

Okay, if the variables that represent objects are called object variables and the types they rep-
resent are called reference types, what other variables are there? There are the regular variables
that store the basic data types, and they’re called value variables because they store values.
An integer, or a string, is not stored as an object for efficiency. An Integer variable contains an
actual value, not a pointer to the value. Imagine if you had to instantiate the Integer class every
time you needed to use an integer value in your code. Not that it’s a bad idea, but it would
scare away most VB developers. Value variables are so common in programming and they’re
not implemented as classes for efficiency. Whereas objects require complicated structures in
memory, the basic data types are stored in a few bytes and are manipulated much faster than
objects.

392 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Consider the following statements:

Dim age1, age2 As Integer
age2 = 29
age1 = age2
age2 = 40

When you assign a value variable to another, the actual value stored in the variable
overwrites the current value of the other variable. The two variables have the same value after
the statement that assigns the value of age2 to the variable age1, but they’re independent
of one another. After the execution of the last statement, the values of age1 and age2 are
different again. If they were object variables, they would point to the same object after the
assignment operation, and you wouldn’t be able to set their values separately. You’d be setting
the properties of the same object.

Value types are converted to objects as soon as you treat them as objects. As soon as you
enter a statement like the following, the age1 variable is converted to an object:

age1.MinValue

You’ll rarely use the methods of the base types, except for the ToString method of course,
but you can turn value variables into object variables at any time. This process is known as
boxing (the conversion of a value type to a reference type).

Exploring Reference Types

To better understand how reference types work, consider the following statements that append
a new row with two subitems to a ListView control (the control’s item is an object of the
ListViewItem type):

ListView1.Items.Clear
Dim LI As New ListViewItem
LI.Text = "Item 1"
LI.SubItems.Add("Item 1 SubItem 1.a")
LI.SubItems.Add("Item 1 SubItem 1.b")
ListView1.Items.Add(LI)

After the execution of the preceding statements, the ListView control contains a single row.
This row is an object of the ListViewItem type and exists in memory on its own. Only after the
execution of the last statement is the ListViewItem object referenced by the LI variable associ-
ated with the ListView1 control.

To change the text of the first item, or its appearance, you can manipulate the control’s Items
collection directly or change the LI variable’s properties. The following pairs of statements are
equivalent:

ListView1.Items(0).Text = "Revised Item 1"
ListView1.Items(0).BackColor = Color.Cyan
LI.Text = "Revised Item 1"
LI.BackColor = Color.Cyan

ISSUES IN OBJECT-ORIENTED PROGRAMMING 393

There’s yet another method to access the ListView control’s items. Create an object variable
that references a specific item and set the item’s properties through this variable:

Dim selItem As ListViewItem
selItem = ListView1.Items(0)
selItem.Text = "new caption"
selItem.BackColor = Color.Silver

(If you need more information on using the ListView and TreeView controls, please refer
to the tutorial ‘‘The ListView and TreeView Controls,’’ which is available for download from
www.sybex.com/go/masteringvb2010.

A final question for testing your OOP skills: What do you think will happen if you set the
LI variable to Nothing? Should the control’s row disappear? The answer is no. If you thought
otherwise, take a moment now to think about why deleting a variable doesn’t remove the object
from memory. The LI variable points to an object in memory; it’s not the object. The New key-
word created a new ListViewItem object in memory and assigned its address to the variable
LI. The statement that added the LI variable to the control’s Items collection associated the
object in memory with the control. By setting the LI variable to Nothing, we simply removed
the pointer to the ListViewItem object in memory, not the object itself. To actually remove the
control’s first item, you must call the Remove method of the LI variable:

LI.Remove

This statement will remove the ListViewItem object from the control’s Items collection, but
the actual object still lives in the memory. If you execute the following statement, the item will
be added again to the control:

ListView1.Items.Add(LI)

So to sum up, the ListViewItem object exists in memory and is referenced by the LI variable
as well as by the ListView control. The Remove method removes the item from the control; it
doesn’t delete it from the memory. If you remove the item from the control and then set the LI
variable to Nothing, the object will also be removed from memory.

Another way to look at the LI variable is as an intermediate variable. You could add a new
row to the ListView control in a single statement without the intermediate variable:

ListView1.Items.Add(New ListViewItem("item header"))

By the way, the ListViewItem object won’t be deleted instantly. The CLR uses a special
mechanism to remove objects from memory, the Garbage Collector (GC). The GC runs every
so often and removes from memory all objects that are not referenced by any variable. These
objects eventually will be removed from memory, but we can’t be sure when. (There’s no way
to force the GC to run on demand.) The CLR will start the GC based on various criteria (the
current CPU load, the amount of available memory, and so on). Because objects are removed
automatically by the CLR, we say that the lifetime of an object is nondeterministic. We know
when the object is created, but there’s no way to know, or specify, when it’s deleted. However,
you can rest assured that the object will eventually be removed from memory. After you set
the LI variable to Nothing and remove the corresponding item from the ListView control,
you’re left with a ListViewItem object in memory that’s not referenced by any other entity.

394 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

This object will live a little longer in the memory, until the GC gets a chance to remove it and
reclaim the resources allocated to it. Moreover, once you have removed the references to the
object, there’s no way to access the object any more, even though it will exist for a while in
memory before the GC gets a chance to destroy it.

Listing 10.1 shows the statements I’ve used for this experiment.

Listing 10.1: Creating and removing objects

’ Create a new ListViewItem object
Dim LI As New ListViewItem
LI.Text = "Item 1"
LI.SubItems.Add("Item 1 SubItem 1.a")
LI.SubItems.Add("Item 1 SubItem 1.b")
’ add it to the ListView control
ListView1.Items.Add(LI)
MsgBox("Item added to the list." & vbCrLf &

"Click OK to modify the appearance " &
"of the top item through the LI variable.")

’ Edit the object’s properties
’ The new settings will affect the appearance of the
’ item on the control immediately
LI.Text = "ITEM 1"
LI.Font = New Font("Verdana", 10, FontStyle.Regular)
LI.BackColor = Color.Azure
MsgBox("Item’s text and appearance modified. " &

vbCrLf & "Click OK to modify the " &
"appearance of the top item through " &
"the ListView1.Items collection.")

’ Change the first item on the control directly
’ Changes also affect the object in memory
ListView1.Items(0).BackColor = Color.LightCyan
LI.SubItems(2).Text = "Revised Subitem"
’ Remove the top item from the control
MsgBox("Will remove the top item from the control.")
LI.Remove()
MsgBox("Will restore the deleted item")
’ The item was removed from list, but not deleted
’ We can add it to the control’s Items collection
ListView1.Items.Add(LI)
MsgBox("Will remove object from memory")
’ Remove it again from the control
LI.Remove()
’ and set it to Nothing
LI = Nothing
’ We can no longer access the LI object.
MsgBox("Can I access it again?" & vbCrLf &

"NO, YOU’LL GET AN EXCEPTION WHEN THE " &
"FOLLOWING STATEMENT IS EXECUTED!")

ListView1.Items.Add(LI)

ISSUES IN OBJECT-ORIENTED PROGRAMMING 395

Properties versus Fields
When you set or read a property’s value, the corresponding Get or Set segment of the Property
procedure is executed. The following statement invokes the Property Set segment of the EMail
public property of the class:

cust.EMail = "Evangelos.P@Sybex.com"

As a reminder, even if the EMail property is an auto-implemented property, a Property pro-
cedure is invoked behind the scenes and sets the value of a local variable (the _EMail variable).
Obviously, every time you call one of the class properties, the corresponding public procedure
in the class is invoked. The following statement invokes both the Set and Get Property proce-
dures of the Customer class Balance property:

cust.Balance = cust.Balance + 429.25

Trivial properties can also be implemented as public variables. These variables, which are
called fields, behave like properties, but no code is executed when the application sets or reads
their value. We often implement properties of the enumeration type as fields because they can
be set only to valid values and there’s no need for validation code. If the Set method of a prop-
erty doesn’t contain any validation code and simply assigns a new value to the local variable
that represents the specific property, there’s no difference between the property and a field. If
you don’t plan to validate the values of certain properties, use auto-implemented properties,
which are as simple as fields.

Shared versus Instance Members
To really understand classes and appreciate them, you must visualize the way classes com-
bine code and data. Properties contain the data that live along with the code, which determines
the object’s behavior — its functionality. The functionality of the object is implemented as a
number of methods and events. The properties, methods, and events constitute the class’s inter-
face. Each instance of the class acts on its own data, and there’s no interference between two
objects of the same type unless they contain shared properties. A shared property is common
to all instances of the class. In other words, there’s no local variable for this property, and all
instances of the class access the same variable. Shared properties are not common — after all,
if many of the properties are common to all instances of the class, why create many objects?
Shared methods, on the other hand, are quite common. The Math class is a typical example. To
calculate the logarithm of a number, you call the Log method of the Math class:

Math.Log(123)

You need not create an instance of the Math class before calling any of its methods (which
are the common math functions). Actually, you can’t create a new instance of the Math class
because the entire class is marked as shared.

Let’s say you’re building a class to represent customers, the Customer class. This class
should expose properties that correspond to the columns of the Customers table in a database.
Each instance of the Customer class stores information about a specific customer. In addition to
the properties, the Customer class should expose a few methods to get data from the database
and commit changes or new customers to the database. The GetCustomerByID method, for
example, should accept the ID of a customer as an argument, retrieve the corresponding

396 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

customer’s data from the database, and use them to populate the current instance’s properties.
Here’s how you use this class in your code:

Dim cust As New Customer
cust.GetCustomerByID("ALFKI")
Debug.WriteLine cust.CompanyName
Debug.WriteLine cust.ContactName & " " & cust.ContactTitle

The GetCustomerByID method can retrieve the customer data from a local database, a
remote web service, or even an XML file. The idea is that a single method call gets the data
and uses it to populate the properties of the current instance of the class. This method is an
instance method because it requires an instance of the class. It populates the properties of this
instance, or object.

You could have implemented the GetCustomerByID method as a shared method, but then
the method should return an object of the Customer type. The shared method can’t populate
any object’s properties because it can’t be applied to an instance of the class. Here’s how you’d
use the Customer class if the GetCustomerByID method were shared:

Dim cust As New Customer
cust = Customer.GetCustomerByID("ALFKI")
Debug.WriteLine cust.CompanyName
Debug.WriteLine cust.ContactName & " " & cust.ContactTitle

As you can see, you call the method of the Customer class, not the method of an object. You
could also call the method with the following statement, but the code becomes obscure (at the
very least, it’s not elegant):

cust = cust.GetCustomerByID("ALFKI")

The background compiler will detect that you’re attempting to access a shared method
through an instance of the class and will generate the following warning (the expression will
be evaluated at runtime, in spite of the warning):

Access of shared member, constant member,
enum member or nested type through an instance;
qualifying expression will not be evaluated.

Because the class needs to know the database in which the data is stored, you can provide a
Connection property that’s shared. Shared properties are usually set when the class is initial-
ized or from within a method that’s called before we attempt to access any other methods or
any of the class’s properties. All the methods in the class use the Connection property to con-
nect to the database. There’s no reason to change the setting of this property in the course of an
application, but if you change it, all subsequent operations will switch to the new database.

In summary, a class may expose a few shared properties if all instances of the class should
access the same property value. It may also expose a few shared methods, which can be called
through the class name if there’s no need to create an instance of the class in order to call a
method. In extreme situations, you can create a shared class: All properties and methods of this
class are shared by default. To make the most of objects, however, you should create classes
that are instantiated with the New keyword and methods that manipulate the current instance
of the class.

ISSUES IN OBJECT-ORIENTED PROGRAMMING 397

Type Casting
The data type used most in earlier versions of the language up to VB 6 was the Variant (which
was replaced in subsequent versions by the Object type). A variable declared as Object can
store anything, and any variable that hasn’t been declared explicitly is an Object variable. Even
if you turn on the Strict option, which forces you to declare the type of each variable (and you
should always have this option on), you will eventually run into Object variables. When you
retrieve an item from a ListBox control, for example, you get back an object, not a specific data
type. In the previous chapter, we used the ListBox control to store Contact objects. Every time
we retrieved a contact from the control’s Items collection, however, we got back an Object vari-
able. To use this object in our code, we had to convert it to a more specific type, the Contact
type, with the CType() or DirectCast function. The same is true for an ArrayList, which stores
objects, and we usually cast its members to specific types.

Variables declared without a specific type are called untyped variables. Untyped variables
should be avoided — and here’s why. The following expression represents a ListBox item,
which is an object:

ListBox1.Items(3)

Even if you add a Customer or a Product object to the list, when you retrieve the same item,
it’s returned as a generic Object variable. If you type the preceding expression followed by a
period, you will see in the IntelliSense drop-down list the members of the generic Object vari-
able, which you hardly ever need. If you cast this item to a specific type, the IntelliSense box
will show the members of the appropriate type.

The action of changing a variable’s type is known as casting, and there are two methods for
casting variable types — the old VB 6 CType() function and the new DirectCast() function:

Dim currentCustomer As Customer
currentCustomer = DirectCast(ListBox1.Items(3), Customer)

From now on, you can access the members of the currentCustomer variable as usual.

The TryCast() Function

If the specified type conversion can’t be carried out, the CType() function will throw
an InvalidCastException exception. As a reminder, a variation of the CType() and
DirectCast() functions is the TryCast() function, which attempts to convert a variable
into another type. If the conversion is not possible, the TryCast() function doesn’t throw an
exception but returns the Nothing value. Here’s how the TryCast() function is used:

Dim o As Object
o = New Customer("Evangelos Petroutsos", "SYBEX")
c = TryCast(o, Contact)
If c Is Nothing Then

MsgBox("Can’t convert " & o.GetType.Name & " to Contact")
Exit Sub

End If
’ statements to process the c object variable

398 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

There are situations where you can’t avoid explicit casting of variable types. The IIf() func-
tion, for example, returns a value of the Object type, regardless of the type of its arguments.
The following expression returns the string ‘‘Unknown’’ if the variable Age has no value or the
value of the Age variable if the variable is not Nothing:

IIf(Age Is Nothing, "unknown", Age)

If you attempt to assign the value returned by the preceding statement to a String variable
with the following statements, the code will work fine as long as the Strict option is off:

Dim showAge As String = IIf(Age Is Nothing, "unknown", Age)

If the Strict option is on, however, the compiler will underline the statement and will gen-
erate an error message to the effect that the Strict option disallows the conversion of an Object
value to a String. You must explicitly cast the IIf() function’s value to a string before assign-
ing it to a String variable:

Dim showAge As String = DirectCast(IIf(Age Is Nothing, "unknown", Age), String)

The explicit conversion is necessary only if the Strict option is off and the Age variable must
be declared as Nullable or as Object.

Early versus Late Binding
Untyped variables can’t be resolved at compile time; these variables are said to be late-bound.
An expression such as the following can’t be resolved at compile time because the compiler has
no way of knowing whether the object retrieved from the ListBox control is of the Customer
type (or any other type that exposes the LastName property):

ListBox1.Items(3).LastName

The preceding statement will compile (as long as the Strict option is off) and execute fine if
the fourth item on the ListBox control is of the Customer type or any other type that provides
a LastName property. If not, it will compile all right, but a runtime exception will be thrown.
Moreover, you won’t see any members of interest in the IntelliSense box because the editor
doesn’t know the exact type of the object retrieved from the ListBox control.

If you cast the object to a specific type, the compiler won’t let you reference a nonexisting
member, therefore eliminating the chances of runtime exceptions. The last expression in the
following code segment is said to be early-bound because the compiler knows its type and won’t
compile a statement that references nonexisting members:

Dim currentCustomer As Customer
currentCustomer = CType(ListBox1.Items(3), Customer)
Debug.WriteLine currentCustomer.LastName

If you plan to store objects to a ListBox control, you have to use late binding and convert
the items of the ListBox control to the appropriate type. Don’t forget to override the ToString

ISSUES IN OBJECT-ORIENTED PROGRAMMING 399

method of the corresponding class so that a meaningful string is displayed on the control
instead of the default string returned by the generic ToString method.

Casting an object to the desired type won’t help you unless you know that the object is
of the same type or can be cast to the desired type. Make your code as robust as it can be by
using the TryCast() function to make sure that the conversion succeeded before attempting to
use the currentCustomer variable in your code. Late binding is not possible when the Strict
option is on. As I’ve mentioned earlier in this book, even when you’re working with the Strict
option off, you should turn it back on from time to time to spot the statements that may cause
runtime errors.

Discovering a Variable’s Type
Sometimes you need to figure out the type of a variable in your code. Even if you declare
explicitly all the variables in your code, you might have to discover a specific variable’s type at
runtime.

The Form object exposes the ActiveControl property, which is the control that has the
focus. The ActiveControl property returns a Control object, and you will have to find out
its exact type (whether it’s a TextBox, a ComboBox, or a Button, for example) from within
your code.

All classes, including custom ones, expose the GetType() function, which returns the type
of the corresponding object. The GetType() function’s return value isn’t a string; it is an object
that exposes a large number of properties. You can call the IsEnum and IsClass properties to
find out whether it’s been implemented as an enumeration or as a class as well as the Name
property to retrieve the variable’s type name.

Consider an event handler that handles the same event for multiple controls on a form. The
control that raised the event is passed to the event handler through the sender argument, and
you can determine the type of the control that raised the event by using a statement such as the
following:

If sender.GetType Is GetType(System.Windows.Forms.Button) Then
‘ process a button control

End If

This is a rather awkward syntax, but take it as is: Use the GetType method to request the
type of a variable and the GetType() function to request the type of a control. You can also
retrieve the type’s name with the TypeName() function, which returns a string:

If TypeName(newContact).ToUpper="CONTACT" Then

Because the TypeName() function returns a string, you don’t have to use the Is operator, but
it’s a good idea to convert this value to uppercase before attempting any comparisons.

At times, you may have to iterate through all controls on a form (or on a Panel control)
and process the controls of a specific type — update the TextBox controls, for example. The
following loop goes through all TextBox controls on the current form and cleans them up by
converting their contents to uppercase and trimming them:

For Each ctrl In Me.Controls
If ctrl.GetType Is GetType(System.Windows.Forms.TextBox) Then

Dim TBox As TextBox = CType(ctrl, System.Windows.Forms.TextBox)

400 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

TBox.Text = TBox.Text.ToUpper.Trim
End If

Next

Notice that you can’t use the equals operator to compare types. To compare an object’s type
to another type, you must use the Is and IsNot keywords, as shown in the preceding example.

By now you should have a good understanding of writing code to manipulate objects. In
the following sections, you’re going to learn about a powerful concept in OOP, namely how to
write new classes that inherit the functionality of existing ones.

Inheritance
Here’s a scenario you’re all too familiar with: You’ve written some code, perhaps a collection
of functions that you want to reuse in another project. The key word here is reuse: write once,
use many times. For years, VB developers were reusing code, even sharing it with others, with
a very simple method: copying from one project and pasting it into another. The copy/paste
approach to code reuse has never really worked because the code was never left untouched at
its destination. When you’re reusing the original code in another project, you make changes to
better accommodate the new project. In the process, you also improve the code. At some point,
you decide that you should ‘‘return’’ the improved code to the original project and enhance
it. Unfortunately, the improved code doesn’t always fit nicely into a different project. Some of
the improvements break applications that used to work with the not-so-good code. If this has
happened to you, imagine what a mess code sharing can be in a large environment with dozens
of programmers. On a corporate level, this form of code reuse is a nightmare.

So what’s inheritance? Inheritance is a powerful concept in object-oriented programming
that allows you to build classes on top of existing ones. You inherit the functionality of an
existing class and then add more functionality to it or overwrite some of its base functionality.
Inheritance allows you to build hierarchies of classes that better represent physical entities, and
it also enables you to reuse existing code (the holy grail of programming). Most importantly,
you can inherit the functionality of an existing class without having access to its code.

Inheritance is a technique for reusing and improving code that doesn’t cause the applications
that use it to break. The idea is to export the code you want to reuse in a format that doesn’t
allow editing. If more than two people can edit the same code (or if even a single person is
allowed to edit the same code in two different projects), any benefits of code reuse evaporate
immediately. The code to be shared must be packaged as a DLL, which exposes all the func-
tionality without the risk of being modified in a haphazard way. Only the original creator of
the DLL can edit the code, and it’s likely that this person will make sure that the interface of
the class doesn’t change. However, you should still be able to enhance the code in different
projects. That’s where inheritance comes into the picture. Instead of getting a copy of the code,
you inherit a class. The functionality of the class can’t change. The code in the DLL is well pro-
tected, and there’s no way to edit the executable code; it’s the class’s functionality you inherit.

However, it’s possible to add new functionality to the inherited code or even override some
of the existing functionality. You can add new functionality to the code by adding new mem-
bers to the inherited classes. This doesn’t break any existing applications that use the original
DLL. You can also override some of the functionality by creating a new method that replaces
an existing one. Applications that use the original version of the DLL won’t see the new mem-
bers because they work with the old DLL. Newer projects can use the enhanced functionality
of the DLL. The current solution to the problem of code reuse is inheritance. It’s not a panacea,
but it’s a step forward.

INHERITANCE 401

How to Apply Inheritance
Let me give a simple but quite practical example. A lot of functionality has been built into
Windows itself, and we constantly reuse it in our applications. The various Windows Forms
controls are a typical example. The functionality of the TextBox control, which we all take for
granted, is packaged in a DLL (the System.Windows.Forms.TextBox class). Yet, many of us
enhance the functionality of the TextBox control to address specific application requirements.
Many developers add a few statements in the control Enter and Leave events to change the
color of the TextBox control that has the focus. With VB 2010, it’s possible to write just two event
handlers that react to these two events and control the background color of the TextBox with the
focus. These two handlers handle the corresponding events of all TextBox controls on the form.

A better approach is to design a ‘‘new’’ TextBox control that incorporates all the functional-
ity of the original TextBox control and also changes its background color while it has the focus.
The code that implements the TextBox control is hidden from us, but we can reuse it by build-
ing a new control that inherits from the TextBox control. As you saw in Chapter 9, ‘‘Building
Custom Windows Controls,’’ this is not only possible, it’s almost trivial; you were able to build
an enhanced TextBox control with a few lines of code, which I repeat here for the benefit of
readers who weren’t interested in building custom controls:

Public Class FocusedTextBox
Inherits System.Windows.Forms.TextBox
Private Sub FocusedTextBox_Enter(ByVal sender As Object,

ByVal e As System.EventArgs) Handles Me.Enter
Me.BackColor = _enterFocusColor

End Sub

Private Sub FocusedTextBox_Leave(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Leave

Me.BackColor = _leaveFocusColor
End Sub

End Class

The _enterFocusColor and _leaveFocusColor variables are two local variables of the Color
type, which must be also be declared. As you understand, the two Color variables are proper-
ties of the control (implemented with the usual setters and getters) so that different applications
can use different colors for the active TextBox control on the form.

It took just a few lines of code and the keyword Inherits. With the Inherits statement, you
include all the functionality of the original TextBox control without touching the control code.
Any project that uses the FocusedTextBox control can take advantage of the extra functionality,
yet all existing projects will continue to work with the original version of the control. We can
easily upgrade a project to take advantage of the enhanced TextBox control by replacing all the
instances of the TextBox control on a form with instances of the new control. Some projects
may use the new control yet not take advantage of the new functionality and leave the default
colors — in which case the enhanced control behaves just like the original TextBox control.

Inheritance is simply the ability to create a new class based on an existing one. The exist-
ing class is the parent class, or base class. The new class is said to inherit the base class and is
called a subclass, or derived class. The derived class inherits all the functionality of the base
class and can add new members and override existing ones. The replacement of existing mem-
bers with other ones is called overriding. When you replace a member of the base class, you’re

402 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

overriding it. Or, you can overload a method by providing multiple forms of the same method
that accept different arguments.

Designing with Inheritance
In this section, we’ll tackle a very real problem by using inheritance. Consider a structure for
storing product information; in most applications, this structure is optimized for a specific
product type. In my consulting days, I’ve seen designs that try to capture a ‘‘global’’ product:
a structure that can store products of any type. This approach leads to unnecessarily large
database tables, name conflicts, and all kinds of problems that surface after the program
has been installed at your customer’s computers with different product types. Here’s my
suggestion for handling multiple types of products.

Every company makes money by selling products and services, and every company has dif-
ferent requirements. Even two bookstores don’t store the same information in their databases.
However, there are a few pieces of information that any company uses to sell its products:
the product’s code, its description, and its price. This is the minimum information you need to
sell something (it’s the information that’s actually printed in the invoice). The price is usually
stored to a different table, along with the company’s pricing policies. Without being too spe-
cific, these are the three pieces of information for ordering and selling products. We use these
items to maintain a list of orders and invoices and keep track of the stock, customer balances,
and so on. The specifics of a product can be stored to different tables in the database, and
these tables will be implemented upon request. If your customer is a book seller, you’ll design
tables for storing data such as publisher and author names, book descriptions, ISBNs, and
the like.

You’ll also have to write applications to maintain all this information. To sell the same appli-
cation to an electronics store, you must write another module for maintaining a different type
of product, but the table with the basic data remains the same. Clearly, you can’t design a pro-
gram for handling all types of products, nor can you edit the same application to fit different
products. You just have to write different applications for different types of products, but the
parts of the application that deal with buying and selling products and with customers, suppli-
ers, and other peripheral entities won’t change.

Let’s look at a custom class for storing products, which is part of the Products sample
project, available for download from www.sybex.com/go/masteringvb2010. The application’s
main form is shown in Figure 10.1.

The most basic class stores the information you’ll need in ordering and invoicing applica-
tions: the product’s ID, its name, and its price. Here’s the implementation of a simple Product
class:

Public Class Product
Public Description As String
Public ProductID As String
Public ProductBarCode As String
Public ListPrice As Decimal

End Class

I included the product’s bar code because this is how products are usually sold at cash reg-
isters. This class can represent any product for the purposes of buying and selling it. Populate a
collection with objects of this type and you’re ready to write a functional interface for creating
invoices and purchase orders.

INHERITANCE 403

Figure 10.1

Exercising the Book and
Supply inherited classes

Now let’s take into consideration the various types of products. To keep the example sim-
ple, consider a store that sells books and supplies. Each type of product is implemented with
a different class, which inherits from the Product class. Supplies don’t have ISBNs, and books
don’t have manufacturers — they have authors and publishers; don’t try to fit everything into
a single object or (even worse) into a single database table.

Figure 10.2 shows the base class, Product, and the two derived classes, Supply and Book, in
the Class Diagram Designer. The arrows (if they exist) point to the base class of a derived class,
and nested classes (such as the Author and Publisher classes) are contained in the box of their
parent class.

Figure 10.2

Viewing a hierarchy of
classes with the Class
Diagram Designer

404 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Listing 10.2 is a simple class for representing books, the Book class.

Listing 10.2: Simple class for representing books

Public Class Book
Inherits Product
Public Subtitle As String
Public ISBN As String
Public pages As Integer
Public PublisherID As Long
Public Authors() As Author

Public Class Author
Public AuthorID As Long
Public AuthorLast As String
Public AuthorFirst As String

End Class

Public Class Publisher
Public PublisherID As Long
Public PublisherName As String
Public PublisherPhone As String

End Class
End Class

In addition to its own properties, the Book class exposes the properties of the Product class.
Because the book industry has a universal coding scheme (the ISBN), the product’s code is the
same as its ISBN. This, however, is not a requirement of the application. You will probably add
some extra statements to make sure that the ProductID field of the Product class and the ISBN
field of the Book class always have the same value.

The class that represents supplies is shown in Listing 10.3.

Listing 10.3: Simple class for representing supplies

Public Class Supply
Inherits Product
Public LongDescription As String
Public ManufacturerCode As String
Public ManufacturerID As Long

Public Class Manufacturer
Public ManufacturerID As Long
Public ManufacturerName As String

End Class
End Class

INHERITANCE 405

To make sure this class can accommodate all pricing policies for a company, you can imple-
ment a GetPrice method, which returns the product’s sale price (which can be different at dif-
ferent outlets or for different customers and for different periods). The idea is that some piece
of code accepts the product’s list (or purchase) price and the ID of the customer who buys it.
This code can perform all kinds of calculations, look up tables in the database, or perform any
other action and return the product’s sale price: the price that will appear on the customer’s
receipt. We’ll keep our example simple and sell with the list price.

Let’s write some code to populate a few instances of the Book and Supply classes. The fol-
lowing statements populate a HashTable with books and supplies. The HashTable is a structure
for storing objects along with their keys. In this case, the keys are the IDs of the products. The
HashTable can locate items by means of their keys very quickly, and this is why I chose this
type of collection to store the data. HashTables, as well as other collections, are discussed in
detail in Chapter 12, ‘‘Storing Data in Collections.’’

Dim P1 As New Book
P1.ListPrice = 13.24D
P1.Description = "Book Title 1"
P1.ProductID = "EN0101"
P1.ISBN = "0172833223"
P1.Subtitle = "Book Title 1 Subtitle"
Products.Add(P1.ProductID, P1)

Dim P2 As New Supply
P2.Description = "Supply 1"
P2.ListPrice = 2.25D
P2.LongDescription = "Long description of item 1"
P2.ProductID = "S0001-1"
Products.Add(P2.ProductID, P2)

Products is the name of the collection in which the products are stored, and it’s declared as
follows:

Dim Products As New HashTable

Each item in the Products collection is either of the Book or of the Supply type, and you can
find out its type with the following expression:

If TypeOf Products.Item(key) Is Book …

Listing 10.4 shows the code behind the Display Products button on the sample application’s
form. The code iterates through the items of the collection, determines the type of each item,
and adds the product’s fields to the appropriate ListView control.

Listing 10.4: Iterating through a collection of book and supply products

Private Sub Button2_Click(…) Handles bttnDisplay.Click
Dim key As String
Dim LI As ListViewItem
For Each key In Products.Keys

406 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

LI = New ListViewItem
Dim bookItem As Book, supplyItem As Supply
If TypeOf Products.Item(key) Is Book Then

bookItem = CType(Products.Item(key), Book)
LI.Text = bookItem.ISBN
LI.SubItems.Add(bookItem.Description)
LI.SubItems.Add("")
LI.SubItems.Add(bookItem.ListPrice.ToString("#,##0.00"))
ListView1.Items.Add(LI)

End If
If TypeOf Products.Item(key) Is Supply Then

supplyItem = CType(Products.Item(key), Supply)
LI.Text = supplyItem.ProductID
LI.SubItems.Add(supplyItem.Description)
LI.SubItems.Add(supplyItem.LongDescription)
LI.SubItems.Add(supplyItem.ListPrice.ToString("#,##0.00"))
ListView2.Items.Add(LI)

End If
Next

End Sub

It’s fairly easy to take advantage of inheritance in your projects. The base class encapsulates
the functionality that’s necessary for multiple classes. All other classes inherit from the base
class and add members specific to the derived class.

As I mentioned earlier, for the purpose of selling products, you can use the Product class.
You can search for both books and suppliers with their ID or bar code and use the product’s
description and price to generate an invoice.

The following statements retrieve a product by its ID and print its description and price:

Dim id As String
id = InputBox("ID")
If Products.Contains(id) Then

Dim selProduct As Product
selProduct = CType(Products(id), Product)
Debug.WriteLine("The price of " & selProduct.Description &

" is " & selProduct.ListPrice)
End If

If executed, the preceding statements will print the following in the Output window (assum-
ing that you have specified the ID S0001-1 of course). This is all the information you need to
prepare invoices and orders, and it comes from the Product class, which is the base class for all
products.

The price of Supply 2 is 5.99

Before ending this section, I should point out that you can convert the type of an inherited
class only to that of the parent class. You can convert instances of the Book and Supply class to
objects of the Product type, but not the opposite. The only valid type conversion is a widening
conversion (from a narrower to a wider type).

EXTENSION METHODS 407

You won’t be hard-pressed to come up with real-world situations that call for inheritance.
Employees, customers, and suppliers can all inherit from the Person class. Checking and sav-
ings accounts can inherit from the Account class, which stores basic information such as cus-
tomer info and balances. Later in this chapter, you’ll develop a class that represents shapes and
you’ll use it as a basis for classes that implement specific shapes such as circles, rectangles, and
so on.

So, has inheritance solved the problem of code reuse? In large complex projects, yes, it has
helped a lot. Because designing with inheritance in mind has a substantial initial overhead,
people don’t use it with small projects (not that this is a recommended practice). In my view,
the most important advantage of inheritance is that it forces designers and developers to fully
understand the business model for the processes they’re modeling early in the game and not
have to revise their models substantially when they discover faults in their initial design while
they’re in the implementation process.

Extension Methods
The concept of extension methods is not based on inheritance, or even the design of classes, but
it’s a related topic that was introduced to accommodate Language Integrated Query (LINQ).
One of the major advantages of inheritance is that it allows you to extend existing classes by
adding your custom members. As long as you design your classes carefully, you can create
elaborate structures of classes that inherit from one another. Unfortunately, some of the classes
in the Framework as not inheritable (and some of them happen to be the very classes you’d like
to enhance). The Array class, for example, can’t be inherited and neither can the String class.

If you need to add a few methods to a class that are specific to an application, you can use
extension methods. With VB 2010 you can add a method to any class without even inheriting
it. You don’t have to create a new class, just a module that contains one or more procedures
that accept the type of the class you want to extend as their first argument. Let me demonstrate
the process of creating extension methods with a trivial example and then I’ll show you a more
practical extension method.

In this first example I’ll add two simple methods to the Integer class, the Inc and Dec meth-
ods, which increase and decrease an integer value by one (the older among you will actually
recognize the origins of the names of the two methods, you may even reminisce about them).
In effect, I’ll introduce two methods to replace the statements: i += 1 and i -= 1 (where i is
an integer variable). Create a new project and add a module to it. You can call the module any-
thing; for this example I will use the name IntegerExtensions.

First import the following namespace, which will allow you to ‘‘decorate’’ the extension
methods with the appropriate keywords:

Imports System.Runtime.CompilerServices

Now you’re ready to add the definitions of the extension methods. Each extension method
is just a procedure decorated with the following attribute:

<System.Runtime.CompilerServices.Extension()>

or

<Extension()>

if you have imported the System.Runtime.CompilerServices namespace.

408 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

You must also make sure that the first argument you pass to the method is of the type you
want to extend. A method that extends the Integer class, for example, should accept an integer
type as its first argument. This is the instance of the class that your extension method will act
upon and it may be followed by any number of additional arguments. Here are the implemen-
tations of the Inc and Dec methods:

<Extension()>
Public Function Inc(ByVal i As Integer) As Integer

Return i + 1
End Sub

<Extension()>
Public Function Dec(ByVal i As Integer) As Integer

Return i - 1
End Sub

With these definitions in place, switch to the project’s main form and insert the following in
a button’s Click event handler:

Dim i As Integer = 13
MsgBox(i.Inc.ToString)
MsgBox(i.Dec.ToString)

As soon as you enter the name of an Integer variable and the following period, the Inc and
Dec methods will be included in the IntelliSense box, along with the built-in methods of the
Integer class (they indeed extend the Integer class). The first message box will display the value
14 (the original value plus 1) and the second message box will display the value 12 (the original
value minus 1).

You can also implement the same routines as subroutines, which accept their argument by
reference and increase the actual value of the variable instead of returning a new value. Let’s
call the two new methods Increase and Decrease:

<Extension()>
Public Sub Increase(ByRef i As Integer)

i += 1
End Sub

<Extension()>
Public Sub Decrease(ByRef i As Integer)

i -= 1
End Sub

To increase/decrease the values by another amount, rewrite the procedures so that they
accept a second argument. The methods still apply to the Integer class because their first argu-
ment is of the Integer type. Note that when we call an extension method, we don’t specify the
first argument. This argument is used by the compiler to figure out which class the method
extends. The value on which the method acts is the value of the variable to which the method
is applied. In other words, extension methods are instance methods.

Now that you have seen the mechanics of implementing extension methods, let’s look at a
more interesting application of extension methods. Some classes have been heavily extended
in version 4.0 of the Framework with this mechanism. A typical example is the Array class.

EXTENSION METHODS 409

Declare an array variable and then type on a new line the name of the array and a period. In
the IntelliSense box you will see the methods of the Array class. Methods are marked with a
little cube. Some of them, however, are marked with a cube and a down arrow: These are the
class extension methods. These methods were introduced to extend the corresponding classes,
and some typical examples are the Sum and Average methods of the Array class, which return
the sum and the average of the elements in the array (provided that the array is of a numeric
type). The following statement sets up a small array of integers:

Dim integers() = {1, 84, 12, 27, 3, 19, 73, 9, 16, 41, 53, 57, 13}

To calculate the sum of its elements you can write a For Each loop to iterate through all the
elements of the array, as usual, or call the Sum method:

Dim sumOfIntegers = integers.Sum

Likewise, you can call the Min and Max methods to retrieve the numerically smaller and
larger elements respectively and the Average method to retrieve the average value of a set of
numeric values.

The extension methods I just mentioned are not unique to the Array class. They apply to
all classes that implement the IEnumerable interface — in other words, they apply to all col-
lections. Not only that, but they’re quite flexible because they’re overloaded. Some of these
extension methods can be called with a function as an argument! The Sum extension method
iterates through the collection’s items and calculates their sum. It can also calculate the sum of
any transformation of the same elements. For example, you can calculate the sum of the squares
by passing to the method the definition of a function that returns the square of each element.
The Sum method will apply this function to every item as it loops through the elements and
take the sum of the values returned by the function. The definition of a function that returns
the square of a numeric value is trivial:

Function(v As Integer) As Integer
Return(v * v)

End Function

To pass this function as an argument to the Sum method, you pass the body of the function
without the Return statement and without the End Function statement:

Dim sqSum = integers.Sum(Function(v As Integer) v ˆ 2)

The v argument is replaced by the current item’s value as the method iterates through the
collection’s elements. The functions you pass to a method are known as lambda expressions,
and you’ll find a lot more information on lambda expressions in Chapter 13, ‘‘XML in Modern
Programming.’’

Another extension method is the Where method, which also accepts as argument a func-
tion that returns a True/False value. This function is also known as predicate and it determines
whether an element of the collection will be included in the calculations or not. The function
you pass to the Where method has a different role: It selects the value to be summed, and it’s
called selector. The following expression selects the values that are numerically less than 50:

integers.Where(Function(k) k < 50)

410 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

The expression k < 50 is evaluated for each element of the array and, if smaller, the value is
selected. Otherwise, it’s ignored. Having selected the ‘‘small’’ values in the array, we can apply
the Sum method to calculate the sum of the selected values:

Dim smallSum = integers.Where(Function(k) k < 50).Sum

Okay, let’s combine predicates and selectors to create an expression that sums the squares of
selected elements in the array. To request the sum of the squares of all values that are numeri-
cally less than 50, use the following expression:

Dim smallSqSum = integers.Where(Function(k) k < 50).Sum(Function(v) v ˆ 2)

The Where extension method selects the desired values and the Sum extension method acts
on them. The Where method returns an IEnumerable type to which you can apply the Sum
method. The Sum method returns an integer.

I’m sure you got the idea behind extension methods. In Chapter 12 and then in Chapter 13,
you will see how to apply lambda expressions to collections and how extension methods enable
a new powerful querying technology known as LINQ.

Extending Framework Classes

In addition to inheriting and extending you own custom classes, you can extend many of the
classes of the Framework itself. To add a new method to the ArrayList class, all you have to
do is create a new class and include this statement:

Inherits ArrayList

All the methods in the class will become methods of the ArrayList class and they will appear in
the IntelliSense box along with the built-in methods of the ArrayList class.

However, some of the core classes of the Framework are not inheritable. For example, you
can’t add new methods to the String class by inheriting it. By adding extension methods,
you can easily extend any class, but only in the context of a project. To use the same exten-
sion features in another project, you must include the module that contains the extension
methods. In the preceding chapter you saw the implementation of a method that converts
numeric values to strings. If you copy the code into a new module and prefix the methods
with the <Extension> attribute, you can make the Num2String method part of the String
class. Another interesting extension for the String class is a method that actually reads out
text. The Framework contains the Speech.Synthesis namespace, which provides all the tools
for generating a synthetic voice with your computer. To extend the String class with a Speak
method, create a new module and import the following namespace:

Imports System.Speech.Synthesis

Before you can import this class in your code, you must reference it in your project, because
the Speech namespace isn’t referenced by default. Right-click the project name and select

POLYMORPHISM 411

Add Reference from the context menu. On the dialog box that opens, select the System.Speech.
Synthesis component and then add the following method definition:

<Extension()> _
Public Sub Speak(ByVal s As String)

Dim synth As New SpeechSynthesizer
Dim voices As

System.Collections.ObjectModel.ReadOnlyCollection(
Of System.Speech.Synthesis.InstalledVoice) =
synth.GetInstalledVoices()

synth.SelectVoice(voices(0).VoiceInfo.Name)
synth.Speak(s)

End Sub

Easy enough? The first statement retrieves all installed voices (there’s only one voice installed
by default) and uses the first of them to read out the text with the Speak method. If you’re
interested in adding voice capabilities to your application, look up the members of the
Synthesis namespace. You can adjust the properties of the voice, call the Speak method
asynchronously, and even add voice recognition features to your applications.

Polymorphism
A consequence of inheritance is another powerful OOP technique: polymorphism, which is
the capability of a base type to adjust itself to accommodate many different derived types.
Let’s make it simpler by using some analogies in the English language. Take the word run,
for example. This verb can be used to describe what athletes, cars, or refrigerators do; they
all run. In different sentences, the same word takes on different meanings. When you use it
with a person, it means going a distance at a fast pace. When you use it with a refrigerator,
it means that it’s working. When you use it with a car, it may take on both meanings. So,
in a sense the word run is polymorphic (and so are many other English words): Its exact
meaning is differentiated by the context. This is a simple definition of the terms polymor-
phism and polymorphic (both of Greek origin, meaning ‘‘many forms’’). If you reflect on the
essence of polymorphism, you’ll realize that it’s a characteristic that adds intelligence to
languages. And languages, being the primary human tool, should match our intelligence.
As you will see shortly, polymorphism adds a degree of intelligence to object-oriented
programming.

To apply the same analogy to programming, think of a class that describes a basic object
such as a shape. This class would be very complicated if it had to describe and handle all
shapes. It would be incomplete, too, because the moment you released it to the world, you’d
come up with a new shape that can’t be described by your class. To design a class that
describes all possible shapes, you build a simple class to describe shapes at large, and then
you build a separate class for each individual shape: a Triangle class, a Square class, a Circle
class, and so on. As you can guess, all these classes inherit the Shape class. Let’s also assume
that all the classes that describe individual shapes have an Area method, which calculates the
area of the shape they describe. The name of the Area method is the same for all classes, but it
calculates a different formula for different shapes.

412 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Developers, however, shouldn’t have to learn a different syntax of the Area method for each
shape; they can declare a Square object and calculate its area with the following statements:

Dim shape1 As New Square(5)
Dim area As Double = shape1.Area

If shape2 represents a circle, the same method will calculate the circle’s area. (I’m assum-
ing that the constructors accept as an argument the square’s side and the circle’s radius,
respectively.)

Dim shape2 As New Circle(9.90)
Dim area As Double = shape2.Area

You can go through a list of objects derived from the Shape class and calculate their areas
by calling the Area method. No need to know what shape each object represents — you just
call its Area method. Let’s say you created an array with various shapes. You can go through
the collection and calculate the total area with a loop like the following:

Dim totalArea As Double = 0.0
For Each s As Shape In Shapes totalArea += CType(s, Shape).Area
End While

The CType() function converts the current element of the collection to a Shape object; it’s
necessary only if the Strict option is on, which prohibits VB from late-binding the expression.
(Strict is off by default, but my suggestion is to turn it on.)

One rather obvious alternative is to build a separate function to calculate the area of each
shape (SquareArea, CircleArea, and so on). It will work, but why bother with so many func-
tion names, not to mention the overhead in your code? You must first figure out the type of
shape described by a specific variable, such as shape1, and then call the appropriate method.
The code will not be as easy to read, and the longer the application gets, the more If and Case
statements you’ll be coding. Not to mention that each method would require different argu-
ments for its calculations.

This approach clearly offsets the benefits of object-oriented programming by reducing classes
to collections of functions. Even worse, the code is no longer elegant.

The second, even less-efficient method is a really long Area() function that would be able to
calculate the area of all shapes. This function should be a very long Case statement, such as the
following one:

Public Function Area(ByVal shapeType As String) As Double
Select Case shapeType

Case "Square": { calculate the area of a square }
Case "Circle": { calculate the area of a circle }
{ . . . more Case statements }

End Select
End Function

The real problem with this approach is that every time you want to add a new segment
to calculate the area of a new shape to the function, you’d have to edit it. If other develop-
ers wanted to add a shape, they’d be out of luck. The solution is a method by the name Area

POLYMORPHISM 413

that applies to all shapes. Each time we create a new shape by inheriting the base class, we
should be able to add a new implementation of the Area method for the specific shape. This
way, no matter what a specific shape is, we can calculate its area by calling the polymorphic
Area method.

In the following section, I’ll show you how to build the Shape class and then extend it with
individual classes for various shapes. You’ll be able to add your own classes to implement
additional shapes, and any code written using the older versions of the Shape class will keep
working.

Building the Shape Class
In this section, you’ll build a few classes to represent shapes to demonstrate the advantages
of implementing polymorphism. Let’s start with the Shape class, which will be the base class
for all other shapes. This is a really simple class that’s pretty useless on its own. Its real use
is to expose two methods that can be inherited: Area and Perimeter. Even the two methods
don’t do much — actually, they do absolutely nothing. All they really do is provide a nam-
ing convention. All classes that will inherit the Shape class will have an Area and a Perimeter
method, and they must provide the implementation of these methods.

The code shown in Listing 10.5 comes from the Shapes sample project. The application’s
main form, which exercises the Shape class and its derived classes, is shown in Figure 10.3.

Figure 10.3

The main form of the
Shapes project

Listing 10.5: Shape class

Class Shape
Overridable Function Area() As Double
End Function
Overridable Function Perimeter() As Double
End Function

End Class

If there are properties common to all shapes, you place the appropriate Property proce-
dures in the Shape class. If you want to assign a color to your shapes, for instance, insert a

414 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Color property in this class. The Overridable keyword means that a class that inherits from
the Shape class can override the default implementation of the corresponding methods or prop-
erties. As you will see shortly, it is possible for the base class to provide a few members that
can’t be overridden in the derived class. The methods that are declared but not implemented in
the parent class are called virtual methods, or pure virtual methods.

Next you must implement the classes for the individual shapes. Add another Class module
to the project, name it Shapes, and enter the code shown in Listing 10.6.

Listing 10.6: Square, Triangle, and Circle classes

Public Class Triangle
Inherits Shape
Private _side1, _side2, _side3 As Double

Property Side1() As Double
Get

Return _side1
End Get
Set(ByVal Value As Double)

_side1 = Value
End Set

End Property

Property Side2() As Double
Get

Return _side2
End Get
Set(ByVal Value As Double)

_side2 = Value
End Set

End Property

Public Property Side3() As Double
Get

Return _side3
End Get
Set(ByVal Value As Double)

_side3 = Value
End Set

End Property

Public Overrides Function Area() As Double
Dim Perim As Double
Perim = Perimeter()
Return (Math.Sqrt((Perim - _side1) * _

(Perim - _side2) * (Perim - _side3)))
End Function

POLYMORPHISM 415

Public Overrides Function Perimeter() As Double
Return (_side1 + _side2 + _side3)

End Function

End Class

Public Class Circle
Inherits Shape
Private _Radius As Double

Public Property Radius() As Double
Get

Radius = _Radius
End Get
Set(ByVal Value As Double)

_Radius = Value
End Set

End Property

Public Overrides Function Area() As Double
Return (Math.PI * _Radius ˆ 2)

End Function

Public Overrides Function Perimeter() As Double
Return (2 * Math.PI * _Radius)

End Function
End Class

Public Class Square
Inherits Shape
Private _Side As Double

Public Property Side() As Double
Get

Side = _Side
End Get
Set(ByVal Value As Double)

_Side = Value
End Set

End Property

Public Overrides Function Area() As Double
Area = _Side * _Side

End Function

Public Overrides Function Perimeter() As Double
Return (4 * _Side)

End Function
End Class

416 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

The Shapes.vb file, available for download from www.sybex.com/go/masteringvb2010,
contains three classes: the Square, Triangle, and Circle classes. All three expose their basic
geometric characteristics as properties. The Triangle class, for example, exposes the prop-
erties Side1, Side2, and Side3, which allow you to set the three sides of the triangle. In a
real-world application, you may opt to insert some validation code because not any three sides
produce a triangle. You might also consider defining a triangle with three points (pairs of x-,
y-coordinates), but I’d rather not turn this chapter into Geometry 101. You must also insert
parameterized constructors for each shape. The implementation of these constructors is trivial,
and I’m not showing it in the listing; you’ll find the appropriate constructors if you open the
project with Visual Studio. The Area and Perimeter methods are implemented differently
for each class, but they do the same thing: They return the area and the perimeter of the
corresponding shape. The Area method of the Triangle class is a bit involved, but it’s just a
formula (the famous Heron’s formula for calculating a triangle’s area).

Testing the Shape Class

To test the Shape class, all you have to do is create three variables — one for each specific
shape — and call their methods. Or, you can store all three variables into an array and iter-
ate through them. If the collection contains Shape variables only, the current item is always a
shape, and as such it exposes the Area and Perimeter methods. The code in Listing 10.7 does
exactly that. First, it declares three variables of the Triangle, Circle, and Square types. Then it
sets their properties and calls their Area method to print their areas.

Listing 10.7: Testing the Shape class

Dim shape1 As New Triangle()
Dim shape2 As New Circle()
Dim shape3 As New Square()
’ Set up a triangle
shape1.Side1 = 3
shape1.Side2 = 3.2
shape1.Side3 = 0.94
Console.WriteLine("The triangle’s area is " & shape1.Area.ToString)
’ Set up a circle
shape2.Radius = 4
Console.WriteLine("The circle’s area is " & shape2.Area.ToString)
’ Set up a square
shape3.Side = 10.01
Console.WriteLine("The square’s area is " & shape3.Area.ToString)
Dim shapes() As Shape
shapes(0) = shape1
shapes(1) = shape2
shapes(2) = shape3
Dim shapeEnum As IEnumerator
Dim totalArea As Double
shapeEnum = shapes.GetEnumerator
While shapeEnum.MoveNext

POLYMORPHISM 417

totalArea = totalArea + CType(shapeEnum.Current, shape).Area
End While
Console.WriteLine("The total area of your shapes is " &

totalArea.ToString)

In the last section, the test code stores all three variables into an array and iterates through
its elements. At each iteration, it casts the current item to the Shape type and calls its Area
method. The expression that calculates areas is CType(shapeEnum.Current, shape).Area, and
the same expression calculates the area of any shape.

Casting Objects to Their Parent Type

The trick that makes polymorphism work is that objects of a derived type can be cast to their
parent type. An object of the Circle type can be cast to the Shape type because the Shape type
contains less information than the Circle type. You can cast objects of a derived type to their
parent type, but the opposite isn’t true. The methods that are shared among multiple derived
classes should be declared in the parent class, even if they contain no actual code. Just don’t
forget to prefix them with the Overridable keyword. There’s another related attribute, the
MustOverride attribute, which forces every derived class to provide its own implementation
of a method or property.

Depending on how you will use the individual shapes in your application, you can add
properties and methods to the base class. In a drawing application, all shapes have an outline
and a fill color. These properties can be implemented in the Shape class because they apply
to all derived classes. Any methods with a common implementation for all classes should also
be implemented as methods of the parent class. Methods that are specific to a shape must be
implemented in one of the derived classes.

I should also point out here that you can declare variables of the Shape type and initialize
them to specific shapes, as follows:

Dim triangle As Shape
triangle = New Triangle(1.2, 0.9, 1.3)

Dim circle As Shape
circle = New Circle(10)

Dim square As Shape
square = New Square(23)

The circle variable’s type isn’t Shape; its type is determined by its constructor and the
circle variable is of the Circle type. Needless to say that all three variables expose the
Perimeter and Area methods and the code is strongly typed (it will work even with the Strict
option on).

418 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Who Can Inherit What?
The Shape base class and the Shapes derived class work fine, but there’s a potential problem.
A new derived class that implements a new shape may not override the Area or the Perimeter
method. If you want to force all derived classes to implement a specific method, you can
specify the MustInherit modifier for the class declaration and the MustOverride modifier for
the member declaration. If some of the derived classes may not provide their implementation
of a method, this method of the derived class must also be declared with the Overridable
keyword.

The Shapes project uses the MustInherit keyword in the definition of the Shape class. This
keyword tells the CLR that the Shape class can’t be used as is; it must be inherited by another
class. A class that can’t be used as is is known as an abstract base class, or a virtual class. The
definition of the Area and Perimeter methods are prefixed with the MustOverride keyword,
which tells the compiler that derived classes (the ones that will inherit the members of the base
class) must provide their own implementation of the two methods:

Public MustInherit Class Shape
Public MustOverride Function Area() As Double
Public MustOverride Function Perimeter() As Double

End Class

Notice that there’s no End Function statement, just the declaration of the function that must
be inherited by all derived classes. If the derived classes may override one or more methods
optionally, these methods must be implemented as actual functions. Methods that must be over-
ridden need not be implemented as functions — they’re just placeholders for a name. You must
also specify their parameters, if any. The definitions of the methods you specify are known as
the methods’ signature.

There are other modifiers you can use with your classes, such as the NotInheritable
modifier, which prevents your class from being used as a base class by other developers. The
System.Array class is an example of a Framework class that can’t be inherited.

In the following sections, you’ll look at the class-related modifiers and learn when to use
them. The various modifiers are keywords, such as the Public and Private keywords that you
can use in variable declarations. These keywords can be grouped according to the entity they
apply to, and I used this grouping to organize them in the following sections.

Parent Class Keywords
These keywords apply to classes that can be inherited, and they appear in front of the Class
keyword. By default, all classes can be inherited, but their members can’t be overridden. You
can change this default behavior with the following modifiers:

NotInheritable This prevents the class from being inherited (also known as a sealed class).
The base data types, for example, are not inheritable. In other words, you can’t create a new
class based on the Integer data type. The Array class is also not inheritable.

MustInherit This class must be inherited. Classes prefixed with the MustInherit attribute
are called abstract classes, and the Framework contains quite a few of them. You can’t create an
object of this class in your code, and therefore, you can’t access its methods. The Shape class is
nothing more than a blueprint for the methods it exposes and can’t be used on its own; that’s
why it was declared with the MustInherit keyword.

WHO CAN INHERIT WHAT? 419

Derived Class Keywords
The following keywords may appear in a derived class; they have to do with the derived class’s
parent class:

Inherits Any derived class must inherit an existing class. The Inherits statement tells the
compiler which class it derives from. A class that doesn’t include the Inherits keyword is by
definition a base class.

MyBase Use the MyBase keyword to access a derived class’s parent class from within the
derived class’s code.

Parent Class Member Keywords
These keywords apply to the members of classes that can be inherited, and they appear in front
of the member’s name. They determine how derived classes must handle the members (that is,
whether they can or must override their properties and methods):

Overridable Every member with this modifier can be overwritten. If a member is declared
as Public only, it can’t be overridden. You should allow developers to override as many of the
members of your class as possible, as long as you don’t think there’s a chance that they might
break the code by overriding a member. Members declared with the Overridable keyword
don’t necessarily need to be overridden, so they must provide some functionality.

NotOverridable Every member declared with this modifier can’t be overridden in the inher-
iting class.

MustOverride Every member declared with this modifier must be overridden. You can skip
the overriding of a member declared with the MustOverride modifier in the derived class
as long as the derived class is declared with the MustInherit modifier. This means that the
derived class must be inherited by some other class, which then receives the obligation to over-
ride the original member declared as MustOverride.

The two methods of the Shape class must be overridden, and we’ve done so in all the derived
classes that implement various shapes. Let’s also assume that you want to create different types
of triangles with different classes (an orthogonal triangle, an isosceles triangle, and a generic
triangle). And let’s assume that these classes would inherit the Triangle class. You can skip the
definition of the Area method in the Triangle class, but you’d have to include it in the derived
classes that implement the various types of triangles. Moreover, the Triangle class would have
to be marked as MustInherit.

Public This modifier tells the CLR that the specific member can be accessed from any appli-
cation that uses the class. This, as well as the following keywords, are access modifiers and are
strictly inheritance related, but I’m listing them here for completeness.

Private This modifier tells the CLR that the specific member can be accessed only in the
module in which it was declared. All the local variables must be declared as Private, and no
other class (including derived classes) or application will see them.

Protected Protected members have scope between public and private, and they can be
accessed in the derived class, but they’re not exposed to applications using either the parent
class or the derived classes. In the derived class, they have a private scope. Use the Protected
keyword to mark the members that are of interest to developers who will use your class as a
base class, but not to developers who will use it in their applications.

420 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Protected Friend This modifier tells the CLR that the member is available to the class that
inherits the class as well as to any other component of the same project.

Derived Class Member Keyword
The Overrides keyword applies to members of derived classes and indicates whether a mem-
ber of the derived class overrides a base class member. Use this keyword to specify the member
of the parent class you’re overriding. If a member has the same name in the derived class as
in the parent class, this member must be overridden. You can’t use the Overrides keyword
with members that were declared with the NotOverridable or Protected keywords in the base
class.

VB 2010 At Work: The InheritanceKeywords Project
A few examples are in order. The sample application of this section is the InheritanceKeywords
project, and it contains a few classes and a simple test form. Create a simple class by entering
the statements of Listing 10.8 in a Class module, and name the module ParentClass.

Listing 10.8: InheritanceKeywords class

Public MustInherit Class ParentClass
Public Overridable Function Method1() As String

Return ("I’m the original Method1")
End Function
Protected Function Method2() As String

Return ("I’m the original Method2")
End Function
Public Function Method3() As String

Return ("I’m the original Method3")
End Function
Public MustOverride Function Method4() As String

’ No code in a member that must be overridden !
’ Notice the lack of the matching End Function here

Public Function Method5() As String
Return ("I’m the original Method5")

End Function
Private prop1, prop2 As String
Property Property1() As String

Get
Property1 = "Original Property1"

End Get
Set

prop1 = Value
End Set

End Property
Property Property2() As String

Get
Property2 = "Original Property2"

WHO CAN INHERIT WHAT? 421

End Get
Set

prop2 = Value
End Set

End Property
End Class

This class has five methods and two properties. Notice that Method4 is declared with the
MustOverride keyword, which means it must be overridden in a derived class. Notice also
the structure of Method4. It has no code, and the End Function statement is missing. Method4
is declared with the MustOverride keyword, so you can’t instantiate an object of the Parent-
Class type. A class that contains even a single member marked as MustOverride must also be
declared as MustInherit.

Place a button on the class’s test form, and in its code window attempt to declare a variable
of the ParentClass type. VB will issue a warning that you can’t create a new instance of a class
declared with the MustInherit keyword. Because of the MustInherit keyword, you must cre-
ate a derived class. Enter the lines from Listing 10.9 in the ParentClass module after the end
of the existing class.

Listing 10.9: Derived class

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String

Return ("I’m the derived Method4")
End Function
Public Function newMethod() As String

Console.WriteLine("<This is the derived Class’s newMethod " &
"calling Method2 of the parent Class> ")

Console.WriteLine(" " & MyBase.Method2())
End Function

End Class

The Inherits keyword determines the parent class. This class overrides the Method4 mem-
ber and adds a new method to the derived class: newMethod. If you switch to the test form’s
code window, you can now declare a variable of the DerivedClass type:

Dim obj As DerivedClass

This class exposes all the members of ParentClass except for the Method2 method, which is
declared with the Protected modifier. Notice that the newMethod() function calls this method
through the MyBase keyword and makes its functionality available to the application. Normally,
we don’t expose Protected methods and properties through the derived class.

422 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Let’s remove the MustInherit keyword from the declaration of the ParentClass class.
Because it’s no longer mandatory that the ParentClass be inherited, the MustInherit keyword
is no longer a valid modifier for the class’s members. So, Method4 must be either removed
or implemented. Let’s delete the declaration of the Method4 member. Because Method4 is no
longer a member of the ParentClass, you must also remove the entry in the DerivedClass that
overrides it.

MyBase and MyClass
The MyBase and MyClass keywords let you access the members of the base class and the
derived class explicitly. To see why they’re useful, edit the ParentClass, as shown here:

Public Class ParentClass
Public Overridable Function Method1() As String

Return (Method4())
End Function
Public Overridable Function Method4() As String

Return ("I’m the original Method4")
End Function

Override Method4 in the derived class, as shown here:

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String
Return("Derived Method4")

End Function

Switch to the test form, add a button, declare a variable of the derived class, and call its
Method4:

Dim objDerived As New DerivedClass()
Debug.WriteLine(objDerived.Method4)

What will you see if you execute these statements? Obviously the string Derived Method4.
So far, all looks reasonable, and the class behaves intuitively. But what if we add the following
method in the derived class?

Public Function newMethod() As String
Return (Method1())

End Function

This method calls Method1 in the ParentClass class because Method1 is not overridden in the
derived class. Method1 in the base class calls Method4. But which Method4 gets invoked? Sur-
prised? It’s the derived Method4! To fix this behavior (assuming you want to call the Method4
of the base class), change the implementation of Method1 to the following:

Public Overridable Function Method1() As String
Return (MyClass.Method4())

End Function

WHO CAN INHERIT WHAT? 423

If you run the application again, the statement

Console.WriteLine(objDerived.newMethod)

will print this string:

I’m the original Method4

Is it reasonable for a method of the base class to call the overridden method? It is reason-
able because the overridden class is newer than the base class, and the compiler tries to use the
newest members. If you had other classes inheriting from the DerivedClass class, their mem-
bers would take precedence.

Use the MyClass keyword to make sure you’re calling a member in the same class and not
an overriding member in an inheriting class. Likewise, you can use the keyword MyBase to
call the implementation of a member in the base class rather than the equivalent member in
a derived class. MyClass is similar to MyBase, but it treats the members of the parent class as if
they were declared with the NotOverridable keyword.

Putting Inheritance to Work
Inheritance isn’t just a theoretical concept that can be applied to shapes or other entities that have
no relation whatsoever with business applications. I’ve used a simple example to demonstrate
that there are entities that can be modeled quite naturally with inherited classes. Now that you
have learned the mechanics of designing parent and derived classes and the keywords that affect
inheritance, it’s time to explore a business-like scenario where inheritance may come in handy.

An interesting type of business application deals with reservations — be it hotel reserva-
tions, flights reservation, car rentals, you name it. The same company usually provides all types
of reservations, and chances are you have used their services on the Web, either to make reser-
vations or to simply look up hotels near certain attractions or conventions. Expedia.com and
Bookings.com are probably the most popular reservation sites for the retail market. There are
also many sites addressed to travel professionals.

Before designing the interface of an application, architects must come up with a model that
reflects the business objects and embeds the required business logic into them. They must also
design a database that reflects the hierarchy of the business objects. I will not show you an
enormous data model for all entities you may run into while designing the model for a reser-
vation system, just a simplified (if not oversimplified) object hierarchy for storing bookings.

There are several types of bookings a reservation system should accommodate, and each
type has its own structure. However, there are a few fields that are common to all bookings.
A booking must have a name (the name of the person staying at the hotel or flying), a price, a
confirmation number, and so on. Then there are fields that are unique to each type of booking.
Hotel bookings have a hotel name and a destination, a check-in date and a check-out date. Car
rental bookings share the same information, but no hotel name, and the destination is not a
city, but a car pickup location. They also have a car drop location, which may or may not be
the same as the pickup location.

I’m sure you’ve got the idea; we’ll design a base class to represent a booking at large and
a number of classes, one for each type of booking, all inheriting the same base class. Although
there are many ways to design classes for storing data related to bookings, the starting point
should be the observation that all types of bookings share some common fields. If we collect the
information that’s common to all bookings, we can build a parent class from which all types of
bookings will derive.

424 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

First thing’s first. Since we must be able to differentiate several booking types, we must
create an enumeration with a member for each different booking type, as follows:

Public Enum ReservationType
HotelReservation
CarReservation
FlightReservation

End Enum

Every time a new booking is created, its type should be set to the appropriate member of the
ReservationType enumeration. If the need for a new type of booking arises, you can update
the ReservationType enumeration and create a new derived class to represent the attributes
that are unique to the new booking type.

We’ll now turn our attention to the parent class, which contains all the standard fields of a
booking. Listing 10.10 shows a possible implementation of the Booking class:

Listing 10.10: The Booking parent class

Public MustInherit Class Booking
Protected Property Type As ReservationType
Public ReadOnly Property BookingType As ReservationType

Get
Return Type

End Get
End Property
Public Property BookingRequestDate As Date
Protected Property BookingStartDate As Date
Protected Property BookingEndDate As Date
Public Property BookingName As String
Public Property BookingNumber As String
Public Property ProviderName As String
Public Property Price As Decimal

End Class

Note that all properties are auto-implemented (I’ll leave it up to you to introduce reason-
able validation, such as to reject inappropriate starting and ending dates, future request dates,
and so on). Some of the properties are marked as Protected. These properties are internal
to the class and not visible from the project that uses the Booking class. The Type property,
for example, shouldn’t be visible outside the class. We don’t want users to create a new hotel
booking and set its Type property to any other value other than HotelReservation (you’ll see
shortly how we can do that). However, users of the class should be able to request the type of
a booking, so I’ve included the read-only property BookingType, which returns the value of the
Type protected property.

Note also that the BookingStartDate and BookingEndDate properties are also Protected.
All bookings have a starting and an ending date (with a few exceptions, such as event book-
ings), but they have different names. Why use a generic names for the two dates when we can

WHO CAN INHERIT WHAT? 425

call them CheckinDate and CheckoutDate for hotels, PickupDate and DropoffDate for cars,
and so on?

Note that the Booking class is prefixed with the MustInherit modifier so that the applica-
tions that use the derived classes can’t create generic objects. This keyword makes the Booking
class an abstract one.

Let’s design now the HotelBooking class, which derives from the Booking class and
adds a few properties to describe the hotel (the HotelName, DestinationCity, and
DestinationCountry properties). In a production application, you’d have a Destination class
with a city code and a country code, but I’ve decided to keep the complexity of the class to a
minimum.

Note the properties CheckinDate and CheckoutDate. These two properties are mapped to
the BookingStartDate and BookingEndDate of the parent class. I’m using the Protected mod-
ifier along with the MyBase object to hide the names of the parent class and name them differ-
ently in the derived class. Other than that, the code is almost trivial, as you can see in
Listing 10.11.

Listing 10.11: The FlightBooking class based on the Booking class

Public Class HotelBooking
Inherits Booking

Public Property DestinationCountry As String
Public Property DestinationCity As String
Public Property HotelName As String
Public Property CheckInDate As Date

Get
Return MyBase.BookingStartDate

End Get
Set(ByVal value As Date)

MyBase.BookingStartDate = value
End Set

End Property

Public Property CheckOutDate As Date
Get

Return MyBase.BookingEndDate
End Get
Set(ByVal value As Date)

MyBase.BookingEndDate = value
End Set

End Property
End Class

The FlightBooking class is even simpler. The two dates are now called DepartureDate and
ArrivalDate. In flights, we first depart, then we arrive, while at hotels we first arrive (check
in) and then depart (check out). Take a look at Listing 10.12.

426 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

Listing 10.12: The FlightBooking Class based on the Booking class

Public Class FlightBooking
Inherits Booking
Public Property OriginCode As String
Public Property DestinationCode As String
Public Property DepartureDate As Date

Get
Return MyBase.BookingStartDate

End Get
Set(ByVal value As Date)

MyBase.BookingStartDate = value
End Set

End Property

Public Property ArrivalDate As Date
Get

Return MyBase.BookingEndDate
End Get
Set(ByVal value As Date)

MyBase.BookingEndDate = value
End Set

End Property
Public Property ConfirmationNumber As String

End Class

We’re almost done, except for a crucial detail. Every time the user declares a variable of
the derived type (HotelBooking, FlightBooking, or CarBooking), we must set the Type prop-
erty to the appropriate member of the ReservationType enumeration. You can’t rely on other
developers to ensure the integrity of your data because they may create a HotelBooking object
and set its Type property to an inappropriate member of the enumeration.

The proper place to set the Type property is the constructor of each of the derived classes.
The constructor of the HotelBooking class should be as follows:

Public Sub New()
Type = ReservationType.HotelReservation

End Sub

There are similar constructors for the other derived classes, which I need not repeat here.
Let’s see now how to use the Booking class in an application. Switch to the project’s main

form and enter the statements of Listing 10.13 in the Click event handler of a Button control.
These statements create a hotel booking and a car booking. You should enter some of these
statements in the editor and see how the members of each of the derived classes appear in the
IntelliSense list. You will see that you can’t set the BookingStartDate and BookingEndDate
properties because they’re hidden in the derived classes.

WHO CAN INHERIT WHAT? 427

Listing 10.13: Exercising the members of the Booking derived classes

Dim htlBooking As New Reservation.HotelBooking
htlBooking.BookingName = "Joe Taveller"
htlBooking.BookingNumber = "PRN01202148"
htlBooking.BookingRequestDate = Now
htlBooking.checkInDate = #5/19/2010#
htlBooking.checkOutDate = #5/22/2010#
htlBooking.DestinationCountry = "Spain"
htlBooking.DestinationCity = "Barcelona"
htlBooking.HotelName = "Tower Hotel"
htlBooking.Price = 680.99

Dim fltBooking As New Reservation.FlightBooking
fltBooking.DepartureDate = #5/19/2010 7:30:00 AM#
fltBooking.ArrivalDate = #5/19/2010 9:45:00 AM#
fltBooking.DestinationCode = "BCN"
fltBooking.OriginCode = "JFK"
fltBooking.BookingName = "Joe Traveller"
fltBooking.BookingNumber = "PRN01202149"
fltBooking.ConfirmationNumber = "008-9823118 CA11"
fltBooking.Price = 1099.0

If you want to process bookings of a specific type, just use the Type property to find out the
exact type of a booking, as in the following loop that iterates through hotel bookings and prints
out the hotel names for each booking:

For Each bk In Bookings
If bk.Type = Reservation.ReservationType.HotelReservation Then

Dim hotelBk As Reservation.HotelBooking =
CType(bk, Reservation.HotelBooking)

TextBox1.AppendText("Reservation # " &
hotelBk.BookingNumber & " " &
hotelBk.HotelName & vbCrLf)

End If
Next

You can also iterate through the Bookings collection and access the members of the base
class with a control variable of the Booking type. The following loop goes through all bookings
and calculates their total value:

Dim totalPrice As Decimal = 0
For Each bk In Bookings

totalPrice += bk.Price
Next

428 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

The classes I’ve presented here are adequate for demonstrating how to apply inheritance and
polymorphism in your code, but they’re quite trivial. You can expand the functionality of these
classes by adding new properties on your own. You can add one or more room types in a hotel
booking (whether the booking is for a single room or a twin and a double, and so on). Flights
are not always a single segment. Flying from New York to Barcelona may include a layover in
Madrid, and this information (along with the arriving and departing time) must also appear in
a flight booking.

Adding Centralized Data Storage

The sample code presented in this section was written to demonstrate the basic principles
of designing with inheritance, and it’s not the type of code you’d use in a real application.
For example, you can’t maintain the list of bookings at the client — there may be multiple
clients using the same application. The class should also be responsible for maintaining the list
of bookings as well as for persisting them. A reservation application uses a database to store
bookings (as well as other static information, such as destinations, hotels, and prices).

The Bookings project, which you will find at www.sybex.com/go/masteringvb2010, con-
tains additional code that’s closer to a real-world application. The Booking class maintains
the list of bookings in a List collection. The topic of collections is discussed in Chapter
12, but you can think of them as arrays. The client instantiates a booking (an instance of
the HotelBooking, FlightBooking, or CarBooking class) and then calls the CreateBooking
method to add the booking to the list. The class’s code is responsible for adding the book-
ing to the collection or submitting it to the database. It’s also the class’s responsibility to
retrieve a booking by its ID, the name of the traveler, or any other combination of criteria.
I have added the GetBookingByID and GetAllBookings methods to all the classes. If you
call the GetBookingByID method of the Booking class, you’ll get back a Booking object.
If you call the same method of a derived class, you’ll get back an object of the same class
(a HotelBooking object, for example).

If you look up the code of the application, you’ll see that I have used some queries you have
not seen before in this book to select bookings by their type or their IDs. These queries are
LINQ statements. LINQ is discussed in detail in Chapter 14, ‘‘Introduction to LINQ,’’ but I
didn’t want to write loops that go through every element in a collection to select the desired
one. LINQ is much more expressive and elegant. After reading Chapter 14, I don’t think you’ll
go back to arcane querying techniques that involve loops and multiple comparisons.

As you will see, the client’s code doesn’t change. It’s the class that determines where the book-
ings are stored and how they will be recalled. The sample application uses a List collection to
store the bookings, but you can modify it so that is uses a database to store and retrieve book-
ings without touching the client code.

WHO CAN INHERIT WHAT? 429

The Class Diagram Designer
Classes are quite simple to build and use, and so is OOP. There are even tools to help you
design and build your classes, which I’ll describe briefly here. You can use the Class Diagram
Designer available in Visual Studio to build your classes with point-and-click operations, but
you can’t go far on this tool alone. The idea is that you specify the name and the type of a
property and the tool emits the Get and Set procedures for the property (the getters and set-
ters, as they’re known in OOP jargon). The default implementation of getters and setters is
trivial, and you’ll have to add your own validation code. You can also create new methods by
specifying their names and arguments, but the designer won’t generate any code for you; you
must implement the methods yourself. Tools such as the Class Diagram Designer and Visio
allow you to visualize the classes that make up a large project and the relations between them,
and they’re a necessity in large projects. Many developers, however, build applications of sub-
stantial complexity without resorting to tools for automating the process of building classes.
You’re welcome to explore these tools.

Right-click the name of a class in the Solution Explorer and choose View Class Diagram
from the context menu. You’ll see a diagram of the class on the design surface, showing all the
members of the class. You can add new members, select the type of the properties, and edit
existing members. The diagram of a trivial class like the Contact class is also trivial, but the
class diagram becomes more helpful as you implement more interrelated classes.

Figure 10.2, from earlier in the chapter, shows the Product, Book, and Supply classes in the
Class Diagram Designer. You can use the commands of each class’s context menu to create new
members and edit/remove existing ones. To add a new property, for example, you specify the
property name and type, and the designer generates the outline of the Set and Get procedures
for you. Of course, you must step in and insert your custom validation code in the property
setter.

To add a new class to the diagram, right-click on the designer pane and choose Add � Class
from the context menu. You’ll be prompted to enter the name of the class and its location (the
VB file in which the autogenerated class code will be stored). You can specify a new name or
select an existing class file and add your new class to it. To create a derived class, you must
double-click the box that represents the new class and manually insert the Inherits statement
followed by the name of the base class. After you specify the parent class, an arrow joining the
two classes will be added to the diagram. The arrow points to the parent class. In addition to
classes, you can add items including structures, enumerations, and comments. You can also
create class diagrams from existing classes.

To add members to a class, right-click the box that represents the class and choose Add
from the context menu. This will lead to a submenu with the members you can add to a class:
Method, Property, Field, and Event. You can also add a constructor (although you will have to
supply the arguments and the code for parameterized constructors), a destructor, and a con-
stant. To edit a member, such as the type of a property or the arguments of a method, switch
to the Class Details window, where you will see the members of the selected class. Expand any
member to see its parameters: the type of a property and the arguments and the return value
of a method.

Experiment with the Class Diagram Designer tools to jump-start the process of designing
classes. At the very least, you should use this tool to document your classes, especially in a
team environment.

430 CHAPTER 10 APPLIED OBJECT-ORIENTED PROGRAMMING

The Bottom Line

Use inheritance Inheritance, which is the true power behind OOP, allows you to create new
classes that encapsulate the functionality of existing classes without editing their code. To
inherit from an existing class, use the Inherits statement, which brings the entire class into
your class.

Master It Explain the inheritance-related attributes of a class’s members.

Use polymorphism Polymorphism is the ability to write members that are common to a
number of classes but behave differently, depending on the specific class to which they apply.
Polymorphism is a great way of abstracting implementation details and delegating the imple-
mentation of methods with very specific functionality to the derived classes.

Master It The parent class Person represents parties, and it exposes the GetBalance
method, which returns the outstanding balance of a person. The Customer and Supplier
derived classes implement the GetBalance method differently. How will you use this
method to find out the balance of a customer and/or supplier?

Part 4

Working with the .NET
Framework
◆ Chapter 11: The Framework at Large

◆ Chapter 12: Storing Data in Collections

◆ Chapter 13: XML in Modern Programming

◆ Chapter 14: An Introduction to LINQ

Chapter 11

The Framework at Large

A major aspect of programming with VB 2010 is the knowledge of the .NET Framework. The
vast majority of the functionality of any language in Visual Studio is the Framework, which
is a massive collection of classes that address most of the common programming tasks, from
handling dates to encryption and retrieving data from a remote web server. Even listing the
classes that make up the Framework and their members would take another book of compa-
rable size, so I’ve decided to provide a single chapter as an introduction to the basic classes of
the Framework and include several tutorials in PDF format that discuss specific aspects of the
Framework. These tutorials, which you will find at this book’s site, discuss in detail topics like
handling folders and files, graphics, and printing with VB.

In this chapter, you’ll find an introduction to several major components of the Framework,
including the following:

◆ How to use the My component

◆ The concept of Streams

◆ How to use the StringBuilder class

◆ How to use the Date and TimeSpan classes

◆ The basics of drawing with the Framework

◆ The basics of printing with the Framework

What Is the Framework?
The Framework is a comprehensive collection of classes that encapsulate the most common
(and many not so common) programming tasks. In essence, it’s the foundation on which .NET
applications are built. The Framework is a library of code organized into namespaces and
classes that address typical programming tasks.

As software development becomes more and more complex, developers face new challenges
on a daily basis. To assist developers, language designers keep adding to their compilers to the
point that languages have started to bloat with new features. And as you can guess, there’s
no end to this trend. No matter how much functionality you build into a language, developers
need more. It is a challenge to just know (or look up) the proper function name for a specific
task. Now, add external libraries with hundreds, even thousands, of functions for all kinds of

434 CHAPTER 11 THE FRAMEWORK AT LARGE

programming tasks, from the less trivial formatting and math functions to encryption functions,
specialized drawing routines, and so on and so forth. There was clearly a need for a more con-
cise, more organized approach.

To address that need, engineers at Microsoft identified the functionality most developers
need in typical applications, organized it into ‘‘blocks’’ of related functionality, and the
Framework was born. We’re already in version 4.0 of the Framework, which includes methods
for mundane tasks like reading data from files, math functions, and drawing methods. It also
includes security-related methods, serialization methods (a powerful technique for converting
complex objects into XML or binary format), encryption, compression, speech synthesis, and
just about anything. Practically any routine that’s used somewhere by the operating system
belongs to the Framework. The Framework was an enormous software project on the surface,
but in my opinion it was basically a classification project. Developers should be able to locate
the information they need quickly, otherwise the Framework wouldn’t be nearly as useful, or
popular.

It’s actually impossible to cover the entire Framework, so I’ve chosen a few parts
of it to discuss in this book. You will also find several tutorials in PDF format at
www.sybex.com/go/masteringvb2010 that explain some of the most practical aspects of
the Framework, such as the handling of files and folders and the drawing and printing meth-
ods. This chapter contains an overview of these classes and a few shortcuts to the Framework,
namely how to use the built-in snippets and the My component.

Using Snippets
The Framework is the main reason developers love to work with Microsoft’s languages. It’s
also the reason many developers have been reluctant to move from VB6 to VB.NET and follow-
ing versions. The Framework is huge, and switching from a self-contained language like VB6
into programming with the Framework requires a shift in thinking about programming. To do
justice to the Framework, developers who have made the switch wouldn’t even think of mov-
ing back to an earlier version of VB. To address the qualms of developers considering moving
away from VB6 and into the .NET world, Microsoft introduced the My component (which is
unique to Visual Basic) and the snippets. The My component is a collection of functions that
address many of the most common operations developers need to implement in their applica-
tions. With time, the My component along with the snippets have evolved into a productivity
tool, worthy of the reputation of Visual Basic.

A code snippet is a predefined code segment that implements a very specific task. Every
time you need to perform a task, such as writing to or reading from a file or playing back a
sound, you can insert the appropriate snippet into your code and change a few variable names
to match the rest of the code. Let’s say you want to insert the statements for writing some text
to a file, but you have no idea how to access files. Create an empty line in the listing (press the
Enter key a couple of times at the end of a code line). Then, open the Edit menu and choose
IntelliSense � Insert Snippet (or right-click somewhere in the code window and choose Insert
Snippet from the context menu).

You will see on the screen a list of the snippets, organized in folders according to func-
tion, as shown in Figure 11.1. Select the Fundamentals folder, which will display another list
of options: Collections, Data Types, File System, and Math. Double-click the File System item to
see a list of common file-related tasks, as shown in Figure 11.2. Locate the item Write Text To
A File in the list and double-click it to insert the appropriate snippet at the current location in
the code window.

USING SNIPPETS 435

Figure 11.1

The code snippets orga-
nized according to their
function

Figure 11.2

Selecting a code snippet
to insert in your code

The following snippet will be inserted in your code:

My.Computer.FileSystem.WriteAllText("C:\test.txt", "Text", True)

To write some text to a file, you need to call the WriteAllText method of the
My.Computer.FileSystem object. You can replace the strings shown in the snippet with
actual values. The first string is the filename, the second string is the text to be written to the
file, and the last argument of the method determines whether the text will be appended to
the file (if False) or overwrite any existing text (if True).

436 CHAPTER 11 THE FRAMEWORK AT LARGE

The snippet shows you the basic statements for performing a common task, and you can edit
the code inserted by Visual Studio as needed. Many of the snippets are one-liners. A real-world
application would probably prompt the user for a filename via the File common dialog box and
then use the filename specified by the user in the dialog box instead of a hard-coded filename.

Of course, there aren’t snippets for every conceivable task. If this were the case, then the col-
lection of snippets would compete in complexity with the Framework itself. There are snippets
for a relatively small number of tasks and all snippets make use of the My component. Where
the snippets are meant to minimize the code you write, the My component is meant to simplify
the Framework by encapsulating the functionality of several statements into a single method.
Let’s start with an overview of the My component and then we’ll move on to the Framework.

Using the My Component
You have probably noticed that the code snippets of Visual Studio use an entity called My,
which is a peculiar object that was introduced with VB 2005 to simplify many programming
tasks. As you saw in the preceding code snippet, the My component allows you to write some
text to a file with a single statement, the WriteAllText method. If you’re familiar with earlier
versions of Visual Basic, you know that you must first open a file, then write some text to it,
and finally close the file. The My component allows you to perform all these operations with a
single statement, as you saw in the preceding example.

Another example is the Play method, which you can use to play back a WAV file from
within your code:

My.Computer.Audio.Play ("C:\Sounds\CountDown.wav")

You can also use the following expression to play back a system sound:

My.Computer.Audio.PlaySystemSound(System.Media.SystemSounds.Exclamation)

The method that plays back the sound is the Play method, and the method that writes text
to a file is the WriteAllText method. However, you can’t call them directly through the My
component; they’re not methods of the My component. If they were, you’d have to dig hard to
find out the method you need, and this is exactly what the My object attempts to remedy: the
need to dig deep into the Framework to find out the method for the task at hand.

The My component exposes six subcomponents, which contain their own subcomponents.
Here’s a description of the basic components of the My component and the functionality you
should expect to find in each.

My.Application

The My.Application component provides information about the current application. The
CommandLineArgs property of My.Application returns a collection of strings, which are
the arguments passed to the application when it was started. Typical Windows applications
aren’t called with command-line arguments, but it’s possible to start an application and pass a
filename as an argument to the application (the document to be opened by the application, for
example). The Info property is an object that exposes properties such as DirectoryPath (the
application’s default folder), ProductName, Version, and so on.

USING THE MY COMPONENT 437

My.Computer

This component exposes a lot of functionality via a number of properties, many of
which are objects. The My.Computer.Audio component lets you play back sounds. The
My.Computer.Clipboard component lets you access the Clipboard. To find out whether
the Clipboard contains a specific type of data, use the ContainsText, ContainsImage,
ContainsData, and ContainsAudio methods. To retrieve the contents of the Clipboard, use
the GetText, GetImage, GetData, and GetAudioStream methods respectively. Assuming that
you have a form with a TextBox control and a PictureBox control, you can retrieve text or
image data from the Clipboard and display it on the appropriate control with the following
statements:

If My.Computer.Clipboard.ContainsImage Then
PictureBox1.Image = My.Computer.Clipboard.GetImage

End If
If My.Computer.Clipboard.ContainsText Then

TextBox2.Text = My.Computer.Clipboard.GetText
End If

You may have noticed that using the My component in your code requires that you write
long statements. You can shorten them substantially via the With statement, as shown next:

With My.Computer.Clipboard
If .ContainsImage Then

PictureBox1.Image = .GetImage
End If
If .ContainsText Then

TextBox2.Text = .GetText
End If

End With

When you’re executing multiple statements on the same object, you can specify the object
in a With statement and call its methods in the block of the With statement by specifying the
method name prefixed with a period. The With statement is followed by the name of the object
to which all following methods apply and is terminated with the End With statement.

Another component of My.Computer is the FileSystem component that exposes all the
methods you need to access and manipulate files and folders from within your code. If you
enter the expression My.Computer.FileSystem followed by a period in the code window, you
will see all the methods exposed by the FileSystem component. Among them, you will find
DeleteFile, DeleteDirectory, RenameFile, RenameDirectory, WriteAllText, ReadAllText,
and many more. Select a method and then type the opening parenthesis. You will see the
syntax of the method in a ToolTip. The syntax of the CopyFile method, for example, is as
follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String)

Just specify the path of the file you want to copy with the first argument and the new file’s
name with the second argument, and you’re finished. This statement will copy the specified file
to the specified location.

438 CHAPTER 11 THE FRAMEWORK AT LARGE

You will notice that the ToolTip box with the syntax of the CopyFile method has multi-
ple versions, which are listed at the left side of the box along with arrow up and arrow down
icons. Click these two buttons to see the next and previous versions of the method. The second
version of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String,
overwrite As Boolean)

The overwrite argument specifies whether the method should overwrite the destination file
if it exists. The first overloaded form of the method will not overwrite the specified file, if it
already exists.

The third overloaded form of the method accepts a different third argument that determines
whether the usual copy animation will be displayed as the file is being copied. Try out this
form of the method by copying a large file to a slow drive, such as a flash card, to see how
easy it is to add a bit of the Windows look and feel to your application.

My.Forms

This component lets you access the forms of the current application. You can also access the
application’s forms by name, as you recall from Chapter 4, ‘‘GUI Design and Event-Driven
Programming.’’

My.Settings

This component lets you access the application settings. These settings apply to the entire appli-
cation and are stored in an XML configuration file. The settings are created from within Visual
Studio, and you use the Settings component to read them. The settings are variables you can
use in your code to parameterize the application. For example, you may store the user’s name
in a variable, let’s say the UserName variable, so that you can display it initially when prompt-
ing users for their name and password. This variable can be declared as in the Settings tab of
the project’s Properties window, as shown in Figure 11.3.

Figure 11.3

Creating application
settings

USING THE MY COMPONENT 439

To read the value of the UserName variable, use the following expression:

My.Settings.UserName

Yes, the editor will create a class behind the scenes for your settings and make them avail-
able to your application as strongly typed values. You can also change the values of the appli-
cation settings from within your code.

My.User

This component returns information about the current user. The most important property of
the User component is the CurrentPrincipal property, which is an object that represents the
credentials of the current user.

My.WebServices

The WebServices component represents the web services referenced by the current application.
For more information on web services and how they’re used in an application, see Chapter 21,
‘‘Building and Using Web Services.’’

How to Use the My Component
The My component gives VB developers of all levels unprecedented programming power and
allows us to perform tasks that would require substantial code if implemented with earlier
versions of the language, not to mention the research it would take to locate the appropriate
methods in the Framework. You can explore the My component on your own and use it as
needed. My is not a substitute for learning the language and the Framework. It can help you
initially, but you can’t go far without learning the methods of the Framework. It will help you
accomplish a whole lot with a few simple statements, and it will also give you a head start with
the Framework, as the My component is a miniature Framework.

Let’s say you want to locate all the files of a specific type in a folder, including its subfold-
ers. Scanning a folder and its subfolders to any depth is quite a task (you’ll find the code in the
tutorial ‘‘Accessing Folders and Files’’ at www.sybex.com/go/masteringvb2010). You can do
the same with a single statement by using the My component as follows:

Dim files As System.Collections.ObjectModel.ReadOnlyCollection(Of String)
files = My.Computer.FileSystem.GetFiles("D:\Data", True, "*.txt")

The GetFiles method populates the files collection with the pathnames of the text files
in the folder D:\Data and its subfolders. The second argument determines whether the method
will scan the specified folder recursively, and although you can pass a True/False value for this
argument, you can also set it to one of the members of the FileIO.SearchOption enumeration:
SearchAllSubDirectories and SearchTopLevelOnly. However, it won’t help you if you want
to process each file in place. Moreover, this GetFiles method is synchronous: If the folder con-
tains many subfolders with many files, it will block the interface until it retrieves all the files.
Once you have retrieved the filenames you’re interested in, you can process them by iterating
through the files collection with a For Each loop. As for the method’s return type, you need
not remember it. You will see it in the IntelliSense box — not to mention that you can turn on
inference and let the editor figure out the type of the files variable.

440 CHAPTER 11 THE FRAMEWORK AT LARGE

Want to save data to a file and read it back at a later session? It’s trivial with the
FileSystem component. To send text to a file, call the WriteAllText method passing the text
to be saved as an argument:

My.Computer.FileSystem.WriteAllText("file_name", your_text, False)

The first argument is the path of the file, the second argument is the text to be saved, and
the last argument is a True/False value that determines whether the text will overwrite the
file’s original contents or append the text to the existing contents.

To read back the data from the file and use it in your application, use the ReadAllText
method:

Dim txt As String = My.Computer.FileSystem.ReadAllText("file_name")

Of course, not all information we save to files is in text format. The WriteAllBytes and
ReadAllBytes methods move an array of bytes to and from a file. Converting data to an
array of bytes is no piece of cake. You can use the WriteAllText and ReadAllText methods
to quickly save and read text to a file, but if you need to create files with structured data,
you must look into the methods of the IO namespace, which is discussed in detail in one of
the tutorials you can download from www.sybex.com/go/masteringvb2010. You can also
take advantage of the serialization techniques discussed in Chapter 12, ‘‘Storing Data in
Collections.’’

If you’re already familiar with VB, you may think that the My component is an aid for the
absolute beginner or the nonprogrammer. This isn’t true. VB is about productivity, and the
My component can help you be more productive with your daily tasks regardless of your
knowledge of the language or programming skills. If you can use My to save a few (or a few
dozen) statements, do it. There’s no penalty for using the My component because the compiler
replaces the methods of the My component with the equivalent method calls to the Framework.
If you’re not familiar with the My component, or if you’re new to the Framework, please
explore this component on your own. It will simplify your coding effort, as long as you can
locate the method you need for the task at hand.

In the next sections we’ll explore the most commonly used classes of the Framework. The
classes discussed here are a very small part of the Framework, but they’re the classes you’ll be
using the most. I have chosen the topics I believe you will find most useful and focused on them.
Once you start working with the Framework and you learn to navigate through its classes, you’ll
find it much easier to explore other parts of the Framework on your own.

The IO Namespace
The IO namespace contains all the classes that manipulate folders and files as well as access
files. For a detailed discussion of the classes of the IO namespace, please download the tutorial
‘‘Accessing Files and Folders’’ from www.sybex.com/go/masteringvb2010. Table 11.1 contains
a brief overview of the basic components for manipulating files and folders, more of a road
map to the IO namespace.

To use the IO namespace in your code, you must import the System.IO namespace with this
statement:

Using System.IO

THE IO NAMESPACE 441

Otherwise, you will have to fully qualify the property and method names in your code.

Table 11.1: IO namespace classes

Class Description

Directory The Directory class exposes all the members you need to manipulate folders
(retrieve the folders on a drive and their subfolders, retrieve the files in a folder,
and other similar operations).

File The File class exposes methods for manipulating files (copy and move them
around, open and close them), similar to the methods of the Directory class.

DriveInfo The DriveInfo class provides basic information about a drive. It also exposes the
GetAllDrives method, which returns all the drives on the target computer.

DirectoryInfo The DirectoryInfo class provides information about the attributes of a specific
folder.

FileInfo The FileInfo class provides information about the attributes of a specific file. This
class also exposes the Encrypt and Decrypt methods for encrypting and
decrypting existing files.

Path The Path class exposes methods for performing simple tasks with file and folder
path names, including methods for creating random file paths.

The Directory Class
The System.IO.Directory class exposes all the members you need to manipulate folders. It’s a
shared class, which means that you can call its methods without having to create an instance of
the Directory class. The methods of the Directory class are listed in Table 11.2.

Table 11.2: System.IO.Directory methods

Method Description

CreateDirectory This method creates a new folder whose path is passed to the
method as a string argument. The CreateDirectory method
returns a DirectoryInfo object, which contains information about
the newly created folder.

Delete This method deletes a folder and all the files in it. If the folder
contains subfolders, the Delete method will optionally remove
the entire directory tree under the node you’re removing. The
simplest form of the Delete method accepts as an argument the
path of the folder to be deleted. You can pass the value True as
a second argument to delete a folder recursively.

442 CHAPTER 11 THE FRAMEWORK AT LARGE

Table 11.2: System.IO.Directory methods (CONTINUED)

Method Description

Exists This method accepts a path as an argument and returns a
True/False value indicating whether the specified folder exists.

Move This method moves an entire folder to another location in the
file system. The folder to be moved and its destination are
passed as arguments.

GetCurrentDirectory,
SetCurrentDirectory

Use these methods to retrieve and set the path of the current
directory. By default, the GetCurrentDirectory method returns
the folder in which the application is running.

GetDirectories This method retrieves all the subfolders of a specific folder and
returns their names as an array of strings.

GetFiles This method returns the names of the files in the specified folder
as an array of strings.

GetFileSystemEntries This method returns an array of all items (files and folders) in a
path, which is passed to the method as argument.

GetLogicalDrives This method returns an array of strings, which are the names of
the logical drives on the computer.

The File Class
The IO.File class exposes methods for manipulating files. The names of the methods are
self-descriptive, and most of them accept as an argument the path of the file on which they act.
Use these methods to implement from within your application the common operations that
users normally perform through the Windows interface. To get an idea about the functionality
of the File class, I’m listing its most important methods in Table 11.3.

The DriveInfo Class
The DriveInfo class provides basic information about a drive. Its constructor accepts as an argu-
ment a drive name, and you can use the object returned by the method to retrieve information
about the specific drive, as shown here:

Dim Drive As New DriveInfo("C")

The argument is the name of a drive (you can include the colon if you want). Notice that
you can’t specify a Universal Naming Convention (UNC) path with the constructor of the
DriveInfo object. You can only access local drives or network drives that have been mapped to
a drive name on the target system.

To retrieve information about the specified drive, use the properties of the DriveInfo class
listed in Table 11.4.

THE IO NAMESPACE 443

Table 11.3: IO.File class methods

Method Description

AppendText Appends text to an existing file (both the file’s path and the text to be
written are passed as arguments).

Copy Copies an existing file to a new location and accepts two arguments,
the paths of the source and destination files.

Create Creates a new file and returns a FileStream object, which you can use
to write to or read from the file.

CreateText Similar to the Create method, this method creates a text file and
returns a StreamWriter object for writing to the file.

Delete Removes the specified file from the file system and accepts the path of
the file to be deleted as an argument.

Exists Accepts a file’s path and returns a True/False value depending on
whether the file exists or not.

GetAttributes Accepts a file path as an argument and returns the attributes of the
specified file as a FileAttributes object.

Move Moves the specified file to a new location.

Open Opens an existing file for read-write operations.

OpenRead Opens an existing file in read mode and returns a FileStream object
associated with this file.

OpenText Opens an existing text file for reading and returns a StreamReader
object associated with this file.

OpenWrite Opens an existing file for output.

The DirectoryInfo Class
To create a new instance of the DirectoryInfo class that references a specific folder, supply the
folder’s path in the class’s constructor:

Dim DI As New DirectoryInfo(path)

The members of the DirectoryInfo class are equivalent to the members of the Directory
class, and you will recognize them as soon as you see them in the IntelliSense drop-down list.
A few methods that are unique to the DirectoryInfo class are the CreateSubdirectory and
GetFileSystemInfos methods. The CreateSubdirectory method creates a subfolder under
the folder specified by the current instance of the class, and its syntax is as follows:

DI.CreateSubdirectory(path)

444 CHAPTER 11 THE FRAMEWORK AT LARGE

Table 11.4: DriveInfo class members

Member Description

DriveFormat property A string describing the drive’s format (FAT32, NTFS).

DriveType property A string describing the drive’s type (fixed, CD-ROM, and so on).

TotalSize, TotalFreeSize,
AvailableFreeSpace
properties

These properties return the drive’s total capacity, in bytes, the
total free space, and the available free space on the drive.

VolumeLabel property This property returns, or sets, the drive’s volume name.

GetDrives method The DriveInfo class exposes the GetDrives method, which
returns an array of DriveInfo objects, one for each drive on the
system. This method is similar to the GetLogicalDrives
method of the Directory object, which is a shared method and
doesn’t require that you create an object explicitly.

The CreateSubdirectory method returns a DirectoryInfo object that represents the new
subfolder. The GetFileSystemInfos method returns an array of FileSystemInfo objects, one for
each item in the folder referenced by the current instance of the class. The items can be either
folders or files. To retrieve information about all the entries in a folder, create an instance of the
DirectoryInfo class and then call its GetFileSystemInfos method:

Dim DI As New DirectoryInfo(path)
Dim itemsInfo() As FileSystemInfo
itemsInfo = DI.GetFileSystemInfos()

You can also specify an optional search pattern as an argument when you call this method:

itemsInfo = DI.GetFileSystemInfos(pattern)

Notice the differences between the GetFileSystemInfos method of the Directory-
Info class and the GetFileSystemEntries of the Directory object. GetFileSystemInfos
returns an array of objects that contains information about the current item (file or folder).
GetFileSystemEntries returns an array of strings (the names of the folders and files).

The Path Class
The Path class’s methods perform simple tasks such as retrieving a file’s name and extension,
returning the full path description of a relative path, and so on. The Path class’s members are
shared, and you must specify the path on which they will act as an argument. The most use-
ful methods exposed by the Path class are utilities for manipulating filenames and pathnames,
described in the following sections. Notice that the methods of the Path class are shared: You
must specify the path on which they will act as an argument. The most important methods of
the Path class are listed in Table 11.5.

THE IO NAMESPACE 445

Table 11.5: Path class methods

Method Description

ChangeExtension Changes the file name extension of the file you specify to a
new extension, which is also specified as an argument.

Combine Combines two path specifications into one by appending the
second path to the first one and inserting a backslash if
necessary.

GetDirectoryName Extracts the directory name from a path passed to the
method as an argument.

GetFileName,
GetFileNameWithoutExtension

Return the file name with and without extension from a full
path passed to each method as an argument.

GetTempFile,
GetTempPath

Return a temporary file and path name, which you can use to
store data during the course of execution of your application.

Streaming Data
To access files for reading and writing data with the Framework, you must first understand the
concept of streams. A stream is a channel between your application and the source of the data.
The source of the data need not be a file, although in most cases we use streams to work with
files. If you’ve been around for a while, you’re probably expecting to read about commands
that open a file, write to it (or read from it), and then close the file. The reason for introducing
the concept of streams in the Framework is that streams can be connected to one another and
perform multiple operations sequentially. A typical example is the cryptographic stream, which
accepts data, encrypts it, and spits out a series of bytes. This stream can be connected to a file
stream and send encrypted data to the file.

Let’s start by looking at the process of writing data to a file. First, you must import the IO
namespace with the Imports System.IO statement. Then create a StreamWriter object, which is
associated with a file:

Dim streamOut As New StreamWriter(file_name)

In this statement, file_name is the name of the file you want to write to.
To write something to the file, you call the streamOut variable’s Write method. Everything

you write to the stream is saved automatically to the file. To save the contents of a TextBox
control to a file, use the following statement:

streamOut.Write(TextBox1.Text)

When you’re done, you must close the Stream object by calling its Close method. The fol-
lowing statements prompt the user to select a file name with the Save dialog box and then save
the contents of the TextBox control to the selected file:

SaveFileDialog1.Filter = "Text Files|*.txt|All Files|*.*"
SaveFileDialog1.FilterIndex = 0

446 CHAPTER 11 THE FRAMEWORK AT LARGE

SaveFileDialog1.DefaultExt = ".txt"
SaveFileDialog1.FileName = ""
If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

Dim strmOut As New StreamWriter(SaveFileDialog1.FileName)
strmOut.Write(TextBox1.Text)
strmOut.Close()

End If

To read back the data in a later session, you must display the OpenFile dialog box to allow
users to select the file and then create the StreamReader object and call its ReadToEnd method.
Here’s the code that reads back the contents of the TextBox1 control:

OpenFileDialog1.Filter = "Text Files|*.txt|All Files|*.*"
OpenFileDialog1.FilterIndex = 0
OpenFileDialog1.DefaultExt = ".txt"
OpenFileDialog1.FileName = ""
If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

Dim strmIn As New StreamReader(OpenFileDialog1.FileName)
TextBox1.Text = strmIn.ReadToEnd
strmIn.Close()

End If

This concludes the brief introduction to the System.IO namespace. You will find much more
information on the topic in the tutorial ‘‘Accessing Folders and Files’’ at www.sybex.com/go/
masteringvb2010, but you should also explore the My.Computer.FileSystem component,
which provides may shortcuts to the Framework for simple tasks.

Drawing and Painting
An interesting aspect of the Framework is dedicated to the generation of graphics. There are
numerous methods for drawing and printing and they’re discussed in detail in the tutorials
‘‘Creating Graphics with VB 2010’’ and ‘‘Printing with VB 2010,’’ which are available for
download from www.sybex.com/go/masteringvb2010. This section contains an overview of
the graphics printing classes of the Framework and their basic functionality.

The Graphics Object

The Graphics object is the drawing surface — your canvas. All the controls you can draw
on expose a Graphics property, which is an object, and you can retrieve it with the
CreateGraphics method. Most of the controls provide a CreateGraphics method, but we
normally draw on the Form object and the PictureBox control.

The Graphics object exposes all the methods and properties you need to create graphics on
the control. Start by declaring a variable of the Graphics type and initialize it to the Graphics
object returned by the control’s CreateGraphics method:

Dim G As Graphics
G = PictureBox1.CreateGraphics

DRAWING AND PAINTING 447

At this point, you’re ready to start drawing on the PictureBox1 control with the methods
discussed in the following section. To draw a rectangle, for example, call the DrawRectangle
method of the G variable, passing the origin and dimensions of the rectangle as arguments. To
display a string, call the DrawString method, which requires several arguments, such as the
string to be drawn, the font in which it will be rendered, its location, and the brush object that
will be used for the drawing. You’ll see how to use these methods shortly.

Two properties of the Graphics object you should know about are the TextRenderingHint
and the SmoothingMode properties. The TextRenderingHint method specifies how
the Graphics object will render text, and its value is AntiAlias, AntiAliasGridFit,
ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, or SystemDefault.
The SmoothingMode property is similar to the TextRenderingHint, but it applies to shapes
drawn with the Graphics object’s drawing methods. Its value is one of the members of the
SmoothingMode enumeration: AntiAlias, Default, HighQuality, HighSpeed, Invalid, and
None.

Before showing some drawing examples, I must present a few classes that are used routinely
in creating graphics.

The Point Class

The Point class represents a point on the drawing surface and is expressed as a pair of (x, y)
coordinates. The x-coordinate is its horizontal distance from the origin, and the y-coordinate is its
vertical distance from the origin. The origin is the point with coordinates (0, 0), and this is the
top-left corner of the drawing surface.

The constructor of the Point class is as follows, where X and Y are the point’s horizontal and
vertical distances from the origin:

Dim P1 As New Point(X, Y)

The Rectangle Class

Another class that is often used in drawing is the Rectangle class. The Rectangle object is used
to specify areas on the drawing surface. Its constructor accepts as arguments the coordinates of
the rectangle’s top-left corner and its dimensions:

Dim box As Rectangle
box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right and
1 pixel down from the origin, and its dimensions are 100 by 20 pixels:

box = New Rectangle(1, 1, 100, 20)

The box variable represents a rectangle, but it doesn’t generate any output on the monitor.
If you want to draw the rectangle, you can pass it as an argument to the DrawRectangle or
FillRectangle method, depending on whether you want to draw the outline of the rectangle
or a filled rectangle.

448 CHAPTER 11 THE FRAMEWORK AT LARGE

The Size Class

The Size class represents the dimensions of a rectangle; it’s similar to a Rectangle object, but it
doesn’t have an origin, just dimensions. To create a new Size object, use the following
constructor:

Dim S1 As New Size(100, 400)

Another form of the Rectangle constructor uses a Point and a Size object to specify the
location and dimensions of the rectangle:

box = New Rectangle(point, size)

The point and size arguments are properly initialized Point and Size objects.

The Color Class

The Color class represents colors, and there are many ways to specify a color. The simplest
method to specify a color is to declare a variable of the Color type and initialize it to one of
the named colors exposed as properties of the Color class:

Dim myColor As Color
myColor = Color.Azure

The 128 color names of the Color class will appear in the IntelliSense box as soon as you
enter the period following the keyword Color. You can also use the FromARGB method, which
creates a new color from its basic color components (the red, green, and blue components). To
create a color that’s mostly red, use a statement like the following:

Mycolor = Color.FrmARGB(255, 128, 128, 255)

The first argument is the opacity of the color (255 for maximum opacity, 0 for a totally trans-
parent color), and the remaining three arguments are the intensities of the color’s red, green
and blue components (0 for minimum intensity, 255 for maximum intensity). For a more for-
mal discussion of the Color class, see the tutorial on creating graphics with VB, available for
download at www.sybex.com/go/masteringvb2010.

The Font Class

The Font class represents fonts, which are used when rendering strings via the DrawString
method. To specify a font, you must create a new Font object; set its family name, size, and
style; and then pass it as an argument to the DrawString method. Alternatively, you can
prompt the user for a font via the Font common dialog box and use the object returned by the
dialog box’s Font property as an argument with the DrawString method. To create a new Font
object in your code, use a statement like the following:

Dim drawFont As New Font("Verdana", 12, FontStyle.Bold)

The Font constructor has 13 forms in all, as you will see in the IntelliSense box once you
declare a new variable of the Font type.

DRAWING AND PAINTING 449

The Pen Class

The Pen class represents virtual pens, which you use to draw on the Graphics object’s sur-
face. To construct a new Pen object, you must specify the pen’s color and width in pixels. The
following statements declare three Pen objects with the same color and different widths:

Dim thinPen, mediumPem, thickPen As Pen
thinPen = New Pen(Color.Black, 1)
mediumPen = New Pen(Color.Black, 3)
thickPen = New Pen(Color.Black, 5)

The quickest method of creating a new Pen object is to use the built-in Pens collection, which
creates a pen with a width of 1 pixel and the color you specify. The following statement can
appear anywhere a Pen object is required and will draw shapes in blue color (the second state-
ment is optional and it changes the default width of the pen):

thinPen = Pens.Blue
thinPen.Width = 3

The Brush Class

The Brush class represents the instrument for filling shapes, including text; you can create
brushes that fill with a solid color, a pattern, or a bitmap. In reality, there’s no Brush object.
The Brush class is actually an abstract class that is inherited by all the classes that implement
a brush, but you can’t declare a variable of the Brush type in your code. Instead, you can
declare a variable of the following type: SolidBrush, HatchBrush, LinearGradientBrush,
PathGradientBrush, and TextureBrush. To fill a shape with a solid color, create a SolidBrush
object with the following constructor, where brushColor is a color value, specified with the
help of the Color object:

Dim sBrush As SolidBrush
sBrush = New SolidBrush(brushColor)

Every filled object you draw with the sBrush variable will be filled with the color of the
brush. A gradient brush fills a shape with a specified gradient. The LinearGradientBrush fills a
shape with a linear gradient, and the PathGradientBrush fills a shape with a gradient that has
one starting color and one or more ending colors.

Drawing Methods
Now that I’ve covered the auxiliary drawing objects, we can look at the drawing methods of
the Graphics class. Before getting into the details of the drawing methods, however, let’s write
a simple application that draws a couple of simple shapes on a form. First, create a Graphics
object with the following statements:

Dim G As Graphics
G = Me.CreateGraphics

450 CHAPTER 11 THE FRAMEWORK AT LARGE

Everything drawn on the surface represented by the G object will appear on the form. Then,
create a Pen object to draw with. The following statement creates a Pen object that’s 1 pixel
wide and draws in blue:

Dim P As New Pen(Color.Blue)

You just created the two basic objects for drawing: the drawing surface and the drawing
instrument. Now you can draw shapes by calling the Graphics object’s drawing methods. The
following statement will print a rectangle with its top-left corner near the top-left corner of the
form (at a point that’s 10 pixels to the right and 10 pixels down from the form’s corner) and is
200 pixels wide and 150 pixels tall:

G.DrawRectangle(P, 10, 10, 200, 150)

Let’s add the two diagonals of the rectangle with the following statements:

G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

That’s all the statements to create a shape on the form, but where do you insert them? The
proper handler to create graphics is the form’s Paint event handler, as the Paint event is fired
every time the form is shown or resized, and this is when the graphics must be regenerated.

The Paint event handler passes the e argument, which (among other properties) exposes
the form’s Graphics object. You can create a Graphics object in the Paint event handler and
then draw on this object. Take a look at the code in Listing 11.1.

Listing 11.1: Drawing simple shapes in the Paint event

Private Sub Form1_Paint(...) Handles Me.Paint
Dim G As Graphics
G = e.Graphics
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

End Sub

If you run the application now, it works like a charm. The shapes appear to be permanent,
even though they’re redrawn every time you switch to the form. A caveat of drawing from
within the Paint event is that the event isn’t fired when the form is resized. To force a refresh
when the form is resized, you must insert the following statement in the form’s Load event
handler:

Me.SetStyle(ControlStyles.ResizeRedraw, True)

DRAWING AND PAINTING 451

It is possible to make the graphics permanent by drawing not on the Graphics object, but
directly on the control’s (or the form’s) bitmap. This technique is discussed in the tutorial
‘‘Creating Graphics with VB 2010’’ that is available for download from www.sybex.com/
go/masteringvb2010.

The drawing methods can be categorized in two major groups: the methods that draw
stroked shapes (outlines) and the methods that draw filled shapes. The methods in the first
group start with the Draw prefix (DrawRectangle, DrawEllipse, and so on). The methods of
the second group start with the Fill prefix (FillRectangle, FillEllipse, and so on). Of
course, some DrawXXX methods don’t have equivalent FillXXX methods. For example, you
can’t fill a line or an open curve, so there are no FillLine or FillCurve methods.

Another difference between the drawing and filling methods is that the filling methods use
a Brush object to fill the shape — you can’t fill a shape with a pen. So, the first argument of
the methods that draw filled shapes is a Brush object, not a Pen object. The remaining argu-
ments are the same because you must still specify the shape to be filled. To view the drawing
methods, enter the expression:

Me.CreateGraphics.

and you will see the names of the shape drawing methods (they start with the Draw prefix)
and the shape filling methods (they start with the Fill prefix). The DrawLine method draws
a straight-line segment between two points with a pen supplied as an argument. The simplest
forms of the DrawLine method are the following, where point1 and point2 are either Point or
PointF objects, depending on the coordinate system in use:

Graphics.DrawLine(pen, X1, Y1, X2, Y2)
Graphics.DrawLine(pen, point1, point2)

The two most commonly used drawing methods are the DrawString and MeasureString
methods. The DrawString method renders a string in a single line or multiple lines. The sim-
plest form of the DrawString method is as follows:

Graphics.DrawString(string, font, brush, X, Y)

The first argument is the string to be rendered in the font specified by the second argu-
ment. The text will be rendered with the Brush object specified by the brush argument. X and
Y, finally, are the coordinates of the top-left corner of a rectangle that completely encloses the
string.

While working with strings, you need to know the actual dimensions of the string when
rendered with the DrawString method in the specified font so you can determine its place-
ment. The MeasureString method allows you to retrieve the metrics of a string before actu-
ally drawing it. This method returns a SizeF structure with the width and height, in pixels, of
the string when rendered on the same Graphics object with the specified font. We’ll use this
method extensively in the tutorial ‘‘Printing with Visual Basic 2010’’ (available for download
from www.sybex.com/go/masteringvb2010) to position text precisely on the printed page. You
can also pass a Rectangle object as an argument to the MeasureString method to find out how
many lines it will take to render the string on the rectangle.

452 CHAPTER 11 THE FRAMEWORK AT LARGE

The simplest form of the MeasureString method is the following, where string is the string
to be rendered and font is the font in which the string will be rendered:

Dim textSize As SizeF
textSize = Me.Graphics.MeasureString(string, font)

To center a string on the form, use the x-coordinate returned by the MeasureString method,
as in the following code segment:

Dim textSize As SizeF
Dim X As Integer, Y As Integer = 0
textSize = Me.Graphics.MeasureString(string, font)
X = (Me.Width - textSize.Width) / 2
G.DrawString("Centered string", font, brush, X, Y)

To center a string, you must subtract the rendered string’s length from the form’s width,
split the difference, and render half on each side of the string.

Figure 11.4 shows a string printed at the center of the form and the two lines passing
through the same point. Listing 11.2 shows the statements that produced Figure 11.4.

Listing 11.2: Printing a string centered on the form

Private Sub Form1_Paint(...) Handles Me.Paint
Dim G As Graphics
G = Me.CreateGraphics
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
Dim txtFont As New Font("Verdana", 36, FontStyle.Bold)
G.DrawLine(New Pen(Color.Green), CInt(Me.Width / 2), CInt(0),

CInt(Me.Width / 2), CInt(Me.Height))
G.DrawLine(New Pen(Color.Green), 0, CInt(Me.Height / 2),

CInt(Me.Width), CInt(Me.Height / 2))
Dim str As String = "Visual Basic 2010"
Dim txtSize As SizeF
txtSize = G.MeasureString(str, txtFont)
Dim txtX, txtY As Integer
txtX = (Me.Width - txtSize.Width) / 2
txtY = (Me.Height - txtSize.Height) / 2
G.DrawString(str, txtFont,

New SolidBrush(Color.Red), txtX, txtY)
End Sub

For more information on the DrawString and MeasureString methods, please see the tuto-
rial on generating graphics with VB 2010. You will find more examples of these two methods
later in this chapter.

DRAWING AND PAINTING 453

Figure 11.4

Centering a string on a
form

The DrawImage method renders an image on the Graphics object and its simplest syntax is
as follows:

Graphics.DrawImage(img, point)

Both the image and the location of its top-left corner are passed to the method as arguments
(as Image and Point arguments, respectively). Another form of the method draws the specified
image within a rectangle. If the rectangle doesn’t match the original dimensions of the image,
the image will be stretched to fit in the rectangle. The rectangle should have the same aspect
ratio as the Image object to avoid distorting the image in the process:

Graphics.DrawImage(img, rectangle)

The rectangle argument determines not only the placement of the image on the Graphics
object, but also its dimensions.

Gradients
Another very useful and interesting aspect of graphics is the generation of gradients. In addi-
tion to filling shapes with a solid color, you can fill them with various types of gradients. You
can even fill text with a gradient, a topic that’s demonstrated in the tutorial ‘‘Creating Graphics
with VB 2010.’’ The simplest yet most common type of gradient is the linear gradient. To fill a
shape with a linear gradient, you must create an instance of the LinearGradientBrush class with
statements like the following:

Dim lgBrush As LinearGradientBrush
lgBrush = New LinearGradientBrush(rect, startColor, endColor, gradientMode)

This method creates a gradient that fills a rectangle, specified by the rect variable passed as
the first argument. This rectangle isn’t filled with any gradient; it simply tells the method how
long (or how tall) the gradient should be. The gradient starts with the startColor at the left

454 CHAPTER 11 THE FRAMEWORK AT LARGE

side of the rectangle and ends with the endColor at the opposite side, while its color
changes slowly as it moves from one end to the other. The last argument, gradientMode,
specifies the direction of the gradient and its setting is a member of the LinearGradientMode
enumeration: BackwardDiagonal, ForwardDiagonal, Horizontal, and Vertical. You will
find an example of filling a shape with a linear gradient in the following section. The other
types of gradients are discussed in the tutorial on graphics available for download from
www.sybex.com/go/masteringvb2010.

The Image Class
Images are two-dimensional arrays that hold the color values of the pixels making up the
image. This isn’t how images are stored in their respective files — JPG or JPEG (Joint Photo-
graphic Experts Group), GIF (Graphics Interchange Format), TIFF (Tagged Image File Format),
and so on — but it’s a convenient abstraction for the developer. To access a specific pixel of an
image, you need to specify only the horizontal and vertical coordinates of that pixel. Each pixel
is a Long value; the first byte is the pixel’s alpha value and the other three bytes are the red,
green, and blue components.

The Image property of the PictureBox or Form control is an Image object, and there are
several ways to create such an object. You can declare a variable of the Image type and then
assign the Image property of the PictureBox control or the Form object to the variable:

Dim img As Image
img = PictureBox1.Image

The img Image variable holds the bitmap of the PictureBox1 control. This code segment
assumes that an image was assigned to the control at design time. You can also create a new
Image object from an image file by using the Image class’s FromFile method:

Dim img As Image
img = Image.FromFile("Butterfly.jpg")

After the img variable has been set up, you can assign it to the Image property of a Picture-
Box control:

PictureBox1.Image = img

Or you can save the image to a file with the Save method, which also accepts as argument
the name of the file where the bitmap will be saved. If you need to change the format of an
image, all you have to do is open it with the FromFile method and save it to a file with a
different extension.

The Image class exposes several members and here are the most important:

Width, Height These are the dimensions of the image in pixels.

HorizontalResolution, VerticalResolution These properties are the resolutions of the
image in the two directions and are expressed as pixels per inch. If you divide the width of
an image by its horizontal resolution, you’ll get the actual horizontal size of the image in inches
(the size of the image when printed).

PRINTING 455

The methods exposed by the Image class are the RotateFlip method (which rotates
and/or flips an image), the GetThumbnailImage method (which returns a thumbnail with
user-specified dimensions for the specified image), and the Save and FromFile methods (which
save an image and reload an image from a disk file, respectively).

Printing
The topic of printing with Visual Basic is not trivial. Just consider the fact that none of the stan-
dard controls comes with built-in printing capabilities. It would be nice if certain controls, such
as the TextBox or the ListView control, would print their contents, but this is not the case. Even
to print a few text paragraphs entered by the user on a TextBox control, you must provide your
own code.

Printing is identical to creating graphics. You must carefully calculate the coordinates of
each graphic element placed on the paper, take into consideration the settings of the printer
and the current page, and start a new page when the current one is filled. I’ll start the explo-
ration of Visual Basic’s printing capabilities with an overview of the printing process, which is
the same no matter what you print.

You will find a tutorial in PDF format at www.sybex.com/go/masteringvb2010. It explains
the printing process in detail. The tutorial includes several examples to address the common
printing tasks, such as printing plain and formatted text, tabular data, and bitmaps.

The PrintDocument Control
The PrintDocument control represents your printer, and you must add a PrintDocument con-
trol to any project that generates printouts. In effect, everything you draw on the PrintDocu-
ment object is sent to the printer. The PrintDocument control represents the printing device,
and it exposes a Graphics object that represents the printing surface, just like the Graphics
property of all Windows controls. You can program against the Graphics object by using all
the graphics methods discussed earlier in this chapter. To print text, for example, you must
call the DrawString method. You can also print frames around the text with the DrawLine
or DrawRectangle method. In general, you can use all the methods of the Graphics object to
prepare the printout.

The PrintDocument control is invisible at runtime, and its icon will appear in the Com-
ponents tray at design time. When you’re ready to print, call the PrintDocument con-
trol’s Print method. This method doesn’t produce any output, but it does raise the control’s
BeginPrint and PrintPage events. The BeginPrint event is fired as soon as you call the
Print method, and this is where you insert the printout’s initialization code. The PrintPage
event is fired once for every page of the printout, and this is where you must insert the code
that generates output for the printer. Finally, the EndPrint event is fired when the printout
ends, and this is where you insert the code to reset any global variables.

The following statement initiates the printing:

PrintDocument1.Print

This statement is usually placed in a button’s or a menu item’s Click event handler. To experi-
ment with simple printouts, create a new project, place a button on the form, add an instance of
the PrintDocument control to the form, and enter the preceding statement in the button’s Click
event handler.

456 CHAPTER 11 THE FRAMEWORK AT LARGE

After the execution of this statement, the PrintDocument1_PrintPage event handler takes
over. This event is fired for each page, so you insert the code to print the first page in this
event’s handler. The PrintPage event provides the usual e argument, which gives you access
to the Graphics property of the current Printer object. The printer has its own Graphics object,
which represents the page you print on, and you will see shortly how to create graphics to be
printed.

If you need to print additional pages, you set the e.HasMorePages property to True
just before you exit the PrintPage event handler. This will fire another PrintPage event.
The same process will repeat until you’ve printed everything. After you finish, you set the
e.HasMorePages property to False, and no more PrintPage events will be fired. Instead, the
EndPrint event will be fired and the printing process will come to an end. Figure 11.5 outlines
the printing process.

Figure 11.5

All printing takes place
in the PrintPage event
handler of the PrintDoc-
ument object.

PrintPage
Insert code to print next page.

PrintDocument.Print

HasMorePages = True

HasMorePages = False

Event Handlers

EndPrint
Insert clean-up code here.

Initializing the printing process... and program these events to handle the printing.

BeginPrint
Insert initialization code here.

The code in Listing 11.3 shows the structure of a typical PrintPage event handler. The
PrintPage event handler prints three pages with the same text but a different page number on
each page.

Listing 11.3: A simple PrintPage event handler

Private Sub PrintDocument1_PrintPage(...) Handles PrintDocument1.PrintPage
Static pageNum As Integer
Dim prFont As New Font("Verdana", 24, GraphicsUnit.Point)
e.Graphics.DrawString(

"PAGE " & pageNum + 1, prFont,
Brushes.Black, 700, 1050)

e.Graphics.DrawRectangle(Pens.Blue, 0, 0, 300, 100)
e.Graphics.DrawString(_

"Printing with VB 2010", prFont,
Brushes.Black, 10, 10)

PRINTING 457

‘ Following is the logic that determines whether we’re done printing
pageNum = pageNum + 1
If pageNum <= 3 Then

e.HasMorePages = True
Else

e.HasMorePages = False
pageNum = 0

End If
End Sub

The pageNum variable is declared as Static, so it retains its value between invocations of
the event handler and isn’t reset automatically. The last statement, which is executed after you
have printed the last page, resets the pageNum variable in anticipation of another printout. With-
out this statement, the first page of the second printout (if you clicked the button again) would
become page 4, and so on.

The entire printout is generated by the same subroutine, one page at a time. Because pages
are not totally independent of one another, you need to keep some information in variables
that are not initialized every time the PrintPage event handler is executed. The page num-
ber, for example, must be stored in a variable that will maintain its value between successive
invocations of the PrintPage event handler, and it must be increased every time a new page is
printed. If you’re printing a text file, you must keep track of the last printed line so that each
page will pick up where the previous one ended, not from the beginning of the document.

To add printing features that adhere to the Windows standards to your applications, you
must also use the PrintDialog and PageSetupDialog controls, which are discussed in the follow-
ing section.

The PrintDialog Control
The PrintDialog control displays the standard Print dialog box, which allows users to select a
printer and set its properties. If you don’t display this dialog box, the output will be sent auto-
matically to the default printer and will use the default settings of the printer.

To display the Print dialog box, call the PrintDialog control’s ShowDialog method. However,
you must first set the control’s PrinterSettings property, as shown in the following code seg-
ment; if you do not, a runtime exception will be thrown:

PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings
If PrintDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings
End If

When users select a printer in this dialog box, it automatically becomes the active printer.
Any printout generated after the printer selection will be sent to that printer; you don’t have to
insert any code to switch printers.

The PageSetupDialog Control
The PageSetupDialog control displays the Page Setup dialog box, which allows users to set up
the page (its orientation and margins). The dialog box returns the current page settings in a
PageSettings object, which exposes the user-specified settings as properties. These settings don’t

458 CHAPTER 11 THE FRAMEWORK AT LARGE

take effect on their own; you simply read their values and take them into consideration as you
prepare the output for the printer from within your code.

To use this dialog box in your application, drop the PageSetupDialog control on the form
and call its ShowDialog method from within the application’s code. The single property of this
control that you’ll be using exclusively in your projects is the PageSettings property, which
exposes a number of properties reflecting the current settings of the page (margins and orienta-
tion). These settings apply to the entire document. The PrintDocument control has an analogous
property: the DefaultPageSettings property. After the user closes the Page Setup dialog box,
we assign its PageSettings property to the DefaultPageSettings property of the PrintDocu-
ment object to make the user-specified settings available to our code.

The PrintPreviewDialog Control
Print Preview is another dialog box that displays a preview of the printed document. It exposes
a lot of functionality and allows users to examine the output and, optionally, to send it to the
printer. After you write the code to generate the printout, you can direct it to the PrintPre-
viewDialog control. You don’t have to write any additional code; just place an instance of the
control on the form and set its Document property to the PrintDocument control on the form.
Then show the PrintPreviewDialog control instead of calling the Print method of the Print-
Document object:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

After the execution of these two lines, the PrintDocument control takes over. It fires the
PrintPage event as usual, but it sends its output to the Print Preview dialog box, not to the
printer. The dialog box contains a Print button, which the user can click to send the document
being previewed to the printer. The exact same code that generated the preview document will
print the document on the printer.

The first example of this chapter (refer to Listing 11.3) prints three simple pages to the
printer. To redirect the output of the program to the PrintPreview control, add an instance of
the PrintPreview control to the form and replace the statement that calls the Print
Document1.Print method in the button’s Click event handler with the following statements:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

Run the project, and this time you will be able to preview the document on your monitor. If
you’re satisfied with its appearance, you can click the Print button to send the document to the
printer.

Page Geometry
Like the drawing surface on the monitor (the client area), the page on which you’re printing
has a fixed size and resolution. The most challenging aspect of printing is the calculation of the
coordinates and dimensions of each graphic element on the page.

To access the margins of the current page, use the Margins property of the PrintDocument1
.DefaultPageSettings object. This property, which is also an object, exposes the Left,
Right, Top, and Bottom properties, which are the values of the four margins. Another

PRINTING 459

property exposed by the DefaultSettings object is the PageSize property, which repre-
sents the dimensions of the page. The width and height of the page are given by the
following expressions:

PrintDocument1.DefaultPageSettings.PaperSize.Width
PrintDocument1.DefaultPageSettings.PaperSize.Height

The top of the page is at coordinates (0, 0), which correspond to the top-left corner of the
page. We never actually print at this corner. The coordinates of the top-left corner of the print-
able area of the page are given by the following expressions:

PrintDocument1.DefaultPageSettings.Margins.Top
PrintDocument1.DefaultPageSettings.Margins.Left

Basic Printing Methods
The basic methods you’ll use to create printouts are no different than the methods you use to
create graphics. The method for printing text is the DrawString method, which has the follow-
ing syntax:

Graphics.DrawString(string, font, brush, X, Y)

This method will render its string argument in the font specified in the second argument,
using a Brush object as specified by the brush argument at the coordinates specified by the last
two arguments. To position multiple elements on the page, you need to know how much space
each element takes so you can advance accordingly on the page. To find out the size of a string
when rendered on the page, use the MeasureString method. The two methods are used in tan-
dem and this is a common theme in printing text.

The simplest form of the MeasureString method is the following, where string is the string
to be rendered and font is the font in which the string will be rendered:

Dim textSize As SizeF
textSize = Graphics.MeasureString(string, font)

To center a string on the form, subtract the string’s width and height from the page’s width
and height and then split the difference equally between the two sides of the strings, vertically
and horizontally. If the string’s width is 320 pixels and the page’s printable width is 780 pixels,
you must start printing at the x-coordinate (780-320)/2. This will center the string on the page,
leaving 320 pixels on either side. Basically, perform the following calculations using the x- and
y-coordinates returned by the MeasureString method, as shown here:

Dim textSize As SizeF
Dim X As Integer, Y As Integer = 0
textSize = Me.Graphics.MeasureString(string, font)
X = (Me.Width – textSize.Width) / 2
Y = (Me.Height – textSize.Height) / 2
G.DrawString("Centered string", font, brush, X, Y)

460 CHAPTER 11 THE FRAMEWORK AT LARGE

To position your strings on the page you need to know the size of each string when ren-
dered on the printer in a specific font. You can obtain this information with the MeasureString
method, as discussed in the preceding section. As you will read in detail in the tutorial on
printing with VB, a printing routine must first determine the printable area on the page.

VB 2010 at Work: Generating a Simple Printout
In this section, we’re going to build a simple, but certainly not trivial, printout to demonstrate
the use of many of the print-related concepts discussed in the preceding sections. The printout,
which contains centered strings and an image as well as a gradient, is shown in Figure 11.6.

Figure 11.6

Previewing a simple
printout

Start a new form and drop on it a button and the PageSetupDialog, PrintDocument, and
PrintDialog controls. Although we will add preview capabilities to the application, we won’t
use an instance of the PrintPreviewDialog control. Instead, we’ll create an instance of this con-
trol from within the application’s code.

The code for the application is shown in Listing 11.4. The Click event handler for the but-
ton displays the PrintDialog control to allow users to select a printer and set the properties of
the printout. The PrintDialog control has a Preferences button, where users can set the page
orientation. If you want users to be able to set the page’s margins, you must also display the
PageSetupDialog. Windows applications provide a Page Setup menu item, which displays the
PageSetup dialog box.

After the user has selected a printer and set the orientation of the page, the code creates a
new instance of the PrintPreviewDialog control, the prn variable, and assigns the PrintDoc-
ument control to the Document property of the prn object and calls the same object’s Show
method to initiate the printout.

PRINTING 461

Then the PrintPage event takes over. This event’s handler contains quite a bit of code, but
it’s straightforward. First, it extracts the coordinates of the printable area’s upper-left corner,
taking into consideration the page’s margins. These two values are stored in the variables topX
and topY. Then it calculates the width and height of the page’s printable area and stores these
values in the pageWidth and pageHeight properties.

The following few statements create a LinearGradientBrush object, the LGBrush variable,
which is then used to fill a large rectangle with the FillRectangle method. The follow-
ing statements print the text and the image on the page. To print text, the code uses the
MeasureString method to calculate the size of each string and center it horizontally on the
page. Then, it advances to the y-coordinate of the next string by incrementing the Y variable.

The image is printed with the DrawImage method, but there’s a slight trick here. Because
the image has a portrait orientation, I’ve decided to reduce its size when it’s printed in land-
scape mode because it would take up most of the page. The code examines the property of the
e.PageSettings.Landscape property, and if it’s True, it fits the image into a rectangle that’s
half as tall and half as wide as the original image. You can experiment with the SimplePrintout
project’s code and add more elements to the printout, possibly arrange differently the elements
on the page, and break the printout into multiple pages.

Listing 11.4: The code that generated the printout of Figure 11.5

Private Sub Button1_Click(...) Handles Button1.Click
PrintDialog1.PrinterSettings = PrintDocument1.PrinterSettings
If PrintDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

PrintDocument1.PrinterSettings = PrintDialog1.PrinterSettings
End If
Dim prn As New PrintPreviewDialog
prn.Document = PrintDocument1
prn.Show()

End Sub

Private Sub PrintDocument1_PrintPage(...) Handles
PrintDocument1.PrintPage

Dim msg1 As String = "Mastering Visual Basic 2010"
Dim msg2 As String = "Published by SYBEX"
Dim topX = e.PageSettings.Margins.Left
Dim topY = e.PageSettings.Margins.Top
Dim pageWidth = e.PageSettings.Bounds.Width –

e.PageSettings.Margins.Left –
e.PageSettings.Margins.Right

Dim pageHeight = e.PageSettings.Bounds.Height –
e.PageSettings.Margins.Top –
e.PageSettings.Margins.Bottom

Dim R As New RectangleF(topX, topY, pageWidth, pageHeight)
Dim startColor As Color = Color.BlueViolet
Dim EndColor As Color = Color.LightYellow
Dim LGBrush As New System.Drawing.Drawing2D.LinearGradientBrush(

462 CHAPTER 11 THE FRAMEWORK AT LARGE

R, startColor, EndColor,
Drawing2D.LinearGradientMode.ForwardDiagonal)

e.Graphics.FillRectangle(LGBrush, R)
e.Graphics.DrawRectangle(Pens.Red,

New Rectangle(New Point(topX, topY),
New Size(pageWidth, pageHeight)))

Dim size = e.Graphics.MeasureString(msg1,
New Font("Verdana", 28, FontStyle.Bold))

Dim X = topX + (pageWidth - size.Width) / 2
Dim Y = 150
e.Graphics.DrawString(msg1,

New Font("Verdana", 28, FontStyle.Bold),
Brushes.White,
New RectangleF(X, Y, size.Width, size.Height))

size = e.Graphics.MeasureString(msg2,
New Font("Microsoft YaHei", 18, FontStyle.Regular))

X = topX + (pageWidth - size.Width) / 2
Y = Y + 70
e.Graphics.DrawString(msg2,

New Font("Microsoft YaHei", 18, FontStyle.Regular),
Brushes.Yellow,
New RectangleF(X, Y, 2 * size.Width, 2 * size.Height))

Dim img As Image
img = My.Resources.MVB2010
Dim imgSize As Size
If e.PageSettings.Landscape Then

imgSize = New Size(img.Width / 2, img.Height / 2)
Else

imgSize = New Size(img.Width, img.Height)
End If
Y = Y + 80
X = topX + (pageWidth - imgSize.Width) / 2
e.Graphics.DrawImage(img,

New Rectangle(New Point(X, Y), imgSize))
e.HasMorePages = False
Dim bookDescription As String =

"This expert guide covers … .NET Framework. " &
vbCrLf &
"In a clear, easy-to-follow style, … " & vbCrLf

Y = Y + imgSize.Height + 25
X = topX + 40
Dim txtRectangle As New Rectangle(X, Y, pageWidth - 80, 280)
e.Graphics.DrawString(bookDescription, _

New Font("Microsoft YaHei", 9, FontStyle.Regular),
Brushes.Black, txtRectangle)

e.HasMorePages = False
End Sub

HANDLING STRINGS AND CHARACTERS 463

Handling Strings and Characters
The .NET Framework provides two basic classes for manipulating text: the String and String-
Builder classes.

The String class exposes a large number of practical methods, and they’re all reference meth-
ods: They don’t act on the string directly but return another string instead. After you assign a
value to a String object, that’s it. You can examine the string, locate words in it, and parse it,
but you can’t edit it. The String class exposes methods such as the Replace and Remove meth-
ods, which replace a section of the string with another and remove a range of characters from
the string, respectively. These methods, however, don’t act on the string directly: They replace
or remove parts of the original string and then return the result as a new string.

The StringBuilder class is similar to the String class: It stores strings, but it can manipulate
them in place. In other words, the methods of the StringBuilder class are instance methods.

The distinction between the two classes is that the String class is better suited for static
strings, whereas the StringBuilder class is better suited for dynamic strings. Use the String
class for strings that don’t change frequently in the course of an application, and use the
StringBuilder class for strings that grow and shrink dynamically. The two classes expose
similar methods, but the String class’s methods return new strings; if you need to manipulate
large strings extensively, using the String class might fill the memory quite quickly.

Any code that manipulates strings must also be able to manipulate individual characters.
The Framework supports the Char class, which not only stores characters but also exposes
numerous methods for handling them. Both the String and StringBuilder classes provide meth-
ods for storing strings into arrays of characters as well as for converting character arrays into
strings. After extracting the individual characters from a string, you can process them with the
members of the Char class. I’ll start the discussion of the text-handling features of the Frame-
work with an overview of the Char data type and continue with the other two major compo-
nents, the String and StringBuilder classes.

The Char Class
The Char data type stores characters as individual, double-byte (16-bit), Unicode values, and it
exposes methods for classifying the character stored in a Char variable. You can use methods
such as IsDigit and IsPunctuation on a Char variable to determine its type and other similar
methods that can simplify your string validation code.

To use a character variable in your application, you must declare it with a statement such as
the following one:

Dim ch As Char
ch = Convert.ToChar("A")

The expression "A" represents a string, even if it contains a single character. Everything you
enclose in double quotes is a string. To convert it to a character, you must cast it to the Char
type. If the Strict option is off (the default value), you need not perform the conversion explic-
itly. If the Strict option is on, you must use one of the CChar() or the CType() functions (or the
Convert class) to convert the single-character string in the double quotes to a character value.
There’s also a shorthand notation for converting one-character strings to characters — just
append the c character to a single-character string:

Dim ch As Char = "A"c

464 CHAPTER 11 THE FRAMEWORK AT LARGE

If you let the compiler decipher the type of the variable from its value, a single-character
string will be interpreted as a string, not as a Char data type. If you later assign a string value
to a Char variable by using a statement such as the following, only the first character of the
string will be stored in the ch variable:

ch = "ABC" ‘ the value "A" is assigned to ch!

Properties

The Char class provides two trivial properties: MaxValue and MinValue. They return the largest
and smallest character values you can represent with the Char data type.

Methods

The Char data type exposes several useful methods for handling characters. All the methods
described in Table 11.6 have the same syntax: They accept either a single argument, which
is the character they act upon, or a string and the index of a character in the string on which
they act.

Table 11.6: Char data type methods

Method Description

GetNumericValue This method returns a positive numeric value if called with an
argument that is a digit and the value –1 otherwise. If you call
GetNumericValue with the argument 5, it will return the numeric
value 5. If you call it with the symbol @, it will return the value –1.

GetUnicodeCategory This method returns a numeric value that is a member of the
UnicodeCategory enumeration and identifies the Unicode group to
which the character belongs. The Unicode groups characters into
categories such as math symbols, currency symbols, and quotation
marks. Look up the UnicodeCategory enumeration in the
documentation for more information.

IsLetter, IsDigit,
IsLetterOrDigit

These methods return a True/False value indicating whether their
argument, which is a character, is a letter, decimal digit, or letter/digit,
respectively. You can write an event handler by using the IsDigit
method to accept numeric keystrokes and to reject letters and
punctuation symbols.

IsLower, IsUpper These methods return a True/False value indicating whether the
specified character is lowercase or uppercase, respectively.

IsNumber This method returns a True/False value indicating whether the
specified character is a number. The IsNumber method takes into
consideration hexadecimal digits (the characters 0123456789ABCDEF) in
the same way as the IsDigit method does for decimal numbers.

HANDLING STRINGS AND CHARACTERS 465

Table 11.6: Char data type methods (CONTINUED)

Method Description

IsPunctuation,
IsSymbol, IsControl

These methods return a True/False value indicating whether the
specified character is a punctuation mark, symbol, or control character,
respectively. The Backspace and Esc keys, for example, are ISO
(International Organization for Standardization) control characters.

IsSeparator This method returns a True/False value indicating whether the
character is categorized as a separator (space, new-line character, and
so on).

IsWhiteSpace This method returns a True/False value indicating whether the
specified character is white space. Any sequence of spaces, tabs, line
feeds, and form feeds is considered white space. Use this method along
with the IsPunctuation method to remove all characters in a string
that are not words.

ToLower, ToUpper These methods convert their argument to a lowercase or uppercase
character, respectively, and return it as another character.

ToString This method converts a character to a string. It returns a
single-character string, which you can use with other
string-manipulation methods or functions.

IsLetter, IsDigit, IsLetterOrDigit

The IsLetter, IsDigit, and IsLetterOrDigit methods deserve a bit more discussion. I
commonly use these methods to intercept keystrokes from within a control’s KeyPress (or
KeyUp and KeyDown) events. The e.KeyChar property of the e argument returns the character
that was pressed by the user and that fired the KeyPress event. To reject non-numeric keys
as the user enters text in a TextBox control, use the event handler shown here:

Private Sub TextBox1_KeyPres(
ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles TextBox1.KeyPress

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) or Char.IsControl(c)) Then
e.Handled = True

End If
End Sub

466 CHAPTER 11 THE FRAMEWORK AT LARGE

This code ignores any keystrokes that don’t represent numeric digits and are not control
characters. Control characters are not rejected because we want users to be able to edit the
text on the control. The Backspace key, for example, is captured by the KeyPress event,
and you shouldn’t ‘‘kill’’ it. For more information on handling keystrokes from within your
code, see the section ‘‘Capturing Keystrokes’’ in Chapter 5, ‘‘Basic Windows Controls.’’ If the
TextBox control is allowed to accept fractional values, you should allow the period character
as well, by using the following If clause:

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) or c = "." or

Char.IsControl(c)) Then
e.Handled = True

End If

The String Class
The String class implements the String data type, which is one of the richest data types in terms
of the members it exposes. We have used strings extensively in earlier chapters, and you’re
more than familiar with the String class by now, but I will review the basic members of the
String class here for reasons of completeness.

To create a new instance of the String class, you simply declare a variable of the String type.
You can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = "Mastering VB2010"

Everything enclosed in double quotes is a string, even if it’s the representation of a number.
String objects are immutable: Once created, they can’t be modified. The names of some of the
methods of the String class may lead you to think that they change the value of the string, but
they don’t; instead, they return a new string. The Replace method, for example, doesn’t replace
any characters in the original string, but it creates a new string, replaces some characters, and
then returns the new string. The Replace method, like all other methods of the String class,
doesn’t operate directly on the string to which it’s applied. Instead, it creates a new string and
returns it as a new string.

If you plan to create and manipulate long strings in your code often, use the StringBuilder
class instead, which is extremely fast compared to the String class and VB’s string-manipulation
functions. This doesn’t mean that the String data type is obsolete, of course. The String class
exposes many more methods for handling strings (such as locating a smaller string in a larger
one, comparing strings, changing individual characters, and so on). The StringBuilder class, on
the other hand, is much more efficient when you build long strings bit by bit, when you need
to remove part of a string, and so on. To achieve its speed, however, it consumes considerably
more memory than the equivalent String variable.

Properties

The String class exposes only two properties, the Length and Chars properties, which return a
string’s length and its characters, respectively. Both properties are read-only. The Chars prop-
erty returns an array of characters, and you can use this property to read individual characters

HANDLING STRINGS AND CHARACTERS 467

from a string. Note that the Chars property returns the characters in the string, no matter what
the encoding is (UTF7, UTF8, Unicode, and so on).

Methods

All the functionality of the String class is available through methods, which are described next.
They are all shared methods: They act on a string and return a new string with the modified
value.

Compare This method compares two strings and returns a negative value if the first string is
less than the second, a positive value if the second string is less than the first, and zero if the
two strings are equal. Of course, the simplest method of comparing two strings is to use the
comparison operators, as shown here:

If name1 < name 2 Then
‘ name1 is alphabetically smaller than name 2

Else If name 1 > name 2 Then
‘ name2 is alphabetically smaller than name 1

Else
‘ name1 is the same as name2

End If

The Compare method is overloaded, and the first two arguments are always the two strings to
be compared. The method’s return value is 0 if the two strings are equal, 1 if the first string is
smaller than the second, and –1 if the second is smaller than the first. The simplest form of the
method accepts two strings as arguments:

String.Compare(str1, str2)

The following form of the method accepts a third argument, which is a True/False value and
determines whether the search will be case sensitive (if True) or not:

String.Compare(str1, str2, case)

Another form of the Compare method allows you to compare segments of two strings. Its syn-
tax is as follows:

String.Compare(str1, index1, str2, index2, length)

index1 and index2 are the starting locations of the segment to be compared in each string. The
two segments must have the same length, which is specified by the last argument.

The following statements return the values highlighted below each:

Debug.WriteLine(str.Compare("the quick brown fox", _
"THE QUICK BROWN FOX"))

-1

468 CHAPTER 11 THE FRAMEWORK AT LARGE

Debug.WriteLine(str.Compare("THE QUICK BROWN FOX", _
"the quick brown fox"))

1
Debug.WriteLine(str.Compare("THE QUICK BROWN FOX", _

"THE QUICK BROWN FOX"))
0

CompareOrdinal The CompareOrdinal method compares two strings, which is similar to the
Compare method, but it doesn’t take into consideration the current locale. This method returns
zero if the two strings are the same and a positive or negative value if they’re different. These
values, however, are not 1 and –1; they represent the numeric difference between the Unicode
values of the first two characters that are different in the two strings.

Concat This method concatenates two or more strings (places them one after the other) and
forms a new string. The simpler form of the Concat method has the following syntax and it is
equivalent to the & operator:

newString = String.Concat(string1, string2)

A more-useful form of the same method concatenates a large number of strings stored in an
array:

newString = String.Concat(strings())

To use this form of the method, store all the strings you want to concatenate into a string array
and then call the Concat method. If you want to separate the individual strings with special
delimiters, append them to each individual string before concatenating them. Or you can use
the Join method, discussed shortly.

EndsWith, StartsWith These two methods return True if their argument ends or starts with
a user-supplied substring. The syntax of these methods is as follows:

found = str.EndsWith(string)
found = str.StartsWith(string)

These two methods are equivalent to the Left() and Right() functions, which extract a given
number of characters from the left or right end of the string, respectively. The two statements
following the declaration of the name variable are equivalent:

Dim name As String = "Visual Basic.NET"
If Left(name, 3) = "Vis" Then …
If String.StartsWith("Vis") Then …

Notice that the comparison performed by the StartsWith method is case sensitive. If you don’t
care about the case, you can convert both the string and the substring to uppercase, as in the
following example:

If name.ToUpper.StartsWith("VIS") Then …

HANDLING STRINGS AND CHARACTERS 469

IndexOf, LastIndexOf These two methods locate a substring in a larger string. The IndexOf
method starts searching from the beginning of the string and stops when it reaches the tar-
get (or it fails to locate the substring), and the LastIndexOf method starts searching from the
end of the string. Both methods return an integer, which is the position of the substring’s first
character in the larger string (the position of the first character is zero).

To locate a string within a larger one, use the following forms of the IndexOf method:

pos = str.IndexOf(searchString)
pos = str.IndexOf(SearchString, startIndex)
pos = str.IndexOf(SearchString, startIndex, endIndex)

The startIndex and endIndex arguments delimit the section of the string where the search
will take place, and pos is an integer variable.

The last three overloaded forms of the IndexOf method search for an array of characters in the
string:

str.IndexOf(Char())
str.IndexOf(Char(), startIndex)
str.IndexOf(Char(), startIndex, endIndex)

The following statement will return the position of the string Visual in the text of the
TextBox1 control or will return –1 if the string isn’t contained in the text:

Dim pos As Integer
pos = TextBox1.IndexOf("Visual")

IndexOfAny This is an interesting method that accepts as an argument an array of arguments
and returns the first occurrence of any of the array’s characters in the string. The syntax of the
IndexOfAny method is

Dim pos As Integer = str.IndexOfAny(chars)

where chars is an array of characters. This method attempts to locate the first instance of
any member of the chars array in the string. If the character is found, its index is returned.
If not, the process is repeated with the second character, and so on until an instance is found
or the array has been exhausted. If you want to locate the first delimiter in a string, call the
IndexOfAny method with an array such as the following:

Dim chars() As Char = {"."c, ","c, ";"c, " "c}
Dim mystring As String = "This is a short sentence"
Debug.WriteLine(mystring.IndexOfAny(chars))

When the last statement is executed, the value 4 will be printed in the Output window. This is
the location of the first space in the string. Notice that the space delimiter is the last one in the
chars array.

470 CHAPTER 11 THE FRAMEWORK AT LARGE

Insert The Insert method inserts one or more characters at a specified location in a string
and returns the new string. The syntax of the Insert method is as follows:

newString = str.Insert(startIndex, subString)

startIndex is the position in the str variable, where the string specified by the second argu-
ment will be inserted. The following statement will insert a dash between the second and third
characters of the string CA93010.

Dim Zip As String = "CA93010"
Dim StateZip As String
StateZip = Zip.Insert(2, "-")

Join This method joins two or more strings and returns a single string with a separator
between the original strings. Its syntax is the following, where separator is the string that will
be used as the separator, and strings is an array with the strings to be joined:

newString = String.Join(separator, strings)

The following statement will create a full path by joining folder names:

Dim path As String
Dim folders(3) As String = {"My Documents", "Business", "Expenses"}
path = String.Join("/", folders)

Split Just as you can join strings, you can split a long string into smaller ones by using the
Split method, whose syntax is the following, where delimiters is an array of characters and
str is the string to be split:

strings() = String.Split(delimiters, str)

The string is split into sections that are separated by any one of the delimiters specified with
the first argument. These strings are returned as an array of strings.

Splitting Strings with Multiple Separators

The delimiters array allows you to specify multiple delimiters, which makes it a great tool for
isolating words in a text. You can specify all the characters that separate words in text (spaces,
tabs, periods, exclamation marks, and so on) as delimiters and pass them along with the text to
be parsed to the Split method.

HANDLING STRINGS AND CHARACTERS 471

The statements in the following listing isolate the parts of a path, which are delimited by a
backslash character:

Dim path As String = "c:\My Documents\Business\Expenses"
Dim delimiters() As Char = {"\"c}
Dim parts() As String
parts = path.Split(delimiters)
Dim iPart As IEnumerator
iPart = parts.GetEnumerator
While iPart.MoveNext

Debug.WriteLine(iPart.Current.tostring)
End While

If the path ends with a slash, the Split method will return an extra empty string. If you want
to skip the empty strings, pass an additional argument to the function, which is a member of
the StringSplitOptions enumeration: None or RemoveEmptyEntries.

Notice that the parts array is declared without a size. It’s a one-dimensional array that will
be dimensioned automatically by the Split method, according to the number of substrings
separated by the specified delimiter(s).

Remove The Remove method removes a given number of characters from a string, starting at
a specific location, and returns the result as a new string. Its syntax is the following, where
startIndex is the index of the first character to be removed in the str string variable and
count is the number of characters to be removed:

newSrting = str.Remove(startIndex, count)

Replace This method replaces all instances of a specified string in another string with a new
one. It creates a new instance of the string, replaces the characters as specified by its arguments,
and returns this string. The syntax of this method is

newString = str.Replace(oldString, newString)

where oldString is the part of the str variable to be replaced and newString is the string to
replace the occurrences of oldString. The following statements replace all instances of the tab
character with a single space. You can change the last statement to replace tabs with a specific
number of spaces — usually three, four, or five spaces:

Dim txt, newTxt As String
Dim vbTab As String = vbCrLf
txt = "some text with two tabs"
newTxt = txt.Replace(vbTab, " ")

472 CHAPTER 11 THE FRAMEWORK AT LARGE

PadLeft, PadRight These two methods align the string left or right in a specified field and
return a fixed-length string with spaces to the right (for right-padded strings) or to the left (for
left-padded strings). After the execution of these statements

Dim LPString, RPString As String
RPString = " [" & "Mastering VB2010".PadRight(20) & "]"
LPString = " [" & "Mastering VB2010".PadLeft(20) & "]"

the values of the LPString and RPString variables are as follows:

[Mastering VB2010]
[Mastering VB2010]

The StringBuilder Class
The StringBuilder class stores dynamic strings and exposes methods to manipulate them much
faster than the String class. As you will see, the StringBuilder class is extremely fast, but it
uses considerably more memory than the string it holds. To use the StringBuilder class in an
application, you must import the System.Text namespace (unless you want to fully qualify
each instance of the StringBuilder class in your code). Assuming that you have imported the
System.Text namespace in your code module, you can create a new instance of the String-
Builder class via the following statement:

Dim txt As New StringBuilder

Because the StringBuilder class handles dynamic strings in place, it’s good to declare in
advance the size of the string you intend to store in the current instance of the class. The
default capacity is 16 characters, and it’s doubled automatically every time you exceed it. To
set the initial capacity of the StringBuilder class, use the Capacity property.

To create a new instance of the StringBuilder class, you can call its constructor without
any arguments or pass the initial string as an argument:

Dim txt As New StringBuilder("some string")

If you can estimate the length of the string you’ll store in the variable, you can specify this
value by using the following form of the constructor so that the variable need not be resized
continuously as you add characters to it:

Dim txt As New StringBuilder(initialCapacity)

The size you specify is not a hard limit; the variable might grow longer at runtime, and the
StringBuilder will adjust its capacity.

If you want to specify a maximum capacity for your StringBuilder variable, use the follow-
ing constructor:

Dim txt As New StringBuilder (
Intialcapacity, maxCapacity)

HANDLING STRINGS AND CHARACTERS 473

Finally, you can initialize a new instance of the StringBuilder class by using both an
initial and a maximum capacity, as well as its initial value, by using the following form of
the constructor:

Dim txt As New StringBuilder(
string, intialcapacity, maxCapacity)

Properties

You have already seen the two basic properties of the StringBuilder class: the Capacity and
MaxCapacity properties. In addition, the StringBuilder class provides the Length and Chars
properties, which are the same as the corresponding properties of the String class. The Length
property returns the number of characters in the current instance of the StringBuilder class,
and the Chars property is an array of characters. Unlike the Chars property of the String class,
this one is read/write. You can not only read individual characters, you can also set them from
within your code. The index of the first character is zero.

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of the String
class, but they act directly on the string to which they’re applied, and they don’t return a new
string:

Append The Append method appends a base type to the current instance of the StringBuilder
class, and its syntax is the following, where the value argument can be a single character, a
string, a date, or any numeric value:

SB.Append(value)

When you append numeric values to a StringBuilder, they’re converted to strings; the value
appended is the string returned by the type’s ToString method. You can also append an
object to the StringBuilder — the actual string that will be appended is the value of the object’s
ToString property.

AppendFormat The AppendFormat method is similar to the Append method. Before appending
the string, however, AppendFormat formats it. The syntax of the AppendFormat method is as
follows:

SB.AppendFormat(string, values)

The first argument is a string with embedded format specifications, and values is an array
with values (objects, in general) — one for each format specification in the string argument.
If you have a small number of values to format, up to four, you can supply them as separate
arguments separated by commas:

SB.AppendFormat(string, value1, value2, value3, value4)

474 CHAPTER 11 THE FRAMEWORK AT LARGE

The following statement appends the string

Your balance as of Thursday, August 2, 2007 is $19,950.40

to a StringBuilder variable:

Dim statement As New StringBuilder
statement.AppendFormat(

"Your balance as of {0:D} is ${1: #,###.00}",
#8/2/2007#, 19950.40)

Each format specification is enclosed in a pair of curly brackets, and they’re numbered sequen-
tially (from zero). Then there’s a colon followed by the actual specification. The D format spec-
ification tells the AppendFormat method to format the specified string in long date format. The
second format specification, #,###.00, uses the thousands separator and two decimal digits
for the amount.

Insert This method inserts a string into the current instance of the StringBuilder class, and
its syntax is as follows:

SB.Insert(index, value)

The index argument is the location where the new string will be inserted in the current
instance of the StringBuilder, and value is the string to be inserted. A variation of the syntax
shown here inserts multiple copies of the specified string into the StringBuilder:

SB.Insert(index, string, count)

Remove This method removes a number of characters from the current StringBuilder, starting
at a specified location; its syntax is the following, where startIndex is the position of the first
character to be removed from the string and count is the number of characters to be removed:

SB.Remove(startIndex, count)

Replace This method replaces all instances of a string in the current StringBuilder object with
another string. The syntax of the Replace method is the following, where the two arguments
can be either strings or characters:

SB.Replace(oldValue, newValue)

Unlike with the String class, the replacement takes place in the current instance of the
StringBuilder class and the method doesn’t return another string. Another form of the Replace
method limits the replacements to a specified segment of the StringBuilder instance:

SB.Replace(oldValue, newValue, startIndex, count)

HANDLING STRINGS AND CHARACTERS 475

This method replaces all instances of oldValue with newValue in the section starting at location
startIndex and extending count characters from the starting location.

ToString Use this method to convert the StringBuilder instance to a string and assign it to
a String variable. The ToString method returns the string represented by the StringBuilder
variable to which it’s applied.

VB 2010 at Work: Test-Driving the StringBuilder Class

The code segment included in Listing 11.5 demonstrates the efficiency of the StringBuilder
class. The code extracts the words in a large text file and reverses their order. It’s not a terribly
practical demonstration of string operations, but it demonstrates very clearly the efficiency of
the StringBuilder class. The code extracts the words with the Split method, using the space
as separator, and stores them in the words array. Once the words have been extracted, the two
loops go through each word in the array and build two variables with the words in the words
array in reverse order: one of them a String variable and the other a StringBuilder variable.

Listing 11.5: Reversing the order of words in a large string

Dim newString As String = ""
Dim words() = TextBox1.Text.Split(" ")
Dim SW As New Stopwatch
SW.Start()
For Each wrd In words

newString = wrd & " " & newString
Next
SW.Stop()
MsgBox("Reversed word order with the String class in " &

(SW.ElapsedMilliseconds / 1000).ToString)

Dim newSB As New System.Text.StringBuilder
SW = New Stopwatch
SW.Start()
For wrd = words.Count - 1 To 0 Step -1

newSB.Append(words(wrd) & " ")
Next
SW.Stop()
MsgBox("Reversed word order with the StringBuilder class in " &

(SW.ElapsedMilliseconds / 1000).ToString)

I’ve copied the text of this chapter and pasted it three times on a TextBox control. It took
15 seconds to reverse the words in the String class and less than half a second to do the same
with the StringBuilder class. If you manipulate strings extensively in your code, you should
definitely consider the StringBuilder class. If you’re reading pieces of information from a file
or other source, such as an XML file, and append them to a string, you should definitely use a
StringBuilder class. I frequently have to build large strings that include formatting information
and display them on a RichTextBox control, and the StringBuilder class is the only option. Keep

476 CHAPTER 11 THE FRAMEWORK AT LARGE

in mind, however, that the StringBuider class doesn’t provide nearly as many string manipula-
tion methods as the String class. The StringBuilder class shines in applications that build long
strings piecewise, an operation at which the String class has never been especially efficient.

Handling Dates and Time
Another common task in coding business applications is the manipulation of dates and time.
To aid the coding of these tasks, the Framework provides the DateTime and TimeSpan classes.
The DateTime class handles date and time values, whereas the TimeSpan class handles date and
time intervals and differences. Variables that represent dates and times must be declared as Date-
Time, which is one of the basic data types of the Framework.

The DateTime Class
The DateTime class is used for storing date and time values, and it’s one of the Framework’s
base data types. Date and time values are stored internally as Double numbers. The integer
part of the value corresponds to the date, and the fractional part corresponds to the time. To
convert a DateTime variable to a Double value, use the method ToOADateTime, which returns a
value that is an OLE (Object Linking and Embedding) Automation-compatible date. The value
0 corresponds to midnight of December 30, 1899. The earliest date you can represent as an OLE
Automation-compatible date is the first day of the year 100; it corresponds to the Double value
–657,434.

To initialize a DateTime variable, a date value is enclosed in a pair of pound symbols. If the
value contains time information, separate it from the date part by using a space:

Dim date1 As Date = #4/15/2011#
Dim date2 As Date = #4/15/2011 2:01:59#

If you have a string that represents a date and you want to assign it to a DateTime vari-
able for further processing, use the DateTime class Parse and ParseExact methods. The Parse
method parses a string and returns a date value if the string can be interpreted as a date value.
Let’s say your code prompts the user for a date and then it uses it in date calculations. The
user-supplied date is read as a string, and you must convert it to a date value:

Dim sDate As String
Dim dDate As DateTime
sDate = InputBox("Please enter a date")
Try

dDate = DateTime.Parse(sDate)
‘ use dDate1 in your calculations

Catch exc As Exception
MsgBox("You’ve entered an invalid date")

End Try

The Parse method will convert a string that represents a date to a DateTime value regard-
less of the format of the date. You can enter dates such as 1/17/2011, Jan. 17, 2011, or January
17, 2011 (with or without the comma). The ParseExact method allows you to specify more
options, such as the possible formats of the date value.

HANDLING DATES AND TIME 477

Different Cultures, Different Dates

Different cultures use different date formats, and Windows supports them all. However, you
must make sure that the proper format is selected in Regional And Language Options. By
default, dates are interpreted as specified by the current date format in the target computer’s
regional settings. The Parse method allows you to specify the culture to be used in the
conversion. The following statements prompt the user for a date value and then interpret it in
a specific culture (the en-GB culture, which is used in the United Kingdom):

Dim sDate1 As String
Dim dDate1 As DateTime
sDate1 = InputBox("Please enter a date")
Try

Dim culture As CultureInfo = _
New CultureInfo("en-GB", True)

dDate1 = DateTime.Parse(sDate1, culture)
MsgBox(dDate1.ToLongDateString)

Catch exc As Exception
MsgBox("You’ve entered an invalid date")

End Try

To use the CultureInfo class in your code, you must import the System.Gobalization
namespace in your project. These statements will convert any English date regardless of the
regional settings. If you enter the string 16/3/2011 in the input box, the preceding statements
will produce the following output:

Wednesday, March 16, 2011

Let’s see how the same date will be parsed in two different cultures. Insert the following code
segment in a button’s Click event handler:

Dim sDate1 As String
Dim dDate1 As DateTime
sDate1 = InputBox("Please enter a date")
Try

Dim culture As CultureInfo = _
New CultureInfo("en-GB", True)

dDate1 = DateTime.Parse(sDate1, culture)
Debug.WriteLine(dDate1.ToLongDateString)
culture = New CultureInfo("en-US", True)
dDate1 = DateTime.Parse(sDate1, culture)
Debug.WriteLine(dDate1.ToLongDateString)

Catch exc As Exception
MsgBox("You’ve entered an invalid date")

End Try

478 CHAPTER 11 THE FRAMEWORK AT LARGE

The method ToLongDateString returns the verbose description of the date so that we
can read the name of the month instead of guessing it. Run the code and enter a date
that can be interpreted differently in the two cultures, such as 4/9/2011. The following output
will be produced:

Saturday, September 04, 2011
Friday, April 09, 2011

If the month part of the date exceeds 12, the exception handler will be activated. Dates are
always a tricky issue in programming, and you should include the appropriate culture in
the Parse method so that user-supplied dates will be converted correctly, even if the user’s
culture hasn’t been set correctly in the regional settings or if you’re processing a file that
originated in a computer with different culture settings. You should also not prompt users for
dates with a TextBox control; use the DateTimePicker control instead so that users can enter
only valid dates.

Properties

The DateTime class exposes the properties listed in Table 11.7.

Table 11.7: DateTime class properties

Property Description

Date, TimeOfDay The Date property returns the date from a date/time value and sets the
time to midnight. The TimeOfDay property returns the time part of
the date.

DayOfWeek,
DayOfYear

These two properties return the day of the week (a string such as
Monday) and the number of the day in the year (an integer from 1 to
365, or 366 for leap years), respectively.

Hour, Minute,
Second, Millisecond

These properties return the corresponding time part of the date value
passed as an argument. If the current time is 9:47:24 p.m., the three
properties of the DateTime class will return the integer values 9, 47, and
24 when applied to the current date and time as Date.Now.Hour,
Date.Now.Minute, and Date.Now.Second.

Day, Month, Year These three properties return the day of the month, the month, and the
year of a DateTime value, respectively. The Day and Month properties are
numeric values, but you can convert them to the appropriate string (the
name of the day or month) with the WeekDayName() and MonthName()
functions. They also accept a second optional argument that is a
True/False value and indicates whether the function should return the
abbreviated name (if True) or full name (if False). The WeekDayName()
function accepts a third optional argument, which determines the first
day of the week (by default, the first day of the week is Sunday).

HANDLING DATES AND TIME 479

Table 11.7: DateTime class properties (CONTINUED)

Property Description

Ticks This property returns the number of ticks from a date/time value. Each tick is
100 nanoseconds (or 0.0001 milliseconds). To convert ticks to milliseconds,
multiply them by 10,000 (or use the TimeSpan object’s
TicksPerMillisecond property, discussed later in this chapter). We use this
property to time operations precisely: The Ticks property is a long value, and
you can read its value before and after the operation you want to time. The
difference between the two values is the duration of the operation in tenths of
a nanosecond. Divide it by 10,000 to get the duration in milliseconds.

Methods

The DateTime class exposes several methods for manipulating dates, as listed in Table 11.8. The
most practical methods add and subtract time intervals to and from an instance of the Date-
Time class.

Table 11.8: DateTime class methods

Method Description

Compare Compare is a shared method that compares two date/time values and returns an in-
teger value indicating the relative order of the two values. The syntax of the Compare
method is as follows, where date1 and date2 are the two values to be compared:

order = System.DateTime.Compare(date1, date2)

DaysInMonth This shared method returns the number of days in a specific month. Because February
contains a variable number of days depending on the year, the DaysInMonth method
accepts as arguments both the month and the year:

monDays = DateTime.DaysInMonth(year, month)

IsLeapYear This shared method returns a True/False value that indicates whether the specified
year is a leap year:

Dim leapYear As Boolean = DateTime.IsLeapYear(year)

Add This method adds a TimeSpan object to the current instance of the DateTime class.
The TimeSpan object represents a time interval, and there are many methods to create
a TimeSpan object, which are all discussed in The TimeSpan Class section. To create a
new TimeSpan object that represents 3 days, 6 hours, 2 minutes, and 50 seconds and
add this TimeSpan object to the current date and time, use the following statements.

Dim TS As New TimeSpan()
Dim thisMoment As Date = Now()
TS = New TimeSpan(3, 6, 2, 50)
Debug.WriteLine(thisMoment)

480 CHAPTER 11 THE FRAMEWORK AT LARGE

Table 11.8: DateTime class methods (CONTINUED)

Method Description

Subtract This method is the counterpart of the Add method; it subtracts a TimeSpan object
from the current instance of the DateTime class and returns another Date value.

Addxxx Various methods add specific intervals to a date/time value. Each method accepts the
number of intervals to add (days, hours, milliseconds, and so on) to the current
instance of the DateTime class. These methods are as follows: AddYears, AddMonths,
AddDays, AddHours, AddMinutes, AddSeconds, AddMilliseconds, and AddTicks.
As stated earlier, a tick is 100 nanoseconds and is used for really fine timing of
operations. None of the Addxxx methods act on the current instance of the DateTime
class; instead, they return a new DateTime value with the appropriate value.

ToString This method converts a date/time value to a string, using a specific format. The
DateTime class recognizes numerous format patterns, which are listed in Table 11.9
and Table 11.10.

Table 11.9 lists the standard format patterns, and Table 11.10 lists the characters that can
format individual parts of the date/time value. You can combine the custom format characters
to format dates and times in any way you wish.

The syntax of the ToString method is as follows, where formatSpec is a format
specification:

aDate.ToString(formatSpec)

The D named date format, for example, formats a date value as a long date; the following
statement will return the highlighted string shown below the statement:

Debug.Writeline(#9/17/2010#.ToString("D"))
Friday, September 17, 2010

Table 11.9 lists the named formats for the standard date and time patterns. The format char-
acters are case sensitive — for example, g and G represent slightly different patterns.

The following examples format the current date by using all the format patterns listed in
Table 11.9. An example of the output produced by each statement is shown under each state-
ment, indented and highlighted.

Debug.WriteLine(now().ToString("d"))
2/2/2010

Debug.WriteLine(Now().ToString("D"))
Tuesday, February 02, 2010

Debug.WriteLine(Now().ToString("f"))
Tuesday, February 02, 2010 10:51 PM

Debug.WriteLine(Now().ToString("F"))
Tuesday, February 02, 2010 10:51:16 PM

Debug.WriteLine(Now().ToString("g"))
2/2/2010 10:51 PM

Debug.WriteLine(Now().ToString("G"))
2/2/2010 10:51:16 PM

HANDLING DATES AND TIME 481

Debug.WriteLine(Now().ToString("m"))
February 02

Debug.WriteLine(Now().ToString("r"))
Tue, 02 Feb 2010 22:51:16 GMT

Debug.WriteLine(Now().ToString("s"))
2010-02-02T22:51:16

Debug.WriteLine(Now().ToString("t"))
10:51 PM

Debug.WriteLine(Now().ToString("T"))
10:51:16 PM

Debug.WriteLine(Now().ToString("u"))
2010-02-02 22:51:16Z

Debug.WriteLine(Now().ToString("U"))
Tuesday, February 02, 2010 8:51:16 PM

Debug.WriteLine(Now().ToString("y"))
February, 2010

Table 11.9: The date and time named formats

Named Format Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

F dddd, MMMM dd, yyyy
HH:mm:ss.mmm

FullDateTimePattern (long date
and long time)

f dddd, MMMM dd, yyyy HH:mm.ss FullDateTimePattern (long date
and short time)

g MM/dd/yyyy HH:mm general (short date and short time)

G MM/dd/yyyy HH:mm:ss General (short date and long time)

M, m MMMM dd MonthDayPattern (month and day)

r, R ddd, dd MMM yyyy HH:mm:ss
GMT

RFC1123Pattern

s yyyy-MM-dd HH:mm:ss SortableDateTimePattern

t HH:mm ShortTimePattern (short time)

T HH:mm:ss LongTimePattern (long time)

u yyyy-MM-dd HH:mm:ss UniversalSortableDateTimePattern
(sortable GMT value)

U dddd, MMMM dd, yyyy HH:mm:ss UniversalSortableDateTimePattern
(long date, long GMT time)

Y, y MMMM, yyyy YearMonthPattern (month and year)

482 CHAPTER 11 THE FRAMEWORK AT LARGE

Table 11.10: Date format specifier

Format Character Description

d The date of the month

ddd The day of the month with a leading zero for single-digit days

ddd The abbreviated name of the day of the week (a member of the
AbbreviatedDayNames enumeration)

dddd The full name of the day of the week (a member of the DayNamesFormat
enumeration)

M The number of the month

MM The number of the month with a leading zero for single-digit months

MMM The abbreviated name of the month (a member of the
AbbreviatedMonthNames enumeration)

MMMM The full name of the month

y The year without the century (the year 2001 will be printed as 1)

yy The year without the century (the year 2001 will be displayed as 01)

yyyy The complete year

gg The period or era (pattern ignored if the date to be formatted does not
have an associated period as A.D. or B.C. have)

h The hour in 12-hour format

hh The hour in 12-hour format with a leading zero for single-digit hours

H The hour in 24-hour format

HH The hour in 24-hour format with a leading zero for single-digit hours

m The minute of the hour

mm The minute of the hour with a leading zero for single-digit minutes

s The second of the hour

ss The second of the hour with a leading zero for single-digit seconds

t The first character in the a.m./p.m. designator

tt The a.m./p.m. designator

HANDLING DATES AND TIME 483

Table 11.10: Date format specifier (CONTINUED)

Format Character Description

z The time-zone offset (applies to hours only)

zz The time-zone offset with a leading zero for single-digit hours (applies to
hours only)

zzz The full time-zone offset (hour and minutes) with leading zeros for
single-digit hours and minutes

Table 11.10 lists the format characters that can be combined to build custom format date and
time values. The patterns are case sensitive. If the custom pattern contains spaces or characters
enclosed in single quotation marks, these characters will appear in the formatted string.

To display the full month name and the day in the month, for instance, use the following
statement:

Debug.WriteLine(now().ToString("MMMM d"))
July 27

You may have noticed some overlap between the named formats and the format characters.
The character d signifies the short date pattern when used as a named format and the number
of the day when used as a format character. The compiler figures out how it’s used based on
the context. If the format argument is d/mm, it will display the day and month number, whereas
the format argument d, mmm will display the number of the day followed by the month’s name.
If you use the character d on its own, however, it will be interpreted as the named format for
the short date format.

Date Conversion Methods

The DateTime class supports methods for converting a date/time value to many of the other
base types, which are presented briefly in Table 11.11.

Dates as Numeric Values

The Date type encapsulates complicated operations, and it’s worth taking a look at the inner
workings of the classes that handle dates and times. Let’s declare two variables to experiment a
little with dates: a Date variable, which is initialized to the current date, and a Double variable:

Dim Date1 As Date = Now()
Dim dbl As Double
Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate
Debug.WriteLine(dbl)

484 CHAPTER 11 THE FRAMEWORK AT LARGE

Table 11.11: DateTime class conversion methods

Methods Description

ToLongDateString,
ToShortDateString

These two methods convert the date part of the current DateTime
instance to a string with the long (or short) date format. The following
statement will return a value like the one highlighted, which is the long
date format:

Debug.WriteLine(Now().ToLongDateString)
Tuesday, July 14, 2009

ToLongTimeString,
ToShortTimeString

These two methods convert the time part of the current instance of the
Date class to a string with the long (or short) time format. The following
statement will return a value like the one highlighted:

Debug.WriteLine(Now().ToLongTimeString)
6:40:53 PM

ToUniversalTime,
ToLocalTime

ToUniversalTime converts the current instance of the DateTime class
into Coordinated Universal Time (UTC). If you convert the local time of a
system in New York to UTC, the value returned by this method will be a
date/time value that’s five hours ahead. The date may be the same or
the date of the following day. If the statement is executed after 7 p.m.
local time, the date will be that of the following day. The method
ToLocalTime converts a UTC time value to local time.

On the date I tested this code, February 2, 2010, the value was 40211.9442577662. The inte-
ger part of this value is the date, and the fractional part is the time. If you add one day to the
current date and then convert it to a double again, you’ll get a different value:

dbl = (Now().AddDays(1)).ToOADate
Debug.WriteLine(dbl)

This time, the value 40212.9452653704 was printed; its integer part is tomorrow’s value. You
can add two days to the current date by adding (48 × 60) minutes. The original integer part of
the numeric value will be increased by two:

dbl = Now().AddMinutes(48 * 60).ToOADate
Debug.WriteLine(dbl)

The value printed this time will be 40213.9456303588.
Let’s see how the date-manipulation methods deal with leap years. We’ll add 10 years to the

current date via the AddYears method, and we’ll print the new value with a single statement:

Debug.WriteLine(Now().AddYears(10).ToLongDateString)

HANDLING DATES AND TIME 485

The value that will appear in the Immediate window will be Sunday, February 02, 2020. The
Double value of this date is 40211.9459967361. If you add 3,650 days, you’ll get a different value
because the 10-year span contains at least two leap years:

Debug.WriteLine(Now().AddDays(3650).ToLongDateString)
Debug.WriteLine(Now().AddDays(3650).ToOADate)

The new value that will be printed in the Immediate window will be Friday, January 31,
2020, and the corresponding Double value will be 43861.9468961111.

Can you figure out what time it was when I executed the preceding statements? If you mul-
tiply the fractional part (0.9468957639) by 24, you’ll get 22.7254983336, which is 56.813745834
hours and some minutes. If you multiply the fractional part of this number by 60, you’ll get
56.813745834, which is 56.813745834 minutes and some seconds. Finally, you can multiply the
new fractional part by 60 to get the number of seconds: 48.82475004. So, it was 10:56:48 p.m.
And the last fractional part corresponds to 824 milliseconds.

The TimeSpan Class
The last class discussed in this chapter is the TimeSpan class, which represents a time interval
and can be expressed in many different units — from ticks or milliseconds to days. The Time-
Span is usually the difference between two date/time values, but you can also create a
TimeSpan for a specific interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement such as
the following:

Dim TS As New TimeSpan

To initialize the TimeSpan object, you can provide the number of days, hours, minutes, sec-
onds, and milliseconds that make up the time interval. The following statement initializes a
TimeSpan object with a duration of 9 days, 12 hours, 1 minute, and 59 seconds:

Dim TS As TimeSpan = New TimeSpan(9, 12, 1, 59)

As you have seen, the difference between two dates calculated by the Date.Subtract
method returns a TimeSpan value. You can initialize an instance of the TimeSpan object by
creating two date/time values and getting their difference, as in the following statements:

Dim TS As New TimeSpan
Dim date1 As Date = #4/11/1994#
Dim date2 As Date = Now()
TS = date2.Subtract(date1)
Debug.WriteLine(TS)

Depending on the day on which you execute these statements, they will print something like
the following in the Output window:

5585.17:05:12.7623000

486 CHAPTER 11 THE FRAMEWORK AT LARGE

The days are separated from the rest of the string with a period, whereas the time parts
are separated with colons. Notice that a TimeSpan object might represent an interval of many
years, but it doesn’t provide members to report months or years. The difference represented by
TS variable in the preceding example is 5,585 days, 17 hours, 5 minutes, 12 seconds, and 762,300
nanoseconds (or 762.3 milliseconds).

Properties

The TimeSpan class exposes the properties described in the following sections. Most of these
properties are shared (you don’t have to create an instance of the TimeSpan class to use them).

Field Properties

TimeSpan exposes the simple properties shown in Table 11.12, which are known as fields and
are all shared. You’ll use these field values to convert the time difference represented by a
TimeSpan object to common time units.

Table 11.12: The fields of the TimeSpan object

Property Returns

Empty An empty TimeSpan object

MaxValue The largest interval you can represent with a TimeSpan object

MinValue The smallest interval you can represent with a TimeSpan object

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of properties that return
the various intervals in a TimeSpan value (shown in Tables 11.13 and 11.14). The members of
the first group of properties return the number of specific intervals (days, hours, and so on) in
a TimeSpan value. The second group of properties returns the entire TimeSpan duration in one
of the intervals recognized by the TimeSpan method.

If a TimeSpan value represents 2 minutes and 10 seconds, the Seconds property will return
the value 10. The TotalSeconds property, however, will return the value 130, which is the total
duration of the TimeSpan in seconds.

HANDLING DATES AND TIME 487

Table 11.13: The Intervals of a TimeSpan value

Property Returns

Days The number of whole days in the current TimeSpan.

Hours The number of whole hours in the current TimeSpan.

Milliseconds The number of whole milliseconds in the current TimeSpan. The
largest value of this property is 999.

Minutes The number of whole minutes in the current TimeSpan. The
largest value of this property is 59.

Seconds The number of whole seconds in the current TimeSpan. The
largest value of this property is 59.

Ticks The number of whole ticks in the current TimeSpan.

Table 11.14: The total intervals of a TimeSpan value

Property Returns

TotalDays The number of days in the current TimeSpan

TotalHours The number of hours in the current TimeSpan

TotalMilliseconds The number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

TotalSeconds The number of whole seconds in the current TimeSpan

Similar Method Names, Different Results

Be very careful when choosing the property to express the duration of a TimeSpan in a specific
interval. The Seconds property is totally different from the TotalSeconds property. Because
both properties will return a value (which also happens to be the same if the entire TimeSpan
duration is less than a minute), you may not notice that you’re using the wrong property for
the task at hand.

The Duration property returns the duration of the current instance of the TimeSpan class.
The duration is expressed as the number of days followed by the number of hours, minutes,
seconds, and milliseconds. The following statements create a TimeSpan object of a few seconds
(or minutes, if you don’t mind waiting) and print its duration in the Output window. The first

488 CHAPTER 11 THE FRAMEWORK AT LARGE

few statements initialize a new instance of the DateTime type, the T1 variable, to the current
date and time. Then a message box is displayed that prompts to click the OK button to con-
tinue. Wait for several seconds before closing the message box. The last group of statements
subtracts the T1 variable from the current time and displays the duration (how long you kept
the message box open on your screen):

Dim T1, T2 As DateTime
T1 = Now
MsgBox("Click OK to continue")
T2 = Now
Dim TS As TimeSpan
TS = T2.Subtract(T1)
Debug.WriteLine("Total duration = " & TS.Duration.ToString)
Debug.WriteLine("Minutes = " & TS.Minutes.ToString)
Debug.WriteLine("Seconds = " & TS.Seconds.ToString)
Debug.WriteLine("Ticks = " & TS.Ticks.ToString)
Debug.WriteLine("Milliseconds = " & TS.TotalMilliseconds.ToString)
Debug.WriteLine("Total seconds = " & TS.TotalSeconds.ToString)

If you place these statements in a button’s Click event handler and execute them, you’ll see
a series of values like the following in the Immediate window:

Total duration = 00:01:34.2154752
Minutes = 1
Seconds = 34
Ticks = 942154752
Milliseconds = 94215,4752
Total seconds = 94,2154752

The duration of the TS TimeSpan is 1 minute and 34 seconds. Its total duration in milli-
seconds is 94,215.4752, or 94.2154752 seconds.

Methods

There are various methods for creating and manipulating instances of the TimeSpan class, and
they’re described in the following list.

Interval methods The methods in Table 11.15 create a new TimeSpan object of a specific
duration. The TimeSpan duration is specified as a number of intervals, accurate to the nearest
millisecond.

All methods accept a single argument, which is a Double value that represents the number of
the corresponding intervals (days, hours, and so on).

Add This method adds a TimeSpan object to the current instance of the class; its syntax is as
follows, where TS, TS1, and newTS are all TimeSpan variables:

newTS = TS.Add(TS1)

HANDLING DATES AND TIME 489

Table 11.15: Interval methods of the TimeSpan object

Method Creates a New TimeSpan of This Length

FromDays Number of days specified by the argument

FromHours Number of hours specified by the argument

FromMinutes Number of minutes specified by the argument

FromSeconds Number of seconds specified by the argument

FromMilliseconds Number of milliseconds specified by the argument

FromTicks Number of ticks specified by the argument

The following statements create two TimeSpan objects and then add them:

Dim TS1 As New TimeSpan(1, 0, 1)
Dim TS2 As New TimeSpan(2, 1, 9)
Dim TS As New TimeSpan
TS = TS1.Add(TS2)

The duration of the new TimeSpan variable is 3 hours, 1 minute, and 10 seconds.

Subtract The Subtract method subtracts a TimeSpan object from the current instance of the
TimeSpan class, similar to the Add method.

The StopWatch Class
To simplify the task of timing operations, a new class was introduced with the .NET Frame-
work version 4, the StopWatch class. This class implements a stopwatch, which you can start
just before the code segment you want to time and stop it after the last statement in this code
segment. In addition, you can pause the stopwatch (you may wish to exclude some debugging
statements from the code to be timed).

To use the StopWatch class, declare a new variable of this type:

Dim SW As New StopWatch

Use the Start method to start the stopwatch and the Stop method to stop it or pause
it. While the stopwatch is stopped or paused, you can request the elapsed time with the
Elapsed property, which returns the elapsed time as a TimeSpan object. You can also retrieve
the elapsed time in milliseconds with the ElapsedMilliseconds method, and in ticks of the
internal clock with the ElapsedTicks method (as a reminder, a tick is 1/10 of a millisecond).

You can also use the Reset method to stop the stopwatch and zero the elapsed time or the
StartNew method to zero the elapsed time and start the stopwatch.

Listing 11.6 demonstrates the basic members of the StopWatch class. Initially, the sample
code declares and starts a new instance of the StopWatch class and then displays a message box

490 CHAPTER 11 THE FRAMEWORK AT LARGE

prompting you to close the dialog box and stop the stopwatch. Leave the message box open for
a few seconds before clicking the OK button to simulate some delay. Then the code displays
another dialog box, prompting you to close it. Then it starts the stopwatch again and displays
yet another message box. The time between stopping and restarting the stopwatch won’t be
included in the total elapsed time. When you close the last dialog box, you can see the results
of the operation in the Output window.

Listing 11.6: Timing operations with the StopWatch class

Private Sub timeButton_Click(...) Handles timeButton.Click
Dim sw As New Stopwatch
sw.Start()
‘ This is where the statements to be timed should appear
‘ Use the MsgBox() function to simulate a delay
MsgBox("Stopwatch is running. Press any key to pause it")
‘ End of timing operations
sw.Stop()
Debug.WriteLine("Elapsed time")
Debug.WriteLine(sw.Elapsed.ToString)
Debug.WriteLine(sw.ElapsedMilliseconds.ToString)
MsgBox("Stopwatch is not running. " &

"Wait a few seconds and press any key to restart it")
‘ Continue timing the operations
sw.Start()
MsgBox("And now press a key to stop the stopwatch")
Debug.WriteLine("Total elapsed time")
Debug.WriteLine(sw.Elapsed.ToString)
Debug.WriteLine(sw.ElapsedMilliseconds.ToString)

End Sub

The Bottom Line

Handle files with the My component. The simplest method of saving data to a file is to
call one of the WriteAllBytes or WriteAllText methods of the My.Computer.FileSystem
component. You can also use the IO namespace to set up a Writer object to send data to a file
and a Reader object to read data from the file.

Master It Show the statements that save a TextBox control’s contents to a file and the state-
ments that reload the same control from the data file. Use the My.Computer.FileSystem com-
ponent.

Write data to a file with the IO namespace. To send data to a file you must set up a
FileStream object, which is a channel between the application and the file. To send data to a
file, create a StreamWriter or BinaryWriter object on the appropriate FileStream object.

THE BOTTOM LINE 491

Likewise, to read from a file, create a StreamReader or BinaryReader on the appropriate
FileStream object. To send data to a file, use the Write and WriteString methods of the
appropriate StreamWriter object. To read data from the file, use the Read, ReadBlock,
ReadLine, and ReadToEnd methods of the StreamReader object.

Master It Write the contents of a TextBox control to a file using the methods of the
IO namespace.

Manipulate folders and files. The IO namespace provides the Directory and File classes,
which represent the corresponding entities. Both classes expose a large number of methods
for manipulating folders (CreateDirectory, Delete, GetFiles, and so on) and files (Create,
Delete, Copy, OpenRead, and so on).

Master It How will you retrieve the attributes of a drive, folder, and file using the IO
namespace’s classes?

Use the Char data type to handle characters. The Char data type, which is implemented
with the Char class, exposes methods for handling individual characters (IsLetter, IsDigit,
IsSymbol, and so on). We use the methods of the Char class to manipulate users’ keystrokes
as they happen in certain controls (mostly the TextBox control) and to provide immediate
feedback.

Master It You want to develop an interface that contains several TextBox controls that
accept numeric data. How will you intercept the user’s keystrokes and reject any characters
that are not numeric?

Use the StringBuilder class to manipulate large or dynamic strings. The StringBuilder class
is very efficient at manipulating long strings, but it doesn’t provide as many methods for han-
dling strings. The StringBuilder class provides a few methods to insert, delete, and replace
characters within a string. Unlike the equivalent methods of the String class, these methods
act directly on the string stored in the current instance of the StringBuilder class.

Master It Assuming that you have populated a ListView control with thousands of lines
of data from a database, how will you implement a function that copies all the data to the
Clipboard?

Use the DateTime and TimeSpan classes to handle dates and time. The Date class repre-
sents dates and time, and it exposes many useful shared methods (such as the IsLeap method,
which returns True if the year passed to the method as an argument is leap; the DaysInMonth
method; and so on). It also exposes many instance methods (such as AddYears, AddDays,
AddHours, and so on) for adding time intervals to the current instance of the Date class as well
as many options for formatting date and time values.

The TimeSpan class represents time intervals — from milliseconds to days — with the
FromDays, FromHours, and even FromMilliseconds methods. The difference between two
date variables is a TimeSpan value, and you can convert this value to various time units by

492 CHAPTER 11 THE FRAMEWORK AT LARGE

using methods such as TotalDays, TotalHours, TotalMilliseconds, and so on. You can also
add a TimeSpan object to a date variable to obtain another date variable.

Master It How will you use the TimeSpan class to accurately time an operation?

Generate graphics by using the drawing methods. Every object you draw on, such as forms
and PictureBox controls, exposes the CreateGraphics method, which returns a Graphics
object. The Paint event’s e argument also exposes the Graphics object of the control or form.
To draw something on a control, retrieve its Graphics object and then call the Graphics object’s
drawing methods.

Master It Show how to draw a circle on a form from within the form’s Paint
event handler.

Use the printing controls and dialog boxes. To print with the .NET Framework, you must
add an instance of the PrintDocument control to your form and call its Print method. To pre-
view the same document, you simply assign the PrintDocument object to the Document prop-
erty of the PrintPreviewDialog control and then call the ShowDialog method of the PrintPre-
viewDialog control to display the preview window. You can also display the Print dialog box,
where users can select the printer to which the output will be sent, and the Page Setup dia-
log box, where users can specify the page’s orientation and margins. The two dialog boxes are
implemented with the PrintDialog and PageSetupDialog controls.

Master It Explain the process of generating a simple printout. How will you handle multi-
ple report pages?

Master It Assuming that you have displayed the Page Setup dialog box control to the user,
how will you draw a rectangle that delimits the printing area on the page, taking into con-
sideration the user-specified margins?

Chapter 12

Storing Data in Collections

One of the most common operations in programming is storing large sets of data. Traditionally,
programmers used arrays to store related data. Because arrays can store custom data types, they
seem to be the answer to many data-storage and data-manipulation issues. Arrays, however,
don’t expose all the functionality you might need in your application. To address the issues of
data storage outside databases, the Framework provides, in addition to arrays, certain classes
known as collections.

There are databases, of course, that can store any type of data and preserve their structure
as well, but not all applications use databases. Although databases store data permanently,
collections live in memory and must be persisted to a disk file between sessions. Collections
can also be used to store data you read from a database in the target computer’s memory. If
your application needs to store custom objects, such as the ones you designed in Chapter 8,
‘‘Working with Objects,’’ or a few names and contact information, you shouldn’t have to set up
a database. A simple collection like the ones described in this chapter will suffice.

In this chapter, you’ll learn how to do the following:

◆ Make the most of arrays

◆ Store data in specialized collections such as List and Dictionary collections

◆ Sort and search collections with custom comparers

Advanced Array Topics
Arrays are indexed sets of data, and this is how we’ve used them so far in this book. In this
chapter, you will learn about additional members that make arrays extremely flexible. The Sys-
tem.Array class provides methods for sorting arrays, searching for an element, and more. In the
past, programmers spent endless hours writing code to perform the same operations on arrays,
but the Framework frees them from similar counterproductive tasks.

This chapter starts with a brief discussion of the advanced features of the Array class. With
so many specialized collections supported by the Framework, arrays are no longer the primary
mechanism for storing sets of data. However, because many developers are still using arrays,
I’ve decided to include a brief presentation of the advanced techniques that will simplify the
manipulation of arrays.

494 CHAPTER 12 STORING DATA IN COLLECTIONS

Sorting Arrays
To sort an array, call its Sort method. This method is heavily overloaded, and as you will see,
it is possible to sort an array based on the values of another array or even to supply your own
custom sorting routines. If the array is sorted, you can call the BinarySearch method to locate
an element very efficiently. If not, you can still locate an element in the array by using the
IndexOf and LastIndexOf methods. The Sort method is a reference method: It requires that
you supply the name of the array to be sorted as an argument and sorts the array in place (in
other words, it doesn’t return another array with the same elements in a different order). The
simplest form of the Sort method accepts a single argument, which is the name of the array to
be sorted:

Array.Sort(arrayName)

This method sorts the elements of the array according to the type of its elements, as long
as the array is strictly typed and was declared as a simple data type (String, Decimal, Date,
and so on). If the array contains data that are not of the same type or that are objects, the Sort
method will fail. The Array class just doesn’t know how to compare integers to strings or dates,
so don’t attempt to sort arrays whose elements are not of the same type. If you can’t be sure
that all elements are of the same type, use a Try…Catch statement.

You can also sort a section of the array by using the following form of the Sort method,
where startIndex and endIndex are the indices that delimit the section of the array to be
sorted:

System.Array.Sort(arrayName, startIndex, endIndex)

An interesting variation of the Sort method sorts the elements of an array according to the
values of the elements in another array. Let’s say you have one array of names and another of
matching Social Security numbers. It is possible to sort the array of names according to their
Social Security numbers. This form of the Sort method has the following syntax:

System.Array.Sort(array1, array2)

array1 is the array with the keys (the Social Security numbers), and array2 is the array
with the actual elements to be sorted. This is a very handy form of the Sort method. Let’s say
you have a list of words stored in one array and their frequencies in another. Using the first
form of the Sort method, you can sort the words alphabetically. With the third form of the
Sort method, you can sort them according to their frequencies (starting with the most com-
mon words and ending with the least common ones). The two arrays must be one-dimensional
and have the same number of elements. If you want to sort a section of the array, just sup-
ply the startIndex and endIndex arguments to the Sort method, after the names of the two
arrays.

Another form of the Sort method relies on a user-supplied function to sort arrays of custom
objects. As you recall, arrays can store all types of objects. But the Framework doesn’t know
how to sort your custom objects, or even its built-in objects. To sort an array of objects, you
must provide your own class that implements the IComparer interface (basically, a function
that can compare two instances of a custom class). This form of the Sort method is described
in detail in the section titled ‘‘The IEnumerator and IComparer Interfaces’’ later in this
chapter.

ADVANCED ARRAY TOPICS 495

Searching Arrays
Arrays can be searched in two ways: with the BinarySearch method, which works on
sorted arrays and is extremely fast, and with the IndexOf and LastIndexOf methods, which
work regardless of the order of the elements. All three methods search for an instance of an
item and return its index, and they’re all reference methods. The IndexOf and LastIndexOf
methods are similar to the methods by the same name of the String class. They return the
index of the first (or last) instance of an object in the array, or they return the value –1 if the
object isn’t found in the array. Both methods are overloaded, and the simplest form of the
IndexOf method is the following, where arrayName is the name of the array to be searched
and object is the item you’re searching for:

itemIndex = System.Array.IndexOf(arrayName, object)

Another form of the IndexOf and LastIndexOf methods allows you to begin the search at a
specific index:

itemIndex = System.Array.IndexOf(arrayName, object, startIndex)

This form of the method starts searching in the segment of the array from startIndex to the
end of the array. Finally, you can specify a range of indices in which the search will take place
by using the following form of the method:

itemIndex = System.Array.IndexOf(arrayName, object, startIndex, endIndex)

You can search large arrays more efficiently with the BinarySearch method if the array is
sorted. The simplest form of the BinarySearch method is the following:

System.Array.BinarySearch(arrayName, object)

The BinarySearch method returns an integer value, which is the index of the object you’ve
been searching for in the array. If the object argument is not found, the method returns a neg-
ative value, which is the negative of the index of the next larger item minus one. This transfor-
mation, the negative of a number minus one, is called the one’s complement, and other languages
provide an operator for it: the tilde (∼). The one’s complement of 10 is –11, and the one’s com-
plement of –3 is 2.

Why all this complexity? Zero is a valid index, so only a negative value could indicate a
failure in the search operation. A value of –1 would indicate that the operation failed, but the
BinarySearch method does something better. If it can’t locate the item, it returns the index of
the item immediately after the desired item (the first item in the array that exceeds the item
you’re searching for). This is a near match, and the BinarySearch method returns a negative
value to indicate near matches. A near match is usually the same string with different character
casing or a slightly different spelling. It may also be a string that’s totally irrelevant to the one
you’re searching for. Notice that there will always be a near match unless you’re searching for a
value larger than the last value in the array. In this case, the BinarySearch method will return
the one’s complement of the array’s upper bound (–100 for an array of 100 elements, if you
consider that the index of the last element is 99).

496 CHAPTER 12 STORING DATA IN COLLECTIONS

Arrays Perform Case-Sensitive Searches

The BinarySearch, IndexOf, and LastIndexOf methods perform case-sensitive searches.
However, because the BinarySearch method reports near matches, it appears as if it per-
forms case-insensitive searches. If the array contains the element Charles and you search for
charles, the IndexOf method will not find the string and will report a no-match, whereas
the BinarySearch method will find the element Charles and report it as a near match. My
recommendation is to standardize the case of the data and the search argument when you
plan to perform searches (such as uppercase for titles, camel case for names, and so on). As an
alternative, you can use String.ToUpper() on both arguments. To perform case-insensitive
searches, you must implement your own custom comparer, a process that’s described later in
this chapter. Also, the Option Compare statement has no effect on the comparisons performed
by either the BinarySearch method or the IndexOf and LastIndexOf methods.

VB 2010 at Work: The ArraySearch Application

The ArraySearch application, shown in Figure 12.1, demonstrates how to handle exact and near
matches reported by the BinarySearch method. The Populate Array button populates an array
with 10,000 random strings. The same strings are also displayed in a sorted ListBox control,
so you can view them. The elements have the same order in both the array and the ListBox, so
you can use the index reported by the BinarySearch method to locate and select instantly the
same item in the ListBox.

Figure 12.1

Searching an array and
highlighting the same
element in the ListBox
control

Each of the 10,000 random strings has a random length of 3 to 15 characters. When you run
the application, message boxes will pop up, displaying the time it took for each operation: how
long it took to populate the array, how long it took to sort it, and how long it took to populate
the ListBox. You might want to experiment with large arrays (100,000 elements or more) to get
an idea of how efficiently VB handles arrays.

The Search Array button prompts the user for a string via the InputBox() function and then
locates the string in the array by calling the BinarySearch method in the array. The result is

ADVANCED ARRAY TOPICS 497

either an exact or a near match, and it’s displayed in a message box. At the same time, the item
reported by the BinarySearch method is also selected in the ListBox control.

Run the application, populate the ListBox control, and then click the Search Array button.
Enter an existing string (you can use lowercase or uppercase characters; it doesn’t make a dif-
ference), and verify that the application reports an exact match and locates the item in the List-
Box. The program appears to perform case-insensitive searches because all the strings stored in
the array are in uppercase, and the search argument is also converted to uppercase before the
BinarySearch method is called.

Now, enter a string that doesn’t exist in the list (or the beginning of an existing string) and
see how the BinarySearch handles near matches.

The code behind the Search Array button calls the BinarySearch method and stores the
integer returned by the method to the wordIndex variable. Then it examines the value of this
variable. If wordIndex is positive, there was an exact match, and it’s reported. If wordIndex
is negative, the program calculates the one’s complement of this value, which is the index of
the nearest match. The element at this index is reported as a near match. Finally, regardless
of the type of the match, the code selects the same item in the ListBox and scrolls it into view.
Listing 12.1 is the code behind the Search Array button.

Listing 12.1: Locating exact and near matches with BinarySearch

Private Sub bttnSearch_Click(…) Handles bttnSearch.Click
Dim srchWord As String ‘ the word to search for
Dim wordIndex As Integer ‘ the index of the word
srchWord = InputBox(

"Enter word to search for").ToUpper
wordIndex = System.Array.BinarySearch(words, srchWord)
If wordIndex >= 0 Then ‘ exact match!

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex
MsgBox("An exact match was found for " &

" the word [" & words(wordIndex) &
"] at index " & wordIndex.ToString,,
"EXACT MATCH")

Else ‘ Near match
ListBox1.TopIndex = -wordIndex - 1
ListBox1.SelectedIndex = -wordIndex - 1
MsgBox("The nearest match is the word [" &

words(-wordIndex - 1) & "] at index " &
(-wordIndex - 1).ToString, , "NEAR MATCH")

End If
End Sub

Notice that all methods for sorting and searching arrays work with the base data types only.
If the array contains custom data types, you must supply your own functions for comparing
elements of this type, a process described in detail in the section ‘‘The IEnumerator and ICom-
parer Interfaces’’ later in this chapter.

498 CHAPTER 12 STORING DATA IN COLLECTIONS

The Binary Search Algorithm

The BinarySearch method uses a powerful search algorithm, the binary search algorithm, but
it requires that the array be sorted. You need not care about the technical details of the imple-
mentation of a method, but in the case of the binary search algorithm, a basic understanding of
how it works will help you understand how it performs near matches.

To locate an item in a sorted array, the BinarySearch method compares the search string to
the array’s middle element. If the search string is smaller, you know that the element is in the
first half of the array, and you can safely ignore the second half. The same process is repeated
with the remaining half of the elements. The search string is compared with the middle element
of the reduced array, and after the comparison, you can ignore one-half of the reduced array.
At each step, the binary search algorithm rejects one-half of the items left until it reduces the
list to a single item. This is the item you’re searching for. If not, the item is not in the list. To
search a list of 1,024 items, the binary search algorithm makes 10 comparisons. At the first step,
it’s left with an array of 512 elements, then 256 elements, then 128 elements, and so on, until it
reaches a single element. For an array of 1,024 × 1,024 (that’s a little more than a million) items,
the algorithm makes 20 comparisons to locate the desired item.

If you apply the BinarySearch method to an array that hasn’t been sorted, the method will
carry out all the steps and report that the item wasn’t found, even if the item belongs to the
array. The algorithm doesn’t check the order of the elements; it just assumes that they’re sorted.
The binary search algorithm always halves the number of elements in which it attempts to
locate the search argument. That’s why you should never apply the BinarySearch method to
an array that hasn’t been sorted yet.

To see what happens when you apply the BinarySearch method to an array that hasn’t
been sorted, remove the statement that calls the Sort method in the ArraySearch sample appli-
cation. The application will keep reporting near matches, even if the string you’re searching
for is present in the array. Of course, the near match reported by the BinarySearch method
in an unsorted array isn’t close to the element you’re searching for — it’s just an element that
happens to be there when the algorithm finishes.

Performing Other Array Operations
The Array class exposes additional methods, which are described briefly in this section. The
Reverse method reverses the order of the elements in an array. The Reverse method accepts
the array to be reversed as an argument and returns another array:

reversedArray = System.Array.Reverse(arrayName)

The Copy and CopyTo methods copy the elements of an array (or segment of an array) to
another array. The syntax of the Copy method is as follows:

System.Array.Copy(sourceArray, destinationArray, count)

sourceArray and destinationArray are the names of the two arrays, and count is the
number of elements to be copied. The copying process starts with the first element of the source
array and ends after the first count elements have been copied. If count exceeds the length of
either array, an exception will be thrown.

ADVANCED ARRAY TOPICS 499

Another form of the Copy method allows you to specify the range of elements in the source
array to be copied and a range in the destination array in which these elements will be copied.
The syntax of this form of the method is as follows:

System.Array.Copy(sourceArray, sourceStart,
destinationArray, destinationStart, count)

This method copies count elements from the source array, starting at location sourceStart,
and places them in the destination array, starting at location destinationStart. All indices
must be valid, and there should be count elements after the sourceStart index in the source
array, as well as count elements after the destinationStart in the destination array. If not, an
exception will be thrown.

The CopyTo method is similar, but it doesn’t require the name of the source array. It copies
the elements of the array to which it’s applied into the destination array, where sourceArray is
a properly dimensioned and initialized array:

sourceArray.CopyTo(destinationArray, sourceStart)

Finally, you can filter array elements by using the Filter() function, which is not a method
of the Array class; it’s a VB function that acts on arrays. The Filter() function performs an
element-by-element comparison and rejects the elements that don’t meet the user-specified cri-
teria. The filtered elements are returned as a new array, while the original array remains intact.
The syntax of the Filter() function is as follows:

filteredArray = Filter(source, match, include, compare)

source is the array to be searched, and it must be a one-dimensional array of strings
or objects. The match argument is the string to search for. Every element that includes the
specified string is considered a match. The remaining arguments are optional: include is
a True/False value indicating whether the method will return the elements that include (if
True) or exclude (if False) the matching elements. The compare argument is a member of the
CompareMethod enumeration: It can be Binary (for binary or case-sensitive comparisons) or
Text (for textual or case-insensitive comparisons). If no match is found, the method will return
an empty array.

The following code segment filters out the strings that don’t contain the word visual from
the words array:

Dim words() As String = {"Visual Basic", "Java", "Visual Studio"}
Dim selectedWords() As String
selectedWords = Filter(words, "visual", True, CompareMethod.Text)
Dim selword As String
Dim msg As String = ""
For Each selword In selectedWords

msg &= selword & vbCrLf
Next
MsgBox(msg)

500 CHAPTER 12 STORING DATA IN COLLECTIONS

If you execute the preceding statements, the message box will display the following:

Visual Basic
Visual Studio

There are a few more interesting array methods, such as the FindAll method, which finds
the elements that meet arbitrary conditions, and the TrueForAll method, which returns True
if all elements in the array meet the criteria you supply. With the introduction of LINQ, a topic
that’s discussed in detail in Chapter 14, ‘‘Introduction to LINQ,’’ there’s very little reason to use
these methods. LINQ provides a straightforward syntax for selecting elements from an array. If
you haven’t seen the LINQ syntax before, here the code segment extracts the strings that con-
tain the word visual, similar to the preceding sample:

Dim words() As String = {"Visual Basic", "Java", "Visual Studio"}
Dim selectedWords = From word In words

Where word.ToUpper.Contains("VISUAL")
Select word

I will not discuss this syntax any further in this chapter, but it’s easy to see that the code is
more intuitive and that the filtering expression may contain any of the Framework’s functions
and methods, allowing for much more flexible pattern-matching techniques. As you may recall
from Chapter 10, ‘‘Applied Object-Oriented Programming,’’ the functionality of arrays, as well
as all other collections, has been enhanced with extension methods. One of Chapter 10’s sample
projects is the Extension Methods project, which demonstrates some of the array’s extension
methods.

Array Limitations

As implemented in version 4.0 of the Framework, arrays are more flexible than ever. They’re
very efficient, and the most demanding tasks programmers previously had to perform with
arrays are now implemented as methods of the Array class. However, arrays aren’t perfect
for all types of data storage. The most important shortcoming of arrays is that they’re not
dynamic. Inserting or removing elements entails moving all the following elements up or
down. Arrays are the most efficient collection in the Framework, but when you need a dynamic
structure for adding and removing elements in the course of an application, you should use a
collection, such as the List or ArrayList collection, described in detail in the next section.

Collection Types
Collections are structures for storing sets of data, similar to arrays, but they are more flexible,
and there are several types of collections to choose from. Let’s start with a rough classifica-
tion of collections. There are collections that store just data, like the List and ArrayList col-
lections, and there are collections that store pairs of keys and data values, like the Dictionary
and HashTable collections. If each data value has a unique key, you can use this key to quickly
retrieve the matching data value. An ArrayList collection can store temperatures, just like an
array. It can also store objects with properties such as city names and their temperatures, but it
doesn’t allow you to retrieve the temperature in a specific city. If you’re interested in tempera-
tures only, you can use an ArrayList or even an array. If you need to access the temperatures in

COLLECTION TYPES 501

specific cities, however, you must use a Dictionary collection that stores temperatures indexed
by the corresponding city names.

Another way to classify the collections is as typed and untyped. Untyped collections, such as
the ArrayList collection, allow you to store objects of any type. Typed collections, on the other
hand, such as the List collection, allow you to store objects of a specific type only. The advan-
tage of using typed collections is that their elements expose the properties of the specific type.
Consider an ArrayList that contains Rectangle objects. To access the width of the third element
in the collection, you must use an expression like the following:

Dim AL As New ArrayList
CType(AL(2), Rectangle).Width

This expression may cause a runtime error if the third element in the AL collection is not of the
Rectangle type (AL is a properly initialized ArrayList).

If you use a List collection to store the same objects, then you can access the width of an
element of the collection with a much simpler expression:

Dim LST As New List(Of Rectangle)
’ statements to populate the LST collection
LST(2).Width

(LST is a properly initialized List collection, populated with Rectangle objects.) The members of
the Rectangle class will appear in the IntelliSense list as you type. Because the LST List collec-
tion will not accept any objects other than Rectangles, all errors will be caught at design time,
and they will not generate runtime errors.

Now I’ll cover the specialized collections of the Framework starting with the simpler ones,
the ArrayList and List collections. The two collections are functionally equivalent, and they
expose identical members. The ArrayList and List collections allow you to maintain multiple
elements, similar to an array; however, Lists and ArrayLists allow the insertion of elements
anywhere in the collection, as well as the removal of any element. In other words, they’re
dynamic structures that can also grow automatically as you add or remove elements. Like an
array, the collection’s elements can be sorted and searched. You can also remove elements by
value, not only by index. If you have a collection populated with names, you remove the item
Charles by passing the string itself as an argument. Notice that Charles is not an index value;
it’s the element you want to remove.

Creating Collections
To use an ArrayList in your code, you must first create an instance of the ArrayList class by
using the New keyword, as in the following statement:

Dim aList As New ArrayList

The aList variable represents an ArrayList that can hold only 16 elements (the default size).
You can set the initial capacity of the ArrayList by setting its Capacity property, which is the
number of elements the ArrayList can hold. Notice that you don’t have to prepare the collec-
tion to accept a specific number of items. Every time you exceed the collection’s capacity, it’s
doubled automatically. However, it’s not decreased automatically when you remove items.

502 CHAPTER 12 STORING DATA IN COLLECTIONS

The exact number of items currently in the ArrayList is given by the Count property, which
is always less than (or, at most, equal to) the Capacity property. (Both properties are expressed
in terms of items.) If you decide that you will no longer add more items to the collection, you
can call the TrimToSize method, which will set the collection’s capacity to the number of items
in the list.

Where the ArrayList collection can store objects of any type, a variation of the ArrayList
stores objects of the same type. This collection is called List, and it’s a typed ArrayList. The
only difference between ArrayLists and Lists is in the way they’re declared: When you declare
a List collection, you must supply the type of the objects you intend to store in it, using the Of
keyword in parentheses, as shown in the following statements, which declare two List collec-
tions for storing Rectangle objects (the Rects collection) and custom objects of the Student type
(the Students collection):

Dim Rects As New List(Of Rectangle)
Dim Students As New List(Of Student)

Other than that, the List collection is identical to the ArrayList collection. Of course, because
the List collection stores objects of a specific type, it integrates nicely with IntelliSense. If
you type the name of an element in the collection (such as Rects(3)) and the following
period, IntelliSense will display the members of the Rectangle class in a drop-down list. In the
following section, you’ll learn about the methods they expose and how to use both types of
collections in your code. I will be using mostly the List class in the sample code and suggest
that you do the same in your code whenever possible, but the same techniques apply to the
ArrayList class as well.

Adding and Removing List Items

To add a new item to a List, use the Add method, whose syntax is as follows:

index = lst.Add(obj)

lst is a properly declared List (or ArrayList) variable, and obj is the item you want to add
to the collection. The type of the obj object should be the same as the one you used in the dec-
laration of the List collection. The Add method appends the specified item to the collection and
returns the index of the new item. If you’re using a List named Capitals to store the names of
the state capitals, you can add an item by using the following statement:

Capitals.Add("Sacramento")

Let’s say you created a structure called Person by using the following declaration:

Structure Person
Dim LastName As String
Dim FirstName As String
Dim Phone As String
Dim EMail As String

End Structure

To store a collection of Person items in a List, create a variable of the Person type, set its
fields, and then add it to the List, as shown in Listing 12.2.

COLLECTION TYPES 503

Listing 12.2: Adding a structure to an ArrayList

Dim Persons As New List(Of Person)
Dim p As New Person
p.LastName = "Last Name"
p.FirstName = "First Name"
p.Phone = "Phone"
p.EMail = "name@server.com"
Persons.Add(p)
p = New Person
p.LastName = "another name"
{ statements to set the other fields}
Persons.Add(p)

If you execute these statements, the List collection will hold two items, both of the Person
type. Notice that you can add multiple instances of the same object to the List collection. To
find out whether an item belongs to the collection already, use the Contains method, which
accepts as an argument an object and returns a True or False value, depending on whether the
object belongs to the list:

If Persons.Contains(p) Then
MsgBox("Duplicate element rejected")

Else
Persons.Add(p)
MsgBox("Element appended successfully")

End If

By default, items are appended to the collection. To insert an item at a specific location, use
the Insert method, which accepts as an argument the location at which the new item will be
inserted and, of course, an object to insert in the ArrayList, as shown next:

aList.Insert(index, object)

Unlike the Add method, the Insert method doesn’t return a value — the location of the new
item is already known.

You can also add multiple items via a single call to the AddRange method. This method
appends to the collection of a set of items, which could come from an array or from another
list. The following statement appends the elements of an array to the Lst collection:

Dim colors() As Color = {Color.Red, Color.Blue, Color.Green}
Lst.AddRange(colors)

To insert a range of items anywhere in the collection, use the InsertRange method. Its syntax
is the following, where index is the index of the collections where the new elements will be
inserted, and objects is a collection of the elements to be inserted:

Lst.InsertRange(index, objects)

504 CHAPTER 12 STORING DATA IN COLLECTIONS

Finally, you can overwrite a range of elements in the collection with a new range by using
the SetRange method. To overwrite the items in locations 5 through 9 in an collection, use a
few statements like the following:

Dim words() As String =
{"Just", "a", "few", "more", "words"}

Lst.SetRange(5, words)

This code segment assumes that the Lst collection contains at least 10 items, and it replaces half
of them.

To remove an item, use the Remove method, whose syntax is the following:

aList.Remove(object)

The object argument is the value to be removed, not an index value. If the collection contains
multiple instances of the same item, only the first instance of the object will be removed.

Notice that the Remove method compares values, not references. If the collection contains a
Rectangle object, you can search for this item by creating a new variable of this type and setting
its properties to the properties of the Rectangle object you want to remove:

Dim R1 As New Rectangle(10, 10, 100, 100)
Dim R2 As Rectangle = R1
Lst.Add(R1)
Lst.Add(R2)
Dim R3 As Rectangle
R3 = New Rectangle(10, 10, 100, 100)
Lst.Remove(R3)

If you execute these statements, they will add two identical rectangles to the Lst collection. The
last statement will remove the first of the two rectangles.

If you attempt to remove an item that doesn’t exist, no exception is thrown — simply, no
item is removed from the list. You can also remove items by specifying their index in the list
via the RemoveAt method. This method accepts as an argument the index of the item to remove,
which must be less than the number of items currently in the list.

To remove more than one consecutive item, use the RemoveRange method, whose syntax is
the following:

Lst.RemoveRange(startIndex, count)

The startIndex argument is the index of the first item to be removed, and count is the num-
ber of items to be removed.

The following statements are examples of the methods that remove items from a collec-
tion. The first two statements remove an item by value. The first statement removes an object,
and the second removes a string item. The following statement removes the third item, and the
last one removes the third through the fifth items.

aList.Remove(Color.Red)
aList.Remove("Richard")

COLLECTION TYPES 505

aList.RemoveAt(2)
aList.RemoveRange(2, 3)

Collection Initializers

You can also declare and populate a collection in a single statement, with a collection initial-
izer. The collection initializer is a sequence of elements enclosed in a pair of curly brackets. The
following statement declares and initializes a new ArrayList collection with strings:

Dim letters As New ArrayList({"quick", "dog", "fox", "lazy", "brown"})

As you recall from Chapter 8, ‘‘Working with Objects,’’ you can initialize an object by supply-
ing a set of values in parentheses as an argument to its constructor. The curly brackets indicate
that you’re supplying a collection of values. As a reminder, here’s the simplest form of collec-
tion initializer, the array initializer:

Dim numbers() As Decimal = {2.0, 12.99, 0.001, 1000.0, 10.01}

If this were a List collection, the initialization would be a little more complicated. Let’s ini-
tialize a List collection of strings. You first must declare the collection with a statement like the
following:

Dim words = New List(Of String)

To initialize the collection, you must supply a list of strings in a pair of curly brackets. The
following statement creates an array of strings:

{"the", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "dog"}

To initialize the List collection, all you have to do is append the array with the values to the
collection’s initializer:

Dim words = New List(Of String)({"the", "quick", "brown",
"fox", "jumped", "over", "the", "lazy", "dog"})

Collection initializers allow you to declare and initialize a collection similar to all scalar
objects. You can also supply the constructors of more complex objects to the collection initial-
izer. The following statement will create a List of Rectangle objects:

Dim Rects = New List(Of Rectangle)({New Rectangle(0, 0, 4, 14),
New Rectangle(0, 0, 101, 101),
New Rectangle(100, 100, 10, 20)})

This looks fairly complicated, almost C#-like, but here’s how you read the statement. The
constructor of the Rects collection accepts its initial values in a pair of parentheses. In the
parentheses themselves, you can embed an array of object initializers. Note that all object
initializers must be embedded in a pair of curly brackets.

506 CHAPTER 12 STORING DATA IN COLLECTIONS

Finally, you can initialize a collection with anonymous types, a topic discussed in
Chapter 10. An anonymous type is a type that’s created while it’s being declared. Here’s an
anonymous type that may appear anywhere in your code:

Dim P = New With {.First = "Evangelos", .Last = "Petroutsos"}

Note that the variable P is of an anonymous type, because there’s no type name. However, it
has two fields that you can access as if the P variable were based on a custom class:

P.First = "Richard"

The next statement creates a new collection of objects, each one representing a city:

Dim cities = New ArrayList(
{New With {.city = "a city", .population = 201213},
New With {.city = "a small city", .population = 101320},
New With {.city = "a town", .population = 39210}})

You may find the number of curly brackets overwhelming, but the trick to using initializers
effectively is to build them step-by-step. The following expression creates a new variable of the
anonymous type with two fields:

New With {.city = "a city", .population = 201213}

Then you embed several of these expressions with different field values in a pair of curly brack-
ets to create a collection of objects of this anonymous type, and finally you embed the collection
in a pair of parentheses to pass them as arguments to the collection’s initializer. To standardize
the collection initializers, consider the following rule: All values you add to the collection must
be embedded in a pair of curly brackets:

{object1, object2, object3, …}

Each object in the collection must be initialized with its own constructor. Replace object1
with its initializer, object2 with the same initializer and different values, and so on, to create a
collection of objects. Then embed the entire expression, along with the outer curly brackets, in
a pair of parentheses following the collection’s declaration. If the objects are of an anonymous
type, insert the appropriate anonymous initializer for each object. As for the curly brackets,
think of them as delimiters for sets of values for arrays (or sets of properties for objects).
In Visual Basic, curly brackets are used only with collection initializers and anonymous
constructors.

Of course, you can’t create a List collection of an anonymous type, because the List is a
strongly typed collection.

Extracting Items from a Collection

To access the items in the collection, use an index value, similar to the array. The first item’s
index is 0, and the last item’s index is Lst.Count-1, where Lst is a properly initialized List or
ArrayList collection. You can also extract a range of items from the list by using the GetRange

COLLECTION TYPES 507

method. This method extracts a number of consecutive elements from the Lst collection and
stores them to a new collection, the newLst collection, where index is the index of the first item
to copy, and count is the number of items to be copied:

newLst = Lst.GetRange(index, count)

The GetRange method returns another collection with the proper number of items. The follow-
ing statement copies three items from the Lst collection and inserts them at the beginning of
the bLst collection. The three elements copied are the fourth through sixth elements in the orig-
inal collection:

bLst.InsertRange(0, aLst.GetRange(3, 3))

The Repeat method, which fills a list with multiple instances of the same item, has the
following syntax:

newList = ArrayList.Repeat(item, count)

This method returns a new list with count elements, all of them being identical to the item
argument. The Reverse method, finally, reverses the order of the elements in a collection, or a
portion of it.

Sorting Lists
To sort an ArrayList or List collection, use the Sort method, which has three overloaded
forms:

aLst.Sort()
aLst.Sort(comparer)
aLst.Sort(startIndex, endIndex, comparer)

The Sort method doesn’t require you to pass the name of the list to be sorted as an argument;
unlike the Sort method of the Array class, this is an instance method and it sorts the collection
to which it’s applied. aLst is a properly declared and initialized List or ArrayList variable. The
first form of the Sort method sorts the list alphabetically or numerically, depending on the data
type of the objects stored in it. If the items are not all of the same type, an exception will be
thrown. You’ll see how you can handle this exception in just a moment.

If the items stored in the collection are of a data type other than the base data types, you
must supply your own mechanism to compare the objects. The other two forms of the Sort
method use a custom function for comparing items; you will see how they’re used in the
section ‘‘The IEnumerator and IComparer Interfaces’’ later in this chapter.

If the list contains items of widely different types, the Sort method will fail. To prevent
a runtime exception (the InvalidOperationException), you must make sure that all items
are of the same type. If you can’t ensure that all the items are of the same type, catch the
possible errors and handle them from within a structured exception handler, as demonstrated
in Listing 12.3. (The listing doesn’t show the statements for populating the ArrayList, just the
use of a structured exception handler for the Sort method.)

508 CHAPTER 12 STORING DATA IN COLLECTIONS

Listing 12.3: Foolproof sorting

Dim sorted As Boolean = True
Try

aLst.Sort()
Catch SortException As InvalidOperationException

MsgBox("You can’t sort an ArrayList whose items " &
"aren’t of the same type")

sorted = False
Catch GeneralException As Exception

MsgBox("The following exception occurred: " &
vbCrLf & GeneralException.Message) sorted = False

End Try
If sorted Then

{ process sorted list}
Else

{ process unsorted list}
End If

The sorted Boolean variable is initially set to True because the Sort method will most likely
succeed. If not, an exception will be thrown, in which case the code sets the sorted variable to
False and uses it later to distinguish between sorted and unsorted collections. Notice the two
clauses of the Catch statement that distinguish between the invalid operation exception and
any other type of exception.

The Sort method can’t even sort a collection of various numeric data types. If some of its
elements are doubles and some are integers or decimals, the Sort method will fail. You must
either make sure that all the items in the ArrayList are of the same type or provide your own
function for comparing the ArrayList’s items. The best practice is to make sure that your collec-
tion contains items of the same type by using a List collection. If a collection contains items of
different types, however, how likely is it that you’ll have to sort such a collection?

Searching Lists
Like arrays, ArrayList and List collections expose the IndexOf and LastIndexOf methods to
search in an unsorted list and the BinarySearch method for sorted lists. The IndexOf and
LastIndexOf methods accept as an argument the object to be located and return an index:

Dim index As Integer = Lst.IndexOf(object)

Here, object is the item you’re searching. The LastIndexOf method has the same syntax,
but it starts scanning the array from its end and moves backward toward the beginning. The
IndexOf and LastIndexOf methods are overloaded as follows:

Lst.IndexOf(object, startIndex)
Lst.IndexOf(object, startIndex, length)

The two additional arguments determine where the search starts and ends. Both methods
return the index of the item if it belongs to the collection. If not, they return the value –1. The

COLLECTION TYPES 509

IndexOf and LastIndexOf methods of the List and ArrayList classes perform case-sensitive
searches, and they report exact matches only.

If the list is already sorted, use the BinarySearch method, which accepts as an argument
the object to be located and returns its index in the collection, where object is the item you’re
looking for:

Dim index As Integer = Lst.BinarySearch(object)

There are two more overloads of this method. To search for an item in a list with custom
objects, use the following form of the BinarySearch method:

Dim index As Integer = Lst.BinarySearch(object, comparer)

The first argument is the object you’re searching for, and the second is the name of an ICom-
parer object. Another overload of the BinarySearch method allows you to search for an item
in a section of the collection; its syntax is as follows:

Dim index As Integer = _
Lst.BinarySearch(startIndex, length, object, comparer)

The first argument is the index at which the search will begin, and the second argument is
the length of the subrange. object and comparer are the same as with the second form of the
method.

Iterating Through a List
To iterate through the elements of a collection, you can set up a For…Next loop:

For i = 0 To Lst.Count - 1
{ process item Lst(i)}

Next

or a For Each loop:

For Each itm In aLst
{ process item itm }

Next

This is a trivial operation, but the processing itself can get as complicated as required
by the type of objects stored in the collection. The current item at each iteration is the
Lst(i). It’s recommended that you cast the object to the appropriate type and then
process it.

You can also use the For Each…Next loop with an Object variable, as shown next:

Dim itm As Object
For Each itm In aLst

{ process item itm}
Next

510 CHAPTER 12 STORING DATA IN COLLECTIONS

If you’re iterating through an ArrayList collection, you must cast the control variable itm
to the appropriate type. If you’re iterating through a List collection, then the itm variable is
of the same type as the one you used in the declaration of the List collection, as long as the
Infer option is on. Alternatively, you can declare the control variable in the For Each statement:

Dim Lst AS New List(Of String)
’ statements to populate list
For Each itm As String In Lst
’ process item lst
Next

An even better method is to create an enumerator for the collection and use it to iterate
through its items. This technique applies to all collections and is discussed in the ‘‘The IEnu-
merator and IComparer Interfaces’’ section later in this chapter.

The List and ArrayList classes address most of the problems associated with the Array class,
but one last problem remains — that of accessing the items in the collection through a mean-
ingful key. This is the problem addressed by the Dictionary and HashTable collections.

The Dictionary Collection
As you saw, the List and ArrayList classes address most of the problems of the Array class,
while they support all the convenient array features. Yet, the two lists, like the Array, have a
major drawback: You must access their items by an index value. Another collection, the Dictio-
nary collection, is similar to the List and ArrayList collections, but it allows you to access the
items by a meaningful key.

Each item in a Dictionary has a value and a key. The value is the same value you’d store
in an array, but the key is a meaningful entity for accessing the items in the collection, and
each element’s key must be unique. Both the values stored in a Dictionary and their keys can
be objects. Typically, the keys are short strings (such as Social Security numbers, ISBN values,
product IDs, and so on) or integers.

The Dictionary collection exposes most of the properties and methods of the List, with a few
notable exceptions. The Count property returns the number of items in the collection as usual,
but the Dictionary collection doesn’t expose a Capacity property. The Dictionary collection
uses fairly complicated logic to maintain the list of items, and it adjusts its capacity automat-
ically. Fortunately, you need not know how the items are stored in the collection.

To create a Dictionary in your code, declare it with the New keyword, and supply the type of
the keys and values you plan to store in the collection with a statement like the following:

Dim Students As New Dictionary(Of Integer, Student)

The first argument is the type of the keys, and the second argument is the type of the values
you plan to store in the collection. Dictionaries are typed collections, unless you declare them
with the Object type. To add an item to the Dictionary, use the Add method with the following
syntax:

Students.Add(key, value)

value is the item you want to add (it can be an object of the type specified in the collection’s
declaration), and key is an identifier you supply, which represents the item. After populating

THE DICTIONARY COLLECTION 511

the collection you will use the key to access specific elements of the collection. For example,
you will use city names to locate their temperature as shown in the following statements:

Dim Temperatures As New Dictionary(Of String, Decimal)
Temperatures.Add("Houston", 81.3)
Temperatures.Add("Los Angeles", 78.5)

To find out the temperature in Houston, use the following statement:

MsgBox(Temperatures("Houston").ToString)

Notice that you can have duplicate values, but the keys must be unique. If you attempt to
reuse an existing key as you populate the collection, an InvalidArgumentException exception
will be thrown. To find out whether a specific key or value is already in the collection, use the
ContainsKey and ContainsValue methods. The syntax of the two methods is quite similar,
and they return True if the specified key or value is already in use in the collection:

Dictionary.ContainsKey(object)
Dictionary.ContainsValue(object)

The Dictionary collection exposes the Contains method, too, which returns True if the col-
lection contains a pair of a key and a value. If the collection contains the same value with a
different key, the Contains method will return False.

To find out whether a specific key is in use already, use the ContainsKey method, as shown
in the following statements, which add a new item to the Dictionary only if its key doesn’t exist
already:

Dim value As New Rectangle(100, 100, 50, 50)
Dim key As String = "Rect1"
If Not Rects.ContainsKey(key) Then

Rects.Add(key, value)
End If

If the key exists already, you might want to change its value. In this case, use the following
notation, which adds new elements to the list if the key isn’t present or changes the value of
the element that corresponds to the specified key:

Rects(key) = value

The Values and Keys properties allow you to retrieve all the values and the keys in the
Dictionary, respectively. Both properties are collections and expose the usual members of a col-
lection. To iterate through the values stored in a Dictionary, use the following loop:

Dim itm As Object
For Each itm In Dict.Values

Debug.WriteLine(itm)
Next

512 CHAPTER 12 STORING DATA IN COLLECTIONS

Listing 12.4 demonstrates how to scan the keys of a Dictionary through the Keys property
and then use these keys to access the matching items through the Item property.

Listing 12.4: Iterating a Dictionary collection

Private Function ShowDictionaryContents(
ByVal table As Dictionary
(Of String, Decimal)) As String

Dim msg As String
Dim element, key As Object
msg = "The HashTable contains " &

table.Count.ToString & " elements: " & vbCrLf
For Each key In table.Keys

element = table.Item(key)
msg = msg & vbCrLf & " Element Key= " &

key.ToString
msg = msg & " Element Value= " &

element.ToString & vbCrLf
Next
Return (msg)

End Function

To print the contents of a Dictionary collection in the Output window, call the
ShowHashTableContents() function, passing the name of the Dictionary as an argument, and
then print the string returned by the function:

Dim Dict As New Dictionary
{ statements to populate Dictionary}
MsgBox(ShowDictionaryContents(Dict))

The specific implementation of the ShowDictionaryContents() function applies to Dictionary
collections that use strings as keys and decimals as values. For Dictionary collections that store
different types, you must edit the function to accommodate the appropriate data types.

The HashTable Collection
Another collection, very similar to the Dictionary collection, is the HashTable collection.
The HashTable is an untyped Dictionary. To populate a HashTable with temperature values
indexed by city names, use a few statements like the following:

Dim tmps As New Hashtable
tmps("Houston") = 81.3
tmps("Los Angeles") = 78.5

If an element with the same key you’re trying to add exists already, then no new item will
be added to the list. Instead, the existing item’s value will be changed. After executing the

THE HASHTABLE COLLECTION 513

following statements, for example, the Temperatures HashTable will contain a single element
with the key Houston and the value 79.9:

Dim temperatures As New Hashtable
tmps("Houston") = 81.3
tmps("Houston") = 79.9

You can always use the Add method to add elements to a HashTable collection, and the
syntax of this method is identical to the Add method of the Dictionary collection. Like the Dic-
tionary collection, it exposes the Add method that accepts a key and a value as arguments, a
Remove method that accepts the key of the element to be removed, and the Keys and Values
properties that return all the keys and values in the collection, respectively. The major differ-
ence between the Dictionary and HashTable collections is that the Dictionary class is a strongly
typed one, while the HashTable can accept arbitrary objects as values and is not as fast as the
Dictionary class. Another very important difference is that the Dictionary collection class is not
serializable, a topic discussed in detail in the following chapter. Practically, this means that a
Dictionary collection can’t be persisted to a disk file with a single statement, which is true for
the HashTable collection.

VB 2010 at Work: The WordFrequencies Project
In this section, you’ll develop an application that counts word frequencies in a text. The Word-
Frequencies application (available for download from www.sybex.com/go/masteringvb2010)
scans text files and counts the occurrences of each word in the text. As you will see, the
HashTable collection is the natural choice for storing this information because you want to
access a word’s frequency by using the actual word as the key. To retrieve (or update) the
frequency of the word elaborate, for example, you will use this expression:

Words("ELABORATE").Value

where Words is a properly initialized HashTable object.
When the code runs into another instance of the word elaborate, it simply increases the

matching item of the Words HashTable by one:

Words("ELABORATE").Value += 1

Arrays and Lists (or ArrayLists) are out of the question because they can’t be accessed by a
key. You could also use the SortedList collection (described later in this chapter), but this col-
lection maintains its items sorted at all times. If you need this functionality as well, you can
modify the application accordingly. The items in a SortedList are also accessed by keys, so you
won’t have to introduce substantial changes in the code.

Let me start with a few remarks. First, all words we locate in the various text files will
be converted to uppercase. Because the keys of the HashTable are case sensitive, converting
them to uppercase eliminates the usual problem of case sensitivity (hello being a different word
than Hello and HELLO) by eliminating multiple possible variations in capitalization for the
same word.

The frequencies of the words can’t be calculated instantly because we need to know the
total number of words in the text. Instead, each value in the HashTable is the number of occur-
rences of a specific word. To calculate the actual frequency of the same word, we must divide

514 CHAPTER 12 STORING DATA IN COLLECTIONS

this value by the number of occurrences of all words, but this can happen only after we have
scanned the entire text file and counted the occurrences of each word.

Figure 12.2 shows the application’s interface. To scan a text file and process its words, click
the Read Text File button. The Open dialog box will prompt you to select the text file to be
processed, and the application will display in a message box the number of unique words read
from the file. Then you can click the Show Word Count button to count the number of occur-
rences of each word in the text. The last button on the form calculates the frequency of each
word and sorts the words according to their frequencies.

Figure 12.2

The WordFrequen-
cies project demon-
strates how to use the
HashTable collection.

The application maintains a single HashTable collection, the Words collection, and it updates
this collection rather than counting word occurrences from scratch for each file you open. The
Frequency Table menu contains the commands to save the words and their counts to a disk
file and read the same data from the file. The commands in this menu can store the data either
to a text file (Save XML/Load XML commands) or to a binary file (Save Binary/Load Binary
commands). Use these commands to store the data generated in a single session, load the data
in a later session, and process more files.

The WordFrequencies application uses techniques and classes I haven’t discussed yet.
Serialization is discussed in detail in the next chapter, whereas reading from (or writing to)
files is discussed in the tutorial ‘‘Accessing Folders and Files.’’ (You’ll find that tutorial online
at www.sybex.com/go/masteringvb2010.) You don’t really have to understand the code that
opens a text file and reads its lines; just focus on the segments that manipulate the items of the
HashTable.

To test the project, I used some large text files I downloaded from the Project Gutenberg
website (http://promo.net/pg/). This site contains entire books in electronic format (plain-text
files), and you can borrow some files to test any program that manipulates text. (Choose some
books you will enjoy reading.)

The code reads the text into a string variable, and then it calls the Split method of the
String class to split the text into individual words. The Split method uses the space, comma,

THE HASHTABLE COLLECTION 515

period, quotation mark, exclamation mark, colon, semicolon, and new-line characters as
delimiters. The individual words are stored in the Words array; after this array has been
populated, the program goes through each word in the array and determines whether it’s a
valid word by calling the IsValidWord() function. This function returns False if one of the
characters in the word is not a letter; strings such as B2B or U2 are not considered proper
words. IsValidWord() is a custom function, and you can edit it as you wish to handle the
specific content (my assumption that a word may not contain digits is quite reasonable to text
files but totally wrong if you’re handling code listings, for example).

Any valid word becomes a key to the wordFrequencies HashTable. The corresponding
value is the number of occurrences of the specific word in the text. If a key (a new word) is
added to the table, its value is set to 1. If the key exists already, its value is increased by 1 via
the following If statement:

If Not wordFrequencies.ContainsKey(word) Then
wordFrequencies.Add(word, 1)

Else
wordFrequencies(word) = CType(wordFrequencies(word), Integer) + 1

End If

Listing 12.5 is the code that reads the text file and splits it into individual words. The code
reads the entire text into a string variable, the txtLine variable, and the individual words are
isolated with the Split method of the String class. The Delimiters array stores the charac-
ters that the Split method will use as delimiters, and you can add more delimiters depend-
ing on the type of text you’re processing. If you’re counting keywords in program listings, for
example, you’ll have to add the math symbols and parentheses as delimiters.

Listing 12.5: Splitting a text file into words

Private Sub bttnRead_Click(…) Handles bttnRead.Click
OpenFileDialog1.DefaultExt = "TXT"
OpenFileDialog1.Filter = "Text|*.TXT|All Files|*.*"
If OpenFileDialog1.ShowDialog() <>

Windows.Forms.DialogResult.OK Then Exit Sub
Dim str As StreamReader = File.OpenText(OpenFileDialog1.FileName)
Dim txtLine As String
Dim words() As String
Dim Delimiters() As Char =

{CType(" ", Char), CType(".", Char), CType(",", Char),
CType("?", Char), CType("!", Char), CType(";", Char),
CType(":", Char), Chr(10), Chr(13), vbTab}

txtLine = str.ReadToEnd
words = txtLine.Split(Delimiters)
Dim uniqueWords As Integer
Dim iword As Integer, word As String
For iword = 0 To Words.GetUpperBound(0)

word = words(iword).ToUpper
If IsValidWord(word) Then

516 CHAPTER 12 STORING DATA IN COLLECTIONS

If Not wordFrequencies.ContainsKey(word) Then
wordFrequencies.Add(word, 1)
uniqueWords += 1

Else
wordFrequencies(word) =

CType(wordFrequencies(word), Integer) + 1
End If

End If
Next
MsgBox("Read " & words.Length & " words and found " &

uniqueWords & " unique words")
RichTextBox1.Clear()

End Sub

This event handler keeps track of the number of unique words and displays them in a Rich-
TextBox control. In a document with 90,000 words, it took less than a second to split the text
and perform all the calculations. The process of displaying the list of unique words in the Rich-
TextBox control was very fast, too, thanks to the StringBuilder class. The code behind the Show
Word Count button (see Listing 12.6) displays the list of words along with the number of occur-
rences of each word in the text.

Listing 12.6: Displaying the count of each word in the text

Private Sub bttnCount_Click(…) Handles bttnCount.Click
Dim wEnum As IDictionaryEnumerator
Dim allWords As New System.Text.StringBuilder
wEnum = WordFrequencies.GetEnumerator
While wEnum.MoveNext

allWords.Append(wEnum.Key.ToString &
vbTab & "-->" & vbTab & _
wEnum.Value.ToString & vbCrLf)

End While
RichTextBox1.Text = allWords.ToString

End Sub

The last button on the form calculates the frequency of each word in the HashTable,
sorts the words according to their frequencies, and displays the list. Its code is detailed in
Listing 12.7.

Listing 12.7: Sorting the words according to frequency

Private Sub bttnShow_Click(…) Handles bttnSort.Click
Dim wEnum As IDictionaryEnumerator
Dim words(wordFrequencies.Count) As String
Dim frequencies(wordFrequencies.Count) As Double
Dim allWords As New System.Text.StringBuilder

THE HASHTABLE COLLECTION 517

Dim i, totCount As Integer
wEnum = wordFrequencies.GetEnumerator
While wEnum.MoveNext

words(i) = CType(wEnum.Key, String)
frequencies(i) = CType(wEnum.Value, Integer)
totCount = totCount + Convert.ToInt32(Frequencies(i))
i = i + 1

End While
For i = 0 To words.GetUpperBound(0)

frequencies(i) = frequencies(i) / totCount
Next
Array.Sort(frequencies, Words)
RichTextBox1.Clear()
For i = words.GetUpperBound(0) To 0 Step -1

allWords.Append(words(i) & vbTab & "-->" &
vbTab & Format(100 * frequencies(i),
"#.000") & vbCrLf)

Next
RichTextBox1.Text = allWords.ToString

End Sub

Handling Large Sets of Data

Incidentally, my first attempt was to display the list of unique words in a ListBox control.
The process was incredibly slow. The first 10,000 words were added in a couple of seconds,
but as the number of items increased, the time it took to add them to the control increased
exponentially (or so it seemed). Adding thousands of items to a ListBox control is a very
slow process. You can call the BeginUpdate/EndUpdate methods, but they won’t help a lot.
It’s likely that sometimes a seemingly simple task will turn out to be detrimental to your
application’s performance.

You should try different approaches but also consider a total overhaul of your user interface.
Ask yourself this: Who needs to see a list with 10,000 words? You can use the application
to do the calculations and then retrieve the count of selected words, display the 100 most
common ones, or even display 100 words at a time. I’m displaying the list of words because
this is a demonstration, but a real application shouldn’t display such a long list. The core of
the application counts unique words in a text file, and it does it very efficiently.

Even if you decide to display an extremely long list of items on your interface, you should
perform some worst-case scenarios (that is, attempt to load the control with zero or too
many items), and if this causes serious performance problems, consider different controls.
I’ve decided to append all the items to a StringBuilder variable and then display this
variable in a RichTextBox control. I could have used a plain TextBox control — after all, I’m
not formatting the list of words and their frequencies — but the RichTextBox allowed me
to specify the absolute tab positions. The tab positions of the TextBox control are fixed and
weren’t wide enough for all words.

518 CHAPTER 12 STORING DATA IN COLLECTIONS

The SortedList Collection
The SortedList collection is a combination of the Array and HashTable classes. It maintains a
list of items that can be accessed either with an index or with a key. When you access items
by their indices, the SortedList behaves just like an ArrayList; when you access items by their
keys, the SortedList behaves like a HashTable. What’s unique about the SortedList is that this
collection is always sorted according to the keys. The items of a SortedList are always ordered
according to the values of their keys, and there’s no method for sorting the collection according
to the values stored in it.

To create a new SortedList collection, use a statement such as the following:

Dim sList As New SortedList

As you might have guessed, this collection can store keys that are of the base data types. If
you want to use custom objects as keys, you must specify an argument of the IComparer type,
which tells VB how to compare the custom items. This information is crucial; without it, the
SortedList won’t be able to maintain its items sorted. You can still store items in the SortedList,
but they will appear in the order in which they were added. This form of the SortedList con-
structor has the following syntax, where comparer is the name of a custom class that imple-
ments the IComparer interface (which is discussed in detail later in this chapter):

Dim sList As New SortedList(New comparer)

There are also two more forms of the constructor, which allow you to specify the initial
capacity of the SortedList collection, as well as a Dictionary object, whose data (keys and val-
ues) will be automatically added to the SortedList.

To add an item to a SortedList collection, use the Add method, whose syntax is the following,
where key is the key of the new item and item is the item to be added:

sList.Add(key, item)

Both arguments are objects. But remember, if the keys are objects, the collection won’t be
automatically sorted; you must provide your own comparer, as discussed later in this chapter.
The Add method is the only way to add items to a SortedList collection, and all keys must be
unique; attempting to add a duplicate key will throw an exception.

The SortedList class also exposes the ContainsKey and ContainsValue methods, which
allow you to find out whether a key or item already exists in the list. To add a new item, use
the following statement to make sure that the key isn’t in use:

If Not sList.ContainsKey(myKey) Then
sList.Add(myKey, myItem)

End If

To replace an existing item, use the SetByIndex method, which replaces the value at a spe-
cific index. The syntax of the method is the following, where the first argument is the index at
which the value will be inserted, and item is the new item to be inserted in the collection:

sList.SetByIndex(index, item)

THE IENUMERATOR AND ICOMPARER INTERFACES 519

This object will replace the value that corresponds to the specified index. The key, however,
remains the same. There’s no equivalent method for replacing a key; you must first remove the
item and then insert it again with its new key.

To remove items from the collection, use the Remove and RemoveAt methods. The Remove
method accepts a key as an argument and removes the item that corresponds to that key. The
RemoveAt method accepts an index as an argument and removes the item at the specified index.
To remove all the items from a SortedList collection, call its Clear method.

Other Collections
The System.Collections class exposes a few more collections, including the Queue and Stack
collections. The main characteristic of these two collections is how you add and remove items
to them. When you add items to a Queue collection, the items are appended to the collection.
When you remove items, they’re removed from the top of the collection. Queues are known
as last in, first out (LIFO) structures because you can extract only the oldest item in the queue.
You’d use this collection to simulate the customer line in a bank or a production line.

The Stack collection inserts new items at the top, and you can remove only the top item. The
Stack collection is a first in, first out (FIFO) structure. You’d use this collection to emulate
the stack maintained by the CPU, one of the most crucial structures for the operating system
and applications alike. The Stack and Queue collections are used heavily in computer science
but hardly ever in business applications, so I won’t discuss them further in this book.

The IEnumerator and IComparer Interfaces
IEnumerator and IComparer are two classes that unlock some of the most powerful features of
collections. The proper term for IEnumerator and IComparer is interface, a term I will describe
shortly. Every class that implements the IEnumerator interface is capable of retrieving a list of
pointers for all the items in a collection, and you can use this list to iterate through the items
in a collection. Every collection has a built-in enumerator, and you can retrieve it by calling
its GetEnumerator method. And every class that implements the IComparer interface exposes
the Compare method, which tells the compiler how to compare two objects of the same type.
After the compiler knows how to compare the objects, it can sort a collection of objects with the
same type.

The IComparer interface consists of a function that compares two items and returns a value
indicating their order (which one is the smaller item or whether they’re equal). The Framework
can’t compare objects of all types; it knows only how to compare the base types. It doesn’t
even know how to compare built-in objects such as two rectangles or two color objects. If you
have a collection of colors, you might want to sort them according to their luminance, satura-
tion, brightness, and so on. Rectangles can be sorted according to their area or perimeter. The
Framework can’t make any assumptions as to how you might want to sort your collection, and
of course, it doesn’t expose members to sort a collection in all possible ways. Instead, it gives
you the option to specify a function that compares two colors (or two objects of any other type,
for that matter) and uses this function to sort the collection. The same function is used by the
BinarySearch method to locate an item in a sorted collection. In effect, the IComparer interface
consists of a single function that knows how to compare two specific custom objects.

So, what is an interface? An interface is another term in object-oriented programming that
describes a very simple technique. When you write the code for a class, you might not know
how to implement a few operations, but you do know that they’ll have to be implemented
later. You insert a placeholder for these operations (one or more function declarations) and

520 CHAPTER 12 STORING DATA IN COLLECTIONS

expect that the application that uses the class will provide the actual implementation of these
functions. All collections expose a Sort method, which sorts the items in the collection by
comparing them to one another. To do so, the Sort method calls a function that compares
two items and returns a value indicating their relative order. Custom objects must provide
their own comparison function — or more than a single function, if you want to sort them in
multiple ways. Because you can’t edit the collection’s Sort method code, you must supply your
comparison function through a mechanism that the class can understand. This is what the
IComparer interface is all about.

Enumerating Collections
All collections expose the GetEnumerator method. This method returns an object of the
IEnumerator type, which allows you to iterate through the collection without having to know
anything about its items, not even the count of the items. To retrieve the enumerator for a
collection, call its GetEnumerator method by using a statement like the following:

Dim ALEnum As IEnumerator
ALEnum = aList.GetEnumerator

The IEnumerator class exposes two methods: the MoveNext and Reset methods. The
MoveNext method moves to the next item in the collection and makes it the current item
(property Current). When you initialize the IEnumerator object, it’s positioned in front of the
very first item, so you must call the MoveNext method to move to the first item. The Reset
method does exactly the same thing: It repositions the IEnumerator in front of the first element.

The MoveNext method doesn’t return an item, as you might expect. It returns a True/False
value that indicates whether it has successfully moved to the next item. After you have reached
the end of the collection, the MoveNext method will return False. Here’s how you can enumer-
ate through a List collection by using an enumerator:

Dim listItems As IEnumerator
listItems = list.GetEnumerator
While listItems.MoveNext

{ process item listItems.Current}
End While

At each iteration, the current item is given by the Current property of the enumerator. After
you reach the last item, the MoveNext method will return False, and the loop will terminate. To
rescan the items, you must reset the enumerator by calling its Reset method.

The event handler in Listing 12.8 populates an ArrayList with Rectangle objects and then
iterates through the collection and prints the area of each Rectangle using the collection’s
enumerator.

Listing 12.8: Iterating an ArrayList with an enumerator

Dim aList As New ArrayList()
Dim R1 As New Rectangle(1, 1, 10, 10)
aList.Add(R1)
R1 = New Rectangle(2, 2, 20, 20)

THE IENUMERATOR AND ICOMPARER INTERFACES 521

aList.Add(R1)
aList.add(New Rectangle(3, 3, 2, 2))
Dim REnum As IEnumerator
REnum = aList.GetEnumerator
Dim R As Rectangle
While REnum.MoveNext

R = CType(REnum.Current, Rectangle)
Debug.WriteLine((R.Width * R.Height).ToString)

End While

The REnum variable is set up and used to iterate through the items of the collection. At each
iteration, the code stores the current Rectangle to the R variable, and it uses this variable to
access the properties of the Rectangle object (its width and height).

Of course, you can iterate a collection without the enumerator, but with a For Each…Next
or For Each loop. To iterate through a HashTable, you can use either the Keys or Values col-
lection. The code shown in Listing 12.9 populates a HashTable with Rectangle objects. Then it
scans the items and prints their keys, which are strings, and the area of each rectangle. Note
how it uses each item’s Key property to access the corresponding item in the collection.

Listing 12.9: Iterating a HashTable with its keys

Dim hTable As New HashTable()
Dim r1 As New Rectangle(1, 1, 10, 10)
hTable.Add("R1", r1)
r1 = New Rectangle(2, 2, 20, 20)
hTable.Add("R2", r1)
hTable.add("R3", New Rectangle(3, 3, 2, 2))
Dim key As Object
Dim R As Rectangle
For Each key In hTable.keys

R = CType(hTable(key), Rectangle)
Debug.WriteLine(String.Format(_

"The area of Rectangle {0} is {1}" _
key.ToString, R.Width * R.Height))

Next

The code adds three Rectangle objects to the HashTable and then iterates through the collection
using the Keys properties. Each item’s key is a string (R1, R2, and R3). The Keys property is
itself a collection and can be scanned with a For Each…Next loop. At each iteration, you access
a different item through its key with the expression hTable(key). The output produced by this
code is shown here:

The area of Rectangle R1 is 100
The area of Rectangle R3 is 4
The area of Rectangle R2 is 400

522 CHAPTER 12 STORING DATA IN COLLECTIONS

Alternatively, you can iterate a HashTable with an enumerator, but be aware that the
GetEnumerator method of the HashTable collection returns an object of the IDictionary-
Enumerator type, not an IEnumerator object. The IDictionaryEnumerator class is quite similar
to the IEnumerator class, but it exposes additional properties. They are the Key and Value
properties, and they return the current item’s key and value. The IDictionaryEnumerator class
also exposes the Entry property, which contains both the key and the value.

Assuming that you have populated the hTable collection with the same three Rectangle
objects, you can use the statements in Listing 12.10 to iterate through the collection’s items.

Listing 12.10: Iterating a HashTable with an enumerator

Dim hEnum As IDictionaryEnumerator
hEnum = hTable.GetEnumerator
While hEnum.MoveNext

Debug.WriteLine(
String.Format("The area of rectangle " &
"{0} is {1}", hEnum.Key, _
CType(hEnum.Value, Rectangle).Width *
CType(hEnum.Value, Rectangle).Height))

End While

If you execute these statements after populating the HashTable collection with three Rectan-
gles, they will produce the same output as Listing 12.8.

Custom Sorting
The Sort method of the various collections allows you to sort collections, as long as the items
are of the same base data type. If the items are objects, however, the collection doesn’t know
how to sort them. If you want to sort objects, you must help the collection a little by telling
it how to compare the objects. A sorting operation is nothing more than a series of compar-
isons. Sorting algorithms compare items and swap them if necessary.

All the information needed by a sorting algorithm to operate on an item of any type is a
function that compares two objects of the same custom type. Let’s say you have a list of per-
sons, and each person is a structure that contains names, addresses, e-mail addresses, and so
on. The System.Collections class can’t make any assumptions as to how you want your list
sorted, not to mention that a collection can be sorted by any field (name, e-address, postal code,
and so on).

The comparer is implemented as a separate class, outside all other classes in the project, and
is specific to a custom data type. Let’s say you have created a custom structure for storing con-
tact information. The Person object is declared as a structure with the following fields:

Structure Person
Dim Name As String
Dim BirthDate As Date
Dim EMail As String

End Structure

THE IENUMERATOR AND ICOMPARER INTERFACES 523

You’ll probably build a class to represent persons, but I’m using a structure to simplify the
code. To add an instance of the Person object to a collection, create a variable of Person type,
initialize its fields, and then add it to the appropriate collection (a List, or Dictionary collection,
for example). This collection can’t be sorted with the simple forms of the Sort method because
the compiler doesn’t know how to compare two Person objects. You must provide your own
function for comparing two variables of the Person type. After this function is written, the
compiler can call it to compare items and therefore sort the collection. This custom function,
however, can’t be passed to the Sort and BinarySearch methods by name. You must create a
new class that implements the IComparer interface and pass an instance of this class to the two
methods.

Implementing the IComparer Interface

Here’s the outline of a class that implements the IComparer interface:

Class customComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

{ function’s code }
End Function

End Class

The name of the class can be anything; I’m using the name customComparer to indicate that
the class compares custom types. It should be a name that indicates the type of comparison it
performs or the type of objects it compares. After the class declaration, you must specify the
interface implemented by the class. As soon as you type the first line of the preceding code
segment, the editor will insert automatically the stub of the Compare() function. That’s because
every class that implements the IComparer interface must provide a Compare method with the
specific signature. The interface declares a placeholder for a function, whose code must be pro-
vided by the developer.

To use the custom function to compare items, you must create an object of the custom-
Comparer type (or whatever you have named the class) and then pass it to the Sort and
BinarySearch methods as an argument:

Dim CompareThem As New customComparer
aList.Sort(CompareThem)

You can combine the two statements in one by initializing the customComparer variable in
the line that calls the Sort method:

aList.Sort(New customComparer)

You can also use the equivalent syntax of the BinarySearch method to locate a custom
object that implements its own IComparer interface:

aList.BinarySearch(object, New customComparer)

524 CHAPTER 12 STORING DATA IN COLLECTIONS

This is how you can use a custom function to compare two objects. Everything is the same,
except for the name of the comparer, which is different every time.

The last step is to implement the function that compares the two objects and returns an inte-
ger value, indicating the order of the elements. This value should be –1 if the first object is
smaller than the second object, 0 if the two objects are equal, and 1 if the first object is larger
than the second object. Smaller here means that the element appears before the larger one when
sorted in ascending order. Listing 12.11 is the function that sorts Person objects according to
the BirthDate field. The sample code for this and the following section comes from the Cus-
tomComparer project (available for download from www.sybex.com/go/masteringvb2010). The
main form contains a single button, which populates the collection and then prints the original
collection, the collection sorted by name, and the collection sorted by birth date.

Listing 12.11: A custom comparer

Class PersonAgeComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare
Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.BirthDate < person2.BirthDate Then

Return -1
Else

If person1.BirthDate > person2.BirthDate Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

The code could have been considerably simpler, but I’ll explain momentarily why the Try
statement is necessary. The comparison takes place in the If statement. If the first person’s
birth date is chronologically earlier than the second person’s, the function returns the value –1.
If the first person’s birth date is chronologically later than the second person’s birth date, the
function returns 1. Finally, if the two values are equal, the function returns 0.

The code is straightforward, so why the error-trapping code? Before you perform the neces-
sary comparisons, you convert the two objects into Person objects. It’s not unthinkable that the
collection with the objects you want to sort contains objects of different types. If that’s the case,
the CType() function won’t be able to convert the corresponding argument to the Person type,

THE IENUMERATOR AND ICOMPARER INTERFACES 525

and the comparison will fail. The same exception that would be thrown in the function’s code
is raised again from within the error handler, and it’s passed back to the calling code.

Implementing Multiple Comparers

Person objects can be sorted in many ways. You might want to sort them by ID, name, age, and
so on. To accommodate multiple sorts, you must implement several classes, each one with a
different implementation of the Compare() function. Listing 12.12 shows two classes that imple-
ment two different Compare() functions for the Person class. The PersonNameComparer class
compares the names, whereas the PersonAgeComparer class compares the ages. Both classes,
however, implement the IComparer interface.

Listing 12.12: A class with two custom comparers

Class PersonNameComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.Name < person2.Name Then

Return -1
Else

If person1.Name > person2.Name Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

Class PersonAgeComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)

526 CHAPTER 12 STORING DATA IN COLLECTIONS

Exit Function
End Try
If person1.BDate > person2.BDate Then

Return -1
Else

If person1.BDate < person2.BDate Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

To test the custom comparers, create a new application, and enter the code of Listing 12.12
(it contains two classes) in a separate Class module. Don’t forget to include the declaration of
the Person structure. Then place a button on the form and enter the code of Listing 12.13 in its
Click event handler. This code adds three persons with different names and birth dates to a
List collection.

Listing 12.13: Testing the custom comparers

Private Sub Button1_Click(…) Handles Button1.Click
Dim Lst As New List()
Dim p As Person
‘ Populate collection
p.Name = "C Person"
p.EMail = "PersonC@sybex.com"
p.BDate = #1/1/1961#
If Not Lst.Contains(p) Then Lst.Add(p)
p.Name = "A Person"
p.EMail = "PersonA@sybex.com"
p.BDate = #3/3/1961#
If Not Lst.Contains(p) Then Lst.Add(p)
p.Name = "B Person"
p.EMail = "PersonB@sybex.com"
p.BDate = #2/2/1961#
If Not Lst.Contains(p) Then Lst.Add(p)
‘ Print collection as is
Dim PEnum As IEnumerator
PEnum = Lst.GetEnumerator
ListBox1.Items.Add("Original Collection")
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &
vbTab & CType(PEnum.Current, Person).BDate)

End While
‘ Sort by name, then print collection

THE IENUMERATOR AND ICOMPARER INTERFACES 527

ListBox1.Items.Add(" ")
ListBox1.Items.Add("Collection Sorted by Name")
Lst.Sort(New PersonNameComparer())
PEnum = Lst.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &
vbTab & CType(PEnum.Current, Person).BDate)

End While
‘ Sort by age, then print collection
ListBox1.Items.Add(" ")
ListBox1.Items.Add("Collection Sorted by Age")
Lst.Sort(New PersonAgeComparer())
PEnum = Lst.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(
CType(PEnum.Current, Person).Name &
vbTab & CType(PEnum.Current, Person).BDate)

End While
End Sub

The four sections of the code are delimited by comments in the listing. The first section
populates the collection with three variables of the Person type. The second section prints the
items in the order in which they were added to the collection:

C Person 1/1/1961
A Person 3/3/1961
B Person 2/2/1961

The third section of the code calls the Sort method, passing the PersonNameComparer custom
comparer as an argument, and it again prints the contents of the List. The names are listed now
in alphabetical order:

A Person 3/3/1961
B Person 2/2/1961
C Person 1/1/1961

In the last section, it calls the Sort method again — this time to sort the items by age — and
prints them:

C Person 1/1/1961
B Person 2/2/1961
A Person 3/3/1961

It is straightforward to write your own custom comparers and sort your custom object in
any way that suits your application. Custom comparisons might include more complicated cal-
culations, not just comparisons. For example, you can sort Rectangles by their area, color values
by their hue or saturation, and customers by the frequency of their orders.

528 CHAPTER 12 STORING DATA IN COLLECTIONS

The Bottom Line

Make the most of arrays. The simplest method of storing sets of data is to use arrays. They’re
very efficient, and they provide methods to perform advanced operations such as sorting and
searching their elements. Use the Sort method of the Array class to sort an array’s elements.
To search for an element in an array, use the IndexOf and LastIndexOf methods, or use the
BinarySearch method if the array is sorted. The BinarySearch method always returns an ele-
ment’s index, which is a positive value for exact matches and a negative value for near matches.

Master It Explain how you can search an array and find exact and near matches.

Store data in collections such as List and Dictionary collections. In addition to arrays, the
Framework provides collections, which are dynamic data structures. The most commonly
used collections are the List and the Dictionary. Collections are similar to arrays, but they’re
dynamic structures. List and ArrayList collections store lists of items, whereas Dictionary and
HashTable collections store key-value pairs and allow you to access their elements via a key.
You can add elements by using the Add method and remove existing elements by using the
Remove and RemoveAt methods.

Dictionary collections provide the ContainsKey and ContainsValue methods to find out
whether the collection already contains a specific key or value as well as the GetKeys and
GetValues methods to retrieve all the keys and values from the collection, respectively. As a
reminder, the List and Dictionary collections are strongly typed. Their untyped counterparts
are the ArrayList and HashTable collections.

Master It How will you populate a Dictionary with a few pairs of keys/values and then
iterate though the collection’s items?

Sort and search collections with custom comparers. Collections provide the Sort method
for sorting their items and several methods to locate items: IndexOf, LastIndexOf, and
BinarySearch. Both sort and search operations are based on comparisons, and the Framework
knows how to compare values’ types only (Integers, Strings, and the other primitive data
types). If a collection contains objects, you must provide a custom function that knows how to
compare two objects of the same type.

Master It How do you specify a custom comparer function for a collection that contains
Rectangle objects?

Chapter 13

XML in Modern Programming

XML has gained so much in popularity and acceptance that Microsoft has decided to
promote XML to a basic data type. Yes, XML is a data type like integers and strings! To
understand how far VB has taken XML, type the following in a procedure or event handler:

Dim products = <Books>
<Book ISBN="0000000000001">

<Title>Book Title 1</Title>
<Price>11.95</Price>

</Book>
<Book ISBN="000000000002">

<Title>Book Title 2</Title>
<Price>10.25</Price>

</Book>
</Books>

You need not worry too much about getting the document exactly right, because the Visual
Studio’s editor works just like the XML editor. Every time you type an opening tag, it inserts
the matching closing tag and ensures that what you’re typing is a valid XML document.

The language has been extended to support XML with features that bridge the gap between
VB programming and XML, and XML has become a ‘‘first-class citizen’’ of the Framework. As
you will see in this and the following chapter, manipulating XML documents from within your
VB application is simpler than ever before. If you haven’t used the DOM object in the past to
manipulate XML documents, rest assured that the new tools make this task as straightforward
as it can be for VB developers. In this chapter, you’ll find an introduction to the topic of XML
(for readers who are not yet familiar with XML) and the classes that allow you to manipulate
XML with VB code.

In this chapter, you’ll learn how to do the following:

◆ Create XML documents

◆ Navigate through an XML document and locate the information you need

◆ Convert arbitrary objects into XML documents and back with serialization

530 CHAPTER 13 XML IN MODERN PROGRAMMING

A Very Quick Introduction to XML
Let’s start with a quick overview of XML, which will serve as an introduction to XML for
some readers and a quick summary for those familiar with XML at large. To experiment with
XML files, you can start a new project in Visual Studio and add a new XML file to the project.
When the file is opened in edit mode, you can enter the code samples shown in this chapter.
Figure 13.1 shows an XML document open in Visual Studio (it’s a file you’ll create later in this
chapter). Notice that you can collapse segments of the XML tree just as you would collapse
parts of VB code.

Figure 13.1

Editing XML files in
Visual Studio

XML stands for Extensible Markup Language and is as much of a language as HTML is.
Neither of them is actually a language, though; they’re called declarative languages, and in reality
they’re formats, or specifications, for storing and transferring structured data. I’m sure you all
know by now what XML is and what it looks like, so let’s start exploring its structure and the
rules for formulating valid XML documents.

XML documents consist of elements, which are the information items you store for a partic-
ular entity. Elements are delimited by a keyword embedded in angle brackets. This keyword
is called a tag, and tags always appear in pairs: The opening and closing tags delimit an ele-
ment of the document. Each element has a value, which appears between two tags. The Name
element, for example, is delimited by the opening tag <Name> and the closing tag </Name>. The
closing tag is identical to the opening tag, except for the backslash in front of the tag’s name.
The element’s value can be a string, a number, or a date, as in the following XML segments. It’s

A VERY QUICK INTRODUCTION TO XML 531

also valid for an element to have no value at all. The following XML segment describes salary
data for a person whose SSN is not known at the time.

<Name>Richard Manning</Name>
<Rate>39.95</Rate>
<BirthDate>1982-08-14</BirthDate>
<SSN></SSN>

The preceding elements have simple values. It just so happens that Richard’s social security
number was not known at the time (it has an empty value). An element may also contain a
sequence of elements, as in the following:

<Name>
<First>Richard</First>
<Last>Manning</Last>

</Name>
<BirthDate>1982-08-14</BirthDate>
<Rate>

<Type>Hourly</Type>
<Amount>39.95</Amount>

</Rate>

The Name element here contains two elements, each one with their own value. Here are the
first two rules about XML authoring:

Tags are case sensitive, and they always appear in pairs. It goes without saying that the tags must be
properly nested; otherwise, the document wouldn’t have a structure.

VB developers should be especially careful about the first rule, because their favorite lan-
guage has never had issues with character casing. When you work with XML, you must pay
attention to case because <Name> and <name> are two totally different tags.

Entity References

Some characters have a special meaning in XML, and the symbols < and > are two of them.
These characters may not appear as part of an element’s name, or value, because it will throw
off the compiler. These characters must be replaced by a special string, known as an entity
reference. The following table shows the characters that have special meaning in XML and the
corresponding entity references:

< (less than) <

> (greater than) >

& (ampersand) &

’ (apostrophe) '

’’ (quotation mark) "

Actually, only two of these symbols are strictly illegal in XML (the < and & symbols), but it’s
quite common to escape all five symbols.

532 CHAPTER 13 XML IN MODERN PROGRAMMING

In addition to values, elements may have attributes, too. Attributes belong to specific ele-
ments, and they appear in the element’s opening tag, as follows:

<Book ISBN = "978001234567">

The Book element has an ISBN attribute with the value specified with the string following
the equals sign. And here’s the third rule about XML:

All attribute values must be enclosed in quotes.

You can also insert multiple attributes into an element by placing the elements next to one
another:

< Book ISBN = "978001234567" Publisher = "SYBEX">
<Person LastName = "Doe" FirstName = "Joe" SSN = "555-00-1234">

Because elements many contain attributes, which are specified by name, you can’t use spaces
in an element name. If you do, the compiler will think that the second word is the name of
an attribute, not followed by its value. In fact, most XML editors will automatically insert the
equals sign followed by two quotes to indicate an attribute without a value.

The value of an element is inserted between its opening and closing tags, and it may (and
usually does) contain additional elements. Here’s another way to express the preceding Person
element:

<Person>
<Last>Doe</Last>
<First>Joe</First>
<SSN>555-00-1234</SSN>

</Person>

There’s no clear-cut distinction as to when you should use elements and when you should
use attributes, but you usually store information that identifies the element as attributes and the
details of the element as its value. Consider the following typical examples of XML segments
with attributes:

<Hotel ID = "STR001">
<HotelName>Hotel of the Stars</HotelName>
<Rating ID = "3">3 Stars</Rating>
<Address> address details </Address>

</Hotel>

<Book ISBN="1234567890">
<Title>Mastering XML Internals</Title>
<Publisher ID="323">XMLers Int’l.</Publisher>
<Authors>

<Author>J. Element</Author>
<Author>J. Attribute</Author>

</Authors>
</Book>

A VERY QUICK INTRODUCTION TO XML 533

<Country Code = "IT" Name = "Italy">
<City Code = "MIL" Name = Milan" />
<City Code = "ROM" Name = "Rome" />
. . . more cities under Italy

</Country>
<Country Code = "FR" Name = "France">

<City Code = "PRS" Name = Paris" />
<City Code = "LYN" Name = "Lyon" />
. . . more cities under France

</Country>

<Employee SSN = "55 22 9999" Sex="M" Status = "Single">
<Name>Peter Evans</Name>
<Position>Finance Director</Position>
<HiredOn>7/15/1989</HiredOn>

</Employee>

More often than not, you will see XML documents made up entirely out of elements,
without any attributes. You will also see XML documents made up of one element per entity
and attributes for all of their properties. Once you understand the nature of XML and you
are ready to create your own XML documents, you’ll have a good feeling about elements and
attributes. It’s much more important to properly nest elements to keep relevant information
under the same root element than worrying about whether a specific item should be defined as
an attribute or an element.

It’s also possible for an element to contain one or more attributes, but no value. For these
special cases, there’s a shorthand notation for avoiding the closing tag: You just insert the back-
slash character before the opening element’s closing angle bracket. The following element

<Product ProductID="39"
Name="Chartreuse verte" Price="18.50" >

</Product>

can also be written as follows:

<Product ProductID="39"
Product="Chartreuse verte" Price="18.50" />

The line breaks were introduced to help you read the XML segment, they’re not mandatory,
and they’re not taken into consideration when processing an XML document, just like white
space in HTML. If the spaces (tabs, line feeds, and multiple spaces) appear in an element’s
value, they will be preserved.

As you can see in the few examples so far, XML is just plain text that can be safely
exchanged between computers using the HTTP stack. As you probably know, XML is used
just about everywhere today, but in its roots it remains a simple data exchange protocol. You
can think of the tags as delimiters that separate items of information. It’s actually the very fact
that the delimiters are specified by the user and that they can be nested that made XML so
powerful and suitable for all types of information. XML delimiters are unusual in the sense
that they appear before and after each data item, and they occur in pairs: the opening and

534 CHAPTER 13 XML IN MODERN PROGRAMMING

closing tags. The closing tag is always the same as the opening tag, prefixed with a backslash.
The most important aspect of XML, though, is that you can specify the delimiters and their
structure: You determine the names of the elements, and you’re allowed to nest them so
that they reflect the structure, or hierarchy, of the information. The fact that XML tags have
meaningful names is a major convenience, but words like book, author, country, and so on, are
not especially meaningful to computers. They help you understand the data stored in the file
and write code to extract the items of information you’re interested in, but no software will
process XML documents automatically.

XML Schema
For an XML document to be meaningful and useful to others, you must use element and
attribute names consistently. Even though it’s possible to use sometimes the <Last> element
and other times the <LastName> element, the resulting XML document will be practically
unusable. Before you start writing an XML document, you must decide on the names of the ele-
ments in it and use them consistently. The structure of the document, along with the names of
the elements and attributes, is referred to as the document schema. The schema of the document
is another XML document. To get a feel for XML schemas and how they used, start a new VB
project in Visual Studio, and add a new XML file to the solution (just right-click the project’s
name, and select Add � New Item; in the dialog box that appears, select the XML File option).
The new XML file will contain the following statement, which identifies a file as an XML
document (oddly, this tag that begins with the question mark doesn’t require a closing tag; it
identifies the file as an XML document.):

<?xml version="1.0" encoding="utf-8" ?>

Then enter the XML document shown in Listing 13.1 in the file, following the initial tag. The
document is a short segment of a report from the Northwind database, and you will find it in
the NWProducts.xml file in this chapter’s folder.

Listing 13.1: An XML document with products, organized by category and supplier

<Categories_Products>
<Category CategoryID="1" Category="Beverages">

<Supplier Supplier="Aux joyeux ecclésiastiques">
<Product ProductID="39"

Product="Chartreuse verte" Price="18.0000" />
<Product ProductID="38"

Product="Côte de Blaye" Price="263.5000" />
</Supplier>
<Supplier Supplier="Bigfoot Breweries">

<Product ProductID="34"
Product="Sasquatch Ale" Price="14.0000" />

<Product ProductID="35"
Product="Steeleye Stout" Price="18.0000" />

</Supplier>
</Category>

<Category CategoryID="2" Category="Condiments">

A VERY QUICK INTRODUCTION TO XML 535

<Supplier Supplier="Exotic Liquids">
<Product ProductID="3"

Product="Aniseed Syrup" Price="10.0000" />
</Supplier>
<Supplier Supplier="Forêts d’érables">

<Product ProductID="61"
Product="Sirop d’érable" Price="28.5000" />

</Supplier>
</Category>

</Categories_Products>

Now open the XML menu, and select the Create Schema command. Visual Studio will cre-
ate a schema that matches the XML document and will open it in a new window. Listing 13.2
shows the schema of the preceding XML document.

Listing 13.2: The schema of the XML document of Listing 31.1

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Categories_Products">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs="unbounded" name="Category">

<xs:complexType>
<xs:sequence>

<xs:element maxOccurs="unbounded" name="Supplier">
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs="unbounded"

name="Product">
<xs:complexType>

<xs:attribute
name="ProductID"
type="xs:unsignedByte"
use="required" />

<xs:attribute name="Product"
type="xs:string"
use="required" />

<xs:attribute name="Price"
type="xs:decimal"
use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute

536 CHAPTER 13 XML IN MODERN PROGRAMMING

name="Supplier"
type="xs:string"
use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="CategoryID"

type="xs:unsignedByte"
use="required" />

<xs:attribute name="Category"
type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The automatically generated schema is stored in a file with the same name as the XML doc-
ument and the extension .xsd. Designing a schema is not a simple task, but there are tools to
assist you. The most important aspect of the schema is that it can be applied to an XML docu-
ment and help you make sure that the document follows its design guidelines. The editor will
do its best to decipher the schema of a document based on the data at hand, but the schema
may not describe another document with similar data. The use property of the schema, for
example, is always required, because all attributes in the XML segment have a value. If one
of the elements didn’t have a Price attribute, for example, then the use property of the Price
attribute would be optional.

Now, switch back to the XML document, and look up its Schemas property in the Properties
window. You will see that the file you just created has been applied to the document. If not,
click the button next to the Schemas property, and you will see the XML Schemas dialog
box, shown in Figure 13.2. Click the Add button, and locate the newly generated XSD file
in the project’s folder. Open the drop-down list in the Use column, select Use This Schema
to apply the newly added schema to the document, and then click OK to close the dialog
box. The schema will be applied to the XML document, and any elements or attributes in
the document that don’t comply with the schema will be highlighted. Of course, because
the schema was generated for the specific document, no errors will be found, but this is
the purpose of the schema validation: to locate any items that do comply with the specified
schema. If you edit the document, the editor will not allow you to deviate from the document’s
schema.

If you edit the XML document now, the editor will assist you in creating a valid XML doc-
ument that complies with its schema. The proper elements at each place in the document will
appear in the usual IntelliSense drop-down list as you type. When you type the opening angle
bracket, the editor will suggest the valid element names (actually it will display only the first
element name; the second time it will suggest the second element name, and so on). If you
select an element name and then type a space, the editor will suggest the attribute names, as
shown in Figure 13.3. In general, the built-in XML editor of Visual Studio will assist you as
best as it can in creating XML documents and will make sure they comply with the specified
schema.

A VERY QUICK INTRODUCTION TO XML 537

Figure 13.2

Selecting and applying
a schema to an XML
document

Figure 13.3

Editing an XML docu-
ment in Visual Studio.
The IntelliSense box is
populated with the aid
of the current schema.

Of course, you don’t create a document and then derive its schema as I did here. Normally,
when you’re asked to produce an XML document, you’ll be given a schema. If you’re the doc-
ument designer, you’ll have to produce the schema too. One very useful tool for automating
schema generation is SQL Server. It’s possible to retrieve the results of a SQL query in XML
format, and the output may include not only the data, but the schema itself. Actually, this is
how I created the sample document NWProducts.xml. If you’re curious about schemas and the
related keywords, add a new XML Schema item to the project (with the project’s Add � New
Item command), and start editing it. The editor will suggest the valid tags at each step, and
you’ll be able to create a simple schema without knowing anything about them. How does the
editor know about XSD? Well, it’s all in the schema! XSD has its own schema, which is stored
in the xsdschema.xsd file that comes with Visual Studio. Isn’t XML fun<?>

Numbers and Dates in XML
Besides strings, element values can be numeric values or dates. The basic numeric data type
in XML is the Decimal type, but XML supports all the usual numeric types, including floats,
short/long/signed/unsigned integers, and so on. There’s also a Boolean data type, whose
value is ‘‘true’’ or ‘‘false’’ (not 0/1, not TRUE/FALSE — just the values shown with that exact
spelling).

Dates are quite tricky. An XML document can be created anywhere, and dates do not obey a
specific locale. That’s true of any document that contains dates, but XML addresses this issue
elegantly. Consider the following XML segment that has a different meaning in the United
States than in the United Kingdom:

<Date>
4/9/2011
</Date>

This segment would present perfectly clear, if different, information to users in the United
States and in the United Kingdom; the US reading would be April 9, 2011, while the UK

538 CHAPTER 13 XML IN MODERN PROGRAMMING

reading would be 4 September 2011. If that cultural understanding of the format causes a user
to enter day information in the month position and the value exceeds 12, then the date would
be invalid. To address the issue of dates, XML supports the Date, Time, and DateTime data
types. The Date data type specifies dates with the unambiguous format YYYY-MM-DD. The Time
data type specifies times with the format HH:MM:SS. You can optionally append the time’s
milliseconds. Here are some examples of Time values:

<start>09:05:32</start>
<start>17:11:45.510</start>

Time values are rather uncommon on their own; you’ll usually combine date and time infor-
mation in a DateTime value. DateTime values are Date and Time values separated by the T
character:

<startdate>2011-09-04T09:30:10</startdate>

Another time-related issue is that of the time zone. If you’re processing an XML document
generated in a different time zone, you should be able to take the time difference into consid-
eration. If you request that a response arrive within four hours, for example, you should be
able to convert the time specified in the document into local time. The time zone is specified
with the + or – sign followed by a number of hours and, optionally, minutes. The time zones
are usually hours apart, but there are a few exceptions (Newfoundland is 3.5 hours behind
GMT). Alternatively, you can append a Z character followed by the UTC time. Here are a few
DateTime values that include time zone information:

<startdate>2011-09-04T09:30:10-06:00</startdate>
<startdate>2011-09-04T09:30:10Z</startdate>

The first example refers to 9:30:10 in the Central time zone in the United States (six hours
behind the GMT time). The second example refers to 9:30:10 GMT time. If you’re exchanging
XML files that include time information with users in different time zones, you should include
the time zone to make them unambiguous.

Manipulating XML with VB
You have seen the basics of generating XML documents from scratch (and in the second half of
this chapter you’ll see how to convert your custom objects into XML documents), and you’ve
seen that you can create valid XML documents easily with the help of Visual Studio’s XML
editor. But what good is an XML document without some tools to extract information from it?
You will need some simple tools for creating and manipulating XML documents from within
VB code, and these tools are available through the following XML helper classes:

◆ XDocument represents the XML document.

◆ XComment represents a comment in the XML document.

◆ XElement represents an XML element.

◆ XAttribute represents an attribute in an XML element.

MANIPULATING XML WITH VB 539

You can use these classes to access the document but also to create it from within your code.
Instead of embedding an XML document directly in your code, you can use the XML helper
classes and a structural approach to create the same document from within your code. To create
a new XElement object, pass the element’s name and value to its constructor:

New XElement(element_name, element_value)

The following statement will create a very simple XML document:

Dim XmlDoc = New XElement("Books")
MsgBox(XmlDoc.ToString)

You will see the string <Books /> in a message box. This is a trivial, yet valid, XML document.
To create an XML segment with books by using the helper classes, insert the statements from
Listing 13.3 in a button Click event handler.

Listing 13.3: A simple XElement describing a collection of books

Dim doc = _
New XElement("Books", _

New XElement("Book", _
New XAttribute("ISBN", "0000000000001"), _
New XElement("Price", 11.95), _
New XElement("Title", "Book Title 1"), _
New XElement("Stock", _

New XAttribute("InStock", 12), _
New XAttribute("OnOrder", 24))), _

New XElement("Book", _
New XAttribute("ISBN", "0000000000002"), _

New XElement("Price", 10.25), _
New XElement("Title", "Book Title 2"), _
New XElement("Stock", _

New XAttribute("InStock", 7), _
New XAttribute("OnOrder", 10))))

I’ve added a twist to this new document to demonstrate the use of multiple attributes in the
same element. The Stock element contains two attributes, InStock and OnOrder. The Price
element is a decimal value, and the Title element is a string. The Book element, however, con-
tains three subelements: the Price, Title, and Stock elements.

If you look at the code of Listing 13.3 and ignore the XElement and XAttribute items, the
code looks a lot like the document we’re constructing. This type of construction is called func-
tional construction, because the code is very similar to the XML document we have in mind. If
you haven’t worked with XML in the past, the functional construction (or functional compo-
sition) approach to building XML documents is an enormous improvement over the tools VB
programmers had to use until very recently. If you haven’t been exposed to XML before, you’ll
probably think it’s typical VB. But wait, it gets even better.

540 CHAPTER 13 XML IN MODERN PROGRAMMING

XML as a Data Type
The functional composition of an XML document resembles the actual document you’re cre-
ating, but the Visual Basic editor can do even better. You can create an XML document and
assign it to an XElement variable with a statement like the one shown in Listing 13.4.

Listing 13.4: The document of Listing 13.3 created explicitly

Dim xDoc = _
<Books>

<Book ISBN="0000000000001">
<Price>11.95</Price>
<Title>Book Title 1</Title>
<Stock InStock="12" OnOrder="24"/>

</Book>
<Book ISBN="0000000000002">

<Price>10.25</Price>
<Title>Book Title 2</Title>
<Stock> InStock="7" OnOrder="10"/>

</Book
</Books>

As soon as you type the first opening angle bracket, the editor will switch to XML mode and
will assist you by inserting the matching closing tags and by indenting the document for you.
The two methods of creating XML documents with VB are demonstrated in Figure 13.4.

Figure 13.4

The two methods for
creating XML segments
in Visual Studio

<Books>

</Books>

<Book ISBN="0000000000001">

 <Price>11.95</Price>
 <Name>Book Title 1</Name>
 <Stock InStock= "12" OnOrder="24" />

</Book>
<Book ISBN="0000000000002">

 <Price>10.25</Price>
 <Name>Book Title 2</Name>
 <Stock InStock= "7" OnOrder="10" />

</Book>

New XElement("Books", _
New XElement("Book", _
 New XAttribute("ISBN", "0000000000001"), _
New XElement("Price", 11.95), _
New XElement("Name", "Book Title 1"), _
New XElement("Stock", _
 New XAttribute("InStock", 12), _
 New XAttribute("OnOrder", 24))), _

New XElement("Book", _
 New XAttribute("ISBN", "0000000000002"), _
New XElement("Price", 10.25), _
New XElement("Name", "Book Title 2"), _
New XElement("Stock", _
 New XAttribute("InStock", 7), _
 New XAttribute("OnOrder", 10))), _

Compositional Construction Functional Construction

The XML document you create in-line is not an island, entirely isolated from the rest of the
code. You can embed VB expressions right into the XML document, and these expressions will
be replaced with their values at runtime. To embed an expression in an XML document, use the
special tags <%= and %> (yes, the same tags we used with ASP 1.0 to mix HTML and VBScript
code). Here’s the same document with the prices replaced by embedded expressions:

MANIPULATING XML WITH VB 541

Dim price1 As Decimal = 11.95
Dim price2 As Decimal = 10.25
Dim xDoc = _

<Books>
<Book ISBN="0000000000001">

<Price><%= price1 %></Price>
<Title>Book Title 1</Title>
<Stock InStock="12" OnOrder="24"/>

</Book>
<Book ISBN="0000000000002">

<Price><%= price2 %></Price>
<Title>Book Title 2</Title>
<Stock> InStock="7" OnOrder="10"/>

</Book>
</Books>

The prices need not be hard-coded in variables. You can call a function to retrieve them
from a database based on the book’s ISBN. You can use other simple VB expressions to insert
the current date into your document, call built-in functions, and so on. However, you can’t
embed large segments of code with conditional or looping statements (you’ll see how this can
be done with LINQ in the next chapter).

The following XML segment generates an XML segment with the parameters of a loan. The
loan parameters are specified with the help of variables, but the actual monthly payment is cal-
culated with a call to the Pmt() function right from within the XML code. The tag <%= switches
you to VB, and the %> tag switches you back to XML.

Dim loanAmount As Decimal = 135000
Dim loanInterest As Decimal = 8.75
Dim loanDuration = 6
Dim loanXML = <Loan>

<Amount><%= loanAmount %></Amount>
<Duration><%= loanDuration %>6</Duration>
<DurationUnit>Years</DurationUnit>
<Interest><%= loanInterest %></Interest>
<Payment><%= Financial.Pmt(loanInterest / 10 * 12, _

loanDuration * 12, loanAmount) %>
</Payment>

</Loan>
MsgBox(loanXML)

If you execute the preceding statements, they will print the following XML document on a
message box:

<Loan>
<Amount>135000</Amount>
<Duration>6</Duration>
<DurationUnit>Years</DurationUnit>
<Interest>8.75</Interest>
<Payment>2,416.73</Payment>

</Loan>

542 CHAPTER 13 XML IN MODERN PROGRAMMING

The embedded expression calls a financial function, the Pmt() function, to calculate the
loan’s payment. The result is even formatted appropriately by calling the ToString method
of the Double data type (the Pmt() function returns a Double, as was discussed in Chapter 1,
‘‘Getting Started with Visual Basic 2010’’).

Saving and Loading XML Documents
The variable that holds an XML segment is of the XElement type. An XML document is not
necessarily based on the XDocument class. The two basic operations you can perform with an
XElement (and XDocument) object are saving a file and reloading an XElement object from a
file. The operations are performed with the Save and Load methods, which accept the filename
as an argument.

The following statements will save an XML document to a file and then open it with the
default application, which on most computers is Internet Explorer, as shown in Figure 13.5. If
you have associated XML extensions with another application, then the document will open in
that application (it could be Visual Studio or any other XML editor you have installed on your
computer).

XElement.Save(file_name)
Process.Start(file_name)

Figure 13.5

Viewing an XML docu-
ment in your browser

TRAVERSING XML DOCUMENTS 543

To load the contents of a file to an XElement variable, use the Load method, which accepts
as an argument the name of the file:

Dim XDoc = XElement.Load(file_name)

One more related method is the Parse method, which allows you to load an XElement vari-
able from a string. As the code in Listing 13.4 should have convinced you, there’s no reason to
ever create strings with XML data in your code. You may retrieve an existing XML document
as a string. In this case, you can just pass the string to the Parse method to create an XML tree
and process it with the techniques discussed in this chapter. The Parse method accepts a string
as an argument and returns an XElement object:

Dim XDoc = XElement.Parse(xml_string)

Traversing XML Documents
Let’s look at how you can process an XML document using XML helper objects. Processing
XML consists of navigating to the items of interest in the document, extracting element and
attribute values, and editing the contents of an existing XML document.

The basic methods for navigating through an XML document are known as axis methods
(they allow you to quickly move to any part of the document, just as you can describe any
point in the space with the help of the x-, y-, and z-axes). Let me start the discussion of the axis
methods by making it clear that all axis methods are relevant to the current position in the XML tree.
If you request the immediate descendant of a continent, for example, you’ll get a country ele-
ment, not a city. If you’re currently on a country element, the same method will return a city
element.

The Element and Elements Methods
The Element method allows you to locate an element by name. This method returns the first
XElement segment by the name specified as an argument to the method, if such an element
exists under the current element. The Elements method is similar, only instead of the first
matching element, it returns all matching elements. Note that while the Element method
returns an XElement object, the Elements method returns a collection of XElement objects
(actually, an IEnumerable of XElement objects).

Ancestors and Descendants Methods
Each element may have one or more parent elements, which you can access via the Ancestors
property, and one or more child elements, which you can access via the Descendants property.
Both methods return a collection of XElement objects. To retrieve the desired child or parent
elements, you must pass to the method the name of the desired element. The following expres-
sion will return all Book elements in the sample document:

xDoc.Descendants("Book")

544 CHAPTER 13 XML IN MODERN PROGRAMMING

If you call the Descendants method without an argument, it will return all nodes under the
current element. I will demonstrate the use of the Elements and Descendants methods and
their differences through sample code shortly.

Attribute Property
In addition, elements may have attributes, which you can access via the Attribute property.
The Attribute method applies to an XElement node in the document and extracts the value of
the attribute whose name you pass to the method as an argument.

Let’s write a loop to iterate through our simple collection of books which are in the xDoc
variable:

For Each book In xDoc.Elements("Book")
Debug.WriteLine("ISBN " & book.Attribute("ISBN").Value.ToString)
Debug.WriteLine(" Title: " & book.Element("Name").Value.ToString)
Debug.WriteLine(" Price: " & book.Element("Price").Value.ToString)
Dim stock = book.Element("Stock")
Debug.WriteLine(" Books in stock " & stock.Attribute("InStock").Value)
Debug.WriteLine(" Books on order " & stock.Attribute("OnOrder").Value)

Next

The loop iterates through the Book elements in the XML file. The expression xDoc.Elements
("Book") returns a collection of XElement objects, each one representing a book. We then call
the Attribute method of each Book element to access the element’s attributes by name. The
Descendants method returns a collection of XElement objects, one for each subelement of the
element represented by the book XElement. One of the elements, the Stock element, has its
own attributes. To read their values, the code creates a variable that represents the Stock ele-
ment and uses its Attribute method to retrieve an attribute by name. The output of the pre-
ceding code segment is shown here:

ISBN 0000000000001
Title: Book Title 1
Price: 11.95

Books in stock 12
Books on order 24

ISBN 0000000000002
Title: Book Title 2
Price: 10.25

Books in stock 7
Books on order 10

VB Axis Properties
There’s a shorthand notation for accessing attributes, elements, and descendants in an XML file:
The @ symbol is shorthand for the Attribute property, a pair of angle brackets (<>) is short-
hand for the Element property, and two dots (..) are shorthand for the Descendants prop-
erty. The following code segment is identical to the preceding one, only this time I’m using the
shorthand notation. The output will be the same as before.

TRAVERSING XML DOCUMENTS 545

For Each book In doc.Elements("Book")
Debug.WriteLine("ISBN " & book.@ISBN.ToString)
Debug.WriteLine(" Title: " & book…<Name>.Value.ToString)
Debug.WriteLine(" Price: " & book…<Price>.Value.ToString)
Dim stock = book.Element("Stock")
Debug.WriteLine(" Books in stock " & stock.@InStock.ToString)
Debug.WriteLine(" Books on order " & stock.@OnOrder.ToString)

Next

Notice that attributes are returned as strings and have no Value property.

Editing XML Documents
In addition to traversing XML documents, you can edit them. To add a new element under an
existing one, use the Add method, which accepts as an argument the new XElement:

XElement.Add(New XElement (element_name, element_value))

To add a new element that represents a new book to the xDoc variable, call the Add method
on the root element, passing the appropriate XElement and XAttribute objects that represent the
properties of the new book:

xDoc.Add(New XElement("Book", New XAttribute("ISBN", "0000000003"),
New XElement("Price", 19.99),
New XElement("Title", "Book Title 3"),
New XElement("Stock",

New XAttribute("InStock", 2),
New XAttribute("OnOrder", 5))))

If you execute these statements, the following XML segment will be added to the document:

<Book ISBN="0000000003">
<Price>19.99</Price>
<Title>Book Title 3</Title>
<Stock InStock="2" OnOrder="5" />

</Book>

To change an element’s value, call the SetElementValue method, which accepts as an argu-
ment the element’s new value:

XElement.SetElementValue(new_value)

The SetElementValue method can replace simple content; you can’t use it to replace an ele-
ment’s value with a collection of nested elements. If you’re at the Price XElement of the first
book in the document, you can change the book’s price with a statement like the following:

XElement.SetElementValue("9.99")

546 CHAPTER 13 XML IN MODERN PROGRAMMING

To remove an element from a document, call the Remove method. This method doesn’t
accept any arguments; it just removes the XElement object to which it’s applied. You navigate
to the element you want to remove as discussed earlier in this section and call the Remove
method. You can also apply this method to an XElements collection to quickly remove a larger
section of the document.

Two methods to edit attributes are available to you from within VB. The Add method of the
XElement class can accept as an argument an XAttribute object. When applied to an XElement
object, it will add the XAttribute to the XElement object. To change the value of an attribute,
call the XElement class SetAttributeValue, and pass the attribute value as an argument.

Both the SetElementValue and SetAttributeValue methods can be called with a Nothing
value in the place of the second argument (the value argument) to remove a specified element
or attribute. An empty string will change the value of the element or attribute but not
remove it.

VB 2010 at Work: Manipulating XML Data
Now is a good time to look at some VB code that exercises all the methods and properties dis-
cussed so far. Instead of dwelling on the descriptions of the various axis methods, I designed
an XML document that will demonstrate the use of the axis methods and will allow you to
experiment with them, as well as with the methods discussed in the following section of this
chapter. The XML fragment we’ll use for our samples describes a hierarchy of countries and
cities and is shown in Listing 13.5.

Listing 13.5: AN XML fragment of geographical data

Dim countries = <Countries>
<Country>

<Code>IT</Code>
<Description>Italy</Description>
<Cities>

<City>
<Code>ROM</Code>
<Description>Rome</Description>

</City>
<City>

<Code>FLR</Code>
<Description>Florence</Description>

</City>
</Cities>

</Country>
<Country>

<Code>DE</Code>
<Description>Germany</Description>
<Cities>

<City>
<Code>BRL</Code>
<Description>Berlin</Description>

VB 2010 AT WORK: MANIPULATING XML DATA 547

</City>
<City>

<Code>MUN</Code>
<Description>Munich</Description>

</City>
<City>

<Code>FRN</Code>
<Description>Frankfurt</Description>

</City>
</Cities>

</Country>
</Countries>

It’s a very short segment with two countries and a couple of cities in each country, but we’ll
extend it shortly. Notice that each item, whether it’s a country or a city, is described by two ele-
ments by the same name: the Code and Description elements. Each country is identified by a
code and a description, and the same is true for each city; their tags are Code and Description
in both cases. This is not uncommon in XML, as long as no two identical tags appear under the
same element. Personally, I recommend that you differentiate the element names in all cases
(using names like countryName and cityName in our examples), but it’s not always up to you.
Sometimes you may also have to use identical element names, so just be sure that they do not
belong to the same parent element.

Locating Information in the Document
The following loop retrieves the values of all Description elements in the document (they’re
all the elements by that name under the root element, Country):

For Each destination In countries.Descendants("Description")
TextBox1.AppendText(destination.Value & vbCrLf)

Next

The output generated by the preceding loop is shown next:

Italy
Rome
Florence
Germany
Berlin
Munich
Frankfurt

As you can see, the expression countries.Descendants("Description") retrieves all
Description elements, regardless of whether they represent countries or cities. Had you used
different tag names for countries and cities, it would have simplified things, but this contrived
example will better demonstrate the use of the various axis methods. The reason I chose this
structure is because I ran into documents with tag names like Price or Code, which might

548 CHAPTER 13 XML IN MODERN PROGRAMMING

appear more than once under different parents. When this happens, your code will appear to
work as expected, but sometimes it will return the wrong price or code.

To retrieve all the country names, you must select all descendants (or all elements) with the
Country name. The following expression is a collection with all countries:

countries.Descendants("Country")

To retrieve the country names, write a loop that iterates through the items of this collection
and prints the value of their Description element:

For Each destination In countries.Descendants("Country")
TextBox1.AppendText(destination.Descendants("Description").Value & vbCrLf)

Next

If you replace the call to the Descendants property with a call to the Elements property, the
result will be the same, because you’re retrieving elements under a country node.

To retrieve all city names, regardless of the country to which they belong, start with the fol-
lowing expression:

countries.Elements("Country").Elements("Cities").Elements("City")

which retrieves all City elements under each Cities element under each Country element.
This expression retrieves all Country nodes and then retrieves the Cities element under each
node and finally all the City elements under the Cities node. The following loop iterates
through all cities:

For Each destination In countries.Elements("Country").
Elements("Cities").Elements("City")

TextBox1.AppendText(destination.Element("Description").Value & vbCrLf)
Next

And here’s the output produced by the preceding statements:

Rome
Florence
Berlin
Munich
Frankfurt

You can also move to a specific element in the hierarchy by indexing the appropriate Ele-
ments collection. To access the second country in the document, Germany, use this expression:

countries.Elements("Country")(1)

If you call the ToString method of this expression, you will get the XML of the second
country, which is shown here:

<Country>
<Code>DE</Code>

VB 2010 AT WORK: MANIPULATING XML DATA 549

<Description>Germany</Description>
<Cities>

<City>
<Code>BRL</Code>
<Description>Berlin</Description>

</City>
<City>

<Code>MUN</Code>
<Description>Munich</Description>

</City>
<City>

<Code>FRN</Code>
<Description>Frankfurt</Description>

</City>
</Cities>

</Country>

Usually, to simplify our code, we assign the segment of the document we’re interested in to
an XElement variable and work with it by applying the same methods to the XElement with
the document’s segment. To access the cities of Germany, retrieve the Cities element and then
the elements under it. Here’s the loop that iterates through the German cities:

For Each city In countries.Elements("Country")(1).Element("Cities").Elements
Debug.WriteLine(city.Element("Description").Value)

Next

While you’re at a German city, you can call the Ancestors property to retrieve the entire
Cities element under the Germany node with the following expression:

city.Ancestors.ElementAt(0)

To retrieve the element that represents the entire Germany node, call the second element of
the city’s Ancestors collection:

city.Ancestors.ElementAt (1)

Both properties return a collection of XElement objects, and you can iterate through them as
usual.

Editing the Document
To add a new country to the countries document, call the Add method as follows:

countries.Add(New XElement ("Country", "Spain"))

The new XElement can contain multiple nested elements, as in Listing 13.6, which adds an
entire new country (including its code and the cities under it) to the countries document with a
single statement.

550 CHAPTER 13 XML IN MODERN PROGRAMMING

Listing 13.6: Adding a new country with a single statement

countries.Add(New XElement("Country",
New XElement("Code", "FR"),
New XElement("Description", "France"),
New XElement("Cities",

New XElement("City",
New XElement("Code", "PAR"),
New XElement("Description", "Paris")),

New XElement("City",
New XElement("Code", "NIC"),
New XElement("Description", "Nice")))))

I’ve nested this statement to make it easier to visualize. The idea is rather simple: To add
multiple elements at the same level, you just supply their values and separate them with com-
mas. To add nested elements, you insert a New XElement declaration in place of the parent
element’s value. Of course, you can always create intermediate variable to store individual
elements and then add them one after the other. Just remember that the constructor of the XEle-
ment object accepts the element’s name as its first argument and the element’s value as the sec-
ond argument. The element’s value can be another XElement (as in the case of the Cities and
City elements) or an array of XElement objects (as in the case of the Code and Description
elements).

The alternative approach is to create city nodes, then add them to a country node, and
finally add the country to the countries document. The statements in Listing 13.7 create a new
country (Spain), then two new cities (Madrid and Barcelona), and then add the two cities to
the Cities element of Spain. Finally, they add the new country, the countrySpain element, to
the countries document.

Listing 13.7: Adding a new country by building all intermediate elements

’ Create an XElement to represent Spain
Dim countrySpain = New XElement("Country",

New XElement("Code", "ES"),
New XElement("Description", "Spain"))

’ Create XElement to represent Madrid
Dim cityMadrid = New XElement("City",

New XElement("Code", "MAD"),
New XElement("Description", "Madrid"))

’ Create XElement to represent Barcelona
Dim cityBarcelona = New XElement("City",

New XElement("Code", "BAR"),
New Element("Description", "Barcelona"))

’ Create XElement to represent the cities of the Spain
Dim citiesSpain = New XElement("Cities")
’ and add Madrid and Barcelona elements to it
citiesSpain.Add(cityMadrid)

VB 2010 AT WORK: MANIPULATING XML DATA 551

citiesSpain.Add(cityBarcelona)
’ add the spanish cities under Spain element
countrySpain.Add(citiesSpain)
’ and finally add the complete Spain element to the countries document
countries.Add(countrySpain)
MsgBox(countries.ToString)

The last statement displays the entire countries document, from which I’ve extracted the
segment that corresponds to Spain:

<Country>
<Code>ES</Code>
<Description>Spain</Description>
<Cities>

<City>
<Code>MAD</Code>
<Description>Madrid</Description>

</City>
<City>

<Code>BAR</Code>
<Description>Barcelona</Description>

</City>
</Cities>

</Country>

Compare the statements in Listing 13.6 and Listing 13.7 to see the differences between
the two approaches. They’re functionally equivalent, but when you’re building a complex
XElement in a single statement, you have to make sure that the parenthesized expressions end
properly.

Using XML Segments as Literals
Now we’ll edit our XML document by adding a few more countries and embedding our initial
countries collection into a larger collection with continents. We want to create a new document
with the following structure:

Globe
Continents

Continent
Countries

Country
States

State
Cities

City
City
...

State

552 CHAPTER 13 XML IN MODERN PROGRAMMING

...
Country
...

Continent
...

It’s a straightforward document that you can easily create with the functional composition
approach. Since you already have a segment of the document, you should be able to reuse the
countries document, right? Indeed, this is the case. Start typing a new XElement with the
new structure, and when you get to Europe, just embed the existing document, as shown in
Listing 13.8 (the bold statement inserts the contents of the XElement that represents European
countries into the document).

Listing 13.8: Functional composition of an XML document

Dim Globe =
<Globe>

<Continents>
<Continent>

<Code>EU</Code>
<Description>Europe</Description>
<%= countries %>

</Continent>
<Continent>

<Code>NA</Code>
<Description>N. America</Description>
<Countries>

<Country>
<Code>USA</Code>
<Description>U.S.A.</Description>
<States>

<State>
<Code>CA</Code>
<Description>California</Description>
<Cities>

<City>
<Code>LAX</Code>
<Description>Los Angeles</Description>

</City>
<City>

<Code>SD</Code>
<Description>San Diego</Description>

</City>
<City>

<Code>SF</Code>
<Description>San Francisco</Description>

</City>
</Cities>

VB 2010 AT WORK: MANIPULATING XML DATA 553

</State>
<State>

<Code>NY</Code>
<Description>New York</Description>
<Cities>

<City>
<Code>NYC</Code>
<Description>New York City</Description>

</City>
<City>

<Code>ALB</Code>
<Description>Albany</Description>

</City>
</Cities>

</State>
</States>

</Country>
<Country>

<Code>MX</Code>
<Description>Mexico</Description>
<Cities>

<City>
<Code>MXC</Code>
<Description>Mexico City</Description>

</City>
<City>

<Code>TIJ</Code>
<Description>Tijuana</Description>

</City>
<City>

<Code>GDJ</Code>
<Description>Guadalajara</Description>

</City>
</Cities>

</Country>
</Countries>

</Continent>
</Continents>

</Globe>

Figure 13.6 shows how you can mix VB and XML in the code editor and switch from one to
the other by opening and closing the <% and %> tags.

Note that I included state information in the USA country to add a twist to the document.
When you process it, you must take into consideration that some countries are separated into
states, while others aren’t. You’ll start with a loop that iterates through the continents and their
subordinate elements and prints out continents, countries, and cities. For the time being, you’ll
ignore the states; you just want to print the cities under each country. The code shown in
Listing 13.9 consists of three nested loops: The outer one goes through the continents, the next

554 CHAPTER 13 XML IN MODERN PROGRAMMING

inner one countries under each continent, and the innermost loop goes through the cities under
each country.

Figure 13.6

The gap between tradi-
tional programming and
XML has suddenly nar-
rowed with VB’s support
of XML.

Listing 13.9: Iterating through the globe document’s continents, countries, and cities

For Each continent In Globe.Elements("Continents").Elements("Continent")
TextBox1.AppendText(continent.Element("Description").Value & vbCrLf)
For Each country In continent.Elements("Countries").Elements("Country")

TextBox1.AppendText(vbTab & country.Element("Description").Value & vbCrLf)
For Each city In country.Descendants("Cities").Elements("City")

TextBox1.AppendText(vbTab & vbTab &
city.Elements("Description").Value & vbCrLf)

Next
Next

Next

The expression Globe.Elements("Continents").Elements("Continent") returns a collec-
tion of all continents in the globe document. The continent control variable is an XElement
itself that represents the current continent in the outer loop. To extract the current continent’s
countries, the code uses the expression continent.Elements("Country"), which returns a
collection of countries. The country control variable is also an XElement that represents the
current continent’s states and cities. Although all expressions use the Elements axis to locate
the corresponding elements, the innermost loop uses the Descendants axis to retrieve the cities,
whether they belong to a country or a state. The code of Listing 13.9 will produce the following
output:

Europe
Italy

Rome
Florence

VB 2010 AT WORK: MANIPULATING XML DATA 555

Germany
Berlin
Munich
Frankfurt

France
Paris

Spain
Madrid

N. America
U.S.A.

Los Angeles
San Diego
San Francisco
New York City
Albany

Mexico
Mexico City
Tijuana
Guadalajara

If you replace the line

For Each city In country.Descendants("Cities").Elements("City")

with the following:

For Each city In country.Elements("Cities").Elements("City")

you will get the same results for all countries, except the United States, where the cities are
nested under their states (there will be no cities under the US node).

If the preceding code segment is not clear to you or if you’d prefer a more verbose version
of the same code segment, here’s an alternate method of producing the same output. This time
I create two intermediate variables to store countries and cities: the continentCountries and
countryCities variables. These variables are collections that hold the appropriate elements at
each iteration of the corresponding loop:

For Each continent In Globe.Elements("Continents").Elements("Continent")
TextBox1.AppendText(continent.Element("Description").Value & vbCrLf)
Dim continentCountries = continent.Elements("Countries")
For Each country In continentCountries.Elements("Country")

TextBox1.AppendText(
vbTab & country.Element("Description").Value & vbCrLf)

Dim countryCities = country.Descendants("Cities")
For Each city In countryCities.Elements("City")

TextBox1.AppendText(vbTab & vbTab & _
city.Elements("Description").Value & vbCrLf)

Next
Next

Next

556 CHAPTER 13 XML IN MODERN PROGRAMMING

If you want to include the states (and this is obviously the proper method of iterating
through this document), you must differentiate the countries with states from the countries
without states. To do so, you must retrieve the States descendants of each country node and
examine their count. If the count is zero, which means there are no states under the current
country, the code should proceed with the cities of the country. If the count is positive, the
code must first iterate through the States descendants and then through the cities in each
state. Listing 13.10 shows the final loop that iterates through the globe document, taking into
consideration the different organization schema of certain countries.

Listing 13.10: Iterating through the globe document’s continents, countries, states, and cities

For Each continent In Globe.Descendants("Continents").Descendants("Continent")
TextBox1.AppendText(continent.Element("Description").Value & vbCrLf)
For Each country In continent.Descendants("Country")

TextBox1.AppendText(vbTab & country.Element("Description").Value & vbCrLf)
If country.Descendants("States").Count = 0 Then

Dim CountryCities = country.Descendants("Cities")
For Each city In CountryCities.Descendants("City")

TextBox1.AppendText(vbTab & vbTab &
city.Elements("Description").Value & vbCrLf)

Next
Else

For Each state In country.Descendants("State")
TextBox1.AppendText(vbTab & vbTab & _

state.Element("Description").Value & vbCrLf)
Dim CountryCities = state.Descendants("Cities")
For Each city In CountryCities.Descendants("City")

TextBox1.AppendText(vbTab & vbTab & vbTab &
city.Elements("Description").Value & vbCrLf)

Next
Next

End If
Next

Next

The output produced by the preceding code segment is shown next (I’m showing only a
single country in Europe in the interest of saving some space on the printed page):

Europe
Italy

Rome
Florence

N. America
U.S.A.

California
Los Angeles

VB 2010 AT WORK: MANIPULATING XML DATA 557

San Diego
San Francisco

New York
New York City
Albany

Mexico
Mexico City
Tijuana
Guadalajara

Using Lambda Expressions
To make the most of the XElement class, you must familiarize yourself with the concept of
lambda expressions. Lambda expressions are inline functions you can embed in some of the
methods, most notably in the Where method. This method selects certain elements from an
XElements collection based on criteria you specify.

The syntax of the Where method requires that you pass as an argument a function that
determines whether an element will be selected by the Where method. This function will be
called once for each element in the collection, and it must return a True/False value to indicate
whether the current element passed the selection criteria. Now, how do you pass a function
to a method? Lambda expressions to the rescue. To specify a lambda function, you declare a
function without a name but with an argument list and a statement. Here’s a lambda function
that evaluates to a True/False value and can be used with the Where extension method:

Function(Bk As Book) Book.Price >= 30

This lambda function accepts as an argument an object of the Book type and returns True
if the price of the book represented by the Bk variable is $30 or more. To use this function in a
Where method, just pass the entire statement as an argument:

Books.Elements("Book").Where(Function(Bk As Book) Bk.Price >= 30)

The preceding expression will extract from the Books collection all books with a value of $30
or more.

Let’s return to the countries example and write a lambda function that will be used with the
Where method to retrieve the cities in Germany:

Dim germanCities =
countries.Elements("Country").
Where(Function(ctry) ctry.Element("Code").Value = "DE").
Descendants("Cities").Descendants("City")

The germanCities variable is a collection that contains all cities in Germany, and you can
iterate through them with a loop as usual. To find out the number of cities under the Germany
node, call the Count property of the germanCities collection.

In the next chapter, you’ll learn an even better method of selecting elements in an XML
document, namely, the LINQ syntax. LINQ, however, is based on the methods exposed by the

558 CHAPTER 13 XML IN MODERN PROGRAMMING

XElements and Descendants classes, which is why I’ve chosen to show you the hard method
first.

Let’s apply the Where method of the IEnumerable type to this chapter’s main sample doc-
ument, the globe document. The following statement uses a lambda expression to locate the
XElement that represents the entire node of Europe:

Dim Europe As XElement =
Globe.Descendants("Continent").
Where(Function(cnt) cnt.Element("Code").Value = "EU").First

Now, this statement contains a method you haven’t seen before, the First method. The
First method returns the first element in a collection of XElement objects. The Where clause
in our sample code will always return a single XElement, but this is just a special case. In gen-
eral, the Where method may (and it usually does) return multiple elements as an IEnumerable
(basically, a collection you can enumerate over). To make sure that you retrieve a single ele-
ment (and not a collection by mistake), we call the First method. The Europe variable is an
XML segment that represents Europe.

To add new countries to Europe, you can use the Add method of the XElement as discussed
earlier in this chapter. Let’s prepare a couple of XElement objects that represent countries in
Europe:

Dim France =
New XElement("Country",

New XElement("Code", "FR"),
New XElement("Description", "France"),
New XElement("Cities",

New XElement("City",
New XElement("Code", "PAR"),
New XElement("Description", "Paris"))))

Dim Spain =
New XElement("Country",

New XElement("Code", "ES"),
New XElement("Description", "Spain"),
New XElement("Cities",

New XElement("City",
New XElement("Code", "MAD"),
New XElement("Description", "Madrid"))),

New XElement("City",
New XElement("Code", "BCN"),
New XElement("Description", "Barcelona")))

To add the two countries to the Europe element, just call the Add method once for each
country, as shown in Figure 13.7.

Here ends the introduction to XML and the VB methods for manipulating XML. In the
next chapter, you’ll learn an even better method of working with XML documents, namely,
LINQ. LINQ is a querying language you can apply not only to XML but to collections of
objects, simple arrays, and even databases. It’s the new method of querying data, and it’s an

XML SERIALIZATION 559

exciting topic. Before moving on to LINQ, however, I must present a very special topic in the
Framework — serialization.

Figure 13.7

Adding two countries
under the Europe node
of the globe XML
document

XML Serialization
In Chapter 12, ‘‘Storing Data in Collections,’’ you learned how to use collections to store items,
how to access their elements, and even how to sort and search the collections. To make the
most of collections and to use them to store large sets of data, you should also learn how to
persist collections to disk files or databases.

Persisting data means storing them on disk at the end of one session and reloading them into
the same application in a later session. The persisted data can also be shared among different
applications and even different computers, as long as there’s an application that knows what
to do with the data. What good is it to create a large collection if your application can’t save it
and retrieve it from session to session?

Since time immemorial, programmers had to write code to save their data to disk. The most
challenging aspect of the data persisting was the format used to store the data. With XML being
a universal format, what better method of persisting data than converting them to XML docu-
ments? Indeed, it’s possible to convert any object or collection to an XML document and save
it to a file or exchange it with any other system. By the way, the XML format is quite verbose
and wouldn’t have caught up earlier, when storage was expensive.

In this chapter, you’ll see how to convert objects to streams with a technique known as seri-
alization, which is the process of converting arbitrary objects to streams of bytes. After you
obtain the serialized stream for a specific object, you can persist the object to disk, as well as
read it back. The process of reconstructing an object from its serialized form is called deserializa-
tion. It makes so much sense to convert objects to XML and back; that the process is supported
natively by the Framework. The System.Xml.Serialization class can convert arbitrary objects to
XML and back, and you’ll see shortly how easy it is to use this class — no, you won’t have to
use any of the techniques discussed so far to create your own XML. You just call the Serialize
and Deserialize methods of this class to do the work for you.

560 CHAPTER 13 XML IN MODERN PROGRAMMING

Other Serialization Types

There are three types of serialization: binary serialization, Simple Object Access Protocol
(SOAP, also called Service Oriented Architecture Protocol) serialization, and Extensible Markup
Language (XML) serialization. Binary and SOAP serialization are very similar; XML serialization
is a little different, but it allows you to customize the serialization process.

Binary serialization is performed with the BinaryFormatter class, and it converts the values of
the object properties into a binary stream. The result of the binary serialization is compact and
efficient. However, binary-serialized objects can be used only by applications that have access
to the class that produced the objects and can’t be used outside .NET. Another limitation of
binary serialization is that the output it produces is not human readable, and you can’t do
much with a file that contains a binary serialized object without access to the original appli-
cation code. Because binary serialization is very compact and very efficient, it’s used almost
exclusively to persist objects between sessions of an application or between applications that
share the same classes.

SOAP serialization produces a SOAP-compliant envelope that describes its contents and serial-
izes the objects in SOAP-compliant format. SOAP-serialized data are suitable for transmission
to any system that understands SOAP; it’s implemented by the SoapFormatter class. Unlike
binary serialization, SOAP-serialized data are firewall friendly, and SOAP serialization is used
to remote objects to a server on a different domain. The process of serializing objects is the
same, no matter which method you’ll use. So, let’s start with XML serialization, and I’ll briefly
cover the classes for the other types of serialization toward the end of the chapter.

The Serialization Process
To use XML serialization, you must create an instance of the XmlSerializer class and then
call its Serialize method (or the Deserialize method to extract data from an XML
stream and populate an instance of a custom class). The XmlSerializer class belongs to the
XmlSerialization namespace, which is not imported by default in a new project. To use
it, import the Serialization class by inserting the following statement at the beginning of the
module that needs the serialization services:

Imports System.Xml.Serialization

To set up a new instance of the class, you must call the XmlSerializer class constructor, pass-
ing as an argument the type of objects it will serialize or deserialize. You can’t use the same
instance of the XmlSerializer class to serialize arbitrary objects; instead, you must tell the com-
piler the type of object you need to serialize in the XmlSerializer constructor. Here’s how to set
up a new instance of the XmlSerializer class:

Dim serializer As New XmlSerializer(custom_type)

The custom_type argument represents a custom (or built-in for that matter) type,
whose instances are intended to be serialized through the XmlSerializer class. You can

XML SERIALIZATION 561

also pass the name of the class itself to the constructor by using a statement such as the
following:

Dim serializer As New XmlSerializer(GetType(CustomClass))

The serializer object can be used to serialize only instances of the specific class, and it will
throw an exception if you attempt to serialize a different class with it. Note also that all classes
are XML-serializable by default. I’m mentioning this here because with the other serialization
types, you must prefix the classes with the <Serializable> attribute to make them serializable.

In the background, CLR will create a temporary assembly, a process that will take a few
moments. The temporary assembly, however, will remain in memory as long as the application
is running. After the initial delay, XML serialization will be quite fast.

Once the serializer variable has been set up, you can call the Serialize method, passing
two arguments: a stream that will accept the serialized data and the object to be serialized:

serializer.Serialize(stream, object)

That’s all it takes to convert an object or collection of objects to an XML document. To recon-
struct the original object, call the Deserialize method, and pass the stream with the serialized
data as an argument. This stream points to the file to which the serialization data has been
stored:

object = serializer.Deserialize(stream)

The Deserialize method returns an Object data type, which you must cast to the appro-
priate type, as with the following statement:

object = CType(serializer.Deserialize(stream), object_type)

As for setting up the Stream object that will accept the serialization data (or provide the
serialized data to the Deserialize method), that’s also straightforward. If you’re not famil-
iar with the concept of streams, please read the tutorial ‘‘Accessing Files and Folders’’ (avail-
able for download from http://www.sybex.com/go/masteringvb2010). Start by importing the
System.IO namespace, and then create a new FileStream object that points to the file that will
accept the serialization data:

Dim saveFile As New FileStream("Objects.xml", FileMode.Create)

The saveFile variable represents a stream and must be passed to the Serialize method
along with the object to be serialized. To create a stream for reading data, use a statement like
the following:

Dim Strm As New FileStream("Objects.xml", FileMode.Open)

Let’s serialize a few simple objects to get a feel of the functionality of the XmlSerialization
namespace and how to use it to move objects to their XML equivalents and back.

562 CHAPTER 13 XML IN MODERN PROGRAMMING

Serializing Individual Objects
Let’s serialize a single Rectangle object using the following statements:

Dim saveFile As FileStream
saveFile = File.OpenWrite("Rectangles.xml")
Dim serializer As New XmlSerializer(GetType(Rectangle))
Dim R As New Rectangle(10, 10, 100, 160)
serializer.Serialize(saveFile, R)
saveFile.Close()

If you execute the preceding statements, the following data will be stored in the
Rectangles.xml file:

<?xml version="1.0" encoding="utf-8"?>
<Rectangle xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Location>

<X>10</X>
<Y>10</Y>

</Location>
<Size>

<Width>100</Width>
<Height>160</Height>

</Size>
<X>10</X>
<Y>10</Y>
<Width>100</Width>
<Height>160</Height>

</Rectangle>

This is a well-formed XML document. As you can see, the XmlSerializer extracted the
basic properties of the Rectangle object and used them to create an XML document with
the basic properties of the Rectangle as elements. Note that all relevant information has been
stored in elements, and there are no attributes in the XML generated by the XmlSerializer
class’s Serialize method.

There’s some redundancy in this file because the values of the properties appear twice. This
isn’t part of the XML specification; the document contains the values of the following proper-
ties: Location, Size, X, Y, Width, and Height. The Rectangle object exposes additional prop-
erties, such as the Top, Bottom, and so on, but these values aren’t serialized. The Location
property is an object, which in turn exposes the X and Y properties. The values of these proper-
ties appear within the Location segment of the document and as separate values near the end
of the file. The same happens with the Size property.

Which Members Are Serialized?

I mentioned earlier that the XmlSerializer class serializes all public properties in a class.
However, quite a few properties of the Rectangle class weren’t serialized. Who determines

XML SERIALIZATION 563

the properties that will be serialized? When you build a custom class, you can specify that
certain classes will not be serialized by decorating them with the <NonSerialized> attribute.
Obviously, the properties of the built-in objects that aren’t serialized are marked with this
attribute.

To deserialize the data and create a new Rectangle object with the same properties as the
original one, set up a Stream object and an XMLSerializer object, and then call the XmlSerializer
object’s Deserialize method:

Imports System.Xml.Serialization
Dim serializer As New XmlSerializer(GetType(Rectangle))
Dim FS As FileStream
FS = New FileStream("Rectangles.xml", FileMode.Open)
Dim R As Rectangle
R = serializer.Deserialize(FS)
FS.Close()

Not surprisingly, if you examine the properties of the R object that was created by the dese-
rialization process, you’ll see that it’s identical to the Rectangle object you serialized earlier
to disk.

Serializing Custom Objects
Let’s move on to a more interesting example. This time we’ll serialize a more elaborate custom
object. Listing 13.11 shows a class that describes books. The Book class is quite trivial, except
that each book can have any number of authors. The authors are stored in an array of Author
objects, where Author is a nested class (Book.Author).

Listing 13.11: The Book class definition

Public Class Book
Private _title As String
Private _pages As Integer
Private _price As Decimal
Private _authors() As Author

Public Sub New()

End Sub

Public Property Title() As String
Get

Return _title
End Get
Set(ByVal Value As String)

If Value.Length > 100 Then

564 CHAPTER 13 XML IN MODERN PROGRAMMING

_title = Value.Substring(0, 99)
Else

_title = Value
End If

End Set
End Property

Public Property Pages() As Integer
Get

Return _pages
End Get
Set(ByVal Value As Integer)

_pages = Value
End Set

End Property

Public Property Price() As Decimal
Get

Return _price
End Get
Set(ByVal Value As Decimal)

_price = Value
End Set

End Property

Public Property Authors() As Author()
Get

Return (_authors)
End Get
Set(ByVal Value As Author())

_authors = Value
End Set

End Property

Public Class Author
Private _firstname As String
Private _lastname As String

Public Property FirstName() As String
Get

Return _firstname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then
_firstname = Value.Substring(0, 49)

Else
_firstname = Value

XML SERIALIZATION 565

End If
End Set

End Property

Public Property LastName() As String
Get

Return _lastname
End Get
Set(ByVal Value As String)

If Value.Length > 50 Then
_lastname = Value.Substring(0, 49)

Else
_lastname = Value

End If
End Set

End Property
End Class

End Class

The following statements create a new Book object, which includes three authors:

Dim BK0 As New Book
Dim authors(2) As Book.Author
authors(0) = New Book.Author
authors(0).FirstName = "Author1 First"
authors(0).LastName = "Author1 Last"
authors(1) = New Book.Author
authors(1).FirstName = "Author2 First"
authors(1).LastName = "Author2 Last"
authors(2) = New Book.Author
authors(2).FirstName = "Author3 First"
authors(2).LastName = "Author3 Last"
BK0.Title = "Book Title"
BK0.Pages = 234
BK0.Price = 29.95
BK0.Authors = authors

To exercise some of the new ‘‘convenience’’ features of VB 2010, we’ll add another book
using object initializers, this time with more meaningful data:

Dim authors() = {New Author With
{.FirstName = "Evangelos", .LastName = "Petroutsos"}, _

New Author With {.FirstName = "Richard", .LastName = "Manning"}}
Dim BK1 = New Book1 With { _

.ISBN = "0-470-53287-4",
.Title = "Mastering Visual Basic 2010", .Authors = authors}

566 CHAPTER 13 XML IN MODERN PROGRAMMING

To serialize the BK0 and BK1 variables, create a new XmlSerializer object, and call its
Serialize method as usual:

Dim serializer As New XmlSerializer(BK1.GetType)
Dim strm As New FileStream("books.xml", FileMode.Create)
serializer.Serialize(strm, BK0)
strm.Close()

To serialize two objects in the same file, call the Serialize method twice, passing as an
argument the appropriate instance of the Book object, as shown here:

serializer.Serialize(strm, BK0)
serializer.Serialize(strm, BK1)

As you can understand, serialization would be severely limited without the ability to seri-
alize arrays and collections, and this is the topic we’ll explore in the next section. However,
it’s worth taking a look at the contents of the books.xml file generated by the XmlSerializer
class. If you open the books.xml file, shown in Listing 13.12, you’ll see that it contains two
XML documents (the <?xml> tag appears twice in the file). This certainly isn’t a valid XML
document because it doesn’t contain a unique root element. However, you can see the equiv-
alence between the structure of the class and the XML document. The serializer takes all the
public properties and converts them to elements. Nested classes, like the Authors under the
Book class, are converted to nested elements. Moreover, there are no attributes to the resulting
XML; all properties are translated into elements.

Listing 13.12: Typical XML-serialized data

<?xml version="1.0"?>
<Book xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Title>Book Title</Title>
<ISBN>1234567890</ISBN>
<Price>29.95</Price>
<Pages>0</Pages>
<Authors>

<Author>
<FirstName>Author1 First</FirstName>
<LastName>Author1 Last</LastName>

</Author>
<Author>

<FirstName>Author2 First</FirstName>
<LastName>Author2 Last</LastName>

</Author>
<Author>

<FirstName>Author3 First</FirstName>
<LastName>Author3 Last</LastName>

</Author>

XML SERIALIZATION 567

</Authors>
</Book>
<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Title>Mastering Visual Basic 2010</Title>
<ISBN>0-470-53287-4</ISBN>
<Price>0</Price>
<Pages>0</Pages>
<Authors>

<Author>
<FirstName>Evangelos</FirstName>
<LastName>Petroutsos</LastName>

</Author>
<Author>

<FirstName>Richard</FirstName>
<LastName>Manning</LastName>

</Author>
</Authors>

</Book>

Each book has been serialized as a separate entity; the serialization process did not create
a new root element that encloses the serialized objects. Even though this isn’t a well-formed
XML document, you can deserialize the two objects by calling the Deserialize method twice,
as shown in the following code segment:

Dim serializer As New XmlSerializer(GetType(Book))
Dim strm As New FileStream("books.xml", FileMode.Open)
Dim book1 = CTpe(serializer.Deserialize(strm), Book)
Dim book2 = CTpe(serializer.Deserialize(strm), Book)
strm.Close()

Serializing Collections of Objects
Let’s see how to serialize collections of objects in XML format, starting with a hard rule:

The collection to be serialized must be strongly typed.

You can use XML serialization with typed arrays, Lists and Dictionaries, but you can’t seri-
alize ArrayLists or arrays of arbitrary objects. All the elements of the collection should have
the same type, which must match the type you pass to the constructor of the XmlSerializer
class. If you pass to the serializer an array of objects of different types, no warning will be
issued at design time, but a runtime exception will be thrown as soon as your code reaches
the Serialize method. The XmlSerializer instance is constructed by the compiler on the fly for
a specific type of object, and any given instance of this class can handle objects of the specific
type and nothing else.

Let’s start by creating an array of Book objects and then serialize it. First, we’ll create an
array of the Book type and store a few properly initialized instances of the Book class to its

568 CHAPTER 13 XML IN MODERN PROGRAMMING

elements. In Listing 13.13, I’m using the variables BK0, BK1, BK2, and BK3, but I’m not show-
ing the code for their initialization. Then, we’ll pass this array to the Serialize method of the
XmlSerializer class, also as shown in Listing 13.13.

Listing 13.13: XML serialization of an array of objects

Private Sub bttnSaveArrayXML_Click(…)Handles bttnSaveArrayXML.Click
Dim AllBooks(3) As Book
‘ initialize the BK0, BK1, BK2 and BK3 variables
AllBooks(0) = BK0
AllBooks(1) = BK1
AllBooks(2) = BK2
AllBooks(3) = BK3

Dim serializer As New XmlSerializer(AllBooks.GetType)

Dim FS As FileStream
Try

FS = New FileStream("SerializedXMLArray.xml", FileMode.Create)
serializer.Serialize(FS, AllBooks)

Catch exc As Exception
MsgBox(exc.InnerException.ToString)
Exit Sub

Finally
FS.Close()

End Try
MsgBox("Array of Book objects saved in file SerializedXMLArray.xml"

End Sub

The XmlSerializer class constructor accepts as an argument the array type. Because the array
is typed, it can figure out the type of custom objects it will serialize.

There’s a substantial overhead the first time you create an instance of the XmlSerializer class,
but this happens only once during the course of the application. The overhead is caused by the
CLR, which creates a temporary assembly for serializing and deserializing the specific type.
This assembly, however, remains in memory for the course of the application, and the initial
overhead won’t recur. Even though there will be an additional delay of a couple of seconds
when the application starts (or whenever you load the settings), you can persist the class with
the application’s configuration every time the user changes one of the settings without any per-
formance penalty.

To serialize a List collection, you must pass the same type of argument as you used in the
list declaration to the XmlSerializer class constructor. The constructor doesn’t need to know that
you’re planning to serialize a List collection; all it cares about is the type of objects it’s going to
serialize. The following two statements declare a List of Person objects and an instance of the
XMLSerializer for serializing this collection:

Dim Persons As New List(Of Person)
Dim XMLSRLZR As New XmlSerializer(Persons.GetType)

OTHER TYPES OF SERIALIZATION 569

The statements for serializing and deserializing the collection are identical to the ones you’d
use to serialize any other object. To serialize a collection, create a StreamWriter for a new file,
and then call the Serialize method, passing the stream as an argument:

’ To serialize a typed collection:
Dim WStrm As New IO.StreamWriter(file_path)
XMLSRLZR.Serialize(WStrm, Persons)

(In the preceding sample code I used the StreamWriter class, which is equivalent to a Stream
object opened for writing to a file). To deserialize the same collection, create a FileStream for
the file where the serialization data has been stored, and call its Deserialize method. This
method returns an object, which you must cast to the appropriate type as usual (in our case
to a List of Book objects):

Dim RStrm As New IO.FileStream(file_path, IO.FileMode.Open)
newPersons = CType(XMLSRLZR.Deserialize(Rstrm), List(Of Person))

Other Types of Serialization
As I mentioned earlier, XML serialization is the most common form of serialization, but it’s
not the only one. You can use two more types of serialization, namely, binary and SOAP
serialization.

Binary serialization is performed with the BinaryFormatter class, and it converts the values of
the object’s properties into a binary stream. The result of the binary serialization is compact and
efficient. However, the output it produces is not human readable, and you can’t do much with
a file that contains a binary serialized object without access to the original application code.
Because binary serialization is very compact and very efficient, it’s used almost exclusively to
persist objects between sessions of an application or between applications that share the same
classes.

The other serialization type, SOAP serialization, is very similar to XML serialization, but the
resulting document is more structured and contains information about the properties that have
been serialized. Each book’s authors, for example, are marked as an array. The Authors prop-
erty will be serialized as follows:

<_authors href="#ref-5"/>

This is a reference to another element with the generic name ref-5 in the same document, and
here’s the definition of this element:

<SOAP-ENC:Array id="ref-5" SOAP-ENC:arrayType="a1:Author[2]">
<item href="#ref-6"/>
<item href="#ref-7"/>
</SOAP-ENC:Array>

The array contains two elements, which are also referenced in the array. Finally, here are the
definitions of the two elements of the Authors array in the same file:

<a1:Author id="ref-6" >
<_firstname id="ref-8">Evangelos</_firstname>

570 CHAPTER 13 XML IN MODERN PROGRAMMING

<_lastname id="ref-9">Petroutsos</_lastname>
</a1:Author>
<a1:Author id="ref-7">
<_firstname id="ref-10">Richard</_firstname>
<_lastname id="ref-11">Manning</_lastname>
</a1:Author>

Let’s start with binary serialization, which is implemented in the following namespace (you
must import it into your application):

Imports System.Runtime.Serialization.Formatters.Binary

This namespace isn’t loaded by default, and you must add a reference to the corresponding
namespace. Right-click the project’s name in the Solution Explorer, and choose Add Reference
from the context menu. In the Add Reference dialog box that appears, select the same name-
space as in the Imports statement shown earlier.

To use a SOAP serializer in your application, reference the assembly System.Runtime
.Serialization.Formatters.Soap.dll and import the following namespace:

Imports System.Runtime.Serialization.Formatters.Soap

You can serialize individual objects as well as collections of objects. To serialize an object,
you must call the Serialize method of the System.Runtime.Serialization.Formatters.Binary
object. First declare an object of this type with a statement like the following:

Dim BFormatter As New BinaryFormatter()

The BinaryFormatter class persists objects in binary format. You can also persist objects in text
format by using the SoapFormatter class. SoapFormatter persists the objects in XML format,
which is quite verbose, and the corresponding files are considerably lengthier. To use the Soap-
Formatter class, declare a SoapFormatter variable with the following statement:

Dim SFormatter As Soap.SoapFormatter

SOAP is a protocol for accessing objects over HTTP; in other words, it’s a protocol that
allows the encoding of objects in text format. SOAP was designed to enable distributed
computing over the Internet. SOAP uses text to transfer all kinds of objects, including images
and audio, and it’s not rejected by firewalls.

The BinaryFormatter and SoapFormatter methods are equivalent, so I will use
BinaryFormatter for the examples in this section. To serialize an object, call the Serialize
method of the appropriate formatter, where stream is a variable that represents a stream and
object is the object you want to serialize. Here’s the syntax:

BFormatter.Serialize(stream, object)

Because we want to persist our objects to disk, the stream argument represents a stream to a
file where the serialized data will be stored. It can be created with statements like the following:

OTHER TYPES OF SERIALIZATION 571

Dim saveFile As FileStream
saveFile = File.Create("Shapes.bin", IO.FileMode.Create)

The saveFile variable represents the stream to a specific file on the disk, and the Create
method of the same variable creates a stream to this file.

After you have set up the Stream and BinaryFormatter objects, you can call the Serialize
method to serialize any object. To serialize a Rectangle object, for example, use the following
statements:

Dim R As New Rectangle(0, 0, 100, 100)
BFormatter.Serialize(saveFile, R)

Listing 13.14 serializes two Rectangle objects to the Shapes.bin file. The file’s extension can
be anything. Because the file is binary, I used the .bin extension.

Listing 13.14: Serializing distinct objects

Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Size.Width = 10
R1.Size.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Size.Width = 100
R2.Size.Height = 200
Dim saveFile As FileStream
saveFile = File.Create("Shapes.bin")
Dim formatter As BinaryFormatter
formatter = New BinaryFormatter()
formatter.Serialize(saveFile, R1)
formatter.Serialize(saveFile, R2)
saveFile.Close()

Notice that the Serialize method serializes a single object at a time. To save the two rectan-
gles, the code calls the Serialize method once for each rectangle. To serialize multiple objects
with a single statement, you must create a collection, append all the objects to the collection,
and then serialize the collection itself, as explained in the following section. If you serialize
multiple objects of different types into the same stream, you can’t deserialize them unless you
know the order in which the objects were serialized and then deserialize them in the same
order.

Deserializing Individual Objects
To deserialize a serialized object, you must create a new binary or SOAP formatter object and
call its Deserialize method. Because the serialized data doesn’t contain any information about

572 CHAPTER 13 XML IN MODERN PROGRAMMING

the original object, you can’t reconstruct the original object from the serialized data, unless you
know the type of object that was serialized. Deserialization is always more difficult than seri-
alization. Whereas the Serialize method will serialize any object you pass as an argument,
the Deserialize method won’t reconstruct the original object unless you know the type of the
object you’re deserializing. The Shapes.bin file of Listing 13.14 contains the serialized versions
of two Rectangle objects. The Deserialize method needs to know that it will deserialize two
Rectangle objects. If you attempt to extract the information of this file into any other type of
object, a runtime exception will occur.

To deserialize the contents of a file, create a formatter object as you did for the serialization
process, by using one of the following statements (depending on the type of serialization):

Dim SFormatter As Soap.SoapFormatter
Dim BFormatter As BinaryFormatter

Then establish a stream to the source of the serialized data, which in our case is the
Shapes.bin file:

Dim Strm As New FileStream("Shales.Bin", FileMode.Open)

Finally, deserialize the stream’s data by calling the Deserialize method. Since the
Deserialize method returns an object, you must also cast its value appropriately:

Dim R1, R2 As Rectangle
R1 = CType(SFormatter.Deserialize(Strm), Rectangle)
R2 = CType(SFormatter.Deserialize(Strm), Rectangle)

You can serialize as many objects as you like into the same stream, one after the other, and
read them back in the same order. With binary and SOAP serialization, you’re limited to a
single type, as long as you deserialize the data in the proper order.

You can open the files with the serialized data and view their data. The contents of the file
with two serialized Rectangle objects is shown next:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<a1:Rectangle id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/nsassem

/System.Drawing/System.Drawing%
2C%20Version%3D2.0.3600.0%2C%20Culture%3Dneutral%2C%20PublicKeyToken%
3Db03f5f7f11d50a3a">

<x>0</x>
<y>0</y>
<width>100</width>
<height>100</height>
</a1:Rectangle>

OTHER TYPES OF SERIALIZATION 573

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<a1:Rectangle id="ref-1" xmlns:a1="http://schemas.microsoft.com/clr/nsassem

/System.Drawing/System.Drawing%
2C%20Version%3D2.0.3600.0%2C%20Culture%3D

neutral%2C%20PublicKeyToken%3Db03f5f7f11d50a3a">
<x>65</x>
<y>30</y>
<width>19</width>
<height>199</height>
</a1:Rectangle>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You’ll never have to create your own SOAP files, so don’t panic if they look complicated.
There are, however, a few points of interest. First, you see a reference to the System.Drawing
class, which indicates that the serialized data can’t be used outside the context of the Frame-
work; this file contains serialized data describing an instance of a specific class. The section of
the file with the data contains the values of the two basic properties of the Rectangle object.
Second, the SOAP format uses an XML notation to delimit its fields, but it’s not an XML file. If
you attempt to open the same file with Internet Explorer, you’ll see a message indicating that
it’s not a valid XML document.

Serializing Collections

Serializing a collection is quite similar to serializing any single object, because collections
are objects themselves. The second argument to the Serialize method is the object you
want to serialize, and this object can be anything, including a collection. To demonstrate the
serialization of an ArrayList, modify the previous code a little so that instead of persisting
individual items, it will persist an entire collection. Declare the two Rectangle objects as
before, but append them to an ArrayList collection. Then add a few Color values to the
collection, as shown in Listing 13.15, which serializes an ArrayList collection to the file
C:\ShapesColors.bin.

Listing 13.15: Serializing a collection

Private Sub Button2_Click(…) Handles Button2.Click
Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Width = 10

574 CHAPTER 13 XML IN MODERN PROGRAMMING

R1.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Width = 100
R2.Height = 200
Dim shapes As New ArrayList()
shapes.Add(R1)
shapes.Add(R2)
shapes.Add(Color.Chartreuse)
shapes.Add(Color.DarkKhaki.GetBrightness)
shapes.Add(Color.DarkKhaki.GetHue)
shapes.Add(Color.DarkKhaki.GetSaturation)
Dim saveFile As FileStream
saveFile = File.OpenWrite("C:\ShapesColors.bin")
saveFile.Seek(0, SeekOrigin.End)
Dim formatter As BinaryFormatter = New BinaryFormatter()
formatter.Serialize(saveFile, shapes)
saveFile.Close()
MsgBox("ArrayList serialized successfully")

End Sub

The last three calls to the Add method add the components of another color to the collection.
Instead of adding the color as is, I’ll add three color components, from which we can recon-
struct the color Color.DarkKhaki. Then I proceed to save the entire collection to a file by using
the same statements as before. The difference is that I don’t call the Serialize method for each
object. I call it once and pass the entire ArrayList as an argument.

To read a file with the description of an object that has been persisted with the Serialize
method, simply call the formatter object’s Deserialize method, and assign the result
to an appropriately declared variable. In the preceding example, the value returned by
the Deserialize method must be assigned to an ArrayList variable. The syntax of the
Deserialize method is the following, where str is a Stream object pointing to the file with
the data:

object = Bformatter.Deserialize(str)

Because the Deserialize method returns an Object variable, you must cast it to the
ArrayList type with the CType() function. To use the Deserialize method, declare a variable
that can hold the value returned by the method. If the data to be deserialized is a Rectangle,
declare a Rectangle variable. If it’s a collection, declare a variable of the same collection type.
Then call the Deserialize method, and cast the value returned to the appropriate type. The
following statements outline the process:

Dim object As <type>
{ code to set up a Stream variable (str) and BinaryFormatter}
object = CType(Bformatter.Serialize(str), <type>)

Listing 13.16 is the code that retrieves the items from the ShapesColors.bin file and stores
them into an ArrayList. I added a few statements to print all the items of the ArrayList.

THE BOTTOM LINE 575

Listing 13.16: Deserializing a collection

Private Sub Button1_Click(…) Handles Button1.Click
Dim readFile As FileStream
readFile = File.OpenRead("C:\ShapesColors.bin")
Dim BFormatter As BinaryFormatter
BFormatter = New BinaryFormatter()
Dim Shapes As New ArrayList()
Dim R1 As Rectangle
Shapes = CType(BFormatter.Deserialize(readFile), ArrayList)
Dim i As Integer
TextBox1.AppendText("The ArrayList contains " & Shapes.Count & _

" objects " & vbCrLf & vbCrLf)
For i = 0 To Shapes.Count - 1

TextBox1.AppendText(Shapes(i).ToString & vbCrLf)
Next

End Sub

The Bottom Line

Create XML documents. XML documents can be built easily with the XElement and XAt-
tribute classes. XElement represents an element, and its constructor accepts as arguments the
element’s name and either the element’s value or a series of attributes and nested elements.
XAttribute represents an attribute, and its constructor accepts as arguments the attribute’s
name and its value. You can also assign an XML document directly to an XElement.

Master It Create the XML segment that describes an object of the Item type, defined by the
following class:

Class Item
Property ID As String
Property Name As String
Property Prices As Price
Property Name As String

Class Price
Property Retail As PriceDetails
Property WholeSale As PriceDetails
Class PriceDetails

Property Price As Decimal
Property VolumeDiscount As Decimal

End Class
Class Dimension

Property Width As Decimal
Property Height As Decimal
Property Depth As Decimal

End Class

576 CHAPTER 13 XML IN MODERN PROGRAMMING

Navigate through an XML document and locate the information you need. The XElement
class provides a number of methods for accessing the contents of an XML document. The
Elements method returns the child elements of the current element by the name specified with
the argument you pass to the method as a string. The Element method is quite similar, but
it returns the first child element by the specified name. The Descendants method returns all
the elements by the specified name under the current element, regardless of whether they’re
direct children of the current element. Finally, the Attribute method returns the value of the
attribute by the specified name of the current element.

Master It Assuming an XML document with the following structure, write the expressions
to retrieve all cities in the document and all cities under the third country in the document.

<Countries>
<Country>

<City> … </City>
<City> … </City>

</Country>
<Country>
…
</Country>
…

</Countries>

Master It Assuming that both country and city names are specified in the document with
the Name element, explain the difference between the queries:

Dim q1 = countries.Elements("Country").Elements("Name")
Dim q2 = countries.Descendants("Name")

Convert arbitrary objects into XML documents and back with serialization. Serialization is
the process of converting an object into a stream of bytes. This process (affectionately known
as dehydration) generates a stream of bytes or characters, which can be stored or transported.
To serialize an object, you can use the BinaryFormatter or SoapFormatter class. You can also
use the XmlSerializer class to convert objects into XML documents. All three classes expose
a Serialize class that accepts as arguments the object to be serialized and a stream object and
writes the serialized version of the object to the specified stream. The opposite of serialization
is called deserialization. To reconstruct the original object, you use the Deserialize method of
the same class you used to serialize the object.

Master It Describe the process of serializing an object with the XmlSerializer class.

Chapter 14

An Introduction to LINQ

In Chapter 12, ‘‘Storing Data in Collections,’’ you learned how to create collections, from simple
arrays to specialized collections such as HashTables and Lists, and how to iterate through them
with loops to locate items. Typical collections contain objects, and you already know how to
create and manipulate custom objects. In Chapter 13, ‘‘XML In Modern Programming,’’ you
learned how to serialize these collections into XML documents, as well as how to create XML
documents from scratch. And in Part V of this book, you’ll learn how to manipulate large
amounts of data stored in databases.

Each data source provides its own technique for searching and manipulating individual
items. What is common in all data sources are the operations we perform with the data; we
want to be able to query the data, select the values we’re interested in, and update the data
sources by adding new data or editing the existing data. It’s therefore reasonable to assume a
common query language for all data sources. This common query language was introduced
with version 3.5 of the Framework and is now part of all .NET languages. It’s the LINQ
component.

LINQ stands for Language Integrated Query, a small language for querying data sources. For
all practical purposes, it’s an extension to Visual Basic. More specifically, LINQ consists of state-
ments that you can embed into a program to select items from a collection based on various
criteria. Unlike a loop that examines each object’s properties and either selects or rejects the
object, it, LINQ is a declarative language: It allows you to specify the criteria, instead of spec-
ifying how to select the objects. A declarative language, as opposed to a procedural language,
specifies the operation you want to perform, and not the steps to take. VB is a procedural lan-
guage; the language of SQL Server, T-SQL, is a declarative language.

In this chapter, you’ll learn how to do the following:

◆ Perform simple LINQ queries.

◆ Create and process XML files with LINQ to XML.

◆ Process relational data with LINQ to SQL.

578 CHAPTER 14 AN INTRODUCTION TO LINQ

What Is LINQ?
Although defining LINQ is tricky, a simple example will demonstrate the structure of LINQ
and what it can do for your application. Let’s consider an array of integers:

Dim data() As Int16 = {3, 2, 5, 4, 6, 4, 12, 43, 45, 42, 65}

To select specific elements of this array, you’d write a For…Next loop, examine each element
of the array, and either select it by storing it into a new array or ignore it. To select the ele-
ments that are numerically smaller than 10, you’d write a loop like the following:

Dim smallNumbers As New ArrayList
Dim itm As Integer
For Each itm In data

If itm < 10 Then
smallNumbers.Add(itm)

End If
Next

Can you see why I’m using an ArrayList to store the selected values? I could have
used another array, but arrays must be declared with dimensions, and I’d have to resize
the array or start with an array large enough to store all the elements. Let’s do the same
with LINQ:

Dim smallNumbers = From n In data
Where n < 10
Select n

This is a peculiar statement indeed, unless you’re familiar with SQL, in which case you can
easily spot the similarities. LINQ, however, is not based on SQL, and not every operation has
an equivalent in both. Both SQL and LINQ, however, are declarative languages that have many
similarities. If you’re familiar with SQL, you have already spotted the similarities and the fact
that LINQ rearranges the basic elements. Whereas SQL can be used only with database tables,
LINQ can be applied to collections, XML files, and SQL tables. It’s a uniform language for
querying data from several data sources.

Let’s look at the LINQ query in greater detail:

Dim smallNumbers = From n In data
Where n < 10
Select n

Start with the structure where the selected elements will be stored; this structure will hold the
result of the query. The smallNumbers variable is declared without a type, because its type is
determined by the type of the collection you’re querying. Type inference, which must be turned
on for this statement to work, makes this possible. If type inference is off, you must declare the
variable that will accept the result of the query.

WHAT IS LINQ? 579

Because the query selects elements from the data array, the smallNumbers variable can’t
represent anything but an array of integers. Actually, it’s not exactly an array of integers; it’s a
typed collection of integers that implements the IEnumerable interface. If you hover the pointer
over the name of the collection, you’ll see that its type is IEnumerable(Of Short).

The LINQ query starts after the equals sign with the From keyword, which is followed by
a variable that represents the current item in the collection, followed by the In keyword and
the name of the collection. The variable is called the control variable, just like the variable of a
For…Next or For Each loop, and it represents the entity you’re working with. If the collection
is an array of integers, the control variable is an integer; if the collection is a List of Customer
objects, then the control variable is a Customer object. The first part of the query specifies the
collection we’re going to query.

Then comes the Where clause that limits the selection. The Where keyword is followed by
an expression that involves the control variable; this expression limits your selection. In this
extremely trivial example, I select the elements that are less than 10. The expression of the
Where clause can become quite complicated, as you will see shortly. It’s a VB-like expression
that’s evaluated for every element in the collection; it returns a True/False value; and it
determines which elements will be selected, and which elements will be ignored.

The last keyword in the expression, the Select keyword, determines what you’re selecting.
In most cases, you will select the control variable itself but not always. Here’s a variation of the
previous query expression:

Dim evenValues = From n In data _
Where m mod 2 = 0
Select "Number " & n.ToString & " is even"

Here, I select the even numbers from the original array and then form a string for each of
the selected values. This time, the result of the query (the evenValues variable) is an IEnumer-
able of strings, as determined by the compiler. The Select clause is optional; if you omit it, the
query will return the control variable itself.

But why bother with a new component to select values from an array? A For Each loop
that processes each item in the collection is not really complicated and is quite efficient. LINQ
is a universal approach to querying data, and it can be used to query all kinds of data, from
XML documents to databases. When you work with databases, for example, you can’t afford to
move all the data to the client, select a few of them from within a loop, and ignore the rest. A
database table may contain thousands and thousands of rows, and you may end up selecting a
few hundred of them. LINQ is smart enough to execute the appropriate statements against the
database and return to the client only the data you’re interested in. I’ll discuss these aspects of
LINQ and databases (LINQ to SQL) in much detail later in this chapter.

As I have mentioned in the introduction, LINQ isn’t limited to arrays and collections.
Although iterating through an array of integers, or even objects, may be trivial, the same isn’t
true for XML documents. LINQ allows you to select the elements of an XML document you’re
interested in without having to navigate through the nodes of the document, as we did in the
previous chapter. At any rate, LINQ is the latest and hottest technology from Redmond — it
may very well become a universal language, just like SQL. It’s a very powerful and flexible
tool that can be used in many diverse situations. It’s certainly much more flexible than straight
VB code, because it’s a declarative language. Remember that with LINQ, you specify what you
want to do, not how the computer will do it.

580 CHAPTER 14 AN INTRODUCTION TO LINQ

LINQ Components
To support such a wide range of data sources, LINQ is comprised of multiple components,
which are the following:

LINQ to XML This component enables you to create and process XML documents. In effect,
it replaces XQuery expressions that are used today to select the items of interest in an XML
document. It also replaces the Where method of the Elements and Descendants properties. In
effect, the compiler calls these methods behind the scenes, and LINQ is only ‘‘syntactic sugar’’
that hides much of the complexity of querying collections with extension methods. Because of
LINQ to XML, some new classes that support XML were introduced to Visual Basic, and XML
has become a basic data type of the language, as discussed in the preceding chapter. In this
chapter, you’ll learn how to use LINQ to XML to create, query, and transform XML files.

LINQ to Objects This component enables you to search any collection of built-in or custom
objects. If you have a collection of Color objects, for example, you can select the colors with a
brightness of 0.5 or more via the following expression:

Dim colors() As Color = {Color.White, _
Color.LightYellow, Color.Cornsilk, _
Color.Linen, Color.Blue, Color.Violet}

Dim brightColors = From c In colors _
Where c.GetBrightness > 0.5

Likewise, you can select the rectangles with a minimum or maximum area by using a query
like the following:

Dim rects() As Rectangle = _
{New Rectangle(0, 0, 100, 120), _
New Rectangle(10, 10, 6, 8)}

Dim query = From R In rects _
Where R.Width * R.Height > 100

In addition to querying data, you can also group related data together, calculate aggregates,
and even transform the original data (creating an HTML or XML file with the data of a collec-
tion is a trivial process, as you will see later in this chapter).

LINQ to SQL This component enables you to query relational data by using LINQ rather
than SQL. If you’re familiar with SQL, you recognize the following statement that retrieves the
products in a specific category of the Northwind database:

SELECT * FROM Products
WHERE Products.CategoryID = 2

To execute this statement against the Northwind database, however, you must set up a Con-
nection object to connect to the database, a Command object to execute the command, and a
DataReader object to read the results returned by the query. (Don’t worry if you’re not familiar
with SQL and databases, which are discussed later in this chapter.) With LINQ to SQL, you can

LINQ TO OBJECTS 581

set up a DataContext object, which is roughly equivalent to the Connection object, and then use
it to execute LINQ queries against the database.

customers = From prod In db.GetTable(Of Product)()
Where prod.CategoryID = 2
Select New Product With _

{.ID = prod.ProductID,
.Name = prod.ProductName,
.Price = prod.UnitPrice}

In the preceding statement, db is a properly initialized DataContext object. This query returns
a collection of an anonymous type with three properties (ID, Name, and Price). This is a triv-
ial example, meant to demonstrate how you can access diverse data sources and query them
in a consistent way with the basic LINQ syntax; the details of LINQ to SQL are discussed in
detail later in this chapter. The point I’m trying to make here is that LINQ allows you to work
against database tables as if they were collections of typed objects. The same query would have
worked with a collection of Product objects. All you have to do is change the source of the data
by replacing the expression db.GetTable(Of Product) with the name of the collection.

LINQ to DataSet This component is similar to LINQ to SQL, in the sense that they both query
relational data. The LINQ to DataSet component allows you query data that have already been
stored in a DataSet at the client. DataSets are discussed in detail later in this book, but I won’t
discuss the LINQ to DataSet component, because the DataSet is an extremely rich object and
quite functional on its own.

LINQ to Entities This is similar to the LINQ to Objects component, only the objects are based
on relational data. Entities are discussed in the last part of this book, and they’re classes that
reflect the tables in a database. These classes are generated automatically, and they handle the
basic data operations: querying tables and updating, deleting or inserting rows in the tables.
The LINQ to Entities component is discussed in detail in Chapter 17, ‘‘Using the Data Entity
Model,’’ of this book. Actually, LINQ is one of the empowering technologies for data entities.

New flavors of LINQ keep coming up — you may end up designing your own flavor of
LINQ to support your custom data so that other developers can use them with standard tools.
There’s already a LINQ to Amazon component that allows you to query the books at Ama-
zon.com using LINQ. The essence of LINQ is that it allows developers to query widely differ-
ently data sources using the same syntax. You can even query database using LINQ.

LINQ to Objects
This section focuses on querying collections of objects. Although you can query many types of
collections, including arrays, in this section I’ll focus on List collections to promote the use
of strongly typed data and to show you how nicely typed data integrate with LINQ. As you
can guess, the most interesting application of LINQ to Objects is to select items from a collec-
tion of custom objects. Let’s create a custom class to represent products:

Public Class Product
Public Property ProductID() As String
Public Property ProductName() As String

582 CHAPTER 14 AN INTRODUCTION TO LINQ

Public Property ProductPrice() As Decimal
Public Property ProductExpDate() As Date
End Class

I’m not showing the implementation of various properties; let’s work with auto-implemented
properties for now. This class definition may appear in a class file or in a form outside any
procedure. The Products collection is a List(Of Product) collection, and it’s populated with
statements like the following:

Dim Products As New List(Of Product)
Dim P As Product
P = New Product
P.ProductID = "10A-Y"
P.ProductName = "Product 1"
P.ProductPrice = 21.45
P.ProductExpDate = #8/1/2009#
Products.add(P)

Assuming that you have added a few more custom objects to your list, you can use LINQ to
query your collection of products based on any property (or combination of properties) of its
items. To find the products that cost more than $20 and are expired already, you can formulate
the following query:

Dim query = From prod In products
Where prod.ProductPrice < 20

And Year(prod.ProductExpDate) < 2010
Select prod

The result of the query is also a List collection, and it contains the products that meet the spec-
ified criteria. To iterate through the selected items and display them in a TextBox control, we
use a For…Each loop, as shown next:

For Each prod In query
TextBox1.AppendText(prod.ProductID & vbTab &

prod.ProductName & vbTab &
prod.ProductPrice.ToString("##0.00") & vbTab &
prod.ProductExpDate.ToShortDateString & vbCrLf)

Next

Another component of a LINQ expression is the Order By clause, which determines how
the objects will be ordered in the output list. To sort the output of the preceding example in
descending order, append the following Order By clause to the expression:

Dim query = From prod In products
Where prod.ProductPrice < 20

And Year(prod.ProductExpDate) < 2010
Select prod
Order By prod.ProductName

LINQ TO OBJECTS 583

Anonymous Types and Extension Methods
LINQ is based on three pillars that are not related to each other — they aren’t even part
of LINQ. These pillars are anonymous types, extension methods, and object and collection
initializers. You’re already familiar with all three of them. Object initializers and anonymous
types were presented in Chapter 8, ‘‘Working with Objects.’’ Extension methods were intro-
duced in Chapter 13, ‘‘XML in Modern Programming.’’ I’ll now review these topics and how
they’re combined in LINQ.

Anonymous types allow you to create typed objects on the fly; this is what the Select key-
word of LINQ does. It allows you to create arbitrary objects and form collections of anonymous
types. The compiler knows their properties (it actually generates classes that describe these
arbitrary objects on the fly) and incorporates them in IntelliSense. Object initializers allow you
to create anonymous types using the With keyword right in the Select clause of a LINQ query.
You may be querying a collection of Product objects but are only interested in their IDs and
prices. Instead of selecting the control variable that contains all the fields of each product, you
can create a new anonymous type on the fly with an expression like the following:

Select New With {.ProductName = prod.Name, .ProductPrice = prod.UnitPrice}

As you will see in the following sections, it’s quite common to create anonymous types with
selected fields on the fly in LINQ queries, because we rarely need all the fields of the objects
we’re querying. If you’re familiar with SQL, you already know that it’s a bad practice to select
all fields from one or more tables. They are called anonymous because they have no name you
can use to create instances of these types; other than that, they’re regular types with strongly
typed properties.

Extension methods are methods that you implement for specific types without seeing the code
of the original type. The Array class, for example, was extended by the addition of several such
methods, including the Count, Skip, and Take methods. These methods are not actual mem-
bers of the array; they’re extension methods that apply to all collections that implement the
IEnumerable interface.

As you recall from the previous chapter, the collections expose the Where method, which
accepts a lambda expression as an argument to select specific elements. The syntax of the Where
method, however, is quite awkward. The Where keyword of LINQ does the same, but it does so
in a more elegant and intuitive manner. In effect, the compiler translates the LINQ queries into
expressions with extension methods.

As you recall from the previous chapter, lambda expressions are what make extension meth-
ods so powerful. Let’s look at a few more interesting extension methods that make collections,
including arrays, extremely flexible and powerful. The Sum method returns the sum of the
elements in a collection that holds numeric data. This is a pretty limited aggregate operator,
however. What if you wanted the sum of the squares or another metric of the collection’s
members? An overloaded form of the Sum method accepts a lambda expression as an argu-
ment; this allows you to specify your own aggregate. To calculate the sum of the squares, for
example, use the following expression:

Dim numbers = {1.01, 31.93, 8.12, 5.05, 21.81, 17.33, 2.45}
Dim sumOfSquares = numbers.Sum(Function(n) n ˆ 2)

This returns the sum of the squares in the numbers array. If you wanted to calculate the sum of
the logarithms, you’d use a lambda function like this: Function(n) Math.Log(n).

584 CHAPTER 14 AN INTRODUCTION TO LINQ

To calculate averages instead of sums, use the Average extension method. The average of
the squares of the numeric values is as follows:

Dim averageOfSquares = numbers.Average(Function(n) n ˆ 2)

Experiment with the extension methods of the Array class, or any collection you wish. The
extension methods are shown in the IntelliSense box with the same icon as the regular method
and a little arrow pointing down.

Querying Arbitrary Collections
As I mentioned already, you can apply LINQ to all classes that implement the IEnumerable
interface. Many methods of the Framework return their results as a collection that implements
the IEnumerable interface. As discussed in the tutorial ‘‘Accessing Folders and Files,’’ (available
for download from www.sybex.com/go/masteringvb2010), the GetFiles method of the
IO.Directory class retrieves the files of a specific folder and returns them as a collection of
strings:

Dim files = Directory.GetFiles("C:\")

I’m assuming that you have turned on type inference for this project (it’s on by default), so
I’m not declaring the type of the files collection. If you hover over the files keyword, you’ll
see that its type is String() — an array of strings. This is the GetFiles method’s return type,
so you need not declare the files variable with the same type. The variable type is inferred
from its value.

To find out the properties of each file, create a new FileInfo object for each file, and then
examine the values of the FileInfo object’s properties. To create an instance of the FileInfo class
that represents a file, you’d use the following statement:

Dim FI As New FileInfo(file_name)

(As a reminder, the FileInfo class as well as the DirectoryInfo class belong to the IO namespace.
You must either import the namespace into the current project or prefix the class names with
the IO namespace: IO.FileInfo.) The value of the FI variable can now be used in the Where
clause of the expression to specify a filter for the query:

Dim smallFiles = _
From file In Directory.GetFiles("C:\")
Where New FileInfo(file).Length < 10000
Order By file
Select file

The file control variable is local to the query, and you cannot access it from the rest of the
code. You can actually create a new file variable in the loop that iterates through the selected
files, as shown in the following code segment:

For Each file In smallFiles
Debug.WriteLine(file)

Next

LINQ TO OBJECTS 585

The selection part of the query is not limited to the same variable as specified in the From
clause. To select the name of the qualifying files, instead of their paths, use the following selec-
tion clause:

Select New FileInfo(file).Name

The smallFiles variable should still be an array of strings, right? Not quite. This time, if
you hover the pointer over the name of the smallFiles variable, you’ll see that its type is
IEnumerable(Of String). And this makes sense, because the result of the query is not of the
same type as its source. This time we created a new string for each of the selected items, so
smallFiles is an IEnumerable of strings. Let’s select each file’s name and size with the follow-
ing query:

Dim smallFiles = _
From file In Directory.GetFiles("C:\")
Where New FileInfo(file).Length > 10000
Select New FileInfo(file).Name,

New FileInfo(file).Length

This time, smallFiles is of the IEnumerable(Of <anonymous type>) type. The anonymous
type isn’t really anonymous; the compiler generates a class to represent the anonymous type
internally and gives it a name like VB_AnonymousType_1’3 or something — and yes, the
single quote is part of the name, not a typo. However, you can’t use this class to declare
new objects. Anonymous types are very convenient (like auto-implemented properties,
in a way), but they can’t be used outside their scope (the module in which they were
created).

Because I selected the two properties of interest in the query (the file’s name and size), I can
display them with the following loop:

For Each file In smallFiles
Debug.WriteLine(file.Name & vbTab & file.Length.ToString)

Next

As soon as you type in the name of the file variable and the following period, you will see
the Name and Length properties of the anonymous type in the IntelliSense box (proof that the
compiler has generated a new type on the fly).

The properties of the new type are named after the items specified in the Select clause, and
they have the same type. You can also control the names of the properties of the anonymous
type with the following syntax:

Select New With {.FileName = New FileInfo(file).Name,
.FileSize = New FileInfo(file).Length}

This time you select a new object, and a new variable is created on the fly and has two prop-
erties named FileName and FileSize. The values of the two properties are specified as usual.
Note that, although you can specify the names of the properties of the anonymous type, you

586 CHAPTER 14 AN INTRODUCTION TO LINQ

can’t specify the anonymous type’s name. To display each selected file’s name and size, modify
the For…Each loop as follows:

For Each file In smallFiles
Debug.WriteLine(file.FileName & vbTab &

file.FileSize.ToString)
Next

As you can see, LINQ is not a trivial substitute for a loop that examines the properties of
the collection items; it’s a powerful and expressive syntax for querying data in your code that
creates data types on the fly and exposes them in your code.

You can also limit the selection by applying the Where method directly to the collection:

Dim smallFiles = Directory.GetFiles("C:\").Where (
Function(file) (New FileInfo(file).Length > 10000))

The functions you specify in certain extended methods are called lambda functions, and they’re
declared either inline, if they’re single-line functions, or as delegates.

Let me explain how the Where extension method of the previous sample code segment
works. The Where method should be followed by an expression that evaluates to a True/False
value — the lambda function. First specify the signature of the function; in our case, the
function accepts a single argument, which is the current item in the collection. Obviously, the
Where clause will be evaluated for each item in the collection, and for each item, the function
will accept a different object as an argument. In the following section, you’ll see lambda
functions that accept two arguments. The name of the argument can be anything; it’s a name
that you will use in the definition of the function to access the current collection item. Then
comes the definition of the function, which is the expression that compares the current file’s
size to 10,000 bytes. If the size exceeds 10,000 bytes, the function will return True — otherwise,
False.

In this example, the lambda function is implemented in-line. To implement more compli-
cated logic, you can write a function and pass the address of this function to the Where clause.
Let’s consider that the function implementing the filtering is the following:

Private Function IsLargeTIFFFile(ByVal fileName As String) As Boolean
Dim file As FileInfo
file = New FileInfo(fileName)
If file.Length > 10000 And file.Extension.ToUpper = ".TIF" Then

Return True
Else

Return False
End If

End Function

To call this function from within a LINQ expression, use the following syntax:

Dim largeImages =
Directory.GetFiles("C:\").Where(AddressOf IsLargeTIFFFile)

MsgBox(smallFiles.Count)

LINQ TO OBJECTS 587

Aggregating with LINQ
Another very important aspect of LINQ is that it allows you to query for aggregates. More
often than not, you’re not interested in the qualifying rows in a database (or objects in a col-
lection) but rather in their aggregates. In many scenarios, the orders placed by each customer
are not nearly as important as the total monthly revenue or the average of the orders in a given
period. Aggregate data can be easily compared and used to allow managers to adjust their mar-
keting or selling strategies. Likewise, the total cost of discontinued items is a useful metric, as
opposed to a list of discontinued items and prices, and so on. Now that you can write LINQ
queries to select objects based on any criteria, you can certainly iterate through the selected
objects and calculate all the metrics you’re interested in. LINQ can do better than that; it allows
you to select the desired aggregates, rather than individual objects. And it’s much faster to let
LINQ perform the calculations, rather than doing it yourself by looping through the data. If the
data resides in a database, LINQ can calculate the aggregates over millions of records, with-
out moving all the qualifying rows from the database to the client computer and processing
them there.

By default, LINQ adds a few extension methods for calculating aggregates to any collection
that supports the IEnumerable interface. Let’s return to the array of integers, the data array. To
calculate the count of all values, call the Count method of the data array. The count of elements
in the data array is given with the following expression:

Dim count = data.Count

In addition to the Count method, any LINQ-capable class exposes the Sum method, which
sums the values of a specific element or attribute in the collection. To calculate the sum of the
selected values from the data array, use the following LINQ expression:

Dim sum = From n data
Where n > 10
Select n.Sum

You can also calculate arbitrary aggregates by using the Aggregate method, which accepts
a lambda expression as an argument. This expression, in turn, accepts two arguments: the
current value and the aggregate. The implementation of the function, which is usually a
single-liner, calculates the aggregate. Let’s consider a lambda expression that calculates the sum
of the squares over a sequence of numeric values. The declaration of the function is as follows:

Function(aggregate, value)

Its implementation is shown here. (This is just the code that increases the aggregate at each
step; no function declaration is needed.)

aggregate + value ˆ 2

Note that the preceding expression evaluates the aggregate by adding a new value (the
square of the current number in the collection) to the aggregate; it doesn’t actually update the
aggregate. In other words, you can’t use a statement like this one (as intuitive as it may look):

aggregate += value ˆ 2

588 CHAPTER 14 AN INTRODUCTION TO LINQ

To calculate the sum of the squares of all items in the data array, use the following LINQ
expression:

Dim sumSquares = data.Aggregate(
Function(sumSquare As Long, n As Integer)

sumSquare + n ˆ 2

The single statement that implements the aggregate adds the square of the current element
to the sumSquare argument. When you’re done, the sumSquare variable holds the sum of the
squares of the array’s elements. If you hover the pointer over the sumSquare variable, you’ll see
that it is an Integer or Double type, depending on the type of the values in the collection you’re
aggregating. In short, the lambda expression for evaluating aggregates accepts two arguments:
the aggregate and the current value. The code is an expression that updates the aggregate, and
this is the function’s return value, which is assigned to the aggregate.

Aggregates are not limited to numeric values. Here’s an interesting example of a LINQ
expression that reverses the words in a sentence. The code starts by splitting the sentence into
words, which are returned in an array of strings. Then, it calls the Aggregate method, passing
a lambda expression as an argument. This expression is a function that prefixes the aggregate
(a new string with the words in reverse order) with the current word:

Dim sentence =
"The quick brown fox jumped over the lazy dog"

Dim reverseSentence =
sentence.Split(" "c).Aggregate(
Function(newSentence, word) (
word & " " & newSentence))

This code segment is a bit complicated and calls for an explanation. It starts by creating an
array of strings: The words in the sentence are extracted by the Split method into an array of
strings. Then we apply the Aggregate extension method to the array. The Aggregate method
accepts the lambda expression as an argument, which creates a new string, the newSentence
string, by inserting each new word at the beginning of the sentence. If you were appending
the words to the newSentence variable, you’d be re-creating the original string from its pieces;
here, I reversed the order of the words.

The lambda expression you pass to the Aggregate method is a function that accepts two
arguments: the control variable and the aggregate variable. The function is executed for each
item in the collection, and the value of the current item is the control variable (in our case,
each consecutive word in the sentence). The aggregate variable newSentence is the variable in
which you aggregate the desired quantity. At the end of the loop, the newSentence variable
contains the words extracted from the string but in reverse order.

The following are a few more interesting extension methods:

Take (N), TakeWhile (Expression) This method selects a number of elements from the col-
lection. The first form selects the first n elements, while the second form continues selecting
elements from the collection while the expression is True. To select values while they’re smaller
than 10, use the following lambda expression:

Function(n) n < 10

This expression selects values until it finds one that exceeds 10. The selection stops there,
regardless of whether some of the following elements drop below 10.

LINQ TO OBJECTS 589

Skip and SkipWhile The Skip and SkipWhile methods are equivalent to the Take and
TakeWhile methods: They skip a number of items and select the remaining ones. You can use
the Skip and Take methods in tandem to implement paging. Assuming that pageSize is the
number of items you want to display at once and page is the number of the current page, you
can retrieve any page’s data with a statement like the following:

Data.Skip((pageSize – 1) * page).Take(pageSize)

Distinct The Distinct method, finally, returns the distinct values in the collection:

Dim uniqueValues = data.Distinct

Some Practical LINQ Examples
At this point, you can create an array of simple objects to explore some of the more advanced
features of LINQ to Objects. The sample code presented in this section comes from the IEnu-
merables project (available for download from www.sybex.com/go/masteringvb2010), whose
interface is shown in Figure 14.1. Each button generates some output, which is displayed on
the TextBox that takes up most of the form.

Figure 14.1

The IEnumerables
sample application

The following array contains a number of objects representing people, but they’re anony-
mous types (there’s no collection that implements the specific type). In the IEnumerables

590 CHAPTER 14 AN INTRODUCTION TO LINQ

project, the ArrayOfPersons array is declared outside any procedure so that multiple event
handlers can access it.

Dim ArrayOfPersons() = {New With {.SSN = "555-00-9001",
.First = "Peter", .Last = "Evans", .Age = 27},

New With {.SSN = "555-00-9002", .
First = "James", .Last = "Dobs", .Age = 42},

New With {.SSN = "555-00-9003", .First = "Richard",
.Last = "Manning", .Age = 33},

New With {.SSN = "555-00-9004",
.First = "Rob", .Last = "Johnson", .Age = 52},

New With {.SSN = "555-00-9005",
.First = "Peter", .Last = "Smith", .Age = 38},

New With {.SSN = "555-00-9006",
.First = "John", .Last = "Tall", .Age = 22},

New With {.SSN = "555-00-9007",
.First = "Mike", .Last = "Johnson", .Age = 33},

New With {.SSN = "555-00-9008",
.First = "Peter", .Last = "Larson", .Age = 43},

New With {.SSN = "555-00-9009",
.First = "James", .Last = "Smith", .Age = 37}}

The basic age statistics for the array (minimum, maximum, and average values) can be
obtained with the following expressions:

ArrayOfPersons.Average(Function(p) p.Age)
ArrayOfPersons.Min(Function(p) p.Age)
ArrayOfPersons.Max(Function(p) p.Age)

There’s no need to iterate through the array’s elements; the Average, Min, and Max extension
methods return the desired aggregates. To select items from the array based on some criteria,
use the Where method. The following queries extract the young and not-so-young people in the
array (the threshold is 30 years):

Dim youngPersons = From p In ArrayOfPersons Where p.Age < 30 Select p
Dim notSoYoungPersons = From p In ArrayOfPersons Where p.Age >= 30 Select p

To combine two IEnumerable collections, use the Concat method, which is applied to a
collection and accepts as an argument another collection:

Dim allPersons = youngPersons.Concat(notSoYoungPersons)

If you don’t care about the names and other data for the ‘‘not-so-young’’ people, you can
calculate the average age in this age group with the following query:

Dim youngPersonsAvgAge =
(From p In ArrayOfPersons Where p.Age < 30 Select p.Age).Average

LINQ TO OBJECTS 591

Pretty simple. First determine the segment of the population you want to aggregate over,
and then call the Average method. Another, less obvious and certainly less recommended
approach is to calculate the sum of the ages and their count and divide the two values:

Dim youPersonsAvgAge2 =
(From p In ArrayOfPersons Where p.Age < 30 Select p.Age).Sum /
(From p In ArrayOfPersons Where p.Age < 30).Count

Aggregates are the most useful operations you can perform on a collection, but you’ll
rarely aggregate over the entire collection. The average age of an entire population or the
purchases of an entire population often are not as useful as the aggregates of specific segments
of a population. In the preceding example, I created a second collection made up only of the
people we were interested in and then applied the aggregation operators over that entire
population. Let’s do the same without an intermediate collection.

Grouping and Aggregating

To demonstrate the grouping operator of LINQ, let’s break down the population according to
age. Specifically, let’s break the population into segments by decade (people in their 20s, 30s,
and so on). Breaking a set of data into groups of related items is known as grouping, and it’s
supported by the GroupBy extension method. The GroupBy extension method accepts as an
argument a lambda expression, which indicates the various groups. To group ages according
to their decade, you’d use an expression like the following:

Math.Floor(Age / 10) * 10

Consider the ages 41 and 49. The Floor function returns the largest integer that doesn’t
exceed its argument, and in this case it will return 4 for both values (4.1 and 4.9). Then, mul-
tiply this integer value by 10 to obtain the actual decade (40). Once you have come up with
an expression to group people according to their age, you can write the query to retrieve the
groups:

Dim grouped = ArrayOfPersons.GroupBy(Function(p) Math.Floor(p.Age / 10) * 10)

If you hover the cursor over the grouped variable, you will see that its type is IEnumerable.
But what does it contain? The exact type of the return value is IEnumerable(Of Double,
anonymous_type). The return value of the GroupBy method is an IEnumerable collection with
the keys of the groups (the age decade) and the actual items. As you can see, the compiler has
figured out that the key is a Double value (the age), and the actual object is of an anonymous
type — the exact same type as the elements of the array.

The following loop prints the names of the groups and their count (number of people in that
age decade):

For Each grp In grouped
TextBox1.AppendText("Group: " & grp.Key &

" contains " & grp.Count.ToString & " persons" & vbCrLf)
Next

592 CHAPTER 14 AN INTRODUCTION TO LINQ

Each item in the collection has a Key property (the value according to which the items are
grouped) and a Count property. The actual value of the grp variable is a collection of Person
objects. To print the people in each age group, write a loop like the following:

TextBox1.AppendText("GROUPS AND THEIR MEMBERS" & vbCrLf)
For Each group In grouped

TextBox1.AppendText("GROUP OF " & group.Key.ToString & vbCrLf)
TextBox1.AppendText("Group Members:" & vbCrLf)
For Each person In group.OrderBy(Function(p) p.Age)

TextBox1.AppendText(vbTab & person.First & " " &
person.Last & " : " & person.Age.ToString & vbCrLf)

Next
Next

The outer loop goes through each group. At this level, you access the Key property and use it
as a header. The inner loop goes through items in the current group. The preceding statements
will generate the following output:

GROUP OF 20
Group Members:

John Tall : 22
Peter Evans : 27

GROUP OF 30
Group Members:

Richard Manning : 33
Mike Johnson : 33
James Smith : 37
Peter Smith : 38

GROUP OF 40
Group Members:

James Dobs : 42
Peter Larson : 43

GROUP OF 50
Group Members:

Rob Johnson : 52

How about calculating aggregates on each group? To perform aggregates on the groups,
you must create another collection of anonymous types, just like the original, with an extra
field that groups the items together. The following statement generates a new collection of
objects that includes each person’s age group (the ageGroup property):

Dim tmpGroups = From person In ArrayOfPersons
Select New With {.SSN = person.SSN, .First = person.First,

.Last = person.Last, .Age = person.Age,

.ageGroup = Math.Floor(person.Age / 10) * 10}

LINQ TO OBJECTS 593

Now, you can calculate the average age in each group. The following query goes through
each group and calculates the average age in each group. To make the query a little more inter-
esting, I’ve added the number of members in each group:

Dim ageGroups = From P In tmpGroups
Order By P.ageGroup
Group By P.ageGroup Into G = Group,

AgeGroupCount = Count(),
ageGroupAverage = Average(System.Convert.ToDecimal(P.Age))

This query groups the members of the tmpGroups collection into groups based on the
ageGroup property and then calculates the count of the members and the average age in each
group. If you iterate through the members of the collection and print the age group and the
two statistics, you’ll get something like this:

AGE GROUP: 20 COUNT: 2 AVERAGE AGE IN GROUP: 24.50
AGE GROUP: 30 COUNT: 4 AVERAGE AGE IN GROUP: 35.25
AGE GROUP: 40 COUNT: 2 AVERAGE AGE IN GROUP: 42.50
AGE GROUP: 50 COUNT: 1 AVERAGE AGE IN GROUP: 52.00

If you’re wondering why you had to create an intermediate collection to add the group-
ing field instead of grouping by the expression Math.Floor(P.Age / 10) * 10, the answer is
that you can’t use functions or methods in a group’s control variable. Some readers may have
noticed that the collection should hold birth dates, not ages. Try to perform the same queries
after replacing the Age property with a BirthDate property.

You have seen quite a few nontrivial LINQ queries, and you should have a good idea about
LINQ and how flexible it is. Writing efficient queries will take a bit of effort, and you should
explore on your own as many sample queries as you can. A good starting point is the 101
LINQ Samples page at http://msdn.microsoft.com/en-us/vbasic/bb688088.aspx (a great
resource on LINQ by Microsoft). You won’t find any explanations on the queries (not as of
this writing, at least), but try to understand as many of the queries as you can. Personally,
I find it very convenient to use LINQ in my code whenever possible, even with anonymous
types.

Keep in mind that LINQ is a declarative language: It tells the compiler what to do, not how
to do it. And that’s what makes it very flexible. LINQ statements are executed in a single step,
and you can’t place a breakpoint inside a LINQ query to follow its execution. You just try to
write a syntactically correct query and then test the results to make sure you got what you
aimed for from the collection.

Transforming Objects with LINQ
In this section, you’ll learn how to use LINQ to transform collections of objects. I’ll start with
a collection of custom objects and transform them into objects with a different structure. You’ll
also see how easy it is to create HTML or XML files to describe the same collection using LINQ.

In the examples so far, I used anonymous types, which are quite common and convenient.
In large applications, however, where the same data may be reused in several parts of the

594 CHAPTER 14 AN INTRODUCTION TO LINQ

application or by many developers, it’s strongly recommended that you work with typed data.
Let’s start with a class that represents books, the Books class. It’s a simple but not trivial class,
because its definition contains two custom types and an array. Author information is stored in
an array of Author objects. Each book’s price and stocking information is stored in two custom
objects; they’re the Price and Stock properties. The Price property can have multiple values
(retail and wholesale prices or any other price that suits you), and the Stock property is an
object with two properties, the InStock and OnOrder properties. Here’s the definition of the
Books class:

Public Class Books
Public Class Book

Public Property ISBN As String
Public Property Title As String
Public Property Publisher As String
Public Property Authors As Author()
Public Property Price As Prices
Public Property Stock As Stock

End Class

Public Class Prices
Private _RetailPrice? As Decimal
Private _StorePrice? As Decimal
Private _OnlinePrice? As Decimal

Public Property RetailPrice As Decimal
...
End Property

Public Property StorePrice As Decimal
...
End Property

Public Property OnlinePrice As Decimal
...
End Property

End Class

Public Class Stock
Private _OnOrder? As Integer
Public Property InStock As Integer

Public Property OnOrder As Integer
...
End Property

End Class

Public Class Author

LINQ TO OBJECTS 595

Public Property FirstName As String
Public Property LastName As String

End Class
End Class

Some of properties are auto-implemented, while others are implemented with the usual set-
ters and getters. The latter includes some business logic, such that prices can’t be negative, but
I’m not showing the equivalent code (which you can find in the IEnumerables project).

Create a few objects of the Book type and add them to a List collection. I’m using object ini-
tializers in the code, because that’s the most compact notation, but you can create individual
Book objects and add them to the collection if you want. Listing 14.1 shows the statements that
initialize the allBooks collection.

Listing 14.1: Initializing a list of Book objects

Dim allBooks As New List(Of Books.Book)
allBooks.Add(New Books.Book With

{.ISBN = "1000000100", .Title = "Book 100",
.Publisher = "Wiley",
.Stock = New Books.Stock With

{.InStock = 14, .OnOrder = 20},
.Authors = {New Books.Author With

{.FirstName = "Richard",
.LastName = "Dobson"}},

.Price = New Books.Prices With
{.StorePrice = 12.95,
.RetailPrice = 15.95}})

allBooks.Add(New Books.Book With
{.ISBN = "1000000101", .Title = "Book 101",
.Publisher = "Sybex",
.Stock = New Books.Stock With

{.InStock = 8, .OnOrder = 25},
.Authors = {New Books.Author With

{.FirstName = "Bob",
.LastName = "Smith"}},

.Price = New Books.Prices With
{.StorePrice = 24.95,
.RetailPrice = 29.99}})

Let’s start by transforming the list of books into an HTML document, like the one shown in
Figure 14.2. We’ll write a LINQ query as usual, but we’ll embed it into an XMLElement variable.
I’ll start with the query that transforms the data and then explain it in detail. Listing 14.2 shows
the code that creates the HTML document that produced the page shown in Figure 14.2.

596 CHAPTER 14 AN INTRODUCTION TO LINQ

Listing 14.2: Transforming a collection into an XML segment

Dim html = <html>
<h2>List of Books</h2>
<table border="all">

<tr>
<td margin="10" width="90px">ISBN</td>
<td margin="10" width="280px">Title</td>
<td margin="10" width="140px">Author(s)</td>
<td margin="10" width="70px">Price</td>

</tr>
<%= From bk As Books.Book In allBooks

Select <tr>
<td><%= bk.ISBN %></td>
<td><%= bk.Title %></td>
<td>
<table>

<%= From au As Books.Author In bk.Authors
Order By au.LastName, au.FirstName
Select <tr><td>
<%= au.LastName & ", " &

au.FirstName %>
</td></tr> %>
</table>

</td>
<td align="right" valign="middle">
<%= bk.Price.RetailPrice.ToString %></td>

</tr>
%>

</table>
</html>

Figure 14.2

A collection of simple
objects rendered as an
HTML document

ISBN

List of Books
Title Author(s) Price

1000000100 Book 100 Dobson, Richard 15.95

1000000101 Book 101 Smith, Bob 29.99

1000000101 Book 101 29.99Emilia, Tramp
Mike, Sonders

1000000102 Book 102 29.99
Jack, Simpson
Margot, Stapp
Mike, Tyler

The code is really simple. It starts by generating an XML document and embeds the actual
data in expression holes, which are delimited with the <%= and %> tags. The html variable is
an XML document, and the first expression hole is a LINQ query. In the Select clause of the
query, I created another XML document, which in turn contains expression holes. If you find

LINQ TO XML 597

this code segment complicated, please refer to the material in Chapter 12, where I discuss in
detail how to build XML documents with expression holes. To read an expression like the one
that defines the html variable, keep in mind the following simple rules:

Every time you see the opening angle bracket, you switch into XML mode.

Every time you see the <% tag, you switch into VB mode.

Note that while in VB mode, you can switch to XML mode without the closing %> tag; all
it takes is another opening bracket to switch into XML mode. Of course in the end, all opening
<% tags must be closed with the matching %> tag.

HTML tags are no different to the compiler than XML tags, so you easily create an XML
document with the same data and the structure you want. After all, HTML documents are spe-
cial cases of XML documents. You can use the XMLSerializer class to convert the collection of
custom objects to an XML document with a single statement, but LINQ allows you to transform
your data in just about any way you see fit. Try to create a comma-delimited file with the book
data or a file with fixed-length columns for each of the properties.

Our next LINQ stop is LINQ to XML. In the following section, you’ll learn how to combine
the basic methods of the XElement class with LINQ to retrieve the desired elements and/or
attributes from an XML document using LINQ. As you will see, you can use LINQ to query
XML documents just as you did with collections.

LINQ to XML
The second component of LINQ is the LINQ to XML component. XML is gaining in popularity
and acceptance, and Microsoft has decided to promote XML to a basic data type. Yes, XML is a
data type like integers and strings! To understand how far VB is taking XML, type the follow-
ing in a procedure or event handler:

Dim products = <Books>
<Book ISBN="0000000000001">
<Name>Book Title 1</Name>
<Price>11.95</Price>

</Book>
<Book ISBN="000000000002">
<Name>Book Title 2</Name>
<Price>10.25</Price>

</Book>
</Books>

You need not worry too much about getting the document exactly right, because the editor
works just like the XML editor. Every time you type an opening tag, it inserts the matching
closing tag and ensures that what you’re typing is a valid XML document. You can’t apply a
schema to the XML document you’re creating, but you should expect this feature in a future
version of Visual Studio.

You can create a new XML document in your code, but what can you do with it? You need
a mechanism to manipulate the XML document with simple tools, and these tools are available
through the following XML helper objects:

◆ XDocument represents the XML document.

◆ XComment represents a comment in the XML document.

598 CHAPTER 14 AN INTRODUCTION TO LINQ

◆ XElement represents an XML element.

◆ XAttribute represents an attribute in an XML element.

These objects can be used to access the document but also to create it. Instead of creating
an XML document directly in your code, you can use the XML helper objects and a structural
approach to create the same document. A simple XML document consists of elements, which
may include attributes. To create a new XElement object, pass the element’s name and value to
its constructor:

New XElement(element_name, element_value)

The following statement will create a very simple XML document:

Dim XmlDoc = New XElement("Books")
MsgBox(XmlDoc.ToString)

You will see the string <Books /> in a message box. This is a trivial, yet valid, XML document.
To create the same book collection as we did earlier by using the helper objects, insert the fol-
lowing statements in a button’s Click event handler:

Dim doc = _
New XElement("Books", _

New XElement("Book", _
New XAttribute("ISBN", "0000000000001"), _
New XElement("Price", 11.95), _
New XElement("Name", "Book Title 1"), _
New XElement("Stock", _

New XAttribute("InStock", 12), _
New XAttribute("OnOrder", 24))), _

New XElement("Book", _
New XAttribute("ISBN", "0000000000002"), _

New XElement("Price", 10.25), _
New XElement("Name", "Book Title 2"), _
New XElement("Stock", _

New XAttribute("InStock", 7), _
New XAttribute("OnOrder", 10))))

I’ve added a twist to the new document to demonstrate the use of multiple attributes in
the same element. The Stock element contains two attributes, InStock and OnOrder. Each ele-
ment’s value can be a basic data type, such as a string or a number, or another element. The
Price element is a decimal value, and the Name element is a string. The Book element, however,
contains three subelements: the Price, Name, and Stock elements.

The doc variable is of the XElement type. An XML document is not necessarily based
on the XDocument class. The two basic operations you can perform with an XElement (and
XDocument) object are to save it to a file and reload an XElement object from a file. The
operations are performed with the Save and Load methods, which accept the file’s name as an
argument.

LINQ TO XML 599

Adding Dynamic Content to an XML Document
The XML documents we’ve built in our code so far were static. Because XML support is built
into VB, you can also create dynamic context, and this is where things get quite interesting. To
insert some dynamic content into an XML document, insert the characters <%=. The editor will
automatically insert the closing tag, which is %>. Everything within these two tags is treated
as VB code and compiled. The two special tags create a placeholder in the document (or an
expression hole), and the expression you insert in them is an embedded expression: You embed
a VB expression in your document, and the compiler evaluates the expression and inserts the
result in the XML document.

Here’s a trivial XML document with an embedded expression. It’s the statement that creates
a document with a Book element (I copied it from a code segment presented in the preceding
chapter), and I inserted the current date as an element:

Dim doc = _
New XElement("Books", _

New XElement("Book", _
New XAttribute("ISBN", "0000000000001"), _
New XAttribute("RecordDate", <%= Today %>), _
New XElement("Price", 11.95), _
New XElement("Name", "Book Title 1"), _
New XElement("Stock", _

New XAttribute("InStock", 12), _
New XAttribute("OnOrder", 24))))

Let’s say you have an array of Product objects and you want to create an XML document
with these objects. Listing 14.3 shows the array with the product names.

Listing 14.3: An array of Product objects

Dim Products() As Product = _
{New Product With

{.ProductID = 3, .ProductName = "Product A", _
.ProductPrice = 8.75, _
.ProductExpDate = #2/2/2009#}, _

New Product With _
{.ProductID = 4, .ProductName = "Product B", _
.ProductPrice = 19.5}, _

New Product With _
{.ProductID = 5, .ProductName = "Product C", _
.ProductPrice = 21.25, _
.ProductExpDate = #12/31/2010#}}

The code for generating an XML document with three elements is quite short, but what if
you had thousands of products? Let’s assume that the Products array contains instances of
the Product class. You can use the XMLSerializer class to generate an XML document with the

600 CHAPTER 14 AN INTRODUCTION TO LINQ

array’s contents. An alternative approach is to create an inline XML document with embedded
expressions, as shown in Listing 14.4.

Listing 14.4: An XML document with Product objects

Dim prods = <Products>
<%= From prod In Products _
Select <Product>

<ID><%= prod.ProductID %></ID>
<Name><%= prod.ProductName %></Name>
<Price><%= prod.ProductPrice %></Price>
<ExpirationDate>

<%= prod.ProductExpDate %></ExpirationDate>
</Product> %>
</Products>

This code segment looks pretty ugly, but here’s how it works: In the first line, we start a
new XML document. (The prods variable is actually of the XElement type, but an XElement
is in its own right an XML document.) Notice that there’s no line continuation character at
the end of the first line of the XML document. Then comes a LINQ query embedded in the
XML document with the <%= and %> tags. Notice the line continuation symbol at the end of
this line(_). When we’re in an expression hole, we’re writing VB code, so line breaks matter.
That makes the line continuation symbol necessary. Here’s a much simplified version of the
same code:

Dim prods = <Products>
<%= From prod In Products _

Select <Product>some product</Product> %>
</Products>

This code segment will generate the following XML document:

<Products>
<Product>some product</Product>
<Product>some product</Product>
<Product>some product</Product>

</Products>

The file contains no real data but is a valid XML document. The two tags with the percent
sign switch into VB code, and the compiler executes the statements embedded in them. The
embedded statement of our example is a LINQ query, which iterates through the elements
of the Products array and selects literals (the XML tags shown in the output). To insert data
between the tags, we must switch to VB again and insert the values we want to appear in the
XML document. In other words, we must replace the string some product in the listing with
some embedded expressions that return the values you want to insert in the XML document.
These values are the properties of the Product class, as shown in Listing 14.3. The code shown
in Listing 14.4 will produce the output shown in Listing 14.5.

LINQ TO XML 601

Listing 14.5: An XML document with the data of the array initialized in Listing 14.4

<Products>
<Product>

<ID>3</ID>
<Name>Product A</Name>
<Price>8.75</Price>
<ExpirationDate>2009-02-02T00:00:00</ExpirationDate>

</Product>
<Product>

<ID>4</ID>
<Name>Product B</Name>
<Price>19.5</Price>
<ExpirationDate>0001-01-01T00:00:00</ExpirationDate>

</Product>
<Product>

<ID>5</ID>
<Name>Product C</Name>
<Price>21.25</Price>
<ExpirationDate>2010-12-31T00:00:00</ExpirationDate>

</Product>
</Products>

Transforming XML Documents

A common operation is the transformation of an XML document. If you have worked with
XML in the past, you already know Extensible Stylesheet Language Transformations (XSLT),
which is a language for transforming XML documents. If you’re new to XML, you’ll probably
find it easier to transform XML documents with the LINQ to XML component. Even if you’re
familiar with XSLT, you should be aware that transforming XML documents with LINQ is
straightforward. The idea is to create an inline XML document that contains HTML tags and
an embedded LINQ query, like the following:

Dim HTML = <htlm>Products
<table border="all"><tr>
<td>Product</td><td>Price</td>
<td>Expiration</td></tr>
<%= From item In Products.Descendants("Product") _

Select <tr><td><%= item.<Name> %></td>
<td><%= item.<Price> %></td>
<td><%= Convert.ToDateTime(_
item.<ExpirationDate>.Value). _

ToShortDateString %>
</td></tr> %></table>
</htlm>

HTML.Save("Products.html")
Process.Start("Products.html")

602 CHAPTER 14 AN INTRODUCTION TO LINQ

The HTML variable stores plain HTML code. HTML is a subset of XML, and the editor
will treat it like XML: It will insert the closing tags for you and will not let you nest tags in
the wrong order. The Select keyword in the query is followed by a mix of HTML tags and
embedded holes for inline expressions, which are the fields of the item object. Note the VB code
for formatting the date in the last inline expression. The output of the previous listing is shown
in Figure 14.3.

Figure 14.3

A simple XML seg-
ment (top) viewed as
an HTML table (bottom).
Transformation courtesy
of LINQ.

<products>
 <product ProductID=“1” ProductName=“Chai”
 UnitPrice=“18.0000” UnitsInStock=“39” UnitsOnOrder=“0” >
 </product>
 <product ProductID=“2” ProductName=“Chang”
 UnitPrice=“19.0000” UnitsInStock=“19” UnitsOnOrder=“40” >
 </product>
 <product ProductID=“3” ProductName=“Aniseed Syrup”
 UnitPrice=“10.0000” UnitsInStock=“26” UnitsOnOrder=“70” >
 </product>
 <product ProductID=“4” ProductName=“Chef Anton’s Cajun Seasoning”
 UnitPrice=“22.0000” UnitsInStock=“128” UnitsOnOrder=“0” >
 </product>
 <product ProductID=“5” ProductName=“Chef Anton’s Gumbo Mix”
 UnitPrice=“21.3600” UnitsInStock=“46” UnitsOnOrder=“0” >
 </product>

Products

Product Price On Order

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Grandma’s Boysenberry Spread

Uncle Bob’s Organic Dried Pears

Northwoods Cranberry Sauce

Mishi Kobe Niku

Queso Cabrales

Queso Manchego La Pastora

Konbu

0

40

70

0

0

0

0

0

0

30

0

0

39

19

26

128

46

179

27

164

50

154

184

95

18.00

19.00

10.00

22.00

21.36

25.01

30.01

40.00

97.00

21.00

38.00

6.00

In Stock

The last two statements save the HTML file generated by our code and then open it in
Internet Explorer (or whichever application you’ve designated to handle by default the HTML
documents).

LINQ TO XML 603

Using Custom Functions with LINQ to XML

The embedded expressions are not limited to simple, inline expressions. You can call custom
functions to transform your data. In a hotel reservation system I developed recently, I had to
transform an XML file with room details to an HTML page. The transformation involved quite
a few lookup operations, which I implemented with custom functions. Here’s a simplified
version of the LINQ query I used in the project. I’m showing the query that generates a simple
HTML table with the elements of the XML document. The RoomType element is a numeric
value that specifies the type of the room. This value may differ from one supplier to another,
so I had to implement the lookup operation with a custom function.

Dim hotels = <html>
<table><tr><td>Hotel</td<td>Room Type</td><td>Price</td></tr>
<%= From hotel In Hotels _

Select <tr><td><%= hotel.<HotelName>.Value %></td>
<td><%= GetRoomType(hotel.<RoomTypeID>)</td>
<td><%= CalculatePrice(hotel.<Base>)</td>

</tr>
%>

</table>
</html>

The GetRoomType() and CalculatePrice() functions must be implemented in the same
module that contains the LINQ query. In my case, they accept more arguments than shown
here, but you get the idea. To speed up the application, I created HashTables using the IDs
of the various entities in their respective tables in the database. The CalculatePrice()
function, in particular, is quite complicated, because it incorporates the pricing policy. Yet,
all the business logic implemented in a standard VB function was easily incorporated into the
LINQ query that generates the HTML page with the available hotels and prices.

Another interesting application of XML transformation is the transformation of XML data
into instances of custom objects. Let’s say you need to work with an XML file that contains
product information, and you want to create a list of Product objects out of it. Let’s also assume
that the XML file has the following structure:

<Products>
<product ProductID="1" ProductName="Chai"

CategoryID="1" UnitPrice="18.0000"
UnitsInStock="39" UnitsOnOrder="0" >

</product>
<product ProductID="2" ProductName="Chang"

CategoryID="1" QuantityPerUnit="24 - 12 oz bottles"
UnitPrice="19.0000"
UnitsInStock="19" UnitsOnOrder="40" >

</product>
...
</Products>

604 CHAPTER 14 AN INTRODUCTION TO LINQ

First, you must load the XML file into an XElement variable with the following statement
(I’m assuming that the XML file is in the same folder as the project):

Dim XMLproducts = XElement.Load("../../Products.xml")

Now, you can write a LINQ query that generates anonymous types, like the following:

Dim prods = From prod In XMLproducts.Descendants("product")
Select New With {.Name = prod.Attribute("ProductName").Value,

.Price = prod.Attribute("UnitPrice").Value,

.InStock = prod.Attribute("UnitsInStock").Value,

.OnOrder = prod.Attribute("UnitsOnOrder").Value}}

The prods collection consists of objects with the four scalar properties. To make the example
a touch more interesting, let’s say that you don’t want to create a ‘‘flat’’ object. The InStock
and OnOrder properties will become properties of another object, the Stock property. The new
anonymous type will have the following structure:

Product.Name

Product.Price

Product.Stock.InStock

Product.Stock.OnOrder

To create an anonymous type with the revised structure, you must replace the InStock and
OnOrder properties with a new object, the Stock object, which will expose the InStock
and OnOrder properties. The revised query is shown next:

Dim prods =
From prod In XMLproducts.Descendants("product")
Select New With {.Name = prod.Attribute("ProductName").Value,

.Price = prod.Attribute("UnitPrice").Value,

.Stock = New With {
.InStock = prod.Attribute("UnitsInStock").Value,

.OnOrder = prod.Attribute("UnitsOnOrder").Value}}

A simple LINQ query allows you to move from XML into objects and replace the code that
would normally use the XML axis methods (Elements and Descendents) with pure objects. Of
course, anonymous types can be used only in the context of the procedure in which they were
created. If you want to pass the prods collection between procedures, you should create a new
Product class and use it to create instances of this object, because the anonymous types can’t be
used outside the routine in which they were created. The definition of the Product class, and
the accompanying Stock class, is quite trivial:

Public Class Product
Public Property Name As String
Public Property Price As Decimal
Public Property Stock As Stock

End Class

LINQ TO XML 605

Public Class Stock
Public InStock As Integer
Public OnOrder As Integer

End Class

With the two class definitions in place, you can revise the LINQ query to populate the prod-
ucts collection with instances of the Product class:

Dim Products =
From prod In XMLproducts.Descendants("product")

Select New Product With {
.Name = prod.Attribute("ProductName").Value,
.Stock = New Stock With {

.InStock = prod.Attribute("UnitsInStock").Value,

.OnOrder = prod.Attribute("UnitsOnOrder").Value}}

It shouldn’t come as a surprise that you can iterate through both collections with the same
statements:

For Each p In prods
Debug.WriteLine("PRODUCT: " & p.Name & vbTab &

" PRICE: " & p.Price.ToString &
" STOCK = " & p.Stock.InStock & "/" & p.Stock.OnOrder)

Next

When executed, the preceding statements will generate the following output:

PRODUCT: Grandma’s Boysenberry Spread PRICE: 25.0100 STOCK = 179/0
PRODUCT: Uncle Bob’s Organic Dried Pears PRICE: 30.0100 STOCK = 27/0
PRODUCT: Northwoods Cranberry Sauce PRICE: 40.0000 STOCK = 164/0

Working with XML Files

In this section, we’re going to build a functional interface for viewing customers and orders.
And this time we aren’t going to work with a small sample file. We’ll actually get our data
from one of the sample databases that comes with SQL Server: the Northwind database.
The structure of this database is discussed in Chapter 15, ‘‘Programming with ADO.NET,’’
in detail, but for now I’ll show you how to extract data in XML format from SQL Server. If
you don’t have SQL Server installed or if you’re unfamiliar with databases, you can use the
sample XML files in the folder of the VBLINQ project. Figure 14.4 shows the main form of
the application, which retrieves the same data either from an XML file or directly from the
database.

You may be wondering why you would extract relational data and process them with LINQ
instead of executing SQL statements against the database. XML is the standard data-exchange
format, and you may get data from any other source in this format. You may get an XML file
generated from someone’s database or even an Excel spreadsheet. In the past, you had to con-
vert the data to another, more flexible format and then process it. With LINQ, you can directly
query the XML document, transform it into other formats, and of course save it.

606 CHAPTER 14 AN INTRODUCTION TO LINQ

Figure 14.4

Displaying related data
from XML files

Start SQL Server, and execute the following query:

SELECT * FROM Customers FOR XML AUTO

This statement selects all columns and all rows for the Customers table and generates an
element for each row. The field values are stored in the document as attributes of the corre-
sponding row. The output of this statement is not a valid XML document because its elements
are not embedded in a root element. To request an XML document in which all elements are
embedded in a root element, use the ROOT keyword:

SELECT * FROM Customers FOR XML AUTO, ROOT(’AllCustomers’)

I’m using the root element AllCustomers because the elements of the XML document are
named after the table. The preceding statement will generate an XML document with the
following structure:

<AllCustomers>
<Customers CustomerID="…" CompanyName="xxx" … />
<Customers CustomerID="…" CompanyName="xxx" … />
…

</AllCustomers>

It would make more sense to generate an XML document with the Customers root element
and name the individual elements Customer. To generate this structure, use the following
statement:

SELECT * FROM Customers Customer FOR XML AUTO, ROOT(’Customers’)

LINQ TO XML 607

Here’s a segment of the XML document with the customers:

<Customers>
<Customer CustomerID="ALFKI" CompanyName=
"Alfreds Futterkiste" ContactName="Maria Anders"
ContactTitle="Sales Representative"
Country="Germany" />

<Customer CustomerID="ANATR" CompanyName=
"Ana Trujillo Emparedados y helados"
ContactName="Ana Trujillo" ContactTitle="Owner"
Country="Mexico" />

Finally, you can create an XML document where the fields are inserted as elements, rather
than attributes. To do so, use the ELEMENTS keyword:

SELECT * FROM Customers Customer FOR XML AUTO,
ELEMENTS ROOT(’Customers’)

The other statements that generated the XML files with the rows of the tables Orders, Order
Details, and Products are as follows:

SELECT * FROM Orders Order FOR XML AUTO, ROOT(’Orders’)
SELECT * FROM [Order Details] Detail FOR XML AUTO,

ELEMENTS, ROOT(’Details’)
SELECT ProductID, ProductName FROM Products

FOR XML AUTO, ELEMENTS ROOT(’Products’)

Notice that all files are attribute based, except for the Details.xml file, which is element
based. I had no specific reason for choosing this structure; I just wanted to demonstrate both
styles for processing XML in the sample project’s code. Also, the reason I’ve included the Prod-
ucts table is because the Order Details table, which contains the lines of the order, stores the
IDs of the products, not the product names. When displaying orders, as shown in Figure 14.4,
you must show product names, not just product IDs. The four collections with the entities we
extracted from the Northwind database are declared and populated at the form’s level via the
following statements:

Dim customers As XElement = XElement.Load("..\..\..\Customers.xml")
Dim orders As XElement = XElement.Load("..\..\..\Orders.xml")
Dim details As XElement = XElement.Load("..\..\..\Details.xml")
Dim products As XElement = XElement.Load("..\..\..\Products.xml")

As is apparent from the code, I’ve placed the four XML files created with the SQL state-
ments shown earlier in the project’s folder. The Display Data button populates the top ListView
control with the rows of the Customers table, via the following statements:

Private Sub bttnShow_Click(…) Handles bttnShow.Click
For Each c In customers.Descendants("Customer")

Dim LI As New ListViewItem

608 CHAPTER 14 AN INTRODUCTION TO LINQ

LI.Text = c.@CustomerID
LI.SubItems.Add(c.@CompanyName)
LI.SubItems.Add(c.@ContactName)
LI.SubItems.Add(c.@ContactTitle)
ListView1.Items.Add(LI)

Next
End Sub

The code is quite simple. It doesn’t even use LINQ; it iterates through the Customer ele-
ments of the customers collection and displays their attributes on the control. Notice the use
of the shortcut for the Attribute property of the current XElement.

When the user clicks a customer name, the control’s SelectedIndexChanged event is fired.
The code in this handler executes a LINQ statement that selects the rows of the Orders table
that correspond to the ID of the selected customer. Then, it iterates through the selected rows,
which are the orders of the current customer, and displays their fields on the second ListView
control via the following statements:

Private Sub ListView1_SelectedIndexChanged(…) _
Handles ListView1.SelectedIndexChanged

If ListView1.SelectedItems.Count = 0 Then Exit Sub
ListView2.Items.Clear()
Dim scustomerID = ListView1.SelectedItems(0).Text
Dim query = From o In orders.Descendants("Order")

Where Convert.ToString(o.@CustomerID) = scustomerID
Select o

For Each o In query
Dim LI As New ListViewItem
LI.Text = o.@OrderID.ToString
LI.SubItems.Add(Convert.ToDateTime

(o.@OrderDate).ToShortDateString)
LI.SubItems.Add(Convert.ToDecimal(o.@Freight).ToString("#,###.00"))
LI.SubItems.Add(o.@ShipName.ToString)
ListView2.Items.Add(LI)

Next
End Sub

The LINQ query selects Order elements based on their CustomerID attribute. Finally, when
an order is clicked, the following LINQ query retrieves the selected order’s details:

Dim query = From itm In details.Descendants("Detail")
Where Convert.ToInt32(itm.<OrderID>.Value) = orderID
Select itm

The Details.xml file contains elements for all columns, not attributes, and I use statements
such as <dtl.UnitPrice> to access the subelements of the current element. To display

LINQ TO SQL 609

product names, the code selects the row of the Products collection that corresponds to the ID
of each detail line as follows:

Dim product = _
From p In products.Descendants("Product")
Where Convert.ToInt32(p.@ProductID) =

Convert.ToInt32(dtl.<ProductID>.Value)
Select p

The product variable is actually a collection of XElements, even though it can never con-
tain more than a single element (product IDs are unique). You access the ProductName column
of the selected row with the expression product(0).@productName. You can call the First
method to make sure you’ve selected a single product, no matter what:

Dim product = _
(From p In products.Descendants("Product")
Where Convert.ToInt32(p.@ProductID) =

Convert.ToInt32(dtl.<ProductID>.Value)
Select p).First

LINQ to SQL
SQL stands for Structured Query Language, a language for querying databases. SQL is dis-
cussed in the last part of this book, and as you will see, SQL resembles LINQ. SQL is a simple
language, and I will explain the SQL statements used in the examples; readers who are some-
what familiar with databases should be able to follow along.

Now, let’s build another application for displaying customers, orders, and order details. The
difference is that this time you won’t get your data from an XML document; you’ll retrieve
them directly from the database. As you will see, the same LINQ queries will be used to pro-
cess the rows returned by the queries. The code won’t be identical to the code presented in the
preceding section, but the differences are minor. The same principles will be applied to a very
different data source.

You need a mechanism to connect to the database so you can retrieve data, and this mech-
anism is the DataContext class. The DataContext class talks to the database, retrieves data, and
submits changes back to the database. To create a DataContext object, pass a string with the
information about the database server, the specific database, and your credentials to the Data-
Context class’s constructor, as shown here:

Dim db As New DataContext("Data Source=localhost;
initial catalog=northwind;
Integrated Security=True")

To use the DataContext class in your code, you must add a reference to the System.Data
.Linq namespace and then import it into your code with this statement:

Imports System.Data.Linq

610 CHAPTER 14 AN INTRODUCTION TO LINQ

You will find more information on connecting to databases in Chapter 15. For the purposes
of this chapter, the preceding connection string will connect your application to the Northwind
database on the local database server, provided that you have SQL Server or SQL Server
Express installed on the same machine as Visual Studio. If you do not, replace ‘‘localhost’’
in the connection string with the name or IP address of the machine on which SQL Server is
running.

After you have initialized the DataContext object, you’re ready to read data from tables into
variables. To do so, call the GetTable method of the db object to retrieve the rows of a table.
Note that the name of the table is not specified as an argument. Instead, the table is inferred
from the type passed to the GetTable method as an argument. The GetTable(Of Customer)
method will retrieve the rows of the Customers table, because the name of the table is specified
in the definition of the class, as you will see shortly.

customers = From cust In db.GetTable(Of Customer)()
Select New Customer With
{.CustomerID = cust.CustomerID,
.CompanyName = cust.CompanyName,
.ContactName = cust.ContactName,
.ContactTitle = cust.ContactTitle}

orders = From ord In db.GetTable(Of Order)()
Select New Order With
{.OrderID = ord.OrderID,
.OrderDate = ord.OrderDate,
.CustomerID = ord.CustomerID,
.Freight = ord.Freight,
.ShipName = ord.ShipName}

details = From det In db.GetTable(Of Detail)()
Select New Detail With
{.OrderID = det.OrderID,
.ProductID = det.ProductID,
.Quantity = det.Quantity,
.UnitPrice = det.UnitPrice,
.Discount = det.Discount}

products = From prod In db.GetTable(Of NWProduct)()
Select New NWProduct With
{.ProductID = prod.ProductID,
.ProductName = prod.ProductName}

The type of the customers, orders, details, and products variables is IQueryable(of entity),
where entity is the appropriate type for the information you’re reading from the database. The
four variables that will store the rows of the corresponding tables must be declared at the form
level with the following statements:

Dim customers As System.Linq.IQueryable(Of Customer)
Dim orders As System.Linq.IQueryable(Of Order)
Dim details As System.Linq.IQueryable(Of Detail)
Dim products As System.Linq.IQueryable(Of NWProduct)

The variables must be declared explicitly at the form level, because they will be accessed from
within multiple event handlers.

LINQ TO SQL 611

To make the most of LINQ to SQL, you must first design a separate class for each table that
you want to load from the database. You can also specify the mapping between your classes
and the tables from which their instances will be loaded, by prefixing them with the appropri-
ate attributes. The Customer class, for example, will be loaded with data from the Customers
table. To specify the relationship between the class and the table, use the Table attribute, as
shown here:

<Table(Name:="Customers")>Public Class Customer
End Class

Each property of the Customer class will be mapped to a column of the Customers table. In
a similar manner, decorate each property with the name of the column that will populate the
property:

<Column(Name:="CompanyName")>Public Property Name
End Property

If the name of the property matches the name of the relevant column, you can omit the col-
umn’s name:

<Column()>Public Property Name
End Property

Listing 14.6 shows the definition of the four classes we’ll use to store the four tables (Cus-
tomers, Orders, Order Details, and Products).

Listing 14.6: The classes for storing customers and orders

<Table(Name:="Customers")> Public Class Customer
Private _CustomerID As String
Private _CompanyName As String
Private _ContactName As String
Private _ContactTitle As String

<Column()> Public Property CustomerID() As String
Get

Return _customerID
End Get
Set(ByVal value As String)

_customerID = value
End Set

End Property

<Column()> Public Property CompanyName() As String
Get

Return _CompanyName
End Get
Set(ByVal value As String)

_CompanyName = value

612 CHAPTER 14 AN INTRODUCTION TO LINQ

End Set
End Property

<Column()> Public Property ContactName() As String
….

End Property

<Column()> Public Property ContactTitle() As String
….

End Property
End Class

<Table(Name:="Orders")> Public Class Order
Private _OrderID As Integer
Private _CustomerID As String
Private _OrderDate As Date
Private _Freight As Decimal
Private _ShipName As String

<Column()> Public Property OrderID() As Integer
….

End Property

<Column()> Public Property CustomerID() As String
….

End Property

<Column()> Public Property OrderDate() As Date
….

End Property

<Column()> Public Property Freight() As Decimal
….

End Property

<Column()> Public Property ShipName() As String
….

End Property
End Class

<Table(Name:="Order Details")> Public Class Detail
Private _OrderID As Integer
Private _ProductID As Integer
Private _Quantity As Integer
Private _UnitPrice As Decimal
Private _Discount As Decimal

<Column()> Public Property OrderID() As Integer

LINQ TO SQL 613

….

End Property

<Column()> Public Property ProductID() As Integer
….

End Property

<Column()> Public Property Quantity() As Short
….

End Property

<Column()> Public Property UnitPrice() As Decimal
….

End Property

<Column()> Public Property Discount() As Double
….

End Property
End Class

<Table(Name:="Products")> Public Class NWProduct
Private _ProductID As Integer
Private _ProductName As String

<Column()> Public Property ProductID() As Integer
….

End Property

<Column()> Public Property ProductName() As String
….

End Property

End Class

I didn’t show the implementation of most properties, because it’s trivial. What’s interest-
ing in this listing are the Table and Column attributes that determine how the instances of the
classes will be populated from the database, as you saw earlier.

The code that displays the selected customer’s orders and the selected order’s details is sim-
ilar to the code you saw in the previous section that displays the data from the XML files. It
selects the matching rows in the relevant table and shows them in the corresponding ListView
control.

Retrieving Data with the ExecuteQuery Method
You can also retrieve a subset of the table, or combine multiple tables, by executing a SQL
query against the database. The ExecuteQuery method, which accepts as arguments the SELECT
statement to be executed and an array with parameter values, returns a collection with the

614 CHAPTER 14 AN INTRODUCTION TO LINQ

selected rows as objects. To call the ExecuteQuery method, you must specify the class that
will be used to store the results with the Of keyword in parentheses following the method’s
name. Then you specify the SELECT statement that will retrieve the desired rows. If this query
contains any parameters, you must also supply an array of objects with the parameter values.
Parameters are identified by their order in the query, not by a name. The first parameters is 0,
the second parameter is 1, and so on. The following statement will retrieve all customers from
Germany and store them in instances of the Customer class:

Dim params() = {"Germany"}
Dim GermanCustomers = _

db.ExecuteQuery(Of Customer)(_
"SELECT CustomerID, CompanyName," & _
"ContactName, ContactTitle " &
"FROM Customers WHERE Country={0}", params)"

After the GermanCustomers collection has been populated, you can iterate through its items
as usual, with a loop like the following:

For Each cust In GermanCustomers
Debug.WriteLine(cust.CompanyName & " " & _

cust.ContactName)
Next

Once you have retrieved the results from the database, you can execute LINQ queries
against the collection. To find out the number of customers from Germany, use the following
expression:

Dim custCount = GermanCustomers.Count

To apply a filtering expression and then retrieve the count, use the following LINQ expression:

Dim g = GermanCustomers.Where(Function(c As Customer) _
c.CompanyName.ToUpper Like "*DELIKATESSEN*").Count

To appreciate the role of the DataContext class in LINQ to SQL, you should examine the
ToString property of a LINQ query that’s executed against the database. Insert a statement to
display the expression GermanCustomers.ToString() in your code, and you will see that the
DataContext class has generated and executed the following statement against the database. If
you’re familiar with SQL Server, you can run the SQL Server Profiler and trace all commands
executed against SQL Server. Start SQL Server Profiler (or ask the database administrator to cre-
ate a log of all statements executed by your workstation against a specific database), and then
execute a few LINQ to SQL queries. Here’s the statement for selecting the German customers
as reported by the profiler:

exec sp_executesql N’SELECT Customers.CompanyName,
Orders.OrderID, SUM(UnitPrice*Quantity) AS

OrderTotal FROM Customers INNER JOIN Orders

LINQ TO SQL 615

ON Customers.CustomerID = Orders.CustomerID
INNER JOIN [Order Details] ON

[Order Details].OrderID = Orders.OrderID
WHERE Customers.Country=@p0
GROUP BY Customers.CompanyName,
Orders.OrderID’,N’@p0 nvarchar(7)’,@p0=N’Germany’

Working with LINQ to SQL Classes
The process of getting data out of a database and into a custom class is as straightforward as it
can get. You create a class with properties that match the columns of the equivalent table, and
then you use the DataContext object to populate these classes. You may be thinking already
about a class generator that will take care of the mapping between the class properties and
the table columns. Visual Studio does that for you with a component called LINQ to SQL
Classes.

A LINQ to SQL Classes component encapsulates a segment of a database, or the entire
database, and lets you work against a database as if the database entities were objects. While
in traditional database programming you code against tables that are made up of rows, with
LINQ to SQL Classes you will work against the same database, only this time the tables will
be collections made up of custom objects. The Customers table of the Northwind database,
for example, contains rows that represent customers. When you work with a LINQ to SQL
Classes component, the Customers table becomes a collection, and its rows become instances of
Customer objects. As you will see shortly, the idea behind LINQ to SQL Classes is to bridge
the gap between traditional database programming and the object-oriented features of modern
programming languages. You’ll see the advantages of accessing databases as collections of
strongly typed objects in just a few pages.

To add this component to your solution, right-click the solution name, and from the context
menu select Add New Item. In the Add New Item dialog box, select the LINQ to SQL Classes
component, as shown in Figure 14.5, and set the component’s name (use the NWind name for
this example).

Figure 14.5

Start by adding a LINQ
to SQL Classes compo-
nent to your project.

616 CHAPTER 14 AN INTRODUCTION TO LINQ

Once the new component has been added to the project, the Server Explorer window
will open. Here you can select a connection to one of the databases on your system (I’m
assuming you have installed either SQL Server or SQL Server Express). Create a new
connection to the Northwind database if you don’t already have a connection to this
database, and open it. If you don’t know how to create connections to databases, follow this
procedure:

1. Switch to Server Explorer, and right-click the Data Connections item. From the context
menu, select Add Connection to open the dialog box shown in Figure 14.6.

2. In the Add Connection dialog box that appears, select the name of the database server you
want to use. I’m assuming that most readers have a version of SQL Server 2008 installed
on their machines, so you can specify localhost as the server name. If you’re connected to
a remote database server on the network, the database administrator will give the proper
database name and credentials.

Figure 14.6

Creating a new database
connection

3. Select the authentication method for the database server. Again, most readers can select the
option Use Windows Authentication. To connect to a remote server, you will most likely

LINQ TO SQL 617

have to select Use SQL Server Authentication and supply your credentials, as shown in
Figure 14.6.

4. Expand the list of databases in the drop-down list in the lower pane of the dialog box,
and select Northwind. If you haven’t installed the Northwind database, then you should
download and install it, as explained in Chapter 15.

As soon as you close the Add Connection dialog box, the designer will add a new
component to the class, the DataClasses1.dbml component, and will open it in design
mode. DataClasses1 is the default name of a LINQ to SQL Classes component, and I suggest
you change the name to something more meaningful. The VBLINQ project uses the name
TableClasses.

The designer is initially an empty space. But here’s how easy it is to create custom objects
based on the database entities, as shown in Figure 14.7.

Figure 14.7

Designing a LINQ to SQL
Classes class with visual
tools

Server Explorer will display all the items in the database. Select the Customers, Orders
and Order Details tables from Server Explorer, and drop them onto the designer’s sur-
face. The designer will pick up the relations between the tables from the database
and will depict them as arrows between related classes. It will also create the appro-
priate classes on the fly, one for each table. Specifically, the designer will create the
Customer, Order, and Order_Detail classes that represent the entities stored in the Customers,
Orders, and Order Details tables. Notice how the designer singularized the names of the
entities.

The designer has also created three collections to represent the three tables, as well as a
DataContext object to connect to the database. To exercise the autogenerated classes, build the
sample form shown in Figure 14.8. This form loads the countries and uses their names to pop-
ulate the ComboBox control at the top. Every time the user selects a country, the application
makes another trip to the database, retrieves the customers in the selected country, and displays
the customer names on the Select Customer ListBox control.

618 CHAPTER 14 AN INTRODUCTION TO LINQ

Figure 14.8

A form for viewing cus-
tomers, their orders,
and the details for each
order

Once a customer has been selected, the application makes another trip to the database
and selects the customer’s orders, which are displayed on the top ListView control.
Finally, when an order is selected, the application reads the order’s details and dis-
plays them on the lower ListView control on the right. The idea is to get as little
information as possible from the database depending on the user’s action. There’s no
need to retrieve all the customers when the application starts, because the user many
not even view any customer. In general, you should try to limit the user’s selection so
that you can minimize the information you request from the database and download
at the client. Although there will be times you need to minimize trips to the database,
in that case you will pull data that you might need and then possibly throw some of it
away.

The DataContext Object

The following statement creates a new DataContext object for accessing the Northwind
database:

Dim ctx As New NwindDataContext

The NWindDataContext class was generated by the designer; it gives you access to the
database’s tables (and stored procedures). The database tables are properties of the ctx
variable, and they return an IQueryable collection with the rows of each table. To access the
Customers table, for example, request the Customers property:

Ctx.Customers

Each item in the Customers collection is an object of the Customer type. The designer also gen-
erated a class for the entities stored in each of the tables. Not only that, but it singularized the
names of the tables.

LINQ TO SQL 619

Accessing the Tables with LINQ

Since the Customers property of the ctx variable returns the rows of the Customers table as
a collection, you can use LINQ to query the table. The following query returns the German
customers:

Dim germanCustomers = From cust In ctx.Customers
Where cust.Country = "Germany"
Select cust

The compiler knows that cust is a variable of the Customer type, so it displays the fields
of the Customers table (which are now properties of the Customer object) in the IntelliSense
drop-down list. In effect, the LINQ to SQL component has mapped the selected tables into
objects that you can use to access your database using OOP techniques.

But the LINQ to SQL Classes component has done much more. germanCustomers is a query
that isn’t executed until you request its elements. The expression ctx.Customers doesn’t move
the rows of the Customers table to the client so you can query them. Instead, it parses your
LINQ query, builds the appropriate SQL query, and executes it when you iterate through the
query results. To see the queries that are executed as per your LINQ query when they’re sub-
mitted to the database, insert the following simple statement right after the declaration of the
ctx variable:

ctx.Log = Console.Out

This statement tells the compiler to send all the commands that the DataContext object submits
to the database to the Output window. Place a button on the main form of the project, and in
its Click event handler insert the following statements:

ctx.Log = Console.Out
Dim selCustomers = From cust In ctx.Customers

Where cust.Country = "Germany"
Select cust

MsgBox("No query executed so far!")
For Each cust In selCustomers

ListBox1.Items.Add(cust.CustomerID & vbTab & cust.CompanyName)
Next

Execute these statements, and watch the Output window. The message box will be displayed
and nothing will be shown in the Output window, because no data has been requested from
the database yet. selCustomers is just a query that the compiler has analyzed, but it hasn’t
been executed yet. As soon as you close the message box, the following SQL statement will be
submitted to the database to request some data:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region],
[t0].[PostalCode], [t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]

620 CHAPTER 14 AN INTRODUCTION TO LINQ

WHERE [t0].[Country] = @p0
-- @p0: Input NVarChar (Size = 4000; Prec = 0; Scale = 0) [Germany]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 4.0.20506.1

If you’re not familiar with SQL, don’t panic. You’ll find the basics later in this book. If you’re
a totally result-oriented developer, don’t even bother with the SQL statement; VB does it all for
you. It knows how to request the data you need, and it won’t bring even one extra row from
the Customers table back to the client. Of course, you shouldn’t iterate through all the rows of
the table, because this could ruin application performance. Never, never bring an entire table
to the client, unless it’s a small table (categories, state names, and so on). Even then, it’s not a
good idea to keep the data at the client for long periods of time; other users may edit the data
at the database, and when that happens, the data at the client become ‘‘stale,’’ because the
data at the client are not directly associated with the database and will not be updated. The
short of the story is that the DataContext object establishes a connection to the database and
lets you view your database tables as collections of objects. Use it to grab the data you need,
and submit changes as the user edits the data.

To limit the number of rows you bring to the client, try to give users the option to specify
selection criteria. The sample application you’ll build in this section requests that users select
a country and then brings only the customers from that particular country to the client. Actu-
ally, you don’t even need to bring all the fields of the Customers table. All you will need is
the CompanyName that’s displayed on the ListBox control and the ID that you’ll use in subse-
quent queries to identify the selected customer. If you have too much data, you can limit the
number of rows you bring to the client (to an arbitrary value, say, 1,000 rows). If the user has
selected more rows, they should specify a more specific search pattern to limit the number of
rows. After all, who needs to see thousands and thousands of rows just because they exist?

Navigation Methods
Tables are rarely isolated in a database, and no one ever really cares about the rows of a sin-
gle table. Tables are (almost always) related to one another. Customers place orders, and orders
contain products and prices. Orders belong to customers, but they’re created by employees.
The most common operation in data-driven applications is not entering new rows or editing
existing ones. Instead, data-driven applications spend most of their time going from a row in
a specific table to one or more related rows in another table. Of course, retrieving the related
rows implies that you will also design an interface to display the data you gather from mul-
tiple tables to the user. Let’s say you have landed on a specific customer, represented by the
selCustomer variable (it’s a variable of the Customer type, of course). You could select a cus-
tomer by index, with a LINQ query, or let the user select it from a list. The idea is that you
have retrieved the customer you’re interested in.

To access the related rows in other tables, you can request the property of the Customer
object that corresponds to the related table. To access the orders of the customer represented
by the cust object, use the following expression:

cust.Orders

This expression returns an IQueryable collection as usual, with the rows of the Orders table
that correspond to the selected customer. The Orders property represents the Orders table and
returns an IQueryable collection of Order objects, each representing an order, as you might
expect. However, it doesn’t return all rows of the Orders table — just the ones that belong to
the selected customer. Each Order object in turn exposes the columns of the Orders table as

LINQ TO SQL 621

properties. To access the OrderDate field of the first order of the first customer in the german-
Customers collection, you’d use an expression like the following:

selCustomers.ToList(0).Orders.ToList(0).OrderDate

You have to apply the ToList operator to every collection to force the execution of the
appropriate query and then select a specific item of the collection.

Now we can take a closer look at the code of the sample project code. The following code
loads all countries and displays their names on the ListBox control:

Private Sub Button1_Click(...) Handles Button1.Click
ctx = New NWindDataContext
ctx.Log = Console.Out
Dim countries = From cust In ctx.Customers

Select cust.Country Distinct
For Each country As String In countries

cbCountries.Items.Add(country)
Next

End Sub

The very first query is peculiar indeed. The Northwind database doesn’t store the countries
in a separate table, so you have to go through the Customers table and collect all the unique
country names. This is what the Distinct keyword does: It forces the query to return each
unique country name from the Customers table only once. LINQ doesn’t download all the rows
of the Customers table to the client to select the unique country names. The actual query sent
to the database by LINQ is the following, which instructs SQL Server to return only the unique
country names:

SELECT DISTINCT [t0].[Country]
FROM [dbo].[Customers] AS [t0]

LINQ is very efficient when it comes to talking to the database, and you will see shortly how
you can monitor the queries it submits to the database.

When the user selects a customer on the ListBox control, the statements included in
Listing 14.7 are executed to display the number of orders placed by the customer and the total
revenue generated by the selected customer, as well as the headers of all orders.

Listing 14.7: Retrieving the orders of the selected customer

Private Sub ListBox1_SelectedIndexChanged(...)
Handles ListBox1.SelectedIndexChanged

If ListBox1.SelectedItem Is Nothing Then Exit Sub
Dim custID As String = ListBox1.SelectedItem.ToString.Substring(0, 5)
Dim custName As String = ListBox1.SelectedItem.ToString.Substring(5).Trim
Dim customerOrders = From ord In ctx.Orders

Where ord.CustomerID = custID
Select New With {.order = ord, .details = ord.Order_Details}

Dim orders = customerOrders.Count
If orders > 0 Then

622 CHAPTER 14 AN INTRODUCTION TO LINQ

Dim tot = From o In customerOrders
Select Aggregate det In o.details Into

Sum(det.UnitPrice * det.Quantity * (1 - det.Discount))
TextBox1.Text = "Customer " & custName & " has placed " &

orders.ToString & " orders totalling $" &
tot.Sum.ToString

Else
TextBox1.Text = "There are no order for customer " & custName

End If
lvOrders.Items.Clear()
For Each ord In customerOrders

Dim LI As New ListViewItem
LI.Text = ord.order.OrderID.ToString
LI.SubItems.Add(ord.order.OrderDate.Value.ToShortDateString)
LI.SubItems.Add((Aggregate dtl In ord.details Into

Sum(dtl.UnitPrice * dtl.Quantity *
(1 - dtl.Discount))).ToString)

LI.SubItems.Add(Aggregate dtl In ord.details Into Sum(dtl.Quantity))
LI.SubItems.Add(ord.order.Freight.ToString)
lvOrders.Items.Add(LI)

Next
End Sub

The code extracts the selected customer’s ID from the ListBox control and stores it to the
custID variable. It uses this variable to select the customer’s orders into the customerOrders
collection. Next, it calculates the number of orders and the total revenue generated by the cus-
tomer and displays it on the form. Finally, it iterates through the customerOrders collection
and displays the orders on a ListView control. One of the items shown in the ListView con-
trol is the total of each order, which is calculated by another LINQ query that aggregates the
current order’s details:

Aggregate dtl In ord.details Into
Sum(dtl.UnitPrice * dtl.Quantity * (1 - dtl.Discount))

This query returns a Double value, which is formatted and displayed like a variable. The query
isn’t assigned to a variable, and there’s no Select clause — just the aggregate value.

You may be tempted to write a loop that iterates through all the rows in the Customers table
to calculate aggregates. Just don’t! Use LINQ to formulate the appropriate query, and then let
the compiler figure out the statement that must be executed against the database to retrieve the
information you need, and no more. If you execute a loop at the client, LINQ to SQL will move
all the rows of the relevant tables to the client, where the loop will be executed. Although this
may work for Northwind, as the database grows larger it will be an enormous burden on the
database and the local network. The query might get a little complicated, but it saves you from
the performance issues you’d face when the application is released to many clients. Eventually,
you will be forced to go back and rewrite your code.

Let’s say you need to know the revenue generated by all customers in each country and in
a specific year. The following LINQ query does exactly that and returns a collection of anony-
mous types with just two fields: the country name and the total revenue per country.

LINQ TO SQL 623

Dim revenueByCountry = From cust In ctx.Customers,
ord In cust.Orders,
det In ord.Order_Details
Group By cust.Country Into countryTotals = Group,
countryRev =

Sum(det.Quantity * det.UnitPrice * (1 - det.Discount))
Select Country, countryRev

This statement returns a collection of country names and totals like this:

Austria 57401.84
Belgium 11434.48
Brazil 41941.19
Canada 31298.06
Denmark 25192.54

To execute this query, which in effect scans a large segment of the database and returns a
few totals, LINQ generates and executes the following SQL statement:

SELECT [t4].[Country], [t4].[value] AS [countryRev]
FROM (

SELECT SUM([t3].[value]) AS [value], [t3].[Country]
FROM (

SELECT (CONVERT(Real,
(CONVERT(Decimal(29,4),CONVERT(Int,[t2].[Quantity]))) *
[t2].[UnitPrice]))

* (@p0 - [t2].[Discount]) AS [value],
[t1].[OrderDate], [t1].[CustomerID], [t0].[CustomerID] AS
[CustomerID2],
[t2].[OrderID], [t1].[OrderID] AS [OrderID2], [t0].[Country]

FROM [dbo].[Customers] AS [t0], [dbo].[Orders] AS [t1],
[dbo].[Order Details] AS [t2]) AS [t3]

WHERE (DATEPART(Year, [t3].[OrderDate]) = @p1) AND
([t3].[CustomerID] = [t3].[CustomerID2]) AND
([t3].[OrderID] = [t3].[OrderID2])

GROUP BY [t3].[Country]) AS [t4]
ORDER BY [t4].[Country]
-- @p0: Input Real (Size = -1; Prec = 0; Scale = 0) [1]
-- @p1: Input Int (Size = -1; Prec = 0; Scale = 0) [1997]

This is a fairly complicated SQL query, unless you’re familiar with SQL. If not, try to master
LINQ and let the compiler generate the SQL queries for you. If you haven’t used SQL before,
you’ll find an introduction to SQL in the following chapter.

Likewise, when you click an order, the program retrieves the details of the selected order
and displays them on the second ListView control, using the following query:

Dim selectedDetails = From det In ctx.Order_Details, prod In ctx.Products
Where prod.ProductID = det.ProductID And

624 CHAPTER 14 AN INTRODUCTION TO LINQ

det.OrderID = OrderID
Select New With {.details = det}

Note that this query combines the Products table, because the Order Details table contains only
the IDs of the products, not their names. This is how the data are organized in the database,
but not how you want to present the data to the user.

Updates
In addition to querying the database, you can also update it by inserting new rows or
updating and deleting existing rows. To insert a new row into a table, create a new object
of the appropriate type and then add it to its table by calling the InsertOnSubmit method.
The InsertOnSubmit method doesn’t submit the new row to the database; the new row lives
at the client and is submitted to the database when you call the SubmitChanges method. The
following statements create a new product and add it to the Products table:

Dim P As New Product
P.ProductName = "New Product"
P.CategoryID = 3
P.UnitPrice = 9.45
ctx.Products.InsertOnSubmit(P)
ctx.SubmitChanges

You can accumulate multiple changes to the Products table (or any other table for that
matter) and submit them all at once to the database with a single call to the SubmitChanges
method. The compiler will figure out the appropriate order for submitting the rows. For
example, it will first insert new categories and then products, because a new product may
contain a reference to a new category.

To update a row, just change some of its properties, and the edits will be submitted to
the database when the SubmitChanges method is called. Finally, to delete a row, call the
DeleteOnSubmit method and pass the Product object to be deleted as an argument. There are
also two related methods, the InsertAllOnSubmit and DeleteAllOnSubmit methods, which
accept an IEnumerable collection of objects as an argument.

Submitting updates to the database isn’t a trivial topic. For example, one or more other users
might have edited or deleted the row you’re trying to update since your application read it.
You can’t take it for granted that all updates will be submitted successfully to the database.
Consider, too, one of the restrictions in the Northwind database is that product prices can’t be
negative. The Product class generated by the designer doesn’t enforce this restriction at the
client. At the client, it’s perfectly legal to assign a negative value to a product’s UnitPrice
property, but a row that contains a negative price value will fail to update the database. The
database itself will reject any updates that violate any database constraint. You can also set a
product’s CategoryID field to an arbitrary value, but unless this value matches the ID of an
existing category in the Categories table, the changes will be rejected by the database. Handling
these conditions requires additional code. The topic of handling update errors is discussed in
detail in Part V of this book. This section is a quick introduction to a component that allows
you to handle database tables as objects and manipulate them with LINQ.

The VBLINQ2SQL project (available for download from www.sybex.com/go/masteringvb2010)
contains a form that displays all products on a ListView control, as shown in Figure 14.9.

LINQ TO SQL 625

The Add Another Product button brings up the form shown in the same figure, which allows
you to specify a new product and submit it to the database. The new product is added
automatically to the list with the products. You can also click the Reload All Products button to
confirm that the product has been committed to the database. If the new product violates one
of the database constraints (for example, it has a negative value), the operation will fail, and
you will see an appropriate error message.

Figure 14.9

Viewing all products
and inserting/editing
individual products

If you double-click a product row in the Northwind Products form, the auxiliary form will
be displayed again, this time populated with the fields of the selected product, and you can
edit them.

Creating a New Order

I’ll complete the presentation of the VBLINQ2SQL sample application by discussing the code
that creates a new order. The Order object combines several tables and the most interesting
object in the Northwind database. Orders are placed by customers and credited to employ-
ees. They also contain a number of products, along with their quantities and prices. A proper
interface should allow users to specify all these items, and you will see a suitable interface for
creating orders in Chapter 15. For the purposes of this sample application, I’ve decided to select
the appropriate items at random, but the application does generate actual orders and submits
them to the database. The Add New Order button on Form2, which is shown in Figure 14.10,
does exactly that with the statements included in Listing 14.8.

Listing 14.8: Adding a new order to the Northwind database

Dim RND As New Random
’ select a customer at random
Dim cust = CType(ctx.Customers.Skip(

RND.Next(1, 50)).Take(1).First, Customer)
’ select an employee at random
Dim emp = CType(ctx.Employees.Skip(

626 CHAPTER 14 AN INTRODUCTION TO LINQ

RND.Next(1, 10)).Take(1).First, Employee)
’ and create order’s header
Dim order As New Order
order.OrderDate = Now
order.Customer = cust
order.Employee = emp
’ select a random freight for the order in the range from $3 to $75
order.Freight = RND.Next(300, 7500) / 100
Dim discount As Decimal
’ select a random discount value for the order
discount = RND.Next(0, 45) / 100
Dim prod As Product
’ create a random number of detail lines in the range from 10 to 50
For i As Integer = 1 To RND.Next(10, 50)

prod = CType((From p As Product In ctx.Products
Where p.ProductID = RND.Next(1, 50) Select p).Single, Product)

’ add product to order only if it doesn’t exist already
’ because the Order Details table has a unique costraint
’ on fields OrerID + ProductID

If order.Order_Details.Where(
Function(d) d.ProductID = prod.ProductID).Count = 0 Then

order.Order_Details.Add(
New Order_Detail With

{.ProductID = prod.ProductID,
.Quantity = RND.Next(5, 15),
.UnitPrice = prod.UnitPrice,
.Discount = discount})

End If
Next

’ and now submit the order to the database
ctx.Orders.InsertOnSubmit(order)
ctx.SubmitChanges()
frmOrder.txtOrderID.Text = order.OrderID.ToString
frmOrder.txtOrderDate.Text = order.OrderDate.Value.ToShortDateString
frmOrder.txtOrderCustomer.Text = order.Customer.CompanyName &

" / " & order.Customer.ContactName
frmOrder.txtEmployee.Text = order.Employee.LastName & ", " &

order.Employee.FirstName
’ statement to display order on frmOrder auxiliary form
frmOrder.ShowDialog()

Since I’m only interested in showing you how to create a new order, the code selects a cus-
tomer at random. It does so by skipping a random number of rows in the Customers table with
the Skip method and then selecting the following one. Next, it selects a random number of
products. Because of a constraint in the Orders table, the code must verify that each new prod-
uct appears only once in the order. In other words, if the product chosen at random belongs

LINQ TO SQL 627

to the order already, the code ignores it, and it does so by calling the Where extension method
of the order collection with this statement:

If order.Order_Details.Where(Function(d) d.ProductID = prod.ProductID).Count = 0

Figure 14.10

Adding a new order to
the Northwind database
with LINQ to SQL

The lambda expression passed to the method selects the row with the product ID you’re
about to add. If it doesn’t exist on that particular order, then the code adds it to the order col-
lection. Other than this detail, the code is straightforward. If you open the sample application
and examine its code, you will see that it contains straightforward code that manipulates cus-
tom types and collections and only a couple of database-related statements. The new order is
represented by an object of the Order type:

Dim order As New Order

To create the order, the code sets the properties of this object. To specify the customer, the code
assigns a Customer object to the Customer property of the Order variable. The class generated
by the wizard knows that it has to submit just the CustomerID field to the database.

Order.Order_Details is a collection of Order_Detail objects, one for each product in
the order. The application creates and initializes the order’s detail lines, one at a time, and adds
them to the Order.Order_Details collection. When done, it submits the order to the database
by calling the SubmitChanges method. LINQ to SQL knows how to submit all the items in the
new order to the database in the proper order. Not only that, but it also retrieves the order’s
ID (a value that’s generated by the database) and updates the order variable at the client. The
code that displays the order on an auxiliary form has access to the order’s ID without making
another trip to the database.

LINQ to SQL is the most important component of LINQ, because it encapsulates the com-
plexity of a database and allows us to work with the database tables as if they were collections

628 CHAPTER 14 AN INTRODUCTION TO LINQ

of custom types. It bridges the gap between the object-oriented world of Visual Basic and the
realm of relational databases. There’s another similar component, LINQ to Entities, which is
discussed in detail in Chapter 17, ‘‘Using the Entity Data Model.’’ LINQ to Entities takes the
same principles one step further by allowing you to create your own objects and map them to
database tables. LINQ to Entities takes LINQ to SQL one step further in the direction of pro-
gramming databases with the object-oriented features of modern languages like VB.

The Bottom Line

Perform simple LINQ queries. A LINQ query starts with the structure From variable
Incollection, where variable is a variable name and collection is any collection that
implements the IEnumerable interface (such as an array, a typed collection, or any method
that returns a collection of items). The second mandatory part of the query is the Select part,
which determines the properties of the variable you want in the output. Quite often you select
the same variable that you specify in the From keyword. In most cases, you apply a filtering
expression with the Where keyword. Here’s a typical LINQ query that selects filenames from a
specific folder:

Dim files =
From file In

IO.Directory.GetFiles("C:\Documents")
Where file.EndsWith("doc")

Select file

Master It Write a LINQ query that calculates the sum of the squares of the values in an
array.

Create and process XML files with LINQ to XML. LINQ to XML allows you to create XML
documents with the XElement and XAttribute classes. You simply create a new XElement
object for each element in your document and create a new XAttribute object for each attribute
in the current element. Alternatively, you can simply insert XML code in your VB code. To
create an XML document dynamically, you can insert embedded expressions that will be
evaluated by the compiler and replaced with their results.

Master It How would you create an HTML document with the filenames in a specific
folder?

Process relational data with LINQ to SQL. LINQ to SQL allows you to query relational data
from a database. To access the database, you must first create a DataContext object. Then you
can call this object’s GetTable method to retrieve a table’s rows or the ExecuteQuery method
to retrieve selected rows from one or more tables with a SQL query. The result is stored in a
class designed specifically for the data you’re retrieving via the DataContext object.

Master It Explain the attributes you must use in designing a class for storing a table.

Part 5

Developing Data-Driven
Applications
◆ Chapter 15: Programming with ADO.NET

◆ Chapter 16: Developing Data-Driven Applications

◆ Chapter 17: Using the Data Entity Model

◆ Chapter 18: Building Data-Bound Applications

Chapter 15

Programming with ADO.NET

With this chapter, we start exploring applications that manipulate large sets of data stored in
a database. After a quick introduction to databases, you’ll learn about the basic mechanisms of
interacting with databases. As you will see, it’s fairly straightforward to write a few VB state-
ments to execute SQL queries against the database in order to either edit or retrieve selected
rows. The real challenge is the design and implementation of functional interfaces that dis-
play the data requested by the user, allow the user to navigate through the data and edit it,
and finally submit the changes to the database. You’ll learn how to execute queries against the
database, retrieve data, and submit modified or new data to the database.

In this chapter, you’ll learn how to do the following:

◆ Store data in relational databases

◆ Query databases with SQL

◆ Submit queries to the database using ADO.NET

What Is a Database?
A database is a container for storing relational, structured information. The same is true for a
file or even for the file system on your hard disk. What makes a database unique is that it is
designed to preserve relationships and make data easily retrievable. The purpose of a database
is not so much the storage of information as its quick retrieval. In other words, you must struc-
ture your database so that it can be queried quickly and efficiently. It’s fairly easy to create a
database for storing products and invoices and add new invoices every day. In addition to just
storing information, you should also be able to retrieve invoices by period, retrieve invoices by
customer, or retrieve invoices that include specific products. Unless the database is designed
properly, you won’t be able to retrieve the desired information efficiently.

Databases are maintained by special programs, such as Microsoft Office Access and SQL
Server. These programs are called database management systems (DBMSs), and they’re among
the most complicated applications. A fundamental characteristic of a DBMS is that it isolates
much of the complexity of the database from the developer. Regardless of how each DBMS
stores data on disk, you see your data organized in tables with relationships between tables.
To access or update the data stored in the database, you use a special language, the Structured
Query Language (SQL). Unlike other areas of programming, SQL is a truly universal language,
and all major DBMSs support it.

632 CHAPTER 15 PROGRAMMING WITH ADO.NET

The recommended DBMS for Visual Studio 2010 is SQL Server 2008. In fact, the Visual
Studio 2008 setup program offers to install a developer version of SQL Server 2008 called SQL
Server 2008 Express. However, you can use Access as well as non-Microsoft databases such as
Oracle. Although this chapter was written with SQL Server 2008, most of the examples will
work with Access as well.

Data is stored in tables, and each table contains entities of the same type. In a database that
stores information about books, there could be a table with titles, another table with authors,
and a table with publishers. The table with the titles contains information such as the title of the
book, the number of pages, and the book’s description. Author names are stored in a different
table because each author might appear in multiple titles. If author information were stored
along with each title, we’d be repeating author names. So, every time we wanted to change
an author’s name, we’d have to modify multiple entries in the titles table. Even retrieving a
list of unique author names would be a challenge because you’d have to scan the entire table
with the titles, retrieve all the authors, and then get rid of the duplicate entries. Of course, you
need a mechanism to associate titles with their authors, and you’ll see how this is done in the
following section. The same is true for publishers. Publishers are stored in a separate table, and
each title contains a pointer to the appropriate row in the publishers table.

The reason for breaking the information we want to store in a database into separate tables
is to avoid duplication of information. This is a key point in database design. Duplication of
information will sooner or later lead to inconsistencies in the database. The process of breaking
the data into related tables that eliminate all possible forms of information duplication is called
normalization, and there are rules for normalizing databases. The topic of database normaliza-
tion is not discussed further in this book. However, all it really takes to design a functional
database is common sense. In short, you identify the entities you want to store in the database
(such as customers, products, hotels, books, and the like) and store them in separate tables. You
also avoid duplicating information at all costs. If you design a table for storing books along
with their authors, you’ll soon realize that the same author names are repeated in multiple
books. Data duplication means that you have combined entities, and you need to break the
original table into one with books and another with authors. Of course, you’ll have to estab-
lish a relationship between the two tables so you can locate a book’s author(s) or an author’s
books. This is done through relations between the tables; hence the term relational databases.
Don’t worry if you haven’t worked with databases before; the following sections demonstrate
the structure of a database through examples. After you learn how to extract data from your
database’s tables with SQL statements, you’ll develop a much better understanding of the way
databases should be structured.

Using Relational Databases
The databases we’re interested in are called relational because they are based on relationships
among the data they contain. The data is stored in tables, and tables contain related data, or
entities, such as people, products, orders, and so on. Of course, entities are not independent of
each other. For example, orders are placed by specific customers, so the rows of the Customers
table must be linked to the rows of the Orders table that stores the orders of the customers.
Figure 15.1 shows a segment of a table with customers (top) and the rows of a table with orders
that correspond to one of the customers (bottom).

As you can see in Figure 15.1, relationships are implemented by inserting columns with
matching values in the two related tables; the CustomerID column is repeated in both tables.

WHAT IS A DATABASE? 633

The rows with a common value in the CustomerID fields are related. In other words, the lines
that connect the two tables simply indicate that there are two fields, one on each side of the
relationship, with a common value. The customer with the ID value ALFKI has placed the
orders 10643 and 10692 (among others). To find all the orders placed by a customer, we can
scan the Orders table and retrieve the rows in which the CustomerID field has the same value
as the ID of the specific customer in the Customers table. Likewise, you can locate customer
information for each order by looking up the row of the Customers table that has the same ID
as the one in the CustomerID field of the Orders table.

Figure 15.1

Linking customers and
orders with relationships

The two fields used in a relationship are called key fields. The CustomerID field of the Cus-
tomers table is the primary key because it identifies a single customer. Each customer has a
unique value in the CustomerID field. The CustomerID field of the Orders table is the foreign
key of the relationship. A CustomerID value appears in a single row of the Customers table and
identifies that row; it’s the table’s primary key. However, it might appear in multiple rows of
the Orders table because the CustomerID field is the foreign key in this table. In fact, it will
appear in as many rows of the Orders table as there are orders for the specific customer. Note
that the primary and foreign keys need not have the same names, but it’s convenient to use the
same name because they both represent the same entity.

The concept of relationships between tables is pretty straightforward and very easy to imple-
ment through a pair of keys. Yet, this is the foundation of relational databases.

To help you understand relational databases, I will present the structure of the two sample
databases used for the examples in this and the following chapters. If you’re not familiar with
the Northwind and Pubs databases, read the following two sections and you’ll find it easier to
follow the examples.

Obtaining the Northwind and Pubs Sample Databases
SQL Server 2008 developers will wonder where the Northwind and Pubs databases have
gone. Microsoft has replaced both databases with a single new database called Adventure-
Works. Microsoft made the change to demonstrate new SQL Server features in an environment

634 CHAPTER 15 PROGRAMMING WITH ADO.NET

that more closely matches large enterprise systems. Because the AdventureWorks database is
extremely complex and not very friendly for teaching database principles, this book won’t rely
on it. However, you might want to look at the AdventureWorks database anyway to see what
it provides and understand how complex databases can become.

Many developers are used to working with the Northwind and Pubs databases with
other Microsoft products. These two databases have become so standard that many
authors, including myself, rely on the presence of these databases to ensure that every-
one can see example code without a lot of extra effort. Unfortunately, you won’t find
an option for installing them as part of the standard SQL Server 2008 installation. How-
ever, you can find scripts for creating these databases in SQL Server Express online at
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-
EEBC53A68034&displaylang=en. The name of the file you’ll receive is SQL2000SampleDb.MSI.
Even though Microsoft originally created this file for SQL Server 2000, it works just fine with
SQL Server 2008.

After you download the script files, you need to install them. Right-click the file, and choose
Install from the context menu. You will see a Welcome dialog box, telling you that this file
contains the sample databases for SQL Server 2000. Click Next, read the licensing agreement,
and agree to it. Keep following the prompts until you install the sample database scripts in the
appropriate directory.

At this point, you have two scripts for creating the sample databases. If you used the default
installation settings, these files appear in the \Program Files\Microsoft SQL Server 2000
Sample Database Scripts folder of your machine. The InstNwnd.SQL file will create the North-
wind database, and the InstPubs.SQL file will create the Pubs database.

Double-click the name of each SQL file, and each will open in SQL Server Management Stu-
dio. Then click the Execute button in the toolbar (it’s the button with the icon of an exclamation
mark) to run the script, which will install the appropriate database.

To install the databases for the Express version of SQL Server 2008, open a command
prompt. Type OSQL -E -i InstNwnd.SQL, and press Enter. The OSQL utility will create the
Northwind database for you (this process can take quite some time). After the Northwind
database is complete, type OSQL -E -i InstPubs.SQL, and press Enter. The process will repeat
itself.

If you try to run the OSQL utility and receive an error message at the command prompt,
the SQL Server 2008 installation didn’t modify the path information for your system as it
should have. In some cases, this makes your installation suspect, and you should reinstall the
product if you experience other problems. To use the installation scripts, copy them from the
installation folder to the \Program Files\Microsoft SQL Server\90\Tools\binn folder. You
can run the OSQL utility at the command prompt from this folder to create the two sample
databases.

You’ll want to test the installation to make sure it worked. Open Visual Studio, and choose
View � Server Explorer to display Server Explorer. Right-click Data Connections, and choose
Add Connection from the context menu. Server Explorer will display the Add Connection dia-
log box shown in Figure 15.2 (this one already has all the information filled out).

In the Server Name field, type the name of your machine, or select one with the mouse.
Click the down arrow in the Select Or Enter A Database Name field. You should see both the
Northwind and Pubs databases, as shown in Figure 15.2. If you don’t see these entries, it means
that an error occurred. Try running the scripts a second time.

WHAT IS A DATABASE? 635

Figure 15.2

Use the Add Connection
dialog box to check for
the two databases.

Exploring the Northwind Database
In this section, you’ll explore the structure of the Northwind sample database. The Northwind
database stores products, customers, and sales data, and many of you are already familiar with
the structure of the database.

To view a table’s contents, expand the Table section of the tree under the Northwind con-
nection in Server Explorer, and locate the name of the table you want to examine. Right-click
the name, and choose Show Table Data from the context menu. This will open the table, and
you can view and edit its rows. If you choose the Open Table Definition command from the
same menu, you will see the definitions of the table’s columns. You can change the type of
the columns (each column stores items of the same type), change their length, and set a few
more properties that are discussed a little later in this chapter. To follow the description of the
sample databases, open the tables in view mode.

If you have installed SQL Server 2008, you can use SQL Server Management Studio to
explore the same database. Just right-click the Northwind database, and from the context menu
select Open Table to view the data or select Design to change the table definition.

636 CHAPTER 15 PROGRAMMING WITH ADO.NET

Products Table

The Products table stores information about the products of the fictional Northwind corpo-
ration. This information includes the product name, packaging information, price, and other
relevant fields. Each product (or row) in the table is identified by a unique numeric ID. Because
each ID is unique, the ProductID column is the table’s primary key. This column is an Identity
column: It’s a numeric value, which is generated automatically by the database every time you
insert a new row to the table. The rows of the Products table are referenced by invoices (the
Order Details table, which is discussed later), so the product IDs appear in the Order Details
table as well. The ProductID column, as well as most primary keys in any database, has a
unique property: It’s an Identity column. Every time you add a new product to the table, SQL
Server assigns the next available value to this column. If the ID of the last row in the Products
table is 72, the first product that will be added will take the primary key value of 73 automat-
ically. SQL Server will always assign the proper value to this column, and it will always be
unique.

Suppliers Table

Each product has a supplier, too. Because the same supplier can offer more than one product,
the supplier information is stored in a different table, and a common field, the SupplierID
field, is used to link each product to its supplier (as shown in Figure 15.3). For example, the
products Chai, Chang, and Aniseed Syrup are purchased from the same supplier: Exotic Liq-
uids. Its SupplierID fields all point to the same row in the Suppliers table.

Figure 15.3

Linking products to
their suppliers and their
categories

Categories Table

In addition to having a supplier, each product belongs to a category. Categories are not stored
along with product names; they are stored separately in the Categories table. Again, each cate-
gory is identified by a numeric value (field CategoryID) and has a name (field CategoryName).
In addition, the Categories table has two more columns: Description, which contains text, and

WHAT IS A DATABASE? 637

Picture, which stores a bitmap. The CategoryID field in the Categories table is the primary
key, and the field by the same name in the Products table is the corresponding foreign key.

Customers Table

The Customers table stores information about the company’s customers. Each customer is
stored in a separate row of this table, and customers are referenced by the Orders table. Unlike
product IDs, customer IDs are five-character strings and are stored in the CustomerID column.
This is an unusual choice for IDs, which are usually numeric values. The CustomerID column
isn’t an Identity column; the user must determine the key of each customer and submit it
along with the other customer data. The database has a unique constraint for this column:
The customer’s ID must be unique, and the database won’t accept any rows with a duplicate
CustomerID value.

Orders Table

The Orders table stores information about the orders placed by Northwind’s customers. The
OrderID field, which is an integer value, identifies each order. Orders are numbered sequen-
tially, so this field is also the order’s number. Each time you append a new row to the Orders
table, the value of the new OrderID field is generated automatically by the database. Not only
is the OrderID column the table’s primary key, but it’s also an Identity column.

The Orders table is linked to the Customers table through the CustomerID column. By
matching rows that have identical values in their CustomerID fields in the two tables, we can
recombine customers with their orders. Refer back to Figure 15.1 to see how customers are
linked to their orders.

Order Details Table

The Orders table doesn’t store any details about the items ordered; this information is stored
in the Order Details table (see Figure 15.4). Each order consists of one or more items, and each
item has a price, a quantity, and a discount. In addition to these fields, the Order Details table
contains an OrderID column, which holds the ID of the order to which the detail line belongs.

The reason why details aren’t stored along with the order’s header is that the Orders and
Order Details tables store different entities. The order’s header, which contains information
about the customer who placed the order, the date of the order, and so on, is quite different
from the information you must store for each item ordered. If you attempt to store the entire
order into a single table, you’ll end up repeating a lot of information. Notice also that the Order
Details table stores the IDs of the products, not the product names.

Employees Table

This table holds employee information. Each employee is identified by a numeric ID, which
appears in each order. When a sale is made, the ID of the employee who made the sale is
recorded in the Orders table. An interesting technique was used in the design of the Employees
table: Each employee has a manager, which is another employee. The employee’s manager
is identified by the ReportsTo field, which is set to the ID of the employee’s manager. The
rows of the Employees table contain references to the same table. This table contains a foreign
key that points to the primary key of the same table, a relation that allows you to identify the
hierarchy of employees in the corporation.

638 CHAPTER 15 PROGRAMMING WITH ADO.NET

Figure 15.4

Customers, Orders, and
Order Details tables and
their relations

Shippers Table

Each order is shipped with one of the three shippers stored in the Shippers table. The appropri-
ate shipper’s ID is stored in the Orders table.

Exploring the Pubs Database
Before looking at SQL and more practical techniques for manipulating tables, let’s look at the
structure of another sample database I’m going to use in this chapter, the Pubs database. Pubs
is a database for storing book, author, and publisher information, not unlike a database you
might build for an online bookstore.

The Pubs database consists of really small tables, but it was carefully designed to demon-
strate many of the features of SQL, so it’s a prime candidate for sample code. Just about any
book about SQL Server uses the Pubs database. In the examples of the following sections, I
will use the Northwind database because it’s closer to a typical business database, and the
type of information stored in the Northwind database is closer to the needs of the average VB
programmer than the Pubs database. Some of the fine points of SQL, however, can’t be demon-
strated with the data of the Northwind database, so in this section I’ll show examples that use
the ubiquitous Pubs database.

Titles Table

The Titles table contains information about individual books (the book’s title, ID, price, and so
on). Each title is identified by an ID, which is not a numeric value, that’s stored in the title_id
column. The IDs of the books look like this: BU2075.

WHAT IS A DATABASE? 639

Authors Table

The Authors table contains information about authors. Each author is identified by an ID,
which is stored in the au_id field. This field is a string with a value such as 172-32-1176 (they
resemble U.S. Social Security numbers).

TitleAuthor Table

The Titles and Authors tables are not directly related because they can’t be joined via a
one-to-many relationship; the relationship between the two tables is many-to-many. The
relations you have seen so far are one-to-many because they relate one row in the table that has
the primary key to one or more rows in the table that has the foreign key: One order contains
many detail lines, one customer has many orders, one category contains many products,
and so on.

The relation between titles and authors is many-to-many because each book may have mul-
tiple authors, and each author may have written multiple titles. If you stop to think about the
relationship between these two tables, you’ll realize that it can’t be implemented with a pri-
mary key and a foreign key (like the Order-Customer relationship or the Order-Shipper rela-
tionship in the Northwind database). To establish a many-to-many relationship, you must cre-
ate a join table between the other two, and this table must have a one-to-many relationship
with both tables.

Figure 15.5 shows how the Titles and Authors tables of the Pubs database are related to one
another. The table between them holds pairs of title IDs and author IDs. If a book was written
by two authors, the TitleAuthor table contains two entries with the same title ID and differ-
ent author IDs. The book with a title_id of BU1111 was written by two authors. The IDs
of the authors appear in the TitleAuthor table along with the ID of the book. The IDs of these
two authors are 267-41-2394 and 724-80-9391. Likewise, if an author has written more than one
book, the author’s ID will appear many times in the TitleAuthor table — each time paired with
a different title ID.

Figure 15.5

The TitleAuthor table
links titles to authors.

At times you won’t be able to establish the desired relationship directly between two tables
because the relationship is many-to-many. When you discover a conflict between two tables,
you must create a join table between them. A many-to-many relation is actually implemented
as two one-to-many relations.

640 CHAPTER 15 PROGRAMMING WITH ADO.NET

Publishers Table

The Publishers table contains information about publishers. Each title has a pub_id field, which
points to the matching row of the Publishers table. Unlike the other major tables of the Pubs
database, the Publishers table uses a numeric value to identify each publisher.

Understanding Relations
In a database, each table has a field with a unique value for every row. As indicated earlier in
this chapter, this field is the table’s primary key. The primary key does not have to be a mean-
ingful entity because in most cases there’s no single field that’s unique for each row. Books can
be identified by their ISBNs and employees by their SSNs, but these are exceptions to the rule.
In general, you can’t come up with a meaningful key that’s universally unique. The primary
key need not resemble the entity it identifies. The only requirement is that primary keys be
unique in the entire table. In most designs, we use an integer as the primary key. To make sure
they’re unique, we even let the DBMS generate a new integer for each row added to the table.
Each table can have one primary key only, and the DBMS can automatically generate an inte-
ger value for a primary key field every time a new row is added. SQL Server uses the term
Identity for this data type, and there can be only one Identity field in each table.

Database designers sometimes use unique global identifiers, which are lengthy strings like
281167b3-7cbc-41a0-ad89-8c0995ac2d07 to identify the rows. These strings, which are guaran-
teed to be globally unique, are generated automatically by both Visual Basic and SQL Server.
To generate a GUID value with Visual Basic, call the Guid.NewGuid method. GUIDs are not
as easy to handle as integers, and they entail some performance penalty. If you need a unique
identity across multiple databases, you have to use GUIDs.

The related rows in a table repeat the primary key of the row they are related to in another
table. The copies of the primary keys in all other tables are called foreign keys. Foreign keys
need not be unique (in fact, by definition they aren’t), and any field can serve as a foreign
key. What makes a field a foreign key is that it matches the primary key of another table. The
CategoryID field is the primary key of the Categories table because it identifies each category.
The CategoryID field in the Products table is the foreign key because the same value might
appear in many rows (many products can belong to the same category). Whereas the primary
key refers to a table, the foreign key refers to a relationship. The CategoryID column of the
Products table is the foreign key in the relationship between the Categories and Products
tables. The Products table contains another foreign key, the SupplierID column, which forms
the relationship between the Suppliers and Products tables.

Referential Integrity

Maintaining the links between tables is not a trivial task. When you add an invoice line, for
instance, you must make sure that the product ID that you insert in the Order Details table
corresponds to a row in the Products table. An important aspect of a database is its integrity.
To be specific, you must ensure that the relations are always valid, and this type of integrity
is called referential integrity. There are other types of integrity (for example, setting a product’s
value to a negative value will compromise the integrity of the database), but this is not nearly
as important as referential integrity. The wrong price can be easily fixed. But issuing an invoice
to a customer who doesn’t exist isn’t easy (if even possible) to fix. Modern databases come with
many tools to help ensure their integrity, especially referential integrity. These tools are con-
straints you enter when you design the database, and the DBMS makes sure that the constraints
are not violated as the various programs manipulate the database.

WHAT IS A DATABASE? 641

When you relate the Products and Categories tables, for example, you must also ensure the
following:

◆ Every product added to the foreign table must point to a valid entry in the primary table. If
you are not sure which category the product belongs to, you can leave the CategoryID field
of the Products table empty (the field will have a null value). Or, you can create a generic
category, the UNKNOWN or UNDECIDED category, and use this category if no informa-
tion is available.

◆ No rows in the Categories table should be removed if there are rows in the Products table
pointing to the specific category. This situation would make the corresponding rows of
the Products table point to an invalid category (the rows that have no matching row in the
primary table are called orphan rows).

These two restrictions would be quite a burden on the programmer if the DBMS didn’t pro-
tect the database against actions that could impair its integrity. The referential integrity of your
database depends on the validity of the relations. Fortunately, all DBMSs can enforce rules to
maintain their integrity, and you’ll learn how to enforce rules that guarantee the integrity of
your database later in this chapter. In fact, when you create the relationship, you can select a
couple of check boxes that tell SQL Server to enforce the relationship (that is, not to accept any
changes in the data that violate the relationship). If you leave these check boxes deselected, be
ready to face a real disaster sooner or later.

Visual Database Tools

To simplify the development of database applications, Visual Studio 2010 comes with some
visual tools, the most important of which are briefly described in Table 15.1 and then discussed
in the following sections.

Table 15.1: Visual database tools

Name Description

Server Explorer This is the most prominent tool. Server Explorer is the toolbox for data-
base applications, in the sense that it contains all the basic tools for
connecting to databases and manipulating their objects.

Query Builder This is a tool for creating SQL queries (statements that retrieve the data
you want from a database or update the data in the database). SQL is a
language in its own right, and we’ll discuss it later in this chapter. Query
Builder lets you specify the operations you want to perform on the tables
of a database with point-and-click operations. In the background, Query
Builder builds the appropriate SQL statement and executes it against the
database.

Database Designer and
Tables Designer

These tools allow you to work with an entire database or its tables. When
you work with the database, you can add new tables, establish
relationships between the tables, and so on. When you work with
individual tables, you can manipulate the structure of the tables, edit their
data, and add constraints. You can use these tools to manipulate a
complicated object — the database — with point-and-click operations.

642 CHAPTER 15 PROGRAMMING WITH ADO.NET

SQL: An Overview
SQL is a universal language for manipulating data in database tables. Every DBMS supports
it, so you should invest the time and effort to learn it. You can generate SQL statements with
point-and-click operations (Query Builder is a visual tool for generating SQL statements), but
this is no substitute for understanding SQL and writing your own statements. The visual tools
are nothing more than a user-friendly interface for specifying SQL statements. In the back-
ground, they generate the appropriate SQL statement, and you will get the most out of these
tools if you understand the basics of SQL. I will start with an overview of SQL, and then I’ll
show you how to use the Query Builder utility to specify a few advanced queries. If you’re
familiar with SQL, you can skip this section or just glance through it and take a look at the
examples.

By the way, the SQL version of SQL Server is called T-SQL, which stands for Transact-SQL.
T-SQL is a superset of SQL and provides advanced programming features that are not available
with SQL. I’m not going to discuss T-SQL in this book, but once you understand SQL, you’ll
find it easy to leverage this knowledge to T-SQL.

SQL is a nonprocedural language, which means that SQL doesn’t provide traditional pro-
gramming structures such as If statements or loops. Instead, it’s a language for specifying the
operation you want to perform against a database at a high level. The details of the implemen-
tation are left to the DBMS. SQL is an imperative language, like Language Integrated Query
(LINQ), as opposed to a traditional programming language, such as VB. Traditional languages
are declarative: The statements you write tell the compiler how to perform the desired actions.
This is good news for nonprogrammers, but many programmers new to SQL might wish it had
the structure of a more traditional language. You will get used to SQL and soon be able to com-
bine the best of both worlds: the programming model of VB and the simplicity of SQL. Besides,
there are many similarities between SQL and LINQ, and you’ll be able to leverage your skills
in any of the two areas.

SQL Is Not Case Sensitive

SQL is not case sensitive, but it’s customary to use uppercase for SQL statements and key-
words. In the examples in this book, I use uppercase for SQL statements. This is just a style to
help you distinguish between the SQL keywords and the table/field names of the query. Also,
unlike VB, SQL literals must be embedded in single quotes, not double quotes.

To retrieve all the company names from the Customers table of the Northwind database,
you issue a statement like this one:

SELECT CompanyName
FROM Customers

To select customers from a specific country, you must use the WHERE clause to limit the
selected rows, as in the following statement:

SELECT CompanyName
FROM Customers
WHERE Country = ‘Germany’

SQL: AN OVERVIEW 643

The DBMS will retrieve and return the rows you requested. As you can see, this is not the
way you’d retrieve rows with Visual Basic. With a procedural language such as VB, you’d
have to write loops to scan the entire table, examine the value of the Country column, and
either select or reject the row. Then you would display the selected rows. With SQL, you don’t
have to specify how the selection operation will take place; you simply specify what you want
the database to do for you — not how to do it. As a reminder, the equivalent LINQ statement
would be as follows (I’m using LINQ to SQL syntax):

Dim selectedCustomers = From cust In Customers
Where cust.Country = "Germany"
Select cust

SQL statements are divided into two major categories, which are actually considered sep-
arate languages: the statements for manipulating the data, which form the Data Manipula-
tion Language (DML), and the statements for defining database objects, such as tables or their
indexes, which form the Data Definition Language (DDL). The DDL is not of interest to every
database developer, and I will not discuss it in this book. The DML is covered in depth because
you’ll use these statements to retrieve data, insert new data into the database, and edit or delete
existing data.

The statements of the DML part of the SQL language are also known as queries, and there
are two types of queries: selection queries and action queries. Selection queries retrieve infor-
mation from the database. A selection query returns a set of rows with identical structure. The
columns can come from different tables, but all the rows returned by the query have the same
number of columns. Action queries modify the database’s objects or create new objects and add
them to the database (new tables, relationships, and so on).

Executing SQL Statements
If you are not familiar with SQL, I suggest that you follow the examples in this chapter and
experiment with the sample databases. To follow the examples, you have two options: SQL
Server Management Studio (SSMS) and Query Designer of Visual Studio. SSMS helps you man-
age databases in various ways, including creating queries to extract data. Query Designer is an
editor for SQL statements that also allows you to execute them and see the results. In addition
to Query Designer, you can also use Query Builder, which is part of SSMS and Visual Studio.
Query Builder lets you build the statements with visual tools, and you don’t have to know the
syntax of SQL in order to create queries with Query Builder. After a quick overview of the SQL
statements, I will describe Query Builder and show you how to use its interface to build fairly
elaborate queries.

Using SQL Server Management Studio

One of the applications installed with SQL Server is SQL Server Management Studio. To start
it, choose Start � Programs � SQL Server � SQL Server Management Studio. When this appli-
cation starts, you see the Connect To Server dialog box (Figure 15.6). Choose Database Engine
in the Server Type field so you can work with databases on your system. Select the server you
want to use in the Server Name field. Provide your credentials, and click Connect.

644 CHAPTER 15 PROGRAMMING WITH ADO.NET

Figure 15.6

SSMS provides access
to all the database
engine objects, including
databases.

After you’re connected, right-click the database you want to use, and choose New Query
from the context menu. Enter the SQL statement you want to execute in the blank query that
SSMS creates. The SQL statement will be executed against the selected database when you
press Ctrl+E or click the Execute button (it’s the button with the exclamation point icon). Alter-
natively, you can prefix the SQL statement with the USE statement, which specifies the database
against which the statement will be executed. To retrieve all the Northwind customers located
in Germany, enter this statement:

USE Northwind
SELECT CompanyName FROM Customers
WHERE Country = ‘Germany’

The USE statement isn’t part of the query; it simply tells SSMS the database against which it
must execute the query. I’m including the USE statement with all the queries so you know the
database used for each example. If you’re executing the sample code from within Visual Stu-
dio, you need not use the USE statement, because all queries are executed against the selected
database. Actually, the statement isn’t supported by Query Designer of Visual Studio.

The results of the query, known as the result set, will appear in a grid in the lower pane.
An action query that updates a table (adds a new row, edits a row, or deletes an existing row)
doesn’t return any rows; it simply displays the number of rows affected on the Messages tab.

To execute another query, enter another statement in the upper pane, or edit the previous
statement and press Ctrl+E again. You can also save SQL statements into files so that you
won’t have to type them again. To do so, open the File menu, choose Save As or Save, and
enter the name of the file in which the contents of the Query pane will be stored. The statement
will be stored in a text file with the extension .sql.

Using Visual Studio

To execute the same queries with Visual Studio, open the Server Explorer window, and
right-click the name of the database against which you want to execute the query. From the
context menu, choose New Query, and a new query window will open. You will also see a

SQL: AN OVERVIEW 645

dialog box prompting you to select one or more tables. For the time being, close this dialog
box, because you will supply the names of the tables in the query; later in this chapter, you’ll
learn how to use the visual tools to build queries.

Query Designer of Visual Studio consists of four panes (Figure 15.7). The upper pane
(which is the Table Diagram pane) displays the tables involved in the query, their fields, and
the relationships between the tables — if any. The next pane shows the fields that will be
included in the output of the query. Here you specify the output of the query, as well as the
selection criteria. This pane is Query Builder, the tool that lets you design queries visually.
It’s discussed later in this chapter. In the next pane, the SQL pane, you see the SQL statement
produced by the visual tools. If you modify the query with the visual tools, the SQL statement
is updated automatically; likewise, when you edit the query, the other two panes are updated
automatically to reflect the changes. The last pane, the Results pane, contains a grid with the
query’s output. Every time you execute the query by clicking the button with the exclamation
mark in the toolbar, the bottom pane is populated with the results of the query. For the
examples in this section, ignore the top two panes. Just enter the SQL statements in the SQL
pane, and execute them.

Figure 15.7

Executing queries with
Visual Studio

Selection Queries
We’ll start our discussion of SQL with the SELECT statement. After you learn how to express
the criteria for selecting the desired rows with the SELECT statement, you can apply this infor-
mation to other data-manipulation statements. The simplest form of the SELECT statement is

SELECT fields
FROM tables

646 CHAPTER 15 PROGRAMMING WITH ADO.NET

where fields and tables are comma-separated lists of the fields you want to retrieve from
the database and the tables they belong to. The list of fields following the SELECT statement is
referred to as the selection list. To select the contact information from all the companies in the
Customers table, use this statement:

USE Northwind
SELECT CompanyName, ContactName, ContactTitle
FROM Customers

To retrieve all the fields, use the asterisk (*). The following statement selects all the fields
from the Customers table:

SELECT * FROM Customers

As soon as you execute a statement that uses the asterisk to select all columns, Query
Designer will replace the asterisk with the names of all columns in the table.

Limiting the Selection with WHERE

The unconditional form of the SELECT statement used in the previous section is quite trivial.
You rarely retrieve data from all rows in a table. Usually you specify criteria, such as ‘‘all com-
panies from Germany,’’ ‘‘all customers who have placed three or more orders in the last six
months,’’ or even more-complicated expressions. To restrict the rows returned by the query,
use the WHERE clause of the SELECT statement. The most common form of the SELECT statement
is the following:

SELECT fields
FROM tables
WHERE condition

The fields and tables arguments are the same as before, and condition is an expression
that limits the rows to be selected. The syntax of the WHERE clause can get quite complicated,
so we’ll start with the simpler forms of the selection criteria. The condition argument can be a
relational expression, such as the ones you use in VB. To select all the customers from
Germany, use the following condition:

WHERE Country = ‘Germany’

To select customers from multiple countries, use the OR operator to combine multiple
conditions:

WHERE Country = ‘Germany’ OR
Country = ‘Austria’

You can also combine multiple conditions with the AND operator.

SQL: AN OVERVIEW 647

Combining Data from Multiple Tables

It is possible to retrieve data from two or more tables by using a single statement. (This is the
most common type of query, actually.) When you combine multiple tables in a query, you can
use the WHERE clause to specify how the rows of the two tables will be combined. Let’s say you
want a list of all product names, along with their categories. For this query, you must extract
the product names from the Products table and the category names from the Categories table
and specify that the ProductID field in the two tables must match. The statement

USE Northwind
SELECT ProductName, CategoryName
FROM Products, Categories
WHERE Products.CategoryID = Categories.CategoryID

retrieves the names of all products, along with their category names. Here’s how this statement
is executed. For each row in the Products table, the SQL engine locates the matching row in the
Categories table and then appends the ProductName and CategoryName fields to the result. In
other words, it creates pairs of a product and the matching category. Products that don’t belong
to a category are not included in the result set.

Aliasing Table Names

To avoid typing long table names, you can alias them with a shorter name and use this short-
hand notation in the rest of the query. The query that retrieves titles and publishers can be
written as follows:

USE pubs
SELECT T.title
FROM titles T, publishers P
WHERE T.pub_id = P.pub_id

The table names are aliased in the FROM clause, and the alias is used in the rest of the query.
There’s one situation where table name aliasing is mandatory, and this is when you want
to refer to the same table twice. This is a fairly advanced topic, but I’m including a typical
example to demonstrate an interesting technique, because you may run into it. Some tables
contain references to themselves, and the Employees table of the Northwind database belongs
to this category. Each employee reports to a manager, who’s also an employee. The manager is
identified by the column ReportsTo, which contains the ID of an employee’s manager. Here are
three rows of the Employees table that demonstrate this hierarchy:

EmployeeID LastName FirstName Title ReportsTo

2 Fuller Andrew Vice President, Sales NULL

5 Buchanan Steven Sales Manager 2

6 Suyama Michael Sales Representative 5

648 CHAPTER 15 PROGRAMMING WITH ADO.NET

As you can see here, Suyama reports to Buchanan, and Buchanan in turn reports to Fuller.
How would you retrieve each employee’s name and title along with his manager’s name? Here,
we must make a query that involves two tables, one with the employee names and another one
with the manager names. It just so happens that the two tables are in reality the same table.
The trick is to treat the Employees table as two separate tables using aliases. Here’s the query
that retrieves employees and managers in a single result set:

SELECT Employees.EmployeeID,
Employees.LastName + ‘ ‘ + Employees.FirstName,
Employees.Title,
Managers.FirstName + ‘ ‘ + Managers.LastName,
Managers.Title

FROM Employees, Employees Managers
WHERE Employees.ReportsTo = Managers.EmployeeID

If the database contained two different tables, one for employees and another one for man-
agers, you’d have no problem coding the query. Because we want to use the same table for
both managers and employees, we use aliases to create two virtual tables and associate them
with the ReportsTo and EmployeeID columns. The result is a neat list of names that shows
clearly the hierarchy of the Northwind corporation’s employees:

1 Davolio Nancy Sales Representative Andrew Fuller
3 Leverling Janet Sales Representative Andrew Fuller
4 Peacock Margaret Sales Representative Andrew Fuller
5 Buchanan Steven Sales Manager Andrew Fuller
6 Suyama Michael Sales Representative Steven Buchanan
7 King Robert Sales Representative Steven Buchanan
8 Callahan Laura Inside Sales Coordinator Andrew Fuller
9 Dodsworth Anne Sales Representative Steven Buchanan

I skipped the manager’s title in the listing because it wouldn’t fit on the printed page. Note
that because the Last Name and First Name column names contain spaces, they’re embedded in
square brackets. The same is true for table names that contain spaces.

Aliasing Column Names

By default, each column of a query is labeled after the actual field name in the output. If a table
contains two fields named CustLName and CustFName, you can display them with different
labels by using the AS keyword. The following SELECT statement produces two columns labeled
CustLName and CustFName:

SELECT CustLName, CustFName

The query’s output looks much better if you change the labels of these two columns with a
statement like the following:

SELECT CustLName AS [Last Name],
CustFName AS [First Name]

It is also possible to concatenate two fields in the SELECT list with the concatenation oper-
ator. Concatenated fields are labeled automatically as Expr1, Expr2, and so on, so you must

SQL: AN OVERVIEW 649

supply your own name for the combined field. The following statement creates a single column
for the customer’s name and labels it Customer Name:

SELECT CustLName + ‘, ‘ + CustFName AS [Customer Name]

Skipping Duplicates with DISTINCT

The DISTINCT keyword eliminates from the cursor any duplicates retrieved by the SELECT state-
ment. Let’s say you want a list of all countries with at least one customer. If you retrieve all
country names from the Customers table, you’ll end up with many duplicates. To eliminate
them, use the DISTINCT keyword, as shown in the following statement:

USE Northwind
SELECT DISTINCT Country
FROM Customers

The LIKE Operator

The LIKE operator uses pattern-matching characters like the ones you use to select multiple files
in DOS. The LIKE operator recognizes several pattern-matching characters (or wildcard charac-
ters) to match one or more characters, numeric digits, ranges of letters, and so on. Table 15.2
describes these characters.

Table 15.2: SQL wildcard characters

Wildcard Character Description

% Matches any number of characters. The pattern program% will find
program, programming, programmer, and so on. The pattern %program%
will locate strings that contain the words program, programming,
nonprogrammer, and so on.

_ (Underscore character.) Matches any single alphabetic character. The
pattern b_y will find boy and bay, but not boysenberry.

[] Matches any single character within the brackets. The pattern Santa
[YI]nez will find both Santa Ynez and Santa Inez.

[ˆ] Matches any character not in the brackets. The pattern %q[ˆ u]% will find
words that contain the character q not followed by u (they are misspelled
words).

[-] Matches any one of a range of characters. The characters must be
consecutive in the alphabet and specified in ascending order (A to Z, not Z
to A). The pattern [a-c]% will find all words that begin with a, b, or c (in
lowercase or uppercase).

Matches any single numeric character. The pattern D1## will find D100 and
D139, but not D1000 or D10.

650 CHAPTER 15 PROGRAMMING WITH ADO.NET

You can use the LIKE operator to retrieve all titles about Windows from the Pubs database,
by using a statement like the following one:

USE pubs
SELECT titles.title
FROM titles
WHERE titles.title LIKE ‘%Windows%’

The percent signs mean that any character(s) may appear in front of or after the word Win-
dows in the title.

To include a wildcard character itself in your search argument, enclose it in square brackets.
The pattern %50[%]% will match any field that contains the string 50%.

Null Values and the ISNULL Function

A common operation for manipulating and maintaining databases is to locate null values in
fields. The expressions IS NULL and IS NOT NULL find field values that are (or are not) null. To
locate the rows of the Customers table that have a null value in their CompanyName column, use
the following WHERE clause:

WHERE CompanyName IS NULL

You can easily locate the products without prices and edit them. The following statement
locates products without prices:

USE Northwind
SELECT * FROM Products WHERE UnitPrice IS NULL

A related function, the ISNULL() function, allows you to specify the value to be returned
when a specific field is null. The ISNULL() SQL function accepts two arguments: a column
name and a string. The function returns the value of the specified column, unless this value
is null, in which case it returns the value of the second argument. To return the string *** for
customers without a company name, use the following expression:

USE Northwind
SELECT CustomerID,

ISNULL(CompanyName, ‘***’) AS Company, ContactName
FROM Customers

Sorting the Rows with ORDER BY

The rows of a query are not in any particular order. To request that the rows be returned in a
specific order, use the ORDER BY clause, which has this syntax:

ORDER BY col1, col2, . . .

You can specify any number of columns in the ORDER BY list. The output of the query is
ordered according to the values of the first column. If two rows have identical values in this
column, they are sorted according to the second column, and so on. The following statement
displays the customers ordered by country and then by city within each country:

SQL: AN OVERVIEW 651

USE Northwind
SELECT CompanyName, ContactName, Country, City
FROM Customers
ORDER BY Country, City

Working with Calculated Fields
In addition to column names, you can specify calculated columns in the SELECT statement. The
Order Details table contains a row for each invoice line. Invoice 10248, for instance, contains
four lines (four items sold), and each detail line appears in a separate row in the Order Details
table. Each row holds the number of items sold, the item’s price, and the corresponding dis-
count. To display the line’s subtotal, you must multiply the quantity by the price minus the
discount, as shown in the following statement:

USE Northwind
SELECT Orders.OrderID, [Order Details].ProductID,

[Order Details].[Order Details].UnitPrice *
[Order Details].Quantity *
(1 - [Order Details].Discount) AS SubTotal

FROM Orders INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID

Here the selection list contains an expression based on several fields of the Order Details
table. This statement calculates the subtotal for each line in the invoices issued to all Northwind
customers and displays them along with the order number. The order numbers are repeated as
many times as there are products in the order (or lines in the invoice). In the following section,
you will find out how to calculate totals too.

Calculating Aggregates
SQL supports some aggregate functions, which act on selected fields of all the rows returned by
the query. The basic aggregate functions listed in Table 15.3 perform basic calculations such as
summing, counting, and averaging numeric values. There are a few more aggregate functions
for calculating statistics such as the variance and standard deviation, but I have omitted them
from Table 15.3. Aggregate functions accept field names (or calculated fields) as arguments and
return a single value, which is the sum (or average) of all values.

These functions operate on a single column (which could be a calculated column) and return
a single value. The rows involved in the calculations are specified with the proper WHERE clause.
The SUM() and AVG() functions can process only numeric values. The other three functions can
process both numeric and text values.

The aggregate functions are used to summarize data from one or more tables. Let’s say you
want to know the number of Northwind database customers located in Germany. The follow-
ing SQL statement returns the desired value:

USE Northwind
SELECT COUNT(CustomerID)
FROM Customers
WHERE Country = ‘Germany’

652 CHAPTER 15 PROGRAMMING WITH ADO.NET

Table 15.3: SQL’s common aggregate functions

Function Returns

COUNT() The number (count) of values in a specified column

SUM() The sum of values in a specified column

AVG() The average of the values in a specified column

MIN() The smallest value in a specified column

MAX() The largest value in a specified column

The aggregate functions ignore the null values unless you specify the * argument. The fol-
lowing statement returns the count of all rows in the Customers table, even if some of them
have a null value in the Country column:

USE Northwind
SELECT COUNT(*)
FROM Customers

The SUM() function is used to total the values of a specific field in the specified rows. To
find out how many units of the product with ID = 11 (queso Cabrales) have been sold, use the
following statement:

USE Northwind
SELECT SUM(Quantity)
FROM [Order Details]
WHERE ProductID = 11

The SQL statement that returns the total revenue generated by a single product is a bit more
complicated. To calculate it, you must multiply the quantities by their prices and then add the
resulting products together, taking into consideration each invoice’s discount:

USE Northwind
SELECT SUM(Quantity * UnitPrice * (1 - Discount))
FROM [Order Details]
WHERE ProductID = 11

Product QuesoCabrales generated a total revenue of $12,901.77. If you want to know the
number of items of this product that were sold, add one more aggregate function to the query
to sum the quantities of each row that refers to the specific product ID:

USE Northwind
SELECT SUM(Quantity),

SUM(Quantity * UnitPrice * (1 - Discount))

SQL: AN OVERVIEW 653

FROM [Order Details]
WHERE ProductID = 11

If you add the ProductID column in the selection list and delete the WHERE clause to retrieve
the totals for all products, the query will generate an error message to the effect that the
columns haven’t been grouped. You will learn how to group the results a little later in this
chapter.

Using SQL Joins
Joins specify how you connect multiple tables in a query. There are four types of joins:

◆ Left outer, or left, join

◆ Right outer, or right, join

◆ Full outer, or full, join

◆ Inner join

A join operation combines all the rows of one table with the rows of another table. Joins are
usually followed by a condition that determines which records on either side of the join appear
in the result. The WHERE clause of the SELECT statement is similar to a join, but there are some
fine points that will be explained momentarily.

The left, right, and full joins are sometimes called outer joins to differentiate them from an
inner join. Left join and left outer join mean the same thing, as do right join and right outer join.

Left Joins

The left join displays all the records in the left table and only those records of the table on the
right that match certain user-supplied criteria. This join has the following syntax:

FROM (primary table) LEFT JOIN (secondary table) ON
(primary table).(field) = (secondary table).(field)

The left outer join retrieves all rows in the primary table and the matching rows from a sec-
ondary table. The following statement retrieves all the titles from the Pubs database along with
their publisher. If some titles have no publisher, they will be included in the result:

USE pubs
SELECT title, pub_name
FROM titles LEFT JOIN publishers

ON titles.pub_id = publishers.pub_id

Right Joins

The right join is similar to the left outer join, except that it selects all rows in the table on the
right and only the matching rows from the left table. This join has the following syntax:

FROM (secondary table) RIGHT JOIN (primary table)
ON (secondary table).(field) = (primary table).(field)

654 CHAPTER 15 PROGRAMMING WITH ADO.NET

The following statement retrieves all the publishers from the Pubs database along with their
titles. If a publisher has no titles, the publisher name will be included in the result set. Notice
that this statement is almost the same as the example of the left outer join entry. I changed only
LEFT to RIGHT:

USE pubs
SELECT title, pub_name
FROM titles RIGHT JOIN publishers

ON titles.pub_id = publishers.pub_id

Full Joins

The full join returns all the rows of the two tables, regardless of whether there are matching
rows. In effect, it’s a combination of left and right joins. To retrieve all titles and all publishers
and to match publishers to their titles, use the following join:

USE pubs
SELECT title, pub_name
FROM titles FULL JOIN publishers

ON titles.pub_id = publishers.pub_id

This query will include titles without a publisher, as well as publishers without a title.

Inner Joins

The inner join returns the matching rows of both tables, similar to the WHERE clause, and has
the following syntax:

FROM (primary table) INNER JOIN (secondary table)
ON (primary table).(field) = (secondary table).(field)

The following SQL statement combines records from the Titles and Publishers tables of the
Pubs database if their pub_id fields match. It returns all the titles and their publishers. Titles
without publishers, or publishers without titles, will not be included in the result.

USE pubs
SELECT titles.title, publishers.pub_name FROM titles, publishers
WHERE titles.pub_id = publishers.pub_id

You can retrieve the same rows by using an inner join, as follows:

USE pubs
SELECT titles.title, publishers.pub_name
FROM titles INNER JOIN publishers ON titles.pub_id = publishers.pub_id

SQL: AN OVERVIEW 655

Do Not Join Tables with the WHERE Clause

The proper method of retrieving rows from multiple tables is to use joins. It’s not uncommon
to write a dozen joins one after the other (if you have that many tables to join). You can
also join two tables by using the WHERE clause. Here are two statements that return the total
revenue for each of the customers in the Northwind database. The first one uses the INNER
JOIN statement, and the second one uses the WHERE clause. The INNER JOIN is equivalent to
the WHERE clause: They both return the same rows.

Query 1

SELECT
C.CompanyName,
SUM((OD.UnitPrice * OD.Quantity) * (1 - OD.Discount)) AS Revenue

FROM Customers AS C
INNER JOIN Orders AS O ON C.CustomerID = O.CustomerID
INNER JOIN [Order Details] AS OD ON O.OrderID = OD.OrderID

GROUP BY C.CompanyName

Query 2

SELECT
C.CompanyName,
SUM((OD.UnitPrice * OD.Quantity) * (1 - OD.Discount)) AS Revenue

FROM Customers AS C, Orders AS O, [Order Details] AS OD
WHERE C.CustomerID = O.CustomerID
AND O.OrderID = OD.OrderID

GROUP BY C.CompanyName

Both statements assume that all customers have placed an order. If you change the INNER
JOIN in the first statement to a LEFT JOIN, the result will contain two more rows: The cus-
tomers FISSA and PARIS have not placed any orders, and they’re not included in the output.
If you know that all your customers have placed an order or you don’t care about customers
without orders, use the WHERE clause or an inner join. It’s important to keep in mind that
if you want to see all customers, regardless of whether they have placed an order, you must
use joins.

An even better example is that of retrieving titles along with their authors. An inner join will
return titles that have one or more authors. A left join will return all titles, even the ones
without authors. A right join will return all authors, even if some of them are not associated
with any titles. Finally, a full outer join will return both titles without authors and authors
without titles. Here’s the statement that retrieves titles and authors from the Pubs database.
Change the type of joins to see how they affect the result set.

656 CHAPTER 15 PROGRAMMING WITH ADO.NET

SELECT titles.title,
authors.au_lname + ‘, ‘ + authors.au_fname AS Author

FROM authors
INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id
INNER JOIN titles ON titleauthor.title_id = titles.title_id

ORDER BY titles.title

There’s a shorthand notation for specifying left and right joins with the WHERE clause. When
you use the operator *= in a WHERE clause, a left join will be created. Likewise, the =*
operator is equivalent to a right join.

Grouping Rows
Sometimes you need to group the results of a query so that you can calculate subtotals. Let’s
say you need not only the total revenues generated by a single product but also a list of all
products and the revenues they generated. The example in the earlier section ‘‘Working with
Calculated Fields’’ calculates the total revenue generated by a single product. It is possible to
use the SUM() function to break the calculations at each new product ID, as demonstrated in
the following statement. To do so, you must group the product IDs together with the GROUP BY
clause:

USE Northwind
SELECT ProductID,

SUM(Quantity * UnitPrice *(1 - Discount)) AS [Total Revenues]
FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

The preceding statement produces the following output:

ProductID Total Revenues
1 12788.10
2 16355.96
3 3044.0
4 8567.89
5 5347.20
6 7137.0
7 22044.29

The aggregate functions work in tandem with the GROUP BY clause (when there is one) to
produce subtotals. The GROUP BY clause groups all the rows with the same values in the spec-
ified column and forces the aggregate functions to act on each group separately. SQL Server
sorts the rows according to the column specified in the GROUP BY clause and starts calculat-
ing the aggregate functions. Every time it runs into a new group, it generates a new row and
resets the aggregate function(s).

SQL: AN OVERVIEW 657

If you use the GROUP BY clause in a SQL statement, you must be aware of the following rule:

All the fields included in the SELECT list must be either part of an aggregate function or part of the
GROUP BY clause.

Let’s say you want to change the previous statement to display the names of the products
rather than their IDs. The following statement does just that. Notice that the ProductName field
doesn’t appear as an argument to an aggregate function, so it must be part of the GROUP BY
clause:

USE Northwind
SELECT ProductName,

SUM(Quantity * [Order Details].UnitPrice * (1 - Discount))
AS [Total Revenues]

FROM [Order Details], Products
WHERE Products.ProductID = [Order Details].ProductID
GROUP BY ProductName
ORDER BY ProductName

These are the first few lines of the output produced by this statement:

ProductName Total Revenues
Alice Mutton 32698.38
Aniseed Syrup 3044.0
Boston Crab Meat 17910.63
Camembert Pierrot 46927.48
Carnarvon Tigers 29171.87

If you omit the GROUP BY clause, the query will generate an error message indicating that the
ProductName column in the selection list is not involved in an aggregate or a GROUP BY clause.

You can also combine multiple aggregate functions in the selection list. The following state-
ment calculates the total number of items sold for each product, along with the revenue gener-
ated and the number of invoices that contain the specific product:

USE Northwind
SELECT ProductID AS Product,

COUNT(ProductID) AS Invoices,
SUM(Quantity) AS [Units Sold],
SUM(Quantity * UnitPrice *(1 - Discount)) AS Revenue

FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

Here are the first few lines returned by the preceding query:

Product Invoices Units Sold Revenue
1 38 828 12788.1000595092
2 44 1057 16355.9600448608

658 CHAPTER 15 PROGRAMMING WITH ADO.NET

You should try to revise the preceding statement so that it displays product names instead
of IDs, by adding another join to the query as explained already.

Limiting Groups with HAVING

The HAVING clause limits the groups that will appear at the cursor. In a way, it is similar to the
WHERE clause, but the HAVING clause is used with aggregate functions and the GROUP BY clause,
and the expression used with the HAVING clause usually involves one or more aggregates. The
following statement returns the IDs of the products whose sales exceed 1,000 units:

USE NORTHWIND
SELECT ProductID, SUM(Quantity)
FROM [Order Details]
GROUP BY ProductID
HAVING SUM(Quantity) > 1000

You can’t use the WHERE clause here, because no aggregates may appear in the WHERE clause.
However, you can use the WHERE clause as usual to limit the number of rows involved in the
query (for example, limit the aggregate to the products of a specific category, or the products
sold to customers in Germany). To see product names instead of IDs, join the Order Details
table to the Products table by matching their ProductID columns. Note that the expression
in the HAVING clause need not be included in the selection list. You can change the previous
statement to retrieve the total quantities sold with a discount of 10 percent or more with the
following HAVING clause:

HAVING Discount >= 0.1

However, the Discount column must be included in the GROUP BY clause as well, because
it’s not part of an aggregate.

Action Queries
In addition to the selection queries we examined so far, you can also execute queries that alter
the data in the database’s tables. These queries are called action queries, and they’re quite simple
compared with the selection queries. There are three types of actions you can perform against
a database: insertions of new rows, deletions of existing rows, and updates (edits) of existing
rows. For each type of action, there’s a SQL statement, appropriately named INSERT, DELETE,
and UPDATE. Their syntax is very simple, and the only complication is how you specify the
affected rows (for deletions and updates). As you can guess, the rows to be affected are speci-
fied with a WHERE clause, followed by the criteria discussed with selection queries.

The first difference between action and selection queries is that action queries don’t return
any rows. They return the number of rows affected, but you can disable this feature by calling
the following statement:

SET NOCOUNT ON

This statement can be used when working with a SQL Server database. Let’s look at the syntax
of the three action SQL statements, starting with the simplest: the DELETE statement.

ACTION QUERIES 659

Deleting Rows
The DELETE statement deletes one or more rows from a table; its syntax is as follows:

DELETE table_name WHERE criteria

The WHERE clause specifies the criteria that the rows must meet in order to be deleted. The
criteria expression is no different from the criteria you specify in the WHERE clause of the selec-
tion query. To delete the orders placed before 1998, use a statement like this one:

USE Northwind
DELETE Orders
WHERE OrderDate < ‘1/1/1998’

Of course, the specified rows will be deleted only if the Orders table allows cascade dele-
tions or if the rows to be deleted are not linked to related rows. If you attempt to execute the
preceding query, you’ll get an error with the following description:

The DELETE statement conflicted with the REFERENCE
constraint "FK_Order_Details_Orders". The conflict
occurred in database "Northwind",
table "dbo.Order Details", column ‘OrderID’.

This error message tells you that you can’t delete rows from the Orders table that are refer-
enced by rows in the Order Details table. If you were allowed to delete rows from the Orders
table, some rows in the related table would remain orphaned (they would refer to an order that
doesn’t exist). To delete rows from the Orders table, you must first delete the related rows
from the Order Details table and then delete the same rows from the Orders table. Here are the
statements that will delete orders placed before 1998. (Do not execute this query unless you’re
willing to reinstall the Northwind database; there’s no undo feature when executing SQL state-
ments against a database.)

USE Northwind
DELETE [Order Details]
WHERE (OrderID IN

(SELECT OrderID
FROM Orders
WHERE (OrderDate < ‘1/1/1998’)))

DELETE Orders WHERE OrderDate < ‘1/1/1998’

As you can see, the operation takes two action queries: one to delete rows from the Order
Details table and another to delete the corresponding rows from the Orders table.

The DELETE statement returns the number of rows deleted. You can retrieve a table with the
deleted rows by using the OUTPUT clause:

DELETE Customers
OUTPUT DELETED.*
WHERE Country IS NULL

660 CHAPTER 15 PROGRAMMING WITH ADO.NET

To test the OUTPUT clause, insert a few fake rows in the Customers table:

INSERT Customers (CustomerID, CompanyName)
VALUES (’AAAAA’, ‘Company A’)
INSERT Customers (CustomerID, CompanyName)
VALUES (’BBBBB’, ‘Company B’)

And then delete them with the following statement:

DELETE Customers
OUTPUT DELETED.*
WHERE Country IS NULL

If you execute the preceding statements, the deleted rows will be returned as the output of
the query. If you want to be safe, you can insert the deleted rows into a temporary table so
you can insert them back into the database (should you delete more rows than intended). My
suggestion is that you first execute a selection query that returns the rows you plan to delete,
examine the output of this query, and, if you see only the rows you want to delete and no
more, write a DELETE statement with the same WHERE clause. To insert the deleted rows to a
temporary table, use the INSERT INTO statement, which is described in the following section.

Inserting New Rows
The INSERT statement inserts new rows in a table; its syntax is as follows:

INSERT table_name (column_names) VALUES (values)

column_names and values are comma-separated lists of columns and their respective values.
Values are mapped to their columns by the order in which they appear in the two lists.

Notice that you don’t have to specify values for all columns in the table, but the values list
must contain as many items as there are column names in the first list. To add a new row to
the Customers table, use a statement like the following:

INSERT Customers (CustomerID, CompanyName) VALUES (’FRYOG’, ‘Fruit & Yogurt’)

This statement inserts a new row, provided that the FRYOG key isn’t already in use. Only two
of the new row’s columns are set, and they’re the columns that can’t accept null values.

If you want to specify values for all the columns of the new row, you can omit the list of
columns. The following statement retrieves a number of rows from the Products table and
inserts them into the SelectedProducts table, which has the same structure:

INSERT INTO SelectedProducts VALUES (values)

If the values come from a table, you can replace the VALUES keyword with a SELECT
statement:

INSERT INTO SelectedProducts
SELECT * FROM Products WHERE CategoryID = 4

ACTION QUERIES 661

The INSERT INTO statement allows you to select columns from one table and insert them
into another one. The second table must have the same structure as the output of the selection
query. Note that you need not create the new table ahead of time; you can create a new table
with the CREATE TABLE statement. The following statement creates a new table to accept the
CustomerID, CompanyName, and ContactName columns of the Customers table:

DECLARE @tbl table
(ID char(5),
name varchar(100),
contact varchar(100))

After the table has been created, you can populate it with the appropriate fields of the deleted
rows:

DELETE Customers
OUTPUT DELETED.CustomerID,

DELETED.CompanyName, DELETED.ContactName
INTO @tbl
WHERE Country IS NULL
SELECT * FROM @tbl

Execute these statements, and you will see in the Results pane the two rows that were
inserted momentarily into the Customers table and then immediately deleted.

Editing Existing Rows
The UPDATE statement edits a row’s fields; its syntax is the following:

UPDATE table_name SET field1 = value1, field2 = value2,. . .
WHERE criteria

The criteria expression is no different from the criteria you specify in the WHERE clause of
selection query. To change the country from UK to United Kingdom in the Customers table,
use the following statement:

UPDATE Customers SET Country=’United Kingdom’
WHERE Country = ‘UK’

This statement will locate all the rows in the Customers table that meet the specified criteria
(their Country field is UK) and change this field’s value to United Kingdom.

Before you execute a DELETE or UPDATE statement, use a SELECT statement to see the
rows that will be affected. Verify that these are the rows you intend to change and then delete
or update them. Once an action query has been executed against the database, there’s no way
back (sorry, no Undo here).

This concludes our overview of SQL, and we’re (at last) ready to explore the data access
mechanisms of the Framework. In the following section, you’ll learn how to submit queries to
a database from within your VB application and how to retrieve the results of a query.

662 CHAPTER 15 PROGRAMMING WITH ADO.NET

Stream- versus Set-Based Data Access
The component of the Framework we use to access databases is known as ADO.NET
(ADO stands for Active Data Objects) and it provides two basic methods of accessing data:
stream-based data access, which establishes a stream to the database and retrieves the data from
the server, and set-based data access, which creates a special data structure at the client and fills
it with data. This structure is the DataSet, which resembles a section of the database: It contains
one or more DataTable objects, which correspond to tables and are made up of DataRow
objects. These DataRow objects have the same structure as the rows in their corresponding
tables. DataSets are populated by retrieving data from one or more database tables into the
corresponding DataTables. As for submitting the data to the database with the stream-based
approach, you must create the appropriate INSERT/UPDATE/DELETE statements and then
execute them against the database.

The stream-based approach relies on the DataReader object, which makes the data re-
turned by the database available to your application. The client application reads the data
returned by a query through the DataReader object and must store it somehow at the client.
Quite frequently, we use custom objects to store the data at the client.

The set-based approach uses the same objects as the stream-based approach behind the
scenes, and it abstracts most of the grunt work required to set up a link to the database,
retrieve the data, and store it in the client computer’s memory. So, it makes sense to start by
exploring the stream-based approach and the basic objects provided by ADO.NET for accessing
databases. After you understand the nature of ADO.NET and how to use it, you’ll find it easy
to see the abstraction introduced by the set-based approach and how to make the most of
DataSets. As you will see in the following chapter, you can create DataSets and the supporting
objects with the visual tools of the IDE.

The Basic Data-Access Classes
A data-driven application should be able to connect to a database and execute queries against
it. The selected data is displayed on the appropriate interface, where the user can examine it or
edit it. Finally, the edited data is submitted to the database. This is the cycle of a data-driven
application:

1. Retrieve data from the database.

2. Present data to the user.

3. Allow the user to edit the data.

4. Submit changes to the database.

Of course, many issues are not obvious from this outline. Designing the appropriate
interface for navigating through the data (going from customers to their orders and from the
selected order to its details) can be quite a task. Developing a functional interface for editing
the data at the client is also a challenge, especially if several related tables are involved. We
must also take into consideration that there are other users accessing the same database.
What will happen if the product we’re editing has been removed in the meantime by another
user? Or what if a user has edited the same customer’s data since our application read it? Do
we overwrite the changes made by the other user, or do we reject the edits of the user who
submits the edits last? I’ll address these issues in this chapter and in Chapter 18, but we need
to start with the basics: the classes for accessing the database.

THE BASIC DATA-ACCESS CLASSES 663

To connect to a database, you must create a Connection object, initialize it, and then call its
Open method to establish a connection to the database. The Connection object is the channel
between your application and the database; every command you want to execute against the
same database must use this Connection object. When you’re finished, you must close the con-
nection by calling the Connection object’s Close method. Because ADO.NET maintains a pool
of Connection objects that are reused as needed, it’s imperative that you keep connections open
for the shortest possible time.

The object that will actually execute the command against the database is the Command
object, which you must configure with the statement you want to execute and associate with
a Connection object. To execute the statement, you can call one of the Command object’s
methods. The ExecuteReader method returns a DataReader object that allows you to read the
data returned by the selection query, one row at a time. To execute a statement that updates
a database table but doesn’t return a set of rows, use the ExecuteNonQuery method, which
executes the specified command and returns an integer, which is the number of rows affected
by the statement. The following sections describe the Connection, Command, and DataReader
classes in detail.

To summarize, ADO.NET provides three core classes for accessing databases: the Connec-
tion, Command, and DataReader classes. There are more data access–related classes, but they’re
all based on these three basic classes. After you understand how to interact with a database by
using these classes, you’ll find it easy to understand the additional classes, as well as the code
generated by the visual data tools that come with Visual Studio.

The Connection Class
The Connection class is an abstract one, and you can’t use it directly. Instead, you must use one
of the classes that derive from the Connection class. Currently, there are three derived classes:
SqlConnection, OracleConnection, and OleDbConnection. Likewise, the Command class is an
abstract class with three derived classes: SqlCommand, OracleCommand, and OleDbCommand.

The SqlConnection and SqlCommand classes belong to the SqlClient namespace, which
you must import into your project via the following statement:

Imports System.Data.SqlClient

The examples in this book use the SQL Server 2008 DBMS, and it’s implied that the
SqlClient namespace is imported into every project that uses SQL Server.

To connect the application to a database, the Connection object must know the name of the
server on which the database resides, the name of the database itself, and the credentials that
will allow it to establish a connection to the database. These credentials are either a username
and password or a Windows account that has been granted rights to the database. You obvi-
ously know what type of DBMS you’re going to connect to so you can select the appropriate
Connection class. The most common method of initializing a Connection object in your code is
the following:

Dim CN As New SqlConnection("Data Source = localhost;" &
"Initial Catalog = Northwind; uid = user_name;" &
"password = user_password")

localhost is a universal name for the local machine, Northwind is the name of the
database, and user_name and user_password are the username and password of an account

664 CHAPTER 15 PROGRAMMING WITH ADO.NET

configured by the database administrator. The Northwind sample database isn’t installed along
with SQL Server 2008, but you can download it from MSDN and install it yourself. The process
was described in the section ‘‘Obtaining the Northwind and Pubs Sample Databases’’ earlier
in this chapter. I’m assuming that you’re using the same computer both for SQL Server and
to write your VB applications. If SQL Server resides on a different computer in the network,
use the server computer’s name (or IP address) in place of the localhost name. If SQL Server
is running on another machine on the network, use a setting like the following for the Data
Source key:

Data Source = \\PowerServer

If the database is running on a remote machine, use the remote machine’s IP address. If
you’re working from home, for example, you can establish a connection to your company’s
server with a connection string like the following:

Data Source = "213.16.178.100; Initial Catalog = BooksDB; uid = xxx; password
= xxx"

The uid and password keys are those of an account created by the database administrator,
and not a Windows account. If you want to connect to the database by using each user’s Win-
dows credentials, you should omit the uid and password keys and instead use the Integrated
Security key. If your network is based on a domain controller, you should use integrated
security so that users can log in to SQL Server with their Windows account. This way you
won’t have to store any passwords in your code or even have an auxiliary file with the appli-
cation settings.

If you’re using an IP address to specify the database server, you may also have to include
SQL Server’s port by specifying an address such as 213.16.178.100, 1433. The default port
for SQL Server is 1433, and you can omit it. If the administrator has changed the default port
or has hidden the server’s IP address behind another IP address for security purposes, you
should contact the administrator to get the server’s address. If you’re connecting over a local
network, you shouldn’t have to use an IP address. If you want to connect to the company
server remotely, you will probably have to request the server’s IP address and the proper
credentials from the server’s administrator.

The basic property of the Connection object is the ConnectionString property, which is a
semicolon-separated string of key-value pairs that specifies the information needed to establish
a connection to the desired database. It’s basically the same information you provide in various
dialog boxes when you open SQL Server Management Studio and select a database to work
with. An alternate method of setting up a Connection object is to set its ConnectionString
property:

Dim CN As New SqlConnection
CN.ConnectionString =

"Data Source = localhost; Initial Catalog = Northwind; " &
"Integrated Security = True"

One of the Connection class’s properties is the State property, which returns the state of
a connection; its value is a member of the ConnectionState enumeration: Connecting, Open,
Executing, Fetching, Broken, and Closed. If you call the Close method on a Connection

THE BASIC DATA-ACCESS CLASSES 665

object that’s already closed or the Open method on a Connection object that’s already open, an
exception will be thrown. To avoid the exception, you must examine the Connection’s State
property and act accordingly.

The following code segment outlines the process of opening a connection to a database:

Dim CNstring As String =
"Data Source=localhost;Initial " &
"Catalog=Northwind;Integrated Security=True"

CNstring = InputBox(
"Please enter a Connection String",
"CONNECTION STRING", CNstring)

If CNstring.Trim = "" Then Exit Sub
Dim CN As New SqlConnection(CNstring)
Try

CN.Open()
If CN.State = ConnectionState.Open Then

MsgBox("Workstation " & CN.WorkstationId &
" connected to database " & CN.Database &
" on the " & CN.DataSource & " server")

End If
Catch ex As Exception

MsgBox(_
"FAILED TO OPEN CONNECTION TO DATABASE DUE TO THE FOLLOWING ERROR" &

vbCrLf & ex.Message)
End Try
’ use the Connection object to execute statements
’ against the database and then close the connection
If CN.State = ConnectionState.Open Then CN.Close()

The Command Class
The second major component of the ADO.NET model is the Command class, which allows you
to execute SQL statements against the database. The two basic parameters of the Command
object are a Connection object that specifies the database where the command will be executed
and specifies the actual SQL command. To execute a SQL statement against a database, you
must initialize a Command object and set its Connection property to the appropriate Connec-
tion object. It’s the Connection object that knows how to connect to the database; the Command
object simply submits a SQL statement to the database and retrieves the results.

The Command object exposes a number of methods for executing SQL statements against
the database, depending on the type of statement you want to execute. The ExecuteNonQuery
method executes INSERT/DELETE/UPDATE statements that do not return any rows, just an inte-
ger value, which is the number of rows affected by the query. The ExecuteScalar method
returns a single value, which is usually the result of an aggregate operation, such as the count
of rows meeting some criteria, the sum or average of a column over a number of rows, and so
on. Finally, the ExecuteReader method is used with SELECT statements that return rows from
one or more tables.

To execute an UPDATE statement, for example, you must create a new Command object and
associate the appropriate SQL statement with it. One overloaded form of the constructor of the

666 CHAPTER 15 PROGRAMMING WITH ADO.NET

Command object allows you to specify the statement to be executed against the database, as
well as a Connection object that points to the desired database as arguments:

Dim CMD As New SqlCommand(
"UPDATE Products SET UnitPrice = UnitPrice * 1.07 " &
"WHERE CategoryID = 3", CN)

CN.Open
Dim rows As Integer
rows = CMD.ExecuteNonQuery
If rows = 1 Then

MsgBox("Table Products updated successfully")
Else

MsgBox("Failed to update the Products table")
End If
If CN.State = ConnectionState.Open Then CN.Close

The ExecuteNonQuery method returns the number of rows affected by the query, and it’s the
same value that appears in the Output window of SQL Server Management Studio when you
execute an action query. The preceding statements mark up the price of all products in the Con-
fections category by 7 percent. You can use the same structure to execute INSERT and DELETE
statements; all you have to change is the actual SQL statement in the SqlCommand object’s con-
structor. You can also set up a Command object by setting its Connection and CommandText
properties:

Command.Connection = Connection
Command.CommandText = "SELECT COUNT(*) FROM Customers"

After you’re finished with the Command object, you should close the Connection object.
Although you can initialize a Connection object anywhere in your code, you should call its
Open method as late as possible (that is, just before executing a statement) and its Close
method as early as possible (that is, as soon as you have retrieved the results of the statement
you executed).

The ExecuteScalar method executes the SQL statement associated with the Command
object and returns a single value, which is the first value that the SQL statement would print
in the Output window of SQL Server Management Studio. The following statements read the
number of rows in the Customers table of the Northwind database and store the result
in the count variable:

Dim CMD As New SqlCommand(
"SELECT COUNT(*) FROM Customers", CN)

Dim count As Integer
CN.Open
count = CMD.ExecuteScalar
If CN.State = ConnectionState.Open Then CN.Close

If you want to execute a SELECT statement that retrieves multiple rows, you must use the
ExecuteReader method of the Command object, as shown here:

THE BASIC DATA-ACCESS CLASSES 667

Dim CMD As New SqlCommand(
"SELECT * FROM Customers", CN)

CN.Open
Dim Reader As SqlDataReader
Reader = CMD.ExecuteReader
While Reader.Read

‘ process the current row in the result set
End While
If CN.State = ConnectionState.Open Then CN.Close

You’ll see shortly how to access the fields of each row returned by the ExecuteReader
method through the properties of the SqlDataReader class.

Executing Stored Procedures

The command to be executed through the Command object is not always a SQL statement;
it could be the name of a stored procedure, or the name of a table, in which case it retrieves
all the rows of the table. You can specify the type of statement you want to execute with the
CommandType property, whose value is a member of the CommandType enumeration: Text (for
SQL statements), StoredProcedure (for stored procedures), and TableDirect (for a table). You
don’t have to specify the type of the command you want to execute, but then the Command
object will have to figure it out, a process that will take a few moments, and you can avoid this
unnecessary delay. The Northwind database comes with the Ten Most Expensive Products
stored procedure. To execute this stored procedure, set up a Command object with the
following statements:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = "[Ten Most Expensive Products]"
CMD.CommandType = CommandType.StoredProcedure

Finally, you can retrieve all the rows of the Customers table by setting up a Command object
like the following:

Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = "Customers"
CMD.CommandType = CommandType.TableDirect

Executing Selection Queries

The most common SQL statements, the SELECT statements, retrieve a set of rows from one
or more joined tables, the result set. These statements are executed with the ExecuteReader
method, which returns a DataReader object — a SqlDataReader object for statements executed
against SQL Server databases. The DataReader class provides the members for reading the
results of the query in a forward-only manner. The connection remains open while you read

668 CHAPTER 15 PROGRAMMING WITH ADO.NET

the rows returned by the query, so it’s imperative to read the rows and store them in a struc-
ture in the client computer’s memory as soon as possible and then close the connection. The
DataReader object is read-only (you can’t use it to update the underlying rows), so there’s no
reason to keep it open for long periods. Let’s execute the following SELECT statement to retrieve
selected columns of the rows of the Employees table of the Northwind database:

SELECT LastName + ‘ ‘ + FirstName AS Name,
Title, Extension, HomePhone

FROM Employees

Here are the VB statements that set up the appropriate Command object and retrieve the
SqlDataReader object with the result set:

Dim CMD As New SqlCommand
Dim CN As New SqlConnection("Data Source = localhost;Initial Catalog=Northwind;" &

"Integrated Security=True")
CMD.Connection = CN
CMD.CommandText =

"SELECT LastName + ‘ ‘ + FirstName AS Name, " &
"Title, Extension, HomePhone FROM Employees"

CN.Open()
Dim Reader As SqlDataReader
Reader = Command.ExecuteReader
Dim str As String = ""
Dim cont As Integer = 0
While Reader.Read

str &= Convert.ToString(Reader.Item("Name")) & vbTab
str &= Convert.ToString(Reader.Item("Title")) & vbTab
str &= Convert.ToString(Reader.Item("Extension")) & vbTab
str &= Convert.ToString(Reader.Item("HomePhone")) & vbTab
str &= vbCrLf
count += 1

End While
Debug.WriteLine(vbCrLf & vbCrLf & "Read " & count.ToString &

" rows: " & vbCrLf & vbCrLf & str)
CN.Close()

The DataReader class provides the Read method, which advances the current pointer to the
next row in the result set. To read the individual columns of the current row, you use the Item
property, which allows you to specify the column by name and returns an object variable. It’s
your responsibility to cast the object returned by the Item property to the appropriate type. Ini-
tially, the DataReader is positioned in front of the first line in the result set, and you must call
its Read method to advance to the first row. If the query returns no rows, the Read method will
return False, and the While loop won’t be executed at all. In the preceding sample code, the
fields of each row are concatenated to form the str string, which is printed in the Immediate
window; it looks something like this:

Davolio Nancy Sales Representative 5467 (206) 555-9857
Fuller Andrew Vice President, Sales 3457 (206) 555-9482
Leverling Janet Sales Representative 3355 (206) 555-3412

THE BASIC DATA-ACCESS CLASSES 669

Using Commands with Parameters

Most SQL statements and stored procedures accept parameters, and you should pass values
for each parameter before executing the query. Consider a simple statement that retrieves the
customers from a specific country, whose name is passed as an argument:

SELECT * FROM Customers WHERE Country = @country

The @country parameter must be set to a value, or an exception will be thrown as you attempt
to execute this statement. Stored procedures also accept parameters. The Sales By Year stored
procedure of the Northwind database, for example, expects two Date values and returns sales
between the two dates. To accommodate the passing of parameters to a parameterized query or
stored procedure, the Command object exposes the Parameters property, which is a collection
of Parameter objects. To pass parameter values to a command, you must set up a Parameter
object for each parameter; set its name, type, and value; and then add the Parameter object to
the Parameters collection of the Command object. The following statements set up a Command
object with a parameter of the varchar type with a maximum size of 15 characters:

Dim Command As New SqlCommand
Command.CommandText = "SELECT * FROM Customers WHERE Country = @country"
Command.Parameters.Add("@country", SqlDbType.VarChar, 15)
Command.Parameters("@country").Value = "Italy"

At this point, you’re ready to execute the SELECT statement with the ExecuteReader method
and retrieve the customers from Italy. You can also configure the Parameter object in its
constructor:

Dim param As New SqlParameter(paramName, paramType, paramSize)

Here’s the constructor of the @country parameter of the preceding example:

Dim param As New SqlParameter("@country", SqlDbType.VarChar, 15)
param.Value = "Italy"

CMD.Parameters.Add param

Finally, you can combine all these statements into a single one:

CMD.Parameters.Add("@country", SqlDbType.VarChar, 15).Value = "Italy"

In the last statement, I initialize the parameter as I add it to the Parameters collection and
then set its value to the string Italy. Oddly, there’s no overloaded form of the Add method
that allows you to specify the parameter’s value, but there is an AddWithValue method, which
adds a new parameter and sets its value. This method accepts two arguments: a string with
the parameter’s name and an object with the parameter’s value. The actual type of the value
is determined by the type of the query or stored procedure’s argument, and it’s resolved at
runtime. The simplest method of adding a new parameter to the CMD.Parameters collection is
the following:

CMD.Parameters.Add("@country", "Italy")

670 CHAPTER 15 PROGRAMMING WITH ADO.NET

After the parameter has been set up, you can call the ExecuteReader method to retrieve the
customers from the country specified by the argument and then read the results through an
instance of the DataReader class.

Retrieving Multiple Values from a Stored Procedure

Another property of the Parameter class is the Direction property, which determines whether
the stored procedure can alter the value of the parameter. The Direction property’s setting
is a member of the ParameterDirection enumeration: Input, Output, InputOutput, and
ReturnValue. A parameter that’s set by the procedure should have its Direction property set
to Output: The parameter’s value is not going to be used by the procedure, but the procedure’s
code can set it to return information to the calling application. If the parameter is used to pass
information to the procedure, as well as to pass information back to the calling application, its
Direction property should be set to InputOutput.

Let’s look at a stored procedure that returns the total of all orders, as well as the total num-
ber of items ordered by a specific customer. This stored procedure accepts as a parameter the
ID of a customer, obviously, and it returns two values: the total of all orders placed by the
specified customer and the number of items ordered. A procedure (be it a SQL Server stored
procedure or a regular VB function) can’t return two or more values. The only way to retrieve
multiple results from a single stored procedure is to pass output parameters so that the stored
procedure can set their value. To make the stored procedure a little more interesting, we’ll add
a return value, which will be the number of orders placed by the customer. Listing 15.1 shows
the implementation of the CustomerTotals stored procedure.

Listing 15.1: The CustomerTotals stored procedure

CREATE PROCEDURE CustomerTotals
@customerID varchar(5),
@customerTotal money OUTPUT,
@customerItems int OUTPUT
AS
SELECT @customerTotal = SUM(UnitPrice * Quantity * (1 - Discount))
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = @customerID
SELECT @customerItems = SUM(Quantity)
FROM [Order Details] INNER JOIN Orders
ON [Order Details].OrderID = Orders.OrderID
WHERE Orders.CustomerID = @customerID

DECLARE @customerOrders int
SELECT @customerOrders = COUNT(*) FROM Orders
WHERE Orders.CustomerID = @customerID

RETURN @customerOrders

THE BASIC DATA-ACCESS CLASSES 671

To attach the CustomerTotals stored procedure to the database, create a new stored
procedure, paste the preceding statements in the code window, and press F5 to execute it.
Make sure the database is Northwind (not master). The stored procedure calculates three totals
for the specified customer and stores them to three local variables. The @customerTotal and
@customerItems variables are output parameters, which the calling application can read after
executing the stored procedure. The @customerOrders variable is the procedure’s return value.
We can return the number of orders for the customer through the stored procedure’s return
value, because this variable happens to be an integer, and the return value is always an integer.
In more-complex stored procedures, we’d use output parameters for all the values we want
to return to the calling application, and the procedure would return a value to indicate the
execution status: 0 or 1 if the procedure completed its execution successfully and a negative
value to indicate the error, should the procedure fail to execute.

Before using the CustomerTotals stored procedure with our VB application, let’s test it in
SQL Server Management Studio. We must declare a variable for each of the output parameters:
the @Total, @Items, and @Orders variables. These three variables must be passed to the stored
procedure with the OUTPUT attribute, as shown here:

DECLARE @Total money
DECLARE @Items int
DECLARE @Orders int
DECLARE @custID varchar(5)
DECLARE @CustomerTotal decimal
DECLARE @CustomerItems int
SET @custID = ‘BLAUS’
EXEC @orders = CustomerTotals @custID,

@customerTotal OUTPUT, @customerItems OUTPUT
PRINT ‘Customer ‘ + @custId + ‘ has placed a total of ‘ +

CAST(@orders AS varchar(8)) + ‘ orders ‘ +
‘ totaling $’ + CAST(ROUND(@customerTotal, 2) AS varchar(12)) +
‘ and ‘ + CAST(@customerItems AS varchar(4)) + ‘ items.’

Open a new query window in SQL Server Management Studio, and enter the preceding
statements. Press F5 to execute them, and you will see the following message printed in the
Output window:

Customer BLAUS has placed a total of 8 orders totaling $10355.45 and 653 items.

The customer’s ID is an INPUT parameter, and we could pass it to the procedure as a literal.
You can omit the declaration of the @custID variable and call the stored procedure with the
following statement:

DECLARE @CustomerTotal decimal
DECLARE @CustomerItems int
EXEC @orders = _

CustomerTotals ‘BLAUS’, @customerTotal OUTPUT, @customerItems OUTPUT

672 CHAPTER 15 PROGRAMMING WITH ADO.NET

Now that we’ve tested our stored procedure and know how to call it, we’ll do the same
from within our sample application. To execute the CustomerTotals stored procedure, we
must set up a Command object, create the appropriate Parameter objects (one Parameter object
per stored procedure parameter plus another Parameter object for the stored procedure’s return
value), and then call the Command.ExecuteNonQuery method. Upon return, we’ll read the
values of the output parameters and the stored procedure’s return value. Listing 15.2 shows
the code that executes the stored procedure (see the SimpleQueries sample project available for
download from www.sybex.com/go/masteringvb2010).

Listing 15.2: Executing a stored procedure with output parameters

Private Sub bttnExecSP_Click(…) Handles bttnExecSP.Click
Dim customerID As String = InputBox("Please enter a customer ID",

"CustomerTotals Stored Procedure", "ALFKI")
If customerID.Trim.Length = 0 Then Exit Sub
Dim CMD As New SqlCommand
CMD.Connection = CN
CMD.CommandText = "CustomerTotals"
CMD.CommandType = CommandType.StoredProcedure
CMD.Parameters.Add(

"@customerID", SqlDbType.VarChar, 5).Value = customerID
CMD.Parameters.Add("@customerTotal", SqlDbType.Money)
CMD.Parameters("@customerTotal").Direction = ParameterDirection.Output
CMD.Parameters.Add("@customerItems", SqlDbType.Int)
CMD.Parameters("@customerItems").Direction = ParameterDirection.Output
CMD.Parameters.Add("@orders", SqlDbType.Int)
CMD.Parameters("@orders").Direction = ParameterDirection.ReturnValue
CN.Open()
CMD.ExecuteNonQuery()
CN.Close()
Dim items As Integer
Items = Convert.ToInt32(CMD.Parameters("@customerItems").Value
Dim orders As Integer
Orders = Convert.ToInt32(CMD.Parameters("@orders").Value
Dim ordersTotal As Decimal
ordersTotal = Convert.ToDouble(

CMD.Parameters("@customerTotal").Value
MsgBox("Customer BLAUS has placed " &

orders.ToString & " orders " &
"totaling $" & Math.Round(ordersTotal, 2).ToString("#,###.00") &
" and " & items.ToString & " items")

End Sub

In most applications, the same Command object will be reused again and again with differ-
ent parameter values, so it’s common to add the parameters to a Command object’s Parameters
collection and assign values to them every time we want to execute the command. Let’s say

THE BASIC DATA-ACCESS CLASSES 673

you’ve designed a form with text boxes, where users can edit the values of the various fields;
here’s how you’d set the values of the UPDATECMD variable’s parameters:

UPDATECMD.Parameters("@CustomerID").Value = txtID.Text.Trim
UPDATECMD.Parameters("@CompanyName").Value = txtCompany.Text.Trim

After setting the values of all parameters, you can call the ExecuteNonQuery method to sub-
mit the changes to the database. To update another customer, just assign different values to the
existing parameters, and call the UPDATECMD object’s ExecuteNonQuery method.

Security Issue: SQL Injection Attacks

You may be wondering why we have to go through the process of creating SQL statements
with parameters and setting up Parameter objects, instead of generating straightforward SQL
statements on the fly. A statement that picks some user-supplied values and embeds them in
a SQL statement can be exploited by a malicious user as a Trojan horse to execute any SQL
statement against your database. Can you guess what will happen when the user enters a
SQL statement in one of the TextBox controls on the form and your code uses this string to
build a SQL statement on the fly? The code will pick it up, insert it into the larger statement,
and then execute it against the database. This technique is known as SQL injection, and I’ll
show you how it works with a simple example. It’s a known issue with any DBMS that can
execute multiple SQL statements in a batch mode, and SQL Server is certainly vulnerable to
SQL injection attacks.

How would you validate the users of an application? You’d most likely store the usernames
and passwords in a table and execute a few statements to locate the row with the specified
ID and password, right? If you didn’t know any better, you’d probably write some code to
extract the values from two TextBox controls and build the following SQL statement:

Dim CMD As New SqlClient.SqlCommand(
"SELECT COUNT(*) FROM Customers WHERE CompanyName = " ‘ &
txtName.Text & "’ AND CustomerID = "’ & txtPsswd.Text & "’")

Then you’d execute this statement and examine the number of rows that match the specified
criteria:

Dim count As Integer
count = Convert.ToInt32(CMD.ExecuteScalar)

If the value of the count variable is 1, the user can log in. (I’ve assumed that the CompanyName
field is the username and that the password for each user is the CustomerID field of the Cus-
tomers table.) If the values in the two text boxes are Frankenversan and FRANK, the
following statement will be executed against the database and will return the numeric value 1:

SELECT COUNT(*) FROM Customers
WHERE CompanyName = ‘Frankenversan’ AND CustomerID = ‘FRANK’

674 CHAPTER 15 PROGRAMMING WITH ADO.NET

A malicious user might enter the following username (and no password at all):

xxx’ ; DROP TABLE [Orders] --

If you examine the value of the Command.CommandText property before this statement is exe-
cuted, you’ll see the following SQL statement:

SELECT COUNT(*) FROM Customers
WHERE CompanyName = ‘xxx’ ;
DROP TABLE [Orders] --’ AND CustomerID = "

This statement contains two SQL statements and a comment: the SELECT statement, followed
by another statement that drops the Orders table! The comments symbol (the two dashes)
is required to disable the last part of the original statement, which otherwise would cause a
syntax error. The Orders table can’t be dropped, because it contains related rows in the Order
Details table, but nothing will stop you from dropping the Order Details table.

If you want to demonstrate to someone that their software isn’t secure, you can replace the
DROP TABLE statement with the SHUTDOWN statement. The following statement shuts down
the server immediately (and they can restart it immediately by running SQL Server Agent
from the SQL Server Configuration Manager utility):

SHUTDOWN WITH NOWAIT

Handling Special Characters

Another problem you will avoid with parameterized queries and stored procedures is that of
handling single quotes, which are used to delimit literals in T-SQL. Consider the following
UPDATE statement, which picks up the company name from a TextBox control and updates a
single row in the Customers table:

CMD.CommandText =
"UPDATE Customers SET CompanyName = ‘" &
txtCompany.Text & "’" &
"WHERE CustomerID = "’ & txtID.Text & "’"

If the user enters a company name that contains a single quote, such as B’s Beverages, the com-
mand will become the following:

UPDATE Customers SET CompanyName = ‘B’s Beverages’ WHERE CustomerID = ‘BSBEV’

If you attempt to execute this statement, SQL Server will reject it because it contains a syntax
error (you should be able to figure out the error easily by now). The exact error message is as
follows:

Msg 102, Level 15, State 1, Line 1
Incorrect syntax near ‘s’.
Msg 105, Level 15, State 1, Line 1
Unclosed quotation mark after the character string ".

THE BASIC DATA-ACCESS CLASSES 675

The single quote is used to delimit literals, and there should be an even number of single
quotes in the statement. The compiler determines that there’s an unclosed quotation mark in
the statement and doesn’t execute it. If the same statement was written as a parameterized
query, such as the following, you could pass the same company name to the statement as an
argument without a hitch:

CMD.CommandText =
"UPDATE Customers SET CompanyName = @CompanyName " &
"WHERE CustomerID = @ID"

CMD.Parameters.Add("@CompanyName",
SqlDbType.VarChar, 40).Value = "B’s Beverages"

CMD.Parameters.Add("@ID",
SqlDbType.Char, 5).Value = "BSBEV"

CMD.ExecuteNonQuery

The same is true for other special characters, such as the percentage symbol. It’s possible to
escape the special symbols; you can replace the single-quote mark with two consecutive single
quotes, but the most elegant method of handling special characters, such as quotation marks,
percent signs, and so on, is to use parameterized queries or stored procedures. You just assign
a string to the parameter and don’t have to worry about escaping any characters; the Command
object will take care of all necessary substitutions.

Empty Strings versus Null Values

The values you assign to the arguments of a query or stored procedure usually come from
controls on a Windows form and in most cases from TextBox controls. The following state-
ment reads the text in the txtFax TextBox control and assigns it to the @FAX parameter of a
Command object:

Command.Parameters("@FAX").Value = txtFax.Text

But what if the user has left the txtFax TextBox blank? Should we pass to the INSERT state-
ment an empty string or a null value? If you collect the values from various controls on a form
and use them as parameter values, you’ll never send null values to the database. If you want
to treat empty strings as null values, you must pass a null value to the appropriate parame-
ter explicitly. Let’s say that the txtFax TextBox control on the form corresponds to the @FAX
parameter. You can use the IIf() statement of Visual Basic to assign the proper value to the
corresponding parameter as follows:

UPDATECommand.Parameters("@FAX").Value =
IIf(txtFax.Text.Trim.Length = 0,

System.DBNull.Value, txtFax.Text)

This is a lengthy statement, but here’s how it works: The IIf() function evaluates the specified
expression. If the length of the text in the txtFax control is zero, it returns the value speci-
fied by its second argument, which is the null value. If not — in other words, if the TextBox
control isn’t empty — it returns the text on the control. This value is then assigned to the @FAX
parameter of the UPDATECommand object.

676 CHAPTER 15 PROGRAMMING WITH ADO.NET

The DataReader Class
To read the rows returned by a selection query, you must call the Command object’s Execute-
Reader method, which returns a DataReader object (a SqlDataReader object for queries exe-
cuted against SQL Server). The DataReader is a stream to the data retrieved by the query, and
it provides many methods for reading the data sent to the client by the database. The underly-
ing Connection object remains open while you read the data off the DataReader, so you must
read it as quickly as possible, store it at the client, and close the connection as soon as possible.

To read a set of rows with the DataReader, you must call its Read method, which advances
the pointer to the next row in the set. Initially, the pointer is in front of the first row, so you
must call the Read method before accessing the first row. Despite its name, the Read method
doesn’t actually fetch any data; to read individual fields, you must use the various Get methods
of the DataReader object, described next (GetDecimal, GetString, and so on). After reading
the fields of the current row, call the Read method again to advance to the next row. There’s
no method to move to a previous row, so make sure you’ve read all the data of the current
row before moving to the next one. Table 15.4 explains the basic properties and methods of the
DataReader object.

Table 15.4: Properties and methods of a DataReader object

Name Description

HasRows This is a Boolean property that specifies whether there’s a result set to read data
from. If the query selected no rows at all, the HasRows property will return False.

FieldCount This property returns the number of columns in the current result set. Note that
the DataReader object doesn’t know the number of rows returned by the query.
Because it reads the rows in a forward-only fashion, you must iterate through the
entire result set to find out the number of rows returned by the query.

Read This method moves the pointer in front of the next row in the result set. Use this
method to read the rows of the result set, usually from within a While loop.

Get<type> There are many versions of the Get method with different names, depending on
the type of column you want to read. To read a Decimal value, use the
GetDecimal method; to retrieve a string, use the GetString method; to retrieve
an integer, call one of the GetInt16, GetInt32, or GetSqlInt64 methods; and so
on. To specify the column you want to read, use an integer index value that
represents the column’s ordinal, such as Reader.GetString(2). The index of the
first column in the result set is zero.

GetSql<type> There are many versions of the GetSql method with different names, depending
on the SQL type of the column you want to read. To read a Decimal value, use the
GetSqlDecimal method; to retrieve a string, use the GetSqlString method; to
retrieve an integer, call one of the GetSqlInt16, GetSqlInt32, or GetSqlInt64
methods; and so on. To specify the column you want to read, use an integer index
value that represents the column’s ordinal, such as Reader.GetSqlString(2).
The index of the first column in the result set is zero.

GetValue If you can’t be sure about the type of a column, use the GetValue method, which
returns a value of the Object type. This method accepts as an argument the ordinal
of the column you want to read.

THE BASIC DATA-ACCESS CLASSES 677

Table 15.4: Properties and methods of a DataReader object (CONTINUED)

Name Description

GetValues This method reads all the columns of the current row and stores them into an array
of objects, which is passed to the method as an argument. This method returns an
integer value, which is the number of columns read from the current row.

GetName Use this method to retrieve the name of a column, which must be specified by its
order in the result set. To retrieve the name of the first column, use the expression
Reader.GetName(0). The column’s name in the result set is the original column
name, unless the SELECT statement used an alias to return a column with a
different name.

GetOrdinal This is the counterpart of the GetName method, and it returns the ordinal of a
specific column from its name. To retrieve the ordinal of the CompanyName column,
use the expression Reader.GetName("CompanyName").

IsDbNull This method returns True if the column specified by its ordinal in the current row is
null. If you attempt to assign a null column to a variable, a runtime exception will
be thrown, so you should use this method to determine whether a column has a
value and handle the null values from within your code.

CLR Types versus SQL Types

The Get<Type> methods return data types recognized by the Common Language Runtime
(CLR), whereas the GetSql<Type> methods return data types recognized by SQL Server.
There’s a one-to-one correspondence between most types but not always. In most cases, we
use the Get<Type> methods and store the values in VB variables, but you may want to store
the value of a field in its native format. Use the SQL data types only if you’re planning to
move the data into another database. For normal processing, you should read them with the
Get<type> methods, which return CLR data types recognized by VB. The following table
summarizes the CLR and SQL data types:

CLR Data Type SQL Data Type

Byte SqlByte

Byte() SqlBytes

Char() SqlChars

DateTime SqlDateTime

Decimal SqlDecimal

Double SqlDouble

SqlMoney

Single SqlSingle

String SqlString

SqlXml

678 CHAPTER 15 PROGRAMMING WITH ADO.NET

The following table summarizes the methods that read data off the DataReader as CLR or SQL
data types:

CLR Data Type Sql Data Type Description

GetSqlBinary Reads column as a binary (usually image
columns)

GetBoolean GetSqlBoolean Reads column as a Boolean value

GetByte GetSqlByte Reads column as a single Byte

GetBytes GetSqlBytes Reads column as an array of Byte

GetChars GetSqlChars Reads column as an array of Char

GetDateTime GetSqlDateTime Reads column as a DateTime value

GetDecimal GetSqlDecimal Reads column as a Decimal value

GetDouble GetSqlDouble Reads column as a Double value

GetFloat GetSqlSingle Reads column as a Single value

GetInt16 GetSqlInt16 Reads column as an Int16 value

GetInt32 GetSqlInt32 Reads column as an Int32 value

GetInt64 GetSqlInt64 Reads column as an Int64 value

GetString GetSqlString Reads column as a string value

GetSqlMoney Reads column as a money value (no
equivalent type in VB)

GetSqlXml Reads column as a XML value (no equivalent
in VB)

Note that you can’t reset the DataReader object and reread the same result set. To go
through the same rows, you must execute the query again. However, there’s no guarantee
that the same query executed a few moments later will return the same result set. Rows may
have been added to, or removed from, the database, so your best bet is to go through the
result set once and store all the data to a structure at the client computer’s memory. Moreover,
while you’re using the DataReader, the connection to the server remains open. This means that
you shouldn’t process the data as you read it, unless it is a trivial form of processing, such
as keeping track of sums and counts. If you need to perform some substantial processing on
your data, read the data into an ArrayList or other structure in the client computer’s memory,
close the connection, and then access the data in the ArrayList. In the following chapter, you’ll
learn about the DataSet object, which was designed to maintain relational data at the client.
The DataSet is a great structure for storing relational data at the client; it’s almost like a small
database that resides in the client computer’s memory. However, the DataSet is not ideal for all
situations.

Listing 15.3 shows the code that retrieves all products along with category names and
supplier names and populates a ListView control. The ListView control’s columns aren’t
specified at design time; the code adds the appropriate columns at runtime (as long as the View
property has been set to Details). The code goes through the columns of the result set and
adds a new column to the ListView control for each data column. Then it reads the rows

THE BASIC DATA-ACCESS CLASSES 679

returned by the query and displays them on the control. The statements in Listing 15.3 are part
of the SimpleQueries sample project.

Listing 15.3: Displaying product information on a ListView control

Dim Command As New SqlCommand
Command.Connection = CN
’ a simple SELECT query
Command.CommandText =

"SELECT ProductName AS Product, " &
"CategoryName AS Category, " &
"CompanyName AS Supplier, UnitPrice AS Price " &
"FROM Products LEFT JOIN Categories " &
"ON Products.CategoryID = Categories.CategoryID " &
"LEFT JOIN Suppliers ON Products.SupplierID = Suppliers.SupplierID"

Connection.Open()
Dim count As Integer = 0
Dim Reader As SqlDataReader
Reader = Command.ExecuteReader
ListView1.Clear()
Dim i As Integer
’ setup ListView control to display the headers
’ of the columns read from the database
For i = 0 To Reader.FieldCount - 1

ListView1.Columns.Add(Reader.GetName(i), 130)
Next
While Reader.Read

Dim LI As New ListViewItem
LI.Text = Convert.ToString(Reader.Item("Product"))
LI.SubItems.Add(Convert.ToString(

Reader.Item("Category")))
LI.SubItems.Add(Convert.ToString(

Reader.Item("Supplier")))
LI.SubItems.Add(Convert.ToString(

Reader.Item("Price")))
ListView1.Items.Add(LI)
Count += 1

End While
MsgBox("Read " & count.ToString & " Product rows")
Connection.Close()

Reading Multiple Result Sets

Another interesting aspect of the DataReader object is that you can use it to read multiple
result sets, such as the ones returned by multiple queries. You can execute a batch query such
as the following with a single Command object:

Command.CommandText = "SELECT * FROM Customers; SELECT * FROM Employees"
Dim Reader As SqlDataReader = Command.ExecuteReader

680 CHAPTER 15 PROGRAMMING WITH ADO.NET

We’ll use the same DataReader object to read the rows of both tables, but we need to know
when we’re finished with the first result set (the customers) and start reading the second result
set. The NextResult property of the DataReader does exactly that: After exhausting the first
result set (by iterating through its rows with the Read method), we can request the NextResult
property to find out whether the DataReader contains additional result sets. If so, we can start
reading the next result set with the Read method. Here’s the outline of the code for reading two
result sets from the same DataReader:

While Reader.Read
‘ read the fields of the current row in the 1st result set

End While
If Reader.NextResult

While Reader.Read
‘ read the fields of the current row in the 2nd result set

End While
End If

VB 2010 at Work: Building a Simple Data-Driven Application

In this section I’ll put together all the information presented so far in this chapter to build
a data-driven application — an application that actually talks to a database, retrieves data,
and displays it on a Windows form. The application is not new to you. In Chapter 5, ‘‘Basic
Windows Controls,’’ you created an application for maintaining a list of contacts, based on a
ListBox control, where you stored the names of the contacts. The same ListBox control was
also used as a navigational tool, because users could select a contact and view their details, as
shown in Figure 15.8.

Figure 15.8

The Contacts applica-
tion’s interface

The contacts were stored in a List of Contact objects, and they were persisted to a file. Now
let’s revise this application so that it works with a database, namely, the Customers table of

THE BASIC DATA-ACCESS CLASSES 681

the Northwind database. The columns of the Customers table are almost identical to the fields
of the Contact object, so you’ll use the same data type to store the data. Instead of persisting
the data to a file, you’ll read your contacts from the database and submit the edited rows back
to the same database. Because you’ll use a central data storage, the revised application can be
used by multiple users at the same time.

Start by copying the Contacts project folder to a new folder with a different name. Then edit
the menu, as follows:

1. Delete the New and Save items, because the new application doesn’t maintain a copy of
the contacts in memory. Instead, it retrieves the requested contact from the Customer table
as requested and submits the updates to the database as soon as the user edits an existing
contact or inserts a new one. The New command is meaningless with a database. You’ll
never have to remove all rows from a table, unless you’re reinitializing a test database, in
which you will probably run a script that initializes all tables.

2. Change the Open command of the File menu to Load Customers. Instead of loading the
contacts from a file, we’ll load them from the Customers table of the Northwind database.

3. Add the CustomerID field to the main form, because the Customers table uses
user-supplied strings as primary keys.

Most of the code remains the same. You only need to replace the routines that perform the
basic operations against the database. We no longer read the data from an external file. Instead,
we must execute a query against the database and retrieve the company names along with their
IDs. The Load command’s code follows in Listing 15.4.

Listing 15.4: Loading the Customers table

Private Sub LoadToolStripMenuItem_Click(...) Handles
LoadToolStripMenuItem.Click

CMD.CommandText = "SELECT * FROM Customers"
CN.Open()
Dim RDR As SqlDataReader
RDR = CMD.ExecuteReader
ListBox1.Items.Clear()
While RDR.Read

Dim C As New Contact
C.CustomerID = RDR.Item("CustomerID")
C.CompanyName = RDR.Item("CompanyName")
C.ContactName = Convert.ToString(

IIf(RDR.IsDBNull(
RDR.GetOrdinal("ContactName")),
"", RDR.Item("ContactName")))

C.Address1 = Convert.ToString(
IIf(RDR.IsDBNull(

RDR.GetOrdinal("Address")),
"", RDR.Item("Address")))

‘ Similar statements for the remaining fields
ListBox1.Items.Add(C)

682 CHAPTER 15 PROGRAMMING WITH ADO.NET

End While
CN.Close()
currentContact = 0
ShowContact()

End Sub

The code executes a simple SELECT query against the database and then loads the ListBox
control with Contact objects as before. The only difference is that now the data comes from
the DataReader. You will also notice the lengthy expressions that assign the values read
from the database to the TextBox controls on the form. The expression RDR.Item(field_name)
reads the corresponding column’s value from the current row. This row, however, may be null,
and you can’t assign a null value to the Text property. So, the code uses the IIf() function
to determine whether the current field’s value is null. If the method IsDBNull returns True,
then the current field is null, and the IIf() function returns an empty string. If not, it returns
the actual field value, which is the expression RDR.Item(field_name). But what about the call
to the GetOrdinal method? Well, the IsDBNull method doesn’t accept a column name as an
argument, only an integer that is the order of the column in the result. Instead of hard-coding
numeric values to our code (and make it impossible to maintain later), we can retrieve the
ordinal of a column with the GetOrdinal method. The expression GetOrdinal("CustomerID")
returns 0 because the CustomerID column is the first one, GetOrdinal("CompanyName") returns
1, and so on. Finally, because the IIf() function returns an object, we must cast it to a string
before assigning it to the Text property.

Now, this is the type of code that can be streamlined, and there are tools that do it for you.
Even better, there are tools that convert each row to a custom object (a Contact object, in our
example), so you can handle the data you retrieve from the database with the object-oriented
techniques you have learned in this book. The new data access technologies, including LINQ
to SQL that was discussed in Chapter 14, ‘‘An Introduction to LINQ,’’ bridge the gap between
databases and object-oriented programming. As you have already noticed, there’s a mismatch
between objects and the way we access databases. Having to set up a DataReader, execute com-
mands directly against the database, and then having to worry about null and converting the
fields to the proper type takes a lot of code, and the entire approach just isn’t elegant. You’ll
see better techniques for accessing databases in the following chapter, but I wanted to show
you the basic data access mechanisms first (actually you already saw how to access databases
with LINQ to SQL queries in the preceding chapter).This may not be so elegant, but they’re the
foundation on which more elaborate tools were built. Moreover, they’re the fastest way to get
data out of a database and back. That said, let’s continue with our sample application.

Next, we must implement the procedures for adding a new contact (the SubmitContact
subroutine), for updating an existing contact (the UpdateContact subroutine), and for deleting
a contact (the RemoveContact subroutine). The first two subroutines accept as an argument
a variable of the Contact type, form the appropriate SQL statement, and execute it against
the database. The RemoveContact subroutine accepts the ID of the row to be deleted, forms
the appropriate DELETE statement, and executes it likewise. You may wonder why I haven’t
implemented these routines as functions that return a True/False value indicating whether the
operation completed successfully. The reason is that a simple indication about the success of
an operation won’t suffice; we need to display a more specific error message to the user, so
I’ve decided to throw an exception with the error description, as shown in Listings 15.5, 15.6,
and 15.7.

THE BASIC DATA-ACCESS CLASSES 683

Listing 15.5: Adding a new row to the Customers table

Private Sub SubmitContact(ByVal C As Contact)
CMD.CommandText = "INSERT Customers " &

"(CustomerID, CompanyName, ContactName, Address, " &
" City, Region, PostalCode, Country) " &
"VALUES (@CustomerID, @CompanyName, @ContactName, " &
"@Address, @City, @Region, @PostalCode, @Country) "

CMD.Parameters.Clear()
CMD.Parameters.AddWithValue("@CustomerID", C.CustomerID)
CMD.Parameters.AddWithValue("@CompanyName", C.CompanyName)
CMD.Parameters.AddWithValue("@ContactName", C.ContactName)
CMD.Parameters.AddWithValue("@Address", C.Address1)
CMD.Parameters.AddWithValue("@City", C.City)
CMD.Parameters.AddWithValue("@Region", C.State)
CMD.Parameters.AddWithValue("@PostalCode", C.ZIP)
CMD.Parameters.AddWithValue("@Country", C.ZIP)
CN.Open()
Try

CMD.ExecuteNonQuery()
Catch ex As Exception

Throw New Exception(
"Failed to update contact in database. " &
vbCrLf & "ERROR MESSAGE: " & vbCrLf & ex.Message)

Finally
CN.Close()

End Try
CN.Close()

End Sub

Listing 15.6: Updating a row in the Customers table

Private Sub UpdateContact(ByVal C As Contact)
CMD.CommandText = "UPDATE Customers " &

"SET CompanyName = @CompanyName, " &
" ContactName = @ContactName, " &
" Address = @Address, " &
" City = @City, " &
" Region = @Region, " &
" PostalCode = PostalCode" &
" Country = @Country " &
"WHERE CustomerID = @CustomerID"

CMD.Parameters.Clear()
CMD.Parameters.AddWithValue("@CustomerID", C.CustomerID)
CMD.Parameters.AddWithValue("@CompanyName", C.CompanyName)
CMD.Parameters.AddWithValue("@ContactName", C.ContactName)

684 CHAPTER 15 PROGRAMMING WITH ADO.NET

CMD.Parameters.AddWithValue("@Address", C.Address1)
CMD.Parameters.AddWithValue("@City", C.City)
CMD.Parameters.AddWithValue("@Region", C.State)
CMD.Parameters.AddWithValue("@PostalCode", C.ZIP)
CN.Open()
Try

CMD.ExecuteNonQuery()
Catch ex As Exception

Throw New Exception(
"Failed to update contact in database. " & vbCrLf &
"ERROR MESSAGE: " & vbCrLf & ex.Message)

End Try
CN.Close()

End Sub

Listing 15.7: Removing a row from the Customers table

Private Sub RemoveContact(ByVal ContactID As String)
CMD.CommandText = "DELETE Customers WHERE CustomerID=@contactID "
CMD.Parameters.Clear()
CMD.Parameters.AddWithValue("@contactID", ContactID)
CN.Open()
Try

CMD.ExecuteNonQuery()
Catch ex As Exception

Throw New Exception(
"Failed to delete contact in database. " & vbCrLf &
"ERROR MESSAGE: " & vbCrLf & ex.Message)

Finally
CN.Close()

End Try
End Sub

The rest of the code is basically the same. We started with an application that manipulates
Contact objects in a List and converted it to an application that manipulates the rows of a
database table. We changed the routines that read data and submit data to the database. The
routines that read the data from the database create Contact objects that are stored to the
ListBox control as with the original application. Likewise, every time the user inserts a new
contact or updates an existing one, instead of modifying an item in the List control, we submit
it to the database and update the underlying source (the Customers table). Finally, when a
contact is removed, the application removes it directly from the Customers table. The deletion
operation may fail if the customer has placed an order. As you realize, we’re no longer dealing
with an isolated table but with a larger system with related tables, and the DBMS maintains
the integrity of our data.

THE BOTTOM LINE 685

This application has a serious flaw, though. What if the Customers table has thousands
of customers and there are a few dozen users who may need access the database? Would
it make sense to download the entire table to the client and maintain such an enormous
list of customers at every client? The first improvement I’d suggest is to download only the
customer names and display them on the ListBox control. Every time the user clicks a different
customer’s name, your code should execute a SELECT statement for the specific customer and
bring the entire row to the client and display its fields.

Even so, the table may grow so large that it wouldn’t make sense to display all company
names in a list. In this case, you should provide some selection mechanism to force users to
download the names of selected companies only. For example, you could display a list of
countries and download only customers from the selected customer every time users selected
another country. You could also filter by company or contact name or provide combinations
of criteria. If you decide to modify the application, here are the SELECT statements that limit
customers by country and company name:

SELECT CustomerID, CompanyName FROM Customers WHERE Country = @country
SELECT CustomerID, CompanyName FROM Customers WHERE CompanyName LIKE @name + ‘%’

(The percent symbol at the end of the string is a wildcard, indicating that the company name
should start with the string stored in the @name variable, followed by any other combination of
characters.)

One last hitch in this application is the following: What will happen if other users delete a
contact you’re editing or someone else updates the contact you’re editing? Issues of concur-
rency are very important in designing data-driven applications, and we’ll look at this in the
following chapter. The Contacts project assumes that the same row won’t be edited by multiple
users at once. Even when this happens, the last user to save the edits overwrites the edits of the
other users. It’s a bit of a crude approach, but it’s quite appropriate in many situations. In other
situations, most notably in reservation applications, it’s unacceptable.

The Bottom Line

Store data in relational databases. Relational databases store their data in tables and are
based on relationships between these tables. The data are stored in tables, and tables contain
related data, or entities, such as persons, products, orders, and so on. Relationships are imple-
mented by inserting columns with matching values in the two related tables.

Master It How will you relate two tables with a many-to-many relationship?

Query databases with SQL. Structured Query Language (SQL) is a universal language for
manipulating tables. SQL is a nonprocedural language, which specifies the operation you want
to perform against a database at a high level, unlike a traditional language such as Visual Basic,
which specifies how to perform the operation. The details of the implementation are left to the
DBMS. SQL consists of a small number of keywords and is optimized for selecting, inserting,
updating, and deleting data.

686 CHAPTER 15 PROGRAMMING WITH ADO.NET

Master It How would you write a SELECT statement to retrieve selected data from multi-
ple tables?

Submit queries to the database using ADO.NET. ADO.NET is the component of the
Framework that provides the mechanism to contact a database, submit queries, and retrieve
the results of a query. There are two types of queries you can execute against a database:
selection queries that retrieve data from the database based on certain criteria you supply
and action queries that manipulate the data at the database. Action queries do not return any
results, except for the number of rows that were affected by the query.

Master It Describe the basic mechanism for submitting a selection query to the database
and reading the results returned by the query.

Chapter 16

Developing Data-Driven Applications

In Chapter 15, ‘‘Programming with ADO.NET,’’ you learned how to access data stored in
databases with the basic classes of ADO.NET: the Connection and Command classes. A third
class, the DataReader class, allows you to read the data retrieved by your command in the
client application. Most applications today use a database to store data. These applications
are known as front-end applications, because they interact with the user and update the data
on a database server, or a back-end data store. They’re also known as data-driven applications,
because they interact not only with the user but primarily with the database.

Although executing commands and reading the selected data is a straightforward process,
you still have to decide where to store the data at the client and how to present it to the
user. One approach is to write custom classes that represent the business objects you want to
work with and then populate instances of these classes with data. Once the objects have been
populated, you can work with familiar business objects. You can even use LINQ to Objects
to query collections of custom objects or LINQ to SQL to query database tables directly with
LINQ queries, as discussed in Chapter 14, ‘‘An Introduction to LINQ.’’

Finally, there’s a standard mechanism for storing data at the client, the DataSet class. A
DataSet is an in-memory database, which you can populate with the data you’re interested in
and work with it at the client.

In this chapter, you’ll learn how to do the following:

◆ Create and populate business objects

◆ Establish relations between tables in the DataSet

◆ Submit changes in the DataSet to the database

Using Business Objects
By now you should be more than familiar with object-oriented programming. One of the ideas
behind object-oriented programming is the transformation of flat data (whether they live in
files or relational databases) into meaningful objects that reflect the hierarchy of the business
objects you’re dealing with. As you recall from the preceding chapter, the orders in the North-
wind database are stored in two different tables: the order headers in the Orders table and their
details in the Order Details table. Books and their authors are spread over three different tables

688 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

in the Pub database: the Titles table, which stores titles; the Authors table, which stores author
names; and the TitleAuthor table, which relates titles to their authors.

If you ignore the data-storage aspect of the application for a moment, you’d probably design
an Order object to store orders with the following structure:

Public Class Order
Dim OrderID As Integer
Dim OrderDate As Date
Dim Employee As Employee
Dim Customer As Customer
Dim Details As List(Of Detail)

End Class
Public Class Detail

Dim ProductID As Integer
Dim ProductPrice As Decimal
Dim ProductQuantity As Integer

End Class
Public Class Employee

Dim EmployeeID As Integer
Dim EmployeeName As Strng

End Class
Public Class Customer

Dim CustomerID As String
Dim CompanyName As Strng

End Class

The Order class can be populated with single statements like the following:

Dim newOrder As New Order
newOrder.OrderDate = Now.Today
newOrder.Details = New List(Of Detail)
Dim det As New Detail
det.ProductID=12
det.ProductPrice = 21.90
det.ProductQuantity = 10
newOrder.Details.Add(det)

This is a straightforward approach to modeling an order with a custom object that doesn’t
take into consideration the structure of the information in the database. The Order class repre-
sents an order as a business object, regardless of how the information is stored in the database.
Note that the order’s ID isn’t stored anywhere, because there’s no need to associate the order’s
header with its details. The details simply belong to the order. At a later point we’ll have to
write some code to extract the various properties of the Order object and submit them to the
database with the proper SQL statements, and this is what this section is all about: how to map
our data into custom business objects, build our application with object-oriented techniques,
and then submit the data to the database. The code that actually contacts the database and
either retrieves data or submits edited and new data to the database is the application’s data
layer, as opposed to the application’s user interface (UI), which is the code that manipulates
the data at the client.

USING BUSINESS OBJECTS 689

This object-oriented approach is also more elegant than the structure of the two tables in the
database. Some people talk about the impedance mismatch between object-oriented program-
ming and databases. One of the advantages of using business objects to store your data at the
client is that the custom objects can be manipulated with traditional programming techniques
(and not-so traditional techniques, like LINQ).

The main theme in designing data-driven applications is how to get the relational data out
of a database and map it to a business object like Order and how to get the data from a busi-
ness object and submit it to the database. And as you will see in this and the following chapter,
there are many techniques for mapping database data to custom objects. To better understand
how to bridge the gap between traditional database data and custom objects, we’ll explore this
process through a sample application.

VB 2010 at Work: The NWOrders Application
In this section, you’ll develop a real-world application, which isn’t very complicated, to serve
as an example in a textbook, but it’s by no means trivial. The NWOrders application (available
for download from www.sybex.com/go/masteringvb2010) allows you to create new orders for
the Northwind database. Although the applications for manipulating the other tables of the
database, such as the Products or Customers/Employees tables, are fairly simple and you have
already seen a few examples, the application for entering new invoices is entirely different. To
begin with, the user interface is the most critical aspect of the application. Users should be able
to add new items to the order easily and quickly. The interface should be simple and intuitive,
and all operations should be performed with the keyboard. Ideally, users should be able to scan
the product’s bar code and append the scanned item to the order.

Inserting the new order to the database is also a bit involved. An order is stored in two sep-
arate tables: the order’s header (the data that usually appear at the top of an invoice, such as
the invoice’s date and customer) is stored in the Orders table, and the order’s details (the items
sold that appear in a grid that takes up most of the invoice) are stored in the Order Details
table. Moreover, the order’s header and its details must be inserted into the corresponding
tables in the context of a transaction: All rows must be inserted successfully, or the insertion
of an order must fail as a whole. Even if the insertion of a single detail line fails, then the entire
order must fail. Otherwise, you may end up with a partial order.

I’ve implemented the same application with two different techniques to demonstrate
the steps of building data-driven applications, as well as the parts of the application that
can be streamlined by the Framework. The interface of the application is identical in both
versions, because it’s a functional interface that shouldn’t be tied to a particular implemen-
tation of the data-access layer. Likewise, the data-access layer shouldn’t be tied to a specific
interface. One of the major themes in designing data-driven applications is the separation
of the user interface from the data-access layer. The data layer is the code that interacts with
the database by retrieving the data requested by the user and submitting the edits to the
database.

The UI, on the other hand, is responsible for interacting with the user. Every time it needs
to fetch some data from the database or submit data to the database, it calls a method of the
data-access layer, which is usually implemented as a class. As you will see shortly, the two
applications have an identical UI; even the code is the same. The data-access layer, however,
is very different. Yet, the code that implements the UI calls a few methods that have the same
signature but are implemented very differently. You can even make the same application work
with a different database by rewriting the data-access layer without editing a single line of code
in the UI code.

690 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

The Application’s Interface

Figure 16.1 shows the interface of the application, and I suggest you open the application to
see how it works. To specify the order’s header, you simply select the customer who placed the
order and the employee who made the sale from the appropriate ComboBox controls and enter
the order’s shipping address in the TextBox control at the bottom of the form. Then you must
enter the products purchased; this is the most challenging part of the application because users
should be able to enter new products quickly and safely.

Figure 16.1

The user interface of the
NWOrders application

The NWOrders application assumes that you’re using an instance of SQL Server running on
the same machine and that you have installed the Northwind sample database. If SQL Server
is running on a remote machine, you must edit the NorthwindConnectionString setting in the
application’s configuration file accordingly. To do so, open the app.config file, and edit the
connectionString setting in the connectionStrings section:

<connectionStrings>
<add name="NWOrders.My.MySettings.NorthwindConnectionString"

connectionString="Data Source=(local);
Initial Catalog=Northwind;Integrated Security=True"
providerName="System.Data.SqlClient" />

</connectionStrings>

This application will most likely be used as a point-of-sale (POS) system and must be
intuitive, easy to use, and extremely fast. The user of the application is probably a cashier
and shouldn’t be expected to open the Products table, select the desired one, and then add it
to the invoice. With the interface I’m suggesting, users enter the product ID in the TextBox
above the ID column of the grid. As soon as the user presses the Enter key, the application
retrieves the desired product and displays its description and price. The two TextBoxes are
read-only, and the user can’t change either. You may want to allow users to edit the price, but
this isn’t a recommended practice. A general discount that’s applied to all items is probably

USING BUSINESS OBJECTS 691

the simplest way to go, but it’s trivial to add another TextBox control for entering a different
discount for each detail line (along with a new column in the ListView control with the order’s
details). As soon as the item is retrieved and displayed on the TextBox controls at the top, the
focus is moved to the TextBox for the quantity, where the user can type the number of items.
After pressing the Enter key for a second time, the new row is added to the grid with the
order’s details, and the focus is moved automatically to the ID field in anticipation of the next
product’s ID.

Users aren’t expected to know the IDs of the products, obviously. In a real-world scenario,
the application should accept the product’s bar code instead of the ID. You can use a barcode
reader with this application without any modifications. The barcode reader reads the bar’s char-
acters and sends them to the computer via the serial or USB port, but to the application they
appear as if they were typed at the keyboard. The whole process is transparent, and you need
not write a single additional line of code. Since the unique identifier in the Products table is the
product ID, we’ll use the ID as a bar code for this application.

Occasionally, the reader might fail to read a product ID. In that case, users can type a
few characters from the product name, and the application will retrieve matching rows and
display them so the user can select the desired one. Although searching with an ID will return
a single product, searching with a product name may result in multiple matches, so some
user intervention is needed to guarantee that the proper product is selected. In the discussion
of the application, I will ignore this feature, which isn’t trivial, and will focus on the other
aspects of the application. If you’re interested in the implementation of this feature, please
open the NWOrders project with Visual Studio and examine the code; it is well documented.
The code retrieves all the products whose name contains the characters specified in the ID box
and displays them on a second ListView control, which is normally hidden but remains visible
until the user selects the desired product. Figure 16.2 shows the application when a product is
selected by name.

Figure 16.2

Selecting a product by
name in the NWOrders
application

While entering new products, the user may decide to delete a product that was added to
the grid by mistake or modify the quantity. Although most of the time users work with the

692 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

TextBox controls located at the top of the grid, in this case they must move the focus to the
grid to select a row. This operation doesn’t require the use of the mouse. By pressing the down
arrow key while they’re in the ID TextBox, users can move the focus to the first row of the grid
and select it. Once they’ve landed on the grid with the order’s details, users can move up and
down with the arrow keys, and the currently selected row’s fields are displayed in the TextBox
controls on the top of the grid. To delete the selected row, they can simply press the Delete
key. They can also use the mouse to locate the row to be removed on the grid, but it will take
longer. Data-entry operators just don’t like using their mouse. To return to the ID box and enter
a new detail, they can press Escape.

Depending on the nature of the business, you may skip the quantity too and add a
new row to the grid with a quantity of 1. If the same product is added multiple times, the
application will generate multiple detail lines. You can edit the application’s code to increase
the quantity of the existing row, instead of adding a new row with the same product and
a quantity of 1. If the application is going to be used at a bookstore, where people usually
purchase a single copy of each title, the alternate approach will work better. You can use this
application as your starting point for a POS system and add all the features required by your
business needs.

The NWOrders application consists of two forms, the frmLINQ and frmSQL forms. The
frmSQL form uses the basic ADO.NET objects to interact with the database, while frmLINQ
uses the classes generated by the LINQ to SQL component of Visual Studio. You’ll have to
change the application’s startup form to the desired one to test it.

We have discussed the application’s interface, but before you start writing code, you must
identify the requests you want to make to the database and implement them as methods
in a separate class. The code behind the form will call these methods to retrieve data or
submit data to the database and should not know anything about the database. This is not
a requirement for small projects, but in a large project there will be different developers
working on the data-access layer and different developers working on the user interface. By
separating the data-access logic from the user interface, you can also implement multiple
interfaces (a Windows application and a Web application, for example) that use the same
data-access methods.

When you work on the application UI, you shouldn’t need to care about the structure of the
tables in the database. Your class should expose the business objects you need for the applica-
tion and map them to the database tables. For example, the class you’ll create shortly for the
NWOrders application should expose an Order object that combines an order’s header and
details. Your UI code will populate an Order object and pass it as an argument to a method
of the class that will submit it to the database. When the interface requests an order by its ID,
the class should return an object of the Order type. This object will contain all the informa-
tion about the order but with a structure that’s totally different from the structure of the rel-
evant tables in the database. In effect, the custom class will isolate the user interface from the
data-access layer; should you have to implement the same application with a different database,
you’ll only have to revise the class that implements the data-access layer.

The class with the data-access components is referred to as the data-access layer, while the
application’s interface is the UI layer. In most applications, there’s a third layer that implements
the business logic. This layer is not related to the database, but it can’t be part of the user inter-
face either. You can implement it in either the UI or data-access layer, but logically it doesn’t
belong there and should be implemented as a separate class. If you ever decide to change some
of the business rules, you will revise a specific class and not the entire application. Likewise, if
you decide to move to a different database, you only need to revise the data-access layer and
not the UI layer.

USING BUSINESS OBJECTS 693

The business layer contains functionality that’s specific to a corporation. For example, you
may implement the discount calculations or a customer’s credit line as a business layer. All
methods that require this functionality, whether they reside in the UI or the data-access layer,
should call the appropriate method of the class that implements the business logic.

The most basic rule in the design of data-driven applications is that the UI should not con-
tain code that interacts with the database. Ideally, you must create classes that represent the
business objects that represent the entities in your application. These business objects are classes
that implement customers, employees, orders, and so on. Let’s jump to a practical example to
see how the application is structured.

Implementing the Data-Access Layer with Custom Objects

The data-access layer of the frmSql form of the NWOrder application is implemented in the
NWOrder class. The two simpler business objects of the NWOrder class are the NWEmployee
and NWCustomer objects, which are implemented with two trivial classes by the same name.
Both classes expose two properties, the ID and name of the corresponding entity and a custom
implementation of the ToString method. I needed a custom implementation of the ToString
method because the code in the UI application needs to add customers and employees to a
ComboBox control and display their names.

In addition to their properties, the two classes provide the GetAllEmployees and
GetAllCustomers methods, which return a strongly typed List of NWCustomer and NWEm-
ployee objects, respectively. Listing 16.1 shows the code of the NWEmployee and NWCustomer
classes (I’ve skipped the implementation of the two methods, which are fairly lengthy).

Listing 16.1: The outline of the NWEmployee and NWCustomer business objects

Public Class NWEmployee
Public EmployeeID As Integer
Public EmployeeName As String
Public Overrides Function ToString() As String

Return EmployeeName
End Function

Public Shared Function GetAllEmployees() As List(Of NWEmployee)
End Function

End Class

Public Class NWCustomer
Public CustomerID As String
Public CustomerName As String
Public Overrides Function ToString() As String

Return CustomerName
End Function

Public Shared Function GetAllCustomers() As List(Of NWCustomer)
End Function

End Class

694 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Another class, the NWProduct class, represents the products that can appear in the order’s
details. Although the Products table contains a large number of columns, for the purposes
of selling products we only need the product’s ID, name, and price. The NWProduct class
should also expose a method that allows us to retrieve a product by its ID, the GetProductByID
method. All methods used in this application are shared: You can call them without having to
create a new instance of the corresponding class.

Public Class NWProduct
Public ProductID As Integer
Public ProductName As String
Public ProductPrice As Decimal

Public Shared Function GetProductByID(
ByVal productID As Integer) As NWProduct

End Function
End Class

Finally, the core class of the application is the NWOrder class, which represents an order
and its details (see Listing 16.2). This class exposes the columns of the Orders table as proper-
ties and the columns of the Order Details table as a collection of NWOrderDetail objects.

Listing 16.2: The implementation of the NWOrder business object

Public Class NWOrder
Public Class NWOrderDetail

Public ProductID As Integer
Public ProductPrice As Decimal
Public ProductQuantity As Integer
Public ProductDiscount As Decimal

End Class

Public OrderDate As Date
Public EmployeeID As Integer
Public CustomerID As String
Public Details As New List(Of NWOrderDetail)

Public Shared Function SaveOrder(ByVal newOrder As NWOrder) As Integer
End Function

End Class

The implementation of the SaveOrder method is not trivial and is described in detail next.

Creating a New Order

To create a new order with the data entered by the user on the main form, the application
declares a variable of the NWOrder type and populates it. Most of the properties are scalar and
are populated with a single statement. The order’s details, however, are stored in a property
that is a List of NWOrderDetail objects. The code creates a new NWOrderDetail object for each

USING BUSINESS OBJECTS 695

item in the order, populates its properties, and then appends it to the Details property of the
order. Listing 16.3 shows the code that iterates through the ListView control with the order’s
details and appends them to the newOrder variable, as shown in Listing 16.3.

Listing 16.3: Appending the details of a new order

For Each LI As ListViewItem In ListView1.Items
Dim newDetail As New NWOrder.NWOrderDetail
newDetail.ProductID = LI.Text
newDetail.ProductPrice =

System.Convert.ToDecimal(LI.SubItems(2).Text)
newDetail.ProductQuantity =

System.Convert.ToInt32(LI.SubItems(3).Text)
newOrder.Details.Add(newDetail)

Next

Saving the New Order

Once the newOrder variable has been initialized to the fields of the order on the form, the appli-
cation submits it to the database by calling the SaveOrder method of the data-access layer,
whose code is shown in Listing 16.4.

Listing 16.4: The SaveOrder method of the NWData class

Public Shared Function SaveOrder(ByVal newOrder As NWOrder) As Integer
Dim CN As New SqlClient.SqlConnection(

My.Settings.NorthwindConnectionString)
Dim CMD As New SqlClient.SqlCommand
CN.Open()
CMD.Connection = CN
Dim TR As SqlClient.SqlTransaction = CN.BeginTransaction
CMD.Transaction = TR
CMD.CommandText = "INSERT Orders (OrderDate, EmployeeID, " &

"CustomerID) VALUES (@orderDate, @employeeID, " &
"@customerID);SELECT Scope_Identity()"

CMD.Parameters.AddWithValue("@orderDate", Today)
CMD.Parameters.AddWithValue("@employeeID", newOrder.EmployeeID)
CMD.Parameters.AddWithValue("@customerID", newOrder.CustomerID)
Dim OrderID As Int32
Try

OrderID = System.Convert.ToInt32(CMD.ExecuteScalar)
Catch ex As Exception

TR.Rollback()
CN.Close()
Throw ex

End Try

696 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

For Each det As NWOrderDetail In newOrder.Details
CMD.CommandText = "INSERT [Order Details] " &

"(OrderID, ProductID, UnitPrice, Quantity) " &
"VALUES(@OrderID, @productID, @price, @quantity)"

CMD.Parameters.Clear()
CMD.Parameters.AddWithValue("@orderID", OrderID)
CMD.Parameters.AddWithValue("@productID", det.ProductID)
CMD.Parameters.AddWithValue("@price", det.ProductPrice)
CMD.Parameters.AddWithValue("@quantity", det.ProductQuantity)
Try

CMD.ExecuteNonQuery()
Catch ex As Exception

TR.Rollback()
CN.Close()
Throw ex

End Try
Next
TR.Commit()
CN.Close()
Return OrderID

End Function

Listing 16.4 contains a large number of trivial statements, such as the statements that pre-
pare the SQL command to be executed and initialize its parameters, which you can ignore;
instead, focus on the statements that execute all SQL commands in transactional mode. The
statements of interest are shown in bold in Listing 16.4.

To execute a number of statements in the context of a transaction, you must do the
following:

1. Set up a Transaction object by calling the BeginTransaction method on the Connection
object that will be used to submit the commands to the database.

2. Assign the Transaction object to the Transaction property of the Command object.

3. Submit multiple commands through the Command object’s ExecuteNonQuery method.

4. Should an error condition prevent one of the commands from completing successfully, you
can call the Rollback method of the Transaction object to abort the transaction.

5. If all goes well and none of the exception handlers is entered, the transaction will be com-
mitted when the Transaction object’s Commit method is called.

Let’s take a closer look at the code that commits the new order to the database. First it
inserts the order’s header to the Orders table and retrieves the ID of the newly created order.
This ID will be used as a foreign key with the Order Details table to associate the details of the
new order with its header. The INSERT statement is executed from within an exception handler,
and in the case of an error, the transaction is aborted.

If the INSERT statement returns the ID of the new order, the code goes through the details
of the newOrder variable and submits each one to the database through the same Command

USING BUSINESS OBJECTS 697

object, which is associated with the TR Transaction object. Again, the transaction can be aborted
as soon as a detail line fails to update the Order Details table. If all details are inserted success-
fully, then the code calls the Commit method to finalize the insertions and update the database.

You can easily test the transactional features of the application by adding two detail lines
with the same product ID. One of the constraints in the Order Details table is that no order
should contain the same product more than once. To comply with this constraint, you can
update the quantities of each detail line, rather than attempt to insert multiple lines that refer
to the same product. Anyway, I have ignored this constraint in the implementation of the
sample application. If you attempt to submit an order that contains the same product twice, the
transaction will be aborted with the error message shown in Figure 16.3.

Figure 16.3

A violation of the
database constraints will
cause the transaction to
be aborted.

If the order can’t be committed to the database, you should display a friendlier error mes-
sage and either allow the user to further edit the order or clear the fields in anticipation of the
next order.

Implementing the Data-Access Layer with LINQ to SQL

Now, we can switch our attention to the second implementation of the NWOrders applications,
which uses LINQ to SQL to implement the data-access layer. The frmLINQ form is based on
a LINQ to SQL component, which converts the relevant tables into custom business objects.
In effect, the LINQ to SQL component will create the classes for the application objects, which
we’ll simply use in our application. Our new data layer doesn’t contain any code to implement
the Product, Order, and Order_Detail classes. The component will expose these three objects
for us, and all we have to do is add the GetProductByID, GetProducts, and GetEmployees
methods to the class. The code is quite short, because we don’t have to request the desired rows
and then iterate through them with a DataReader.

Start by adding a new item to the project, a LINQ to SQL Class component. When
prompted, enter NW as the name of the new component, and Visual Studio will open it in the
designer. Drop the Customers, Employees, Products, Orders, and Order Detail tables onto

698 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

the design surface, and the designer will generate a class for each table. Once you drop the
tables on the designer surface, the designer will create a class for each table and will expose the
contents of each table as a collection of typed objects. Each row of the Customers table will be
mapped to an object of the Customer type, and the rows of the Customers table will be stored
in the Customers collection, which is a List of Customer objects.

To access the collections that represent the tables of the Northwind database, use the
DataContext object, which also will be exposed by the same class. Create a variable of the
NWDataContext type. (This is an autogenerated class named after the LINQ to SQL Class
component with the suffix DataContext appended.)

Dim ctx As New NWDataContext

To access the Customers table, use the following expression, which returns a List of Cus-
tomer objects, and each element in the List is a variable of the Customer type. Because the
collection is typed, you can use LINQ to query its elements, as discussed in Chapter 14. The
following query will select a customer by its ID:

Dim cust = (From c In ctx.Customers
Where c.CustomerID = "ALFKI"
Select c).FirstOrDefault

The LINQ query will not be executed at the client. Instead, the compiler will convert the
LINQ query into a SQL query and will execute it against the database as needed. For more
information on LINQ and how LINQ to SQL queries are transformed into SQL queries, see
Chapter 14.

Listing 16.5 shows the implementation of the methods of the NWData class. Because
the methods are implemented as LINQ queries, they require very little, and straight-
forward, code.

Listing 16.5: The data-access layer of the Orders project implemented with LINQ to SQL

Public Class NWData
Public Function GetProductByID(

ByVal productID As Integer) As Product
Dim ctx As New NWDataContext
Dim prod = (From p In ctx.Products

Where p.ProductID = productID
Select p).FirstOrDefault

Return prod
End Function

Public Function GetEmployees() As List(Of Employee)
Dim ctx As New NWDataContext
Dim emps = (From emp In ctx.Employees

Select emp).ToList
Return emps

End Function

USING BUSINESS OBJECTS 699

Public Function GetCustomers() As List(Of Customer)
Dim ctx As New NWDataContext
Dim customers = (From cust In ctx.Customers

Select cust).ToList
Return customers

End Function

End Class

The SaveOrder method of the NWData class uses the SubmitChanges method of the Data-
Context object generated by the designer, the NWDataContext object, to submit the new order
to the database. The SubmitChanges method will insert the header in the Orders table and the
details in the Order Details table. It will also handle the identity issue automatically.

Using the TransactionScope Class

The implementation of the SaveOrder method is trivial compared to the SaveOrder method of
the NWOrder class we use with the frmSQL form, because now we don’t have to perform the
INSERT statements ourselves. To submit the changes made to a table back to the database, you
must call the InsertOnSumbit/DeleteOnSubmit method of the appropriate table. These two
methods do not submit any data to the database. They accept an entity that represents a new
or deleted row as an argument and add it to the collection that represents the table. The rows
are submitted to the database when you call the SubmitChanges method.

Even though all the rows will be inserted to the database with a single method, the
SubmitChanges method, you must still execute this method in the context of a transaction. This
time I’ll use a different, and simpler, approach to the transactional update. The Framework
provides the TransactionScope object, which initiates a transaction automatically. To use
TransactionScope, you must first add a reference to the System.Transactions namespace
to the project. Then, you must create a new instance of this class and embed the statements
that must be executed in the transaction’s scope in a Using statement. Listing 16.6 shows the
implementation of the SaveOrder method of the NWData class.

Listing 16.6: Implementing a transaction with a TransactionScope object

Public Shared Function SaveOrder(ByVal newOrder As Order) As Integer
Dim ctx As New NWDataContext
Using TR As New System.Transactions.TransactionScope

ctx.Orders.InsertOnSubmit(newOrder)
Try

ctx.SubmitChanges()
TR.Complete()

Catch ex As Exception
Return (-1)

End Try
End Using
Return newOrder.OrderID

End Function

700 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

One statement that may not be clear in the listing is the line that returns the value −1 when
the transaction fails. Normally, the method returns the ID of the newly inserted row, and our
application expects a positive value. The ID can also be accessed through the OrderID prop-
erty of the newOrder object. This property has no value when the method is called, but the
SubmitChanges method updates the fields of the newOrder object for us.

The newOrder.OrderID property is updated when the SubmitChanges method submits the
order header to the Orders table. If this operation succeeds, the ID of the new order is assigned
to the OrderID property. Should the transaction fail while inserting the row details, the value of
the OrderID property won’t change automatically. It will still have a valid value, even though
no rows will be committed either to the Orders or Order Details table. That’s why you need a
return value from the SaveOrders method to indicate the success or failure of the operation.

The data-access layer of the form that uses the LINQ to SQL component to interact with
the database is quite short and much easier to understand. I repeat it here for your conve-
nience so you can compare it to the custom NWData class you developed earlier. As you can
understand, the code is so much simpler because of the DataContext object, which abstracts
the database tables and much of the functionality of the operations that are performed against
these tables.

Listing 16.7: The implementation of the data-access layer with a DataContext object

Public Class NWData
Public Function GetProductByID(ByVal productID As Integer) As Product

Dim ctx As New NWDataContext
Dim prod = (From p In ctx.Products

Where p.ProductID = productID
Select p).FirstOrDefault

Return prod
End Function

Public Function GetEmployees() As List(Of Employee)
Dim ctx As New NWDataContext
Dim emps = (From emp In ctx.Employees

Select emp).ToList
Return emps

End Function

Public Function GetCustomers() As List(Of Customer)
Dim ctx As New NWDataContext
Dim customers = (From cust In ctx.Customers

Select cust).ToList
Return customers

End Function

Public Shared Function SaveOrder(ByVal newOrder As Order) As Integer
Dim ctx As New NWDataContext

Using TR As New System.Transactions.TransactionScope
ctx.Orders.InsertOnSubmit(newOrder)

STORING DATA IN DATASETS 701

Try
ctx.SubmitChanges()
TR.Complete()

Catch ex As Exception
Return (-1)

End Try
End Using
Return newOrder.OrderID

End Function
End Class

This concludes the first part of the chapter where you’ve learned how to use objects to rep-
resent the data stored in the database tables as custom objects. In the second half, you’ll learn
about DataSets, which are a standard mechanism for storing data at the client. DataSets are
not new to Visual Studio; they have been around for many years, and they are used heavily
in data-driven applications.

Storing Data in DataSets
The process of building data-driven applications isn’t complicated and to a large extent is abs-
tracted by the Connection, Command, and DataReader classes. You have seen a few interesting
examples of these classes and should be ready to use them in your applications. The problem
with these classes is that they don’t offer a consistent method for storing the data at the client.
The approach of converting the data into business objects and working with classes is fine, but
you must come up with a data-storage mechanism at the client. The LINQ to SQL component
simplifies this task, and you saw how to automatically convert tables into custom objects.

You can store the data in a ListBox control, as we have done in some examples. You can also
create a List of custom objects, as we did in the preceding section. The issue of storing data at
the client isn’t pressing when the client application is connected to the database and all updates
take place in real time. As soon as the user edits a row, the row is submitted to the database,
and no work is lost.

In some situations, however, the client isn’t connected at all times. There’s actually a class
of applications that are referred to as occasionally connected or disconnected, and the techniques
presented so far do not address the needs of these applications. Disconnected applications read
some data when a connection is available, and then they disconnect from the server. Users are
allowed to interact with the data at the client, but they work with a local cache of the data; they
can insert new rows, edit existing ones, and delete selected rows. The changes, however, are
not submitted immediately to the server. It’s imperative that the data is persisted at the client.
(We don’t want users to lose their edits because their notebooks ran out of battery power or
because of a bug in the application.) When a connection becomes available again, the applica-
tion should be able to figure out the rows that have been edited and submit all changes to the
server. To simplify the storage of data at the client, ADO.NET offers a powerful mechanism,
the DataSet.

You can think of the DataSet as a small database that lives in memory. It’s not actually a
database, but it’s made up of related tables that have the same structure as database tables. The
similarities end there, however, because the DataSet doesn’t impose all types of constraints,
and you can’t exploit its data with SQL statements. It’s made up of DataTable objects, and each
DataTable in the DataSet corresponds to a separate query. Like database tables, the DataTable

702 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

objects consist of DataColumn and DataRow objects. The DataColumn objects specify the
structure of the table, and the DataRow objects contain the rows of the table. You can also
establish relations between the tables in the DataSet, and these relations are represented with
DataRelation objects. As you realize, the DataSet lets you copy a small section of the database
at the client, work with it, and then submit the changes made at the client back to the database.

The real power of the DataSet is that it keeps track of the changes made to its data. It knows
which rows have been modified, added, or deleted, and it provides a mechanism for submitting
the changes automatically. Actually, it’s not the DataSet that submits the changes but a class
that’s used in tandem with the DataSet: the DataAdapter class. Moreover, the DataSet class pro-
vides the WriteXml and ReadXml methods, which allow you to save its data to a local file. Note
that these methods save the data to a local file so you can reload the DataSet later, but they do
not submit the data to the database.

With the new data-related technologies introduced during the past few years, such as
LINQ to SQL, the Entity Framework (EF), and LINQ to Entities (discussed in the next chapter),
DataSets will soon become obsolete. Yet, there are only a few data-driven applications out there
that are not based on DataSets. I’ve decided to include this section because you’ll inevitably
run into applications that use DataSets.

Filling DataSets
DataSets are filled with DataAdapters, and there are two ways to create a DataSet: You can use
the visual tools of Visual Studio or create a DataSet entirely from within your code. DataSets
created at runtime are not typed, because the compiler doesn’t know what type of information
you’re going to store in them. DataSets created at design time with the visual tools are strongly
typed, because the compiler knows what type of information will be stored in them.

The following statements demonstrate the difference between untyped and typed DataSets.
To access the ProductName column of the first row in the Products table in an untyped DataSet,
you’d use an expression like the following:

Dim row As DataRow = Products1.Products.Rows(0).Item("ProductName")

If the Products1 DataSet is typed, you can create an object of the Products.ProductsRow
type with the following statement:

Dim productRow As Products.ProductsRow = Products1.Products.Rows(0)

Then use the productRow variable to access the columns of the corresponding row:

productRow.ProductName
productRow.UnitPrice

The difference between typed and untyped DataSets is also demonstrated by the declara-
tion of the row and productRow variables. Where row is a variable that represents a row in
a DataSet, the productRow variable represents a row in a DataSet that stores the rows of the
Products table.

As you can see, the visual tools generate a number of classes on the fly, such as the Prod-
uctsRow class, and expose them to your code. As soon as you enter the string productRow and
the following period in the code window, you will see the members of the ProductsRow class,
which include the names of the columns in the corresponding table. In this chapter, I discuss

STORING DATA IN DATASETS 703

untyped DataSets. In the following chapter, I’ll discuss in detail typed DataSets and how to use
them in building data-bound applications.

The DataAdapter Class

To use DataSets in your application, you must first create a DataAdapter object, which is the
preferred technique for populating the DataSet. The DataAdapter is nothing more than a col-
lection of Command objects that are needed to execute the various SQL statements against the
database. As you recall from our previous discussion, we interact with the database by using
four different command types: one to select the data and load them to the client computer with
the help of a DataReader object (a Command object with the SELECT statement) and three more
to submit to the database the new rows (a Command object with the INSERT statement), update
existing rows (a Command object with the UPDATE statement), and delete existing rows (a Com-
mand object with the DELETE statement). A DataAdapter is a container for Connection and
Command objects. If you declare a SqlDataAdapter object with a statement like the following:

Dim DA As New SqlDataAdapter

you’ll see that it exposes the properties described in Table 16.1.

Table 16.1: SqlDataAdapter object properties

Property Description

InsertCommand A Command object that’s executed to insert a new row

UpdateCommand A Command object that’s executed to update a row

DeleteCommand A Command object that’s executed to delete a row

SelectCommand A Command object that’s executed to retrieve selected rows

Each of these properties is an object and has its own Connection property, because each may
not act on the same database (as unlikely as it may be). These properties also expose their own
Parameters collection, which you must populate accordingly before executing a command.

The DataAdapter class performs the two basic tasks of a data-driven application: It retrieves
data from the database to populate a DataSet and submits the changes to the database.
To populate a DataSet, use the Fill method, which fills a specific DataTable object. There’s
one DataAdapter per DataTable object in the DataSet, and you must call the corresponding
Fill method to populate each DataTable. To submit the changes to the database, use the
Update method of the appropriate DataAdapter object. The Update method is overloaded, and
you can use it to submit a single row to the database or all edited rows in a DataTable. The
Update method uses the appropriate Command object to interact with the database.

Passing Parameters Through the DataAdapter

Let’s build a DataSet in our code to demonstrate the use of the DataAdapter objects. As with
all the data objects mentioned in this chapter, you must add a reference to the System.Data
namespace with the Imports statement.

704 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Start by declaring a DataSet variable:

Dim DS As New DataSet

To access the classes discussed in this section, you must import the System.Data namespace
in your module. Then create the various commands that will interact with the database:

Dim cmdSelectCustomers As String = "SELECT * FROM Customers " &
"WHERE Customers.Country=@country"

Dim cmdDeleteCustomer As String = "DELETE Customers WHERE CustomerID=@CustomerID"
Dim cmdEditCustomer As String = "UPDATE Customers " &

"SET CustomerID = @CustomerID, CompanyName = @CompanyName, " &
"ContactName = @ContactName, ContactTitle = @ContactTitle " &
"WHERE CustomerID = @CustID"

Dim cmdInsertCustomer As String = "INSERT Customers " &
" (CustomerID, CompanyName, ContactName, ContactTitle) " &
"VALUES(@CustomerID, @CompanyName, @ContactName, @ContactTitle) "

You can also create stored procedures for the four basic operations and use their names in
the place of the SQL statements. It’s actually a bit faster, and safer, to use stored procedures.
I’ve included only a few columns in the examples to keep the statements reasonably short.
The various commands use parameterized queries to interact with the database, and you must
add the appropriate parameters to each Command object. After the SQL statements are in
place, we can build the four Command properties of the DataAdapter object. Start by declaring a
DataAdapter object:

Dim DACustomers As New SqlDataAdapter()

Because all Command properties of the DataAdapter object will act on the same database, you
can create a Connection object and reuse it as needed:

Dim CN As New SqlConnection(ConnString)

The ConnString variable is a string with the proper connection string. Now we can create the
four Command properties of the DACustomers DataAdapter object.

Let’s start with the SelectCommand property of the DataAdapter object. The following state-
ments create a new Command object based on the preceding SELECT statement and then set up
a Parameter object for the @country parameter of the SELECT statement:

DACustomers.SelectCommand = New SqlClient.SqlCommand(cmdSelectCustomers)
DACustomers.SelectCommand.Connection = CN
Dim param As New SqlParameter
param.ParameterName = "@Country"
param.SqlDbType = SqlDbType.VarChar
param.Size = 15
param.Direction = ParameterDirection.Input
param.IsNullable = False
param.Value = "Germany"
DACustomers.SelectCommand.Parameters.Add(param)

STORING DATA IN DATASETS 705

This is the easier, if rather verbose, method of specifying a Parameter object. You are familiar
with the Parameter object properties and already know how to configure and add parameters
to a Command object via a single statement. As a reminder, an overloaded form of the Add
method allows you to configure and attach a Parameter object to a Command object Parameters
collection with a single, if lengthy, statement:

DA.SelectCommand.Parameters.Add(
New System.Data.SqlClient.qlParameter(
paramName, paramType, paramSize, paramDirection,
paramNullable, paramPrecision, paramScale,
columnName, rowVersion, paramValue)

The paramPrecsion and paramScale arguments apply to numeric parameters, and you
can set them to 0 for string parameters. The paramNullable argument determines whether
the parameter can assume a Null value. The columnName argument is the name of the table
column to which the parameter will be matched. (You need this information for the INSERT
and UPDATE commands.) The rowVersion argument determines which version of the field in
the DataSet will be used — in other words, whether the DataAdapter will pass the current
version (DataRowVersion.Current) or the original version (DataRowVersion.Original)
of the field to the parameter object. The last argument, paramValue, is the parameter’s
value. You can specify a value as we did in the SelectCommand example, or you can set
this argument to Nothing and let the DataAdapter object assign the proper value to each
parameter. (You’ll see in a moment how this argument is used with the INSERT and UPDATE
commands.)

Finally, you can open the connection to the database and then call the DataAdapter’s Fill
method to populate a DataTable in the DataSet:

CN.Open
DACustomers.Fill(DS, "Customers")
CN.Close

The Fill method accepts as arguments a DataSet object and the name of the DataTable
it will populate. The DACustomers DataAdapter is associated with a single DataTable and
knows how to populate it, as well as how to submit the changes to the database. The
DataTable name is arbitrary and need not match the name of the database table where the
data originates. The four basic operations of the DataAdapter (which are none other than
the four basic data-access operations of a client application) are also known as CRUD
operations: Create/Retrieve/Update/Delete.

The CommandBuilder Class

Each DataAdapter object that you set up in your code is associated with a single SELECT query,
which may select data from one or multiple joined tables. The INSERT/UPDATE/DELETE queries
of the DataAdapter can submit data to a single table. So far, you’ve seen how to manually set
up each Command object in a DataAdapter object. There’s a simpler method to specify the
queries: You start with the SELECT statement, which selects data from a single table, and then
let a CommandBuilder object infer the other three statements from the SELECT statement. Let’s
see this technique in action.

706 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Declare a new SqlCommandBuilder object by passing the name of the adapter for which you
want to generate the statements:

Dim CustomersCB As SqlCommandBuilder =
New SqlCommandBuilder(DA)

This statement is all it takes to generate the InsertCommand, UpdateCommand, and
DeleteCommand objects of the DACustomers SqlDataAdapter object. When the compiler
runs into the previous statement, it will generate the appropriate Command objects and attach
them to the DACustomers SqlDataAdapter. Here are the SQL statements generated by the
CommandBuilder object for the Products table of the Northwind database:

UPDATE Command
UPDATE [Products] SET [ProductName] = @p1,

[CategoryID] = @p2, [UnitPrice] = @p3,
[UnitsInStock] = @p4, [UnitsOnOrder] = @p5

WHERE (([ProductID] = @p6))

INSERT Command
INSERT INTO [Products]

([ProductName], [CategoryID],
[UnitPrice], [UnitsInStock],
[UnitsOnOrder])
VALUES (@p1, @p2, @p3, @p4, @p5)

DELETE Command
DELETE FROM [Products] WHERE (([ProductID] = @p1))

These statements are based on the SELECT statement and are quite simple. You may notice
that the UPDATE statement simply overrides the current values in the Products table. The
CommandBuilder can generate a more elaborate statement that takes into consideration
concurrency. It can generate a statement that compares the values read into the DataSet to
the values stored in the database. If these values are different, which means that another
user has edited the same row since the row was read into the DataSet, it doesn’t perform the
update. To specify the type of UPDATE statement you want to create with the CommandBuilder
object, set its ConflictOption property, whose value is a member of the ConflictOption
enumeration: CompareAllSearchValues (compares the values of all columns specified in
the SELECT statement), CompareRowVersion (compares the original and current versions
of the row), and OverwriteChanges (simply overwrites the fields of the current row in the
database).

The OverwriteChanges option generates a simple statement that locates the row to be
updated with its ID and overwrites the current field values unconditionally. If you set the
ConflictOption property to CompareAllSearchValues, the CommandBuilder will generate
the following UPDATE statement:

UPDATE [Products]
SET [ProductName] = @p1, [CategoryID] = @p2,

[UnitPrice] = @p3, [UnitsInStock] = @p4,

STORING DATA IN DATASETS 707

[UnitsOnOrder] = @p5
WHERE (([ProductID] = @p6) AND ([ProductName] = @p7)

AND ((@p8 = 1 AND [CategoryID] IS NULL) OR
([CategoryID] = @p9)) AND
((@p10 = 1 AND [UnitPrice] IS NULL) OR
([UnitPrice] = @p11)) AND
((@p12 = 1 AND [UnitsInStock] IS NULL) OR
([UnitsInStock] = @p13)) AND
((@p14 = 1 AND [UnitsOnOrder] IS NULL) OR
([UnitsOnOrder] = @p15)))

This is a lengthy statement indeed. The row to be updated is identified by its ID, but the oper-
ation doesn’t take place if any of the other fields don’t match the value read into the DataSet.
This statement will fail to update the corresponding row in the Products table if it has already
been edited by another user.

The last member of the ConflictOption enumeration, the CompareRowVersion option,
works with tables that have a TimeStamp column, which is automatically set to the time of
the update. If the row has a time stamp that’s later than the value read when the DataSet was
populated, it means that the row has been updated already by another user and the UPDATE
statement will fail.

The SimpleDataSet sample project, which is discussed later in this chapter and demon-
strates the basic DataSet operations, generates the UPDATE/INSERT/DELETE statements for
the Categories and Products tables with the help of the CommandBuilder class and displays
them on the form when the application starts. Open the project to examine the code, and
change the setting of the ConflictOption property to see how it affects the autogenerated SQL
statements.

Accessing the DataSet’s Tables
The DataSet consists of one or more tables, which are represented by the DataTable class. Each
DataTable in the DataSet may correspond to a table in the database or a view. When you exe-
cute a query that retrieves fields from multiple tables, all selected columns will end up in a
single DataTable of the DataSet. You can select any DataTable in the DataSet by its index or
its name:

DS.Tables(0)
DS.Tables("Customers")

Each table contains columns, which you can access through the Columns collection. The
Columns collection consists of DataColumn objects, with one DataColumn object for each
column in the corresponding table. The Columns collection is the schema of the DataTable
object, and the DataColumn class exposes properties that describe a column. ColumnName is the
column’s name, DataType is the column’s type, MaxLength is the maximum size of text
columns, and so on. The AutoIncrement property is True for Identity columns, and the
AllowDBNull property determines whether the column allows Null values. In short, all the
properties you can set visually as you design a table are also available to your code through
the Columns collection of the DataTable object. You can use the DataColumn class’s properties
to find out the structure of the table or to create a new table. To add a table to a DataSet, you
can create a new DataTable object. Then create a DataColumn object for each column, set its

708 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

properties, and add the DataColumn objects to the DataTable Columns collection. Finally, add
the DataTable to the DataSet. The process is described in detail in the online documentation, so
I won’t repeat it here.

Working with Rows
As far as data are concerned, each DataTable consists of DataRow objects. All DataRow objects
of a DataTable have the same structure and can be accessed through an index, which is the
row’s order in the table. To access the rows of the Customers table, use an expression like
the following:

DS.Customers.Rows(iRow)

where iRow is an integer value from zero (the first row in the table) up to DS.Customers.Rows
.Count – 1 (the last row in the table). To access the individual fields of a DataRow object, use
the Item property. This property returns the value of a column in the current row by either its
index,

DS.Customers.Rows(0).Item(0)

or its name:

DS.Customers.Rows(0).Item("CustomerID")

To iterate through the rows of a DataSet, you can set up a For…Next loop like the following:

Dim iRow As Integer
For iRow = 0 To DSProducts1.Products.Rows.Count - 1

‘ process row: DSProducts.Products.Rows(iRow)
Next

Alternatively, you can use a For Each…Next loop to iterate through the rows of
the DataTable:

Dim product As DataRow
For Each product In DSProducts1.Products.Rows

‘ process prodRow row:
‘ product.Item("ProductName"),
‘ product.Item("UnitPrice"), and so on

Next

To edit a specific row, simply assign new values to its columns. To change the value of the
ContactName column of a specific row in a DataTable that holds the customers of the North-
wind database, use a statement like the following:

DS.Customers(3).Item("ContactName") = "new contact name"

STORING DATA IN DATASETS 709

The new values are usually entered by a user on the appropriate interface, and in your
code you’ll most likely assign a control’s property to a row’s column with statements like
the following:

If txtName.Text.Trim <> "" Then
DS.Customers(3).Item("ContactName") = txtName.Text

Else
DS.Customers(3).Item("ContactName") = DBNull.Value

End If

The code segment assumes that when the user doesn’t supply a value for a column, this col-
umn is set to null (if the column is nullable, of course, and no default value has been specified).
If the control contains a value, this value is assigned to the ContactName column of the fourth
row in the Customers DataTable of the DS DataSet.

Handling Null Values
An important (and quite often tricky) issue in coding data-driven applications is the handling
of Null values. Null values are special, in the sense that you can’t assign them to control prop-
erties or use them in other expressions. Every expression that involves Null values will throw a
runtime exception. The DataRow object provides the IsNull method, which returns True if the
column specified by its argument is a Null value:

If customerRow.IsNull("ContactName") Then
‘ handle Null value

Else
‘ process value

End If

In a typed DataSet, DataRow objects provide a separate method to determine whether a spe-
cific column has a Null value. If the customerRow DataRow belongs to a typed DataSet, you
can use the IsContactNameNull method instead:

If customerRow.IsContactNameNull Then
‘ handle Null value for the ContactName

Else
‘ process value: customerRow.ContactName

End If

If you need to map Null columns to specific values, you can do so with the ISNULL() func-
tion of T-SQL, as you retrieve the data from the database. In many applications, you want to
display an empty string or a zero value in place of a Null field. You can avoid all the compar-
isons in your code by retrieving the corresponding field with the ISNULL() function in your
SQL statement. Where the column name would appear in the SELECT statement, use an expres-
sion like the following:

ISNULL(customerBalance, 0.00)

710 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

If the customerBalance column is Null for a specific row, SQL Server will return the numeric
value zero. This value can be used in reports or other calculations in your code. Notice that the
customer’s balance shouldn’t be Null. A customer always has a balance, even if it’s zero. When
a product’s price is Null, it means that we don’t know the price of the product (and there-
fore can’t sell it). In this case, a Null value can’t be substituted with a zero value. You must
always carefully handle Null columns in your code, and how you’ll handle them depends on
the nature of the data they represent.

Adding and Deleting Rows
To add a new row to a DataTable, you must first create a DataRow object, set its column val-
ues, and then call the Add method of the Rows collection of the DataTable to which the new
row belongs, passing the new row as an argument. If the DS DataSet contains the Customers
DataTable, the following statements will add a new row for the Customers table:

Dim newRow As New DataRow = dataTable.NewRow
newRow.Item("CompanyName") = "new company name"
newRow.Item("CustomerName") = "new customer name"
newRow.Item("ContactName") = "new contact name"
DS.Customers.Rows.Add(newRow)

Notice that you need not set the CustomerID column. This column is defined as an Identity
column and is assigned a new value automatically by the DataSet. Of course, when the row
is submitted to the database, the ID assigned to the new customer by the DataSet may already
be taken. SQL Server will assign a new unique value to this column when it inserts it into
the table. It’s recommended that you set the AutoIncrementSeed property of an Identity
column to 0 and the AutoIncrement property to –1 so that new rows are assigned consecutive
negative IDs in the DataSet. Presumably, the corresponding columns in the database have a
positive Identity setting, so when these rows are submitted to the database, they’re assigned
the next Identity value automatically. If you’re designing a new database, use globally unique
identifiers (GUIDs) instead of Identity values. A GUID can be created at the client and is
unique: It can be generated at the client and will also be inserted in the table when the row is
committed. To create GUIDs, call the NewGuid method of the Guid class:

newRow.Item("CustomerID") = Guid.NewGuid

To delete a row, you can remove it from the Rows collection with the Remove or RemoveAt
method of the Rows collection, or you can call the Delete method of the DataRow object that
represents the row. The Remove method accepts a DataRow object as an argument and removes
it from the collection:

Dim customerRow As DS.CustomerRow
customerRow = DS.Customers.Rows(2)
DS.Customers.Remove(customerRow)

The RemoveAt method accepts as an argument the index of the row you want to delete in the
Rows collection. Finally, the Delete method is a method of the DataRow class, and you must
apply it to a DataRow object that represents the row to be deleted:

customerRow.Delete

STORING DATA IN DATASETS 711

Deleting versus Removing Rows

The Remove method removes a row from the DataSet as if it were never read when the
DataSet was filled. Deleted rows are not always removed from the DataSet, because
the DataSet maintains its state. If the row you’ve deleted exists in the underlying table
(in other words, if it’s a row that was read into the DataSet when you filled it), the row will
be marked as deleted but will not be removed from the DataSet. If it’s a row that was added
to the DataSet after it was read from the database, the deleted row is actually removed from
the Rows collection.

You can physically remove deleted rows from the DataSet by calling the DataSet’s
AcceptChanges method. However, after you’ve accepted the changes in the DataSet, you
can no longer submit any updates to the database. If you call the DataSet RejectChanges
method, the deleted rows will be restored in the DataSet.

Navigating Through a DataSet
The DataTables making up a DataSet may be related — they usually are. There are methods
that allow you to navigate from table to table following the relations between their rows. For
example, you can start with a row in the Customers DataTable, retrieve its child rows in the
Orders DataTable (the orders placed by the selected customer), and then drill down to the
details of each of the selected orders.

The relations of a DataSet are DataRelation objects and are stored in the Relations property
of the DataSet. Each relation is identified by a name, the two tables it relates to, and the
fields of the tables on which the relation is based. It’s possible to create relations in your
code, and the process is really quite simple. Let’s consider a DataSet that contains the Cate-
gories and Products tables. To establish a relation between the two tables, create two instances
of the DataTable object to reference the two tables:

Dim tblCategories As DataTable = DS.Categories
Dim tblProducts As DataTable = DS.Products

Then create two DataColumn objects to reference the columns on which the relation is based.
They’re the CategoryID columns of both tables:

Dim colCatCategoryID As DataColumn =
tblCategories.Columns("CategoryID")

Dim colProdCategoryID As DataColumn =
tblProducts.Columns("CategoryID")

And finally, create a new DataRelation object, and add it to the DataSet:

Dim DR As DataRelation
DR = New DataRelation("Categories2Products",

colCatCategoryID, colProdCategoryID)

Notice that you need to specify only the columns involved in the relation, and not the tables
to be related. The information about the tables is derived from the DataColumn objects. The
first argument of the DataRelation constructor is the relation’s name. If the relation involves

712 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

multiple columns, the second and third arguments of the constructor become arrays of Data-
Column objects.

To navigate through related tables, the DataRow object provides the GetChildRows
method, which returns the current row’s child rows as an array of DataRow objects, and
the GetParentRow/GetParentRows methods, which return the current row’s parent row(s).
GetParentRow returns a single DataRow object, and GetParentRows returns an array of
DataRow objects. Because a DataTable may be related to multiple DataTables, you must
also specify the name of the relation. Consider a DataSet with the Products, Categories, and
Suppliers tables. Each row of the Products table can have two parent rows, depending on
which relation you want to follow. To retrieve the product category, use a statement like
the following:

DS.Products(iRow).GetParentRow("CategoriesProducts")

The product supplier is given by the following expression:

DS.Products(iRow).GetParentRow("SuppliersProducts")

If you start with a category, you can find out the related products with the GetChildRows
method, which accepts as an argument the name of a Relation object:

DS.Categories(iRow).GetChildRows("CategoriesProducts")

To iterate through the products of a specific category (in other words, the rows of the Prod-
ucts table that belong to a category), set up a loop like the following:

Dim product As DataRow
For Each product In DS.Categories(iRow).

GetChildRows("CategoriesProducts")
’ process product
Next

Row States and Versions

Each row in the DataSet has a State property. This property indicates the row’s state, and
its value is a member of the DataRowState enumeration, whose members are described in
Table 16.2.

You can use the GetChanges method to find the rows that must be added to the under-
lying table in the database, the rows to be updated, and the rows to be removed from the
underlying table.

If you want to update all rows of a DataTable, call an overloaded form of the
DataAdapter Update method, which accepts as an argument a DataTable and submits
its rows to the database. The edited rows are submitted through the UpdateCommand
object of the appropriate DataAdapter, the new rows are submitted through the Insert-
Command object, and the deleted rows are submitted through the DeleteCommand object.

STORING DATA IN DATASETS 713

Instead of submitting the entire table, however, you can create a subset of a DataTable that con-
tains only the rows that have been edited, inserted, or deleted. The GetChanges method of the
DataTable object retrieves a subset of rows, depending on the argument you pass to it, and this
argument is a member of the DataRowState enumeration:

Dim DT As New DataTable =
Products1.Products.GetChanges(DataRowState.Deleted)

Table 16.2: DataSet state property members

Property Member Description

Added The row has been added to the DataTable, and the AcceptChanges method
has not been called.

Deleted The row was deleted from the DataTable, and the AcceptChanges method
has not been called.

Detached The row has been created with its constructor but has not yet been added to
a DataTable.

Modified The row has been edited, and the AcceptChanges method has not been
called.

Unchanged The row has not been edited or deleted since it was read from the database or
the AcceptChanges was last called. (In other words, the row’s fields are
identical to the values read from the database.)

This statement retrieves the rows of the Customers table that were deleted and stores them
in a new DataTable. The new DataTable has the same structure as the one from which the
rows were copied, and you can access its rows and their columns as you would access any
DataTable of a DataSet. You can even pass this DataTable as an argument to the appropriate
DataAdapter’s Update method. This form of the Update method allows you to submit selected
changes to the database.

In addition to a state, rows have a version. What makes the DataSet such a powerful tool
for disconnected applications is that it maintains not only data but also the changes in its
data. The Rows property of the DataTable object is usually called with the index of the desired
row, but it accepts a second argument, which determines the version of the row you want
to read:

DS.Tables(0).Rows(i, version)

This argument is a member of the DataRowVersion enumeration, whose values are described
in Table 16.3.

714 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Table 16.3: DataRowVersion enumeration members

Enumeration Member Description

Current Returns the row’s current values (the fields as they were edited
in the DataSet).

Default Returns the default values for the row. For added, edited, and
current rows, the default version is the same as the current version.
For deleted rows, the default versions are the same as the original
versions. If the row doesn’t belong to a DataTable, the default version
is the same as the proposed version.

Original Returns the row’s original values (the values read from the database).

Proposed Returns the row’s proposed value (the values assigned to a row that
doesn’t yet belong to a DataTable).

If you attempt to submit an edited row to the database and the operation fails, you can give
the user the option to edit the row’s current version or to restore the row’s original values. To
retrieve the original version of a row, use an expression like the following:

DS.Tables(0).Row(i, DataRowVersion.Original)

Although you can’t manipulate the version of a row directly, you can use the
AcceptChanges and RejectChanges methods to either accept the changes or reject them.
These two methods are exposed by the DataSet, DataTable, and DataRow classes. The dif-
ference is the scope: Applying RejectChanges to the DataSet restores all changes made to the
DataSet (not a very practical operation), whereas applying RejectChanges to a DataTable
object restores the changes made to the specific table rows; applying the same method to the
DataRow object restores the changes made to a single row.

The AcceptChanges method sets the original value of the affected row(s) to the proposed
value. Deleted rows are physically removed. The RejectChanges method removes the pro-
posed version of the affected row(s). You can call the RejectChanges method when the user
wants to get rid of all changes in the DataSet. Notice that after you call the AcceptChanges
method, you can no longer update the underlying tables in the database, because the DataSet
no longer knows which rows were edited, inserted, or deleted. Call the AcceptChanges method
only for DataSets you plan to persist on disk and not submit to the database.

Performing Update Operations
One of the most important topics in database programming is how to submit changes to the
database. There are basically two modes of operation: single updates and multiple updates.
A client application running on a local-area network along with the database server can (and
should) submit changes as soon as they occur. If the client application is not connected to the
database server at all times, changes may accumulate at the client and can be submitted in
batch mode when a connection to the server is available.

From a developer’s point of view, the difference between the two modes is how you handle
update errors. If you submit individual rows to the database and the update operation fails,

PERFORMING UPDATE OPERATIONS 715

you can display a warning and let the user edit the data again. You can write code to restore
the row to its original state, or not. In any case, it’s fairly easy to handle isolated errors. If the
application submits a few dozen rows to the database, several of these rows may fail to update
the underlying table, and you’ll have to handle the update errors from within your code. At the
very least, you must validate the data as best as you can at the client before submitting it to the
database. No matter how thoroughly you validate your data, however, you can’t be sure that
they will be inserted into the database successfully.

Another factor you should consider is the nature of the data you work with. Let’s consider
an application that maintains a database of books and an application that takes orders. The
book maintenance application handles publishers, authors, translators, and related data. If two
dozen users are entering and editing titles, they will all work with the same authors. If you
allow them to work in disconnected mode, the same author name may be entered several times,
because no user can see the changes made by any other user. This application should be con-
nected: Every time a user adds a new author, the table with the author names in the database
must be updated so that other users can see the new author. The same goes for publishers,
translators, topics, and so on. A disconnected application of this type should also include utili-
ties to consolidate multiple author and publisher names.

An order-taking application can safely work in a disconnected mode, because orders entered
by one user are not aware of and don’t interfere with the orders entered by another user. You
can install the client application on several salespersons’ notebooks so they can take orders on
the go and upload them after establishing a connection between the notebook and the database
server (which may even happen when the salespeople return to the company’s offices).

Updating the Database with the DataAdapter
The simplest method of submitting changes to the database is to use each DataAdapter’s
Update method. The DataTable object provides the members you need to retrieve the rows
that failed to update the database, as well as the messages returned by the database server,
and you’ll see how these members are used in this section. The Update method may not have
updated all the rows in the underlying tables. If a product was removed from the Products
table in the database in the meantime, the DataAdapter’s UpdateCommand will not be able
to submit the changes made to that specific product. A product with a negative value may
very well exist at the client, but the database will reject this row, because it violates one of
the constraints of the Products table. It’s also important to validate the data at the client to
minimize errors when you submit changes to the database.

If the database returned any errors during the update process, the HasErrors property
of the DataSet object will be set to True. You can retrieve the rows in error from each table
with the GetErrors method of the DataTable class. This method returns an array of DataRow
objects, and you can process them in any way you see fit. The code shown in Listing 16.8
iterates through the rows of the Categories table that are in error and prints the description of
the error in the Output window.

Listing 16.8: Retrieving and displaying the update errors

If Products1.HasErrors Then
If Products1.Categories.GetErrors.Length = 0 Then

Console.WriteLine("Errors in the Categories DataTable")
Else

716 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Dim RowsInError() As Products.CategoriesRow
RowsInError = Products1.Categories.GetErrors
Dim row As Products.CategoriesRow
Console.WriteLine("Errors in the Categories table")
For Each row In RowsInError

Console.WriteLine(vbTab & row.CategoryID & vbTab &
row.RowError)

Next
End If

Endif

The DataRow object exposes the RowError property, which is a description of the error
that prevented the update for the specific row. It’s possible that the same row has more than
a single error. To retrieve all columns in error, call the DataRow object’s GetColumnsInError
method, which returns an array of DataColumn objects that are the columns in error.

Handling Identity Columns
An issue that deserves special attention while coding data-driven applications is the handling
of Identity columns. Identity columns are used as primary keys, and each row is guaranteed
to have a unique Identity value because this value is assigned by the database the moment the
row is inserted into its table. The client application can’t generate unique values. When new
rows are added to a DataSet, they’re assigned Identity values, but these values are unique in
the context of the local DataSet. When a row is submitted to the database, any Identity column
will be assigned its final value by the database. The temporary Identity value assigned by the
DataSet is also used as a foreign key value by the related rows, and we must make sure that
every time an Identity value is changed, the change will propagate to the related tables.

Handling Identity values is an important topic, and here’s why: Consider an application
for entering orders or invoices. Each order has a header and a number of detail lines, which
are related to a header row with the OrderID column. This column is the primary key in the
Orders table and is the foreign key in the Order Details table. If the primary key of a header is
changed, the foreign keys of the related rows must change also.

The trick in handling Identity columns is to make sure that the values generated by the
DataSet will be replaced by the database. You do so by specifying that the Identity column’s
starting value is –1 and its autoincrement is –1. The first ID generated by the DataSet will
be –1, the second one will be –2, and so on. Negative Identity values will be rejected by
the database, because the AutoIncrement properties in the database schema are positive. By
submitting negative Identity values to SQL Server, you ensure that new, positive values will be
generated and used by SQL Server.

You must also make sure that the new values will replace the old ones in the related rows.
In other words, we want these values to propagate to all related rows. The DataSet allows you
to specify that changes in the primary key will propagate through the related rows with the
UpdateRule property of the Relation.ChildKeyConstraint property. Each relation exposes
the ChildKeyConstraint property, which determines how changes in the primary key of a
relation affect the child rows. This property is an object that exposes a few properties of its
own. The two properties we’re interested in are UpdateRule and DeleteRule (what happens
to the child rows when the parent row’s primary key is changed or when the primary key is
deleted). You can use one of the rules described in Table 16.4.

VB 2010 AT WORK: THE SIMPLEDATASET PROJECT 717

Table 16.4: ChildKeyConstraint property rules

Rule Description

Cascade Foreign keys in related rows change every time the primary key changes
value so that they’ll always remain related to their parent row.

None The foreign key in the related row(s) is not affected.

SetDefault The foreign key in the related row(s) is set to the DefaultValue property
for the same column.

SetNull The foreign key in the related rows is set to Null.

As you can see, setting the UpdateRule property to anything other than Cascade will break
the relation. If the database doesn’t enforce the relation, you may be able to break it. If the rela-
tion is enforced, however, UpdateRule must be set to Rule.Cascade, or the database will not
accept changes that violate its referential integrity.

If you set UpdateRule to None, you may be able to submit the order to the database. How-
ever, the detail rows may refer to a different order. This will happen when the ID of the header
is changed because the temporary value is already taken. The detail rows will be inserted with
the temporary key and added to the details of another order. Notice that no runtime exception
will be thrown, and the only way to catch this type of error is by examining the data inserted
into the database by your application. By using negative values at the DataSet, you make sure
that the ID of both the header and all detail rows will be rejected by the database and replaced
with valid values. It goes without saying that it’s always a good idea to read back the rows
you submit to the database and ‘‘refresh’’ the data at the client. In the case of the ordering
application, for example, you could read back the order before printing it so that any errors
will be caught as soon as they occur, instead of discovering later orders that do not match
their printouts.

VB 2010 at Work: The SimpleDataSet Project
Let’s put together the topics discussed so far to build an application that uses a DataSet to store
and edit data at the client. The sample application is called SimpleDataSet, and its interface is
shown in Figure 16.4.

Click the large Read Products and Related Tables button at the top to populate a DataSet
with the rows of the Products and Categories tables of the Northwind database. The application
displays the categories and the products in each category in a RichTextBox control. Instead of
displaying all the columns in a ListView control, I’ve chosen to display only a few columns
of the Products table to make sure that the application connects to the database and populates
the DataSet.

The Edit DataSet button edits a few rows of both tables. The code behind this button
changes the name and price of a couple of products in random, deletes a row, and adds a new
row. It actually sets the price of the edited products to a random value in the range from –10
to 40 (negative prices are invalid, and they will be rejected by the database). The DataSet keeps
track of the changes, and you can review them at any time by clicking the Show Edits button,
which displays the changes in the DataSet in a message box, like the one shown in Figure 16.5.

718 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

Figure 16.4

The SimpleDataSet
project populates a
DataSet at the client
with categories and
products.

Figure 16.5

Viewing the changes in
the client DataSet

You can undo the changes and reset the DataSet to its original state by clicking the Reject
Changes button, which calls the RejectChanges method of the DataSet class to reject the edits
in all tables. It removes the new rows, restores the deleted ones, and undoes the edits in the
modified rows.

VB 2010 AT WORK: THE SIMPLEDATASET PROJECT 719

The Save DataSet and Load DataSet buttons persist the DataSet at the client so that you can
reload it later without having to access the database. The code shown in Listing 16.9 calls the
WriteXml and ReadXml methods and uses a hard-coded filename. WriteXml and ReadXml save
the data only, and you can’t create a DataSet by calling the ReadXml method; this method will
populate an existing DataSet.

To actually create and load a DataSet, you must first specify its structure. Fortunately, the
DataSet exposes the WriteXmlSchema and ReadXmlSchema methods, which store and read
the schema of the DataSet. WriteXmlSchema saves the schema of the DataSet, so you can
regenerate an identical DataSet with the ReadXmlSchema method, which reads an existing
schema and structures the DataSet accordingly. The code behind the Save DataSet and Load
DataSet buttons first calls these two methods to take care of the DataSet’s schema and then
calls the WriteXml and ReadXml methods to save/load the data.

Listing 16.9: Saving and loading the DataSet

Private Sub bttnSave_Click(…) Handles bttnSave.Click
Try

DS.WriteXmlSchema("DataSetSchema.xml")
DS.WriteXml("DataSetData.xml", XmlWriteMode.DiffGram)

Catch ex As Exception
MsgBox("Failed to save DataSet" & vbCrLf & ex.Message)
Exit Sub

End Try
MsgBox("DataSet saved successfully")

End Sub

Private Sub bttnLoad_Click(…) Handles bttnLoad.Click
Try

DS.ReadXmlSchema("DataSetSchema.xml")
DS.ReadXml("DataSetData.xml", XmlReadMode.DiffGram)

Catch ex As Exception
MsgBox("Failed to load DataSet" & vbCrLf & ex.Message)
Exit Sub

End Try
ShowDataSet()

End Sub

The Submit Edits button, finally, submits the changes to the database. The code attempts to
submit all edited rows, but some of them may fail to update the database. The local DataSet
doesn’t enforce any check constraints, so when the application attempts to submit a product
row with a negative price to the database, the database will reject the update operation.
The DataSet rows that failed to update the underlying tables are shown in a message box
like the one shown in Figure 16.6. You can review the values of the rows that failed to
update the database and the description of the error returned by the database and edit them
further. The rows that failed to update the underlying table(s) in the database remain in
the DataSet. Of course, you can always call the RejectChanges method for each row that
failed to update the database to undo the changes of the invalid rows. As is, the application
doesn’t reject any changes on its own. If you click the Show Edits button after an update

720 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

operation, you will see the rows that failed to update the database, because they’re marked as
inserted/modified/deleted in the DataSet.

Figure 16.6

Viewing the rows that
failed to update the
database and the error
message returned by the
DBMS

Let’s start with the code that loads the DataSet. When the form is loaded, the code initializes
two DataAdapter objects, which load the rows of the Categories and Products tables. The
names of the two DataAdapters are DACategories and DAProducts. They’re initialized to
the CN connection object and a simple SELECT statement, as shown in Listing 16.10.

Listing 16.10: Setting up the DataAdapters for the Categories and Products tables

Private Sub Form1_Load(…) Handles MyBase.Load
Dim CN As New SqlClient.SqlConnection(

"data source=localhost;initial catalog=northwind; " &
"Integrated Security=True")

DACategories.SelectCommand = New SqlClient.SqlCommand(
"SELECT CategoryID, CategoryName, Description FROM Categories")

DACategories.SelectCommand.Connection = CN
Dim CategoriesCB As SqlCommandBuilder = New SqlCommandBuilder(DACategories)
CategoriesCB.ConflictOption = ConflictOption.OverwriteChanges
DAProducts.SelectCommand = New SqlClient.SqlCommand(

"SELECT ProductID, ProductName, " &
"CategoryID, UnitPrice, UnitsInStock, " &
"UnitsOnOrder FROM Products ")

DAProducts.SelectCommand.Connection = CN
DAProducts.ContinueUpdateOnError = True
Dim ProductsCB As SqlCommandBuilder = New SqlCommandBuilder(DAProducts)
ProductsCB.ConflictOption = ConflictOption.CompareAllSearchableValues

End Sub

VB 2010 AT WORK: THE SIMPLEDATASET PROJECT 721

I’ve specified the SELECT statements in the constructors of the two DataAdapter objects and
let the CommandBuilder objects generate the update statement. You can change the value of
the ConflictOption property to experiment with the different styles of update statements that
the CommandBuilder will generate. When the form is loaded, all the SQL statements generated
for the DataAdapters are shown in the RichTextBox control. (The corresponding statements are
not shown in the listing, but you can open the project in Visual Studio to examine the code.)

The Read Products and Related Tables button populates the DataSet and then displays the
categories and products in the RichTextBox control by calling the ShowDataSet() subroutine,
as shown in Listing 16.11.

Listing 16.11: Populating and displaying the DataSet

Private Sub bttnCreateDataSet_Click(…) Handles bttnCreateDataSet.Click
DS.Clear()
DACategories.Fill(DS, "Categories")
DAProducts.Fill(DS, "Products")
DS.Relations.Clear()
DS.Relations.Add(New Data.DataRelation("CategoriesProducts",

DS.Tables("Categories").Columns("CategoryID"),
DS.Tables("Products").Columns("CategoryID")))

ShowDataSet()
End Sub

Private Sub ShowDataSet()
RichTextBox1.Clear()
Dim category As DataRow
For Each category In DS.Tables("Categories").Rows

RichTextBox1.AppendText(
category.Item("CategoryName") & vbCrLf)

Dim product As DataRow
For Each product In category.GetChildRows("CategoriesProducts")

RichTextBox1.AppendText(
product.Item("ProductID") & vbTab &
product.Item("ProductName" & vbTab)

If product.IsNull("UnitPrice") Then
RichTextBox1.AppendText(" " & vbCrLf)

Else
RichTextBox1.AppendText(

Convert.ToDecimal(product.Item("UnitPrice"))
.ToString("#.00") & vbCrLf)

End If
Next

Next
End Sub

After calling the Fill method to populate the two DataTables, the code sets up a Data-
Relation object to link the products to their categories through the CategoryID column and
then displays the categories and the corresponding products under each category. Notice the

722 CHAPTER 16 DEVELOPING DATA-DRIVEN APPLICATIONS

statement that prints the products. Because the UnitPrice column may be Null, the code calls
the IsNull method of the product variable to find out whether the current product’s price is
Null. If so, it doesn’t attempt to call the product.Item("UnitPrice") expression, which would
result in a runtime exception, and prints three asterisks in its place.

The Edit DataSet button modifies a few rows in the DataSet. Here’s the statement that
changes the name of a product selected at random (it appends the string NEW to the product’s
name):

DS.Tables("Products").Rows(
RND.Next(1, 78)).Item("ProductName") &= " - NEW"

The same button randomly deletes a product, sets the price of another row to a random
value in the range from –10 to 40, and inserts a new row with a price in the same range.
If you click the Edit DataSet button a few times, you’ll very likely get a few invalid rows.
The Show Edits button retrieves the edited rows of both tables and displays them. It uses
the DataRowState property to discover the state of the row (whether it’s new, modified,
or deleted) and displays the row’s ID and a couple of additional columns. Notice that you
can retrieve the proposed and original versions of the edited rows (except for the deleted
rows, which have no proposed version) and display the row’s fields before and after
the editing on a more elaborate interface. Listing 16.12 shows the code behind the Show
Edits button.

Listing 16.12: Viewing the edited rows

Private Sub bttnShow_Click(…)Handles bttnShow.Click
Dim product As DataRow
Dim msg As String = ""
For Each product In DS.Tables("Products").Rows

If product.RowState = DataRowState.Added Then
msg &= "ADDED PRODUCT: " &

product.Item("ProductName") & vbTab &
product.Item("UnitPrice").ToString & vbCrLf

End If
If product.RowState = DataRowState.Modified Then

msg &= "MODIFIED PRODUCT: " &
product.Item("ProductName") & vbTab &
product.Item("UnitPrice").ToString & vbCrLf

End If
If product.RowState = DataRowState.Deleted Then

msg &= "DELETED PRODUCT: " &
product.Item("ProductName",
DataRowVersion.Original) & vbTab &
product.Item("UnitPrice",
DataRowVersion.Original).ToString & vbCrLf

End If
Next
If msg.Length > 0 Then

THE BOTTOM LINE 723

MsgBox(msg)
Else

MsgBox("There are no changes in the dataset")
End If

End Sub

I only show the statements that print the edited rows of the Products DataTable in the listing.
Notice that the code retrieves the proposed versions of the modified and added rows but the
original version of the deleted rows.

The Submit Edits button submits the changes to the two DataTables to the database by
calling the Update method of the DAProducts DataAdapter and then the Update method of
the DACategories DataAdapter. After that, it retrieves the rows in error with the GetErrors
method and displays the error message returned by the DBMS with statements similar to the
ones shown in Listing 16.12.

The Bottom Line

Create and populate DataSets. DataSets are data containers that reside at the client and are
populated with database data. The DataSet is made up of DataTables, which correspond to
database tables, and you can establish relationships between DataTables, just like relating
tables in the database. DataTables, in turn, consist of DataRow objects.

Master It How do you populate DataSets and then submit the changes made at the client
to the database?

Establish relations between tables in the DataSet. You can think of the DataSet as a small
database that resides at the client, because it consists of tables and the relationships between
them. The relations in a DataSet are DataRelation objects, which are stored in the Relations
property of the DataSet. Each relation is identified by a name, the two tables it relates, and the
fields of the tables on which the relation is based.

Master It How do you navigate through the related rows of two tables?

Submit changes in the DataSet to the database. The DataSet maintains not only data at the
client but their states and versions too. It knows which rows were added, deleted, or modified
(the DataRowState property), and it also knows the version of each row read from the database
and the current version (the DataRowVersion property).

Master It How will you submit the changes made to a disconnected DataSet
to the database?

Chapter 17

Using the Entity Data Model

In Chapter 16, ‘‘Developing Data-Driven Applications,’’ you learned how to use DataSets, how
to perform data binding, and how to use LINQ to SQL. As it happens, LINQ to SQL is not the
only object-relational technology Microsoft has to offer.

In this chapter, you’ll discover Microsoft’s latest data technology, the Entity Framework.
Released initially with Service Pack 1 of Microsoft .NET Framework 3.5, it is the 2010 version
of Visual Studio that ships with this data technology out of the box for the first time. While
LINQ to SQL is a somewhat lightweight, code-oriented data technology, the Entity Framework
is a comprehensive, model-driven data solution.

The Entity Framework represents a central piece of Microsoft’s long-term data access
strategy. With its emphasis on modeling and on the isolation of data and application layers, it
promises to deliver a powerful data platform capable of supporting the applications through a
complete application life cycle.

For a Visual Basic programmer, it brings working with the data under the familiar
object-oriented mantle and provides numerous productivity enhancements. You will be able
to construct ‘‘zero SQL code’’ data applications, leverage LINQ when working with data,
and change the underlying data store without any impact on your application. In a few short
words, using the Entity Framework to work with data is a whole different ballgame.

In this chapter, you’ll learn how to do the following:

◆ Employ deferred loading when querying the Entity Data Model

◆ Use entity inheritance features in the Entity Framework

◆ Create and query related entities

The Entity Framework: Raising the Data Abstraction Bar
In Chapter 15, ‘‘Programming with ADO.NET,’’ you saw traditional .NET Framework tech-
niques for working with data. In stream-based data access, you use a DataReader to read from
the data store (typically a relational database) and can use the Command object to modify the
data in the data store. Set-based data access encapsulates data operations through the DataSet
object, whose collection of DataTable objects closely mimics the structure of tables or views in
the database. A DataSet lets you work with data in disconnected mode, so you can load the

726 CHAPTER 17 USING THE ENTITY DATA MODEL

data from the database into the application, disconnect, work on the data, and finally connect
and submit modifications to the database in a single operation.

Both techniques provide a well-known way to work with data in your Visual Basic
application. The DataSet goes one step further than stream-based data access in providing
the programming abstraction for data access that hides many of the complexities of low-level
data access. As a result, you will have to write a lot less SQL code. Neither method, however,
provides a higher-level abstraction of the underlying database structure. This interdependence
between your application and the data layer is problematic for several reasons, as you will see
in the next section.

The Entity Framework brings another level of abstraction to the data layer. It lets you work
with a conceptual representation of data, also known as a conceptual schema, instead of work-
ing with the data directly. This schema is then projected to your application layer, where code
generation is used to create a .NET representation of your conceptual schema. Next, the Entity
Framework generates a relational (or logical) schema used to describe the data model in rela-
tional terms. Finally, mapping between the relational schema and .NET classes is generated.
Based on this data, the Entity Framework is capable of creating and populating .NET objects
with the data from a data store and persisting modifications made on the object data back to
the data store.

How Will You Benefit from the Entity Framework?
One famous programming aphorism states that ‘‘all problems in computing can be solved by
another level of indirection.’’ Although the Entity Framework introduces new level of indirec-
tion (and abstraction), you will see that this additional level is actually put to a good use. I’ll
show you the problems that the folks at Microsoft tried to tackle with the Entity Framework
and how they managed to resolve them.

Preserving the Expressiveness of the Data Model

If you have a lot of experience working with relational databases, especially with databases
that have been around for some time and have been through numerous modifications, you
must have been puzzled by the actual meaning of some elements in a database. Questions like
the following might ring a bell: What is this column used for? Why is this set of data dupli-
cated between tables? Why is this set of columns in a table empty in certain rows?’’

A good understanding of your customer’s needs and business is crucial for the success of
the application you will be developing. This understanding can be written down in the form
of requirements and together with the description of the business (or problem domain) will be
indispensable for the design of your application.

An important part of the design of many applications is the data structure that the system
will use. One of the most popular methods for designing the data is the entity-relationship
model (ERM). The ERM is a conceptual representation of data where the problem domain is
described in the form of entities and their relationships. In Visual Studio, this model is called
the Entity Data Model (EDM), and you will learn how to create the EDM in the next section.
Figure 17.1 shows the sample Entity Data Model diagram inside Visual Studio 2010.

Entities generally can be identified by the primary key and have some important character-
istics known as attributes. For example, a person entity might have a primary key in the form
of their Social Security number (SSN) and attributes First and Last Name. (Although an SSN
conceptually fits well in the role of a primary key and therefore I chose it for the primary key
in the Person table in the example Books and Authors project later in this chapter, in practice
its use is discouraged. See ‘‘Using a Social Security Number as a Primary Key’’ in the following
sidebar for more information.)

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 727

Figure 17.1

Entity Data Model dia-
gram in Visual Studio
2010’s EDM Designer

Using a Social Security Number as a Primary Key

Although a Social Security number might seem like the natural first choice for the primary
key in a table representing some kind of a ‘‘person’’ entity — a Customer, Client, Employee,
or User table, for example — its use in practice is actually strongly discouraged. Because of
privacy concerns, security threats like identity theft, and recent regulatory guidelines, SSNs
should be kept in a database only in encrypted form — or not kept at all. You should also
be aware that people can change their SSNs during their lifetime. As such, an SSN is not a
particularly good choice for a primary key.

If there is no good natural key, you can always resort to a surrogate, database-generated
key. An artificial key, however, does not resolve the issue of duplicate entries that a number
like an SSN seems to resolve. Namely, there is nothing to prevent one person’s data from
being inserted into the database twice. Inserting duplicate entities can present a serious data
consistency flaw, and as such it is best controlled on the database level.

If there is no natural key that can be used to control a duplicate entry, you can resort to
placing a UNIQUE constraint on a combination of person attributes. For example, it is highly
unlikely that you will find two persons with the same full name, date and place of birth, and
telephone number. If you do not have all of these attributes at your disposal, you might need
to relinquish the control of duplication to some other application layer or even to the user.

728 CHAPTER 17 USING THE ENTITY DATA MODEL

An entity can be in a relationship with another entity. During the analysis, you can often
hear this relationship expressed in the form of a simple sentence, such as ‘‘A person owns a
pet.’’ In such a sentence, nouns are entities, and verbs represent a relationship. In this case,
a person is related to a pet. An important characteristic of a relationship is cardinality, or the
numeric aspect of the relation between entities. In our example, a person can own many pets,
but a pet usually belongs to a single person, thus being a one-to-many relationship between the
person and pet entities.

The most popular method used to work with the ERM is an entity-relationship diagram.
Many tools have smart entity-relationship diagramming capabilities, including the ERwin Data
Modeler, Microsoft Visio, Toad Data Modeler, and Visual Studio. I will describe the Visual Stu-
dio entity-relationship capabilities in the ‘‘Creating a New Entity Data Model’’ section. These
tools are typically capable of transforming the conceptual to a physical model — generating
Data Definition Language (DDL) scripts that can be used to generate a physical database
structure.

When working with relational databases on an implementation level, you create tables
and columns, constraints, and primary and foreign keys to hold your data, and you create
indices to optimize data access and manipulation. Although these database concepts can be
related to a problem domain so that table roughly corresponds to entity, column corresponds
to attribute, and foreign key constraint corresponds to relationship, they are not as expressive
as the entity-relationship model. In addition, the physical design of a relational database is
governed by a different set of principles and needs. Databases are very good at preserving
data integrity, performing transactions, providing fast access to a data, and reducing data
redundancy. As a result, the relational database’s physical design is often refined through
a process of normalization and denormalization. This process is typically in the domain of
database administrators, who use their knowledge of database engines to optimize database
performance, often with little regard for the problem domain at hand.

It is during this process that the link between the problem domain (described in the form of
an Entity Data Model) and the physical database structure is watered down. Later in the appli-
cation life cycle, the Entity Data Model is often completely disregarded. As a result, database
structure becomes a cryptic artifact, difficult to relate to a problem domain. This often has an
adverse effect on application maintainability and evolution. When the link between the two is
weakened, small changes to the application can require a huge amount of implementation work
just to understand the inner workings of the database.

With the Entity Framework, Microsoft has tackled this problem by making the Entity Data
Model an integral part of your application. The Entity Data Model is to generate native .NET
classes used to access the data store. These classes are mapped to tables in the database. The
Entity Framework uses the Entity Data Model as a basis for .NET code and database structure
generation; this sets it apart from typical modeling tools. The model becomes integral part of
the project, driving the database and .NET code design.

A Richer Set of Modeling Constructs for Representing Data

To represent an entity in a relational database, you use a table construct. The table itself repre-
sents an entity type, while each row represents one specific instance of an entity. Columns are
used to represent entity attributes. When you define an attribute, you choose a data type for
it. To refine attribute definition, you can apply a constraint on an attribute, or you can make
the attribute a primary key, meaning that it will uniquely identify the entity. You can relate
different entities by defining foreign keys between two tables.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 729

Following this approach (I am sure you are already very familiar with it), you can easily rep-
resent customers and product categories in a simple CRM system. The system will store basic
customer data and information on a customer’s favorite product categories. You can define a
Customers table to represent the customers in your database. Important customer attributes are
the first and last names, and in order to save this information in the Customer table, you can
define FirstName and LastName columns whose data type is varchar with maximum length
of 50. You can use a Social Security number or a database-generated integer as a primary key.
For product categories, you can define a ProductCategories table with an Id column for the
primary key and a Name column as varchar with a maximum length of 20.

In simple scenarios like the one I just described, at first glance objects in relational data-
base will represent your entities fairly well. However, there are many situations where this
approach will fall short. Let’s examine a few such situations in our simple CRM system.

Complex Type for Complex Properties

You will want to keep each customer’s telephone number in the database. Keep one telephone
number per customer, but split that telephone number into country code, area code, and
local number columns. This way, you can easily add checks on the validity of the data
and perform some area code–related customer analysis. There are two ways to add telephone
information: You can add three new columns to the existing Customers table, or you can create
a new Telephones table for these three columns. The Telephones table can have a one-to-one
relation with the Customers table.

In the first scenario, in order to keep the meaning of the columns clear, you will have
to prefix the column names with Telephone, so you will have TelephoneCountryCode,
TelephoneAreaCode, and TelephoneNumber columns. Although keeping long column names is
not such a terrible burden, it is a good indicator that the attributes that these columns represent
in fact belong to another entity — Telephone.

Representing Telephone as a separate entity is achieved by placing the columns in separate
table called Telephones with the addition of a customer primary key column so that each
telephone is tied to a single customer. Now there is no need to prefix column names with the
word Telephone, since the purpose of the columns is clearly stated through a table name.
Note that there is no difference on the database level in representing a one-to-one relation or
a one-to-many relation. If you use a separate table for the Telephone entity, then the same
structure used for storing a single telephone number per customer can be used for storing
multiple telephone numbers for an individual customer.

Unfortunately, keeping two entities with a one-to-one relationship in separate tables in a
database will probably result in processing overhead: The database engine needs to join the
two tables and duplicate the Social Security number in order to join them. As such, in the eyes
of the database administrator, the Telephones table is a good candidate for merging with the
Customers table during the performance optimization process. If the merger happens, it is
even possible that the original column names are kept. You end up with a mysterious Number
column in the Customers table. Since the Number column no longer belongs to the Telephone
table, the purpose of the column is not easily understood from its name.

In the Entity Framework, you can use a complex type construct as an attribute of an entity.
In our example, you can declare a new Telephone complex type and add a Telephone attribute
(of type Telephone) to the Customer entity. Thanks to this feature of the Entity Framework, you
will be able to reference telephone number–related properties in your Visual Basic code in the
form of Customer.Telephone.AreaCode.

730 CHAPTER 17 USING THE ENTITY DATA MODEL

Many-to-Many as a Simple Relation Between Entities

I am sure that it comes as no surprise that you will need an additional table, called a join
table, to relate the customers and product categories. The CustomersProductCategories
relation table will have only two columns: SSN and ProductCategoriesId. To complete the
solution, two foreign keys are added. The first foreign key is established between the SSN
column in Customer and the SSN column in CustomersProductCategories. The second one is
between the Id column in ProductCategories and the ProductCategoriesId column in the
CustomersProductCategories table. What I have just described is a typical approach used to
represent a many-to-many relationship in a relational database. You can see the EDM entities
and database tables representing many-to-many relation between customers and product
categories in Figure 17.2.

Figure 17.2

Many-to-many relation-
ship table structure (left)
and Entity Data Model
representation (right)

As you can see, the additional table in this case is necessary to represent a relation between
two entities. Sometimes this relation can grow into a full-blown entity, such as when it needs to
be described with some attributes. For example, imagine you need to store an amount spent on
each category for each customer. Such a need would result in adding an AmountSpent column
to the CustomersProductCategories table and would warrant treating CustomersProductCate-
gories as an entity. However, in the scenario I just described, a relation between customers and
product categories is just a relation and should be represented as such. In relational databases,
you are left with no choice but to use the table to represent a many-to-many relation, even
though tables are generally used to represent full-blown entities.

In the Entity Framework, as long as you do not need to store any relation attributes, the
relation will be treated as such. You will see how the many-to-many relation is created in
the ‘‘Creating a New Entity Data Model’’ section later in this chapter.

Inheritance Applied to Data

As a Visual Basic programmer, you are quite familiar with the concept of inheritance. Inheri-
tance combined with polymorphism is a powerful mechanism for harnessing reuse in software.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 731

With the Entity Framework, a similar inheritance concept can be applied to entities in the
Entity Data Model. Since entities are mapped to generated .NET classes, the inheritance relation
between entities is harnessed in your application code.

Data Store Technology and Brand Independence

Standard ADO .NET classes are doing a good job of encapsulating access to different data
stores. If you are careful enough and you follow the ‘‘Program to an interface, not an
implementation’’ principle, you will significantly reduce the amount of the application code
you need to modify in case you need to change the data store used by your application.
The ‘‘Program to an abstraction’’ principle applied to ADO .NET means writing code using
top-level interfaces from the System.Data namespace, like in the following example:

Dim connection As System.Data.IDbConnection = CreateConnection(connectionString)
Dim command As System.Data.IDbCommand = connection.CreateCommand()

As long you do not reference any class from any concrete ADO .NET provider namespace
(like System.Data.SqlClient in the case of a Microsoft SQL Server provider), switching your
application to another data store can be as simple as changing the connection string — that
is, as long as you are able to write your SQL code in a dialect that all data stores are able to
understand. If you write command text along the same lines as the previous example, like this:

command.CommandText = "Select top 10 * from Customers"

you might find that your database does not support the TOP keyword. Although there are
different standards trying to regulate SQL, the truth is that there are many proprietary
extensions to the language. Writing portable SQL is difficult and often impractical.

With the Entity Framework, you have a number of query options. You can use Entity SQL
(eSQL), LINQ, or Query Builder methods. Whatever your choice, you are guaranteed that
the query will return the same result no matter the data store under scrutiny. Thanks to the
ADO.NET Entity Framework provider architecture, new data stores can be easily incorporated
and made available to .NET programmers. What’s more, there is no restriction on the under-
lying data store technology. Most will be relational databases, but as long as the appropriate
provider is available, other technologies such as object-oriented databases, databases based
on BigTable technology, Excel spreadsheets, and so on, will be available through the Entity
Framework. Now you know why I insisted on using the term data store instead of database so
far in this chapter.

The ‘‘Program to an Abstraction’’ Principle

‘‘Program to an abstraction, not an implementation’’ is a software design principle coined
by the authors of the seminal Design Patterns book (Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gama et al., Addison-Wesley Professional, 1995). When you
program to an interface, the client code does not depend on a particular implementation
of a library. The implementation can vary without affecting the client. This way, you can
achieve an important amount of flexibility in dependencies between different components
of an application. This principle becomes especially relevant in larger applications consisting of
many components.

732 CHAPTER 17 USING THE ENTITY DATA MODEL

In the previous code snippet, only interfaces from the System.Data namespace are refer-
enced. Code need not be changed no matter which concrete provider it works with. It will
work with Oracle, Microsoft SQL, OLE DB, or any other provider implementation that is
implementing interfaces from the System.Data namespace.

Isolating the Application from the Data Structural Changes

During the application lifetime, the data and programmatic layers are generally exposed to
different forces governing their evolution. The object-oriented layer accommodates evolution
by preserving modularity and providing extensibility, while the data layer is influenced by
forces such as referential integrity, normalization, and performance optimization.

As a database is exposed to more intensive use and the quantity of the stored data increases,
the database structure often has to be re-accommodated to respond to an increase in demand.
One such common scenario is table partitioning.

A table might be split so that rarely used columns containing less used but weighty pieces
of information are placed in a separate table. This type of data partitioning strategy is known
as vertical partitioning. By contrast, horizontal partitioning involves placing rows into different,
identically structured tables. It is often used as a form of archiving; historic data that cannot be
deleted but is rarely used is placed in a separate table.

The Entity Framework supports a number of mapping scenarios. It is capable of mapping a
single entity to multiple tables and can use any or all of the following forms:

◆ Horizontal or vertical partitioning

◆ Complex types that structure the data contained in a single table

◆ Entity type hierarchies

◆ Mapping views

◆ Stored procedures for database interaction

With all these mapping options at your disposal, many of the typical database modifications,
especially those that are the result of performance tuning, can be accommodated at the map-
ping layer. This way, even though the database structure changes, no changes need be applied
to your .NET code. The Entity Framework’s mapping capability can isolate your code from
structural changes in the database layer.

Entity Data Model: Model-First Approach
The fundamental concept in the Entity Framework is the Entity Data Model (EDM). The EDM
is an implementation of the entity-relationship model, and it defines entities and their relation-
ships. Entities and relationships define a conceptual model. In addition, the EDM contains a
logical model, known as the storage schema model, that defines the data store structure. Finally, a
section in the EDM defines the mapping between the conceptual and logical schemas.

In the first release of the Entity Framework (.NET 3.5 Service Pack 1), the only way to create
an EDM was to connect to an existing database and let Visual Studio create entities based
on the existing database structure. Although this approach can work for existing projects,
for a new project that is based on reverse engineering, it would result in a loss of important
information in the conceptual model.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 733

In Visual Studio 2010, you can start with a blank EDM. You use the EDM Designer to create
and modify the EDM. The EDM Designer is a visual modeling tool that displays the model in
the form of a entity-relationship diagram.

Using the EDM Designer

The EDM Designer is displayed by default when you add a new ADO .NET EDM to your
project or click an EDM file (.edmx extension) in Visual Studio. Figure 17.3 shows the EDM
Designer with the Northwind EDM open.

Figure 17.3

The EDM Designer in
Visual Studio 2010

The EDM diagram is displayed in the central window. You can access many options of the
EDM Designer through a context menu that appears if you right-click anywhere on the empty
surface of an EDM diagram.

You can add new items to the EDM diagram by dragging and dropping tools from the
Toolbox window. The Toolbox window is the window shown on the left side in Figure 17.3.
Once you select an item in the EDM diagram, you can change its properties in the Prop-
erties window, pictured on the right side in Figure 17.3 and positioned below the Model
Browser window.

You can see elements of the EDM grouped by type in the Model Browser window. If an
EDM is complex, then right-clicking a relationship or an entity in the Model Browser and
selecting Show In Designer from the context menu can be a much more practical option for
finding your way around the model.

Finally, at the bottom of the Figure 17.3 you can see a Mapping Details window. In this
window, you can define how entities and relations from your conceptual model are mapped to
tables in the logical model. Let’s start by creating a new project with a fresh EDM.

734 CHAPTER 17 USING THE ENTITY DATA MODEL

Creating a New Entity Data Model

You can add an EDM to a majority of project types supported by Visual Studio 2010. For this
exercise, you will start by creating a new Windows Forms project:

1. Open a new instance of Visual Studio 2010, and choose File � New Project. From the New
Project dialog box, choose Windows Forms Application, rename the project to MyEF-
Project, and then click OK.

2. Choose Project � Add New Item. When the Add New Item dialog box opens, click
the menu item Data on the Installed Templates menu. This will reduce the number of
options in the dialog box. The ADO.NET Entity Data Model item now should be visible
in the list of new items. Select the ADO.NET Entity Data Model item, and rename it to
BooksAndAuthors.edmx. Click Add.

3. When the Entity Data Model Wizard opens, choose Empty Model in response to the ‘‘What
should the model contain?’’ prompt. Click Finish, and save the project.

You have just created a new EDM. After you created a new EDM, Visual Studio displays the
EDM Designer with your BooksAndAuthors.edmx file open in the active window.

Connecting the EDM to a Database

You can create and model your entities in the EDM Designer on a conceptual level without
ever using it to connect to a real database. This way, however, your model will be no more
than a dead diagram. To breathe some life into your EDM, you need to connect it to a
database. Start by creating a new BooksAndAuthors database in SQL Server 2005 or newer.
Use the instructions that follow:

1. In your SQL Server instance, create a BooksAndAuthors database.

2. In your Visual Studio Server Explorer window, right-click the Data Connections item, and
click the Add Connection item on the context menu.

3. Add a new connection to the BooksAndAuthors database you just created.

4. Right-click the BooksAndAuthors.edmx item in the Model Browser window, and select
Model � Generate Database Script from the context menu.

5. In the Generate Database Script Wizard window, select the BooksAndAuthors connection
in the Connection combo box. Confirm that the Save Entity Connection Settings In App.
Config File As check box is selected. Click Next.

6. Click Finish.

7. Click Yes on any warning windows that appear.

Check the Solution Explorer. You should see that a new BooksAndAuthors.edmx.sql file
has been added to the MyEFProject. This SQL file contains a Data Definition Language (DDL)
script that can be used to create a database structure that can accommodate the BooksAnd-
Authors EDM.

Note that the EDM Designer only creates the DDL file; it does not execute it against the
database. Don’t execute it just yet. Let’s add some entities to our model first.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 735

Creating an Entity

You can now add your first entity to BooksAndAuthors EDM. In this exercise, you will
create an entity model for a publishing company. It will contain information on book titles
and authors. Start by creating a new Book entity:

1. Open the Toolbox, and drag an Entity item to the BooksAndAuthors.edmx designer surface.
You will see a new square figure called Entity1 appear on the EDM Designer surface.

2. Click the entity name, and rename it from Entity1 to Book.

3. Rename the Entity Set Name property in the Properties window to Books.

Notice that an important characteristic of an entity is that it can be uniquely identified. An
entity is generally identified by an attribute or a combination of attributes known as a primary
key. The EDM Designer uses the term property for attributes.

Creating a Primary Key

In the case of the Book entity, the EDM Designer automatically created an Id property and
marked it as a primary key. If you select the Id property in the EDM Designer, the Properties
window will display characteristics of the Id property of the Book entity. The important char-
acteristics of the Id property are Type and Entity Key. The Type = Int32 entry in the Properties
windows indicates that the data type of the Id property is Integer. The Entity Key = True entry
tells you that Id is a primary key.

Although you could use an artificial primary key, in the case of a Book entity, there is
another property that is a better candidate for the primary key. All book titles can be uniquely
identified by their ISBN numbers.

To use the ISBN for a primary key of Book entity, follow these steps.

1. In the Properties window, change the name of the Id property to ISBN.

2. Then, change the Type value of the ISBN property to String.

3. Finally, since ISBN numbers have a maximum length of 13 characters, set the Max Size
characteristic of the ISBN property to 13.

Creating a Scalar Property

The most important property of the Book entity is the title. The title is a simple string, so it can
be well represented as a scalar property of the Book entity. Let’s add a Title scalar property to
the Book entity.

1. On the EDM Designer surface, right-click the word Properties on the Book entity, and select
the Add item from the context menu.
The Add item expands to two subitems: Scalar Property and Complex Property.

2. Click Scalar Property.

3. Enter the word Title for the newly added property name.

4. In the Properties window, set the Max Length value of the Title property to 4000.
(According to WikiAnswers.com, the longest book title consists of 3,999 characters; it is too
long to be reproduced here!)

736 CHAPTER 17 USING THE ENTITY DATA MODEL

While you are at it, use the same process to add another scalar property called
PublishingDate to the Book entity. Select DateTime as the property type.

Yet another important property for a book is the page count. It is a good idea to preserve
this information, so add another scalar property named PageCount to the Book entity, and
select Int32 as the Type.

Entity Data Model Under the Hood

Most of the time, you will be interacting with the EDM through the EDM Designer. Never-
theless, you should have a basic understanding of the artifacts that comprise the EDM and its
structure. The EDM native format is XML, and it can also be viewed and edited manually, as
can any XML file. To see the Visual Studio–generated EDM XML, first refresh the model and
then open the EDM file in the Visual Studio XML Editor:

1. Refresh the EDM by regenerating the database DDL and by following the process described
in steps 4 to 7 in the ‘‘Connecting the EDM to a Database’’ section earlier in this chapter.

2. Close the EDM diagram.

3. In Solution Explorer, right-click the BooksAndAuthors.edmx file, and select Open With
from the context menu.

4. In the Open With dialog box, select the XML Editor, and click OK.

Listing 17.1 shows the content of the BooksAndAuthors.edmx file. Although the content
might look bewildering at first, it is actually not that complex; it is even easier to understand if
you ignore the XML namespace declaration. You can see that the content is divided into four
main sections:

◆ SSDL content

◆ CSDL content

◆ C-S mapping content

◆ EF Designer content

Listing 17.1: The BooksAndAuthors.edmxmodel XML content

<?xml version="1.0" encoding="utf-8"?>
<edmx:Edmx Version="2.0"
xmlns:edmx="http://schemas.microsoft.com/ado/2008/10/edmx">
<!-- EF Runtime content -->
<edmx:Runtime>

<!-- SSDL content -->
<edmx:StorageModels>
<Schema Namespace="BooksAndAuthors.Store" Alias="Self"
Provider="System.Data.SqlClient"
ProviderManifestToken="2008"
xmlns:store="http://schemas.microsoft.com
/ado/2007/12/edm/EntityStoreSchemaGenerator"
xmlns="http://schemas.microsoft.com/ado/2009/02/edm/ssdl">

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 737

<EntityContainer Name="BooksAndAuthorsStoreContainer">
<EntitySet Name="Books" EntityType="BooksAndAuthors.Store.Books"
store:Type="Tables" Schema="dbo" />

</EntityContainer>
<EntityType Name="Books">

<Key>
<PropertyRef Name="ISBN" />

</Key>
<Property Name="ISBN" Type="varchar" Nullable="false" MaxLength="13" />
<Property Name="Title" Type="nvarchar" Nullable="false" MaxLength="4000" />
<Property Name="PublishingDate" Type="datetime" Nullable="false" />
<Property Name="PageCount" Type="int" Nullable="false" />

</EntityType>
</Schema></edmx:StorageModels>

<!-- CSDL content -->
<edmx:ConceptualModels>

<Schema xmlns="http://schemas.microsoft.com/ado/2008/09/edm"
xmlns:store="http://schemas.microsoft.com
/ado/2007/12/edm/EntityStoreSchemaGenerator"
Namespace="BooksAndAuthors" Alias="Self">
<EntityContainer Name="BooksAndAuthorsContainer" >

<EntitySet Name="Books"
EntityType="BooksAndAuthors.Book" />

</EntityContainer>
<EntityType Name="Book">

<Key>
<PropertyRef Name="ISBN" /></Key>

<Property Type="String" Name="ISBN" Nullable="false"
MaxLength="13" Unicode="false" FixedLength="false" />

<Property Type="String" Name="Title"
Nullable="false" MaxLength="4000" />

<Property Type="DateTime" Name="PublishingDate"
Nullable="false" Precision="29" />

<Property Type="Int32" Name="PageCount"
Nullable="false" /></EntityType></Schema>

</edmx:ConceptualModels>
<!-- C-S mapping content -->
<edmx:Mappings>
<Mapping Space="C-S" xmlns="http://schemas.microsoft.com

/ado/2008/09/mapping/cs">
<EntityContainerMapping StorageEntityContainer="BooksAndAuthorsStoreContainer"
CdmEntityContainer="BooksAndAuthorsContainer">
<EntitySetMapping Name="Books">

<EntityTypeMapping TypeName="IsTypeOf(BooksAndAuthors.Book)">
<MappingFragment StoreEntitySet="Books">

<ScalarProperty Name="ISBN" ColumnName="ISBN" />
<ScalarProperty Name="Title" ColumnName="Title" />
<ScalarProperty Name="PublishingDate" ColumnName="PublishingDate" />

738 CHAPTER 17 USING THE ENTITY DATA MODEL

<ScalarProperty Name="PageCount" ColumnName="PageCount" />
</MappingFragment>

</EntityTypeMapping>
</EntitySetMapping>

</EntityContainerMapping>
</Mapping></edmx:Mappings>

</edmx:Runtime>
<!-- EF Designer content (DO NOT EDIT MANUALLY BELOW HERE) -->
<edmx:Designer xmlns="http://schemas.microsoft.com/ado/2008/10/edmx">

<edmx:Connection>
<DesignerInfoPropertySet>
<DesignerProperty Name="MetadataArtifactProcessing"
Value="EmbedInOutputAssembly" />

</DesignerInfoPropertySet>
</edmx:Connection>
<edmx:Options>

<DesignerInfoPropertySet>
<DesignerProperty Name="ValidateOnBuild" Value="true" />

</DesignerInfoPropertySet>
</edmx:Options>
<!-- Diagram content (shape and connector positions) -->
<edmx:Diagrams>

<Diagram Name="BooksAndAuthors" >
<EntityTypeShape EntityType="BooksAndAuthors.Book"

Width="1.5" PointX="3.375" PointY="2"
Height="1.592306315104167" />

</Diagram>
</edmx:Diagrams>

</edmx:Designer>
</edmx:Edmx>

So far, the file contains information on a single entity. As we continue working on the
model, it will grow and become more complex. Fortunately, you can edit most of the model
details through the EDM Designer and rarely need to edit the file manually.

The Conceptual Model: The CSDL Content

CSDL stands for Conceptual Schema Definition Language. This section contains information on
the conceptual data model and corresponds directly to the content of the EDM diagram. This
schema is the basis for the object model that is generated by Visual Studio as a .NET projection
of a conceptual model.

The important elements of the CSDL schema are EntityType with Key and Property nodes.
At this point you have a single Book entity in the model, and that entity has several proper-
ties, as you can see in Listing 17.1. The Key node references the ISBN property. Each Property
node contains information, including property name, type, and nullability. This section also
contains the information on the EntitySet, which is used to represent a set of entities. In this
case, you’ll find the Books EntitySet, as you defined it earlier in step 3 of the ‘‘Creating an
Entity’’ section.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 739

The Logical Model: The SSDL Content

This section is written in the Store Schema Definition Language (SSDL) and is a description of
database structure that will be used to persist the data for the application build on the Entity
Framework.

The structure of the SSDL section is quite similar to the CSDL section; it describes entities
and associations. This section is used to generate DDL code and defines a store projection of
the conceptual model. Entities and associations in the SSDL section define tables and columns
in the storage model.

The Mapping Specification: C-S Mapping Content

The mapping specification is defined in the Mapping Specification Language (MSL). This is the
place where the two worlds — .NET objects and the storage schema — meet. You can see how
each entity maps to a table in the database and each property maps to a column.

Take a look the EntityTypeMapping tag inside the BooksAndAuthors.edmx file provided in
Listing 17.1. Notice that the TypeName attribute has the value IsTypeOf(BooksAndAuthors.Book).
IsTypeOf is just a way of saying that the type for this entity is Book (or any other class that
inherits the Book type).

The MappingFragment inside the EntityTypeMapping defines the table to which the Book
entity will be mapped via the StoreEntitySet attribute. In this case, the StoreEntitySet has
the value Books, as you defined when you created the Book entity via the EntitySet property.

Finally, inside the MappingFragment you can see how different properties are mapped
to columns in the table. For example, the ISBN property is mapped to a ISBN column:
<ScalarProperty Name="ISBN" ColumnName="ISBN" />.

Data as Objects in the Entity Framework

The typical way to interact with the Entity Framework is through Object Services. Object
Services is the component in the Entity Framework in charge of providing the .NET view of the
data. For example, you will access the entity Book as a class Book in your .NET code. The code
for the Book class is generated by the Entity Framework and is already available in the project.
As with any other objects in .NET, you will be able to use LINQ to query these objects. Take a
look at Listing 17.2; it shows how you can use LINQ to find a specific book based on ISBN.

Listing 17.2: Using the Entity Framework–generated code to access the EDM

Dim context As New BooksAndAuthorsContainer
Dim books = context.Books
Dim myBook As Book = From book In books
Where (book.ISBN = "455454857")

Select book

To provide a native .NET view of the data in the EDM, the Entity Framework will generate
Visual Basic code for partial classes that represent entities in your EDM. To take a look at this
tool-generated code, follow these steps:

1. Click the Show All Files icon in your Solution Explorer.

740 CHAPTER 17 USING THE ENTITY DATA MODEL

2. Expand the BooksAnAuthors.edmx item in Solution Explorer.

3. Click the BooksAndAuthors.Designer.vb file.

For brevity’s sake, Listing 17.3 provides a portion of the code contained in the
BooksAndAuthors.Designer.vb file. The listing will make much more sense if you keep
in mind the way that classes are used; think about what you learned as you reviewed the code
in Listing 17.2.

Listing 17.3: Entity Framework–generated .NET code

Public Partial Class BooksAndAuthorsContainer
Inherits ObjectContext
‘...
Public ReadOnly Property Books() As ObjectSet(Of Book)

Get
If (_Books Is Nothing) Then

_Books = MyBase.CreateObjectSet(Of Book)("Books")
End If
Return _Books

End Get
End Property

Private _Books As ObjectSet(Of Book)
‘...

End Class

<EdmEntityTypeAttribute(NamespaceName:="BooksAndAuthors", Name:="Book")>
<Serializable()>
<DataContractAttribute(IsReference:=True)>
Public Partial Class Book

Inherits EntityObject
#Region "Factory Method"

‘" <summary>
‘" Create a new Book object.
‘" </summary>
Public Shared Function CreateBook(iSBN As Global.System.String,

title As Global.System.String,
publishingDate As Global.System.DateTime,
pageCount As Global.System.Int32) As Book

Dim book as Book = New Book
book.ISBN = iSBN

book.Title = title

book.PublishingDate = publishingDate

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 741

book.PageCount = pageCount

Return book
End Function

<EdmScalarPropertyAttribute(EntityKeyProperty:=true, IsNullable:=false)>
<DataMemberAttribute()>
Public Property ISBN() As Global.System.String

Get
Return _ISBN

End Get
Set

If (ISBN <> value) Then
OnISBNChanging(value)
ReportPropertyChanging("ISBN")
_ISBN = StructuralObject.SetValidValue(value, False)
ReportPropertyChanged("ISBN")
OnISBNChanged()

End If
End Set

End Property

Private _ISBN as Global.System.String
Private Partial Sub OnISBNChanging(value As Global.System.String)
End Sub

Private Partial Sub OnISBNChanged()
End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=false, IsNullable:=false)>
<DataMemberAttribute()>
Public Property Title() As Global.System.String

Get
Return _Title

End Get
Set

OnTitleChanging(value)
ReportPropertyChanging("Title")
_Title = StructuralObject.SetValidValue(value, False)
ReportPropertyChanged("Title")
OnTitleChanged()

End Set
End Property

Private _Title as Global.System.String
Private Partial Sub OnTitleChanging(value As Global.System.String)
End Sub

742 CHAPTER 17 USING THE ENTITY DATA MODEL

Private Partial Sub OnTitleChanged()
End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=false, IsNullable:=false)>
<DataMemberAttribute()>
Public Property PublishingDate() As Global.System.DateTime

Get
Return _PublishingDate

End Get
Set

OnPublishingDateChanging(value)
ReportPropertyChanging("PublishingDate")
_PublishingDate = StructuralObject.SetValidValue(value)
ReportPropertyChanged("PublishingDate")
OnPublishingDateChanged()

End Set
End Property

Private _PublishingDate as Global.System.DateTime
Private Partial Sub OnPublishingDateChanging(value As Global.System.DateTime)
End Sub

Private Partial Sub OnPublishingDateChanged()
End Sub

<EdmScalarPropertyAttribute(EntityKeyProperty:=false, IsNullable:=false)>
<DataMemberAttribute()>
Public Property PageCount() As Global.System.Int32

Get
Return _PageCount

End Get
Set

OnPageCountChanging(value)
ReportPropertyChanging("PageCount")
_PageCount = StructuralObject.SetValidValue(value)
ReportPropertyChanged("PageCount")
OnPageCountChanged()

End Set
End Property

Private _PageCount as Global.System.Int32
Private Partial Sub OnPageCountChanging(value As Global.System.Int32)
End Sub

Private Partial Sub OnPageCountChanged()
End Sub

End Class

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 743

The BooksAndAuthorsContainer class is the entry point for accessing Object Services in our
example. This class inherits the ObjectContext class from the System.Data.Objects namespace
and has a property called Books. The Books property represents a set of Book objects.

The Book class represents a Book entity. The Book class has to inherit the EntityObject class
from the System.Data.Objects namespace. The class has a number of properties, and each
property of the class corresponds to a property of the Book entity in Books and Authors EDM.
You will see how the classes are used in detail in the ‘‘Putting the EDM to Work’’ section later
in this chapter.

Adding an Inheritance Relationship Between Entities

Now that you are finished creating the Book entity, as you might expect, the Author entity is
the next to be created. It will be important to collect and store author data, such as name, con-
tact information, and so forth, in this entity. Before you create the Author entity, however, a bit
of analysis is in order.

As it happens, the publishing company in question also works with foreign language titles.
In the case of a foreign language title, it is important to collect and store information about the
translator: name, contact information, languages translated, and the like. Surely, this warrants
another entity in our system — a Translator entity.

If you compare the Author and the Translator entities, you will see that they have a lot of
common properties. If we were to add the Translator and Author entities to the EDM now,
we would have to duplicate these properties on each. There must be some more efficient way
to deal with replicated properties.

The solution is the same as it would be in a situation when you design classes where there
‘‘is a kind of’’ relationship between the entities in Visual Basic. A common parent entity can be
extracted; that parent entity will contain the common properties. Let’s call this entity Person.
Once the Person entity exists, you can add Author and Translator entities and make them
inherit the Person entity. Start by adding a new Person entity to the EDM:

1. Add new entity to the EDM, and name it Person.

2. Rename the Id property to SSN. Change Type to String, set Max Length to 9, and set the
Fixed Length value to True.

3. Add a FirstName scalar property (Type: String, Max Length: 50).

4. Add a LastName scalar property (Type: String, Max Length: 50).

5. Add a new entity to the EDM, and name it Author.

6. Select the Inheritance arrow in the Toolbox, and connect Author and Person, going from
Author to Person.

7. Delete the Id property in the Author entity.

8. Add another new entity to the EDM, and name it Translator.

9. Select the Inheritance arrow in the Toolbox, and connect Translator and Person, going
from Translator to Person.

10. Delete the Id property in the Translator entity.

You have just created an inheritance hierarchy with one base entity, Person, and two child
entities, Translator and Author. Let’s add a few more details to our model.

744 CHAPTER 17 USING THE ENTITY DATA MODEL

Since you will never instantiate a Person entity in your code because you will always work
with a more specific type, a Translator or an Author, you can mark the Person entity as
abstract. In the Properties window, select the Person entity, and set the Abstract property
to True.

There are a few more bits of information you need to store for each child type. For authors,
the publishing company would like to store the date that the author first signed with the
company. To accommodate this, add a new property called Signed (Type: DateTime) to the
Author entity. For translators, you will also want to keep the information on languages that
they translate from. Since this requires defining another related table, you can create this table
after you see how many-to-many associations are defined in the ‘‘Adding a Many-to-Many
Association’’ section later in this chapter.

The inheritance feature you have just used is one of the Entity Framework’s most powerful
capabilities. It solves the problem of mapping the inheritance relationship in an object-oriented
sense to tables in a relational database and lets you leverage the inheritance and polymorphism
capacities of .NET code without any friction with the data store.

Entity Framework Inheritance Mapping

Mapping a group of classes from an object-oriented paradigm to tables in a relational database
can be accomplished intuitively, if the classes have some kind of an association relationship.
For example, a class might have a property whose type is some other class, like a Car class that
has a Wheels property whose type is a list of wheels. In such a case, each class maps to a table
in a relational database, and the association between classes maps to a one-to-many relationship
in the database that is enforced by a foreign key constraint.

The situation becomes much more complex if there is an inheritance relationship between
classes. In our Books and Authors model, both the Author entity and the Translator entity
inherit the Person entity. Such a relationship is not easily represented in a relational store.

The Entity Framework supports several strategies for mapping an inheritance hierarchy to a
relational store. I will describe the two most commonly used:

Table-per-type inheritance Under the table-per-type inheritance strategy, each type has its
own table. The parent table (in our example, the Person table) contains all the common prop-
erties for all the entities in the hierarchy. The tables representing the child entities (Author
and Translator in our example) contain only those properties that are unique to a particular
entity. To be able to relate parent and child tables, the primary key column (named SSN in our
example) must exist in all the tables in the hierarchy. Additionally, a foreign key constraint can
be established between the parent and child tables. Foreign keys guarantee that a child table
(Author or Translator in our example) can be inserted only if there is a related record in the
parent (Person) table. To be able to retrieve a single Author from the data store, the query has
to join the Person and Author columns using the primary key.

In other words, if the row with value 569125274 of the SSN column exists in both the Person
and the Author tables, then the person is an author. If such a row exists in both the Person and
the Translator tables, then the person is a translator. And since we marked the Person entity as
Abstract, if the row with a value of 569125274 in the SSN column exists in the Person table,
then there has to be exactly one row in either the Author or Translator table with the same
value in the SSN column.

If the child tables (the Author and Translator tables in our example) contain a lot of columns,
then this scenario represents a more efficient storage mechanism. Queries on a table-per-type
structure, on the other hand, can be slower than on those in a table-per-hierarchy structure.

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 745

In each query, at least two tables have to be joined. Let’s compare this to a table-per-hierarchy
mapping scenario.

Table-per-hierarchy inheritance In the table-per-hierarchy inheritance mapping scenario,
all entities in the hierarchy are mapped to a single table. A special discriminatory column
is used to discern which entity each individual row represents. In the mapping section
of an EntityTypeMapping element, this row is represented by a Condition element. For
example, inside the EntityTypeMapping for an Author entity, this element could be written as
<Condition ColumnName="PersonCategory" Value="0" />. This means that each row with a
value of 0 in the PersonCategory column is an instance of an Author entity.

In our example, this means that both the Translator and Author entities are mapped to the
Person table. In such scenario, the Person table has to contain both Author and Translator
entity-specific columns. As a consequence and since each row in a table represents either an
author or a translator, there will always be a number of empty cells in each row. In the case
where a row represents an author, the translator-specific data will be empty, and vice versa.
This is the weakness of this scenario; it is not the most efficient storage model. However, in
cases where there are a small number of specific columns, the storage inefficiency is more than
compensated for by query efficiency. Since there are no tables to be joined, queries tend to exe-
cute much faster.

At this point, you might be curious to see the scenario chosen to represent inheritance in our
model by default and the exact database structure generated by the EDM Designer. You can
regenerate the database script from the model using the process described in steps 4 through
7 in the ‘‘Connecting the EDM to a Database’’ section earlier in this chapter. Once that is com-
plete, open the BooksAndAuthors.edmx.sql file. You should see a file that contains the section
of code shown in Listing 17.4.

Listing 17.4: DDL code for tables in the inheritance hierarchy

-- Creating table ‘Persons’
CREATE TABLE [dbo].[Persons] (

[SSN] char(9) NOT NULL,
[FirstName] nvarchar(50) NOT NULL,
[LastName] nvarchar(50) NOT NULL

);
GO
-- Creating table ‘Persons_Translator’
CREATE TABLE [dbo].[Persons_Translator] (

[SSN] char(9) NOT NULL
);
GO
-- Creating table ‘Persons_Author’
CREATE TABLE [dbo].[Persons_Author] (

[Signed] datetime NOT NULL,
[SSN] char(9) NOT NULL

);
GO

746 CHAPTER 17 USING THE ENTITY DATA MODEL

-- --
-- Creating all Primary Key Constraints
-- --

-- Creating primary key on [SSN] in table ‘Persons’
ALTER TABLE [dbo].[Persons] WITH NOCHECK
ADD CONSTRAINT [PK_Persons]

PRIMARY KEY CLUSTERED ([SSN] ASC)
ON [PRIMARY]

GO
-- Creating primary key on [SSN] in table ‘Persons_Translator’
ALTER TABLE [dbo].[Persons_Translator] WITH NOCHECK
ADD CONSTRAINT [PK_Persons_Translator]

PRIMARY KEY CLUSTERED ([SSN] ASC)
ON [PRIMARY]

GO
-- Creating primary key on [SSN] in table ‘Persons_Author’
ALTER TABLE [dbo].[Persons_Author] WITH NOCHECK
ADD CONSTRAINT [PK_Persons_Author]

PRIMARY KEY CLUSTERED ([SSN] ASC)
ON [PRIMARY]

GO

-- --
-- Creating all Foreign Key Constraints
-- --

-- Creating foreign key on [SSN] in table ‘Persons_Translator’
ALTER TABLE [dbo].[Persons_Translator] WITH NOCHECK
ADD CONSTRAINT [FK_Translator_inherits_Person]

FOREIGN KEY ([SSN])
REFERENCES [dbo].[Persons]

([SSN])
ON DELETE NO ACTION ON UPDATE NO ACTION

GO
-- Creating foreign key on [SSN] in table ‘Persons_Author’
ALTER TABLE [dbo].[Persons_Author] WITH NOCHECK
ADD CONSTRAINT [FK_Author_inherits_Person]

FOREIGN KEY ([SSN])
REFERENCES [dbo].[Persons]

([SSN])
ON DELETE NO ACTION ON UPDATE NO ACTION

GO

If you analyze the DDL code in Listing 17.4, you can see that separate tables for Author
and Translator were created. In our model, the strategy chosen to map inheritance in the
example is table-per-type. (In case you are wondering whether this model would be able to
accommodate those poor souls that work both as authors and translators, the answer is ‘‘yes!’’

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 747

There is nothing preventing the same SSN from existing in both the Persons_Author and
Persons_Translator tables.)

With this code, you have a hierarchy in place to represent authors and translators in the
database. You aren’t finished with these entities yet; there is still some personal data that the
system needs to keep as part of a complete record of the authors and translators. Let’s see how
you can use a complex property to structure some entity property information.

Adding a Complex Property to an Entity

One important piece of contact information for authors and translators is a telephone number.
The publishing house needs to maintain a record of one telephone number for each author and
translator. This requirement can be easily solved by adding another property to the Person
entity. By adding a Telephone property to the Person entity, both the Author and Translator
entities will inherit it.

Instead of simply adding a string property to a Person entity, you can provide additional
integrity and meaning to data if you structure the telephone number information. Typically, a
telephone number consists of a country code, an area code, and a local number. Sometimes, you
also need additional information, such as an extension number or daytime/evening qualifier.

In the EDM Designer, you can use a complex property to structure the information you do
not want to model as a separate entity. You can add a scalar property to the Person entity by
following these steps:

1. Right-click the word Properties on the Person entity on the EDM Designer surface, and
select the Add item in the context menu.
The Add item is expanded into two subitems: Scalar Property and Complex Property.

2. Click the Complex Property subitem.
A new property named Complex Property is added to Person.

3. Select and then rename the property to Phone.

4. Click an empty area on the EDM Designer surface, and select the Add � Complex Type
menu item.
A new complex type named ComplexType1 is added to the model.

5. Select ComplexType1 in the Model Browser window, and rename it to PhoneNumber in the
Properties window.

6. Right-click PhoneNumber in the Model Browser, and select Add � Scalar Property � String.

7. Rename the property to CountryCode in the Properties window, and assign Max Length a
value of 3 and Default Value a value of 1.

8. Repeat steps 6 and 7, adding an Area Code property (type String with a maximum length
of 3) and a Number property (type String with a maximum length of 15 — this should be
enough for any out-of-ordinary international number). Finally, add an Extension for con-
sistency property (type String with maximum length of 20).

9. Go back to the Person entity in the EDM Designer, and select the Phone property.

10. Click the combo Type in the Properties window. It should now contain a single value:
PhoneNumber. Select PhoneNumber as the type for the Phone property of the Person
entity.

Select the Person entity in the EDM Designer, and take a look at the Mapping Details win-
dow. You will see that properties of the Phone property are mapped to the same Persons table

748 CHAPTER 17 USING THE ENTITY DATA MODEL

as rest of the Person scalar properties. The only difference is the column name. The Phone_
prefix is used to mark them as belonging to the Phone complex type. This will suffice to
keep telephone numbers for authors and translators. Note that in the case where more than
one telephone number for each Author/Translator needs to be kept in a database, you can
model Telephone as a separate entity in a one-to-many relationship with Person, as described
in the next section.

Another important part of contact information is an address. The publisher often needs
to keep multiple addresses for authors and translators. The next section explains just how to
do that.

Adding a One-to-Many Association

Start by adding a new entity called Address to the Books and Authors EDM. As with telephone
numbers, you should bear in mind the international character of address information. Keep
the Id primary key added by default, and set the StoreGeneratedPatter property to Identity.
Now add the following scalar properties to the Address entity:

◆ FirstLine (Type String, Max Length 50)

◆ SecondLine (Type String, Max Length 50, Nullable True)

◆ City (Type String, Max Length 50)

◆ PostalCode (Type Sting, Max Length 20)

◆ State (Type Sting, Max Length 20)

◆ Country (Type Sting, Max Length 20)

Now perform the following steps:

1. Select the Association tool in the Toolbox window.

2. Connect the Person and Address entities; start dragging from the Person entity.

You will see the line connecting the Person and Address entities with 1, which is used to
signify one side in a one-to-many association on the side of Person, and an asterisk, which is
used to signify the many side in a one-to-many association on the side of Address.

Now, select the line in the EDM diagram, and take a look at Properties window. You will
see that the name of the association is PersonAddress. Since the association is one-to-many,
rename it to PersonAddresses so that the cardinality of association can be easily understood
from its name. You have just created a one-to-many association in your model.

Entities in a one-to-many association expose a stronger type of relationship. They often have
a dependant life cycle. For example, if you eliminate a person from the database, it makes no
sense to keep the addresses that belong to that person in the database. The Entity Framework
can take care of this issue for you. If you set the End1 OnDelete property to Cascade, the Entity
Framework will delete all addresses belonging to the deleted person automatically. Make sure
that the End1 OnDelete property of the PersonAddresses association is set to Cascade.

Adding a Many-to-Many Association

At this point, you have created the main entities in your model. You have modeled the Author,
Translator, and Book entities. But, a crucial piece of the puzzle is still missing. You must have
a means to connect authors and translators with their books. Typically, you expect to have a

THE ENTITY FRAMEWORK: RAISING THE DATA ABSTRACTION BAR 749

single author per book. However, it is not uncommon (especially for nonfiction titles) to have
several authors per book. And it is to be expected that an author will deliver more than one
title in his lifetime. There is a similar relationship between translators and titles.

You can say that the nature of the relation between books and authors and between books
and translators is many-to-many. Since the relation with books is common to both authors and
translators, the best way to represent it in our model without incurring repetition is to associate
the Person entity with the Book entity using a many-to-many association.

1. Select the Association tool in the Toolbox window.

2. Connect the Person and Book entities; drag from the Person entity to the Book entity.

3. Select the newly added association.

4. In the Properties window, make sure that End 1 Multiplicity has the value of * (Collection
of Person) and End 2 Multiplicity has the value of * (Collection of Book).

5. Pluralize the names of the navigation properties. Rename the End1 navigation property to
Books and the End2 navigation property to Persons.

The diagram in the EDM Designer should show the diamond and an asterisk on both sides
of the line connecting the Person and Book entities. Also, both the Person entity and the Book
entity should display some newly created navigation properties: Books for the Person entity
and Persons for the Book entity. Navigation properties are a special kind of properties in a
sense that they hold a reference to another entity or set of entities.

If you select the line connecting the Person and Book entities, you will see in the Mapping
Details window that it maps to a separate table called PersonBook.

Now that you have seen how to establish a many-to-many association between entities, you
can add a new entity called Language, with Id and Name scalar properties. Create a many-to-
many association between the Language and Translator entities. This way, you will be able to
store information on the languages that an individual translator works with, making translator
information much more useful to the publisher.

Generate the Database Structure

So far, you only used the EDM Designer to generate the DDL code. You haven’t actually exe-
cuted the DDL against the database. By following these steps, you can easily use Visual Studio
2010 to execute the DDL script.

1. Open BooksAndAuthors.edmx.sql in Visual Studio.

2. Make sure that the T-SQL Editor toolbar is visible. If it is not, right-click the toolbar area,
and make sure that T-SQL Editor is selected.

3. In the T-SQL Editor toolbox, select the BooksAndAuthors database in the Database combo.
(the BooksAndAuthors database was created in the ‘‘Connecting the EDM to a Database’’
earlier section.)

4. Click the Execute SQL button in T-SQL Editor toolbox.

At this point, it would be interesting to compare the structure of the EDM with the struc-
ture of the database generated for the model. You can take a look at the database structure in
Figure 17.4.

750 CHAPTER 17 USING THE ENTITY DATA MODEL

Figure 17.4

Books and Authors
database structure

Figure 17.5 shows the EDM.

Figure 17.5

Books and Authors EDM

PUTTING THE EDM TO WORK 751

Although there is a correspondence between the diagrams, there are some significant dif-
ferences. The EDM diagram shows the many-to-many association as a line between the two
tables, while on the database diagram the many-to-many relation materializes in a joined table.
Although the EDM diagram shows a single complex property, Phone, in a database, these are
materialized as a group of columns clustered around the same Phone_ prefix.

In conclusion, the EDM is capable of providing a cleaner conceptual view of the data, can
hide many low-level implementation details, and provides a much richer set of features for
working with data.

With this, you have successfully generated your first Entity Data Model and used most of
the available constructs while doing so. The model itself, though, is not much use if you are
not able to interact with it and use it to store the data. In the next section, you will see how
you can use the Entity Framework to obtain data from the data store and how you can modify
that same data with the help of the Entity Framework.

Putting the EDM to Work
In a way, working with the Entity Framework is similar to working with DataSets. You query
the EDM in order to obtain the objects representing the data. Next you display the objects; then
you perform any updates, inserts, or deletes on objects; and finally you commit changes to the
data store. The difference is that instead of working with objects such as a DataTable that rep-
resents the data store structure directly, you work with your entities that represent the objects
in your business layer.

As I mentioned in the introductory section, the Entity Framework introduces another layer
of abstraction when you are working with data. Although there are numerous benefits in pro-
ductivity and simplification to be found in such an approach, an additional layer inevitably
means letting go of some low-level control features. I am not obsessed by keeping things com-
pletely in control, but I do like to understand what is going on underneath the surface.

One very good tool that can help you understand how the Entity Framework interacts with
the database is the SQL Server Profiler. It displays the exact SQL query that the Entity Frame-
work issues to the database. This can help you understand a number of subtleties related to
the Entity Framework and will allow you to optimize the way you use it. I suggest you use the
SQL Server Profiler to monitor Entity Framework–to–database conversations until you become
familiar with the Entity Framework’s behavior.

In the next section, I will, from time to time, use the SQL Server Profiler trace output to cor-
roborate some statements that I make about the inner workings of the Entity Framework.

Querying the Entity Data Model
At this point, you must be aching to write some Visual Basic code. In the following section,
you will see some very interesting options that the Entity Framework provides for accessing the
data. You will typically use LINQ to Entities to query the EDM. In this case, you see data in the
form of strongly typed .NET objects exposed via the ObjectContext class and made available
through the Object Services infrastructure. In cases where you need more granular control or
need to write some dynamically generated queries, you can use the Entity SQL language. You
can issue Entity SQL queries to query the ObjectContext class, or for more low-level access, you
can use the EntityClient data provider. Finally, you can query the ObjectContext class by using
Entity SQL with the help of the ObjectQuery class or by constructing your queries with the help
of ObjectQuery Query Builder methods. Let’s start with LINQ to Entities.

752 CHAPTER 17 USING THE ENTITY DATA MODEL

Using LINQ to Entities

In Chapter 14, ‘‘An Introduction to LINQ,’’ you familiarized yourself with LINQ. Thanks to the
Object Services layer and the .NET code generated by the Entity Framework (shown in List-
ing 17.3), you can query the data in the EDM as objects and unleash all the power of LINQ
syntax in your Visual Basic code.

It is time you put to use the form added automatically to MyEFProject that contains the
BooksAndAuthors EDM. Start by renaming the form to QueryEDM.vb, and add a button named
ListAllBooks.

Listing All of the Entities in a Database

If you go back to Listing 17.3, you will see that the EDM Designer generated a class named
BooksAndAuthorsContainer that inherits the ObjectContext class and that I introduced as the
‘‘entry point’’ to EDM Object Services. This class has a property, Books, of type ObjectSet(Of
Book) that essentially represents a set of entities and implements interfaces like IQueryable and
IEnumerable. With those in place, listing all book entities should be as easy as traversing all
of the objects in the Books set of BooksAndAuthorsContainer instance. Let’s do just that in a
ListAllBooks button event handler. Take a look at Listing 17.5. It writes the title of all books
in the database to the console. To see the result, make sure that the Output window in Visual
Studio is visible.

Listing 17.5: Listing all Book entities

Private Sub ListAllBooks_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ListAllBooks.Click

Dim context As New BooksAndAuthorsContainer
For Each book In context.Books

Console.WriteLine("Title: " & book.Title)
Next

End Sub

This was actually very simple — a kind of Entity Framework Hello Word application. Let’s
now try something a bit more complicated. Let’s see whether we can actually use some LINQ
syntax.

Finding an Entity Using a LINQ Query

LINQ can be very expressive when writing queries. If you use it prudently, it can be also very
efficient. Take a look at the code in Listing 17.6. It finds the longest book by ordering books by
the PageCount property and then selecting the first Book entity on the list.

Listing 17.6: Find the longest book LINQ query

Private Sub LongestBook_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles LongestBook.Click

PUTTING THE EDM TO WORK 753

Dim context As New BooksAndAuthorsContainer
Dim books = context.Books
Dim longestBook As Book = (From book In books

Order By book.PageCount).First
Console.WriteLine("The longest book is: " +
longestBook.ISBN + " " + longestBook.Title)

End Sub

If you take a look at Listing 17.7, you can see the SQL code issued to the database and
captured by SQL Server Profiler.

Listing 17.7: SQL Server Profiler–captured SQL code

SELECT TOP (1)
[Extent1].[ISBN] AS [ISBN],
[Extent1].[Title] AS [Title],
[Extent1].[PublishingDate] AS [PublishingDate],
[Extent1].[PageCount] AS [PageCount]
FROM [dbo].[Books] AS [Extent1]
ORDER BY [Extent1].[PageCount] ASC

Notice that the Entity Framework was intelligent enough to delegate the ordering operation
to the database engine and to limit the result to a single row with the TOP statement. This is a
much more efficient way to obtain the desired result than to write Visual Basic code that oper-
ates on the Books set. For example, you can obtain the same result by filtering the book by the
PageCount property inside the For Each loop in Listing 17.5. This would result in fetching all
the records in a table. Such code, however, would hardly be of production quality.

Finding an Entity of a Specific Type in the Inheritance Hierarchy

If you now open the BooksAndAuthors.Designer.vb file, you will see that it contains much
more code than when we started building our Books and Authors EDM. If you inspect the
BooksAndAuthorsContainer class, you might note something curious. The class has the Person
property but no Translator or Author properties. So, how can you write the queries that
reference a child type in an inheritance hierarchy?

The solution comes in the form of the LINQ OfType query operator. Take a look at List-
ing 17.8. It shows the code that fetches all translators stored in the Translators table.

Listing 17.8: Fetch translators

Private Sub FetchTranslators_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FetchTranslators.Click

Dim context As New BooksAndAuthorsContainer
Dim translators = context.Persons.OfType(Of Translator)()

754 CHAPTER 17 USING THE ENTITY DATA MODEL

For Each Translator In translators
Console.WriteLine("Translator: " & Translator.FirstName &

" " & Translator.LastName)
Next

End Sub

It is interesting to observe how this query resolves on the database level. Listing 17.9 shows
the SQL issued to the database. Since the Person–Translator hierarchy is modeled through a
table-per-type inheritance modeling method, a join between the Persons and Translators tables
has to be performed in order to fetch Translator entity rows from the database.

Listing 17.9: Fetch translators SQL code

SELECT
’1X0X’ AS [C1],
[Extent1].[SSN] AS [SSN],
[Extent2].[FirstName] AS [FirstName],
[Extent2].[LastName] AS [LastName],
1 AS [C2],
[Extent2].[Phone_CountryCode] AS [Phone_CountryCode],
[Extent2].[Phone_AreaCode] AS [Phone_AreaCode],
[Extent2].[Phone_Number] AS [Phone_Number],
[Extent2].[Phone_Extension] AS [Phone_Extension]
FROM [dbo].[Persons_Translator] AS [Extent1]
INNER JOIN [dbo].[Persons] AS [Extent2] ON [Extent1].[SSN] = [Extent2].[SSN]

As you can see in the last line in the listing, each time you need to obtain an instance of a
Translator or Author entity, a join between Person and Translator or Person and Author
has to be performed on the database level.

Using Entity SQL

If you have spent some time writing the SQL code, you will immediately feel familiar with
eSQL. You can think of it as a data store–agnostic SQL used to query the EDM. Take a look
at the code in Listing 17.10. It shows a simple query issued to the Books and Authors EDM
using the Entity Client classes. The code has the familiar, traditional, ADO.NET ‘‘open connec-
tion, execute command’’ feel to it.

Listing 17.10: eSQL query issued using the Entity Client library

Private Sub FindBookByISBN_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FindBookByISBN.Click

Using connection As New EntityConnection("Name=BooksAndAuthorsContainer")
connection.Open()
Dim command = connection.CreateCommand()

PUTTING THE EDM TO WORK 755

command.CommandText = "SELECT VALUE book FROM" &
"BooksAndAuthorsContainer.Books " &
"As book Where book.ISBN = @isbn"

command.Parameters.AddWithValue("isbn", "9780470187425")
Dim reader = command.ExecuteReader(CommandBehavior.SequentialAccess)
reader.Read()
Console.WriteLine("Book title is: " & reader("Title"))

End Using
End Sub

If you take a look at the SQL Profiler trace, you will see how eSQL was transformed to the
parameterized SQL query. Listing 17.11 shows the trace.

Listing 17.11: eSQL command transformed to parameterized query SQL

exec sp_executesql N’SELECT
[Extent1].[ISBN] AS [ISBN],
[Extent1].[Title] AS [Title],
[Extent1].[PublishingDate] AS [PublishingDate],
[Extent1].[PageCount] AS [PageCount]
FROM [dbo].[Books] AS [Extent1]
WHERE [Extent1].[ISBN] = @isbn’,N’@isbn nvarchar(4000)’,@isbn=N’9780470187425’

eSQL is a programming language in its own right, and, as such, getting into more details
about eSQL programming is outside the scope of this book. For more information on eSQL,
try the Microsoft Developer Network at http://msdn.microsoft.com/en-us/library/
bb399560.aspx.

Advanced Search Forms with eSQL Dynamic Queries

Advanced search forms typically present a user with a number of search criteria. The user
will generally employ only a few criteria options with each query, but the exact combination
of criteria options cannot be known beforehand. Nor does it make sense programming all the
possible criteria combinations, since there are too many.

A good alternative to implementing queries based on numerous criteria options is to use
dynamic queries. With each new search, a new query is constructed ‘‘on the fly.’’ The
‘‘where’’ portion of the query is generated by concatenating comparison statements expressing
the condition on the form. Only those chosen by the user are included in the generated eSQL
code.

The book search form, shown here, can be used to search for titles in the Books and Authors
Entity Data Model.

756 CHAPTER 17 USING THE ENTITY DATA MODEL

It offers four different criteria for book search: book ISBN, book title, and a date range for
publishing date. At each click of the Find button, each criteria is inspected and included in the
query only if the user has entered the search criteria. To make the search more flexible, the
ISBN and title are included in the query using wildcards and the LIKE condition. This way, if
the user enters Mastering in the Title text box, all books containing the word Mastering in the
title are selected by the query. Here’s the complete code to make this form work; thanks to
dynamic query construction, the whole sample can fit the single screen:

Imports System.Data.Objects
Imports System.Data.EntityClient

Public Class eSQLDynamicQuery

Dim command As EntityCommand
Dim eSqlSelect = "SELECT book.ISBN, book.Title, book.PublishingDate " &

"from BooksAndAuthorsContainer.Books as book"
Dim eSqlWhere As String

Private Sub btnFind_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnFind.Click

gridResult.Rows.Clear()
Using connection As New EntityConnection("Name=BooksAndAuthorsContainer")

PUTTING THE EDM TO WORK 757

connection.Open()
command = connection.CreateCommand()
AddISBNCondition()
AddTitleCondition()
AddPublishedBeforeCondition()
AddPublishedAfterCondition()
command.CommandText = eSqlSelect & eSqlWhere
Dim reader = command.ExecuteReader(CommandBehavior.SequentialAccess)
While (reader.Read())

gridResult.Rows.Add(New String() {reader("ISBN"), reader("Title"),
reader("PublishingDate")})

End While
End Using

End Sub

Private Sub AddISBNCondition()
If String.IsNullOrEmpty(txtISBN.Text) Then Exit Sub
ConcatenateAndOrWhere()
eSqlWhere = eSqlWhere & "book.ISBN LIKE @isbn"
command.Parameters.AddWithValue("isbn", "%" + txtISBN.Text + "%")

End Sub

Private Sub AddTitleCondition()
If String.IsNullOrEmpty(txtTitle.Text) Then Exit Sub
ConcatenateAndOrWhere()
eSqlWhere = eSqlWhere & "book.Title LIKE @title"
command.Parameters.AddWithValue("title", "%" + txtTitle.Text + "%")

End Sub

Private Sub AddPublishedAfterCondition()
If txtAfter.Text.Equals(" / /") Then Exit Sub
ConcatenateAndOrWhere()
eSqlWhere = eSqlWhere & "book.PublishingDate > @after"
command.Parameters.AddWithValue("after", CDate(txtAfter.Text))

End Sub

Private Sub AddPublishedBeforeCondition()
If txtBefore.Text.Equals(" / /") Then Exit Sub
ConcatenateAndOrWhere()
eSqlWhere = eSqlWhere & "book.PublishingDate < @before"
command.Parameters.AddWithValue("before", CDate(txtBefore.Text))

End Sub

Private Sub ConcatenateAndOrWhere()
If Not (String.IsNullOrEmpty(eSqlWhere)) Then

eSqlWhere = eSqlWhere & " AND "
Else

758 CHAPTER 17 USING THE ENTITY DATA MODEL

eSqlSelect = eSqlSelect & " WHERE "
End If

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

gridResult.Rows.Clear()
End Sub

End Class

Using Query Builder Methods and the ObjectQuery Class

Yet another alternative you have at your disposal for querying the EDM is the ObjectQuery
class. You can build your queries in a standard object-oriented manner using the ObjectQuery
builder methods. The ObjectQuery API permits writing chained methods following the Builder
pattern. It is best to illustrate this with an example. Listing 17.12 demonstrates query construc-
tion employing the Object Query API.

Listing 17.12: ObjectQuery’s builder methods

Private Sub QueryBuilder_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles QueryBuilder.Click

Dim context As New BooksAndAuthorsContainer
Dim query As ObjectQuery(Of Book)
query = context.Books.

Where("it.PublishingDate > DATETIME’1999-01-01 00:00’").
OrderBy("it.PublishingDate").
Top(10)

Console.WriteLine(query.ToTraceString())
For Each book As Book In query.ToList()

Console.WriteLine(book.Title)
Next

End Sub

ObjectQuery has a ToTraceString method that permits visualizing the SQL that is being
issued to the database directly inside the Visual Studio. Using ToTraceString is a more sim-
ple SQL debug method than monitoring the trace in SQL Server Profiler. Listing 17.13 shows
the SQL trace.

Listing 17.13: ObjectQuery’s ToTraceString method output

SELECT TOP (10)
[Extent1].[ISBN] AS [ISBN],
[Extent1].[Title] AS [Title],

PUTTING THE EDM TO WORK 759

[Extent1].[PublishingDate] AS [PublishingDate],
[Extent1].[PageCount] AS [PageCount]
FROM [dbo].[Books] AS [Extent1]
WHERE [Extent1].[PublishingDate] > convert(datetime2,
’1999-01-01 00:00:00.0000000’, 121)
ORDER BY [Extent1].[PublishingDate] ASC

Deferred Loading and Navigation Properties

So far, I haven’t demonstrated how you can use navigation properties to obtain a reference of a
related entity. Now that you cannot use navigation properties (not using navigation properties
would pretty much defeat the purpose of having the EDM), you just need to be explicit about
the relations you will be using on entities obtained from your queries. There are several
ways to tell the Entity Framework to fetch related entities as well as the resulting entity. For
example, you can use the Include method of the ObjectQuery class, you can explicitly load
related entities, or you can activate the deferred loading feature of the Entity Framework.

A very common scenario with the Books and Authors EDM would be to list all books
authored by a certain author. Had I not spoiled the surprise in the previous paragraph, you
might have expected the code in Listing 17.14 to list all books authored by the randomly
selected first author in the database.

Listing 17.14: Unsuccessful attempt of listing all books belonging to an author

Private Sub DefferedLoading_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
DefferedLoading.Click

Dim context As New BooksAndAuthorsContainer
Dim author = context.Persons.OfType(Of Author).First()
For Each book As Book In author.Books

Console.WriteLine(book.Title)
Next

End Sub

If you take a look at the Output window after executing the code in Listing 17.14, you will
notice it lists no books, even though all authors have at least one book that they have authored
in the database.

Using the Include Method

The first alternative at your disposal that you can use to read or to materialize (as retrieving
entities from the database is more commonly called in EDM jargon) the related entities is
the Include method. This loading strategy is also known as eager loading. Take a look at
Listing 17.15; it demonstrates the Include method used to materialize related Book entities.

Listing 17.15: Using the Include, method to materialize related entities

Private Sub DefferedLoading_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
DefferedLoading.Click

760 CHAPTER 17 USING THE ENTITY DATA MODEL

Dim context As New BooksAndAuthorsContainer
Dim author = context.Persons.OfType(Of Author).Include("Books").First()
For Each book As Book In author.Books

Console.WriteLine(book.Title)
Next

End Sub

If you take a look at the Output window, you will see titles of the books belonging to the
author printed to the console. More interesting, however, is the SQL generated by the Entity
Framework. Listing 17.16 shows the SQL code.

Listing 17.16: SQL code resulting from the Include method

SELECT
[Limit1].[Signed] AS [Signed],
[Limit1].[SSN] AS [SSN],
[Limit1].[SSN1] AS [SSN1],
[Limit1].[FirstName] AS [FirstName],
[Limit1].[LastName] AS [LastName],
[Limit1].[Phone_CountryCode] AS [Phone_CountryCode],
[Limit1].[Phone_AreaCode] AS [Phone_AreaCode],
[Limit1].[Phone_Number] AS [Phone_Number],
[Limit1].[Phone_Extension] AS [Phone_Extension],
[Limit1].[C1] AS [C1],
[Limit1].[C2] AS [C2],
[Limit1].[C3] AS [C3],
[Project2].[C1] AS [C4],
[Project2].[ISBN] AS [ISBN],
[Project2].[Title] AS [Title],
[Project2].[PublishingDate] AS [PublishingDate],
[Project2].[PageCount] AS [PageCount]
FROM (SELECT TOP (1)

[Extent1].[Signed] AS [Signed],
[Extent1].[SSN] AS [SSN],
[Extent2].[SSN] AS [SSN1],
[Extent2].[FirstName] AS [FirstName],
[Extent2].[LastName] AS [LastName],
[Extent2].[Phone_CountryCode] AS [Phone_CountryCode],
[Extent2].[Phone_AreaCode] AS [Phone_AreaCode],
[Extent2].[Phone_Number] AS [Phone_Number],
[Extent2].[Phone_Extension] AS [Phone_Extension],
‘1X0X’ AS [C1],
1 AS [C2],
1 AS [C3]
FROM [dbo].[Persons_Author] AS [Extent1]
INNER JOIN [dbo].[Persons] AS [Extent2] ON

[Extent1].[SSN] = [Extent2].[SSN]) AS [Limit1]
LEFT OUTER JOIN (SELECT

PUTTING THE EDM TO WORK 761

[Extent3].[Persons_SSN] AS [Persons_SSN],
[Extent4].[ISBN] AS [ISBN],
[Extent4].[Title] AS [Title],
[Extent4].[PublishingDate] AS [PublishingDate],
[Extent4].[PageCount] AS [PageCount],
1 AS [C1]
FROM [dbo].[PersonBook] AS [Extent3]
INNER JOIN [dbo].[Books] AS [Extent4] ON

[Extent4].[ISBN] = [Extent3].[Books_ISBN])
AS [Project2] ON [Limit1].[SSN] = [Project2].[Persons_SSN]

ORDER BY [Limit1].[SSN] ASC, [Limit1].[SSN1] ASC, [Project2].[C1] ASC

Listing 17.16 is quite long, but for our purpose, it is important to note that the code includes
a join with the Books table. It is also the only query visible in the SQL Profiler trace, meaning
that all the data was fetched in one go — meaning it was loaded eagerly. Loading can also be
deferred, as you will see in the ‘‘Using Deferred Loading’’ section very soon.

Using Explicit Loading

Instead of including the whole path in your query, you can tell the navigation property to load
just when you need it. Listing 17.17 shows how books related to an author can be materialized
using the Load method of the EntityCollection class.

Listing 17.17: Using explicit loading to materialize related entities

Private Sub DefferedLoading_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
DefferedLoading.Click

Dim context As New BooksAndAuthorsContainer
Dim author = context.Persons.OfType(Of Author).First()
author.Books.Load()
For Each book As Book In author.Books

Console.WriteLine(book.Title)
Next

End Sub

Again, it is the SQL Server Profiler that tells the true story of the code resolution on the
database level. The trace includes two queries and is shown in Listing 17.18.

Listing 17.18: SQL code resulting from the Load method

-- first trace
SELECT
SELECT
[Limit1].[C1] AS [C1],
[Limit1].[SSN] AS [SSN],

762 CHAPTER 17 USING THE ENTITY DATA MODEL

[Limit1].[FirstName] AS [FirstName],
[Limit1].[LastName] AS [LastName],
[Limit1].[C2] AS [C2],
[Limit1].[Phone_CountryCode] AS [Phone_CountryCode],
[Limit1].[Phone_AreaCode] AS [Phone_AreaCode],
[Limit1].[Phone_Number] AS [Phone_Number],
[Limit1].[Phone_Extension] AS [Phone_Extension],
[Limit1].[Signed] AS [Signed]
FROM (SELECT TOP (1)

[Extent1].[Signed] AS [Signed],
[Extent1].[SSN] AS [SSN],
[Extent2].[FirstName] AS [FirstName],
[Extent2].[LastName] AS [LastName],
[Extent2].[Phone_CountryCode] AS [Phone_CountryCode],
[Extent2].[Phone_AreaCode] AS [Phone_AreaCode],
[Extent2].[Phone_Number] AS [Phone_Number],
[Extent2].[Phone_Extension] AS [Phone_Extension],
‘1X0X’ AS [C1],
1 AS [C2]
FROM [dbo].[Persons_Author] AS [Extent1]
INNER JOIN [dbo].[Persons] AS [Extent2] ON [Extent1].[SSN] = [Extent2].[SSN]

) AS [Limit1]

-- second trace
exec sp_executesql N’SELECT
[Extent2].[ISBN] AS [ISBN],
[Extent2].[Title] AS [Title],
[Extent2].[PublishingDate] AS [PublishingDate],
[Extent2].[PageCount] AS [PageCount]
FROM [dbo].[PersonBook] AS [Extent1]
INNER JOIN [dbo].[Books] AS [Extent2] ON
[Extent1].[Books_ISBN] = [Extent2].[ISBN]
WHERE [Extent1].[Persons_SSN] =
@EntityKeyValue1’,N’@EntityKeyValue1 char(9)’,@EntityKeyValue1=’568845586’

In this case, each time a book entity is referenced in the For Each loop, a new SQL statement is
issued to a database. Had our author authored more than one book, you would end up with a
significant number of queries issued to the database just to print this simple information.

Using Deferred Loading

More commonly known as lazy loading, this is the pattern that loads data from the database
only upon the request. To put it simply, only when you call the Getter method of the
navigation property is the data fetched from the database.

In this case, using navigation properties is quite transparent, and the code looks quite
like the code in Listing 17.15. One missing detail has to do with activating the deferred
loading, since it is deactivated by default. Listing 17.19 shows the code for deferred
loading.

PUTTING THE EDM TO WORK 763

Listing 17.19: Using deferred loading to materialize related entities

Private Sub DefferedLoading_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
DefferedLoading.Click

Dim context As New BooksAndAuthorsContainer
context.ContextOptions.DeferredLoadingEnabled = True
Dim author = context.Persons.OfType(Of Author).First()
For Each book As Book In author.Books

Console.WriteLine(book.Title)
Next

End Sub

As you would expect, the resulting SQL is identical to that shown in Listing 17.18, meaning
that a new query is issued for each referenced Book entity.

Choosing the Right Loading Strategy

Now that you have seen how different loading strategies are resolved at a database level, you
must be already guessing the impact of choosing the right loading strategy on the performance
of your application. In our sample code, deferring the loading of book information would result
in abysmal performance if such code was ever put into production.

If you had no prior experience with ORM frameworks like the Entity Framework, then at
this point you might be asking yourself, ‘‘Does deferred loading make sense at all?’’ It does
provide some coding benefits, since you use navigation properties just like any other proper-
ties, but this coding gain is certainly not worth the possible negative impact on the application
performance.

Deferred (or lazy loading) is the default loading strategy in many object-relational mapping
(ORM) frameworks similar to the Entity Framework. As it happens, the sample code I have
shown in this section serves to illustrate different loading strategies, but it is not very represen-
tative of how real-life applications work.

In a typical application scenario, you use simple properties on an entity to display the entity
information to the user. In our example, you use Author information (probably a name) to
let the user select the correct author. (At this point, eagerly loading book information from
the database would mean loading almost all the database data in one go!) Only after the user
has selected the author is the related data (in our example list of books) fetched from the
database. At this point, it does make sense to fetch all the books belonging to an author in one
go, since you will show the list of all titles on the Author Details page. Imagine the Book has
some related Sales information. It does not make sense to fetch this information until the user
selects the specific title. With lazy loading, all the data is timely fetched.

The more complex the application becomes, the more complicated it is to understand all
the scenarios where navigation properties will be used. For best results, fine-tune your queries,
choose the correct loading strategy for each individual query, and profile the Entity Framework
SQL generation to grasp how the Entity Framework queries are translated into the SQL issued
to database.

Modifying the Data with the Entity Framework
The Entity Framework provides a strongly typed, object-oriented view of the data, and as such,
it enables you to insert, update, and delete data by working with instances of entity types.
All of the entity type instances are bound to a context (through an ObjectContext class) that

764 CHAPTER 17 USING THE ENTITY DATA MODEL

tracks the changes made to these objects. Once you tell ObjectContext to commit changes to the
database by calling the SaveChanges method, it calculates the differences between the data in
the application and the data in the data store and will commit the changes to the data store.

In the Books and Authors EDM, the class inheriting the ObjectContext class is called
BooksAndAuthorsContainer. As in the previous examples, when querying the data, Books-
AndAuthorsContainer is the central class that permits access to all the objects’ methods related
to data modifications. Let’s start with a simple insert of a new entity.

Inserting New Instances

We can insert a new instance of an entity in several ways. Each entity class in the EDM has a
static CreateEntityName method. For example, the Book entity has a CreateBook static method
that can be used for the purpose of adding a new book to a context. Alternatively, you can
create a new entity using the New operator and then use the AddObject method that’s avail-
able on each EntitySet class. Listing 17.20 shows the latter method where first a new instance
of the Language entity is created, then it is added to the Languages entity set, and finally it is
committed to the database by calling ObjectContext.SaveChanges().

Listing 17.20: Adding a new Language entity

Private Sub InsertNewLanguage_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
InsertNewLanguage.Click

Dim context As New BooksAndAuthorsContainer
Dim arabic As New Language
arabic.Name = "Arabic"
context.Languages.AddObject(arabic)
context.SaveChanges()

End Sub

Deleting an Entity Instance

Deletion of an entity instance can be easily performed with the help of the Delete method of
ObjectContext. Listing 17.21 shows how this is performed using the instance of the Language
entity inserted in the previous listing.

Listing 17.21: Deleting a Language entity

Private Sub DeleteLanguage_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
DeleteLanguage.Click

Dim context As New BooksAndAuthorsContainer
Dim arabic As Language = (From language In context.Languages

Where language.Name = "Arabic").
FirstOrDefault()

context.DeleteObject(arabic)
context.SaveChanges()

End Sub

PUTTING THE EDM TO WORK 765

Updating an Entity Instance

You will not be surprised by the code included in Listing 17.22. It follows a pattern that is
similar to that found in the entity insertion and deletion code. An Entity property is updated,
and changes are committed by calling the ObjectContext SaveChanges method.

Listing 17.22: Updating a Language entity

Private Sub UpdateLanguage_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
UpdateLanguage.Click

Dim context As New BooksAndAuthorsContainer
Dim arabic As Language = (From language In context.Languages

Where language.Name = "Arabic").
FirstOrDefault()

arabic.Name = "Arabic Language"
context.SaveChanges()

End Sub

Establishing Relationship Between Entity Instances

The final piece of the data modification puzzle has to do with establishing the relationship
between the entity instances. If I have a Book instance and an Author instance, how do I relate
them so that the book appears in the list of books authored by that specific author?

You can perform this in a standard object-oriented manner. Just add the Book instance to the
set of books belonging to the Author, and call SaveChanges on the ObjectContext. Listing 17.23
shows that exact scenario.

Listing 17.23: Establishing a relationship between an Author and a Book instance

Private Sub InsertsInTransaction_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
InsertsInTransaction.Click

Dim context As New BooksAndAuthorsContainer

Dim book As New Book With {.ISBN = "9780470179796",
.Title = "Professional Refactoring in Visual Basic",
.PageCount = "517", .PublishingDate = "April 7, 2008"}

Dim author As New Author With {.SSN = "423235332",
.FirstName = "Danijel",
.LastName = "Arsenovski",
.Phone = New PhoneNumber With {.CountryCode = "56",

.AreaCode = "2", .Number = "8588656", .Extension = " "},
.Signed = "January 1, 2007"}

context.Persons.AddObject(author)
context.Books.AddObject(book)

766 CHAPTER 17 USING THE ENTITY DATA MODEL

author.Books.Add(book)
context.SaveChanges()

End Sub

By calling the Add method on the set of Books belonging to an Author — author.Books.Add
(book) — the Entity Framework becomes aware that two instances are related and adds the
record to the PersonBook join table in the database.

Using Transactions in the Entity Framework

If you look back at Listing 17.23, you might wonder what exactly happens if the Entity Frame-
work is not capable of performing all the operations in the listing. If you analyze the listing,
you can see that the code will be resolved as three Insert operations on the database level:
the insert of an author instance to the Author table, the insert of a book instance into the Book
table, and the insert of the record relating the book and the author into the PersonBook table.
So, what happens if one of these operations fails?

The Entity Framework generates implicit transactions for all changes performed from
one SaveChanges method call to the next. In our example, all inserts will be committed to
the database under the same transaction. If any of them fails, the others are automatically
rolled back.

You can test this by executing the code in Listing 17.23 twice in a row. For the second
execution, modify the author’s Social Security number, but leave the book data as it is. Since
you have modified the SSN, you will be able to insert the author, but the book insert will fail.
ISBN is the primary key on the Book entity, and the same value cannot be inserted twice. The
execution will end up in an error. If you then take a look at the database, you will observe that
neither the book nor the author instance was inserted.

Coordinating Transactions with External Operations

In some scenarios, the transaction control that ObjectContext implicitly provides is not enough.
There are situations where you need to enroll operations external to the ObjectContext into the
same transaction. In such cases, you can use the TransactionScope class. Listing 17.24 shows
some mock-up code that demonstrates how the TransactionScope class can be used.

Listing 17.24: Using TransactionScope for enlisting external operations

Using transaction As New TransactionScope()
context.Persons.AddObject(author)
context.Books.AddObject(book)
author.Books.Add(book)
context.SaveChanges()
‘Do some external operation that can be enroled inside the transaction
transaction.Complete()

End Using

Note that you need to reference the System.Transactions assembly and import the
System.Transactions namespace in order to gain access to the TransactionScope class.

THE BOTTOM LINE 767

Reverse-Engineering an Entity Data Model
The approach I followed thus far in this chapter starts with the premise that you are building a
completely new EDM. The EDM is then used to generate the DDL scripts for the database used
to store the EDM data.

Very often, though, you will have to construct your application on the top of an existing
database. The Entity Framework supports that scenario, as well; in that case, the EDM Designer
will use the database structure as a starting point for automated EDM generation.

Let’s explore this scenario by creating an EDM from the Northwind database. I explained
how you can obtain and install the sample Northwind database in Chapter 15, so I will assume
that the database is present in your Microsoft SQL Server.

1. Choose Project � Add New Item. Select the ADO .NET Entity Data Model item, and
rename it to Northwind.edmx. Click Add.

2. When the Entity Data Model Wizard opens, choose Generate From Database as your reply
to the ‘‘What should the model contain?’’ prompt. Click Next.

3. Select a connection to the Northwind database. If the connection is not present in
the Connection combo box, use the New Connection button to create a connection to the
Northwind database, and then click Next.

4. When the Choose Your Database Objects window opens, select all the objects displayed
under the Tables, Views, and Stored Procedures nodes, and click Finish.

The part of the Northwind EDM diagram showing entities generated from tables in the
Northwind database was shown earlier in Figure 17.1.

The Entity Framework is capable of making use of already constructed databases including
other database objects, such as views and stored procedures. In the case of views, a separate
EntityType and EntitySet are generated for each view. Stored procedures are represented as
functions in the EDM and can be mapped as custom CRUD operations for an entity. In that
case, instead of generating the appropriate SQL, the Entity Framework is capable of invoking
the stored procedure to delete, update, insert, or read the entity.

The Bottom Line

Employ deferred loading when querying the Entity Data Model. The Entity Framework
supports the deferred loading (lazy loading) of entities. When deferred loading is activated,
entities in navigation properties are loaded on demand, only after they are accessed. In cases
when you are not certain that the related entity will be accessed (for example, when loading
is dependent on a user action), you can initially load only the root entity and load the related
entities only when they are requested.

Master It How do you activate deferred loading in the Entity Framework?

Use entity inheritance features in the Entity Framework. In the EDM, an inheritance rela-
tionship can be established between entities. When two entities participate in an inheritance
relationship, the child entity inherits all the properties of the parent entity. When working with
such an entity in .NET code, you can get major benefits from code reuse based on inheritance.

768 CHAPTER 17 USING THE ENTITY DATA MODEL

Master It Explain how the Entity Framework can map an inheritance relationship between
entities to tables in the database. Why is maintaining the inheritance relationship between
the entities not easily accomplished with relational databases?

Create and query related entities. In the Entity Data Model, you can establish one-to-many
or many-to-many associations between entities. The association can be established by connect-
ing related entities with the Association tool in the EDM diagram. When querying such entities,
a related entity or set of entities can be accessed through generated navigation properties.

Master It In the Books and Authors application (used as a sample application in this
chapter), add a SalesByMonth form that will display the number of copies sold in a month
for each title in the database. Modify the Books and Authors EDM so that the model can
accommodate monthly sales information for each title.

Chapter 18

Building Data-Bound Applications

In Chapter 15, ‘‘Programming with ADO.NET,’’ you learned about the two basic classes for
interacting with databases: The Connection class provides the members you need to connect to
the database, and the Command class provides the members you need to execute commands
against the database. A data-driven application also needs to store data at the client, and you
know how to use a DataReader to grab data from the database and how to use a DataAdapter
to populate a DataSet at the client.

In addition to the DataSets you created in Chapter 17, ‘‘Using the Data Entity Model,’’
Visual Studio also allows you to create typed DataSets. A typed DataSet is designed with
visual tools at design time, and its structure is known to the compiler, which can generate very
efficient code for the specific type of data you’re manipulating in your application. Another
advantage of typed DataSets is that they can be bound to Windows controls on a form. When
a field is bound to a Windows control, every time you move to another row in the table, the
control is updated to reflect the current value of the field. When the user edits the control on
the form, the new value replaces the original value of the field in the DataSet. The form is said
to be bound to the data source, which is usually a DataSet.

Data binding is a process for building data-driven applications with visual tools: You
map the columns of a table to controls on the form, and Visual Studio generates the code for
displaying the data on the bound controls, as well as updating the DataSet when the user edits
the value of a bound control. These applications are called data bound, and they’re similar to
the applications you designed in the previous chapter. The difference is that Visual Studio
generates the necessary code for you.

In this chapter, you’ll learn how to do the following:

◆ Design and use typed DataSets

◆ Bind Windows forms to typed DataSets

◆ Compare a LINQ query used to filter data with an eSQL dynamic query

Working with Typed DataSets
The DataSets you explored in the preceding chapter were untyped: Their exact structure was
determined at runtime, when they were populated through the appropriate DataAdapters. In
this chapter, I’ll discuss typed DataSets in detail. A typed DataSet is a DataSet with a known

770 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

structure because it’s created at design time with visual tools. The compiler knows the structure
of the DataSet (that is, the DataTables it contains and the structure of each DataTable), and it
generates code that’s specific to the data at hand.

The most important characteristic of typed DataSets is that they allow you to write strongly
typed code and practically eliminate the chances of exceptions due to syntax errors. Whereas
in an untyped DataSet you had to access the DataTables by name with an expression such as
DS.Tables ("Products"), the equivalent typed DataSet exposes the name of the table as a
property: DS.Products. To find out whether a specific field of an untyped DataSet is Null, you
must use an expression like the following:

DS.Tables ("Products").Rows (0).Item ("UnitPrice").IsNull

With a typed DataSet, you can declare a variable that represents a row of the Products table
like this:

Dim prod As NorthwindDataSet.ProductsRow =
DS.Products.Rows(0)

You can then access the fields of the row as properties, with expressions like this:
prod.ProductName, prod.UnitPrice, and so on. To find out whether the UnitPrice field is
Null, call the method prod.IsUnitPriceNull. You can also set a field to Null with a method
call: prod.SetUnitPriceNull. As you can guess, after the structure of the DataSet is known,
the editor can generate a class with many members that will enormously simplify the coding
of the application using the typed DataSet. You can count on IntelliSense to help you reference
table columns, represented as properties on a generated Row class. The code you will have to
write will be a lot terser and easier to understand. The typed DataSet is a class that’s generated
by a wizard on the fly, and it becomes part of your solution.

Let’s start by looking at the process of generating typed DataSets with visual data tools.
Then you’ll see how to bind Windows controls to typed DataSets and generate functional
interfaces with point-and-click operations.

Generating a Typed DataSet
In this section, you’ll create a typed DataSet with the three basic tables of the Northwind
database: Products, Categories, and Suppliers. Create a new Windows Forms Application
project, the DataSetOperations project. (This is the same name as the sample project you can
download from www.sybex.com/go/masteringvb2010.) Then open the Data menu, and choose
the Add Data Source command. You will see the Data Source Configuration Wizard, which
will take you through the steps of building a DataSet at design time. In the first page of the
wizard, you’ll be asked to select the data source type; it can be a database, a service (such as a
web service), or an object, as in Figure 18.1. Select the Database icon, and click the Next button.

The Service option on the page shown in Figure 18.1 creates a DataSet that retrieves its data
from a service (usually a web service). The Object option allows you to create a DataSet from a
collection of custom objects.

On the next page of the wizard, shown in Figure 18.2, you must specify a connection string
for the database you want to use. Click the New Connection button to create a new connection
only if there’s no connection for the database you want to use. If you’ve experimented already
with the visual tools of Visual Basic, you may already have an existing connection, in which
case you simply select it from the drop-down list.

WORKING WITH TYPED DATASETS 771

Figure 18.1

Choosing the data source
type in the Data Source
Configuration Wizard

Figure 18.2

Choosing your
data connection in
the Data Source
Configuration Wizard

To create a new connection, you must specify your credentials: whether you’ll connect with
a username and password or use Windows authentication. Once connected to the server, you
can select the desired database from a ComboBox control. If you click the New Connection but-
ton to create a new connection to the Northwind database, you will see the Add Connection
dialog box, as shown in Figure 18.3. This dialog box is not new to you; it’s the same dialog box
you use to create a new data connection in Server Explorer window. If you haven’t created a
connection to the Northwind database yet, do it now. Otherwise, select the existing connection.

772 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Figure 18.3

Using the Add
Connection dialog box
to specify a new con-
nection to the North-
wind database

It’s recommended that you use Windows authentication to connect to the database. If
this isn’t possible because the database server is not in the local network, you must specify a
username and password in the boxes shown in Figure 18.3. In this case, the wizard will ask
whether you want to store sensitive information (the account’s password) to the connection
string. You can choose to either include the password in the connection string (not a very safe
approach) or supply it from within your code. You can always set the Password property
of a Connection object in your code. To secure the password, you can prompt the user for
a password when the application starts and save it to an application variable. This way,
the password isn’t persisted anywhere; it only exists in computer memory as long as the
application is running. Alternatively, you can store an encrypted version of the password and
decrypt and use it from within your code. The best approach for a local network is to use
Windows authentication.

Click the OK button to close the Add Connection dialog box, and then click Next; you will
see a dialog box with the default connection name: NorthwindConnectionString. This is the
name of a new application setting that will store the connection information. You can edit this,
as well as the other application settings, on the Settings tab of the project’s Properties pages.
(To see the project’s Properties pages, choose Project Properties from the Project menu.)

Click Next again, and you will see the Choose Your Database Objects page, shown in
Figure 18.4, where you can select the tables and columns you want to load to the DataSet.
Notice that you can’t use a SELECT statement to select the data you want from a table: You
must select the entire table. Of course, you can write a stored procedure to limit your selection
and then select it in the dialog box. If you select multiple tables and they’re related, the
relationship between them will also be imported for you (no need to create a DataRelation

WORKING WITH TYPED DATASETS 773

object for each relationship between the DataSet tables). For this example, select the Categories,
Suppliers, and Products tables of the Northwind database. Select all columns of the Products
and Categories tables, except for the Picture column of the Categories table. From the
Suppliers table, select the SupplierID and CompanyName columns.

At the bottom of the dialog box shown in Figure 18.4, you can specify the name of the
DataSet that will be generated for you. I’ll use the default name, NorthwindDataSet. Click
Finish to close the wizard and create the DataSet, which will be added automatically to the
Solution Explorer window.

In the Data Sources window, shown in Figure 18.5, you will see a tree that represents the
tables in the DataSet. The DataSet contains three DataTables, and each DataTable is made of
the columns you selected in the wizard. This DataSet is typed, because it knows the structure
of the data you’re going to store in it. The interesting part of this tree is that it contains the
Products table three times: in the first level along with the Categories table, as its own table,
and once again under the Categories and Suppliers tables. (You must expand these tables to see
it, as in Figure 18.5.) Whereas the Products table on the first level represents the entire table, the
nested ones represent the products linked to their categories and their suppliers, respectively.
You will see later in the chapter how to use the multiple Products DataTables.

The typed DataSet is actually a class that is generated on the fly. It’s no longer a generic
DataSet we will populate at runtime with any table we want through a DataAdapter; it’s a
specific object that can be populated only with the tables we specified in its design. If you want

Figure 18.4

Selecting the tables
and columns you want
to include in your
typed DataSet

774 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Figure 18.5

The Northwind Data-
Set created by the
Data Source Confi-
guration Wizard

to see the code of the class generated by the wizard, click the Show All Files button in Solution
Explorer window, and double-click the NorthwindDataSet.Designer.vb item under the North-
wind DataSet. You shouldn’t edit the code, because if you decide to edit the DataSet (you’ll see
how you can edit it with visual tools), the wizard will create a new class, and your changes will
be lost. If you want to add some custom members to the Northwind class, create a new Partial
class with the custom members, and name it NorthwindDataSet.vb.

Exploring the Typed DataSet
Let’s exercise the members of the typed DataSet a little and see how the typed DataSet differs
from the equivalent untyped DataSet. The operations we’ll perform are similar to the ones we
performed in the preceding chapter with an untyped DataSet; you should focus on the different
syntax. The code shown in this section belongs to the DataSetOperations sample project. This
project contains three forms, and you will have to change the project’s Startup object to view
each one.

Figure 18.6 shows Form1 of the project, which demonstrates the basic operations on a typed
DataSet, including how to populate it, edit some of its tables, and submit the changes to the
database. They’re basically the same operations you’d perform with an untyped DataSet, but
you will see that it’s much simpler to work with typed DataSets.

To populate the three DataTables of the DataSet, you need three DataAdapter objects.
Instead of the generic DataAdapter, the class generated by the wizard has created a
TableAdapter class for each DataTable: the CategoriesTableAdapter, SuppliersTableAdapter,
and ProductsTableAdapter classes. Declare three objects of the corresponding type at the
form level:

Dim CategoriesTA As New _
NorthwindDataSetTableAdapters.CategoriesTableAdapter

Dim SuppliersTA As New _
NorthwindDataSetTableAdapters.SuppliersTableAdapter

Dim ProductsTA As New _
NorthwindDataSetTableAdapters.ProductsTableAdapter

WORKING WITH TYPED DATASETS 775

Figure 18.6

Form1 of the Data-
SetOperations project
demonstrates the
basic operations on
a typed DataSet.

The classes create the three objects that will retrieve the data from the database and submit
the edited rows to the database from the SELECT statements you specified with point-and-click
operations. These objects derive from the TableAdapter class, which in turn is based on the
DataAdapter class. If you examine the code of the Northwind class, you will find the code that
creates the SQL statements for querying and updating the three tables and how these state-
ments are used to create a DataAdapter object. The code is similar to the code we used in the
preceding chapter to create DataAdapters from within our code.

You must also create a DataSet object to store the data. This time, however, you can use a
specific type that describes the structure of the data you plan to store at the client, not a generic
DataSet. Insert the following declaration at the form level:

Dim DS As New NorthwindDataSet

Now place the Populate Tables button on the form, and insert the code shown in Listing 18.1
in its Click event handler.

Listing 18.1: Populating a typed DataSet with the proper TableAdapters

Private Sub bttnPopulate_Click(…) Handles bttnPopulate.Click
Dim categories As Integer = CategoriesTA.Fill(DS.Categories)
Dim suppliers As Integer = SuppliersTA.Fill(DS.Suppliers)
Dim products As Integer = ProductsTA.Fill(DS.Products)

776 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

As you can see, the Fill method doesn’t accept any DataTable as an argument; instead, the
type of its argument is determined by the TableAdapter object to which it’s applied. The Fill
method of the ProductsTA TableAdapter accepts as an argument an object of the Products-
DataTable type. The event handler of the sample project includes a few more statements that
print the count of rows in each of the three tables.

To go through the rows of the Products table, write a simple loop like the following:

Dim prod As NorthwindDataSet.ProductsRow
For Each prod In DS.Products.Rows

TextBox1.AppendText(prod.ProductName & vbTab &
prod.UnitPrice.ToString("#,###.00") & vbCrLf)

Next

As you can see, the names of the fields are properties of the ProductsRow class. Some
products may have no price (a Null value in the database). If you attempt to access the
UnitPrice property of the ProductsRow class, a NullReferenceException exception will be
thrown. To prevent it, you can make sure that the field is not Null from within your code,
with an IIf function like the following:

TextBox1.AppendText(
IIf(prod.IsUnitPriceNull,
"Not for sale!",
prod.UnitPrice.ToString("#,###.00")))

To read data from linked tables in a hierarchical way, you don’t have to specify the rela-
tionship between the tables as you did with untyped DataSets, because the typed DataTables
expose the appropriate methods.

Now place another button on your form, the Read Products By Supplier button, and in its
Click handler insert the code shown in Listing 18.2 to iterate through suppliers and related
products. Notice that the SuppliersRow class exposes the GetProductsRows method, which
retrieves the Products rows that are associated with the current supplier. The GetProductsRows
method is equivalent to the GetChildRows of an untyped DataSet, only with the latter you have
to supply a relationship name as an argument. Moreover, the GetProductsRows method returns
an array of ProductsRow objects, not generic DataRow objects.

Listing 18.2: Iterating through linked DataTables

Private Sub bttnSuppliersProducts_Click(…) Handles
bttnSuppliersProducts.Click

TextBox1.Clear()
Dim supp As NorthwindDataSet.SuppliersRow
For Each supp In DS.Suppliers.Rows

TextBox1.AppendText(supp.CompanyName & vbCrLf)
Dim prod As NorthwindDataSet.ProductsRow
For Each prod In supp.GetProductsRows

TextBox1.AppendText(vbTab &
prod.ProductName & vbTab &

WORKING WITH TYPED DATASETS 777

prod.UnitPrice.ToString("#,###.00") & vbCrLf)
Next

Next
End Sub

The ProductsRow object exposes the SuppliersRow and CategoriesRow methods, which
return the current product’s parent rows in the Suppliers and Categories DataTables.

The most useful method of the typed DataTable is the FindByID method, which locates
a row by its ID in the DataTable. To locate a product by its ID, call the FindByProductID
method, passing a product ID as an argument. The method returns a ProductsRow object that
represents the matching product. The method’s return value is not a copy of the found row but
instead is a reference to the actual row in the DataTable, and you can edit it. The code behind
the Update Products button, which is shown in Listing 18.3, selects a product at random by its
ID and prompts the user for a new price. Then it sets the UnitPrice field to the user-supplied
value.

Listing 18.3: Updating a row of a typed DataTable

Private Sub bttnUpdate_Click(…) Handles bttnUpdate.Click
Dim selProduct As NorthwindDataSet.ProductsRow
Dim RND As New System.Random
selProduct = DS.Products.FindByProductID(RND.Next(1, 77))
Dim newPrice As Decimal
newPrice = Convert.ToDecimal(InputBox(

"Enter product’s new price",
selProduct.ProductName,
selProduct.UnitPrice.ToString))

selProduct.UnitPrice = newPrice
End Sub

As you can see, manipulating the rows of typed DataTables is much simpler than the equiv-
alent operations with untyped DataSets, because the fields are exposed as properties of the
appropriate class (the ProductsRow class for rows of the Products DataTable, the Categories-
Row class for rows of the Categories DataTable, and so on).

Let’s look at the code for updating the database. The first step is to retrieve the edited rows
with the GetChanges method, which returns a typed DataTable object, depending on the Data-
Table to which it was applied. To retrieve the modified rows of the Products DataTable, use
the following statements:

Dim DT As NorthwindDataSet.ProductsDataTable
DT = DS.Products.GetChanges

You can pass an argument of the DataRowState type to the GetChanges method to retrieve
the inserted, modified, or deleted rows. Because this is a typed DataSet, you can write a For
Each loop to iterate through its rows (they’re all of the ProductsRow type) and find the edits.
One feature you’d expect to find in a typed DataTable is a method for retrieving the original

778 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

versions of a row by name. Unfortunately, the class generated by the wizard doesn’t include
such a method; you must use the Item property, passing as an argument the name of the row.
A row’s original field versions are given by the following expression:

prod.Item("UnitPrice", DataRowVersion.Original)

To submit the edited rows to the database, you can call the appropriate TableAdapter
Update method. The code behind the Submit Edits button does exactly that, and it’s shown in
Listing 18.4.

Listing 18.4: Submitting the edited rows of a typed DataTable to the database

Private Sub bttnSubmit_Click(…) Handles bttnSubmit.Click
If DS.HasChanges Then

Dim DT As NorthwindDataSet.ProductsDataTable =
DS.Products.GetChanges

If DT IsNot Nothing Then
Try

ProductsTA.Update(DT)
Catch ex As Exception

MsgBox(ex.Message)
Exit Sub

End Try
MsgBox(DT.Rows.Count.ToString &

" rows updated successfully.")
End If

End If
End Sub

Typed DataSets are quite convenient when it comes to coding. The real advantage of typed
DataSets is that they can simplify enormously the generation of data-bound forms, which is the
main topic of this chapter.

Data Binding
Data binding is the process of linking the contents of a field to a control on the form. Every time
the application modifies the field’s value, the control is updated automatically. Likewise, every
time the user edits the control’s value on the form, the underlying field in the DataSet is also
updated. Sometimes, this two-way linking of the data is referred to as bidirectional data binding.
The DataSet keeps track of the changes (the modified, added, and deleted rows), regardless of
how they were changed. In short, data binding relieves you from having to map field values
to controls on the form when a row is selected and from moving values from the controls
back to the DataSet when a row is edited.

In addition to binding simple controls such as TextBox controls to a single field, you can
bind an entire column of a DataTable to a list control, such as the ListBox or ComboBox control.
And of course, you can bind an entire DataTable to a special control, the DataGridView control.

DATA BINDING 779

You can build a data-browsing and data-editing application by binding the Products DataTable
to a DataGridView control without a single line of code.

To explore the basics of data binding, add a second form to the project, and make it the
project’s startup object. Figure 18.7 shows the new form of the DataSetOperations project,
Form2.

Then drop a DataGridView control on the form, and set the control’s DataSource property
to bind it to the Products DataTable. Select the DataGridView control on the form, and locate
its DataSource property in the Properties window. Expand the DataSource property, and you
will see the project’s data sources. The form contains no data source for the time being, so all
data sources are listed under Other Data Sources. Expand this item of the tree to see the Project
Data Sources item, which in turn contains the NorthwindDataSet data source (or whatever you
have named the typed DataSet). Expand this item, and you will see the names of the Data-
Tables in the DataSet, as shown in Figure 18.8. Select the Products DataTable.

The editor will populate the DataGridView control with the table’s columns: It will map
each column in the Products DataTable to a column in the DataGridView control. All columns
have the same width and are displayed as text boxes, except for the Discontinued column,
which is mapped to a CheckBox control. (This is the last column of the controls, and you will
see it at runtime, because you can’t scroll the control at design time.) The control’s columns
were named after the DataTable columns, but we’ll change the appearance of the grid shortly.
Press F5 to run the application, and the form will come up populated with the Products rows!
Obviously, the editor has generated some code for us to populate the control. The code gener-
ated by the editor is a single statement in the form’s Load event handler:

Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)

As far as browsing the data, we’re all set. All we have to do is adjust the appearance of the
DataGridView control with point-and-click operations. You can also edit the rows, but there’s
no code to submit the edits to the database. Submitting the changes to the database shouldn’t
be a problem for you; just copy the corresponding code statement from Form1 of the project.

Figure 18.7

Viewing an entire
DataTable on a
data-bound DataGrid-
View control

780 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Figure 18.8

Binding the Data-
GridView control to a
DataTable

Place the Submit Edits button on the form, and in its Click handler insert the following
statements:

If NorthwindDataSet.HasChanges Then
Dim DT As NorthwindDataSet.ProductsDataTable =

NorthwindDataSet.Products.GetChanges
If DT IsNot Nothing Then

Try
ProductsTableAdapter.Update(DT)

Catch ex As Exception
MsgBox(ex.Message)
Exit Sub

End Try
MsgBox(DT.Rows.Count.ToString &

" rows updated successfully.")
End If

End If

I changed the name of the DataSet from DS to NorthwindDataSet and the name of the
TableAdapter from ProductsTA to ProductsTableAdapter. And where did these names come
from? If you switch to the form’s Designer, you’ll see that while you were setting the Data-
GridView control’s properties, three items were added to the Components tray of the form:
the NorthwindDataSet component (which is the typed DataSet), the ProductsTableAdapter
(which is responsible for populating the control and submitting the edited rows to the
database), and the ProductsBindingSource (which is the liaison between the DataGridView
control and the DataSet). The ProductsBindingSource is basically a data source, and it’s
discussed in the following section.

DATA BINDING 781

Using the BindingSource Class
To understand the functionality of the BindingSource class, look up its members. Enter its
name and the following period in the code window, and you will see a list of members. The
Position property reads (or sets) the current item’s index in the underlying DataTable. The
DataGridView control doesn’t maintain the order of the rows in the underlying table; besides,
you can sort the DataGridView control rows in any way you like, but the DataTable rows
won’t be sorted. Use the Position property to find out the index of the selected row in the
DataTable. The MoveFirst, MovePrevious, MoveNext, and MoveLast methods are simple
navigational tools provided by the BindingSource class. You can place four buttons on the
form and insert a call to these methods to move to the first, previous, next, and last rows,
respectively. The four navigational buttons at the lower-left corner of the form shown in
Figure 18.7 call these methods to select another row on the grid.

The two most interesting members of the BindingSource class are the Find method and the
Filter property. The Filter property is set to an expression similar to the WHERE clause of
a SQL statement to filter the data on the grid. Place a new button on the form, set its caption
to Filter, set its name to bttnFilter, and insert the following statements in its Click event
handler to filter the rows of the grid with their product names:

Private Sub bttnFilter_Click(…) Handles bttnFilter.Click
Dim filter As String
filter = InputBox("Enter product name, or part of it")
ProductsBindingSource.Filter =

"ProductName LIKE ‘%" & filter.Trim & "%’"
End Sub

Run the application, and click the Filter button to limit the rows displayed on the grid by
their product names. If you’re searching for products that contain the string sauce in their
name, the Filter property limits the selection as if you had requested products with the
following WHERE clause (the percent sign is a SQL wildcard that matches any string):

WHERE ProductName LIKE ‘%sauce%’

To restore the original selection, set the filter expression to a blank string. You can design
an auxiliary form on which users can enter multiple criteria and filter products by their price
or stock, their supplier, and so on. With a bit of programming effort, you can apply multiple
criteria, such as products of a specific category that are on order, out-of-stock items from a
specific supplier, and so on.

The Find method searches a value in a specific column. Both the column name and search
argument are specified as arguments to the method, and the return value is the row’s position
in the DataTable. To select the row, set the BindingSource object’s Position property to the
value returned by the Find method. The code behind the Find button in the sample project is
the following:

Dim search As String
search = InputBox("Enter exact product name")
Dim idx As Integer =

ProductsBindingSource.Find("ProductName", search)
ProductsBindingSource.Position = idx

782 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

The Find method is not the most convenient search tool, because you have to specify the
exact value of the field you’re looking for. To retrieve the current row in the DataTable mapped
to the BindingSource, use the Current property; to determine the number of rows in the same
DataTable, read the value of the Count property. The Current property returns an object, which
you must cast to the DataRowView type and call its Row property:

CType(ProductsBindingSource.Current, DataRowView).Row

This expression returns a DataRow object, which you can cast to a ProductsRow type. You will
see examples of using the Current property of the BindingSource class to access the underlying
row in the DataTable later in this chapter.

Handling Identity Columns

If you attempt to add a row to the DataGridView control, the new row’s ID will be –1 (or
another negative value if you have added multiple rows). This is a valid value for an Identity
column, as long as its AutoIncrement property is set to –1. But the ProductID column in the
database has an AutoIncrement value of 1 — why is it different in the DataSet? When the edi-
tor created the DataSet, it changed this setting to avoid conflicts during the updates. If new
products were assigned valid IDs (positive values following the last ID in the DataSet) at the
client, consider what might happen when the edits were submitted to the database. The IDs
provided by the DataSet might be taken in the database, and the Insert operation would fail.
To avoid this conflict, the DataSet uses negative identity values. When these rows are submitted
to the database, they’re assigned a new ID by the database, which is a positive value.

However, a problem remains. The new ID isn’t transferred back to the client, and the
DataSet displays negative IDs. One solution is to populate the DataSet again; however, there’s
a lot more to learn about submitting edited rows to the database, and we’ll return to this topic
later in this chapter.

You can experiment with this form in the DataSetOperations project by editing the products,
adding new ones, and deleting rows. If you attempt to add a new row, you’ll get an error mes-
sage indicating that the Discontinued column doesn’t accept nulls. The default value of the
check box on the DataGrid control is neither True nor False (it’s Null), and you must validate
its value. The simplest solution to the problem is to apply a default value to the Discontinued
column, and the following section describes how to edit the properties of the DataSet.

Adjusting the DataSet

To adjust the properties of the DataSet, right-click the DataSet in the Data Sources window,
and choose Edit DataSet With Designer from the context menu. The DataSet Designer window,
shown in Figure 18.9, will appear.

Right-click the header of the Discontinued column in the Products table, and choose
Properties to see the properties of the DataColumn. One of them is the DefaultValue property,
which is set by default to Null. Change it to 0 or False to impose a default value for this
column. In the DataSet Designer, you can examine the data types of the columns of each table,
drop or create new relations between tables, and set other interesting properties, such as the
Caption property of a column, which will be used to name the column of the bound Data-
GridView control, or the NullValue property, which determines how the DataSet will handle
Null values. The default value of the NullValue property is Throw Exception. Every time the
application requests the value of a Null field, a runtime exception is thrown. You can set it to

DATA BINDING 783

Figure 18.9

Editing the DataSet with
visual tools

Empty (in which case an empty string is returned) or Nothing (in which case a Nothing value
is returned). You can also set the autoincrement values of Identity columns here. If you select
the ProductID column in the Products table, you’ll see that the wizard has set the column’s
AutoIncrementSeed and AutoIncrementStep to –1, for the reasons explained already.

While you’re in the DataSet Designer, right-click the Product DataTable, and choose Con-
figure. This starts the TableAdapter Configuration Wizard. The first page of the wizard, shown
in Figure 18.10, shows the SQL statement that the Data Source Configuration Wizard generated
while you were selecting the columns you wanted to include in the DataSet. You can edit this
statement by adding more columns, a WHERE clause to limit the number of rows to be selected,
and an ORDER BY clause. To edit the SELECT statement, you modify it right on this page, or you
can click the Query Builder button to view the Query Builder dialog box that lets you specify
complicated queries with visual tools.

Figure 18.10

Editing the SELECT
statement that pop-
ulates the Products
DataTable with the
TableAdapter Configu-
ration Wizard

784 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

If you click the Advanced Options button, you will see the Advanced Options dialog box,
shown in Figure 18.11. Here you must specify which statements should be generated by the
wizard. If you’re developing a browser application, deselect the first check box: Generate Insert,
Update, And Delete Statements. If you clear this option, the other two options will be disabled.

Figure 18.11

The Advanced Options
dialog box lets you know
how the TableAdapter
will submit the updates
to the underlying tables.

The Use Optimistic Concurrency option affects the UPDATE and DELETE statements generated
by the wizard. If this check box is selected, the two statements will not update or delete a
row if it has been edited by another user since it was read. The wizard will generate two long
statements that take into consideration the values read from the database into the DataSet
at the client (the row’s original values), and if any of the row’s columns in the database
are different from the original version of the same row in the DataSet, it won’t update or
delete the row. By using optimistic concurrency, you’re assuming that it’s rather unlikely
that two users will update the same row at the same time. If the row being updated has
already been modified by another user, the update operation fails. If you clear this option, the
UPDATE/DELETE statements take into consideration the row’s primary key and are executed,
even if the row has been modified since it was read. In effect, the last user to update a row
overwrites the changes made by other users.

The last option in the Advanced Options dialog box specifies whether the TableAdapter
reads back the inserted/updated rows. You should leave this check box selected so that
the identity values assigned by the database to new rows will be read back and update the
DataSet.

Implementing Optimistic Concurrency

Curious about the statements that take into consideration the original values of the row being
updated? Here’s the DELETE statement for the Products row that uses optimistic concurrency:

DELETE FROM [dbo].[Products]
WHERE (([ProductID] = @Original_ProductID) AND

([ProductName] = @Original_ProductName) AND

DATA BINDING 785

((@IsNull_SupplierID = 1 AND
[SupplierID] IS NULL) OR
([SupplierID] = @Original_SupplierID)) AND

((@IsNull_CategoryID = 1 AND
[CategoryID] IS NULL) OR
([CategoryID] = @Original_CategoryID)) AND

((@IsNull_QuantityPerUnit = 1 AND
[QuantityPerUnit] IS NULL) OR
([QuantityPerUnit] = @Original_QuantityPerUnit)) AND

((@IsNull_UnitPrice = 1 AND
[UnitPrice] IS NULL) OR
([UnitPrice] = @Original_UnitPrice)) AND

((@IsNull_UnitsInStock = 1 AND
[UnitsInStock] IS NULL) OR
([UnitsInStock] = @Original_UnitsInStock)) AND

((@IsNull_UnitsOnOrder = 1 AND
[UnitsOnOrder] IS NULL) OR

([UnitsOnOrder] = @Original_UnitsOnOrder)) AND
((@IsNull_ReorderLevel = 1 AND

[ReorderLevel] IS NULL) OR
([ReorderLevel] = @Original_ReorderLevel)) AND

([Discontinued] = @Original_Discontinued))

The same statement with the optimistic concurrency off is quite short:

DELETE FROM [dbo].[Products]
WHERE ([ProductID] = @Original_ProductID)

Examine the long statement to understand how optimistic concurrency is handled. The first
term in the WHERE clause locates a single row based on the product ID, which is unique.
This is the row that should be deleted (or updated by the UPDATE statement). However, the
statement will not select the row if any of its fields have been edited since you read it from
the database. If another user has changed the price of a specific product, the following term
will evaluate to false, and the WHERE clause will return no row to be deleted.

When you return to the configuration wizard, click Next, and you will see the dialog box
shown in Figure 18.12, where you can specify the methods that the wizard will generate for
you. The Fill method populates a DataTable, and the GetData method returns a DataTable
object with the same data; the last option in the dialog box specifies whether the DataSet will
expose methods for inserting/updating/deleting rows directly against the database.

Click Next again, and the wizard will regenerate the NorthwindDataSet class, taking into
consideration the options you specified in the steps of the wizard.

In the following section, we’ll let the editor build simple data-driven applications for us.
You’re going to see how to bind other controls to typed DataSets and how to customize the
DataGridView control.

786 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Figure 18.12

Selecting the methods
to be generated by the
TableAdapter Configura-
tion Wizard

Designing Data-Driven Interfaces the Easy Way
Instead of binding the DataGridView control through its properties, you can let Visual Studio
perform the binding for you:

1. Add a third form to the DataSetOperations sample project, the Form3 form, and make it the
project’s Startup object.

2. To display the rows of the Products table on a DataGridView control, open the Data
Sources window, and select the Products table. As soon as you select it, an arrow appears
next to its name. Click this arrow to open a drop-down list with the binding options for the
DataTable. The DataTable can be bound to the following:

◆ A DataGridView control, which will display all rows and all columns of the table

◆ A ListBox or ComboBox control, which will display a single column of all rows

◆ A number of TextBox controls (the Details option), one for each column

3. Select the DataGridView option, and then drop the Products DataTable on the form.

The editor will create a DataGridView control and bind it to the Products DataTable. In
addition, it will create a toolbar at the top of the form with a few navigational and editing but-
tons, as shown in Figure 18.13 (shown at design time so you can see the components generated
by the editor). Notice that the toolbar contains one button for deleting rows (the button with
the X icon) and one button for submitting the edits to the database (the button with the disk
icon). The Filter, Find, and Refresh Data buttons were not generated by the editor; I’ve added
them to the toolbar and inserted the appropriate code in their Click event handlers. You’ve
already seen the code that implements all three operations.

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 787

Figure 18.13

Binding a form to a
DataTable

The Designer will also generate the components listed in Table 18.1; these will appear in the
Components tray.

As for the code generated by the editor, here it is:

Private Sub ProductsBindingNavigatorSaveItem_Click(…) Handles
ProductsBindingNavigatorSaveItem.Click

Me.Validate()
Me.ProductsBindingSource.EndEdit()
Me.TableAdapterManager.UpdateAll(Me.DSProducts)

End Sub

Private Sub Form2_Load(…) Handles MyBase.Load
‘TODO: This line of code loads data into the ‘NorthwindDataSet.Products’ table.
‘You can move, or remove it, as needed.
Me.ProductsTableAdapter.Fill(Me.DSProducts.Products)

End Sub

In the form Load event handler, the Products DataTable is filled with a call to the Products-
TableAdapter class’s Fill method. The other event handler corresponds to the Click event
of the Save button on the toolbar, and it calls the TableAdapterManager class’s UpdateAll
method. This is all it takes to submit the changes made to the data at the client.

788 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Table 18.1: Designer-generated components

Component Description

NorthwindDataSet This is the typed DataSet for the data specified with the Data Source
Configuration Wizard.

ProductBindingSource This is a BindingSource object for the Products table.

ProductsTableAdapter This is an enhanced DataAdapter that exposes the methods for
reading data from the database and submitting the changes made at
the client to the database. The TableAdapter class differs from the
DataAdapter class in that its Fill method accepts as an argument
an object of the Products type, and not generic DataSet and
DataTable objects. The methods of the TableAdapter object know
how to handle rows of the specific type and not any DataRow object.

TableAdapterManager This encapsulates the functionality of all TableAdapter objects on
the form. If you drop additional tables on the form, the editor will
create the corresponding TableAdapter for each one. The Table-
AdapterManager encapsulates the functionality of all individual
TableAdapter objects and exposes the UpdateAll method, which
submits the entire DataSet to the database. The UpdateAll method
of the TableAdapterManager calls the Update method of each
individual TableAdapter in the proper order.

ProductsBindingNavigator This component represents the toolbar added to the form. The
toolbar is a ToolStrip control with custom items and the appropriate
code. The navigational tools generated by the editor are rather
primitive, and you can remove them from the control. Just keep the
code for the Save button, which you’ll need if your application
allows editing of the data.

Let’s see how far this autogenerated application will take us. Run the application, and
edit a few products. Change a few names, set a couple of prices to negative values, set a
product’s category to an invalid category ID (any value exceeding 7 is invalid, unless you
have added new categories), add a couple of new products (they will be assigned negative
IDs, as expected), and delete some products. As you can guess, you can’t delete rows from the
Products table, because they’re all referenced by the Order Details table, but this table doesn’t
exist in the DataSet, so it’s perfectly legal to delete products in the context of the DataSet.
When the edits are submitted to the database, the deletions will be rejected, of course.

Let’s see how the Save button on the toolbar handles the updates. Click the Save button on
the toolbar, and you will get an error message indicating that a row has violated a referential
or check constraint, depending on the order in which the rows were submitted to the database.
The UpdateAll method of the ProductsTableAdapter object will give up after the first failure.

As you recall, the DataAdapter class, on which the TableAdapter class is based, exposes the
ContinueUpdateOnError property. Unfortunately, the TableAdapter class doesn’t expose this
property. However, you can access the underlying DataAdapter through the Adapter property,
and set the ContinueUpdateOnError property to True. Insert the following method in front of
the statement that calls the UpdateAll method:

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 789

Me.TableAdapterManager.ProductsTableAdapter.
Adapter.ContinueUpdateOnError = True

Run the application again, edit the data on the grid, and submit the changes to the data-
base. This time the application won’t crash with an error message. Instead, the rows that failed
to update the underlying table in the database will be marked with an exclamation mark
icon in the row’s header, as shown in Figure 18.14. We managed to submit all the rows to
the database, regardless of whether they successfully updated the Products table, through the
ProductsTableAdapter object. The UpdateAll method retrieved the error messages returned
by the DBMS and displayed them on the control. To see the reason why each row failed
to update the Products table, hover the pointer over the error icon, and you will see the
description of the error in a ToolTip box.

Figure 18.14

Viewing the update
errors on the DataGrid-
View control

You can also create a list of the rows that failed to update their underlying table along with
the error message returned by the database. The code for iterating through a table’s rows and
examining the RowError property was presented in the preceding chapter. You can easily add
an extra button on the toolbar and use it to display an auxiliary form with the update errors.

By the way, the error messages displayed on the DataGridView control are the ones
returned by the DBMS (SQL Server in our case). If you want, you can set each row’s RowError
property to a different, more meaningful description.

Enhancing the Navigational Tools
The navigational tools on the BindingNavigator are quite primitive. Let’s enhance the tool-
bar at the top of the form by adding two buttons, the Filter and Find buttons of the preceding
section. Stop the application, and open Form3 in design mode.

790 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

To add a new element to the ToolBar control, expand the combo box that’s displayed at
design time after the existing elements. From the drop-down list, select the Button item to
add a Button control to the toolbar. Select the newly added button, and set its DisplayStyle
property to Text. (Normally this property is set to Image, because the items on a toolbar are
identified by an icon; you should find a few good icons and use them in your applications.)
Set its Text property to Filter and its name to bttnFilter. Follow similar steps for the Find
button as well. Then copy the code of the two buttons in Form2, and paste it in the Click event
handlers of the two ToolStrip buttons. You just added a filtering and search feature to your
application.

The Find feature isn’t very practical with product names, because users have to specify the
full and exact product name. This feature should be used with fields such as IDs, book ISBNs,
and email addresses. To find a product by name, most users would use the Filter button to
limit the selection on the grid and then locate the desired product.

You can also use two TextBox controls in place of the two Button controls on the toolbar.
If you’d rather allow users to enter their search and filter arguments on the toolbar, you must
intercept the Enter keystroke from within the respective control’s KeyUp event and call the same
code to filter or search the rows of the grid.

Now, add yet another button to the toolbar, and set its caption to Refresh Data. This button
will reload the data from the database by calling the Fill method of the TableAdapter. Before
loading the data, however, you must make sure that the DataSet doesn’t contain any changes
by examining the HasChanges property. If it’s True, you must prompt the user accordingly.
Notice that if a row failed to update the database, the DataSet will contain changes, even
though the edits were submitted to the database. Some of the changes can be undone, but not
all of them. A deleted row, for example, is no longer visible on the control, and users can’t
restore it. Listing 18.5 shows the code behind the Refresh Data button.

Listing 18.5: Refreshing the DataSet

Private Sub bttnRefreshData_Click(...) Handles bttnRefreshData.Click
If NorthwindDataSet.HasChanges Then

Dim reply As MsgBoxResult =
MsgBox("The DataSet contains changes." &
vbCrLf & "Reload data anyway?",
MsgBoxStyle.YesNo Or MsgBoxStyle.Exclamation)

If reply = MsgBoxResult.No Then Exit Sub
End If
Me.ProductsTableAdapter.Fill(

Me.NorthwindDataSet.Products)

End Sub

We developed a fairly functional application for browsing and editing one of the basic
tables of the Northwind database, the Products table. The interface of the application is a bit
rough around the edges (that’s the least you can say about an interface that displays category
and supplier IDs instead of category and supplier names), but we’ll come back and adjust the
interface of the application in a moment. First, I’d like to discuss another way of using the

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 791

DataGridView control, namely, how to bind related tables to two or more DataGridView con-
trols. This arrangement is the most common one, because we rarely work with a single table.

Binding Hierarchical Tables
In this section, you’ll build an interface to display categories and products on two Data-
GridView controls, as shown in Figure 18.15. The top DataGridView control is bound to the
Categories DataTable and displays all the category rows. The lower DataGridView control
displays the products of the category selected in the top control. In effect, you’ll create two
DataGridView controls linked together.

Figure 18.15

Viewing related data on
two DataGridView con-
trols with the Linked-
DataTables application

Follow these steps:

1. Start a new Windows Forms Application project (it’s the LinkedDataTables project avail-
able for download from www.sybex.com/go/masteringvb2010), and create a new DataSet
that contains the Products, Categories, and Suppliers tables. Uncheck the Picture column
from the Categories table. Name it DS.

2. In the Data Sources window, select each table, and set its binding option to DataGridView.

3. Drop the Categories table on the form. The editor will place an instance of the DataGrid-
View control on the form and will bind it to the Categories table. It will also create a
BindingNavigator object, which we don’t really need, so you can delete it. When you drop
multiple tables on a form, the editor generates a single toolbar. The navigational buttons
apply to the first DataGridView control, but the Save button submits the changes made in
all DataTables.

4. Locate the Products table under the Categories table in the Data Sources window, and drop
it onto the form. If you drop the Products table of the original DataSet onto the form, you’ll

792 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

end up with two grids that are independent of one another. For a more meaningful inter-
face, you must link the two grids so that when the user selects a category in the upper grid,
the corresponding products are shown automatically in the lower grid. The Products table
under the Categories table in the data source represents the rows of the Products table that
are related to each row of the Categories table. Just drag the Products table under the Cat-
egories table, and drop it onto the form to add the grid and show the Product data in a
linked fashion.

Now you can run the application and see how it behaves. Every time you select a category,
the selected category’s products appear in the lower grid. If you change the CategoryID field
of a product, that particular product disappears from the grid, as expected, since it belongs
to another category after the CategoryID changes. You must select the category with the
CategoryID you assigned to a product to see the product in the Products grid. Obviously, this
is not the best way to edit the category of a product. You will see how to handle lookup tables
in the ‘‘Displaying Lookup Columns in a DataGridView Control’’ section later in the chapter.

Experiment with the new interface. Start editing the two tables on the form. Add new
categories, and then add products that belong to these categories. If you attempt to delete a
category, the DataGridView will happily remove the row from its table. But didn’t the DataSet
pick the relationships from the database’s definition? Now that both tables are at the client as
DataTables with a relationship between them, shouldn’t the DataSet reject this operation?

Let’s take a look at the properties of the relationship between the two tables. Right-click the
DS DataSet in the Data Sources window, and from the context menu, select Edit DataSet In
Designer to see the DataSet Designer window. Right-click the line that connects the Products
and Categories tables (this line represents the relationship between the two tables), and select
Edit Relation to open the Relation dialog box, shown in Figure 18.16.

Figure 18.16

Setting relation
properties

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 793

The FK_Products_Categories relation is marked as Relation Only. In the database, this
is a relation and a foreign key constraint. The relation simply relates the two tables if their
CategoryID fields match. Most importantly, the constraint won’t let you insert a product that
points to a nonexisting category or delete a category that has related rows in the Products
table. Select the radio button Both Relation And Foreign Key Constraint, and then close the
dialog box.

Try to run the application. If you receive the following error:

"ConstraintException was unhandled: Failed to enable constraints. One or more rows
contain values violating non-null, unique, or foreign-key constraints."

right after running the application, make sure that the data is loaded in the right order in the
form Load event. The Categories DataTable should be filled first, and the Products DataTable
should be filled second:

Private Sub Form1_Load(...) Handles MyBase.Load
Me.CategoriesTableAdapter.Fill(Me.DS.Categories)
Me.ProductsTableAdapter.Fill(Me.DS.Products)

End Sub

Foreign key constraints are subject to three rules: the Update, Delete, and Accept/Reject
rules, as shown in Figure 18.16. These rules determine what should happen when a parent row
is removed from its table (the Delete rule), when a parent ID is modified (the Update rule), and
when users accept or reject changes in the DataSet (the last rule). A rule can be set to None
(no action is taken, which means that a runtime exception will be thrown), Cascade (the child
rows are updated or deleted), SetNull (the foreign keys of the related rows are set to Null), and
SetDefault (the foreign keys of the related rows are set to their default value).

I usually don’t change the rules of a relationship in the DataSet, unless I’ve used rules in the
database. Leave them set to None, and run the application again. You should avoid setting the
Delete and Update rules to Cascade, because this can lead to irrecoverable errors. If you delete
a category, for example, it will take with it the related products, and each deleted product will
take with it the related rows in the Order Details table. A simple error can ruin the database.
There are other situations, which aren’t as common, where the Cascade rule can be used safely.
When you delete a book in the Pubs database, for example, you want the book’s entries in
the TitleAuthors table to be removed as well. No rows in the Authors table will be removed,
because they’re primary, and not foreign, keys in the relation between the TitleAuthors and
Authors tables.

Let’s return to the interface for editing products and categories. Attempt again to remove a
category. This time you’ll get a lengthy error message that ends with the following suggestion:

To replace this default dialog please handle the DataError event.

Let’s do exactly that to avoid displaying a totally meaningless message to our users. Open
the DataError event handler for both controls, and insert the following statement:

MsgBox(e.Exception.Message)

Run the application again, and delete a category. This time you’ll see the following error
message, and the program won’t remove the category from the DataGridView, because it can’t
remove it from its DataSet:

Cannot delete this row because constraints are enforced
on relation FL_Products_Categories, and deleting this
row will strand child rows.

794 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

You can still delete products and set their prices to negative values. These two operations
are invalid in the context of the database but quite valid in the client DataSet.

Using the BindingSource as a Data Source

As you recall, binding a DataGridView control to a DataTable is possible by setting the
control’s DataSource property. Binding to two related tables is a bit more involved, so let’s see
how it’s done (short of dropping the two tables on the form and letting the editor handle the
details).

To link the two DataGridView controls, you must create a BindingSource object for each
one. The BindingSource class encapsulates a data source and is itself a data source. Initialize an
instance of this class by setting its DataSource and DataMember properties for the Categories
table:

Dim categoriesBS As New BindingSource
categoriesBS.DataSource = DS
categoriesBS.DataMember = "Categories"

Then set the upper grid’s DataSource property to the categoriesBS object. As for the lower
grid, you must create a new BindingSource object and set its DataSource property not to the
actual DataSet but to the BindingSource object of the upper grid:

Dim productsBS As New BindingSource
productsBS.DataSource = categoriesBS

Now here’s the tricky part: The DataMember property must be set to the name of the rela-
tionship between the two tables in the DataSet so that it’s linked to the products of the category
selected in the upper control:

productsBS.DataMember = "FK_Categories_Products"

After the two BindingSource objects have been set up, assign them to the DataSource
property of their corresponding controls:

DataGridView1.DataSource = categoriesBS
DataGridView2.DataSource = productsBS

These actions were performed for you automatically, as you dropped the two tables on
the form. If you want to bind two related tables of an untyped DataSet, you must set these
properties from within your code.

Adjusting the Appearance of the DataGridView Control
The DataGridView control is bound to a single table as soon as you drop the table on the form,
but its default appearance leaves a lot to be desired. To begin with, we must set the widths
of the columns and hide certain columns. The product IDs, for example, don’t need to be
displayed. The numeric fields should be formatted properly and aligned to the right, and the

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 795

foreign key fields should be replaced by the corresponding descriptions in the primary table.
We also should display category and supplier names, instead of IDs.

The DataGridView control exposes a large number of properties, and you can experiment
with them in the Properties window. They have obvious names, and you can see the effects
of each property on the control as you edit it. Beyond the properties that apply to the entire
control, you can also customize the individual columns through the Edit Columns dialog box.

To tweak the appearance of the columns of the DataGridView control, select the control
with the mouse, and open the Tasks menu by clicking the little arrow in the upper-right corner
of the control. This menu contains four check boxes that allow you to specify whether the user
is allowed to add/edit/delete rows and reorder columns. To adjust the appearance of the grid’s
columns, click the Edit Columns hyperlink in the menu, and you will see the Edit Columns
dialog box, shown in Figure 18.17, where you can set the properties for each column.

Figure 18.17

Use the Edit Columns
dialog box to customize
the appearance of the
DataGridView control.

In the Edit Columns dialog box, you can set each column’s header and width, as well as the
minimum width of the column. (Users won’t be allowed to make the column narrower than
its minimum width.) You can also set the AutoSize property to True to let the control decide
about column widths, but this may result in a very wide control. You can lock certain columns
during editing by setting their ReadOnly property, or you can make other columns invisible
with the Visible property.

To make the appearance of two grids more uniform on the Products per Category form in
your LinkedDataTables projects, make both grids of the same width. This will leave the Cate-
gories grid with some empty, grayed-out space, since it has a smaller number of columns than
the Products grid. This space can be easily covered by Category’s Description property. Open
the Edit Columns dialog box, and set the AutoSizeMode of the Description column to Fill.

The most interesting setting in this dialog box is the ColumnType property, which is the type
of the column. By default, all columns are of the DataGridViewTextBoxColumn type, unless

796 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

the corresponding field is a Boolean or Image type. A DataGridView column can be one of the
following types:

DataGridViewButtonColumn This displays a button whose caption is the bound field. Use
buttons to indicate that users can click them to trigger an action. To program the Click event of
a button column, insert the appropriate code in the control’s CellContentClick event handler.
Your code must detect whether a column with buttons was clicked and, if so, act accordingly.
Change the column that displays the product names into a button column, and then insert the
following statements in the CellContentClick event handler of the DataGridView control:

Private Sub ProductsDataGridView_CellContentClick(
ByVal sender As System.Object,
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs)

Handles ProductsDataGridView.CellContentClick
If e.ColumnIndex = 1 Then

MsgBox(ProductsDataGridView.Rows(e.RowIndex).
Cells(e.ColumnIndex).Value.ToString)

End If
End Sub

The code shown here reads the caption of the button that was clicked. You can just as easily
read the product’s ID and use it to retrieve product details and display them on another form.

DataGridViewCheckBoxColumn This column type is used with True/False columns (the
bit data type in SQL Server). The Discontinued column of the Products table, for example, is
mapped automatically to a DataGridView column of this type.

DataGridViewComboBoxColumn This column type is used for foreign keys or lookup
fields. You will shortly see how to change the CategoryID and SupplierID columns into
ComboBox columns so that users can see category and supplier names instead of IDs. When
editing the table, users can expand the list and select another item, instead of having to enter
the ID of the corresponding item. Figure 18.18 shows the DataGridView control for displaying
products with a ComboBox column for categories and suppliers.

Figure 18.18

Displaying product
categories and sup-
pliers in a ComboBox
control on the Data-
GridView control

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 797

DataGridViewLinkColumn This is similar to the DataGridViewButtonColumn type, only it
displays a hyperlink instead of a button. Use the same technique outlined earlier for the Button
columns to detect the click of a hyperlink.

DataGridViewImageColumn Use this column type to display images. In general, you
shouldn’t store images in your databases. Use separate files for your images, and include only
their paths in the database. Keep in mind that all rows of a DataGridView control have the
same height, and if one of them contains an image, the remaining cells will contain a lot of
white space.

DataGridViewTextBoxColumn This is the most common column type, and it displays the
field in a text box.

Notice that as you change the style of a column, the Bound Column Properties pane
of the Edit Columns dialog box is populated with the properties that apply to the specific
column type. For a combo box column, for example, you can set the DropDownWidth and
MaxDropDownItems properties. You can even populate the combo box with a set of values
through the Items property, just as you would with a regular combo box on the form.

There aren’t any properties in the Edit Columns dialog box to adjust the appearance of the
selected column. To change the appearance of a column, select the DefaultCellStyle property,
and click the button with the ellipses next to it to see the CellStyle Builder dialog box, which is
shown in Figure 18.19.

In the CellStyle Builder dialog box, you can set the column’s font, set its foreground
and background colors, specify whether the text should wrap in its cell, and determine the
alignment of the cell’s contents. Turning on the wrap mode with the WrapMode property
doesn’t cause the rows to be resized automatically to the height of the tallest cell. To have
rows resized automatically, you must set the control’s AutoSizeRowsMode property to All.

Figure 18.19

Use this dialog box to
adjust the appearance of
a column in a DataGrid-
View control.

798 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

The other possible settings for this property are None, AllHeaders, AllCellsExceptHeaders,
DisplayedHeaders, DisplayedCellsExceptHeaders, and DisplayedCells. Finally, you must
set the Format property for all numeric and date fields and size the columns according to the
data that will be displayed on the control.

This feast of customization techniques is possible because the DataGridView control is
bound to a typed DataSet. If you want to use the techniques of the previous chapter to bind a
DataGridView control to an untyped DataSet, you can still use the Edit Columns dialog box to
add and customize the control’s columns, but the process isn’t nearly as convenient. You must
also remember to set the control’s AutoGenerateColumns property to False and each column’s
DataPropertyName property to the name of the database column that will be mapped to the
corresponding grid column. If the AutoGenerateColumns property is left to its default value,
which is True, the control will generate a new column for each data column in its data source.

Displaying Lookup Columns in a DataGridView Control

In this section, you’re going to change the way a product’s category and supplier are displayed.
Instead of IDs, you must display category and supplier names. Moreover, you will display each
product’s category and supplier in a ComboBox control so that users can quickly select another
value when editing the product. Let’s return to the LinkedDataTables project and set up the
bottom GridView control.

Select the DataGridView control with the products, and from the Task menu choose Edit
Columns. In the Edit Columns dialog box, select the CategoryID column, and make it invisible
by setting its Visible property to False. Then click the Add button to add a new column. In
the Add Column dialog box, which is shown in Figure 18.20, click the Unbound Column radio
button, and set the column’s Name property to colCategory and its HeaderText property to
Category. Click Add to add the column to the DataGridView control and then Close to close
the dialog box.

Back in the Edit Columns dialog box, move the new column to the desired position
by using the arrow buttons. You must now set up the new column so that it displays the
name of the category that corresponds to the CategoryID column of the selected product.
Locate the DataSource property, and click the arrow to expand the data sources. Select the
CategoriesBindingSource entry. Then set the DisplayName property to CategoryName and

Figure 18.20

Adding a new column
to the DataGridView
control

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 799

the ValueMember to CategoryID. Click OK to close the dialog box. If you run the application
now, you’ll see that the CategoryID column has been replaced by the Category column, which
displays a ComboBox with the list of all categories. However, the product’s category isn’t auto-
matically selected; you have to drop down the items in the combo box to see the categories, and
you still don’t know the selected product’s category. To link the appropriate category name
to the selected product’s CategoryID value, you must set yet another property, the Data-
PropertyName property. If you expand the list of available columns for this property, you’ll
see the columns of the Products table. Select the CategoryID column so that the combo box
will display the category name that corresponds to the category ID of the selected product
row. Now you have a much better interface for editing the products. You no longer need to
enter IDs; you see the name of the selected product’s category, and you can select a product’s
category from a drop-down list by using the mouse.

Of course, you must do the same with the Suppliers table. Right-click the NorthwindDataSet
object in the Data Sources window, and choose Edit DataSet With Designer from the context
menu to open the DataSet in design mode.

Editing the Data in Hierarchical Tables
To be able to display the meaningful column (typically the Name column) of the lookup
table entry, you need to make the data in the lookup table available to the application. If
the table with the lookup values isn’t part of your DataSet, you can easily add a new DataTable
to the DataSet. Right-click somewhere on the DataSet Designer’s surface, and choose Add �
TableAdapter from the context menu. A new DataTable will be added to the DataSet, and
you’ll be prompted with a wizard similar to the Data Source Configuration Wizard to select the
rows that will be used to populate the DataTable. Alternatively, you can right-click the DataSet
in the Data Sources view, and select the Edit DataSet With Designer option. Take a look at the
‘‘Adjusting the DataSet’’ section earlier in this chapter and Figure 18.9 to see how to edit the
DataSet in DataSet Designer.

In the case of lookup tables, you would choose the ID column so that the relationship can
be maintained and the Name column whose value will be displayed in the grid. In your Linked-
DataTables project, you added the Suppliers table when you created the DS DataSet.

Let’s make the lookup table data available for an update operation on the Products grid.
The following steps are similar to the steps performed when making categories displayed using
the ComboBox inside the DataGridView in the previous section.

Hide the SupplierID column of the Suppliers table, and replace it on a grid with a
ComboBox column that contains the names of the suppliers. Select the Edit Column command
from the Products grid’s Tasks menu, and set the properties for a newly added Suppliers
column as listed in Table 18.2.

Notice that the ValueMember property is the SupplierID column of the Suppliers table,
but the PropertyName property’s value is the SupplierID column of the Products DataTable,
because the control is bound to the Products table. The Designer will replace the name of the
Suppliers DataTable with the SupplierBindingSource object. Run the application now, edit a
few products, and then save the edits. You can also edit the categories (names and descriptions
only). As a reminder, even the DataSet that was generated by the wizard doesn’t enforce check
constraints, and you can set the price of a product to a negative value. When you attempt to
submit the changes to the database, a runtime exception will be thrown.

The code behind the Submit Edits button isn’t new to you. The code sets the Continue-
UpdateOnError property of the underlying DataAdapter objects to True and then calls the
UpdateAll method of the TableAdapterManager to submit the changes made to all tables.

800 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

Table 18.2: Column settings for the Supplier column

Property Setting

ColumnType DataGridViewComboBoxColumn

DataSource SuppliersBindingSource

DisplayMember CompanyName

ValueMember SupplierID

PropertyName SupplierID

The rows that will fail to update the underlying tables in the database will be marked as
errors. The DataGridView control marks the rows in error with an icon of an exclamation mark
in the column’s header, as shown earlier in Figure 18.14. If you hover over this icon, you’ll see
a description of the error in a ToolTip box.

Updating Hierarchical DataSets

Updating hierarchical DataSets isn’t as simple as calling the Update or UpdateAll method. In
the LinkedDataTables sample project, I’ve called the UpdateAll method of the TableAdapter-
Manager class, which submits first the changes in the parent table (the Categories table) and
then the changes in the related table(s). Unless you commit the new rows to the Categories
table first, the database will refuse to insert any products that use the IDs of the categories that
do not exist in the Categories table. But even if you update the Categories table first and then
the Products table, it’s not guaranteed that all updates will take place. The order of updates
in a hierarchical DataSet is very important, and here’s why: Let’s say you’ve deleted all
products of a specific category and then the category itself. As soon as you attempt to remove
the specific row from the Categories table in the database, the database will return an error
indicating that you can’t delete a category that has related rows, because the relevant products
haven’t been removed from the Products table in the database yet.

The proper update order is to submit the deleted rows of the Products table, then perform
all updates in the Categories table, and finally submit the insertions and modifications in the
Products table. You’ll see shortly how to retrieve deleted/modified/new rows from a Data-
Table at the client (we’ll use each row’s DataRowVersion property) and then how to pass these
rows to the Update method.

In the meantime, you can experiment with the LinkedDataTables project and perform a few
updates at a time. Let’s say you want to delete all products in a specific category and then the
category itself. To submit the changes without violating the primary/foreign key relationship
between the two tables, you must first delete the products and then update the database by
clicking the Submit Edits button. After the Products table is updated, you can delete the cate-
gory from the Categories table and then submit the changes to the database again.

In this section, you’ve built a functional interface for editing the categories and products of
the Northwind database. You started by creating a DataSet with the three tables, then dropped
them on the form to instantiate two DataGridView controls, and then tweaked the appearance
of the two controls with point-and-click operations. We even managed to display combo
boxes right in the DataGridView control without a single line of code. The DataGridView

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 801

control provides the basic editing features, and you were able to put together an interface for
your data without any code. You did have to write a bit of code to submit the changes to the
database, because the code generated by the wizard couldn’t handle anything but the best-case
scenario. Real-world applications must take into consideration all possible scenarios and handle
them gracefully.

Data binding allows you to write data-driven applications quickly, mostly with point-and-
click operations, but the default interfaces generated by the wizards are not perfect. You’ll see
shortly how to use data binding to produce more-elegant interfaces, but they’ll require a bit
of code. Another problem with data binding is that in most cases you’ll end up filling large
DataSets at the client — and this is not the best practice with data-driven applications. If your
application is going to be used by many users against a single server, you must retrieve a rela-
tively small number of rows from the database and submit the edits as soon as possible. If you
keep too much data at the client and postpone the submission of edited rows to the database,
you’re increasing the chances of concurrency errors. Other users may already have changed the
same rows that your application is attempting to update. Of course, you can disable optimistic
concurrency and overwrite the changes made by other users, if the nature of the data allows it.

The most common approach is to design a form with search criteria, on which users will
specify as best as they can the rows they need. Then you can populate the client DataSet
with the rows that meet the specified criteria. If you’re writing a connected application, submit
the changes to the database as soon as they occur. If you want the users to control when the
updates are submitted to the database, display the number of modified/inserted/deleted rows
in the form’s status bar. You can even pop up a message when the number of edited rows
exceeds a limit.

Building More-Functional Interfaces
Editing large tables on a grid isn’t the most flexible method. In this section, you’ll build an
alternate interface for editing the Products table, as shown in Figure 18.21. This is the form of
the Products sample project, which uses a data-bound ListBox control to display product names
and text boxes for the individual fields. The toolbar at the top allows you to add new rows,

Figure 18.21

An alternate inter-
face for editing the
Products table

802 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

delete existing ones, and submit the changes to the database. All the controls on the form are
data bound, and the application contains very little code.

Here’s how to get started:

1. Start a new Windows Forms Application project, the Products project, and create a
new DataSet, NorthwindDataSet, with the three usual tables: Products, Categories, and
Suppliers.

2. Change the binding option for the Products DataTable to ListBox. First, select the
Products DataTable in the DataSources window. After selecting the Products DataTable,
a ComboBox-style arrow will become visible for the Products DataTable that you can
expand. Click the arrow. Next, select the Customize option in the Data Sources view on the
Products DataTable to open the Options window. Expand the Windows Forms Designer
node in the Options list. Select the Data UI Customization node. Select List For Data Type.
In the Associated Controls list, select the ListBox.

3. Drop the Products DataTable onto the form. In the Properties window, you must make
sure that the ListBox control is properly bound: Its DataSource property has been set
to the ProductsBindingSource object that was generated by the editor when you dropped
the DataTable on the form, its DisplayMember property has been set to ProductName
(because it’s the first text column in the table), and its ValueMember property has been
set to ProductID (because it’s the table’s key). If you want to display a different field to
identify the products, change the DisplayMember property.

4. Now drop all the fields of the Products DataTable onto the form. The editor will create the
appropriate text boxes and bind them to their fields.

5. Rearrange the controls on the form, and delete the text boxes that correspond to the
CategoryID and SupplierID columns. Place two ComboBox controls in their place. By the
way, even if you set the binding option for the CategoryID and SupplierID columns to
ComboBox, you’ll end up displaying IDs in the corresponding controls, not category and
supplier names. You can’t use any data-binding techniques to automatically set up two
lookup fields.

6. Drop two instances of the ComboBox control on the form, and name them cbCategory-
Name and cbCompanyName. Select the first one, and set the data-binding properties as
follows:

◆ The DataSource is where the control will get its data, and it should be Categories-
BindingSource, because we want to populate the control with all the category names.

◆ The DisplayMember property is the column you want to view on the control and must
be set to the CategoryName column of the Categories DataTable.

◆ The ValueMember property is the column that will bind the contents of the combo
box control to the related table and must be set to the CategoryID column of the
Categories DataTable.

◆ Finally, you must set the SelectedValue property, in the DataBindings section of the
Properties window, to the matching column of the child table, which is the CategoryID
column of the ProductsBindingSource. The control will automatically select the row
of the Categories table whose category ID matches the CategoryID column of the
Products DataTable.

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 803

7. Perform similar steps with the other combo box, which displays the CompanyName column
of the Suppliers DataTable and is bound to the SupplierID column of the ProductsTable.

Run the application, and see how it behaves. Every time you select a product in the list,
the product’s details appear in the data-bound text boxes, and its category and supplier are
displayed in the two combo box controls. Use the list to navigate through the products, the
Add button to add a new product, and the Delete button to delete a product. You can edit
the product’s fields on the form, and the edits will be written to the DataSet as soon as you
move to another row.

You have created a functional application for selecting products and viewing their details.
If all you need is a browsing application for the products, you can set the ReadOnly property
of all TextBox controls on the form to True.

If you attempt to enter a new product and leave its Discontinued column set to Null, a run-
time exception will be raised. This problem is easy to fix by specifying a default value for the
Discontinued column. To do so, open the DataSet in the Designer, locate the Discontinued
column in the Products table, and select Properties from the context menu. The DefaultValue
property’s value is DBNull. Set it to False so that unspecified fields will be automatically set
to False.

You’ll also get an error message if you attempt to submit the edits and the DataSet contains
a product with a negative price. Such trivial errors can be caught and handled from within
your code — no need to send the rows to the database and get an error message. Write a few
statements to detect trivial errors, such as negative prices (or negative stocks, for that matter).
First, decide how to handle these errors. Do you want to pop up a message box every time you
detect an error condition? This will drive users crazy. Do you want to reject changes until the
user enters a valid value? It’s a better approach, but remember that data-entry operators don’t
look at the monitor. They expect that the Tab (or Enter) key will take them to the next field.
The best approach is to do what the DataGridView control does: display an error icon next to
the control in error.

Add an instance of the ErrorProvider control on the form. This control displays the exclama-
tion mark icon next to a control. To display the error icon, you must call the control’s SetError
method, passing as arguments the control in error and the message for the error. (The message
will be displayed in a ToolTip box when users hover over the icon.)

To detect errors from within your code, you need to insert some code in the Current-
ItemChanged event handler of the ProductsBindingSource. Insert the statements shown in
Listing 18.6 in this event handler.

Listing 18.6: Catching data-entry errors in your code

Private Sub ProductsBindingSource_CurrentItemChanged(
ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
ProductsBindingSource.CurrentItemChanged

If Not IsNothing(queryResult) AndAlso queryResult.Count < 1 Then Exit Sub
ErrorProvider1.Clear()
Dim product As NorthwindDataSet.ProductsRow
product = CType(CType(

ProductsBindingSource.Current,
DataRowView).Row, NorthwindDataSet.ProductsRow)

804 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

If Not product.IsUnitPriceNull AndAlso
Convert.ToDecimal(product.UnitPrice) < 0 Then

ErrorProvider1.SetError(UnitPriceTextBox,
"PRICE CAN’T BE NEGATIVE!")

End If
If ProductNameTextBox.Text.Trim.Length = 0 Then

If CType(ProductsBindingSource.Current,
DataRowView).Row.RowState <>
DataRowState.Detached Then
ErrorProvider1.SetError(

ProductNameTextBox,
"PRODUCT NAME CAN’T BE BLANK!")

End If
End If

End Sub

This code segment requires some explanation. The CurrentItemChanged event is fired every
time the user selects another row or column on the control. The code in this event handler
retrieves the current row with the Current property of the ProductBindingSource object.
This property returns an object, which is a DataRowView object. This is why I cast it to the
DataRowView type, then retrieve its Row property, and finally cast it to the ProductsRow type.
The product variable represents the currently selected row in the DataSet. This is a typed
variable, and I can access the columns of the current row as properties. If the UnitPrice
column has a negative value, the code sets an ErrorProvider control to display the error next to
the corresponding text box.

Viewing the Deleted Rows

One unique aspect of this interface is that it provides a button to display the deleted rows.
These rows exist in the DataSet, but they’re not shown on the interface. The inserted and
modified rows are on the ListBox control, and users can review them. You may even provide a
button to display the old and new versions of the edited rows. But users have no way
of reviewing the deleted rows. You can resolve this by showing the deleted rows in the
auxiliary form:

1. Add a new button to the ProductsBindingNavigator ToolStrip, and set its name to
bttnShowDeleted.

2. Set the text of the button to Show Deleted.

3. Add a new form (Form2) to the project.

4. Add a CheckListBox control to Form2.

5. Add a button called button1 to Form2, set the button’s Text property to Restore Selected
Rows, and close Form2 in the button’s default event handler.

The Show Deleted Rows button in the ToolStrip opens an auxiliary form (Form2), like the
one shown in Figure 18.22, which displays the deleted rows in a CheckedListBox control. Users
are allowed to select some of the deleted rows and restore them.

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 805

Figure 18.22

Reviewing the deleted
rows in the DataSet

Listing 18.7 shows the code that retrieves the deleted rows and displays them on the
auxiliary form.

Listing 18.7: Retrieving and displaying the deleted rows

Private Sub bttnShowDeleted_Click(...) Handles bttnShowDeleted.Click
Form2.CheckedListBox1.Items.Clear()
For Each row As DataRow In NorthwindDataSet.Products.Rows

If row.RowState = DataRowState.Deleted Then
Form2.CheckedListBox1.Items.Add(
row.Item("ProductID",
DataRowVersion.Original) & " " &
row.Item("ProductName",
DataRowVersion.Original))

End If
Next
Form2.ShowDialog()
Dim SelectedIDs As New ArrayList
For Each itm As String In Form2.CheckedListBox1.CheckedItems

SelectedIDs.Add(Convert.ToInt32(
itm.Substring(0, itm.IndexOf(" ") + 1)))

Next
Dim cust As NorthwindDataSet.ProductsRow
For Each cust In NorthwindDataSet.Products

If cust.RowState = DataRowState.Deleted
AndAlso SelectedIDs.Contains(cust.Item(
"ProductID", DataRowVersion.Original)) Then
cust.RejectChanges()

End If
Next

End Sub

806 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

The code goes through the Rows collection of the Products DataTable and examines the
RowState property of each row. If its value is RowState.Deleted, it adds the row’s ProductID
and ProductName fields to the CheckedListBox control of the auxiliary form. Then it displays
the form modally, and when the user closes it, the code retrieves the IDs of the selected rows
into the SelectedIDs ArrayList. The last step is to restore the selected rows. The code goes
through all rows again, examines their RowState properties, and if a row is deleted and its ID
is in the SelectedIDs ArrayList, it calls the RejectChanges method to restore the row. The
restored rows are automatically displayed in the ListBox control because this control is bound
to the DataSet.

Handcrafting an Application’s Interface

A practical feature you can add to the interface of a disconnected application is the ability
to review the modifications. You can display the original and proposed versions of the
inserted/modified rows, as well as the original versions of the deleted rows on an auxiliary
form, as we have done in the preceding example.

If you don’t mind writing a bit of code, you can display the original values of the edited rows
in the same controls on your form. Because the controls are data bound, you can’t display
any different values on them; if you do, they’ll be stored in the DataSet as well. But you can
place nonbound controls, such as Label controls, in the place of the data-bound control. The
Labels normally will be invisible, but when the user presses a function key, they can become
visible, hiding the regular editable controls. When the user requests the original versions of
the fields, you must populate the Labels from within your code and display them by toggling
their Visible properties. You must also hide the regular controls on the form.

Another approach would be to suspend data binding momentarily by calling the Suspend-
Binding method of the BindingSource class. After data binding has been suspended, you can
populate the text boxes on the form at will, because the values you display on them won’t
propagate to the DataSet. To display the bound values again, call the ResumeBinding method.

Another interesting feature you can add to a data-driven application is to display the state of
the current row in the form’s status bar. You can also give users a chance to undo the changes
by clicking a button on the status bar. All you have to do in this button’s Click event handler
is to call the RejectChanges method on the current row. Use the Current property of the
ProductsBindingSource to retrieve the current row and cast it to the ProductsRow type, and
then call the RejectChanges method.

You can select one of the data-editing applications presented in this chapter, perhaps the
Products application, and add as many professional features as you can to it. Start by adding
a status bar to the form, and display on it the state of the current row. For modified rows,
display a button on the toolbar that allows users to view and/or undo the changes to the
current row. Program the form’s KeyUp event handler, as explained in Chapter 4, ‘‘GUI Design
and Event-Driven Programming,’’ so that the Enter key behaves like the Tab key. Users should
be able to move to the next field by pressing Enter. Finally, you can display an error message

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 807

for the current row on a label in the form’s status bar. Or display a message such as Row has
errors as a hyperlink and show the actual error message when users click the hyperlink. Test
the application thoroughly, and insert error handlers for all types of errors that can be caught
at the client. Finally, make the edited rows a different color in the two DataGridView controls
on the form of the LinkedDataTables sample project. To do so, you must insert some code in
the control’s RowValidated event, which is fired after the validation of the row’s data. You’ll
need to access the same row in the DataSet and examine its RowState property by retrieving
the Current property of the ProductsBindingSource object, as shown in Listing 18.8.

Listing 18.8: Coloring the edited and inserted rows on the DataGridView control

Private Sub ProductsDataGridView_RowValidated(…)
Handles ProductsDataGridView.RowValidated

Dim row As DS.ProductsRow
row = CType(CType(ProductsBindingSource.Current,

DataRowView).Row, DS.ProductsRow)
If row.RowState = DataRowState.Modified Then

ProductsDataGridView.Rows(e.RowIndex).
DefaultCellStyle.ForeColor = Color.Green

Else
ProductsDataGridView.Rows(e.RowIndex).

DefaultCellStyle.ForeColor = Color.Black
End If
If row.RowState = DataRowState.Added Then

ProductsDataGridView.Rows(e.RowIndex).
DefaultCellStyle.ForeColor = Color.Blue

Else
ProductsDataGridView.Rows(e.RowIndex).

DefaultCellStyle.ForeColor = Color.Black
End If

End Sub

The code in the listing sets the foreground color of modified rows to green and the fore-
ground color of inserted rows to blue. From within the same event’s code, you can set the text
of a Label on the form’s status bar to the row’s error description. If you run the application
now, you’ll see that it paints modified and inserted cells differently, but only while you’re
working with products of the same category. If you select another category and then return to
the one whose products you were editing, they’re no longer colored differently, because the
RowValidated event is no longer fired. To draw rows differently, you must duplicate the same
code in the control’s RowPostPaint event as well.

If you carefully test the revised application, you’ll realize that the DataGridView control
doesn’t keep track of modified rows very intelligently. If you append a character to the
existing product name and then delete it (without switching to another cell between the two
operations), the DataGridView control considers the row modified, even though the original
and proposed versions are identical. As a result, the application will render the row in green.
Moreover, the UpdateAll method will submit the row to the database.

808 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

For a truly disconnected application, you should give users a chance to store the data locally
at the client. The LinkedDataTables application’s main form contains two more buttons: the
Save Data Locally and Load Local Data buttons. The first one saves the DataSet to a local
file via the WriteXml method of the DataSet, and the second button loads the DataSet via the
ReadXml method. The application uses the tmpData.#@# filename in the application’s folder
to store the data. It also uses an overloaded form of the two methods to accept an additional
argument that stores not only the data but the changes as well. Here’s the code behind the two
buttons:

Private Sub Button1_Click(…) Handles Button1.Click
DS.WriteXml("tmpData.#@#", XmlWriteMode.DiffGram)

End Sub

Private Sub Button2_Click(…) Handles Button2.Click
ProductsBindingSource.SuspendBinding()
DS.ReadXml("tmpData.#@#", XmlReadMode.DiffGram)
ProductsBindingSource.ResumeBinding()

End Sub

Let’s explore now how data binding can be used in combination with Language Integrated
Query (LINQ) query syntax.

Data Binding with LINQ
You are surely convinced by now that LINQ is a fundamental part of .NET query infrastruc-
ture. You have explored LINQ in detail in Chapter 14, ‘‘An Introduction to LINQ,’’ where I
also mentioned the LINQ to DataSet technology.

The great thing about LINQ is that once you learn how to write queries, you can apply the
same syntax to any data source that supports LINQ. DataSets and typed DataSets also support
LINQ, and you can apply the same syntax you saw used to query objects in LINQ to Objects
and in LINQ to SQL to typed DataSets.

So far in this chapter you saw how data binding can make life a lot easier for a programmer
developing data-centric applications. And you have already witnessed the power of LINQ. The
two can be used in combination as a powerful tool for data manipulation.

Enabling the Binding with the DataView Class

The central class for binding support is the DataView class. It represents a bindable and
customizable view of data and provides a number of data manipulation methods. Using
DataView, data can be filtered, searched, sorted, edited, used for navigation, and so on.

LINQ to DataSet queries are capable of returning the DataView instance by means of the
AsDataView extension method. Thanks to this extension method, you can set the query as a
DataSource of a BindingDataSource class like this:

mybindingSource.DataSource = (From product In NorthwindDataSet.Products
Select product).AsDataView()

Now you see how you will be able to add some sophisticated querying capabilities to your
data bound applications. Let’s illustrate this by adding some querying features to our Products
application, as shown earlier in the chapter in Figure 18.21.

DESIGNING DATA-DRIVEN INTERFACES THE EASY WAY 809

Using LINQ to Filter Products Data

In cases where data operators have to manage a large number of entries, listing all of these on
the form with navigation capability can prove not to be very practical. Users will be forced to
spend a lot of time while navigating between records. In such cases, providing some filtering
capability can prove to be very beneficial.

Let’s add some filtering features to our form in the Products project. I will use following
criteria for the filtering functionality:

◆ Category selected by user

◆ Units in stock less than the number entered by the user

◆ Units on order greater than the number entered by the user

This way, users will be able to filter products by category and by some important opera-
tional data. They will be able to see when the numbers of units in stock is low or what product
units for an order are piling up. Figure 18.23 shows the new version of the Products interface.

Figure 18.23

Reviewing the deleted
rows in the DataSet

You can use these criteria in any kind of combination. To know whether criteria should be
applied or not, it is best to count on some special value. If the Units In Stock Less and Units On
Order Greater text boxes are empty, then they should not be used in a query. For the category,
the special value of the combo box is the text All. To add this value to Combobox, it has to be
populated by your application and not through the data binding. The following code populates
the Categories Combobox and is placed inside the Form_Load event handler:

cboCategoryFilter.DisplayMember = "CategoryName"
cboCategoryFilter.ValueMember = "CategoryID"
cboCategoryFilter.Items.Insert(0, "All")

810 CHAPTER 18 BUILDING DATA-BOUND APPLICATIONS

For Each category In NorthwindDataSet.Categories
cboCategoryFilter.Items.Insert(category.CategoryID, category)

Next

Now you are ready to write the LINQ query that uses these criteria. Because these criteria
can be used in any combination, writing the query might prove to be a bit trickier than you
initially thought.

The solution is to use the special value of criteria inside the query itself. For example, the
expression cboCategoryFilter.Text = "All" is true if the user does not want to apply
the categories criteria. As you can see, I have named the categories ComboBox cboCategory-
Filter. If you combine this statement with product.CategoryID = categoryId using the
OrElse operator, then you can use the cboCategoryFilter.Text = "All" expression to turn
off the categories criteria when the user selects All in the Categories combo. The complete
statement to be put in the Where part of the LINQ query for Categories combo is as follows:
cboCategoryFilter.Text = "All" OrElse product.CategoryID = categoryId.

The same pattern can be applied to rest of conditions. For other criteria, the special value is
an empty string. You can take a look at the complete code for the Filter button in Listing 18.9.

Listing 18.9: Coloring the edited and inserted rows on the DataGridView control

Private Sub bttnFilter_Click(...) Handles bttnFilter.Click
Dim categoryId As Integer
If Not cboCategoryFilter.Text = "All" Then

categoryId = CType(cboCategoryFilter.SelectedItem,
NorthwindDataSet.CategoriesRow).CategoryID

End If

queryResult = From product In NorthwindDataSet.Products
Where ((cboCategoryFilter.Text = "All" OrElse

product.CategoryID = categoryId) And

(String.IsNullOrEmpty(txtUnitsOnOrderFilter.Text) OrElse
product.UnitsOnOrder >

CInt(txtUnitsOnOrderFilter.Text)) And

(String.IsNullOrEmpty(txtUnitsInStockFilter.Text) OrElse
product.UnitsInStock <

CInt(txtUnitsInStockFilter.Text)))
Select product

ProductsBindingSource.DataSource = queryResult.AsDataView()

End Sub

THE BOTTOM LINE 811

The Bottom Line

Design and use typed DataSets. Typed DataSets are created with visual tools at design time
and allow you to write type-safe code. A typed DataSet is a class created by the wizard on the
fly, and it becomes part of the project. The advantage of typed DataSets is that they expose
functionality specific to the selected tables and can be easily bound to Windows forms. The
code that implements a typed DataSet adds methods and properties to a generic DataSet, so all
the functionality of the DataSet object is included in the autogenerated class.

Master It Describe the basic components generated by the wizard when you create a
typed DataSet with the visual tools of Visual Studio.

Bind Windows forms to typed DataSets. The simplest method of designing a data-bound
form is to drop a DataTable, or individual columns, on the form. DataTables are bound to
DataGridView controls, which display the entire DataTable. Individual columns are bound
to simple controls such as TextBox, CheckBox, and DateTimePicker controls, depending on the
column’s type. In addition to the data-bound controls, the editor generates a toolbar control
with some basic navigational tools and the Add/Delete/Save buttons.

Master It Outline the process of binding DataTables to a DataGridView control.

Compare a LINQ query used to filter data with an eSQL dynamic query. You can use the
AsDataView extension method of the DataTable class to enable binding of the LINQ query
results when querying the DataSet in LINQ to DataSet technology. In this chapter, you have
seen how a LINQ query can be used to provide filtering capabilities on a data-entry form.

Entity SQL (eSQL) is a query language with syntax similar to Transact-SQL. Entity SQL queries
can be embedded inside the Visual Basic code and can be used to query the Entity Data Model
provided by the Entity Framework. You saw how to use Entity SQL to construct dynamic
queries in Chapter 17.

Master It Compare LINQ queries to queries written in Entity SQL. Explain the main
benefits and drawbacks of each technology.

Part 6

Developing for the Web
◆ Chapter 19: Accessing the Web

◆ Chapter 20: Building Web Applications

◆ Chapter 21: Building and Using Web Services

Chapter 19

Accessing the Web

The Internet has changed our everyday lives in many ways, and it has changed the program-
ming landscape completely. It is hardly imaginable today to develop any application that is not
at least in some way related to the Internet. HTTP, the underlying protocol of the Internet, is a
standard protocol for application interoperability and distributed application development.

The Internet provides a wealth of information and functionality available in different forms.
Most of this information is structured with a human user in mind; a user who will access a
website using a web browser. Sometimes, information is useful as is, and you will see how it is
easy to incorporate such information into your applications using the WebBrowser control.

In other situations, you need to access and extract information from unstructured HTML
pages. This process is often referred to as HTML screen scraping. The .NET Framework pro-
vides all you need to simulate the browser and access such pages without having the servers
ever discover that they are not communicating with a web browser but with your Visual Basic
program instead. Support for such access comes in the form of the WebClient class and, in sit-
uations where you need more low-level control, the HttpWebRequest and HttpWebResponse
classes. These classes can be used to access applications that provide structured information
meant to be accessed by other applications but use some more lightweight forms of interop-
erability, like XML over HTTP, as opposed to a dedicated information exchange protocol like
SOAP. (You will learn more about SOAP in Chapter 21, ‘‘Building and Using Web Services.’’)

In the Chapter 20, ‘‘Building Web Applications,’’ you will learn how to develop web
applications — applications made to serve the clients over the Internet. In this chapter, we’ll
take a look at how you can be on the other side, the consuming side of the wire. You will learn
how to access different resources and applications on the Internet through your code and how
to integrate browser functionality inside your applications.

In this chapter, you’ll learn how to do the following:

◆ Add browser functionality to your Windows Forms applications using the WebBrowser
control

◆ Access information and services on the Web from within your code using WebClient or
HttpWebRequest and HttpWebResponse classes

816 CHAPTER 19 ACCESSING THE WEB

The WebBrowser Control
The WebBrowser control is the simplest option for adding some browser functionality to a Win-
dows Forms application. It is capable of presenting HTML content with all the usual browser
features: hyperlinks, navigation, multimedia content, Favorites, and the like.

There can be a number of reasons you would want to add web browser functionality to
your application. The Internet provides a wealth of useful information and ready-to-use func-
tionalities like address validation, weather forecasts, online calendars, and stock quotes, just to
name a few. Many times this information is tailored so it can be included like a ‘‘widget’’ or
a ‘‘gadget’’ inside some other web page. These make it especially easy to embed Internet con-
tent inside your Windows Forms application, as you will see in the section ‘‘VB 2010 at Work:
The Stock Quotes Project’’ later in this chapter. Once you see how easy it is to integrate web
browser functionality with the WebBrowser control, I am sure you will think of many other
useful ways to enrich your applications with Internet content.

With a little bit of work, the WebBrowser control can be used to make a full-fledged custom
web browser. This can be useful in situations in which your client needs to restrict the access to
intranet-only sites or only to selected Internet sites. Or you might use a WebBrowser control
to make a child-friendly browser that can eliminate adult content. Before I show you how to
use the WebBrowser control in a plausible application scenario, let’s inspect some of its most
important properties.

WebBrowser Control under the Hood
The WebBrowser control is a managed .NET wrapper over the Internet Explorer ActiveX
dynamic link library. This is the same library that the Internet Explorer executable uses
internally and is available on any Windows machine.

As a consequence, you will not be able to exhort the usual level of control over you appli-
cation. Since Internet Explorer is essentially part of the Windows operating system, it will be
updated through the Windows Automatic Updates service, so you cannot control the version
of Internet Explorer that is being used to render the HTML in your application. While most
Internet Explorer versions still in circulation work in a similar manner, there are some known
differences in how they render the HTML.

The browser operations a user performs on a WebBrowser control will affect the Internet
Explorer installation. For example, a Favorite added to the list of Favorites through a Web-
Browser control will appear in the Internet Explorer list of Favorites. Pages accessed through
a WebBrowser control will appear in the Internet Explorer history. Adding a shortcut using a
WebBrowser control will create a new Windows shortcut. And so on.

One important aspect to consider when using a WebBrowser control is security. In this
respect, the control behaves in the same manner as Internet Explorer and will run scripts and
embedded controls inside web pages. In such situations, the WebBrowser control is, according
to MSDN, ‘‘no less secure than Internet Explorer would be, but the managed WebBrowser
control does not prevent such unmanaged code from running.’’

Now that you have seen what a WebBrowser control is really made of, let’s take a look at
its properties.

WebBrowser Control Properties
Like any other visible Windows Forms control, the WebBrowser control has a number of
common layout-related properties, including Size, MaximumSize, MinimumSize, Location,
Margin, and Anchor. They all work as you would expect from your experience with other

THE WEBBROWSER CONTROL 817

Windows Forms controls, so I will not go into more details on any of these. While belonging to
this group, a small note is in order for the Dock property.

Dock

The Dock property determines how the WebBrowser control is positioned in relation to a con-
tainer and how it will behave as the container is resized. Anchoring and docking controls are
discussed in detail in Chapter 6, ‘‘Working with Forms.’’

When a WebBrowser control is added to an empty form or a container control, the default
value for the Dock property is Fill. As a result, the whole form area will be covered by the Web-
Browser control. The WebBrowser control drops into your form as a square with no visible
clues as to its position. Although the control’s white background will stand out, you still might
be confused at first as to where it is positioned on the form. Just change the default value of
the Dock property to some other value, like None, and the control will become visible as you
change the form’s size.

URL

The URL property lets you specify the target URL address for the WebBrowser control in the
design time. When you display the form, the WebBrowser control will load that URL by
default. If you change the property at runtime, the control will navigate to the new URL. In
this respect, setting the URL property works the same as calling the WebBrowser control’s
Navigate method (described in the section ‘‘WebBrowser Control Methods’’ later in this
chapter).

The URL property type is the System.Uri class. A URI (Uniform Resource Identifier) can rep-
resent a unique identifier or an address (familiar URL) on the Internet. You will typically use
instances of this class to represent an Internet address. When doing so, do not forget to spec-
ify the protocol part of the address, otherwise you will get an Invalid URI exception. You can
instantiate the Uri class by passing a string representation of the URL to its constructor. Here is
the correct way to set the WebBrowser URL property in your code:

WebBrowser1.Url = New Uri("http://www.google.com")

AllowNavigation

The AllowNavigation property sets the WebBrowser control behavior in regards to navigation.
If you set the AllowNavigation property to False, the WebBrowser control will not react when
a user clicks a hyperlink and will not load the page specified in the hyperlink. It will not react
to navigation attempts from within your code either. Calling the Navigate method on a Web-
Browser control when AllowNavigation is set to False will have no effect. The only page the
control will display is the one that was loaded initially.

Bear in mind that AllowNavigation does not alter the visual representation of the page or
the cursor. Hyperlinks are still rendered distinctly as hyperlinks (underlined blue text), and the
mouse cursor will change to a hand shape when hovering over the hyperlink. Finally, while
the AllowNavigation property can prevent users from following a standard HTML hyperlink,
it will not prevent the browser from opening a new window as directed by JavaScript code, as,
for example, when calling the window.open JavaScript function. Finally, if the user presses F5
(Refresh), the page loaded initially will reload.

818 CHAPTER 19 ACCESSING THE WEB

ScrollBarsEnabled

Internet Explorer will display the scroll bars when the loaded page is not fully visible. By set-
ting ScrollBarsEnabled to False, you can prevent scroll bars from appearing even if the page
loaded into the WebBrowser control is not fully visible.

AllowBrowserDrop

The AllowBrowserDrop property controls the WebBrowser control’s drag-and-drop behavior.
When it’s set to True, you can open the HTML file in Internet Explorer by dragging the file
from Windows Explorer and dropping it on the browser. The WebBrowser control behaves
in the same manner by default. To disable drag-and-drop behavior in the WebBrowser
control, you can set AllowBrowserDrop to False. You should be aware, however, that this
property is superseded by the AllowNavigation property; if AllowNavigation is set to
False and AllowBrowserDrop is set to True, the WebBrowser control will not react to a
drag-and-drop. This is to be expected because dropping the file on a WebBrowser control is
just another way of telling the WebBrowser control to navigate to a certain address — in this
case a local HTML file.

WebBrowserShortcutsEnabled

In Internet Explorer, you can use a number of key combinations as keyboard shortcuts
or accelerators. For example, Alt + the left arrow key combination is a shortcut for click-
ing the Back button in Internet Explorer and Alt + the right arrow key is a shortcut for
clicking Forward. You can disable accelerators in the WebBrowser control by setting the
WebBrowserShortcutsEnabled property to False. This property is enabled by default.

IsWebBrowserContextMenuEnabled

IsWebBrowserContextMenuEnabled controls the display of a context-sensitive, shortcut menu
when a user right-clicks the control. The shortcut menu contains some standard browser
shortcuts, but it can also contain some shortcuts contributed by various Internet Explorer
add-ons and accelerators. You can see a context menu displayed over a WebBrowser control in
a custom WebBrowser control–based implementation of a web browser in Figure 19.1.

ScriptErrorsSuppressed

Modern web pages typically contain large quantities of JavaScript code in addition to the
HTML code. As with any other code, bugs in JavaScript code are not rare. The probability
of an error in JavaScript code is enhanced by the differences in the way different browsers
interpret it. Some JavaScript code can be perfectly legal in one browser but will throw an error
in another.

When Internet Explorer encounters an error in JavaScript code (or some other script code),
it will by default display a dialog window with detailed error information and prompt the
user to decide whether to continue to run the script code. In a WebBrowser control, you can
control this behavior through the ScriptErrorsSuppressed property. Set it to False and the
WebBrowser control will bear any error in the script code silently.

Script error messages are rarely of any help to the end user, so it is best to set this property
to False in the final version of your application. Even if errors in JavaScript code are present,
the pages often still display and provide some limited functionality. You can take a look at a
Script Error dialog window displayed by the WebBrowser control in Figure 19.2.

THE WEBBROWSER CONTROL 819

Figure 19.1

A context menu in a
custom WebBrowser
control–based web
browser

Figure 19.2

Script Error dialog win-
dow displayed by the
WebBrowser control

DocumentText

You can use this property to obtain a string representation of a currently loaded web page or
to load a web page from a string. For example, you can use the code shown in Listing 19.1 to
display the page that will submit a search term to the Google search engine.

820 CHAPTER 19 ACCESSING THE WEB

Listing 19.1: Loading a WebBrowser control with HTML content from a string literal

WebBrowser1.DocumentText =
"<html><body>Search in Google:
" &
"<form method=’get’ action=’http://www.google.com/search’>" &
"<input type=’text’ name=’as_q’/>
" &
"<input type=’submit’ value=’Search’/>" &
"</form></body></html>"

Just place a WebBrowser control named WebBrowser1 onto a form and write the code in
Listing 19.1 into the Form Load event to see the snippet in action.

DocumentStream

The DocumentStream property is similar to the DocumentText property. Instead of a string,
it uses a System.IO.Stream instance as a property value. Using the stream interface, you
can easily load content from a file (and from numerous other sources) into a WebBrowser
control.

Document

The Document property is the pivotal property for manipulating a currently loaded HTML page
from within your code. The method returns a System.Windows.Forms.HtmlDocument instance
representing the current page’s Document Object Model (DOM) document — a structured rep-
resentation of a web page. If you have ever manipulated an HTML page in JavaScript, you will
find this object quite familiar.

You can accomplish pretty much anything using a web page’s DOM. You can obtain and
manipulate values on forms, invoke embedded scripts, manipulate page structure, and so on.

The code in Listing 19.2 adds simple validation to the Google search form code displayed in
Listing 19.1.

Listing 19.2: Validating an HTML form through the WebBrowser Document property

Private Sub webBrowser1_Navigating(ByVal sender As Object,
ByVal e As WebBrowserNavigatingEventArgs) Handles
WebBrowser1.Navigating

Dim document = WebBrowser1.Document
If document IsNot Nothing And

document.All("as_q") IsNot Nothing And
String.IsNullOrEmpty(_
document.All("as_q").GetAttribute("value")) Then
e.Cancel = True
MsgBox("Please enter a search term.")

End If
End Sub

THE WEBBROWSER CONTROL 821

The validation implemented in Listing 19.2 is rather simple. It cancels navigation and warns
the user that the search string is empty. Being able to access and manipulate web page struc-
ture is not limited to such simple operations. Indeed, this feature opens a wealth of implemen-
tation possibilities.

WebBrowser Control Methods
The WebBrowser control provides a number of methods that make it possible to emulate stan-
dard browser behavior. Let’s start with some navigation-related methods.

Navigate

Essentially, calling the Navigate method has the same effect as writing the URL address in
the Internet Explorer address bar and pressing Enter. Similar to using the URL property, calling
the Navigate method results in the browser displaying the specified URL. This method will be
ignored if the WebBrowser AllowNavigation property is set to False. The method has a num-
ber of overloaded variants, but the most typical variants accept a URL parameter in the form of
valid URL string:

WebBrowser1.Navigate("http://www.google.com")

Go Methods

The WebBrowser control has a number of methods whose names start with the prefix Go. You
can use them to invoke typical browser navigation behavior. Table 19.1 lists these methods and
the results of their invocation.

Stop

You can use this method to cancel the current navigation. Sometimes, a page can take longer
than expected to load, or it can even hang. In those situations, you need to be able to cancel the
navigation. The Stop method provides this capability.

Refresh

You can use the Refresh method to reload the current page to the WebBrowser control. This
method can be useful when displaying frequently changing information and can be easily auto-
mated so it is invoked in certain time intervals in combination with the Timer control.

Table 19.1: WebBrowser Go navigation methods

Method Effect

GoBack Navigate to the previous page in history.

GoForward Navigate to the next page in history.

GoHome Navigate to the Internet Explorer home page.

GoSearch Navigate to the default search page for the current user.

822 CHAPTER 19 ACCESSING THE WEB

Show Methods

The WebBrowser control supports a number of methods for displaying different dialog win-
dows with some advanced browser functionality. Table 19.2 lists these methods and explains
their purpose.

Print

This method prints the current web page using the default print settings and without display-
ing the print dialog window.

WebBrowser Control Events
A WebBrowser control operates in asynchronous mode. Loading a page will not freeze your
application; the application will continue to run while the WebBrowser control is downloading
and rendering a page. This is why events play an important role in the WebBrowser program-
matic model. Let’s take a look at a few important ones.

Navigating

You have already seen the Navigating event at work in Listing 19.2. This event is raised
to signal the navigation. You can use this event to cancel the navigation if necessary, by
setting the Cancel property of WebBrowserNavigatingEventArgs parameter to True. You can
obtain the URL that the navigation is targeting through the TargetFrameName property of the
WebBrowserNavigatingEventArgs parameter. If you wish to measure the time a certain web
page takes to load, you can use the Navigating event to signal the start of navigation and the
DocumentCompleted event to signal the end of the page load process.

DocumentCompleted

The DocumentCompleted event occurs when a web page is completely loaded inside the Web-
Browser control. It means that the Document property is available and will return the complete
structure of the loaded document.

Table 19.2: WebBrowser Show navigation methods

Method Effect

ShowPrintDialog Displays browser’s print dialog used to print the current web
page

ShowPrintPreviewDialog Displays browser’s print preview dialog

ShowPageSetupDialog Displays page setup dialog window used to set printing
options like Paper Option, Margins, Header, and Footer

ShowSaveAsDialog Displays browser’s Save As dialog used to save the current
web page to a file

ShowPropertiesDialog Displays current page’s Properties window

THE WEBBROWSER CONTROL 823

VB 2010 at Work: The Stock Quotes Project
A WebBrowser control opens the world of the Internet to your Windows Forms projects in a
simple and direct manner. Popular websites often offer a way to embed a part of their function-
ality inside another website. Such widgets can be easily integrated into your Windows Forms
projects.

In the Stock Quotes project, you will use the WebBrowser control to display quotes for
selected stocks on a Windows form. Yahoo! Finance offers free Yahoo! badges that display the
latest news, stock tickers, charts, and other types of information that are specifically designed
to be integrated into your website. You can find out more about Yahoo! badges at the following
URL: http://finance.yahoo.com/badges/. If you plan to use this feature in a production
environment, please read the terms of service carefully. While the Yahoo! website clearly states
that the service is free, I am no expert on legal matters and there might be limitations and
conditions on how the service may be used.

Obtaining the HTML Widget

You will need a Yahoo.com account to complete the following steps, and you will be prompted
to create one if you do not have one. Start by navigating to http://finance.yahoo.com/badges/,
click the Start Now button, and follow these steps to obtain the HTML code needed to embed
the stock ticker inside the web page:

1. Choose a module to embed. I chose the most compact module, called Quotes.

2. Customize the module.

Option 1: Enter MSFT, GOOG, IBM, and ORCL. Delete the default entry.

Option 2: Select the Medium (200 px) value for the width of the badge.

Option 3: Select the first (black) color theme.

Option 4: Check the check box signaling that you agree to the terms of service and press
the Get Code button.

3. Once the code is displayed, copy and save it in some temporary file. You’ll need it soon.

Creating the Stock Quotes Project

Create a new Windows Forms project and name it StockQuotes. You will display the Yahoo!
badge inside a WebBrowser control. To do so, perform the following steps:

1. Add a WebBrowser control to Form1. Leave the name of the control as is — WebBrowser1.

2. Disable the scroll bars on the WebBrowser1 control by setting the ScrollBarsEnabled
property to False.

3. Change the Dock property to None. Now you can resize and position the WebBrowser
control.

4. Position the WebBrowser control somewhere on the right side of the form. That way, the
form will take on a look that’s similar to the structure of web pages — nonessential infor-
mation positioned on the right edge of the form.

824 CHAPTER 19 ACCESSING THE WEB

5. Add a new quotes.html file to the project. While I could embed the HTML code for the
stock ticker badge inside my Visual Basic code, it will be easier to edit it inside a separate
HTML file.

Now that you have created all the items you will need for the StockQuotes project, you
need to load the quotes.html file content into the WebBrowser control. You can accomplish
this by setting the WebBrowser.Url property with a Uri instance representing the quotes.html
file location. Since the quotes.html file is part of your project, you can obtain its location
through a My.Application object. Here is the code for the Form_Load event, used to set the
WebBrowser.Url property:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
WebBrowser1.Url = New Uri(

My.Application.Info.DirectoryPath.ToString() &
"\quotes.html")

End Sub

Just to make sure everything works as expected, add some text (for example, ‘‘Hello from
quotes.html!’’) to the quotes.html file and run the project. When the form is displayed, the
WebBrowser control should show the text contained in the quotes.html file.

Displaying the Stock Quotes Badge inside the WebBrowser Control

As you are already guessing, instead of embedding the stock quotes badge inside HTML page
on some website, you will display the badge inside the local HTML file distributed with your
Windows Forms application. You can accomplish this by making the quotes.html a properly
structured HTML file. (You will learn more about HTML in the next chapter.) For now, you
should know that a typical HTML page has html, head, and body elements. Add the following
HTML code to the quotes.html file:

<html>
<head>
<title>Stock Quotes</title>
</head>
<body>
<!-- add Yahoo badge code here! -->
</body>
</html>

Remember that HTML code obtained from Yahoo! in the section ‘‘Obtaining the HTML Wid-
get’’? Take that code and replace the line <!-- add Yahoo badge code here! --> with it.

Run the project. The WebBrowser control should now display the stock quotes badge with
fresh values obtained from the Yahoo! site.

Although the application is now working, I would like to show you how to tweak the visual
appearance of the badge. First, we’ll minimize the margins surrounding the badge, and then
we’ll set the color of the HTML page so it blends better with the badge itself. I guess the gray
color will do.

THE WEBBROWSER CONTROL 825

To minimize the margins and change the background color, we will add some CSS code to
the quotes.html page. (You will learn more about the CSS in the next chapter.) For now, just
modify the quotes.html file so it includes a style tag:

<html>
<head>
<title>Stock Quotes</title>
<style type="text/css">

body {
margin-left: 0px;
margin-top: 0px;
margin-right: 0px;
margin-bottom: 0px;
background-color: Gray;

}
</style>
</head>
<body>
<!-- add Yahoo badge code here! -->
</body>
</html>

Again, you should replace the line <!-- add Yahoo badge code here! --> with HTML code
obtained from the Yahoo! site. Run the project again. Now you can adjust the WebBrowser con-
trol size so it displays the complete stock badge widget. When you’ve finished, the form should
look similar to one shown in Figure 19.3.

Figure 19.3

Windows form with
embedded Yahoo!
Finance badge

826 CHAPTER 19 ACCESSING THE WEB

Fiddler — HTTP Debugging Proxy

While you are developing applications that communicate over the network, you often need to
take a peek at the traffic going over the wire. Fiddler is one tool that can help you do exactly
that, and it’s available as a free download from www.fiddler2.com.

Fiddler installs itself between your web browser and web server. It fools the browser into
believing it is communicating directly with the web server, while the server is convinced it
is communicating with the browser. In the meantime, you will be able to observe and even
modify the communication between the two sides.

Fiddler’s purpose is not malicious. It can be of great help to web developers. It provides
numerous statistics on request/response size, time, performance, and so forth and can help
you monitor and debug the conversation.

The Fiddler window consists of two main areas, as shown here.

On the left side, you will find a listing of all the HTTP requests and responses. On the right
side, you can inspect each request and response. You can visualize HTTP headers and display
the body as text, XML, or even as it would appear in the browser by way of a tab called
WebView. Further, you can modify and reissue the request from Fiddler itself, automate the
whole process through the Fiddler scripting support, or even extend Fiddler with extensions
programmed in the .NET Framework.

ACCESSING THE WEB WITH THE WEBCLIENT AND HTTPWEBREQUEST/RESPONSE CLASSES 827

Accessing the Web with the WebClient and
HttpWebRequest/Response Classes
The simplest way to publish services on the Internet is to make proper use of HTTP. HTTP is
the underlying protocol for all kinds of web services, and web services come in different shapes
and forms. Some make more direct use of HTTP, while others use it with a lot of overhead.

Lightweight web services typically use HTTP to transport data in XML or JSON format.
JavaScript Object Notation (JSON) is a data format similar to XML but more bandwidth effi-
cient. Lightweight web services can be by orders of magnitude more efficient than more ubiqui-
tous SOAP web services. (You will read more about web services and SOAP in Chapter 21.) For
lightweight web services, the WebClient class and the HttpWebRequest and HttpWebResponse
classes will help you program simple and efficient client applications.

A lot of information and services available on the Internet today are not properly structured
for machine consumption. While humans can make use of it, it is difficult to consume such
services programmatically. In such situations, the only way to access these services program-
matically is to behave in the same way as an Internet browser application. The WebClient class
and the HttpWebRequest and HttpWebResponse classes provide an API that can accomplish
exactly that. Accessing information contained inside standard HTML pages is generally known
as HTML screen scraping.

The WebClient Class
WebClient is a lightweight, simple alternative for accessing the Web. It represents a higher-level
wrapper over the WebRequest and WebResponse classes. You will find that it can handle most
of the cases that the HttpWebRequest and HttpWebResponse combination can.

WebClient Class Properties
The WebClient class gives you a lot of control over the HTTP communication. You can access
request and response headers, configure a proxy, set your credentials, and more.

QueryString

You can always set query parameters manually by concatenating strings and adding the query
as the final part of a URL. A more structured way to accomplish this uses name-value pairs and
the QueryString property. The following code snippet illustrates how a q parameter can be
added to a query string. The q parameter is often used in search engines to convey the search
criteria.

Dim webClient As New WebClient
Dim queryParameters As New System.Collections.Specialized.NameValueCollection()
queryParameters.Add("q", "SearchCriteria")
webClient.QueryString = queryParameters

As you can see, the QueryString property is a NameValueCollection type from the System
.Collections.Specialized namespace.

828 CHAPTER 19 ACCESSING THE WEB

Headers

The Headers property represents a collection of request headers. Response headers can be
accessed through the ResponseHeaders property. Headers are an important part of HTTP.

For example, a user-agent header is used to convey a lot of client-related information to the
server. A user-agent header can include information on the browser version and type, the oper-
ating system, even the version of the .NET Framework that has been installed on the machine
where the browser is running.

The WebClient class does not set any headers by default. Some servers might expect some
standard headers with the request, so if you are experiencing any problems accessing certain
servers with the WebClient class, be sure to add some standard headers, like user-agent.

Servers will often use user-agent header information to render the response that best
accommodates the reported browser type. For example, the server might exclude JavaScript
code from pages if the browser does not support JavaScript, or it might render the page
so it fits smaller displays if it detects that the request is coming from a mobile device. A
listing of standard request and response headers is available on Wikipedia at following URL:
http://en.wikipedia.org/wiki/List of HTTP headers.

ResponseHeaders

ResponseHeaders provides access to headers included in the response by server. These head-
ers can include a lot of information regarding the response, like mime type, encoding, content
length, and so forth. The ETag and Cache-Control headers can affect the caching mechanism.
Responding with a value of ‘‘no-cache’’ in the Cache-Control header indicates to the browser
and to any other HTTP intermediary that the content should not be cached.

Another important response header is Set-Cookie. Although, if you need to manipulate
or receive cookies, you are better off using the HttpWebRequest and HttpWebResponse classes
because they have better support for this feature.

WebClient Class Methods
The WebClient class provides a number of methods for sending a request for a resource under
a given URI and receiving the requested data. Most of these methods come in two flavors:

◆ Synchronous

◆ Asynchronous

Asynchronous methods permit the background execution of request-response operations.
Since the calling (for example, UI) thread is not blocked, the main line of execution can proceed
without waiting for the download to finish. This feature can be used for implementing appli-
cations with a more responsive user interface, permitting the user to continue working with
the application in the same time that communication is performed or to cancel the request in
progress if they wish to do so.

Download Methods

The WebClient class has a number of methods with names that start with Download. These
methods essentially perform the same operation — download a resource from a specified URI.
The main difference is in the type of the method’s return value. Table 19.3 lists the methods
and return types.

ACCESSING THE WEB WITH THE WEBCLIENT AND HTTPWEBREQUEST/RESPONSE CLASSES 829

Table 19.3: Download methods return types

Method Return Type

DownloadData Byte

DownloadString String

DownloadFile Void (downloads to a local file specified as a method parameter)

Download*Async Methods

Download*Async methods have the same function as the standard Download methods. The dif-
ference is that employing these methods causes the resource download operation to be per-
formed asynchronously. To receive the data asynchronously, you need to provide an event
handling routine for Download*Completed events. Take a look at the code in Listing 19.5 for an
example of using the DownloadStringAsync method in an address visualization form project
and in Listing 19.3 in the WebClient asynchronous download example for a simple illustration
of an asynchronous operation of the WebClient class.

OpenRead and OpenReadAsync Methods

These methods perform similar functions to the Download methods. Each returns a readable
stream from a resource specified as the method parameter.

Upload and Upload*Async Methods

These methods have their counterparts in the Download group of methods. Instead of down-
loading the data, these methods are used to upload it.

CancelAsync Method

The CancelAsync method aborts the current asynchronous download or upload operation.
It bears noting that the corresponding Download*Completed and Upload*Completed events
are still raised by the class. It is possible for an operation to complete successfully even after
CancelAsync has been called — after all, you can have no control over how the remote call was
finalized on the other side of the wire. To check the outcome of asynchronous operation, check
the Canceled property of the Download*CompletedEventArgs or Upload*CompletedEventArgs
event handler parameter.

WebClient Class Event
A majority of WebClient class events has to do with asynchronous modus-operandi of the down-
load and upload operations.

Download*Completed and Upload*Completed events

These events are used to signal the completion of the asynchronous operation. Results of
the download operation can be accessed through an event handler’s property as well as
through the outcome of the asynchronous operation, presented in the Canceled property of the
Download*CompletedEventArgs or Upload*CompletedEventArgs parameter.

830 CHAPTER 19 ACCESSING THE WEB

WebClient Asynchronous Download Example
The code in Listing 19.3 shows the Windows form with a simple example of an asynchronous
download operation using the WebClient’s asynchronous programming model. The form
includes two buttons: bttnDownload, used to initiate the download operation, and bttnCancel,
which can be used to cancel the download operation in progress.

Listing 19.3: Asynchronous download with WebClient

Imports System.ComponentModel

Public Class Form1

Dim webClient As New WebClient()

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

AddHandler webClient.DownloadStringCompleted,
AddressOf webClient_DownloadStringCompleted

End Sub

Private Sub webClient_DownloadStringCompleted(ByVal sender As Object,
ByVal e As DownloadStringCompletedEventArgs)

Dim asyncCompletedParam As AsyncCompletedEventArgs =
TryCast(e, AsyncCompletedEventArgs)

If Not asyncCompletedParam.Cancelled = True Then
Console.WriteLine(CStr(e.Result))

Else
Console.WriteLine("Asynchronous download canceled by user!")

End If
MsgBox("Download operation completed. See the Output window.")

End Sub

Private Sub bttnDownload_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnDownload.Click

webClient.DownloadStringAsync(New Uri("http://www.google.com"))
End Sub

Private Sub bttnCancel_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnCancel.Click

webClient.CancelAsync()
End Sub

End Class

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 831

The DownloadStringCompleted event handler routine is assigned to a WebClient in a form
load routine. The event handler first checks the outcome of the download operation through the
AsyncCompletedEventArgs parameter’s Cancel property and, if the operation was successful,
prints the download result from the www.google.com URL to the console output.

Finally, the bttnCancel event handling routine is used to call the WebClient’s CancelAsync
method. If the asynchronous download is in progress, it is canceled; otherwise, calling the
CancelAsync has no effect.

HttpWebRequest and HttpWebResponse Classes
These classes from the System.Net namespace are used internally by the WebClient for down-
load and upload operations over HTTP and HTTPS. While you should prefer the WebClient
class because of its simplicity, you can always make use of the HttpWebRequest and Http-
WebResponse classes where more granular control over the communication is necessary. The
HttpWebRequest and HttpWebResponse classes provide an explicit manner for handling the
HTTP cookies.

Managing Cookies with HttpWebRequest and HttpWebResponse

To manage cookies with HttpWebRequest and HttpWebResponse, you first need to create the
instance of the CookieContainer class and attach it to HttpWebRequest. Then you can access
the cookies set by the server through the HttpWebRequest Cookies property. The following
code illustrates how you can list all of the cookies set by the Hotmail server to the console
output:

Dim request As HttpWebRequest = CType(WebRequest.Create(
"http://www.hotmail.com"), HttpWebRequest)

request.CookieContainer = New CookieContainer()
Using response As HttpWebResponse =

CType(request.GetResponse(), HttpWebResponse)
Console.WriteLine("Server set {0} cookies", response.Cookies.Count)
Dim cookie As Cookie
For Each cookie In response.Cookies

Console.WriteLine("Cookie: {0} = {1}", cookie.Name, cookie.Value)
Next

End Using

Putting It All Together: The Address Visualization Form
In the following sections, I will show you how to find the map coordinates of a street address
and display them on a map. I decided to name the sample project ViewAddressOnAMap. You
can download the project from www.sybex.com/go/masteringvb2010.

The business case for such functionality is more than common; many call centers have to
record clients’ addresses. This can be an error-prone process, so being able to see the address
on the map while talking to a client can be a real plus for a call center attendant. Also, some
addresses are difficult to find without additional information. (‘‘The street sign blew down in
last night’s storm, so look for the pink house with purple trim and then turn right at the next
street.’’) Field employees can really benefit from the additional information that goes along with
the address. Again, a call center attendant can easily enter these indications while talking to a

832 CHAPTER 19 ACCESSING THE WEB

client and looking at the map. Fortunately, there are services on the Internet today that make
such an application possible.

Composing Web Services
You will learn more about web services and especially SOAP web services in Chapter 21. In a
broader sense, a web service is any service that can be consumed by a program (as opposed to
a human) over the Internet. So, to implement the address visualization form, we will make use
of two web services:

◆ Address coordinates search (geocoding) service

◆ Mapping service

Let’s look at the services I chose for the ViewAddressOnAMap sample project in more
detail.

Yahoo! Geocoding API

A geocoding service returns the exact latitude and longitude for a street address. These coor-
dinates can then be used as parameters for a mapping service, which will return the map for a
given coordinate.

Yahoo! provides a geocoding API as a part of its Yahoo! Maps web services. You can find
more information about the Geocoding API at http://developer.yahoo.com/maps/rest/
V1/geocode.html.

To run the ViewAddressOnAMap sample project, you should follow the Get An App ID
link found on the Geocoding API page (at the URL in the preceding paragraph) and replace
the YahooAppId in the sample code with the Yahoo! ID you obtained this way.

The Yahoo! Geocoding API is a RESTful web service. REST stands for Representational State
Transfer and is actually the simplest way to use HTTP as an application protocol and not just
as a transport protocol like SOAP. This means that to obtain the coordinates, you can submit
address parameters as a part of a URL query string. It also means that you can make use of
this service with a simple browser because it uses HTTP as a native, application-level protocol.
To test the service, you can write the following URL into your browser:

http://local.yahooapis.com/MapsService/V1/geocode?
appid= APFGN10xYiHINOslptpcZsrgFbzsTHKr8HgBk7EA81QRe_
&street=701+First+Ave
&city=Sunnyvale
&state=CA

Please note that I have split the actual URL into a five lines to fit the book format; you
should enter this address as a single line in the browser’s address bar. You should also
replace the appid parameter provided in the snippet with the Yahoo! App ID obtained from
http://developer.yahoo.com/maps/rest/V1/geocode.html.

At that same URL, you can find another example of the Yahoo! Geocoding URL, and it
might be easier to copy and paste that link to use for testing.

The Yahoo! Geocoding Web Service query URL is pretty much self-explanatory. You pass
the address information as parameters inside the URL query. You can pass street, city, state
and zip together with the Yahoo! App ID as parameters. You should encode the spaces inside
the parameter values with a plus sign, so 701 First Ave becomes 701+First+Ave.

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 833

Now, you can take a look at the result. The browser should display the following response:

<ResultSet xsi:schemaLocation="urn:yahoo:maps
http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">

<Result precision="address">
<Latitude>37.416397</Latitude>
<Longitude>-122.025055</Longitude>
<Address>701 1st Ave</Address>
<City>Sunnyvale</City>
<State>CA</State>
<Zip>94089-1019</Zip>
<Country>US</Country>

</Result>
</ResultSet>

As you can see, the service response comes in XML format. This makes the response really
easy to parse. If you take a look at the XML, you will note the root element is called ResultSet.
The root element contains the Result element. The response is structured this way because the
service can return multiple Result elements for the same query in cases where query informa-
tion was not precise enough. You should keep this in mind when programming the code that
interprets the Yahoo! Geocoding service response.

Google Maps Service

Now let’s use Google Maps Service to display the address coordinates on a map. Use this ser-
vice in a manner similar to the way the Yahoo! badges service was used in the Stock Quotes
project earlier in this chapter. Display the service response in a WebBrowser control.

The Google Maps JavaScript API is free, and (as of this writing) there is no limit to the
number of page requests you can generate per day. Still, I suggest you register for the Google
Maps API and read the related conditions carefully. You can read more about Google Maps
JavaScript API at http://code.google.com/apis/maps/documentation/v3/introduction.html.

The Google Maps JavaScript API provides simple scripts that you can embed inside your
HTML page to add Google Maps functionality to your website. To use this functionality, you
need the HTML code shown on code.google.com in the section ‘‘The ‘Hello, World’ of Google
Maps v3’’ of the Maps V3 tutorial. This code can be used in ViewAddressOnAMap project with
minimal modifications. Take a look at the original Hello World code:

<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<script type="text/javascript" src="http://maps.google.com/maps/api/js?

sensor=set_to_true_or_false">
</script>
<script type="text/javascript">

function initialize() {
var latlng = new google.maps.LatLng(-34.397, 150.644);
var myOptions = {

zoom: 8,
center: latlng,

834 CHAPTER 19 ACCESSING THE WEB

mapTypeId: google.maps.MapTypeId.ROADMAP
};
var map = new google.maps.Map(

document.getElementById("map_canvas"), myOptions);
}

</script>
</head>
<body onload="initialize()">

<div id="map_canvas" style="width:100%; height:100%"></div>
</body>
</html>

Even without much JavaScript knowledge, you can see that the LatLng function defines the
coordinates where the map will be centered based on two literal numbers. With a little bit of
luck, changing these literals will be enough to visualize the map over a specific latitude and
longitude. Notice the value of the sensor query parameter in a URL. According to the docu-
mentation, this can be set to False for devices that do not use a sensor to determine the location,
as in this case.

Coding Address Visualization Form
Now that you have all necessary information for the project, you can create a new Windows
Forms project and name it ViewAddresOnAMap. The project will have a single form, and the
client’s address will be both saved and shown on the map. Since we are interested in only
the address visualization functionality for this exercise, you do not have to implement the code
to actually save or maintain the address data.

Assembling the Address Visualization Form

Let’s start by adding all the necessary controls to the form. You will need a number of text
boxes where users can enter the address information, buttons to save the address and to show
the address on the map, and finally, one WebBrowser control to display the map. The form
should look like one shown in Figure 19.4.

The large white area on the right side of the form is the WebBrowser control. Text box
controls in the Address GroupBox have the following names: txtStreet, txtSecondLine, txtCity,
txtState, txtZip, and txtObservations. The buttons are names bttnSave and bttnShow. Now you
are ready to add some behavior to the form.

For the txtState control, you should limit the length to 2. A text box with verification of the
value entered is a much better option than a states ComboBox control. For txtObservations, you
should set the Multiline property to True.

Finally, you can add a label named lblError to the bottom of the form. Here you can dis-
play the errors related to address visualization functionality. This functionality should not inter-
fere with the main form functionality consisting of address data entry.

Constructing the Geocoding Service URL and Query Parameters

To obtain the address coordinates, you can use the WebClient class to query the Yahoo! geocod-
ing service. To do so, you should first construct the URL. You can declare the Yahoo! service

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 835

Figure 19.4

Address visualization
form

URL as a constant and create the query parameters. Listing 19.4 shows how to construct the
NameValueCollection with query parameters for the Yahoo! Geocoding Web Service.

Listing 19.4: Form code with constructed Yahoo! geocoding service URL and query parameters

Public Class Form1

Private Shared YahooAppId As String = "BPdn3S7V34GMfMZ5ukBuHAMYuj" &
"APFGN10xYiHINOslptpcZsrgFbzsTHKr8HgBk7EA81QRe_"

Private Shared YahooGeocodeServiceUrl = "http://local.yahooapis.com" &
"/MapsService/V1/geocode"

Dim yahooGeoCodeParameters As NameValueCollection

Private Sub GenerateYahooGeoCodeParameters(ByVal street As String,
ByVal city As String, ByVal state As String,
ByVal zip As String)

yahooGeoCodeParameters = New NameValueCollection
yahooGeoCodeParameters.Add("appid", YahooAppId)
yahooGeoCodeParameters.Add("street", street.Replace(" "c, "+"c))
yahooGeoCodeParameters.Add("city", city.Replace(" "c, "+"c))
yahooGeoCodeParameters.Add("zip", zip)
yahooGeoCodeParameters.Add("state", state)

End Sub

End Class

836 CHAPTER 19 ACCESSING THE WEB

Since generated URL query parameters should not contain spaces, space characters are
replaced with a plus sign using the Replace method of the String class. Now, you are ready to
invoke the Yahoo! geocoding service in an asynchronous manner.

Invoking the Yahoo! Geocoding Web Service

Since address visualization is not a principal feature on the form, you should not make users
wait for the map to appear before they can save the address. It is quite possible that the user
knows the address well; in that case, waiting for the visualization would be more of a hin-
drance than a help.

If you use the asynchronous capacities of the WebClient class, you will not block the main
thread of execution and users will be able to proceed with their work while the map is loaded
in the background. Listing 19.5 shows the bttnRefresh button event handling code invoking
the FindLocation routine that uses the WebClient class to code the Yahoo! Geocoding Web
Service asynchronously.

Listing 19.5: Form with constructed Yahoo! Geocoding Web Service URL and query parameters

Imports System.Net
Imports System.IO
Imports System.Collections.Specialized

Public Class Form1

Private Shared YahooAppId As String = "BPdn3S7V34GMfMZ5ukBuHAMYuj" &
"APFGN10xYiHINOslptpcZsrgFbzsTHKr8HgBk7EA81QRe_"

Private Shared YahooGeocodeServiceUrl = "http://local.yahooapis.com" &
"/MapsService/V1/geocode"

Dim yahooGeoCodeParameters As NameValueCollection

Private Sub bttnShow_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
bttnShow.Click, txtZip.Leave

lblError.Text = ""
GenerateYahooGeoCodeParameters(txtStreet.Text.Trim(), txtCity.Text.Trim(),

txtState.Text.Trim(), txtZip.Text.Trim())
FindLocation()

End Sub

Private Sub GenerateYahooGeoCodeParameters(ByVal street As String,
ByVal city As String, ByVal state As String,
ByVal zip As String)

yahooGeoCodeParameters = New NameValueCollection
yahooGeoCodeParameters.Add("appid", YahooAppId)

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 837

yahooGeoCodeParameters.Add("street", street.Replace(" "c,
"+"c))

yahooGeoCodeParameters.Add("city", city.Replace(" "c, "+"c))
yahooGeoCodeParameters.Add("zip", zip)
yahooGeoCodeParameters.Add("state", state)

End Sub

Private Sub FindLocation()
Dim client As New WebClient()
client.QueryString = yahooGeoCodeParameters
AddHandler client.DownloadStringCompleted,

AddressOf webClient_DownloadStringCompleted
client.DownloadStringAsync(New Uri(YahooGeocodeServiceUrl))

End Sub

End Class

If you look at the code carefully, you will note that bttnShow_Click handles both the
bttnShow.Click and the txtZip.Leave events. This way, the address will be shown on the
map automatically once the user has filled all the address fields. Since the service invocation
code is asynchronous, it will not prevent the user from continuing to operate on the form.

Now you need to take care of the DownloadStringAsync event handler.

Processing the Yahoo! Geocoding Service Response

Before you can process the geocoding service response, you will need to create a structure that
can hold the geocoding information. In this case, a simple structure will do; name the structure
Coordinates and set up two String properties: Latitude and Longitude. Add the new class
named Coordinates to the project. Listing 19.6 shows the code for the Coordinates structure.

Listing 19.6: The Coordinates structure

Public Structure Coordinates
Property Latitude As String
Property Longitude As String

End Structure

Now you can code the DownloadStringCompleted event handler. You should bear in mind
that the Yahoo! geocoding service responds in XML format. The easiest way to process it is to
use LINQ to XML. (I explained how you can work with XML in Visual Basic .NET in detail in
Chapter 13, ‘‘XML in Modern Programming,’’ and Chapter 14, ‘‘An Introduction to LINQ.’’)
To process the Yahoo! geocoding service response with LINQ to XML, you should import the
XML namespace for the response using the Imports directive at the top of the form code in the
following manner:

Imports <xmlns="urn:yahoo:maps">

838 CHAPTER 19 ACCESSING THE WEB

When implementing the functionality, be sure to check for errors and handle multiple result
responses. In the event of an error or multiple result responses, the best bet is to display the
first location encountered while informing the user that the coordinates displayed on a map are
not very precise because the service responded with multiple locations. Listing 19.7 shows the
code that handles the Yahoo! geocoding service response.

Listing 19.7: DownloadStringCompleted event handling code

Sub webClient_DownloadStringCompleted(ByVal sender As Object,
ByVal e As DownloadStringCompletedEventArgs)

If e.Error IsNot Nothing Then
lblError.Text = "Address could not be located on a map"
Return

End If
yahooResponse = XDocument.Parse(CStr(e.Result))
ValidateResponseAndProceede()

End Sub

Private Sub ValidateResponseAndProceede()
If (yahooResponse...<Result>.Count = 0) Then

lblError.Text = "Address could not be located on a map"
Return

End If
If (yahooResponse...<Result>.Count > 1) Then

lblError.Text = "Multiple locations found - showing first." &
" Correct the address and press Refresh"

End If
GenerateLocation()
ShowLocationOnMap()

End Sub

Private Sub GenerateLocation()
addressLocation.Latitude = yahooResponse...<Result>.First.<Latitude>.Value
addressLocation.Longitude = yahooResponse...<Result>.First.<Longitude>.Value

End Sub

As you can see, the code handles errors that occur in communication or while querying the
Yahoo! geocoding service and displays a message when the results are not very precise and the
service responds with multiple results.

Displaying Coordinates on the Map

To show the location on the map, you need to load the WebBrowser control with the simple
HTML page that contains the Google Maps Service code. Since this code contains coordinates,
it cannot be loaded from the static HTML file. You can, however, use the static HTML file as

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 839

a template, load the file, and then replace latitude and longitude tokens with information
obtained from the Yahoo! geocoding service before loading it into the WebBrowser control.

Add the new gmapsTemplate.html file to the ViewAddressOnAMap project. Make sure
the ‘‘Copy to Output Directory file’’ property is set to ‘‘Copy if newer’’. With this, Visual
Studio will make the copy of the file inside the bin/Debug folder and you will be able to
access the file while debugging the solution. The code for gmapsTemplate.html is shown in
Listing 19.8.

Listing 19.8: Google Maps HTML code templates

<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<script type="text/javascript"

src="http://maps.google.com/maps/api/js?sensor=false">
</script>
<script type="text/javascript">

function initialize() {
var latlng = new google.maps.LatLng(
replace_me_latitude, replace_me_longitude);
var myOptions = {

zoom: 16,
center: latlng,
mapTypeId: google.maps.MapTypeId.ROADMAP

};
var map = new google.maps.Map(
document.getElementById("map_canvas"), myOptions);

}
</script>
</head>
<body onload="initialize()">

<div id="map_canvas" style="width:100%; height:100%"></div>
</body>
</html>

You will note that the template contains replace_me_longitude and replace_me_latitude
strings instead of real coordinates. You will use these strings as tokens and replace them with
real coordinate information before loading the HTML inside the WebBrowser control. Token
replacement code can be implemented in a GenerateMapsHtml routine:

Private Sub GenerateMapsHtml()
googleMapsHtml = googleMapsHtmlTemplate.

Replace("replace_me_latitude", addressLocation.Latitude).
Replace("replace_me_longitude", addressLocation.Longitude)

End Sub

840 CHAPTER 19 ACCESSING THE WEB

With this, you have finished implementing the address visualization functionality. You can
take a look at the complete code of the form in Listing 19.9.

Listing 19.9: Address visualization form code

Imports System.Net
Imports System.IO
Imports System.Linq
Imports System.Xml.Linq
Imports <xmlns="urn:yahoo:maps">
Imports System.Collections.Specialized

Public Class Form1

Private Shared YahooAppId As String = "BPdn3S7V34GMfMZ5ukBuHAMYuj" &
"APFGN10xYiHINOslptpcZsrgFbzsTHKr8HgBk7EA81QRe_"

Private Shared YahooGeocodeServiceUrl = "http://local.yahooapis.com" &
"/MapsService/V1/geocode"

Private Shared googleMapsHtmlTemplate As String

Private Shared applicationDirectory =
My.Application.Info.DirectoryPath.ToString()

Private Shared googleMapsHtmlTemplatePath = applicationDirectory &
"\gmapsTemplate.html"

Private googleMapsHtml As String

Private addressLocation As Coordinates

Private yahooResponse As XDocument

Dim yahooGeoCodeParameters As NameValueCollection

Public Sub New()

InitializeComponent()
googleMapsHtmlTemplate = My.Computer.FileSystem.ReadAllText(

googleMapsHtmlTemplatePath)
Console.WriteLine(googleMapsHtmlTemplate)

End Sub

Private Sub bttnShow_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles

PUTTING IT ALL TOGETHER: THE ADDRESS VISUALIZATION FORM 841

bttnShow.Click, txtZip.Leave

lblError.Text = ""
GenerateYahooGeoCodeParameters(txtStreet.Text.Trim(), txtCity.Text.Trim(),

txtState.Text.Trim(), txtZip.Text.Trim())
FindLocation()

End Sub

Private Sub GenerateYahooGeoCodeParameters(ByVal street As String,
ByVal city As String, ByVal state As String,
ByVal zip As String)

yahooGeoCodeParameters = New NameValueCollection
yahooGeoCodeParameters.Add("appid", YahooAppId)
yahooGeoCodeParameters.Add("street", street.Replace(" "c, "+"c))
yahooGeoCodeParameters.Add("city", city.Replace(" "c, "+"c))
yahooGeoCodeParameters.Add("zip", zip)
yahooGeoCodeParameters.Add("state", state)

End Sub

Private Sub FindLocation()
Dim client As New WebClient()
client.QueryString = yahooGeoCodeParameters
AddHandler client.DownloadStringCompleted,

AddressOf webClient_DownloadStringCompleted
client.DownloadStringAsync(New Uri(YahooGeocodeServiceUrl))

End Sub

Sub webClient_DownloadStringCompleted(ByVal sender As Object,
ByVal e As DownloadStringCompletedEventArgs)

If e.Error IsNot Nothing Then
lblError.Text = "Address could not be located on a map"
Return

End If
yahooResponse = XDocument.Parse(CStr(e.Result))
ValidateResponseAndProceede()

End Sub

Private Sub ValidateResponseAndProceede()
If (yahooResponse...<Result>.Count = 0) Then

lblError.Text = "Address could not be located on a map"
Return

End If
If (yahooResponse...<Result>.Count > 1) Then

lblError.Text = "Multiple locations found - showing first." &
" Correct the address and press Refresh"

End If

842 CHAPTER 19 ACCESSING THE WEB

GenerateLocation()
ShowLocationOnMap()

End Sub

Private Sub GenerateLocation()
addressLocation.Latitude = yahooResponse...<Result>.First.<Latitude>.Value
addressLocation.Longitude =
yahooResponse...<Result>.First.<Longitude>.Value

End Sub

Private Sub ShowLocationOnMap()
GenerateMapsHtml()
mapBrowser.DocumentText = googleMapsHtml

End Sub

Private Sub GenerateMapsHtml()
googleMapsHtml = googleMapsHtmlTemplate.

Replace("replace_me_latitude", addressLocation.Latitude).
Replace("replace_me_longitude", addressLocation.Longitude)

End Sub

Private Sub bttnSave_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnSave.Click

MsgBox("Unimplemented on purpose. " &
"See ‘Coding Address Visualization Form’" &
"section in Chapter 20. Try the ‘Show’ button.")

End Sub
End Class

When you run the application, enter the address data on the form, and click the Show but-
ton, the form should look like the one shown on Figure 19.5.

The Bottom Line

Access a website on the Internet using the WebClient class. The WebClient class provides
an easy and simple way to access resources on the Web programmatically from Visual Basic
code. The WebClient class implements many features of HTTP, making it easy to access the
sites on the Web in the same way the browser application does. The web server will not dis-
tinguish a request coming from a WebClient site from one coming from a user-operated web
browser.

The WebClient class can be very useful in HTML screen scraping scenarios, where the data to
be extracted from HTML is meant to be read by a human, or in lightweight web service proto-
cols like REST and/or AJAX-styled XML and JSON over HTTP.

THE BOTTOM LINE 843

Figure 19.5

Address visualization
form showing the
address on the map

Master It Use the Headers property of the WebClient class to fine-tune HTTP requests.
Trick Google into believing that a request that you are sending from your Visual Basic appli-
cation is coming from some mobile device.

Use a WebBrowser control to add web browser functionality to your Windows Forms appli-
cation. The WebBrowser control provides all the basic functionality of a browser in a form
of Windows Forms control. Visually, it consists only of a main browser window. To provide
additional functionality, like an address bar and Back, Forward, Refresh, and other buttons,
you will have to add the appropriate controls and program them yourself. The WebBrowser
control uses the same browser engine as Internet Explorer.

A WebBrowser control’s behavior can be customized to a large degree. You can decide to show
or not show the scroll bars, allow or disallow navigation, show or not show the context menu,
and so forth. Finally, since the control does not contain the address bar, you can also control
which sites a user can access.

Master It Create a custom web browser that can navigate to a limited number of URLs.

Chapter 20

Building Web Applications

Developing web applications in Visual Studio 2010 is similar to developing traditional desktop
applications. You drag and drop controls onto a form and build your business logic with your
language of choice — in our case, Visual Basic 2010. However, as you will see, there are also
many differences. There are underlying technologies of which you, the developer, should have
a solid understanding, and there are additional control sets to work with and some fundamen-
tal differences in the way the standard controls behave. Another important difference between
web and desktop applications is the way the application state is managed. In desktop appli-
cations, the application state is implicit and it is managed by the .NET runtime environment.
In web applications, on the other hand, the situation is much more complex. A web server can
attend to numerous clients simultaneously, but thanks to ASP .NET internal mechanisms, you
program your application as if you have only one user to serve. Another issue is the stateless
nature of the underlying communication (HTTP) protocol. There is nothing to link two HTTP
requests. In ADO .NET, the link is provided in the form of a connection object. While all of
the state-related issues are resolved by ASP .NET technology, it is important to understand the
underlying mechanisms because of the numerous implications for application characteristics,
like performance and security.

In this chapter, you will learn how to do the following:

◆ Create a basic XHTML/HTML page

◆ Format a page with CSS

◆ Set up a master page for your website

◆ Use some of the ASP.NET intrinsic objects

Developing for the Web
In the early days of web development (not all that long ago!), a developer could earn big
money creating what were essentially online brochures by using a basic knowledge of
Hypertext Markup Language (HTML) and some simple design skills.

These days, we expect a great deal from websites and web applications. Entertainment sites
are now fully equipped to engage the visitor with rich user interfaces incorporating a wide
range of visual and aural experiences. Members of the corporate world expect their virtual
presence to mirror their full range of business practices.

846 CHAPTER 20 BUILDING WEB APPLICATIONS

In addition, web development, although still seen as a specialized area, is now part of the
corporate mainstream, and the developer is expected to be well versed across a range of tech-
nologies and techniques.

The modern web application combines a wide range of sophisticated technologies grafted
onto the HTTP/HTML backbone. Cascading Style Sheets (CSS) are used to control the layout
and appearance of a website. Data is managed with the use of Extensible Markup Language
(XML) and back-end databases such as SQL Server, while rich user interfaces are developed
using XML, JavaScript, and other technologies such as Adobe Flash. AJAX, a clever implemen-
tation of existing technologies, combines XML, JavaScript, and asynchronous technologies to
enable the developer to create online applications that exhibit traditional desktop behavior.
XML web services, multimedia content, RSS feeds, and the use of microformats to assist data
aggregators have all become typical features of modern websites.

In addition, developers can now expect a website to be accessed by more than just a desktop
computer. Mobile phones, PDAs, and other small form factor devices are all used to access the
Web in the twenty-first century. Websites, to be truly ubiquitous, are increasingly expected to
be able to dynamically render their content into an appropriate format.

Visual Studio 2010 provides a range of tools that enable the modern developer to meet the
demands of website creation from the comfort of a Visual Basic environment. Database connec-
tivity is simplified from the traditional complexity of hand-coding scripted server-side pages,
and you don’t need to build multiple versions of an individual site to dynamically render to
suit a wide range of devices. By compiling much of the code used to drive a site, you can avoid
many of the security issues that plagued scripted sites.

Typically, a modern website or web application relies on code that is executed both at the
client (web browser) and server (web server) ends. In addition, there may be a whole range of
other services provided by other servers on the hosting network, such as media or databases
and even services sourced from other websites. Visual Studio 2010 provides the tools to tie all
this together.

This chapter gives an overview of the core technologies that drive the modern web applica-
tion and demonstrates the basic tools available to the developer in Visual Studio 2010.

I will begin with some basic concepts. If you are already familiar with HTML, JavaScript,
and server technologies, you may wish to skip ahead to material that is new to you, such as
the material in the section ‘‘Creating a Web Application.’’

Understanding HTML and XHTML
HTML is essentially a language to describe text formatting and enable linking of documents
(web pages) delivered over the Web. HTML has grown since its original inception but is still
fundamentally limited. The area where it does excel is in its ability to act as a framework in
which other technologies such as JavaScript can be embedded.

Extensible HTML (XHTML) is the latest incarnation of HTML. It was developed by the
World Wide Web Consortium (W3C) to bring HTML syntax into line with other markup
languages such as XML. Most of the tags from HTML 4 (the most recent update to HTML)
remained the same, but much stricter syntax rules apply. The basic changes are as follows:

◆ XHTML is case sensitive, and all tags are in lowercase.

◆ All tags must be closed. You can no longer get away with using multiple <p> tags without
corresponding closing </p> tags. This includes tags such as that previously had no

UNDERSTANDING HTML AND XHTML 847

corresponding closing tag. Close these tags with a trailing backslash before the final angle
bracket, as shown in this example:

◆ All tag attributes must be enclosed in quotation marks (either single or double).

◆ All pages must include an XHTML !DOCTYPE definition and an XML version declaration.

◆ JavaScript must also conform to case syntax — for example, onmouseover not
onMouseOver.

The W3C encourages developers to use XHTML over HTML. However, for practical pur-
poses, web browsers still support HTML, and you can get away with not updating older sites
and continuing to work with HTML’s lack of strict syntax. See the sidebar ‘‘Upgrading from
HTML to XHTML’’ if you wish to upgrade older sites.

Upgrading from HTML to XHTML

Converters exist for porting your HTML sites to XHTML. There are also tools to assist in the
process manually. The W3C provides an online validator at http://validator.w3.org.

You can use the validator to initially ensure that your pages conform to the HTML 4 specifica-
tion and that they all contain a !DOCTYPE definition such as the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

After your pages are validated for HTML 4, you will need to add the XML declaration to the
top of each page:

<?xml version="1.0" encoding="iso-8859-1"?>

Then convert the !DOCTYPE definition to the XHTML version:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Finally, modify the <HTML> tag to read as follows:

<HTML xmlns="http://www.w3.org/1999/xhtml">

Now that you have made all the correct syntax changes, run the validator again and see how
your page performs.

848 CHAPTER 20 BUILDING WEB APPLICATIONS

Working with HTML
As a Visual Studio programmer, you will find that knowledge of HTML and XHTML can prove
invaluable when you are sorting out the inevitable formatting and design issues that arise when
developing complex web applications. In addition, understanding the technologies involved can
aid in optimizing the interactions between server and client.

To keep things simple, I will dispense with some of the finer points of XHTML and focus
mainly on ‘‘straight’’ HTML. This section is meant as a basic HTML primer (and is by no
means comprehensive), so feel free to skip ahead if you are already familiar with the language.

More information on HTML can be found easily on the Web or in Mastering Integrated
HTML and CSS by Virginia DeBolt (Sybex, 2007). Useful websites for tutorials include
www.w3schools.com and www.htmlcodetutorial.com.

You can use any standard text editor to author your HTML. Notepad is fine. More sophisti-
cated tools that indent and highlight code, such as Notepad2 or EditPad Pro, are available
on the Web. EditPad Pro is a commercial application available from www.editpadpro.com.
Notepad2 is freeware and available from www.flos-freeware.ch/notepad2.html. Yet another
fairly mature tool is NotePad++, available from http://notepad-plus.sourceforge.net.

Remember to save your files with an .html filename extension so they will be recognized as
HTML pages.

Page Construction
HTML pages have two main sections nested between the opening and closing <html>…</html>
tags.

The first section is known as the header area, and it is used to contain information not usually
displayed on the page. (The main exception to this is the page title.) The header area is created
by using the <head>…</head> tags and contains meta-information about the page such as the
!DOCTYPE definition, author details, keywords, and the like. It is also used to hold style sheet
information and scripts that may be called later in the page.

The second section of the page is the body, and it contains information that is typically dis-
played on the page in a web browser. The body is declared by using the <body>…</body> tags.

HTML tags are used to describe the formatting or nature of the information contained
within the opening and closing tags. Tags may also contain attributes, which are used to apply
further information to the content between the opening and closing tags. For example, the body
tag can use the attribute bgcolor to set the background color of the web page. The syntax for
setting a page color to blue is <body bgcolor ="blue">.

A basic page may appear as shown in Listing 20.1. Some long lines are wrapped here in
print, but you can leave them all on one line in your code.

Listing 20.1: A basic HTML page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" _
"http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>
<title>Basic Page</title>
<meta name="description" content="basic page" />

</head>

WORKING WITH HTML 849

<body bgcolor="cornsilk">
<p>Hello World</p>

</body>
</html>

Save the page as index.html. You must include the .html as the filename extension.
Figure 20.1 illustrates how such a page might appear in a web browser.

Figure 20.1

A simple web page run-
ning in a web browser
window

The <title> tag enables the title of the page to appear in the title bar of Internet Explorer.
The <meta> tag provides a description phrase that can be accessed by search engines. The
bgcolor attribute of the <body> tag sets the background color to blue, and the <p> tag is used
to denote a simple block of text.

Note that I have used the !DOCTYPE definition for HTML 4. Also note that not closing the
<title> tag correctly can cause the rest of the page to break.

Text Management
There are a range of text management tags, including the previously mentioned <p> tag. The
principal tags are as follows:

◆ The heading tags — <h1>…</h1>, <h2>…</h2> through to <h6>…</h6> — are used to con-
trol the size of text. <h1> is the largest format.

◆ The font tag, …, has a number of attributes including face for font type,
color for text color, and size for font size. Font sizes range from 1 to 7, where 7 is the
largest. An example of the tag’s usage is <font face ="verdana" color ="red" size
="3">Hello World.

◆ The small and big tags — <small>…</small>, <big>…</big> — can be used to quickly
adjust the relative size of text.

Styles can be managed with tags such as the following:

◆ Bold: …

◆ Underline: <u>…</u>

850 CHAPTER 20 BUILDING WEB APPLICATIONS

◆ Italic: <i>…</i>

◆ Strong: …

Another useful tag for working with text is the line break tag,
. In HTML, this tag does
not require a closing tag.

You can generate and control spaces between text with more precision than simply relying
on the client browser to insert your preferred amount of white space by using the following
special character: .

A number of other special characters exist to accommodate symbols such as quotes, ques-
tion marks, and copyright symbols. A comprehensive list of HTML tags and their attributes can
be found at www.w3schools.com/tags/default.asp. You can also refer to the W3C specifica-
tion for HTML 4.01 at www.w3.org/TR/html401/. The XHTML 1.1 specification can be found at
www.w3.org/TR/2007/CR-xhtml-basic-20070713/.

Horizontal Rules
The <hr> tag can be used to draw a line across the page. Its attributes include align, noshade,
size, and width. Width can be declared as a percentage or as an exact amount in pixels. In
HTML 4, there is no closing tag.

Images
You can add images to web pages by using the tag. This tag is not typically closed under
HTML 4. This tag includes the following attributes:

◆ The path to the image, src, which can be relative or absolute (required).

◆ A text alternative to the image, alt, which is normally recommended for accessibility.

◆ align is used to align an image on a page and to wrap text around the image.

◆ border is used to create a border around the image.

◆ width and height are used to help the page load more quickly and can also be used to
scale an image.

◆ usemap is used to create image maps.

Here is an example of a typical use of the tag:

<img src=’images/myimage.jpg’ border=’0’ width=’150’ _
height=’150’ align=’left’ alt=’Test Image’>

For use in web pages, images must be in one of the following formats: GIF, PNG, or JPG.
You usually use the GIF or PNG formats for drawings or line art and the JPG format for
photographs.

Links
Links can be created on web pages that link to other web pages within the site, other websites,
other types of documents, email, or other locations within the host page. Links are created by
using the <a>… tag.

Typically, the <a> tag is used with the href attribute to define the destination of the link, as
in the following example:

Microsoft

WORKING WITH HTML 851

The text contained between the tags (Microsoft) is what appears as the link on the page. The
text can be formatted by using the tag inside the <a> tags.

Other attributes commonly used include target (used inside framesets) and name (used for
setting up in-page links such as tables of contents).

Embedding Media
Media objects such as Windows Media Player, Apple’s QuickTime, and Flash can be embedded
in a page with the <embed> tag. At its very simplest, the tag can be made to work by simply
specifying the source file for the media and the display size and then trusting the browser to
have the required plug-in and to be able to sort it out:

<embed src=’multimedia/myvideo.avi’ height=’200’ width=’200’></embed>

At a more sophisticated level, you can specify a range of options, including the type of
plug-in, the controls to display, whether it should start automatically, and loop properties.

Comments
To insert comments into your HTML, use <!-- … -->, as in the following example:

<!-- This is a comment -->

Comments enclosed in this tag are not displayed within the web page.

Scripts
The <script>…</script> tag can be used to insert non-HTML script code such as JavaScript
into your pages. Scripts can be written into the header area and called from the body or used
directly in the body of the page. Before support for more-recent HTML versions and before
JavaScript could be found in virtually every web browser, developers would typically comment
out the code by using <!-- … --> to prevent the code from appearing in the browser page. This
is still common practice, although it is no longer usually necessary.

Here is a simple example of the script tag’s usage:

<script language=’javascript’>
function mygreatscript(){

etc etc
}

</script>

Lists
Bulleted and numbered lists can be displayed in a web page with the list tags … for a
bulleted list or … for a numbered list. Individual items within the list are denoted by
using the … tags. The following example creates a bulleted list:

Item 1
Item 2

852 CHAPTER 20 BUILDING WEB APPLICATIONS

Tables
Tables are used extensively in HTML, not only to display data but also to reassemble sliced
images (a technique for minimizing the file size of large images) and to format pages. How-
ever, the W3C no longer recommends using tables to format pages. For accessibility reasons,
technologies such as CSS are now the recommended method for creating sophisticated layouts.

Tables are still used for displaying tabular data and here is what you should know about
constructing them. Tables are made of rows of cells. When constructing your table, you need
to consider the desired width of the table, the number of rows, and the number of columns
required. Other factors that you may wish to take into account are the padding between cells
and the padding between the border of a cell and its contents.

Another important consideration is that a badly constructed table is one of the few things
that can truly break an HTML page. You must ensure that all your tags are correctly closed.
Tables can be nested within one another, but excessive nesting can place undue strain on the
rendering engine of the browser and cause unexpected results.

A range of tags are used to create a typical table, and each has its own family of attributes:

◆ The <table>…</table> tag acts as the major framework for the table.

◆ <tr>…</tr> tags are used to create rows.

◆ Within a given row, <td>…</td> tags are used to create the individual cells. The number
of cells defined in the first row sets the number of columns in the table. This is important
to consider in subsequent rows if you wish to add or subtract from the number of cells.
The rowspan and colspan attributes are used to alter the number of columns and rows
employed at various points in the table. For example, colspan = ‘2’ will force a cell to span
over two columns.

◆ For headings, you can use <th>…</th> tags to create cells in the first row. These offer a
slightly different format than the <td> cells offer.

The following code snippet demonstrates a simple data table of three rows (one header) and
three columns. The resulting table is shown in Figure 20.2.

<table width=’400’ border=’1’>
<tr bgcolor=’silver’>

<th width=’100’>ID</th>
<th width=’200’>Name</th>
<th width=’100’>Age</th>

</tr>
<tr align=’center’>

<td valign=’middle’>1</td>
<td valign=’middle’>Fred</td>
<td valign=’middle’>23</td>

</tr>
<tr align=’center’>

<td valign=’middle’ bgcolor=’lightblue’>2</td>
<td valign=’middle’ bgcolor=’lightblue’>Mary</td>
<td valign=’middle’ bgcolor=’lightblue’>21</td>

</tr>
<tr align=’center’>

WORKING WITH HTML 853

<td valign=’middle’>3</td>
<td valign=’middle’>Wilma</td>
<td valign=’middle’>25</td>

</tr>
</table>

Figure 20.2

A simple data table

The following code snippet illustrates how a table might be used to reconstruct a sliced
image. Note the use of the align attribute to set horizontal alignment and the valign attribute
to set vertical alignment:

<table width=’400’ border=’0’ cellspacing=’0’ cellpadding=’0’>
<tr>

<td valign=’bottom’ align=’right’></td>
<td valign=’bottom’ align=’left’></td>

</tr>
<tr>

<td valign=’top’ align=’right’></td>
<td valign=’top’ align=’left’></td>

</tr>
</table>

Figure 20.3 illustrates how this image will appear in a web page (the left-hand image) and
how the table cells come together to reassemble the image (the right-hand image). Cellspacing
and cellpadding was increased when creating the right-hand image to make the individual
parts of the image visible.

Figure 20.3

A sliced image reassem-
bled using an HTML
table

Page Formatting
Various methods can be used to format pages in HTML. They all have inherent limitations, but
the <div> tag offers the most flexibility. Table 20.1 describes the methods.

854 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.1: HTML methods for formatting pages

Method Description

Flow format This relies on the browser to format the page according to the order of
items in the HTML. Flow format is easy to implement but of limited
usefulness.

A table This is one of the more popular methods, although it is no longer officially
recommended by the W3C for accessibility reasons.

Frames These effectively create the different parts of your page in separate HTML
documents. You would use a frameset to reassemble them as a single page
in the browser.

Inline frames (iFrames) These create a floating frame that can be placed within an HTML page.
This is a popular method of displaying content from another website (such
as a news feed) within your web page.

<div> tags These can be used to precisely locate content on your page. Combined with
CSS, <div> tags offer a powerful and flexible method of organizing a page.
The output of ASP.NET is largely driven by <div> tags for layout purposes.

Later, when you look at Cascading Style Sheets, you will see how <div> tags can be used to
lay out a page.

Forms and Form Elements
Forms are the traditional method by which users can communicate information back to the web
server that is hosting the website being viewed. Information sent back by a form can then be
processed in some way at the server, and the outcome can be dynamically incorporated into a
new page that the user can view.

For example, a login page would likely use a form to collect the username and password
from the user and return this information to the server for authentication before access to the
rest of the site is granted. In addition, personal preferences for the site can be applied to the
returned pages according to the stored preferences of the registered user.

A form is created by using the <form>…</form> tags. The following attributes are the ones
most commonly used:

Name The Name attribute defines a unique name for the form.

Action The Action attribute specifies the Uniform Resource Locator (URL), or Internet
address, of the resource to process the form’s response (required).

Method Either post or get (default) will be specified by the Method attribute. This specifies
the HTTP method used to return the form’s data. The get method sends the data as part of the
URL (limited to a maximum of 100 ASCII characters), and post sends the form’s content in the
body of the request.

Within the form, you create your HTML as usual. However, information that you wish to be
processed by the form needs to be collected by using form controls. The controls that are avail-
able include the following:

WORKING WITH HTML 855

Buttons Your form must have at least one button for submitting data. Another button that
is commonly used clears the form’s contents. Syntax for the buttons are as follows:

<input type=’submit’ value=’Submit data’>
<input type=’reset’ value=’Reset form’>

It is not necessary to include the value attribute because this sets the text that will appear in
the button, and there are default text values of Submit and Reset.

You can use the following to create other buttons on your forms to run client-side scripts:

<input type=’button’ value=’Mybutton’ onclick=’myscript’>

A more flexible control, however, is the <button> tag. This can be used anywhere on the
HTML page to run scripts and can replace the traditional Submit and Reset buttons in your
forms. It offers greater flexibility for formatting its appearance (especially when used with
CSS). Its basic syntax is as follows:

<button type=’button’ name=’name’ onclick=’myscript’>Click Here</button>

By using an image tag in place of Click Here, you can set an image to be the button. Syntax
for using the button as a submit button is simply the following:

<button type=submit’ >Submit</button>

Text The Text control enables the user to enter a single line of text. This can be set as a
password field to mask the user’s entry. The syntax is as follows:

<input type=’text’ name=’identity of input data’
value=’data to be initially displayed in field’>

The name attribute specifies the identity of the data to be processed at the server end (for
example, the username). The value attribute displays text that you may wish to appear ini-
tially in the field (for example, Type user name here). You can also set other attributes such as
size and maxlength. To create a password field, set the type attribute to password.

TextArea For larger amounts of text, use the <textarea> tag. Its syntax is as follows:

<textarea name=’details’ rows=’10’ cols=’40’ >
Type your details here

</textarea>

Note that this control requires a closing tag.

Lists To create lists, use the <select> tag. Lists can be either single select or multiple
select, which is created by using the multiple attribute (simply typing multiple). The size
attribute specifies the number of rows to display. Omitting the size attribute renders the

856 CHAPTER 20 BUILDING WEB APPLICATIONS

control as a drop-down combo box. The contents of the value attribute are returned to the
server. Individual items are denoted by using the <option> tags. When you type selected
within one of the option tags, that item is automatically highlighted in the list. The syntax
for the tag is as follows:

<select name=’items’ size=’4’ multiple>
<option value=’1’ selected>Chair</option>
<option value=’2’>Couch</option>
<option value=’3’>Arm Chair</option>
<option value=’4’>Lounge Chair</option>

</select>

Check boxes To create a check box, you use a variation on the <input> tag and set the
type attribute to ‘checkbox’. To initially select a check box, type the attribute checked. The
syntax is <input type = ‘checkbox’ name = ‘Check1’ checked>.

Radio buttons These are yet another variation on the <input> tag. Set the type attribute
to ‘radio’. If you are using a set of linked radio buttons, type the same name attribute for
each radio button in the set. The value attribute is used to return appropriate data when the
radio button is selected. Here is the syntax:

<input type=’radio’ name=’radioset’ value=’1’ checked>
<input type=’radio’ name=’radioset’ value=’2’>
<input type=’radio’ name=’radioset’ value=’3’>

Hidden fields Hidden fields contain information that you may want to make the round-
trip to the server but that you do not want displayed on the client’s web page. You can use
this field to help maintain state (discussed later in this chapter in the section ‘‘Maintain-
ing State’’). This field is particularly useful when a client has disabled cookies or when the
information is too long or sensitive to incorporate into the URL. For example, you may wish
to maintain information gathered in previous forms from the client. ASP.NET uses hidden
fields extensively. Here is the syntax:

<input type=’hidden’ name=’name of information’
value=’information to be stored’>

Cascading Style Sheets (CSS)
Cascading Style Sheets offer a powerful method of controlling the format and layout of the
pages and content of your websites. Styles can be written directly into your HTML pages or
created in a separate text document with the .css filename extension. The advantage to the
developer of using separate CSS pages is that the format and layout of an entire site can be con-
trolled from a single page. In large sites, consisting of tens or even hundreds of pages, this can
be a huge time-saver as well as introducing a much higher level of consistency and reliability.

In addition, styles are applied sequentially and can override previously set styles. This
enables the web developer to create specific styles for specific sections of the site that may

CASCADING STYLE SHEETS (CSS) 857

modify the global settings. You can create and apply multiple style sheets in this manner
and even write individual style settings onto individual pages if necessary. Styles can also be
applied directly to individual elements within a page. As long as the desired settings are the
last to be applied, the page will appear as required.

Syntax for CSS is quite different from syntax for HTML and is quite strict. You can apply
styles directly to HTML tags (for example, you may wish to format the <h1> tag with a partic-
ular font and color) or set them up in their own classes that can be applied when required. For
example, you may wish to create your own <h8> class.

You can include an external style sheet in an HTML page by using the <link> tag, which is
typically placed in the head area of the web page. The following example incorporates a style
sheet titled mystylesheet.css from the styles directory into the web page:

<link rel=’stylesheet’ type=’text/css’ href=’styles/mystylesheet.css’>

You can create an internal style sheet directly in the HTML page by using the
<style>…</style> tags. Again, this is typically created in the header area of the document.

If you wish to create a style locally to a particular tag, you add the style attributes inside
the tag. For example, to extend the style of the <p> tag, you would use the following:

<p style=’font-size:18pt; color:red;’>

Formatting Styles with CSS
Listing 20.2 illustrates a sample style sheet. It demonstrates several simple style attributes that
can be applied to text. You can use the styles directly in a web page by inserting the listing
between <style>…</style> tags or you can use it externally by saving the listing out to a sep-
arate text document with a .css filename extension (for example, mystylesheet.css). Some
long lines are wrapped here in print, but you can leave them all on one line in your code.

Listing 20.2: A sample style sheet

h1 {font-weight: bold; font-size: 24pt; color:red;
background: silver; text-align: center;}
p {font-family: arial, sans serif; font-size: 120%;}
p.quote {font-face:verdana; font-size: 10pt; font-style: italic;}
a {text-decoration:none; color:blue;}
a:visited {text-decoration:none; color:blue;}
a:hover {text-decoration:none; font-weight: bold;
font-size: 120%; color:darkblue;}
a:active {text-decoration:none; color:blue;}

If you were to use Listing 20.2 as an external style sheet, you could link it to your web page
by inserting <link rel = ‘stylesheet’ type = ‘text/css’ href = ‘mystylesheet.css’>
somewhere in the header area of your web page. This also assumes that the style sheet is sitting
in the same directory as your web page.

858 CHAPTER 20 BUILDING WEB APPLICATIONS

In Listing 20.2, note the following points:

◆ The creation of a separate quote class for use with the <p> tag. To employ this class in your
HTML, simply use <p class = ‘quote’>…</p>.

◆ By setting styles for the various permutations of the <a> tag, I have also created a simple
rollover effect for use with links. (The order in which these are applied is important for
the rollover effect to work.)

Rollovers can be created by using other methods, such as JavaScript, but CSS offers a simple
way of globally controlling the effect. You can also create quite sophisticated-looking buttons
around your links by using the formatting and style properties of CSS.

Page Formatting with CSS
CSS also can be used to define page formatting and layout for an HTML document. CSS is typ-
ically used to define and control <div> tags for this purpose, although you can also use it to set
and control table properties.

Listing 20.3 demonstrates a CSS style sheet used to control basic formatting. Most of the
items should be self-explanatory. (I have used named colors for the background colors for
the purpose of clarity. Usually it is preferable to use the hexadecimal equivalents.)

Listing 20.3: Style sheet to control page layout

title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

content{
background: lightblue;
padding: 30px;
position: absolute;
top: 110px;
bottom: 20px;
left: 180px;
right: 20px
}

CASCADING STYLE SHEETS (CSS) 859

I have created three classes — title, menu, and content — to describe the three main areas
of my page. The size of the area can be defined as well as its precise location. In the case of the
title class, I haven’t specified an exact location, and the title area will appear relative to where it
is written into the code. Other properties of the areas can also be defined, such as padding (dis-
tance between the area’s border and its internal elements) and background color. We use the
margin property to set the width of the title area by defining how far it is located from adjacent
elements and the page border.

Using the margin property in this context can be a little confusing. If four values are listed,
they refer to top, right, bottom, and left, respectively. However, listing just one value will apply
it to all four borders. Listing two values will apply them to the top/bottom and right/left in
combination. If there are three values listed, the missing values are taken from the opposite
side. It is sometimes easier to refer specifically to the margin-right, margin-top (and so on)
properties.

You can either embed Listing 20.3 into an HTML page or access it by using an external style
sheet. Listing 20.4 demonstrates the code embedded into an HTML page and utilized to set the
layout of the page.

Listing 20.4: Using a style sheet to set the layout of a web page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Layout Page</title>

<style>

title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

content{
background: lightblue;
padding: 30px;
position: absolute;
top: 110px;

860 CHAPTER 20 BUILDING WEB APPLICATIONS

bottom: 20px;
left: 180px;
right: 20px
}

</style>
</head>

<body>
<div class=’title’>

<h1>Heading</h1>
</div>
<div class=’menu’>

<p>Menu Item 1</p>
<p>Menu Item 2</p>

</div>
<div class=’content’>

<p>Some Content</p>
</div>

</body>
</html>

Figure 20.4 illustrates how the layout from Listing 20.4 appears in a web page. Carefully
look at the code and you will see how the individual layout classes are used inside the <div>
tags to generate the layout structure of the page.

Figure 20.4

Listing 20.4 running as a
web page

This is a very brief overview of CSS. For more-comprehensive coverage, please refer
to Mastering Integrated HTML and CSS by Virginia DeBolt (published by Sybex and men-
tioned earlier). There are also many online tutorials available, such as those available at
www.w3schools.com/css/.

JAVASCRIPT 861

JavaScript
You can embed JavaScript into your HTML pages to create interactive and dynamic elements at
the client end. JavaScript can be used to create named functions inside the script tags that can
be called later in the page. You can also use JavaScript attached directly to HTML elements.

Currently, 18 events specified in HTML 4 and XHTML 1 can be used as triggers to run indi-
vidual scripts. Table 20.2 lists these events.

Table 20.2: Events available for use in HTML

Event Description

Keyboard Events Not Valid in Base, BDO, BR, Frame, Frameset, Head, HTML,
iFrame, Meta, Param, Script, Style, and Title Elements

onkeydown When a keyboard key is pressed

onkeypress When a keyboard key is pressed and released

onkeyup When a keyboard key is released

Mouse Events () Not Valid in Base, BDO, BR, Frame, Frameset, Head, HTML,
iFrame, Meta, Param, Script, Style, and Title Elements

onclick When an object is clicked with the mouse

ondblclick When an object is double-clicked with the mouse

onmousedown When the mouse is clicked on an object

onmousemove When the mouse is moved

onmouseover When the mouse is moved over an object

onmouseout When the mouse is moved away from an object

onmouseup When the mouse button is released

Form Element Events Valid Only in Forms

onchange When the content of the field changes

onsubmit When the submit button is clicked to submit the form

onreset When the reset button is clicked to reset the form

onselect When some content of the field is selected

onblur When an object loses focus

onfocus When an object gains focus as the user selects the object

862 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.2: Events available for use in HTML (CONTINUED)

Event Description

Window Events Valid Only in Body and Frameset Elements

onload When the page is loaded

onunload When the page is unloaded

The following code snippet gives an example of using JavaScript to create a rollover effect
on a link:

<font color=’blue’ face="verdana" onmouseover="this.style.color =’lightblue’;"
onmouseout="this.style.color =’blue’;" size=1>New Page

This script sets the link color to blue. Rolling the mouse over the link changes it to a light
blue. Moving the mouse off the link resets it to the normal blue.

Listing 20.5 demonstrates how a JavaScript function can be embedded into a web page and
then called from a button press. In this example, clicking the Test button will set the back-
ground color of the web page to blue. Note that the use of bgColor in the JavaScript function
is case sensitive. Some long lines are wrapped here in print, but you can leave them all on one
line in your code.

Listing 20.5: Demonstration of a JavaScript function

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd
<html>
<head>
<title>Javascript example</title>
<script language=’javascript’>

function changecolor(){
document.bgColor=’blue’

}
</script>
</head>

<body>
<button type=’button’ onclick=’changecolor()’>Test</button>
</body>
</html>

We have only touched on the possibilities of JavaScript in these examples. Please refer to
JavaScript Bible, Sixth Edition, by Danny Goodman and Michael Morrison (Wiley, 2007) for

SERVER-SIDE TECHNOLOGIES 863

more-thorough coverage. There are many online tutorials also available. A good starting point
is at www.w3schools.com/js/.

AJAX
Asynchronous JavaScript and XML (AJAX) enables the web developer to create online applica-
tions that behave more like standard desktop apps in that the entire page need not be refreshed
every time there is a round-trip between the browser and the web server. This eliminates the
‘‘flicker’’ users see when a page is refreshed/reloaded. The asynchronous nature of the technol-
ogy enables you to make an HTTP request to the server and continue to process data while
waiting for the response. Data transfers are handled by using the XMLHTTPRequest object.
This combines with the Document Object Model (DOM), which combines with JavaScript to
dynamically update page elements without the need for a browser refresh.

A detailed exploration of AJAX is beyond the scope of this book. For our purposes, it is
important to note that AJAX has been incorporated into ASP.NET 4.0 and can be leveraged into
your web applications from Visual Studio 2010.

An online AJAX tutorial is available from www.w3schools.com/ajax/default.asp.

Microformats
You can use microformats to list data on your website so that it can be accessed by various
data-aggregation tools. Microformats are really just specifications for formatting data such
as address book details or calendar information. Thousands of microformats exist. The
Microformats.org website (http://microformats.org) is a good starting point for the various
specifications.

The hCard is an example of how microformats work. The hCard specification is modeled on
the vCard specification, which is widely used for address books. You can use the hCard creator
on the Microformats website to automatically generate the code for use on your own site. You
can also roll your own according to the specification. The advantage of listing your address
details in the hCard format is that anyone visiting your site can automatically add your details
to their own address book according to the vCard specification.

Server-Side Technologies
Thus far, you have looked mainly at the technologies that drive the client side of a web-based
application. This is only half of the equation. The website itself is normally hosted on some
form of server platform and managed with a web server package. On a Microsoft platform,
the web server is typically Microsoft’s Internet Information Services (IIS). Requests from the client
are processed by the web server and appropriate web pages are supplied. The server can also
be used to process information supplied by the client as part of the request to provide a more
interactive experience.

Although the range of technologies available at the client end is fairly limited, the server-
side applications can be written in any language or form supported by the web server. In
the case of IIS running an ASP.NET application, the application may be written in any of the
.NET-supported languages.

Prior to ASP.NET, developers working in the Microsoft platform created web applications
mainly using Active Server Pages (ASP). Pages written in ASP are scripted pages that combine
a variety of technologies including HTML, JavaScript, server objects, Structured Query Lan-
guage (SQL), and Visual Basic Script (VBScript). They are created as plain-text files and saved

864 CHAPTER 20 BUILDING WEB APPLICATIONS

with the .asp filename extension. ASP is powerful and flexible, but maintaining large sites
can be time consuming, and achieving and maintaining a decent level of security can be
problematic.

With the introduction of ASP.NET, Microsoft gave developers a much tidier approach to cre-
ating their web applications. You can use Visual Studio to create your applications, and super-
ficially at least, the process of building the application is not terribly different from building
standard Windows applications. Much of the plumbing for connecting to back-end databases
or sophisticated objects (which in ASP you would have to lovingly handcraft) is now taken care
of. You also have the option to write much of the code into code-behind, where it can be safely
compiled away from prying eyes and offer the performance enhancements integral to a com-
piled environment. A code-behind is a code file like the kind normally used to develop desktop
applications. Code written into the code-behind is compiled into a library that is kept physi-
cally distinct from the scripted pages of the web application. At the scripted end of ASP.NET,
files are plain text and saved with the .aspx filename extension.

However, there are differences between the desktop and web development environments,
and to really take advantage of .NET and fully optimize your web applications, you need to be
aware of the differences and how they can be accommodated and exploited.

My favorite example of the differences between desktop and web development in Visual
Studio is in the use of fragment caching. Fragment caching can be used to cache portions of an
ASPX page that are constantly reused (such as headings). This helps create a performance boost
over an equivalent page that is completely regenerated each time it is called.

Another area where I have seen developers caught unprepared while making the transition
from desktop to web applications is in the use of view state. View state is used to maintain
information about the current property state of the various controls on a page. It is stored on
the client’s web page in a hidden field and thus makes the round-trip to the server. Depending
on the application, it can get very big very quickly, and even fairly plain pages can suddenly
start taking long periods to download to the client if view state is not managed correctly.

For the remainder of this chapter, I will discuss how to begin creating a web application
in Visual Studio 2010 and examine the available web form and HTML controls. Finally, at the
end of the chapter, I will put all of these together and guide you through creating a Northwind
online orders application.

Creating a Web Application
Developers have two project models in Visual Studio 2010. You can use either the ASP.NET
Web Application from the New Project dialog box or the New Web Site option from the File
menu. It is mainly a matter of preference. In the Web Application option, project resources are
defined explicitly, and the developer has tighter control over the project. It tends to suit the VB
programmer coming into web programming. The New Web Site option is more flexible and
tends to suit the web programmer migrating to Visual Studio.

To create a web application, open Visual Studio and select the New Project option from the
File menu. From the New Project dialog box, expand the Visual Basic tree and select the Web
option. From this screen, choose ASP.NET Web Application, as shown in Figure 20.5.

To create a new website project, open Visual Studio and select New Web Site from the File
menu. This will open the New Web Site dialog box. From here, choose ASP.NET Web Site, as
shown in Figure 20.6.

After the new project is open, the main difference between the interface for building
a web application and that used for building a standard Windows application is that the
Designer for web applications has three views: Design, Split, and Source. This enables you to

CREATING A WEB APPLICATION 865

alternate between a graphical view of the page and controls, an ASPX view, and a split view
showing both.

Figure 20.5

Choosing an ASP.NET
web application from
the New Project
dialog box

Figure 20.6

Choosing an ASP.NET
website from the New
Web Site dialog box

The contents of the Toolbox also include HTML controls. You use the Standard controls
mainly to create interactive applications, while the HTML controls are essentially client-side
controls that mimic many of the traditional HTML elements such as tables and horizontal rules.

You can drag and drop controls onto the page in design view and edit properties by using
the traditional Properties window, or you can switch to Source or Split view and directly edit
the code.

You can actually do most of your coding directly onto the ASPX page in Source view.
This includes not only your design elements but also your business logic. However, it makes

866 CHAPTER 20 BUILDING WEB APPLICATIONS

sense to separate your business logic from your design and use code-behind by hitting F7,
by choosing View Code from the Solution Explorer, or by double-clicking the control in
question.

When you view your application, it will open in your default browser. You may get a
message warning Debugging Not Enabled if you have used F5 or the green arrow. You can
choose to either run the project without debugging or enable debugging in the Web.config
file. You can either modify Web.config manually or choose to allow Visual Studio to do it
for you. However, you will need to remember to disable debugging when you go to deploy
your project. To manually modify Web.config, double-click the Web.config entry in Solution
Explorer. Web.config should open as a page of code. Under compilation, set debug ="true"
as shown in the following code snippet:

<compilation debug="true" strict="false" explicit="true">

The Web.config file is a text file that holds many of the global settings for your website or
application. The file is automatically generated when you create a new project and it can be
edited manually or through various Visual Studio 2010 wizards. You need to be careful when
editing the file because unlike HTML, the XML in the Web.config file is case sensitive. Making
a mistake in Web.config can break your whole application.

You may also need to enable script debugging in Internet Explorer. From the Tools menu,
choose Internet Options and click the Advanced tab. Under Browsing, deselect the Disable
Script Debugging check box, as shown in Figure 20.7.

Figure 20.7

Enabling script debug-
ging in Internet Explorer

CONTROLS 867

Controls
Several sets of controls are available to the developer when creating web applications. These are
accessible from the traditional Toolbox and are separated into several categories. These include
Standard, Data, Validation, Navigation, Login, WebParts, AJAX Extensions, Reporting, and
HTML. Many of these controls exhibit behavior similar to that of their desktop counterparts.

Standard Controls
The Standard controls are also known as web form controls and have intrinsic server-side func-
tionality that you can program against. Table 20.3 contains a list of the Standard controls and a
brief description of each.

Table 20.3: Standard controls

Control Description

AdRotator Randomly inserts content (advertisements) within a specified area
according to a weighted index.

BulletedList Displays a bulleted list.

Button Displays a command-style button to enact code back on the server.

Calendar Renders a calendar with calendar-style functionality on the target page.

CheckBox Displays a single check box.

CheckBoxList Renders a list with check box functionality against each item.

ContentPlaceHolder Used in master pages for replaceable content.

DropDownList Enables creation of a drop-down list of items from which the user can
make a selection.

FileUpload Creates a text box and button combination that can be used to upload a
file from the client to the server.

HiddenField Creates an <input type = ‘hidden’> element that can be programmed
with server code.

HyperLink Creates links for navigating internally and externally to the site.

Image Places an image on a page.

ImageButton Enables a graphic to be specified as a button.

ImageMap Displays an image with clickable regions.

Label Standard control for rendering text on a page.

LinkButton Renders a button as a link. Effectively creates a link that posts back to the
server and executes whatever code has been set for it.

868 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.3: Standard controls (CONTINUED)

Control Description

ListBox Displays a list of items that may be selected individually or in multiples by
the user.

Literal Similar to the Label control in that it is used to render text to a web page,
but does so without adding any additional HTML tags.

Localize Displays text in a specific area of the page — similar to the Literal control.

MultiView Contains View controls and allows you to programmatically display different
content.

Panel Container control that can be used to set global properties (style, etc.) for a
group of controls.

PlaceHolder Used as a container by controls that are added at runtime and that may vary
in number.

RadioButton Displays a single radio button control.

RadioButtonList Renders a list with radio button functionality against each item.

Substitution Contains updateable cache content.

Table Enables the establishment of dynamically rendered tables at runtime. Should
not be used for page layout — use the HTML version of the control.

TextBox Provides a data-entry field on a web page. Can be set as a password box with
the contents obscured.

View A panel to display a MultiView control.

Wizard Creates a multipane control for creating wizards.

XML Can be used to write an XML document into a web page.

Data Controls
Table 20.4 lists the controls available for data access, display, and manipulation in ASP.NET.

Validation Controls
Validation controls are used to establish rules for validating data entry in web forms. Table 20.5
lists the Validation controls available.

Navigation Controls
Three controls exist for assisting in the creation of navigation menus in ASP.NET. Table 20.6
lists the Navigation controls available.

CONTROLS 869

Table 20.4: Data controls

Control Description

AccessDataSource For connecting to an Access database.

DataList Control for displaying and interacting with data as a list.

DataPager Provides paging functionality for controls such as ListView.

DetailsView Renders a single record as a table and allows the user to page through
multiple records. Used for master-details forms. Provides ability to create,
delete, and modify records.

FormView Similar to DetailsView without predefined layout.

GridView Displays data as a table.

LinqDataSource For connecting to a LINQ data source.

ListView Displays data as a list and supports create, delete, and update functionality.

ObjectDataSource For connecting to a business object as a data source.

Repeater For creating customized lists out of any data available to a page. List format
is specified by the developer.

SiteMapDataSource For use with site navigation. Retrieves navigation information from a
site-map provider.

SqlDataSource For connecting to a SQL database.

XmlDataSource For connecting to an XML data source.

Table 20.5: Validation controls

Control Description

CompareValidator Compares the contents of two fields — for example, when
constructing a password-creation confirmation check

CustomValidator Enables customized validation requirements to be set

RangeValidator Checks that specified content or entries fall within a set range of
values

RegularExpressionValidator Checks that a field entry follows a particular specified
template — for example, zip code

RequiredFieldValidator Checks that a user has made an entry into a specified field

ValidationSummary Reports validation status of other validation controls being used on
the form

870 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.6: Navigation controls

Control Description

Menu Creates static and/or dynamic menus

SiteMapPath Displays the navigation path and obtains information from the site map

TreeView Displays hierarchical data (such as an index)

Login Controls
ASP.NET includes a membership system that can be used to look after authentication, autho-
rization, and member details on your site. It is enabled by default and can be configured by
using the Web Site Administration tool. You access this tool by choosing ASP.NET Configu-
ration from the Website menu. (Note that if you are using the Web Application development
environment, ASP.NET Configuration is accessed from the Project menu.)

Figure 20.8 illustrates the Web Site Administration tool. Table 20.7 lists the Login controls
available.

Figure 20.8

The Web Site Adminis-
tration tool

WebParts Controls
WebParts enable users to personalize their view of your website by modifying the content,
appearance, and behavior of the web pages from their browsers. Table 20.8 lists the WebParts
controls available.

AJAX Extensions Controls
To fully utilize AJAX in your applications, you will also need to download the ASP.NET AJAX
Control Toolkit from the ASP.NET Ajax website at http://asp.net/ajax/. Table 20.9 lists the
available AJAX Extensions controls that ship in Visual Studio 2010.

MAINTAINING STATE 871

Table 20.7: Login controls

Control Description

ChangePassword Allows users to change their passwords

CreateUserWizard Displays a wizard for gathering information from a new user

Login Displays an interface for user authentication

LoginName Displays user’s login name

LoginStatus Displays the logout link for an authenticated user and the login link for
a nonauthenticated user

LoginView Displays different information for anonymous and authenticated users

PasswordRecovery Recovers passwords based on email details entered when account was
created

Reporting Controls
The reporting control creates data-driven reports in ASP.NET. MicrosoftReportViewer is the
tool available for creating and displaying a report.

HTML Controls
Table 20.10 lists the HTML controls available. These are not typically exposed to the server
for you to program. However, you can convert any HTML control to an HTML server control
by adding the attribute runat ="server" to the control in ASPX view. This will allow you to
manipulate the HTML control’s functionality from the server. If you wish to reference the con-
trol within your code, you will need to add an id attribute as well.

Maintaining State
An issue for developers when working with web-based applications is that a web server does
not intrinsically maintain an ongoing connection with the client and each request (even by the
same client viewing the same website) is treated as an entirely separate request. The business
of persisting information about the client and what the client is doing from one request to the
next is called maintaining state. A set of related requests originating from a client viewing a
particular website or using a web application is called the client’s session.

As a web developer, you need to consider how you will maintain state for your clients and
web applications. You need to come up with a way for the server to remember your client and
the client session between requests and for your client to identify itself to the server with each
request. The issue is complicated by the fact that there are multiple methods of maintaining
state and each comes with its own set of advantages and disadvantages. At the client end, these
methods include the following:

Using cookies Cookies are small files deposited in the client browser’s cache. Many users
turn these off or restrict their usage because of security and privacy concerns.

872 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.8: WebParts controls

Control Description

AppearanceEditorPart Enables end user to edit certain appearance properties of an associated
WebPart control

BehaviorEditorPart Enables end user to edit certain behavior properties of an associated
WebPart control

CatalogZone Hosts CatalogPart controls — catalog of controls that users can select to
add to a page.

ConnectionsZone Contains WebPartConnection controls — two web part controls that
are linked

DeclarativeCatalogPart Used with CatalogZone control to enable you to add a catalog of web
parts to your web page

EditorZone Area in which users can personalize controls

ImportCatalogPart Imports a description file for a WebPart control, enabling the user to add
the web part with predefined settings

LayoutEditorPart Editor control for users to edit layout properties of a web part

PageCatalogPart Provides a catalog of all web parts that a user has closed on a web page
enabling the user to add the controls back again

PropertyGridEditorPart Editor control for user to edit properties of a web part

ProxyWebPartManager For use in a content page to declare static connections when a WebPart
Manager has been used in the associated master page

WebPartManager Used once on a page to manage all WebParts controls on that page

WebPartZone Provides overall layout for WebPart controls

Table 20.9: AJAX extensions controls

Control Description

ScriptManager Manages script resources for clients — required for Timer, UpdatePane,
and UpdateProgress controls. Use only once on a page.

ScriptManagerProxy For use in circumstances where a page already has a ScriptManager
control.

Timer Performs postbacks at specified interval.

UpdatePanel Enables you to asynchronously refresh portions of a page.

UpdateProgress Provides progress details on partial page updates.

MAINTAINING STATE 873

Table 20.10: HTML controls

Control Default HTML Generated

Div <div style="width: 100px; height: 100px"> </div>

Horizontal Rule <hr />

Image

Input (Button) <input id="Button2" type="button" value="button" />

Input (Reset) <input id="Reset1" type="reset" value="reset" />

Input (Submit) <input id="Submit1" type="submit" value="submit" />

Input (Text) <input id="Text1" type="text" />

Input (File) <input id="File1" type="file" />

Input (Password) <input id="Password1" type="password" />

Input (Checkbox) <input id="Checkbox1" type="checkbox" />

Input (Radio) <input id="Radio1" checked="checked" name="R1" type="radio"
value="V1" />

Input (Hidden) <input id="Hidden1" type="hidden" />

Select <select id="Select1" name="D1"> <option></option> </select>

Table <table style="width:100%;"> <tr> <td> </td>
<td> </td> <td> </td> </tr> <tr> <td> </td>
<td> </td> <td> </td> </tr> <tr> <td> </td>
<td> </td> <td> </td> </tr> </table>

Textarea <textarea id="TextArea1" cols="20" name="S1"
rows="2"></textarea>

Using hidden fields in the web page This method is reliable, but you will need to code
specifically at the server to read the content. Hidden fields can also end up carrying a lot
of data, can pose a security risk because the information is available in cleartext in the page
source code, and can get messy if your client uses unexpected navigation techniques such as
the browser’s back button rather than your built-in site navigation.

Incorporating state information into the URL This method is reliable but restrictive. It also
can be a security risk (with data stored in a browser’s history, for example) and may cause
issues with unexpected navigation techniques.

At the server end, the following methods of maintaining state (after the client has been iden-
tified) are typical:

Using session variables This is the simplest method. It uses the Session object. Session vari-
ables behave a bit like global variables, and all the usual warnings apply.

874 CHAPTER 20 BUILDING WEB APPLICATIONS

Storing information in a database This is a powerful and flexible method, but it adds over-
head, particularly for a simple site.

For simple sites, ASP.NET takes care of most of these issues for you by using a combina-
tion of techniques. You can use session variables to manage small amounts of data between
pages and a database for anything more involved. It is, however, a good idea for you to keep
an eye on the ViewState settings of your controls so as to minimize the amount of data making
the round-trip from server to client and back again. You can enable/disable ViewState for any
individual control by using the EnableViewState property in that control’s Properties window.

To create a session variable, simply type Session("MyVariableName") ="variable content".
Insert a relevant name and content. Be careful that you do not reuse a variable name for
another purpose because the contents of the original variable will be overwritten.

To access the session variable, you refer to the full Session("MyVariableName").
If you are setting up a site that will employ identification of its users, require some form

of authentication, and/or offer customization of settings, it is a good idea to use Microsoft’s
membership system, which is available through the Web Site Administration tool and the Login
controls. Refer to the section ‘‘Login Controls’’ earlier in this chapter.

Master Pages
ASP.NET 2 introduced the idea of master pages as a method of maintaining a consistent look
and feel for a website or application. This approach has been continued with ASP.NET 4.0.

The idea is to create a page (or a number of pages), known as a master page, from which
your web pages derive their common elements. Web pages linked to master pages are known
as content pages. It is a little like using CSS style sheets to control your web page styles and
structure in a scripted setting.

To add a master page to a site, simply choose the Master Page template from the Add New
Item option in the Website (for ASP.NET Web Site) or Project (for ASP.NET Web Application)
menu. The master page has the filename extension .master. You can rename the master page
appropriately, but do not change the filename extension!

In the master page, you can set up standard items that remain consistent across your site,
such as headers, footers, and navigation bars. You can also place ContentPlaceHolder controls
in those areas where you are planning on customizing your content pages. The ContentPlace-
Holder controls provide editable locations where you can add additional controls and informa-
tion. You will need to right-click the master controls and choose the Create Custom Content
option. In addition, you can create a style sheet to control the appearance of your master page
(and hence its attached content pages).

If you make changes to your master pages, these changes will be reflected in your attached
content pages. (You will need to save your changes to the master page before the updates are
reflected through the content pages.)

A master page is not automatically added to your pages. You must explicitly attach it. For
example, to attach it to a new page, choose Web Form from the Add New Item dialog box and
select the Select Master Page check box. Click the Add button and this will open another dialog
from which you can choose the appropriate master page. Click OK and you are ready to go.
You can add content into the ContentPlaceHolder controls inherited from the master page.

ASP.NET OBJECTS 875

If you already have your master page open in the IDE, you can simply use the Add Content
Page option from the Website menu to directly create a content page attached to the particular
master page you are browsing.

Trying to connect an existing page, such as the default.aspx page initially created in the
application, to a master page can be problematic, so it is often a good idea to delete it. To set a
new default page for your website, right-click the desired page in Solution Explorer and choose
the Set As Start Page option.

ASP.NET Objects
Objects are available in ASP.NET that can be used to provide you with information about the
state of your application, each user session, HTTP requests, and more. You need to be familiar
with some of these because they can be useful in your code. Many of them also expose useful
utility methods for managing your web application. For example, you have already seen how
you can use the Session object to create a session variable. In this section, you will briefly look
at the main objects and some of their methods and properties.

Application object The Application object stores information related to the full web applica-
tion, including variables and objects that exist for the lifetime of the application.

Context object The Context object provides access to the entire current context and can be
used to share information between pages. This includes the current Request and Response
objects.

Request object The Request object stores information related to the HTTP request, such as
cookies, forms, and server variables. You can use this object to see everything passed back to
the server from the client.

The Request object includes the properties shown in Table 20.11. Table 20.12 shows the meth-
ods for the Request object.

Response object The Response object contains the content sent to the client from your server.
You can use the Response object to send data such as cookies to your client. The Response
object includes the properties shown in Table 20.13 and the methods shown in Table 20.14.

Server object The Server object exposes methods that can be used to handle various server
tasks. You can use these methods to create objects, to map paths, and to get error conditions.

The properties for the Server object are shown in Table 20.15, and the methods are in
Table 20.16.

Session object The Session object stores information related to the user’s session, including
variables, session ID, and objects. Properties for the Session object are shown in Table 20.17;
methods are in Table 20.18.

Trace object The Trace object can be used to display system and custom diagnostics in the
page output. Properties for the Trace object are shown in Table 20.19 and a single method for
the Trace object is shown in Table 20.20.

876 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.11: Properties for the Request object

Property Description

ApplicationPath Indicates the virtual path of the application

Browser Gets or sets information about the client’s browser and its capabilities

ClientCertificate Gets the client’s security certificate

Cookies Gets the cookies sent by the client

FilePath Gets the virtual path of the request

Form Gets a collection of form variables

IsAuthenticated Indicates whether the request has been authenticated

IsLocal Indicates whether the request originates from a local computer

Item Gets specified object from Cookies, Form, QueryString, or ServerVariables

LogonUserIdentity Gets Windows identity for user

QueryString Gets the collection of HTTP query string variables

ServerVariables Gets the collection of web server variables

URL Gets the URL of the request

UserHostAddress Gets the IP address of the client

UserHostName Gets the DNS name of the client

MapPath Maps the virtual path in the requested URL to the physical path on the server

SaveAs Saves the request to disk

Table 20.12: Methods for the Request object

Method Description

BinaryRead Returns the data sent to the server during post in the form
of a byte array

InsertEntityBody Used to insert modified entity body into memory

MapImageCoordinates Retrieves the coordinates of a form image that is sent to the server as a
part of the current request

SaveAs Saves the request to a file

ValidateInput Used to call validation feature from code if the validation was disabled
by the page directive

ASP.NET OBJECTS 877

Table 20.13: Properties for the Response object

Property Description

Buffer Gets or sets the value that determines whether to buffer output

Cookies Returns the response cookies collection

ContentType Gets or sets HTTP MIME type in output

Expires Gets or sets the cache expiration of a page (in minutes)

IsClientConnected Indicates whether a client is still connected

Table 20.14: Methods for the Response object

Method Description

AppendCookie Adds a cookie to the collection

AppendHeader Adds an HTTP header

ApplyAppPathModifier Adds the session ID to the virtual path if a cookieless session is being used

Clear Clears all content output from the buffer

End Sends all buffered output to the client and stops execution of the page

Flush Sends all buffered output to the client

Redirect Redirects the client to a new URL

SetCookie Updates an existing cookie

Write Writes additional text to the response output

Table 20.15: Properties for the Server object

Property Description

MachineName Returns the server’s name

ScriptTimeout Gets and sets time-out value for requests in seconds

878 CHAPTER 20 BUILDING WEB APPLICATIONS

Table 20.16: Methods for the Server object

Method Description

Execute Commonly used to execute a URL to open another page from within your code

HTMLDecode Decodes a string that has been encoded to remove illegal HTML characters

HTMLEncode Encodes a string to display in a browser

MapPath Gets physical file path of the specified virtual path on the server

UrlEncode Encodes a string for transmission through the URL

UrlDecode Decodes a string encoded for transmission through a URL

Table 20.17: Properties for the Session object

Property Description

Count Returns the number of items in the current session state collection

Item Gets or sets individual session values

LCID Gets or sets the locale identifier

SessionID Gets the identifier for the session

Timeout Gets or sets the time between requests in minutes before the session terminates

Table 20.18: Methods for the Session object

Method Description

Abandon Terminates the current session

Add Adds a new item to the session state collection

Clear Clears all values from the session state collection

Remove Removes an item from the session state collection

RemoveAll Removes all items from the session state collection

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 879

Table 20.19: Properties for the Trace object

Property Description

IsEnabled Gets or sets whether tracing is enabled

TraceMode Gets or sets the order in which trace messages are written to the browser

Table 20.20: Method for the Trace object

Method Description

Write Writes trace information to the trace log

Postback
An important aspect of the way that ASP.NET operates is that controls that run on the server
are able to post back to the same page. This process is called postback. This is different from the
old ASP model, in which often there would be two or three pages set up to host the controls,
process the code, and provide a response.

Any ASP.NET page that has at least one visible control will include the JavaScript function
_doPostBack. This function records the control that initiated the postback, plus additional
information about the initiating event, and includes it in the data submitted back to the
server.

The Postback property is a read-only value that is set to False when a page is first loaded
and is then set to True when the page is subsequently submitted and processed. At the server
end, you can use the function Page.IsPostBack() to determine the state of a page’s postback
and write code accordingly — this is particularly useful when deriving your page content from
a database.

VB 2010 at Work: Online Ordering Application
Now that you have learned about main elements used to construct ASP .NET applications,
let’s put these to work by building the online order placement application for the Northwind
database. The application is based on a typical online shipping cart design. First, the user
is presented with a list of products. They can choose a product from the list to add to a
shopping cart. After they select the product, they need to decide on a quantity and thus the
order item is placed inside the shopping cart. On a shopping cart page, they can choose to
proceed to checkout or to return to a list of products to place some additional items into the
shopping cart.

To implement this functionality, you will use Typed Dataset technology described in
Chapter 18 for data access technology and some standard ASP .NET controls to implement the
web GUI.

880 CHAPTER 20 BUILDING WEB APPLICATIONS

Creating the Project
Let’s start by creating a new Web Application Project:

1. Choose File � New � Project and then select ASP.NET Web Application.

2. Add a new DataSet named Northwind to the project by choosing Project � Add New Item
and selecting the Data Set item.

To place the orders inside the Northwind database, you need to make several tables from
the database available to the application. Follow the steps described in ‘‘Generating a Typed
DataSet’’ in Chapter 18, ‘‘Building Data-Bound Applications,’’ and add the following tables
to the Northwind DataSet: Categories, Products, Orders, and Order_Details. Make sure that
the Refresh The Data Table option is checked in the Advanced Options window when you’re
adding the Orders table.

Be sure to build the solution at this point; you can do so by pressing F6 or by invoking the
Build command from the main menu: Build � Build Solution. Unless you do so, you might not
be able to configure the ObjectDataSource in the next section.

You are now ready to construct the first application web form; it will display the list of
products to the user.

Creating the Products Web Form
To facilitate the product search, the Products form will include the DropDownList control used
to display a list of categories. When the user clicks the Search button, Category Id is used to fil-
ter the list of products. The filtered list of products is displayed in a GridView control. Perform
the following steps to create the Products Web Form:

1. Add a new web form to the project by choosing Project � Add New Item and selecting the
web form item. Name the form Products.

2. Open the form in design view. Add a Label control (from the Toolbox) to the form and set
the Text property of Label to Categories.

3. Add a DropDownList to the web form. Name it ddlCategories. It should initially display
the text Unbound in the design view.

4. Add an ObjectDataSource control, found in the Data section of the Toolbox menu, and set
the ID property to odsCategories. Configure the data source for odsCategories by invok-
ing the Configure Data Source Wizard. Select the CategoriesTableAdapter business object
in the Configure Data Source window. In the Define Data Methods window, set the method
to None on the Update, Insert, and Delete tabs. On the Select tab, leave the default GetData
method.

5. Configure the ddlCategories control data source by selectingodsCategories as the data
source for the control. Set DataTextField for ddlCategories to CategoryName and Data-
ValueField to CategoryID. The ddlCategories should now display the text Databound in
design view.

You can now run the form for the first time; be sure the Products web form window is
selected as active in Visual Studio and then press F5. You should see the form with a single
drop-down list displaying all product categories.

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 881

It is time to prepare the application for displaying the list of products. For this, you need
first to prepare the DataSet for a parameterized display of Products data:

1. Open the Northwind DataSet design window.

2. Right-click the Products table and select Add � Query from the context menu.

3. When the TableAdapter Query Configuration Wizard opens, select the Use SQL Statements
option and click Next.

4. In the Choose A Query Type window, choose SELECT, which returns rows, and click Next.

5. In the Specify A SQL SELECT statement window, click the Query Builder button.

6. When the Query Builder window opens, check all of the columns for selection.

7. Add the following filters to the query:
Set the Discontinued column filter to = 0
Set the CategoryId column filter to = @CategoryId

8. Execute the query. You will be prompted for an @CategoryId parameter value. Enter 1 and
click OK. You should see a number of rows returned in the query result table. Click OK and
then click Next.

9. In the Choose Methods To Generate window, check the Return A Data Table option and
name the method GetDataByCategoryId. Click Finish. Ignore the warnings that might be
issued by Visual Studio.

It is now time to configure the grid view of the product data:

1. Add an ObjectDataSource control to the form. Name it odsProducts.

2. Select ProductsTableAdapter in the Configure Data Source window. Click Next.

3. Select GetDataByCategoryId(Nullable<Int32> CategoryID), Returns ProductsDataTable in
the Choose A Method combo box on the Select tab of the Define Data Methods window.
If this option is not displayed, click Cancel and rebuild the project so that the changes you
made to DataSet in the previous section (where you prepared the Northwind DataSet)
are reflected. Choose None as the data method on the Insert, Update, and Delete tabs.
Click Next.

4. In the Define Parameters window, select Control as the parameter source. Select ddl-
Categories as the ContorlID and enter 1 as the default value. Click Finish.

Now you are ready to add the grid control to the form:

1. Add a GridView control to the form. Name it gwProducts.

2. Configure the data source for the GridView control. Select odsProducts from the Choose
Data Source combo box.

3. Configure the data you wish the user to see. Right-click the gwProducts control and invoke
the Edit Columns option.

4. Remove the SupplierID, CategoryID, UnitsOnOrder, ReorderLevel, and Discontinued
fields from the list of selected fields.

882 CHAPTER 20 BUILDING WEB APPLICATIONS

5. Set the ProductID field Visible property to False.

6. Set the header text for the selected columns so it represents the column content. The wizard
will use the table column names by default. You can add space characters to these names
where necessary. For example, you can change ProductName to Product Name.

7. Click OK.

8. When the GridView Tasks window opens, check the Enable Paging, Enable Sorting, and
Enable Selection options.

9. Make sure the DataKeyNames property has the values ProductID and ProductName.

You can explore further by setting any of the numerous display and paging options of Grid-
View to your liking. You can now run the application. The products web form should display
a grid populated with product data. In the browser, the form should look similar to the HTML
page shown in Figure 20.9.

Figure 20.9

Main product selec-
tion web form
Products.aspx

All that is left to do to finish the web form is to make the DropDownList filter the grid
data. To that end, add the button to the form and change the button’s Text property to Search.
Notice that there is no need to implement any event-handling code for the Search button’s
click event. Even without an event handler, clicking the Search button will result in the web
form being posted back to the server with the currently selected value in ddlCategories con-
trol. When the page is rendered again, it will show only the products belonging to the currently

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 883

selected category. You are done with filtering functionality! When the user clicks the button, the
new request is issued to the server and ddlCategories SelectedValue is passed to a parameter to
odsProducts.

Now you need to handle the product selection. The user should be redirected to a new
web form called Quantity.aspx to select the desired quantity for the product. This can be
accomplished by writing an event handler for SelectedIndexChanged event of gwProducts.
The product ID and product name data for the selected row is made available through
GridView’s SelectedDataKey property. You can take a look at the SelectedIndexChanged
event handler in Listing 20.6.

Listing 20.6: Handling of product selection

Protected Sub gwProducts_SelectedIndexChanged(ByVal sender As Object,
ByVal e As System.EventArgs) Handles
gwProducts.SelectedIndexChanged

Dim quantityUrl = "Quantity.aspx?productId=" &
gwProducts.DataKeys.
Item(gwProducts.SelectedIndex).Values("ProductID").ToString &
"&productName=" &
gwProducts.DataKeys.
Item(gwProducts.SelectedIndex).Values("ProductName").ToString

Response.Redirect(quantityUrl)
End Sub

Retrieving data keys of the selected row in a GridView is a bit involved. You need to use the
SelectedIndex value of a GridView as an index for the DataKeys collection. Then you retrieve
a value of DataKey by passing the name of the key. The product ID and product name are
passed to the Quantity web form through the URL query string using the Redirect method
of the Response object. Next let’s take care of the Quantity.aspx web form.

Creating the Quantity Web Form
On the Quantity.aspx web form, the user needs to decide on the quantity of the product they
are ordering. To implement the form, the first thing you need to do is obtain the selected
product ID and product name. As you can see in Listing 20.6, this information is passed to
Quantity.aspx as a parameter in the query string. This parameter is made available to you
through the QueryString property of a Request object, as in this example: Request.Query
String("productId").

The Quantity.aspx web form can be accessed by someone writing the Quantity web form
URL directly in the browser in an uncontrolled manner and meddling with the productId
parameter in an query string. Therefore, you must first make sure a valid product ID and
product name is being passed with the query string. This validation is performed in the
ValidateProduct method. If the product ID or name is invalid, the user is redirected back to
the Products.aspx web form. Notice that this scenario is used only to handle some inquisitive
user (should I say hacker?) who decided to experiment with what should be application inter-
nal data. (This is one of the reasons you should favor submitting data with web forms instead
of using the query string parameters.) And while you usually want to give an explanation for

884 CHAPTER 20 BUILDING WEB APPLICATIONS

a redirect to your user, there is no need to give any explanation here; redirecting the browser
back to the Products.aspx page is polite enough for a user with such questionable intentions.
Take a look at ValidateProductId method in Listing 20.7. This method is called from the web
form Page_Load event.

Listing 20.7: Query string parameter validation method

Private Sub ValidateProduct()
If String.IsNullOrEmpty(Request.QueryString("productId")) Then

Response.Redirect("Products.aspx")
End If
If Not IsNumeric(Request.QueryString("productId")) Then

Response.Redirect("Products.aspx")
End If
If String.IsNullOrEmpty(Request.QueryString("productName")) Then

Response.Redirect("Products.aspx")
End If

End Sub

You can store the product ID in a web form field and display the product name on the form.
Now you can add the necessary controls to the Quantity.aspx web form:

1. Add a Label named lblProduct to the form.

2. Add a TextBox named txtQuantity to the web form and set the Text property to 1.

3. Add a button named bttnAdd.

4. Add a button named bttnCancel.

5. Add a RangeValidator to the form to validate that the quantity entered by the user is a
valid value. Set the ControlToValidate property of the RangeValidator to txtQuantity, the
MinimumValue property to 0, and the MaximimValue to 10000. Finally, set the ErrorMessage
property to Enter a value between 0 and 10 000.

The Quantity.aspx web form as appears in the browser is shown in Figure 20.10.
Now, you can use the data passed from the Products web form in the Page Load event. You

will display the product name to the user in lblProduct and store the product ID in a web
form field. You can take a look at the Page Load event handler in Listing 20.8, which shows the
complete code listing for the Quantity.aspx web form.

You can implement the Cancel button event handler by redirecting the user back to the
Products.aspx web form and displaying a message confirming the cancellation for the user.

Finally, you need to implement the Add button event handler. Since you will need the
entered product quantity in the final web form, store this information inside the Session object.
As the information on selected products accumulates during user visits to the site, you can use
the Dictionary structure to store selected product quantities.

You can use the product ID as the key and the quantity as the value of the productQuantities
Dictionary. You can create the productQuantities instance inside the bttnAdd_Click routine
if it was not created already. You should always check for the productQuantities instance
before creating the new one. Since users can navigate back and forth between forms, you might

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 885

be erasing some products that were already added to a cart if you were to simply create a
new instance. After that, you can add the productQuantities instance to Session collection.
This way, the productQuantities instance can be accessed in a cart web form, as shown
in Listing 20.9. Take a look at the Add and Cancel button event handler implementations in
Listing 20.8.

Figure 20.10

The Quantity.aspx
product quantity entry
web form

Listing 20.8: Quantity.aspxWeb Form code-behind

Public Partial Class Quantity
Inherits System.Web.UI.Page

Dim productId As Integer

Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

ValidateProduct()
lblProduct.Text = Request.QueryString("productName")
productId = CInt(Request.QueryString("productId"))

End Sub

Private Sub ValidateProduct()
If String.IsNullOrEmpty(Request.QueryString("productId")) Then

Response.Redirect("Products.aspx")
End If
If Not IsNumeric(Request.QueryString("productId")) Then

Response.Redirect("Products.aspx")
End If
If String.IsNullOrEmpty(Request.QueryString("productName")) Then

886 CHAPTER 20 BUILDING WEB APPLICATIONS

Response.Redirect("Products.aspx")
End If

End Sub

Protected Sub bttnCancel_Click(ByVal sender As Object,
ByVal e As EventArgs) Handles bttnCancel.Click

Response.Redirect("Products.aspx")
End Sub

Protected Sub bttnAdd_Click(ByVal sender As Object,
ByVal e As EventArgs) Handles bttnAdd.Click

Dim productQuantities As Dictionary(Of Integer, Integer)
productQuantities = Session("productQuantities")
If IsNothing(productQuantities) Then

productQuantities = New Dictionary(Of Integer, Integer)
Session("productQuantities") = productQuantities

End If
Dim quantity As Integer = CInt(txtQuantity.Text)
If quantity = 0 Then

productQuantities.Remove(productId)
Response.Redirect("Cart.aspx")

End If
If productQuantities.ContainsKey(productId) Then

productQuantities.Remove(productId)
End If
productQuantities.Add(productId, quantity)
Response.Redirect("Cart.aspx")

End Sub
End Class

You are ready to implement the final web form (called Cart.aspx) where the user will be
able to review and check out ordered items.

Creating the Cart Web Form

On the final cart web form, the user will be able to review products in the cart, check out and
place the order, edit the quantity of the selected product, or go back to initial products web
form to add more products to the cart.

Start by placing a GridView control with ID gwCart on the form. The grid will display
products added to the cart. It should display the Product Name, Unit Price, Quantity, Online
Discount Price, and Product Total columns. As you saw in the quantity web form code in
Listing 20.8, selected products’ identifiers and quantities are kept in the session variable
productQuantities. To obtain the rest of the fields that need to be displayed in the gwCart
grid, you will need to consult the database using the ProductID field as the selection criteria.

Matching selected products in the productQuantities Dictionary with products in the
Products table in the Northwind DataSet and retrieving the rest of the product fields can be
efficiently accomplished using a LINQ statement. Take a look at Listing 20.9. It shows a LINQ
expression that matches the product IDs in the productQuantities object with product IDs in

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 887

the Products table. It selects an anonymous type using a Select New With construct with a
number of fields retrieved from the table and a number of calculated fields.

Listing 20.9: Cart LINQ expression

queryResult = From p In table
Where productQuantities.Keys.Contains(p.ProductID)
Select New With {
p.ProductID,
p.ProductName,
.Quantity = productQuantities.Item(p.ProductID),
p.UnitPrice,
.Discount = 0.02,
.DiscountedUnitPrice = p.UnitPrice * DiscountIndex,
.ProductTotal = p.UnitPrice * DiscountIndex *

productQuantities.Item(p.ProductID),
.Edit = "Quantity.aspx?productId=" &
p.ProductID.ToString & "&productName=" & p.ProductName

You’ll want to pay special attention to several of the fields. The Discount field is set to a con-
stant value of 0.02 — a standard discount for online orders. The DiscountedUnitPrice field is
calculated based on the discount and original unit price. ProductTotal is calculated by multiply-
ing the discounted price by the ordered quantity. Finally, the Edit fields are used to construct
the URL that redirects the user to the quantity web form so that the quantity can be changed
for any product on the order. This expression is used as a data source for the gwCart grid.

Now, you can add columns to the gwCart GridView control by following the procedure
described in ‘‘Creating the Products Web Forms’’ section earlier in this chapter. A few things
to bear in mind:

◆ Keep the ProductID field visibility set to False.

◆ When configuring the column used to display the Edit field, use the HyperLinkFiled
field type. Name it Change and set the Text property to Change. Most importantly,
set DataNavigateUrlFields to ProductID and ProductName and set DataNavigate
UrlFormatString to Quantity.aspx?productId={0}&productName={1}. This way,
the final column of the grid will display the hyperlink that will redirect users to the
Quantity.aspx web form where they will be able to edit the quantity of selected product.

Next, you need to display the total for the cart. Again, this is best calculated using LINQ.
The LINQ expression to calculate the cart total is shown in Listing 20.10.

Listing 20.10: LINQ expression used to calculate cart total

total = (From p In table
Where productQuantities.Keys.Contains(p.ProductID)).

Sum(Function(p) p.UnitPrice * DiscountIndex *
productQuantities.Item(p.ProductID))

888 CHAPTER 20 BUILDING WEB APPLICATIONS

The result of this expression can be shown as text in the Label control. Add the label with
ID lblTotal to the form and assign the result of the total LINQ query to the lblTotal Text
property in the Page_Load event handler.

You need to add few more buttons to the web form and you are done. Let’s start with Check
Out button.

When the user clicks the Check Out button, a new row should be inserted in the Orders
table in the Northwind database. For each product, a row should be inserted in the Order_
Details table.

Add a new button control to the web form. Name it bttnCheckOut. Implement the code that
adds rows to the Orders and Order_Details tables. First, insert a row in the Orders table and
then use that same row as the parent row when inserting rows in the Order_Details table since
the Orders and Order_Details tables are in a one-to-many relationship. You can take a look at
the bttnCheckOut event handler code in Listing 20.11.

You need to add two more buttons to the cart web form. Add a button named bttnEmpty
and set the Text property to Empty. This button is used to empty the cart. To accomplish this,
you need to empty the productQuantities Dictionary that was kept as a session scoped vari-
able. The code for emptying the dictionary in the bttnEmpty event handling routine is shown
in Listing 20.11.

Finally, users often want to go back to the product list and add more products after inspect-
ing the cart. Add a button named bttnAddMore, set the Text property to Add More Products,
and in the button event handler routine, redirect the user to products web form. The complete
code for the Cart.aspx web form is shown in Listing 20.11.

Listing 20.11: Cart.aspx code-behind

Imports OnlineOrdering.Northwind.OrdersRow
Imports OnlineOrdering.Northwind.Order_DetailsRow

Partial Public Class Cart
Inherits System.Web.UI.Page

Dim queryResult As EnumerableRowCollection
Dim total As Decimal
Private Const DiscountIndex = 0.98

Protected Sub Page_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Me.Load

‘Set to real user Id after implementing Login functionality
Session("userId") = "ALFKI"
‘Add "Online Employee" to database and set employeeId accordingly
Session("employeeId") = 10
GenerateOrder()
lblTotal.Text = total.ToString()
gwCart.DataSource = queryResult
gwCart.DataBind()

End Sub

VB 2010 AT WORK: ONLINE ORDERING APPLICATION 889

Private Sub GenerateOrder()
Dim adapter As New NorthwindTableAdapters.ProductsTableAdapter
Dim table As Northwind.ProductsDataTable
Dim productQuantities As Dictionary(Of Integer, Integer)

productQuantities = Session("productQuantities")
If IsNothing(productQuantities) Then

Response.Redirect("Products.aspx")
End If

table = adapter.GetData

queryResult = From p In table
Where productQuantities.Keys.Contains(p.ProductID)
Select New With {
p.ProductID,
p.ProductName,
.Quantity = productQuantities.Item(p.ProductID),
p.UnitPrice,
.Discount = 0.02,
.DiscountedUnitPrice = p.UnitPrice * DiscountIndex,
.ProductTotal = p.UnitPrice * DiscountIndex *

productQuantities.Item(p.ProductID),
.Edit = "Quantity.aspx?productId=" &
p.ProductID.ToString & "&productName=" & p.ProductName
}

total = (From p In table
Where productQuantities.Keys.Contains(p.ProductID)).

Sum(Function(p) p.UnitPrice * DiscountIndex *
productQuantities.Item(p.ProductID))

End Sub

Protected Sub bttnAddMore_Click(ByVal sender As Object,
ByVal e As EventArgs) Handles bttnAddMore.Click

[aligning left is fine - DA]
Response.Redirect("Products.aspx")

End Sub

Protected Sub bttnCheckOut_Click(ByVal sender As Object,
ByVal e As EventArgs) Handles bttnCheckOut.Click

Dim productsAdapter As New NorthwindTableAdapters.ProductsTableAdapter
Dim products As Northwind.ProductsDataTable = productsAdapter.GetData

Dim ordersAdapter As New NorthwindTableAdapters.OrdersTableAdapter
Dim orders = ordersAdapter.GetData

890 CHAPTER 20 BUILDING WEB APPLICATIONS

Dim orderDetailsAdapter As New
NorthwindTableAdapters.Order_DetailsTableAdapter

Dim orderDetails = orderDetailsAdapter.GetData

Dim order = orders.AddOrdersRow(
Session("userId"),
CInt(Session("employeeId")),
Date.Now.Date,
Date.Now.AddDays(7).Date,
Date.MinValue, 1,
Nothing, Nothing, Nothing, Nothing,
Nothing, Nothing, Nothing)

order.SetShippedDateNull()
ordersAdapter.Update(orders)
orders.AcceptChanges()
For Each orderDetail In queryResult

Dim product = products.FindByProductID(
orderDetail.ProductID)

orderDetails.AddOrder_DetailsRow(
order, product, orderDetail.UnitPrice,
orderDetail.Quantity, orderDetail.Discount)

Next
orderDetailsAdapter.Update(orderDetails)
orderDetails.AcceptChanges()
Response.Redirect("Confirmation.aspx")

End Sub

Protected Sub bttnEmpty_Click(ByVal sender As Object,
ByVal e As EventArgs) Handles bttnEmpty.Click

Dim productQuantities As Dictionary(Of Integer, Integer) =
Session("productQuantities")

productQuantities.Clear()
Response.Redirect("Products.aspx")

End Sub
End Class

If you inspect the code in Listing 20.11 carefully, you will see that there are a few hard-
coded features. Namely, since I did not implement the login feature, I assigned the value ALFKI
to userId and used it when creating the order. Once the Login feature is implemented, a real
user ID can be assigned to the userId variable.

Since the purpose of the online ordering application is to have users create their own
orders without employee intervention, the employeeId variable is assigned a value of 10. This
employee ID does not exist in the Northwind database, but you can generate it by adding a
row to the Employees table and naming the user Online Ordering Application.

THE BOTTOM LINE 891

Figure 20.11

The Cart.aspx web
form

The Bottom Line

Create a basic XHTML/HTML page. Building a basic HTML page is a straightforward pro-
cess using a simple text editor such as Notepad. Knowledge of XHTML/HTML is still a major
asset when developing web applications with Visual Studio 2010.

Master It Develop a web page using HTML that features a heading, some text, an image,
and a link to another page. Convert the page to XHTML and verify it by using the W3C ver-
ification tool at http://validator.w3.org. You might find that you will need to run the
validation a couple of times to get everything right. If you attach and use the style sheet in
the following Master It challenge, you will find that validation will be less problematic.

Format a page with CSS. Cascading Style Sheets (CSS) is a powerful tool for controlling the
styles and format of a website. You can manually create style sheets by using a text editor. An
understanding of their operation and syntax is a useful skill when manipulating CSS in Visual
Studio 2010.

Master It Create a CSS style sheet that defines the layout of the web page that you devel-
oped in the previous task, including a header section, a left-hand navigation section, and a
main content section. Include a rollover for the link and apply formatting to the tags that
you have used for your heading and text tags. Attach the style sheet to your web page.

892 CHAPTER 20 BUILDING WEB APPLICATIONS

Set up a master page for your website. Using master pages is a reliable method of controlling
the overall layout and look and feel of your websites and applications. Master pages enable
you to achieve a high level of consistency in your design and are particularly useful if the site
has multiple developers working on it.

Master It Create a website with a master page and attached content page. Use appropriate
controls to give the master page a page heading, My Page, which will appear on all attached
content pages. Use a combination of Button and Label controls on the content page to create
a simple Hello World application.

Use some of the ASP.NET intrinsic objects. ASP.NET objects such as the Response, Request,
Session, and Server objects offer a range of important utilities in developing, running, and
maintaining your websites and applications. In addition, they give you access to vital infor-
mation about the client, the server, and any current sessions at runtime.

Master It Create a simple website with a master page and two attached content pages. Use
the Server.Execute method attached to a LinkButton control to navigate between the two
content pages.

Chapter 21

Building and Using Web Services

A web service is a program capable of communicating across a network by using a combination
of the open standard Simple Open Access Protocol (SOAP) and XML technologies.

Web services are ideal for creating data-, content-, or processing-related services that can
be made available to associated or third-party applications and clients across distributed net-
works such as the Internet. There are two flavors of web services, the ASP.NET web services
and the newer WCF services, which are based on the Windows Communications Foundation
component of the Framework.

In this chapter, you will see how to create a simple ASP.NET web service and a client appli-
cation to consume (use) the web service. You’ll also learn how to build, configure, and consume
WCF services.

In addition, this chapter covers the technologies associated with ASP.NET web services,
such as SOAP and the Web Services Description Language (WSDL). The chapter briefly covers
Microsoft’s latest addition to the web service stable — the Windows Communication Founda-
tion (WCF) — and you will see how to use Asynchronous JavaScript and XML (AJAX) technol-
ogy to create seamless interactions between web services and their consuming applications.

In this chapter, you’ll learn how to do the following:

◆ Create a simple ASP.NET web service

◆ Consume an ASP.NET web service

◆ Create and consume WCF services

◆ Create and consume ADO.NET Data Services

Using ASP.NET and WCF Web Services
Microsoft offers two flavors of web service technology:

◆ ASP.NET web services

◆ Windows Communication Foundation (WCF)

ASP.NET web services (also known as XML web services) have been around through all the
incarnations of ASP.NET and offer a simple and effective methodology for making software
components and other resources available over the Internet.

894 CHAPTER 21 BUILDING AND USING WEB SERVICES

WCF is a recent inclusion into the .NET Framework and is built around the web services
architecture. WCF enables broader integration and interoperability with all the .NET Frame-
work distributed system technologies, including Microsoft Message Queuing (MSMQ), Com-
mon Object Model Plus (COM+), ASP.NET web services, and .NET Framework Remoting.
WCF also offers improved performance and secure data transmission.

What Is a Service?
Modern software is moving away from stand-alone applications into distributed applications.
Users can interact with web applications that run on a remote server. The interface is hosted
in the browser, known as a thin client, but the bulk of the processing takes place on a remote
computer. Some logic is implemented at the client to minimize the trips to the client. Unfortu-
nately, the client can execute only scripts written in JavaScript. You can also create SilverLight
applications, which are basically web applications that execute VB code at the client. SilverLight
applications are not nearly as common as web applications because they require users to install
the SilverLight runtime on their computers.

The problem with web applications is that users are confined by the application’s interface.
The information is processed at a remote site, but users can interact with it only through a pre-
defined interface. In the early days of the Web, developers used to write code to download web
pages and ‘‘scrape’’ data off the HTML document transmitted by the server to the client. Actu-
ally, data scraping is used today a lot because people need access to raw information, which
they can use as they see fit in their applications.

Consider sites like Booking.com and Expedia.com that allow users to make hotel and flight
reservations. You connect to these sites, specify the dates of your trip, retrieve numerous
options (flights and/or hotels), and make your selection. While all this works fine on your
browser, you’re restricted to the existing interface. What if you could submit the same requests
to the remote server but instead of a static page you could get back the raw information?
You could implement your own interface, which could be a different web application, a rich
client application, even a mobile application. This would offer more power to you, but how
about the provider of the information? In effect, the provider of the information also wants to
furnish the same information through a programmatic interface and sell its products through
additional channels. Amazon.com does so already — and very successfully. Web services allow
companies to make their services available to all consumers, and it’s up to the consumers to
exploit these services. To get a better idea of how services are being used and how they enable
distributed computing, let’s start by looking at an example of consuming an existing, public
web service.

Consuming Web Services
Before we explore the server side of a web service, let’s see how easy it is to consume
existing web services. Perhaps you’ll never develop your own web service, but it’s very
likely that you will use other people’s services in your code. In a corporate environment, for
example, you might be asked to develop data-driven applications based on a data model that’s
hosted as a web service. Instead of talking directly to a database, you will be invoking methods
of a web service that exposes the company data. Or, you might be asked to write an appli-
cation that consumes information from web services published on the Internet. Calling a web
service that performs automatic text translation and adding weather data on a travel site are
two trivial examples. Business examples include services that provide hotels and flights. These
services are quite popular these days, and they allow consumers to search for prices and
availability and make reservations on a remote computer. There are currently many travel

USING ASP.NET AND WCF WEB SERVICES 895

sites on the Internet, and they’re all using the services of a few large providers. Let’s look at a
less-ambitious yet quite useful web service you can incorporate in many types of applications.
It’s a service that provides weather forecasts, and there’s no charge, or even a registration
requirement, to use it.

Many sites provide weather forecasts, and I’ve chosen one that exposes a few simple meth-
ods to retrieve the forecasts to present in this section. The URL that follows takes you to a site
that hosts a small number of web services, which you may find interesting:

http://www.webservicex.net/WCF/ServiceDetails.aspx?SID=44

One of the services hosted at this site provides weather forecasts; you will find it by clicking
the Web Services link at the top of the page and choosing the Utilities category. Once you
switch to the USA Weather Forecast service’s site, you’ll see that the service exposes two
methods:

◆ GetWeatherByPlaceName, which gets a week’s forecast for a place by name (USA)

◆ GetWeatherByZipCode, which gets a week’s forecast for a valid zip code (USA)

Click the GetWeatherByPlaceName link and you’ll see a page prompting you to enter
the name of a place. Enter your favorite destination here (I used the city of Santa Barbara)
and you’ll see a weekly weather forecast for that destination in XML format, as shown
in Figure 21.1. This is straight XML, and you can contact the same site from within a VB
application using the HttpWebRequest/HttpWebResponse classes, read the XML document,
and process it with LINQ, as we discussed in Chapter 14, ‘‘An Introduction to LINQ.’’

Figure 21.1

Retrieving weather
forecast information in
XML format

As you will recall from Chapter 19, ‘‘Accessing the Web,’’ it is feasible (and nearly trivial) to
contact a remote server, request a XML document, and process it with LINQ. One method of

896 CHAPTER 21 BUILDING AND USING WEB SERVICES

contacting the weather forecast service is to place a request through a WebRequest object and
read the server’s response through a pair of WebRequest/WebResponse objects, as shown here:

Dim rq As System.Net.WebRequest = System.Net.WebRequest.Create(
http://www.webservicex.net/WeatherForecast.asmx/ &
GetWeatherByPlaceName?PlaceName=Santa Barbara")

Dim rs As System.Net.WebResponse = rq.GetResponse

Now that you have the service’s response, you can read it as a long string into a variable,
the xmlData variable:

Dim strm As IO.Stream = rs.GetResponseStream
Dim rdr As New IO.StreamReader(strm, System.Text.Encoding.UTF8)
Dim xmlData As String = rdr.ReadToEnd
rdr.Close()
strm.Close()

Finally, you can load the data into an XElement variable and process the data with LINQ.
The following few statements generate a list of data and min/max temperatures:

Dim xml As XElement = XElement.Parse(xmlData)
Dim ns As XNamespace = "http://www.webservicex.net"
For Each forecast In xml.Descendants(ns + "Details").

Descendants(ns + "WeatherData")
Debug.WriteLine(forecast.Descendants(ns + "Day").Value & vbTab &

forecast.Descendants(ns + "MinTemperatureF").Value &
" - " & forecast.Descendants(ns + "MaxTemperatureF").Value)

Next

The code is very simple, but you can’t process it without knowing, or figuring out, the
structure of the XML document returned by the service. As you have undoubtedly noticed,
Microsoft likes to simplify things and Visual Studio can take care of all the plumbing necessary
to contact the web service and retrieve its results. Instead of contacting the web service through
HTTP from within your code, you can add a reference to the web service and then use it as if
it were a local method. Let’s follow the process step by step.

Start a new project, the WeatherService project, which you can download from www.sybex
.com/go/masteringvb2010. Right-click the project name, and from the context menu, select
Add Service Reference. When the Add Service Reference dialog box appears, you can specify a
remote web service, as shown in Figure 21.2. In the Address box, enter the URL of the Weath-
erForecast web service, which is as follows:

http://www.webservicex.net/WeatherForecast.asmx?WSDL

(The extension WSDL stands for Web Service Discovery Language and it’s a parameter that
instructs the web service to return its methods.) Then, click the Go button to locate the web ser-
vices at the specified URL; these services will appear in the left pane of the dialog box. If you
double-click a web service on this pane, the components of the selected web service will appear
under the service’s name. Double-click the WeatherForecastHttpGet class to see the names of
the methods it exposes in the right pane, as shown in Figure 21.2.

USING ASP.NET AND WCF WEB SERVICES 897

Figure 21.2

Adding a reference to a
remote web service

The web service exposed by the remote server can be accessed using three different proto-
cols: HTTP Get, HTTP Post, and SOAP. All three classes expose the same methods: GetWeather
ByPlaceName and GetWeatherByZipCode. The names are quite descriptive, and you’ll see
shortly how to call them. Finally, in the Namespace box, enter a meaningful name for the
reference, such as WeatherService, and click the OK button to close the dialog box.

To use the WeatherService web service in your code, you simply treat it as a class, regardless
of whether it resides on the local machine or a remote server. Create a new instance of the class
with a statement like the following:

Dim client As New WeatherService.WeatherForecastSoapClient

Now, you can use the methods of the service through the client variable. Enter the name
of the client variable followed by a period and you’ll see names of the methods it exposes,
including the GetWeatherByPlaceName method. If you select this method, you will see that it
accepts a string argument, which is the name of a place (such as a city) in the U.S. (and a few
major cities in Europe). To retrieve the forecast for the next six days for Santa Barbara, enter the
following statement:

Dim forecast = client.GetWeatherByPlaceName("Santa Barbara")

The forecast variable type is WeatherService.WeatherForecast. This type is exposed by the
web service along with the methods and several properties. Enter the name of the forecast
variable followed by a period to see the members of the WeatherForecast class. One of them
is the Details property, which is an array of WeatherData objects, and there is one Weather-
Data object for each of the following days. The WeatherData property is a complex one, which
exposes a number of properties on its own. These properties include the Day property (the date

898 CHAPTER 21 BUILDING AND USING WEB SERVICES

for which the forecast is given); the MaxTemperatureC, MaxTemperatureF, MinTemperatureC,
and MinTemperatureF properties; and the WeatherImage property, which is the URL of an
image describing the day’s weather.

I’ve designed a simple interface to display the forecast for the selected location based on
Label and PictureBox controls, and it’s shown in Figure 21.3. The application’s code is quite
trivial; it retrieves the forecast with the two statements shown earlier and then assigns values
to the various controls. Here are a few statements that display the forecast for the second day
(the first day of the forecast being today):

lblDate2.Text = forecast.Details(1).Day
PictureBox2.ImageLocation = forecast.Details(1).WeatherImage
lblMax2.Text = forecast.Details(1).MaxTemperatureF.ToString
lblMin2.Text = forecast.Details(1).MinTemperatureF.ToString

Figure 21.3

A Windows application
that displays a weather
forecast based on data it
retrieves from a remote
server

The two numbers under the city name are the geocoordinates (or geographic coordinates) of
Santa Barbara (its longitude and latitude, which are also returned by the GetWeatherByPlace
Name method).

As you can see, using a web service from within your application is straightforward and
very similar to using any other component, such as the Framework or a custom class. The web
service is a class that resides on a server and applications can contact it. The web service itself
is nothing but a class with methods that can be called remotely. The service’s code is executed
on the computer on which the service resides. No code is downloaded to the client, and you
don’t have to worry about the origin of the data. To you, the developer, a web service looks
like any other class you reference in your project. As for the providers of the web services, they
provide a software service — a way to request specific data that are maintained and serviced
on a remote computer. The service provider allows you to perform specific requests without
exposing its raw data.

ASP.NET Web Services
ASP.NET web services are software resources and components through which you can expose
certain functionality and/or deliver data over a network such as the Internet by using a com-
bination of XML and SOAP. You can restrict a component so that it’s available to only certain
applications or specific users, or you can make it available to many users. The component can
be limited to the local computer or the local network or be made available across the Internet.
Services can be delivered free of charge or for a fee.

UNDERSTANDING TECHNOLOGIES ASSOCIATED WITH WEB SERVICES 899

Virtually any program that can be encapsulated as a component can be expressed as
an ASP.NET web service. For production purposes, you will need a web server to deliver
your ASP.NET web service. However, for development purposes, the built-in ASP.NET
Development Server that ships with Visual Studio 2010 is quite sufficient.

The advantages of using ASP.NET web services are as follows:

◆ Data and commands are communicated across the standard Internet port: port 80. This
greatly simplifies passage around the Internet and most networks.

◆ The common standards of XML and SOAP are widely supported.

◆ Early problems with web services, such as lack of a robust security model, have been
resolved.

◆ Visual Studio provides a simple and straightforward environment in which to create and
consume web services.

WCF
Windows Communications Foundation (WCF) is built on ASP.NET web services and
extends their functionality by integrating with a number of distributed .NET Framework
technologies.

WCF offers an integrated approach to situations in which you would previously have
employed a range of different distributed .NET Framework technologies. Typically, you use
WCF as a unified solution that enables you to avoid having to employ different distributed
technologies for each requirement of a distributed application. For example, you may have
employed message queuing for use with portable devices that are not permanently connected,
ASP.NET web services for communication across the Internet, and .NET Framework Remoting
for tightly coupled communication within the local network. Employing multiple technologies
in this manner results in a complex and potentially unwieldy solution. WCF offers a method
of achieving a simpler unified approach. The weather forecasting web service used in the first
example of this chapter contained three subclasses to support three different data exchange
protocols: HttpGet, HttpPost, and SOAP. With WCF services, the same service can support
multiple protocols. You don’t have to write any additional code, you just edit the service’s
configuration file.

Understanding Technologies Associated with Web Services
Several technologies underlie and support ASP.NET web services. They include SOAP, WSDL,
SOAP Discovery, and Universal Description, Discovery, and Integration (UDDI).

SOAP
SOAP stands for the Simple Object Access Protocol and it’s a lightweight protocol for exchang-
ing XML messages over Hypertext Transfer Protocol/Secure Hypertext Transfer Protocol
(HTTP/HTTPS). It forms the basis of the web services stack, which is the set of protocols used
to define, locate, and deliver web services.

SOAP is an open standard, enabling web services to be developed and supported across
a range of platforms and environments. There are other services attached to SOAP, includ-
ing WSDL and SOAP Discovery. Although you are no longer required to work directly with
SOAP when developing ASP.NET web services in Visual Studio, you will continue to encounter

900 CHAPTER 21 BUILDING AND USING WEB SERVICES

references to the protocol because it underlies the whole web service creation, delivery, and
consumption process.

A SOAP tutorial can be found at www.w3schools.com/soap/.

WSDL
Web Services Description Language (WSDL) is the language used to create an XML document
that describes a web service. Specifically, the document describes the location of the service
and the methods exposed by the service. When you connect to a site that provides one or more
web services, applications read the WSDL file to discover the methods supported by each
service.

You can create and edit WSDL documents directly by using a text editor, but they can usu-
ally be generated automatically by Visual Studio when you add either a web reference or ser-
vice reference to your ASP.NET web service.

SOAP Discovery
SOAP Discovery is used to locate the WSDL documents that provide the descriptions for
ASP.NET web services. Use SOAP Discovery when you want to make your web service
publicly available for consumption by third-party applications. For example, you might be
providing a weather service for third-party providers to incorporate into their websites. There
are two types of discovery: static discovery and dynamic discovery.

In the case of static discovery, an XML document with the .DISCO filename extension is
used. This file contains information about the location of the WSDL documents.

If you wish to enable dynamic discovery for your website, you add a specific reference into
the Web.config file. Dynamic discovery enables users to discover all web services and discov-
ery files beneath the requested URL.

Discovery files (and particularly dynamic discovery) can be a security risk on a production
server because they potentially allow users to search the entire directory tree. Static discovery
files are the safer of the two types because they allow the user to search only those resources
that you choose to nominate. In Visual Studio 2010, you can explicitly generate a static discov-
ery file by adding a web reference or a service reference.

UDDI
Universal Description, Discovery, and Integration (UDDI) was originally created as part of the
web service specification to act as a form of yellow pages for web services. Several major play-
ers in developing the web services specification (including Microsoft, IBM, SAP, and OASIS)
combined to develop an XML-based registry for businesses to promote themselves and their
web services to both the public and the corporate world. In 2006, Microsoft, IBM, and SAP
closed their public UDDI nodes. However, you can still create UDDI servers on your local net-
work to provide directory services for web services available within your network.

Creating a Simple ASP.NET Web Service
Creating and consuming web services in Visual Studio 2010 is a relatively simple and straight-
forward process. In this example, you will create a simple Hello World–style ASP.NET web
service within a website entitled HelloWebServiceDemo. You will then see how to consume the
web service from within the same website.

CREATING A SIMPLE ASP.NET WEB SERVICE 901

Opening Visual Studio in Administrator Mode

Visual Studio often requires elevated privileges when you’re creating and accessing applica-
tions and resources. If you are logged in as a standard user, you may not have those privileges
available.

To increase your privileges, from the Start menu, right-click the Visual Studio 2010 entry.
From the context menu, choose Run As Administrator. You may be required to enter
credentials.

Setting Up the Web Service
This simple web service will have one service, HelloWorld, with a single method, Hello. To set
up the web service, complete the following steps:

1. Launch Visual Studio and choose File � New Web Site.

2. From the New Web Site dialog box, choose ASP.NET Web Site. In the location text box,
name the website HelloWebServiceDemo. Click OK.

3. Right-click the solution, choose Add New Item from the context menu, and select the web
service template. In the Name text box, delete the default WebService.asmx and rename
the web service HelloWorld.asmx. Click the Add button. This opens the App_Code/
HelloWorld.vb page, where default code for a Hello World–style web service is already
set up.

4. Make one minor change to the default code. In the <WebMethod()> section of the code,
change the function name from HelloWorld() to Hello(). This enables you to distinguish
between the service name and the method. The code should now read as shown in the fol-
lowing snippet:

<WebMethod()>
Public Function Hello() As String

Return "Hello World"
End Function

5. Save your work.

Next, you will run and test the web service.

Testing the Web Service
After you have created your web service, it is a good idea to test the service to ensure that it
behaves as expected. This presentation of the testing process lacks the polish that you might
wish for your web service after it is utilized or consumed by a client application, but it will
demonstrate the service’s inherent functionality. The product of the test is returned as straight
XML. But don’t worry — when you finally consume the service, the XML markup will be
stripped away from the returned data. Follow these steps:

1. In the Solution Explorer window, right-click HelloWorld.asmx and choose the Set As Start
Page option.

902 CHAPTER 21 BUILDING AND USING WEB SERVICES

2. Click the green arrow in the Standard toolbar (or press F5) to start the web service in
debugging mode. Click OK in the Debugging Not Enabled dialog box to automatically
modify the Web.config file to enable debugging.

The ASP.NET web service should now open in your web browser as shown in Figure 21.4.

Figure 21.4

HelloWorld web service
in Internet Explorer

You can check the service description for HelloWorld by clicking the Service Description
link. This opens a WSDL description for the web service.

You will also see a warning about using the default namespace of http://tempuri.org.
This is the default Microsoft namespace, and you would usually replace it with a reference to a
URL that you control before publicly deploying the web service.

To call the Hello method, click the Hello link. This opens a new page, which displays infor-
mation concerning the Hello method. To run the Hello method, click the Invoke button. This
opens the full XML page returned by the method, as shown in Figure 21.5.

Figure 21.5

Invoking the Hello
method

Consuming the Web Service
The next step is to consume the HelloWorld web service from within a standard ASPX page.
Close any running instances of the HelloWorld web service to stop debugging and return to
the HelloWebServiceDemo website in Visual Studio. Complete the following steps:

1. In Solution Explorer, double-click Default.aspx to open the page in design view.

DEVELOPING A STAND-ALONE WEB SERVICE 903

2. From the Toolbox, drag and drop a Button control into the default Div control on the form.

3. Click the Enter button twice to introduce two line breaks, and add a Label control from the
Standard toolbox.

4. In the Properties window for the Label control, delete the default Label text from the Text
property.

5. Double-click the Button control to open the code skeleton for the Button1_Click event in
code-behind.

6. Complete the Button1_Click event with the following code:

Protected Sub Button1_Click(...) Handles Button1.Click
Dim myHello As New HelloWorld
Label1.Text = myHello.Hello()

End Sub

In this example, I declared a local instance of the HelloWorld service and tied the Text
property of the Label control to the Hello method.

7. In Solution Explorer, right-click Default.aspx and choose the Set As Start Page option.

8. Run the application. Default.aspx should render initially as a page displaying a single
button. Clicking the button should display the Hello World text. Figure 21.6 shows the run-
ning application.

Figure 21.6

The running HelloWeb-
ServiceDemo application

Developing a Stand-Alone Web Service
Web services are designed to run separately from their consuming applications. In this
example, you will see how to build a slightly less-trivial example of an ASP.NET web
service as a stand-alone application. You will then see how to consume the web service
from a separate web application.

The example involves building a web service that performs two operations. It returns the
current server time and also provides a tool for calculating a percentage. The web service
is named MyWebService, and the two methods are named ServerTime and Calculate
Percentage.

Later in this chapter, you will see how to create a simple AJAX implementation that enables
the client to automatically and asynchronously update the displayed server time from the web
service.

904 CHAPTER 21 BUILDING AND USING WEB SERVICES

Building MyWebService
You will begin by creating the web service. Unlike the previous example, in which the web
service and consuming application were built within the same project, this web service is a
stand-alone project. Follow these steps:

1. Open Visual Studio 2010 and choose File � New Web Site. From the New Web Site dialog
box, choose ASP.NET Web Service.

2. In the Location text box of the New Web Service dialog box, keep the default path but
change the name of the web service to MyWebService. Click the OK button to exit the
dialog box.

3. The web service should now be opened to the App_Code/Service.vb page in the Visual
Studio designer. Look through the default code and change the Namespace entry from
http://tempura.org/ to either a URL that you control or, for the purposes of this exam-
ple, http://mywebservice.org. This will prevent the warning message about using the
default Microsoft namespace from appearing when you run the web service. The line of
code should now read as follows:

<WebService(Namespace:="http://mywebservice.org/")>

4. Move down to the <WebMethod()> section of the code skeleton. Delete the following
default HelloWorld() public function:

Public Function HelloWorld() As String
Return "Hello World"

End Function

5. Add the following code to the <WebMethod()> section. This method will return the current
server time as the time of day in hours, minutes, and seconds:

<WebMethod()>
Public Function ServerTime() As String

ServerTime = Left(Now.TimeOfDay().ToString(), 8)
End Function

6. Now, create the percentage calculator method (CalculatePercentage). Underneath the
ServerTime method, add the following code:

<WebMethod()>
Public Function CalculatePercentage(

ByVal myTotal As Integer, ByVal myValue As Integer) As Integer
CalculatePercentage = CInt(myValue * 100 / myTotal)

End Function

This method calculates a percentage based on the myValue and myTotal parameters. The
calculated percentage is returned as an integer.

This completes the code for the MyWebService web service. Listing 21.1 gives the full code
for the web service as it should appear in App_Code/Service.vb.

DEVELOPING A STAND-ALONE WEB SERVICE 905

Listing 21.1: Full code listing for MyWebService

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

’ To allow this Web Service to be called from script, using ASP.NET AJAX
’ uncomment the following line.
’ <System.Web.Script.Services.ScriptService()>
<WebService(Namespace:="http://mywebservice.org/")>
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)>
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()>
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()>
Public Function ServerTime() As String

ServerTime = Left(Now.TimeOfDay().ToString(), 8)
End Function

<WebMethod()>
Public Function CalculatePercentage(ByVal myTotal As Integer,

ByVal myValue As Integer) As Integer
CalculatePercentage = CInt(myValue * 100 / myTotal)

End Function

End Class

To make this the default start page, right-click Service.asmx in the Solution Explorer and
choose Set As Start Page from the context menu.

Test the web service by clicking the green arrow on the Standard toolbar or by pressing
F5. The web service should display links to the two web methods, as shown in Figure 21.7.
Test the two web methods by clicking the links and then clicking the Invoke button on each
of the respective service information pages. ServerTime should return the current time of day
in 24-hour format (as an XML page). The service information page for CalculatePercentage
should provide you with input boxes to enter values for MyValue and MyTotal before you
invoke the service. Entering values such as 20 for MyValue and 50 for MyTotal should return a
value of 40 (within an XML page) when you click Invoke.

Deploying MyWebService
In a production environment, you typically deploy the web service to Microsoft’s Internet Infor-
mation Services (IIS) web server. In order for the web service to run on IIS, you need to have
.NET Framework 4.0 registered with IIS. You can also set up appropriate security and access
privileges such as Windows authentication, secure socket encryption (HTTPS), and so forth on
IIS. For further information on setting up and working with IIS, see Microsoft IIS 7 Implementa-
tion and Administration by John Paul Mueller (Sybex, 2007) which gives thorough coverage. You
can also refer to Microsoft’s community portal for IIS at www.iis.net.

906 CHAPTER 21 BUILDING AND USING WEB SERVICES

Figure 21.7

The running
MyWebService

Before you can deploy your web service, you must have all the relevant files and directories
assembled into a suitable directory without the various development and debugging files. The
easiest way to create a folder containing all the production files necessary for a deployment of
your web service is to use the Publish Web Site option from the Build menu. This opens the
Publish Web Site dialog box, where you can choose to publish to a specific location (including
an FTP location) or keep the default location and move the folder later.

Using the ASP.NET Development Server

Visual Studio 2010 comes equipped with its own built-in web server for testing web applica-
tions: the ASP.NET Development Server. Although the ASP.NET Development Server is ideal
for testing web applications as you develop them, it does have its limitations. One of those
limitations is that you need to have a separate instance of the web server running for each
web application running concurrently on your development machine.

Thus, to consume MyWebService from another application, you need to have opened MyWeb-
Service in Visual Studio 2010 and run the application to fire up the ASP.NET Development
Server. You can close the web browser running the web service, but you must keep Visual
Studio open to MyWebService. To create a separate project to consume MyWebService, you
must open another instance of Visual Studio 2010 from the Start menu.

An advantage of using the ASP.NET Development Server is that you do not need to publish or
physically deploy your application to a web server before you have tested it.

Consuming MyWebService
As discussed in the previous section, unless you are using IIS to test your web applications,
you must have MyWebService open in Visual Studio 2010 and have run the web service at least
once to open an instance of the ASP.NET Development Server so that you can link to the web
service from another application.

Keep this instance of Visual Studio open and use the Start menu to open another instance
of Visual Studio. Depending on the account restrictions on your machine, it may be necessary

DEVELOPING A STAND-ALONE WEB SERVICE 907

to open the second instance of Visual Studio in Administrator mode so you can connect to the
web service.

After Visual Studio opens, complete the following steps:

1. Choose File � New Web Site. In the New Web Site dialog box, choose ASP.NET Web Site.
Name the site MyConsumer in the Location text box (keeping the rest of the default path).
Click the OK button.

2. MyConsumer should open to Default.aspx in design mode. (If you last used the editor in
a different mode, switch to design mode.) Drag a TextBox from the Standard toolbox onto
the form. In the Properties window, set the ID property for the TextBox to tbMyValue.

3. From the Standard toolbox, drop a Label control on the form to the right of tbMyValue. Set
the Text property of the Label control to My Value. Click to the right of the Label and press
the Enter key to drop to the next line.

4. Drop a second TextBox control onto the form immediately under tbMyValue. Set the ID
property for the second TextBox control to tbMyTotal.

5. Place a Label control immediately to the right of tbMyTotal. Set the Text property of the
Label control to My Total. Click to the right of the Label control and press the Enter key
twice to drop down two lines.

6. From the Standard toolbox, drop a Button control onto the form two lines below the tbMy-
Total control. In the Properties window for the Button, set the ID property to btnCalculate.
Set the Text property to Calculate. Press the Enter key to drop down one more line.

7. Immediately beneath btnCalculate, place a Label control and set its ID property to lblPer-
centage. Delete the default contents of the Text property for the control.

8. Place another Label control to the right of lblPercentage. Set the ID property to lblPercent-
ageLabel. Set the Text property to = Calculated Percentage and set the Visible property
to False. Click to the right of this control and use the Enter key to drop down two more
lines.

9. Place a Label control two lines beneath lblPercentage. Set the ID property to lblServerTime
and delete the default Text property entry.

10. Place a final Label control to the right of lblServerTime. Set the Text property to = Server
Time.

Figure 21.8 illustrates how the final page should look with all the controls in place.

Figure 21.8

Layout for
Default.aspx

908 CHAPTER 21 BUILDING AND USING WEB SERVICES

Adding a Web Reference

Use a web reference created in the Solution Explorer to provide the connection to the web ser-
vice. For web services within the local domain, you could also use the Service Reference option
available in the Solution Explorer. Using a service reference is an advantage when you want
to fully exploit the AJAX potential in connecting to a web service because a service reference
allows you to call the web service methods by using JavaScript functions from within the con-
suming application. Using a client script to call web service methods is entirely asynchronous
and prevents your page or portions of your page from being locked out from user interaction
while waiting for the web service to respond.

For this example, you will add a web reference to the MyWebService web service created in
the previous section. Unless you are using IIS to test your web applications, you must have an
instance of the ASP.NET Development Server running the MyWebService web service. (Refer to
the sidebar ‘‘Using the ASP.NET Development Server’’ earlier in this chapter for details.)

Complete the following steps:

1. In the Solution Explorer, right-click the project heading (and path) at the top of the Solution
Explorer tree. From the context menu, choose Add Web Reference to open the Add Web
Reference dialog box.

2. If you are using IIS and have appropriately placed discovery documents, you could use
the Browse To: Web Services On The Local Machine option. You will also see a link that
enables you to refer to any UDDI servers set up on your network. However, because this
exercise uses the ASP.NET Development Server, you will need to switch to the instance of
Visual Studio that is running MyWebService and open the web service in Internet Explorer.
Copy the URL for the MyWebService web service from the address bar of Internet Explorer.

3. Switch back to your MyConsumer build and paste the URL of MyWebService into the URL
text box of the Add Web Reference dialog box. The URL should be something like this:

http://localhost:49733/MyWebService/Service.asmx

If you are using the sample project to follow along, delete the existing web reference and
add it again, using the port chosen by your ASP.NET Development Server. When you start
the web service project, the URL of the service is displayed in the address bar of Internet
Explorer. Copy the service’s address from the address box onto the Add Reference dialog
box and the client application (MyConsumer) will see the service as long as it’s running on
the same machine.

4. Click the Go button. This should now establish a connection to MyWebService, as shown in
Figure 21.9. Click the Add Reference button to exit the dialog box. Solution Explorer should
now feature an App_WebReferences folder with appropriate entries for MyWebService.
Included in these are a discovery (DISCO) and a WSDL file that you can copy, edit, and
employ in your deployment of MyWebService.

The DISCO document created by adding a web reference can be used to enable static dis-
covery of your web service by placing it in a suitable location in your folder hierarchy for the
site. If you examine the code in the automatically generated file, you can see how to add and
remove XML entries. You can then add a link to the page from some point in your site. If you
do not wish to set up static discovery files, you can enable dynamic discovery by editing the
Machine.config file for your web server. Remember that dynamic discovery potentially allows
users to browse your directory tree; unless your web server is suitably protected, dynamic dis-
covery is not recommended for production servers.

DEVELOPING A STAND-ALONE WEB SERVICE 909

Figure 21.9

The Add Web Reference
dialog box

For precise details on enabling dynamic discovery, please refer to the relevant Help topics in
Visual Studio 2010. Type dynamic discovery in the Search field.

Adding the Code-Behind

The next step is to add the code to make the application work. From design mode, double-click
the btnCalculate control to enter code-behind and complete the following steps:

1. Begin by declaring a local instance of the web service. At the top of the page, directly under
the Inherits System.Web.UI.Page entry, add the following:

Dim MyWebService As New localhost.Service

2. Next is the code to call the ServerTime method. In the code skeleton for Form1_Load, add
the following line of code:

lblServerTime.Text = MyWebService.ServerTime

3. Next is the code to collect the input values from the user and call the CalculatePercentage
method. The code also attaches a percentage sign onto the displayed percentage value and
unhides lblPercentageLabel. In the code skeleton for the btnCalculate Click event, add
the following code snippet:

Dim myValue As Integer = CInt(tbMyValue.Text)
Dim myTotal As Integer = CInt(tbMyTotal.Text)
lblPercentageLabel.Visible = True
lblPercentage.Text = MyWebService.CalculatePercentage(myTotal, myValue) & "%"

The final code should appear as shown in Listing 21.2.

910 CHAPTER 21 BUILDING AND USING WEB SERVICES

Listing 21.2: Full code listing for Default.aspx.vb

Partial Class _Default
Inherits System.Web.UI.Page
Dim MyWebService As New localhost.Service

Protected Sub form1_Load(...) Handles form1.Load
lblServerTime.Text = MyWebService.ServerTime

End Sub

Protected Sub btnCalculate_Click(...) Handles btnCalculate.Click
Dim myValue As Integer = CInt(tbMyValue.Text)
Dim myTotal As Integer = CInt(tbMyTotal.Text)

lblPercentageLabel.Visible = True
lblPercentage.Text =

MyWebService.CalculatePercentage(myTotal, myValue) & "%"
End Sub

End Class

Setting up this part of the project is now complete. In Solution Explorer, right-click Default
.aspx and choose Set As Start Page. Run the application and test the methods.

Figure 21.10 illustrates the running application after 20 has been entered as MyValue and 56
has been entered as MyTotal.

Figure 21.10

The running
MyConsumer application

Simple AJAX Implementation
ASP.NET 3.0 and 3.5 integrate AJAX to enable developers to easily perform partial updates
of web pages accessing ASP.NET web services. These updates not only do not require a full
refresh of the page, they also can be performed asynchronously so as not to interfere with other
operations on the page.

SIMPLE AJAX IMPLEMENTATION 911

In this example, I will use a simple combination of the AJAX controls to enable the Server
Time method from MyWebService to be continuously updated on a page in MyConsumer. A
more sophisticated implementation enables the developer to access the methods in the web ser-
vice from client script (JavaScript). This latter implementation is fully asynchronous, whereas
our example will have some limitations that are explained later in this section.

Open MyWebService in Visual Studio and run the application to open an instance of the
ASP.NET Development Server. Next, open a separate instance of Visual Studio 2010 from the
Start menu and open the MyConsumer website. Complete the following steps:

1. From the Website menu, click Add New Item. From the Add New Item dialog box, select
AJAX Web Form and rename it myAjax.aspx. Click the Add button.

2. When myAjax.aspx opens in design mode, you will see that it has a default ScriptManager
control on the page. Do not delete this control because it is necessary for the AJAX func-
tionality to work. From the AJAX Extensions toolbox, drop an UpdatePanel control onto
your page underneath the ScriptManager control. The UpdatePanel control acts as an area
that can be partially refreshed without involving an entire page refresh. Keep the default
ID property of UpdatePanel1.

3. From the AJAX Extensions toolbox, drop a Timer control into UpdatePanel1. In the Proper-
ties window, set the Interval property to 1000 (1 second). When you place the Timer con-
trol inside the UpdatePanel control, UpdatePanel1 automatically responds to Tick events
from the Timer. You can also set the UpdatePanel control to respond to events from exter-
nal controls by using the UpdatePanel Triggers property.

4. From the Standard toolbox, drop a Label control into UpdatePanel1. Set the ID property to
lblServerTime and delete the default entry in the Text property.

5. Double-click Timer1 to enter code-behind for the application. This should open
myAjax.aspx.vb.

6. MyConsumer already has a web reference for MyWebService, so at the top of the page,
directly under the Inherits System.Web.UI.Page entry, add the following:

Dim MyWebService As New localhost.Service

7. In the code skeleton for the Timer1_Tick event, add the following line of code:

lblServerTime.Text = MyWebService.ServerTime

This part of the application is now complete. Listing 21.3 gives the full code listing for
myAjax.aspx.vb.

Listing 21.3: Full code listing for the myAjax.aspx.vb partial class myAjax

Inherits System.Web.UI.Page
Dim MyWebService As New localhost.Service

912 CHAPTER 21 BUILDING AND USING WEB SERVICES

Protected Sub Timer1_Tick(...) Handles Timer1.Tick
lblServerTime.Text = MyWebService.ServerTime

End Sub
End Class

Right-click the entry for myAjax.aspx in the Solution Explorer and choose Set As Start Page
from the context menu. Click the green arrow or press F5 to run the application. The running
page should display the current server time, which is automatically updated every second.

You can now add to the page further controls and functionality that are separate from
the UpdatePanel control. These controls will not be affected by the partial page refreshes
performed by the UpdatePanel control. The main limitation of this approach is that any other
control placed inside the UpdatePanel (or any other UpdatePanel control on the page) will be
locked out while waiting for MyWebService to complete its business (every second!).

You can test this behavior by adding a second UpdatePanel control to the page and drop-
ping a TextBox control into it. Drop a second TextBox control onto the page, but not inside the
UpdatePanel. Run the application and try typing into the TextBoxes. You will find that it is
difficult to type text into the TextBox inside the UpdatePanel.

Building and Using WCF Services
Now that you have seen how to build a basic web service, we’ll switch our attention to Win-
dows Communication Foundation (WCF) services. WCF is a well-structured approach to build-
ing web services, and the process is straightforward, but there are a few rigid steps you have
to follow.

A WCF service encompasses three basic principles, known as the ABC of WCF:

A is for address Each service has an address (a URL) where it can be found. You can move
the service to a different computer and all you have to do is change the configuration file of the
client to see the same web service at its new host.

B is for binding There are many protocols you can use to talk to the service, and the client
must specify the binding to the service. The same service can talk to multiple clients using dif-
ferent bindings: some clients may use Basic HTTP, other might use Named Pipes (if the web
services are running on the same machine as the service).

C is for contract The contract describes the data types and messages that can be exchanged
between the client and the server. The service tells the client its capabilities.

Visual Studio will configure these settings almost automatically for you; all you have to do
is edit the service configuration file. The service is written once and it will support multiple
bindings. Moving the service to another computer is also very simple because you can specify
the new endpoint by editing the configuration file.

Building a WCF Service
To demonstrate the steps to build a WCF service, we’ll build a simple service to manipulate
products and categories. The service will maintain two lists, one with categories and another
with products. Each product has a field that points to a row in the categories table. For the
purpose of this sample application, we’ll store our data in two List collections. If you want to
modify the application to work with a database, you’ll only have to change the implementation

BUILDING AND USING WCF SERVICES 913

of the service’s methods; instead of using the collections as its data source, the service will
contact a database. In between sessions, you can persist the collections to an XML file, as dis-
cussed in Chapter 13, ‘‘XML in Modern Programming.’’

Start a fresh instance of Visual Studio and select File � New � New Project. Click WCF in
the Installed Templates pane, and in the pane with the matching project types, select WCF Ser-
vice Library. Name the new project WCFProducts and click OK to create the project. The new
project that Visual Studio will create for you contains two files: the IService1.vb class, which
is an interface that contains the signatures of the service methods, and the Service1.vb class,
which contains the implementation of the methods. The methods are some extremely trivial
sample methods and you can delete them right away.

The first step is the design of a class that represents the entities our service knows about.
Obviously, we need a Product and a Category class and I have nested the Category class within
the Product class. Both classes contain just a few properties to identify products and categories.
Add the Product class to the WCF project and insert in it the code of Listing 21.4.

Listing 21.4: The Product.vb class

<DataContract()>
Public Class Product

<DataMember()> Public ProductID As Integer
<DataMember()> Public ProductName As String
<DataMember()> Public ProductPrice As Decimal
<DataMember()> Public ProductCategoryID As Integer

Public Overrides Function ToString() As String
Return ProductName & " (" & ProductID & ")"

End Function

<DataContract()> Public Class Category
<DataMember()> Public CategoryID As Integer
<DataMember()> Public CategoryName As String
Public Overrides Function ToString() As String

Return CategoryName & " (" & CategoryID.ToString & ")"
End Function

End Class
End Class

This is a very simple class that describes products and categories, if you ignore the deco-
rations of the various members. The entire class is marked with the DataContract attribute,
which tells the compiler that the following class contains the service’s contract: the entities our
service knows about. The clients of the service will communicate with our class by submit-
ting objects from the Product and Product.Category classes, and the service will return data
to the client application using instances of these two classes. The DataMember attribute tells
the compiler that the corresponding property is a member of the contract and that it should be
exposed to the clients. If you have properties that you want to use in your code but not expose
to clients, just don’t mark them with the DataMember attribute.

914 CHAPTER 21 BUILDING AND USING WEB SERVICES

The next step is the definition of the methods that the clients will use to contact our ser-
vice. The methods must be defined in an interface class, which contains the method definitions
but not their actual implementation. This interface class contains the service’s metadata — the
information required by a client to figure out the service’s capabilities. Add the IProduct class
to the project and insert the statements shown in Listing 21.5 in it (the IProduct.vb file).

Listing 21.5: Describing the Product class with an interface

Imports System.ServiceModel
<ServiceContract()>

Public Interface IProduct
<OperationContract()> Function

GetAllCategories() As List(Of Product.Category)
<OperationContract()> Function

GetAllProducts() As List(Of Product)
<OperationContract()> Function

AddProduct(ByVal prod As Product) As Product
<OperationContract()> Function

RemoveProduct(ByVal ID As Integer) As Boolean
<OperationContract()> Function

GetCategoryProducts(ByVal ID As Integer)
As List(Of Product)

End Interface

This is another trivial class, except that it’s marked with the ServiceContract attribute,
which tells the compiler that the class contains the service’s operations (as opposed to the ser-
vice’s data structure, which was defined in the Product class). The methods are also marked
with the OperationContract attribute, which makes them available to clients. Without this
attribute, the procedures would be internal methods and clients wouldn’t be able to see them.

If the service exchanges simple data types with the client, this interface would be adequate.
However, practical services are not limited to simple data types like integers and strings. They
communicate with the client using business objects, which are based on custom classes. These
objects represent customers, products, invoices, and the like. If you want to make use of custom
objects, you must declare them in a separate class like the Product class shown earlier.

Finally, you must add yet another class to the project — this time a class that contains the
actual code and implements the service. This is the ProductService class in the sample project,
and its code is shown in Listing 21.6. The ProductService class implements the IProduct inter-
face, taking into consideration the classes defined in the Product class.

Listing 21.6: The implementation of the ProductService class

<ServiceBehavior()> Public Class ProductService :
Implements IProduct

Shared _products As New List(Of Product)
Shared _categories As New List(Of Product.Category)

BUILDING AND USING WCF SERVICES 915

Public Function AddProduct(ByVal prod As Product) As Product
Implements IProduct.AddProduct

‘ grab the next ID in _products list
prod.ProductID =

(From p In _products
Select p.ProductID
Order By ProductID Descending).

FirstOrDefault + 1
‘ If category field is not set to a valid category, ignore it

If (From c In _categories
Where c.CategoryID = prod.ProductCategoryID).Count = 0 Then

prod.ProductCategoryID = Nothing
End If
products.Add(prod)
Return prod

End Function

Public Function GetAllCategories() As
System.Collections.Generic.List(
Of Product.Category)
Implements IProduct.GetAllCategories

Return _categories
End Function

Public Function GetAllProducts() As
System.Collections.Generic.List(Of Product)
Implements IProduct.GetAllProducts

Return _products
End Function

Public Function RemoveProduct(ByVal ID As Integer)
As Boolean Implements IProduct.RemoveProduct

products.Remove(_products.Find(Function(p) p.ProductID = ID))
End Function

Protected Overrides Sub Finalize()
MyBase.Finalize()

End Sub

Public Function GetCategoryProduct(
ByVal categoryID As Integer)
As List(Of Product)
Implements IProduct.GetCategoryProducts

Return (From p In _products
Where p.ProductCategoryID = categoryID).ToList

End Function

Public Sub New()

916 CHAPTER 21 BUILDING AND USING WEB SERVICES

_categories.Add(New Product.Category With
{.CategoryID = 101, .CategoryName = "Electronics"})

_categories.Add(New Product.Category With
{.CategoryID = 102, .CategoryName = "Cameras"})

_categories.Add(New Product.Category With
{.CategoryID = 103, .CategoryName = "Software"})

End Sub
End Class

The data are stored in the _products and _categories collections, which are private to the
class, and no client can manipulate these collections directly. This is the essence of the service:
It allows clients to view and manipulate the data through a well-defined interface, and the ser-
vice itself is in charge of maintaining the integrity of the data. Since we don’t have a database
at the back end, we’re also responsible for maintaining the IDs of the various entities. Every
time a new product is added, the code retrieves the largest product ID from the _products
collection, adds 1 to it, and forms the ID of the new product. The same is true for the IDs of
the categories. Notice also that every time the service is initialized, it adds three rows to the
_categories table. It goes without saying that you can change the implementation of the ser-
vice so that it interacts directly with the Northwind database instead of custom collections. To
do so, you will change the implementation of the ProductService class without having to touch
the other two classes. As a consequence, client applications will continue using your service,
but with the new implementation of the service, they will be seeing the data of the Northwind
database.

The two collections must be declared with the Shared keyword so that all instances of the
service will see the same data. Had we declared the two collections with a Dim statement, a
new set of collections would be created for each instance of the class invoked by a client. In
other words, every client application would see its own data source.

Your WCF service is ready to service clients. To test it, press F5 and you will see an icon
in the lower-right corner of your screen informing you that the WcfSvcHost utility has started.
This utility, which comes with Visual Studio, hosts the service and makes it available to clients
at a specific IP address and port. Since WcfSvcHost is meant for testing purposes, only appli-
cations running on the same machine can connect to it. Once the service has been debugged, it
can be deployed as an IIS application.

A few moments later you will see another window, the WCF Test Client utility, which
allows you to test your new service without writing a client application. The first time you
run the project you’ll see an error message to the effect that the service doesn’t expose any
metadata. This happened because you haven’t configured your application yet. Right-click
the App.config file in the Solution Explorer, and from the shortcut menu, select Edit WCF
Configuration. The Configuration Editor window appears, as shown in Figure 21.11.

Configuring WCF Services

A WCF service is defined by three parameters: an address where it can be reached (the end-
point), a binding protocol, and a contract. All three parameters are configurable, and you need
not edit the service code to redeploy it or to support additional bindings. You only need to edit
the configuration file.

The address is an IP address or URL that specifies where the service is located. It’s the
address of the machine on which the service is running and, consequently, the address to

BUILDING AND USING WCF SERVICES 917

which clients must connect to make requests. The binding determines how the clients will
talk to a service and WCF supports multiple bindings. The contract, finally, specifies what the
service does; in other words, the methods it provides. The contract is the service interface,
much like the classes and methods of a namespace. If you want to totally abstract a WCF
service, think of it as a namespace that’s being hosted on a remote computer. Just as you can
call a method in a namespace, you can call a method of a WCF service. As you saw in the first
example of this chapter, you can access a remote service from within your project by adding
a reference to the service. With that reference in place, Visual Studio will take care of the
housekeeping needed to connect to the remote service (what’s also known as the plumbing).

Figure 21.11

The Configuration Edi-
tor’s window allows you
to configure the parame-
ters of a WCF service.

The binding tells the client how the messages will be transmitted between the client and the
service. Web services use HTTP to exchange data with the clients. This, however, is not perfect
for all cases. HTTP is a universal protocol, and it’s been implemented on every operating sys-
tem, but it’s the most generic protocol. Windows, as well as other operating systems, support
messaging: a mechanism for reliably transmitting information between two computers, even if
one of them is offline. When the receiving computer is connected, the message will be delivered
and processed. This mechanism, which relies on Microsoft’s Message Queues, is the most reli-
able mechanism for exchanging data between two computers, but this type of communication
isn’t synchronous.

There are situations where the WCF service and its client are deployed on the same local
area network. For these cases, there are protocols, such as Named Pipes, that perform much
faster than HTTP. I can’t discuss the merits of all available bindings in this chapter. This is
an advanced topic, and the goal of this chapter is to introduce you to a technique for writing
applications as services. The basic techniques are within the reach of the average VB devel-
oper, and I will limit the discussion to the basic techniques for building WCF services and

918 CHAPTER 21 BUILDING AND USING WEB SERVICES

deploying them on a web server. WCF allows you to build a service following the steps dis-
cussed so far and then configure them. The configuration involves the specification of the end-
point (the service’s address) and the binding protocol. You can even implement multiple bind-
ings on the same service so that different clients can contact the same service using different
protocols.

To configure the sample WCF service, you must first change the name of the service.
Although you changed the default name of the service, the configuration file still remembers
the original name, Service1, which was the name of the sample class that was generated auto-
matically and that we removed from the project. Click the WCFProducts.Service1 item in the
left pane of the Configuration Editor, which was shown in Figure 21.11, and then select the
Name property in the right pane. Click the button with the ellipsis next to the service’s name
and the Service Type Browser dialog box will open, as shown in Figure 21.12. This dialog box
is similar to the Open dialog box, which allows you to select a file. Navigate to the project’s
Bin/Debug folder and select the WCFProducts.dll file. Click open, or double-click the file’s
name to see the names of all services implemented in the DLL. You will see a single service
name, the WCFProducts.ProductService name. Select it and the close the dialog box by
clicking the OK button.

Figure 21.12

Configuring the name of
the WCF service

You will notice that the new service has two predefined endpoints. Click the first one
and the endpoint’s properties will be displayed on the editor’s right pane. The first end-
point uses the wsHttpBinding binding and implements the contract WCFProducts.Service1
service. There’s no Service1 service, so you must change the name of the service with the
same process described earlier. Locate the project’s DLL and set the endpoint’s contract
to WCFProducts.IProduct interface. While configuring the first endpoint, set its name to
HTTPBinding.

Now select the second endpoint and you’ll see that it implements the mexHttpBinding, as
shown in Figure 21.13. This binding provides the service’s metadata and you need not change
its settings. Just set its name to MEXBinding, so that it won’t be displayed as (Empty Name).

BUILDING AND USING WCF SERVICES 919

Figure 21.13

Configuring an endpoint
of a WCF service

Save the configuration with the Save command from the File menu and close the Config-
uration Editor. Now you’re ready to test the service. Press F5 again and this time the WCF
Test Client window appears, as shown in Figure 21.14. The WCF Test Utility window con-
sists of two panes: on the left pane you see all the methods of the service (you must expand
the service’s interface to see the names of the methods), and on the right pane you can call the
selected method and see the results. To see the categories shown in Figure 21.14, for example,
I double-clicked the GetAllCategories item in the left pane and then I clicked the Invoke but-
ton. The utility called the GetAllCategories method and displayed the results in the lower
part of the pane.

You can use the WCF Test Client utility to test the methods of your new service, but even-
tually you must host your service to a web server, or an application, and call it from another
Windows or web client.

You can also test the methods that submit data to the service. If you double-click the
AddProduct method name, a new tab will open in the right pane, as shown in Figure 21.15, and
you’ll be prompted to enter values for the method parameters. Specify the parameter values
(you don’t have to provide a value for the ProductID parameter; this value is assigned auto-
matically by the service) and then click the Invoke button. The utility will call the AddProduct
method, and if executed successfully, it will display the new product in the lower half of the
tab, as shown in the figure.

Note that the new product’s ID is included in the result of the method because the method
returns an object of the Product type that represents the newly inserted row.

Implementing a web or WCF service is no different from implementing a class that exposes
certain functionality through a set of methods and communicates with another application by
exchanging specific types. The only difference between a class you’d use in a Windows applica-
tion and a service is that the members of the service are marked with special attributes. More-
over, when it comes to WCF services, you must also configure them with the Configuration
Editor.

920 CHAPTER 21 BUILDING AND USING WEB SERVICES

Figure 21.14

Testing the methods of
the new WCF service
in the WCF Test Client
utility

Figure 21.15

Submitting a new
product to the Product-
Service service through
the WCF Test Client

ADO.NET Data Services
Before ending this chapter, I’d like to show you briefly how to create services that expose an
entire database. This type of service comes as a special project component of Visual Studio, the
ADO.NET Data Services component. An ADO.NET Data service is a web service that exposes
an entire database, or part of it, as a web service. What’s special about this component is that
it’s generated automatically for you; all you have to do is specify the tables you want to expose

ADO.NET DATA SERVICES 921

and a wizard will generate the service for you. The data source can be a database, an Entity
Data Model (EDM), or a collection of custom objects. There’s nothing new to learn and you can
create and use data services immediately, with the exception of some techniques for securing
your data. The data service will expose methods to both query and update the data source, but
you obviously don’t want to give access to your database to anyone on the Web.

Let’s start the exploration of data services by building a new project, the DataService project;
you can download it from this URL: www.sybex.com/go/masteringvb2010. Create a new pro-
ject of the ASP.NET Web Site type, since your data will be exposed over HTTP. As you will
see, you have no need for a website per se, just a web service that will expose the data of a
specific database (or part of it). As soon as the project is created, delete the ASPX page that
Visual Studio adds by default to any project of this type.

First, you must create a data source. For the purpose of this example, you’ll expose data
from the Northwind database, and to do so, you’ll create an ADO.NET Entity Data Model
by adding a new component of this type to the project. Keep the default name, which is
Model1.edmx. When the wizard starts, select all of the tables in the database, as you learned
in Chapter 19. For this example, I’ve included all 12 tables of the Northwind database. I just
dropped them on the EDM design surface and Visual Studio generated the Model1.edmx data
model.

Now that you have the data source, you can add an ADO.NET Data Service component to
your project to expose the selected tables through a web service. Right-click the project name
and select Add New Item. When the Add New Item dialog box opens, select the ADO.NET
Data Service. Name the new service NWWebDataService. Visual Studio will create the
NWWebDataService.svc file for you and will open the new data service’s code window. You
will see that the new class contains just a few lines of code:

Imports System.Data.Services
Imports System.Linq
Imports System.ServiceModel.Web

Public Class NWWebDataService
‘ TODO: replace [[class name]] with your data class name
Inherits DataService(Of [[class name]])

‘ This method is called only once to initialize service-wide policies.
Public Shared Sub InitializeService(

ByVal config As IDataServiceConfiguration)
‘ TODO: set rules to indicate which entity sets
‘ and service operations are visible, updatable, etc.
‘ Examples:
‘ config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead)
‘ config.SetServiceOperationAccessRule(
‘ "MyServiceOperation", ServiceOperationRights.All)

End Sub
End Class

The NWWebDataService inherits from another class, whose name you must supply
by replacing class name in the code line that reads: Inherits DataService(Of [[class
name]]). The class it derives from should be NorthwindEntities, which is the name of the

922 CHAPTER 21 BUILDING AND USING WEB SERVICES

Data Entity class you created as the project’s data source. Technically, you didn’t specify the
NorthwindEntities name, but Visual Studio created this class and named it after the database.

The statements that are commented out specify the data you want to expose through your
data service. By default, the data service won’t expose any data unless you tell it to do so.
Replace the last two statements of the InitializeService routine with the following:

config.SetEntitySetAccessRule("*", EntitySetRights.All)

This statement instructs the service to expose all resources. Obviously, this is the last thing
you want to do with a real service that will be accessed from outside your test machine,
and I’ll come back to the issue of security, but for now let’s grant unconditional access to all
tables through your service. For the purpose of this chapter, the service will be hosted by the
ASP.NET Development Server, which can be accessed from the same machine only.

You’re probably thinking it’s time to add some real code, or look at a few thousand lines of
code generated by the wizard. This isn’t the case; your data service is complete. Right-click the
NWWebDataService component name, and from the context menu, select View In Browser. A
few seconds later you will see a new Internet Explorer window displaying a list of all tables in
the database, as shown in Figure 21.16.

Figure 21.16

The service exposes the
names of all tables in its
data source.

Each table, which is an EntitySet in the data source, is exposed as a collection. By appending
the entity name to the base URL of the service, you can view the rows in the corresponding
tables. Change the URL in the browser address bar to any of the following to see the products,
categories, and customers in the Northwind database:

http://localhost:51000/NWWebDataService.svc/Products

ADO.NET DATA SERVICES 923

http://localhost:51000/NWWebDataService.svc/Categories

http://localhost:51000/NWWebDataService.svc/Customers

As you will recall from our discussion of the Entity Framework in Chapter 17, ‘‘Using the
Entity Data Model,’’ the Products table is translated into the Products EntitySet, which is made
up of Product entities. The port will be different on your machine, but you will see it on your
browser’s address bar as soon as you open the service in the browser. This port number will
be different every time you start the application, so it wouldn’t be a bad idea to set a specific
port for the service. Select the DataService project in the Solution Explorer, open the Project
menu, and select DataService Properties. On the Project Properties window that opens, select
the Web tab, which is shown in Figure 21.17. On this tab, you can set the start action (what
happens when you start the project) as well as the server that will host your server. For now,
select the Specific Port option and set its value to the number of an unused port (I’ve used the
port number 51000). If you decide to make the service public, don’t forget to limit the access
to the service (you don’t want people changing your data at will). You’ll see shortly how you
can restrict access to specific tables and even how to intercept certain operators, like insertions,
modifications, and deletions, and determine whether to allow or block them from within
your code.

Figure 21.17

Configuring the server
that will host the data
service

Figure 21.18 shows how the first customer, the ubiquitous ALFKI customer, is displayed.
The output of the service is just XML, and you can write a client application to access the ser-
vice and process the selected rows with LINQ. Notice the links to the related tables. Each cus-
tomer has two related tables with the following relative URLs:

Orders:

Customers(’ALFKI’)/Orders

CustomerDemographics:

Customers(’ALFKI’)/CustomerDemographics

924 CHAPTER 21 BUILDING AND USING WEB SERVICES

Figure 21.18

Requesting a specific
customer through a URL
made up of the service’s
URL and the table name

To view the orders of the customer ALFKI, enter the following URL in your browser:

http://localhost:51000/NWWebDataService.svc/Customers(’ALFKI’)/Orders

To isolate a specific column, append it to the table’s URL. The following URL will return the
city of the ALFKI customer:

http://localhost:51000/NWWebDataService.svc/Customers(’ALFKI’)/City

The service will return it as an XML element:

<City xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices">Berlin</City>

You can also request just the value (in this case, Berlin) by appending a dollar sign fol-
lowed by the keyword value:

http://localhost:51000/NWWebDataService.svc/Customers(’ALFKI’)/City/$value

And you can navigate through related rows using this URL syntax. To view the IDs of the
orders placed by the customer BLAUS, connect to the following URL:

http://localhost:51000/NWWebDataService.svc/Customers(’BLAUS’)/Orders

Here I used the URL that retrieves the customer and appended the name of the related tables
(the Orders table). The URL so far returns the orders of the specified customer. You can select

ADO.NET DATA SERVICES 925

a specific order by its ID and request its detail lines. The following URL does exactly that (the
URL should be entered as a single line; it’s been broken here to fit the printed page):

http://localhost:51000/NWWebDataService.svc/Customers(’BLAUS’)/
Orders(10501)/Order_Details

The service will return the following XML document:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
- <feed xml:base=http://localhost:51000/NWWebDataService.svc/
xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
<title type="text">Order_Details</title>
<id>http://localhost:51000/NWWebDataService.svc/Customers(’BLAUS’)

/Orders(10501)/Order_Details</id>
<updated>2009-11-30T22:59:21Z</updated>
<link rel="self" title="Order_Details" href="Order_Details" />

- <entry>
<id>http://localhost:51000/NWWebDataService.svc/

Order_Details(OrderID=10501,ProductID=54)</id>
<title type="text" />
<updated>2009-11-30T22:59:21Z</updated>

- <author>
<name />
</author>
<link rel="edit" title="Order_Detail"

href="Order_Details(OrderID=10501,ProductID=54)" />
<link rel="http://schemas.microsoft.com/ado/2007/08/
dataservices/related/Order" type="application/atom+xml;
type=entry" title="Order"
href="Order_Details(OrderID=10501,ProductID=54)/Order" />
<link rel=http://schemas.microsoft.com/ado/2007/08/dataservices/related/Product

type="application/atom+xml;type=entry" title="Product"
href="Order_Details(OrderID=10501,ProductID=54)/Product" />
<category term="NorthwindModel.Order_Detail"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
- <content type="application/xml">
- <m:properties>

<d:OrderID m:type="Edm.Int32">10501</d:OrderID>
<d:ProductID m:type="Edm.Int32">54</d:ProductID>
<d:UnitPrice m:type="Edm.Decimal">7.4500</d:UnitPrice>
<d:Quantity m:type="Edm.Int16">20</d:Quantity>
<d:Discount m:type="Edm.Single">0</d:Discount>
</m:properties>
</content>
</entry>
</feed>

926 CHAPTER 21 BUILDING AND USING WEB SERVICES

If you examine it, you’ll see that it includes two related entities: the Order entity (the order
to which all detail lines belong) and the Product entity (the product listed in each detail line).

By default, the data service doesn’t move the related rows from the database to the client. If
you want to view the related data, you must use the expand keyword followed by the name(s)
of the entities you wish to retrieve along with each product. The following URL will bring a
single product, along with its category and supplier:

http://localhost:51000/WebDataService1.svc/
Products(12)?$expand=Category,%20Supplier

If you examine the XML returned by this query, you’ll see that it has three <link> elements,
which represent the related rows in other tables: the Order Details, Categories, and Suppliers
tables. The links to the Categories and Suppliers tables have a plus symbol in front of them,
and if you click it to expand the corresponding entity, you’ll see the details of the product’s
category or supplier, as shown in Figure 21.19.

Figure 21.19

Retrieving related rows
with the $expand
option

Likewise, the following statement will bring up an order along with its detail lines and a
product for each detail line:

http://localhost:51000/WebDataService1.svc/Customers(’BLAUS’)/
Orders(10501)/Order_Details?$expand=Product

Filtering

Querying your data through a URL may seem odd at first, but it’s sure easy to understand the
notation of querying through URLs. You can also filter the results returned by the query with

ADO.NET DATA SERVICES 927

the filter keyword, which must be followed by a filtering expression. The following statement
will return all products with a price that exceeds $100:

http://localhost:51000/WebDataService1.svc/Products?$filter=UnitPrice gt 100

Note that the comparison operator is not the greater than sign (>) but the gt operator. The fil-
tering expressions can get quite complicated because the URL syntax isn’t flexible enough for
expressing multiple criteria, joining tables together, and so on. The data service allows us to get
the data we need with a simple HTTP request, but for many operations you’ll have to down-
load the desired data at the client and process them locally with LINQ.

The data service works very nicely, and it took us no time at all to write. You’ll see shortly
how to write client applications against this service and how to submit updates to the database
as well. For now, keep in mind that an ADO.NET Data service exposes (or ‘‘surfaces’’) the data
in a data source. We have used a Data Entity Model as our data source in this example, but
you can use any data source such as LINQ to SQL, or even a collection of custom objects. No
matter how you specify the data source, the data service will expose it through HTTP requests.

The Basic Query Operators

For those of you who are interested in exploring the notation for URL querying further,
Table 21.1 provides a quick overview of the various operators.

Table 21.1: Basic query operators

Type Operators

Logic operators eq (equals), ne (not equals)
gt (greater than), gteq (greater than or equal to)
lt (less than), lteq (less than or equal to)
and, or, and not

Arithmetic operators add (addition), sub (subtraction), mul (multiplication), div (division),
mod (remainder)
round (round decimal digits)
floor (returns the largest integer that doesn’t exceed a value)
ceiling (returns the smallest integer that exceeds a value)

String operators contains, endswith, startswith, length, indexof, insert,
replace, substring, tolower, toupper, trim, concat

Date/time operators Second, hour, minute, day, month, year

Type operators Isof, cast

Here are a few simple examples of the operators you can use in your filtering expres-
sions. (I’m only showing the part of the URL that follows the service’s address, which is
http://localhost:51000/WebDataService1.svc/)

928 CHAPTER 21 BUILDING AND USING WEB SERVICES

Products?$filter=startswith(ProductName, Sir’)
Orders?$filter=month(OrderDate) eq 2
Orders?$filter=endswith(ShipName,’markt’)

ADO.NET Data Services allows you to expose (or surface) an entire database and build
client applications that use the service as the data source. The database has already been
exposed, and you can write code to exploit the data using the HttpWebRequest/HttpWeb
Response objects, as you saw in the preceding chapter. The data are exposed through the
simplest possible mechanism, namely through HTTP. But expressing conditions and statements
to retrieve our data using the URL syntax is rather awkward. There are more structured tools,
LINQ being one of them. Can you access the data exposed by your service with LINQ? The
answer is Yes! And LINQ can translate the standard query operators into the equivalent URL
syntax. This URL querying syntax is convenient for testing the service, but no one expects you
to write applications using the query syntax (not in this day and age, at least). There are tools
to use the same data as business objects from a client application, and this is what you’re about
to do next.

Building a Windows Client
In this section, I’ll guide you through the process of building a Windows client that consumes
the data of the data service. As you can guess, Microsoft didn’t go to the trouble of developing
ADO.NET Data Services so we would have to process the XML returned by the queries on our
own. There are tools that simplify the process enormously, and you’ll see them in this section.

The tool that will allow us to see the entities of the new Entity Data Model at the client is a
command-line tool. This tool is the DataSvcUtil.exe utility, which reads the service’s meta-
data and creates a class that encapsulates the functionality of the service. Open a command
prompt window and run the DataSvcUtil.exe utility, which resides in the folder Windows\
Microsoft.NET\Framework.NET\v.4.0.xxx, where xxx is the latest revision of the framework.
This value as of this writing is 4.0.30138, but it will most likely be a little different by the time
Visual Studio 2010 is released. Choose the most recent version of the Framework and switch
to that folder. In this folder you’ll find the DataSvcUtil.exe utility, which you must execute,
passing as an argument the URL of the data service for which you want to generate a proxy (a
proxy is a class that exposes the data model and the appropriate methods to access the service’s
data).

To generate the proxy, start the DataSvcUtil.exe utility with a statement similar to the fol-
lowing in the command prompt window:

DataSvcUtil.exe /out:"C:\Project\DataServices\NWProxy.vb"
/uri:"http://localhost:51000/NWWebDataService.csv" /language:vb

This creates the proxy file in the root folder of one of my drives, so I can locate it easily later.
Be sure to change the path to a folder that’s easy for you to locate later because you will have
to include this file with your solution.

Before you execute this command, however, you must start the service for the new port to
take effect. Open the service in the browser as usual, and as soon as you see the list of tables
exposed by the service, close the browser. The service will continue to run in Visual Studio and
the browser is not required. The DataSvcUtil.exe utility will generate the file NWProxy.vb
in the specified folder. Move this file to the folder that contains the Windows project you’re

ADO.NET DATA SERVICES 929

building, and then add it to the same project with the Add � Existing Item command. You
could add the proxy to your current project without moving it, but then the project files will
be scattered all over your drives.

To simplify matters, I’ve added a Windows project to the solution, and its main form is
shown in Figure 21.20. This is the client application that will contact the data service to inter-
act with the Northwind database. To see the newly created data model in action, you must add
the auto-generated proxy file to the Windows project by copying the NWProxy.vb file into the
folder of the Windows application. Then place a button on the main form of the test project,
the Read Data From Service button, and create a variable to reference the proxy class with the
following declaration in your code (just make sure to change the port to the appropriate value):

Dim service As New NorthwindModel.NorthwindEntities(
New Uri("http://localhost:51000/NWWebDataService.svc"))

Figure 21.20

Consuming an ADO.NET
Data service through a
Windows client

Now you’re ready to access the tables in the Northwind database through the service. Your
Windows application is a client that connects to the service through the URL of a web service.
It has no direct access to the database, which means you don’t have to open any ports to SQL
Server on your database server and no credentials are stored at the client application. All it
needs is a so-called HTTP stack (basically, any computer that can access the Internet can host
the application). You can view the methods exposed by the NWProxy server (which are the
same as the methods of the underlying service) by entering the name of the service variable
and a period.

You probably recall that you granted access to all tables for all users. I’ll come back to this
topic shortly and show you how to limit the access to your service, but let’s see how the proxy

930 CHAPTER 21 BUILDING AND USING WEB SERVICES

allows you to access the data. With the service variable in place, you can access the tables in
the Northwind database as collections of typed objects.

To access a table, use a loop like the following, which iterates through the rows of the Cus-
tomers table:

For Each p In service.Products
Debug.WriteLine(p.ProductName)

Next

As you can see, the collections returned by the service are typed and so the p variable exposes
the names of the columns of the Customers table as properties.

In a similar manner, you can iterate through the Categories table:

For Each c In categories
Debug.WriteLine(c.CategoryName)

Next

If you want to access the products in each category, you must explicitly request these rows
of the Products table as you iterate through the categories. The data service doesn’t move
all data to the client. To request the matching rows of a related table, use the LoadProperty
method, which accepts two arguments: an entity name, which is a row of the current table, and
the name of the related table. To iterate through the categories and their related products, write
two nested loops like the following:

For Each c In categories
Debug.WriteLine(c.CategoryName)
service.LoadProperty(c, "Products")
For Each p In c.Products

Debug.WriteLine(p.ProductName & vbTab & p.UnitPrice.ToString)
Next

Next

Since you’re working with typed collections, you can use all LINQ operators to process your
data. The following loop selects the customers from Germany and then the orders they have
placed:

For Each c In service.Customers.Where(Function(cust) cust.Country = "Germany")
service.LoadProperty(c, "Orders")
Debug.WriteLine(c.CompanyName)
For Each o In c.Orders

Debug.WriteLine(vbTab & o.OrderID)
Next

Next

To use the data service efficiently, you must execute the appropriate queries and retrieve
only the relevant data and not entire tables or even related rows that aren’t needed. Let’s say
you want to retrieve the orders from all customers in Germany that were placed in a specific
year. Instead of using the LoadProperty method to move all related rows from the Orders
table on the server to the client, you can use the CreateQuery method to pass a query to the

ADO.NET DATA SERVICES 931

server. You’ll specify your query in LINQ, but the data service will translate it to the appropri-
ate SQL query and execute it against the server. The following expression retrieves the rows of
the Orders table as a DataServiceQuery object, which is a typed collection:

service.CreateQuery(Of NorthwindModel.Order)("Orders")

Then you can apply any filtering on this query to limit the number of rows with the Where
operator:

Dim selOrders = service.CreateQuery(Of NorthwindModel.Order)("Orders").Where(_
Function(o) Year(o.OrderDate) = 1998 And

o.Customer.CustomerID = c)

Let’s say you need all customers in Italy ordered by their company name. To request this
information from the database, you’d write a query like the following:

Dim ItalianCustomers = From c In service.Customers
Where c.Country = "Italy"
OrderBy c.CompanyName
Select c

The preceding LINQ expression was translated into the following URI query:

{http://localhost:51000/NWWebDataService.svc/
Customers()?$filter=Country eq ‘Italy’&$orderby=CompanyName}

Your regular LINQ statements are being automatically translated into URIs that can be pro-
cessed by the service. It looks like a new variation of LINQ, LINQ to URI, but I haven’t seen
this term being used in the documentation. Anyway, the LINQ component knows how to talk
to ADO.NET Data Services, but not always with success because not all expressions you can
use with LINQ have a counterpart in SQL. To retrieve the orders with a freight charge of more
than $20, use the following trivial LINQ query:

Dim q = From o In service.Orders
Where o.Freight > 20
Select o

The preceding LINQ query is translated into the following URI by the service:

http://localhost:51000/NWWebDataService.svc/
Orders()?$filter=cast(Freight gt 10M,’Edm.Boolean’)

In general, it’s much simpler to write queries using LINQ than to try to construct the proper
URL for any given query. The following LINQ query retrieves the products that contain the
word sauce in their name, regardless of spelling:

Dim q = From p In service.Products
Where p.ProductName.Contains("sauce")
Select p

932 CHAPTER 21 BUILDING AND USING WEB SERVICES

When this query is translated into a URI query, the service makes use of the substringof oper-
ator, as shown here:

{http://localhost:51000/NWWebDataService.svc/Products()?$
filter=substringof(’Sauce’,ProductName)}

If you’re wondering how I found the URI query for these LINQ queries, it’s really simple.
Place a breakpoint before the LINQ query you want to monitor, and when the program breaks,
add a new watch on the variable that represents the result of the query (the q variable in most
of this section’s examples). As soon as the LINQ statement is executed, the SQL statement that
will be executed against the database will appear in the Watches window.

Submitting Updates
Using an ADO.NET data service to explore the data in a database is a fairly straightforward
approach. Surfacing your data with a data service is ideal for reporting and other applications
that need not modify the database. Of course, the data service allows you to submit updates as
well, although this isn’t the best implemented feature of an ADO.NET data service — not yet,
that is. My main objection to updating a database through a data service is that the methods
that perform the updates do not return the error messages generated by the database. What
you get back is a generic error telling you that ‘‘an error occurred while processing this
request.’’ Whether the error occurred because the data violated some constraint or whether
it occurred because a field value was inappropriate for the corresponding column, the error
message is the same. If you decide to use a data service to submit updates to the database, be
prepared to validate the data as best as you can at the client, because the server won’t help
you determine the source of the update errors.

Since it’s only a question of time before Microsoft brings ADO.NET Data Services up to par
with the other data access technologies, let’s look at the process of submitting updates to the
database. Since the underlying data source is an Entity Data Model, the process of submitting
data to the service is more or less familiar to you. To insert new rows, you create new entities
at the client and submit them to the server with the service’s SaveChanges method. To update
existing rows, you just change the desired fields and then call the same method. To delete rows,
you delete entities at the client and then call the SaveChanges method.

To create a new product, for example, you must first create a Product object:

Dim prod As New NorthwindModel.Product

And then set the object’s properties with statements like the following:

prod.ProductName = "NEW PRODUCT NAME"
prod.UnitPrice = 11.2
prod.UnitsInStock = 1
prod.UnitsOnOrder = 12

Some of the properties are also entities, and they must be set to the appropriate entity. The
product category is specified in the database with the CategoryID field, but the entity Product
is related to the entity Category, so you must create a new Category entity and assign it to
the Category property of the prod variable. The same is true for the product’s supplier: You

ADO.NET DATA SERVICES 933

can set the prod.SupplierID field; you must set the Supplier property to an entity of the
Supplier type. The following statements create the Category entity by reading a row from the
Categories table and set up the Category property of the new product:

Dim cat = service.Categories.Where(Function(c) c.CategoryID = 4).First
prod.Category = cat

For the product supplier, I followed a different approach to better demonstrate the process
of updating the Data service. This time I created a new Supplier entity, which provides only
scalar properties, and then I set the new product’s Supplier property to this value:

Dim supplier As New NorthwindModel.Supplier
supplier.CompanyName = "New Supplier"
supplier.ContactName = "Contact name"
supplier.ContactTitle = "Contact title"
supplier.Address = "Supplier address"
supplier.City = "City"
supplier.Country = "Country"
service.AddToSuppliers(supplier)
service.SetLink(prod, "Supplier", supplier)

Note that this time the new entity is added to the Suppliers entity set at the client with the
AddToSuppliers method. The last statement associates the product with its supplier. This link
does not exist at the client and must be added explicitly. Note that you don’t have to specify
the fields that take part in the relationship.

At this point you can submit the new product to the database by calling the SaveChanges
method. The SaveChanges method doesn’t accept any arguments; it submits all changes to the
data service. Obviously, it will first submit the new supplier and then the new product. But this
isn’t something you have to worry about; the data service knows how to insert the rows in the
correct order.

You may have noticed that the code didn’t set the IDs of the two new rows. The IDs are
assigned by the database and the client has no way of knowing the next available ID in the
database. Other users may have inserted rows into any table and the client can’t make any
assumptions as to the next available ID. You could also use globally unique identifiers (GUIDs)
as primary keys, which would allow you to generate the primary key values at the client, but
for most databases in use today this isn’t the case. Windows generates a long string that’s
unique every time you create one (as the term suggests, it’s a globally unique identifier, not in
your computer or your network).

After the SaveChanges method is called, the properties prod.ProductID and supp.Supplier
ID will have the correct values, which will be transmitted to the client by the data service. This
is why we had to explicitly add the appropriate links between the entities at the client with the
SetLink method. As a reminder, this is necessary for new rows only. If the ID of the related
row is known, as was the case with the Category entity, there’s no need to call the SetLink
method.

The Simple Updates button of the sample application contains the statements presented so
far in this chapter. Open the project to see the code that implements the simple operations, like
updates and deletions.

934 CHAPTER 21 BUILDING AND USING WEB SERVICES

Performing Transactions
Real data-driven applications perform updates in a transactional manner. As you will recall
from Chapter 15, ‘‘Programming with ADO.NET,’’ an order has to be committed to the data-
base in a transactional manner; the entire order must fail if a single row fails to be committed
to the database. Data services allow you to perform multiple updates in the context of a trans-
action as long as all the updates that belong to the transaction are submitted with a single call
to the SaveChanges method. In addition, you must set the SaveChangesDefaultOptions prop-
erty of the entity set to Batch.

Let’s consider the example of committing an order to the Northwind database, a rather
familiar example in this book. You have seen how to perform transactions with ADO.NET as
well as with data entities. To perform a transaction with a data service, you first create all the
objects that take part in the transaction: the order’s header and its detail lines. You should not
call the SaveChanges method until all entities have been created at the client, as discussed in
the preceding section. When the entire order has been set up at the client, you can submit it
to the database by calling the SaveChanges method.

Let’s review the actual code that submits a new order to the database. You can find the code
discussed in this section in the Transactional Updates button of the DataServices project. As
usual, start with a reference to the data service, the service variable:

Dim service As New NorthwindModel.NorthwindEntities(
New Uri("http://localhost:51000/NWWebDataService.svc"))

Then, create a new Order object, the newOrder variable, and add it to the Orders table. The new
row is appended to the Orders entity set at the client. Moreover, the new order has no ID yet.
The OrderID value will be assigned by the database when the transaction is submitted to the
database. Here are the statements that create the newOrder object:

Dim newOrder As New NorthwindModel.Order
service.AddToOrders(newOrder)

Now create a customer object that represents the customer that placed the order. In a real
application, the user will most likely select the customer from a list, but since this application
doesn’t have an elaborate user interface, I retrieve a row from the Customers entity set at the
client. You can’t simply set the newOrder.CustomerID property, even though the newOrder
variable exposes the CustomerID property. The newOrder object has a Customer property too,
and there’s a relationship between the Orders and Customers tables. To associate a customer
with the new order, we must set the order’s Customer property to a Customer object and then
establish a relationship between the two. The following statement creates the Customer object
that represents the Customer ANTON:

Dim cust = service.Customers.Where(Function(p) p.CustomerID = "ANTON").First()

Next, assign the cust object to the new order’s Customer property and then create a link
between the order and the customer:

newOrder.Customer = cust
service.SetLink(newOrder, "Customer", cust)

ADO.NET DATA SERVICES 935

Follow similar steps to associate an employee with the order:

Dim emp = service.Employees.Where(Function(p) p.EmployeeID = 3).First
newOrder.Employee = emp
service.SetLink(newOrder, "Employee", emp)

And then you can set the remaining (scalar) properties of the order with simple statements like
the following:

newOrder.OrderDate = Now
newOrder.ShipAddress = cust.Address
newOrder.ShipCity = cust.City

Now you can create the order details. Each detail is a variable of the Detail type, and each
must be added to the Order_Details property of the newOrder object. The Order_Details
property is a collection, and as such it provides an Add method. The following statement creates
a new variable, the dtl variable, that represents an order detail:

Dim dtl As New NorthwindModel.Order_Detail

This variable must be added to the Order_Details entity set:

service.AddToOrder_Details(dtl)

You must also associate the new detail line with the new order:

dtl.Order = newOrder

Now you can set the properties of the detail line with statements like the following. Again,
the product is selected from the Products table by its ID, while in a real application you’d prob-
ably allow the user to select it from a list or another lookup mechanism:

Dim dtlProd = service.Products.Where(Function(p) p.ProductID = 31).First

Set the Product property of the new order to the dtlProduct object:

dtl.Product = dtlProd

And create a link between the detail line and the corresponding row in the Products entity set:

service.SetLink(dtl, "Product", dtlProd)

Then, you can set the remaining properties of the detail line with simple statements like the
following:

dtl.Product = dtlProd
dtl.UnitPrice = 11.2
dtl.Quantity = 9

936 CHAPTER 21 BUILDING AND USING WEB SERVICES

And finally, associate the new detail line with the new order:

service.SetLink(dtl, "Order", newOrder)

Let’s add a second detail line to the order with the following statements:

dtl = New NorthwindModel.Order_Detail
dtlProd = New NorthwindModel.Product
dtlProd = service.Products.Where(Function(p) p.ProductID = 56).First()
dtl.Order = newOrder
dtl.Product = dtlProd
dtl.UnitPrice = dtlProd.UnitPrice * 0.9
dtl.Discount = 0.1
dtl.Quantity = -5
service.AddToOrder_Details(dtl)
newOrder.Order_Details.Add(dtl)
service.SetLink(dtl, "Product", dtlProd)
service.SetLink(dtl, "Order", newOrder)

This time I’ve chosen to include a discount as well. Other than that, the process of creating a
new detail line is the same. The new detail line is linked to a Product entity because it contains
the ID of a product and to the Order entity to which is belongs.

At last, you can commit the new order to the data service by calling the SaveChanges
method of the service variable. All the objects you have created at the client will be submitted
to the database in the proper order by the data service. To ensure that all rows will be inserted
in a transactional manner, you must also set the service.SaveChangesDefaultOptions
property to the value shown in the code:

service.SaveChangesDefaultOptions = Services.Client.SaveChangesOptions.Batch
Try
service.SaveChanges()
Catch ex As Exception

MsgBox("FAILED TO COMMIT NEW ORDER")
End Try

To see for yourself that the order is submitted in a transactional manner, set the price of the
product of the first detail line to a negative value. The database will reject this value and the
entire transaction will fail. The error that will be raised by the data service will have a very
generic description, which won’t help you locate the bug in your code. With a straight ADO
transaction, you get back the error message generated by the database, which clearly states the
value that the database couldn’t accept.

Once the transaction has been committed, the data service will return the ID of the order as
well as the IDs of all entities involved in the transaction. In this case, there’s only one ID value
to be set by the database.

Through the examples in this section, it’s clear that a data service is quite trivial to build and
very easy to use for selection queries. When it comes to updating the database, however, the
data service doesn’t provide all the mechanisms you’ve come to expect with other data access
technologies. You must establish relationships between entities in your code and you can’t rely
on meaningful error descriptions to debug your code.

ADO.NET DATA SERVICES 937

Securing Your Data Service
Exposing a database as a web service on the Internet is not the best idea. To secure the
database from malicious users, you must set up some security measures. As you recall, the
SetEntitySetAccessRule method sets the access rule for the various entities exposed by the
service. So far, you allowed users to access all entities for all operations with the following
statement:

config.SetEntitySetAccessRule("*", EntitySetRights.All)

The first argument is the name of an entity and the second argument is a member of the
EntitySetRight enumeration: None, All, AllRead, AllWrite, ReadMultiple, ReadSingle,
WriteAppend, WriteDelete, WriteMerge, WriteReplace. The names of most members are
self-descriptive. The ReadMultiple and ReadSingle members determine whether users can
read multiple rows or a single row of the corresponding entity set.

Limiting Data Access

Whenever possible, you should limit the number of rows a client application can request
because sloppy developers will retrieve an entire table to select a few rows at the client. The
following method call enables clients to read all rows, insert new rows, and replace existing
rows in the Orders entity set:

config.SetEntitySetAccessRule("Orders", EntitySetRights.AllRead Or
EntitySetRights.WriteAppend Or EntitySetRights.WriteReplace)

Notice that multiple options are combined with the Or operator.

The SetServiceOperationAccessRule specifies the access rules for the various operations.
The first argument is a method name and the second argument is a member of the
ServiceOperationRights enumeration: All, AllRead, None, OverrideSetEntityRights,
ReadMultiple, or ReadSingle.

The two methods are quite useful for specifying simple access rules but not nearly adequate
enough for implementing more advanced security rules. Typical access rules, such as allowing
users to view their own orders only, must be implemented with the appropriate procedures.
These procedures are called interceptors because they intercept a query and alter the query’s
default behavior. To intercept a selection query, for example, use the QueryInterceptor
attribute followed by the name of an entity set in parentheses:

<QueryInterceptor("Orders")>
Public Function OnQueryOrders() As Expression(Of Func(Of Orders, Boolean))

‘ statements
End Function

The OnQueryOrders function will be called every time a client selects one or more rows from
the Orders table and it’s implemented as a lambda expression that accepts as arguments a

938 CHAPTER 21 BUILDING AND USING WEB SERVICES

collection of the Orders entity set (the original result of the query) and a Boolean variable.
The function’s body should set the second argument to True or False for each member of
the collection, depending on whether the member should be included in the result or not.
Note that the interceptor applies to all queries to the specific table, whether they query the
Orders entity set directly or they query the same set indirectly — for example, a query to the
Customers table that expands the customer’s orders.

The following interceptor for the Orders entity set eliminates all orders except for the ones
placed by the customer that makes the request. It assumes that the service is hosted as an IIS
application with authentication and the user has connected to the service with the same user-
name as the company name, which is rarely the case. In a realistic scenario, the service would
look up the user’s company name in a table and then use it to filter the results of the query:

<QueryInterceptor("Orders")>
Public Function OnQueryOrders() As Expression(Of Func(Of Orders, Boolean))

Return Function(o) o.Customers.ContactName =
HttpContext.Current.User.Identity.Name

End Function

You can implement interceptors for all types of queries, including insertion, modification,
and deletion queries. To define a change interceptor for the Products entity set in the North-
wind data service project, open the Northwind.svc file and define a service operation method
named OnChangeProducts as follows:

<ChangeInterceptor("Products")>
Public Sub OnChangeProducts(ByVal product As Products,

ByVal operations As UpdateOperations)

The interceptor for operations that submit edits to the database includes an argument that
determines the update operation that fired the interceptor. You can determine the type of
operation from within the interceptor code and react differently to different operations. You
may reject a delete operation, for example, but accept insertions and updates. The method
that intercepts all modifications is the ChangeInterceptor, and it provides two arguments:
the row that’s about to be modified and the operation. The operation is a member of the
UpdateOperations enumeration, whose members are Add, Update, Change, and Delete. What
makes this type of interceptor especially useful is that you can access the fields of the row
being modified and reject certain operations based on the value of the row’s columns. This
information is passed to the method as a row of the corresponding table and it’s the first
argument of the ChangeInterceptor interceptor.

The Products table of the Northwind database, for example, has a column that specifies
whether a product has been discontinued or not, the Discontinued column. It probably doesn’t
make a lot of sense to create a new product that’s already discontinued. This is a business deci-
sion, of course, but here’s an interceptor for the Add operation that disallows the insertion of a
product that has its Discontinued column set to True:

<ChangeInterceptor("Products")> _
Public Sub OnChangeProducts(

THE BOTTOM LINE 939

ByVal product As Products, ByVal operation As UpdateOperations)
If operation = UpdateOperations.Add Then

If product.Discontinued Then
Throw New DataServiceException(

400, "Can’t modify a discontinued product!")
End If

End If
End Sub

If this exception is raised, the service will return an error message with the specified descrip-
tion. If the same error were raised while testing the service from the browser, the error would
have been a 400 error (the ‘‘page not found’’ error).

The Bottom Line

Create a simple ASP.NET web service. Creating ASP.NET web services is straightforward
with Visual Studio. ASP.NET web services provide a great method for delivering data and
functionality within a distributed environment, including the Internet.

Master It Develop an ASP.NET web service that enables the user to add two numbers.

Consume an ASP.NET web service. Adding a web reference or service reference to a web
service is a key element to creating an application that can consume the web service.

Master It Create a new website and add a service reference to a web service on your
machine.

Create a WCF service. WCF services are similar to web services, but they give developers
more options for deployment and they support more data exchange protocols.

Master It Outline the steps involved in building a WCF service.

Work with ADO.NET Data Services. ADO.NET Data Services is a project component that
exposes, or surfaces, data as a service through HTTP. Data services are built automatically by
Visual Studio based on any data source, and you can access them through URI requests.

Master It How do you access the methods of an ADO.NET data service?

Appendix

The Bottom Line

Each of The Bottom Line sections in the chapters suggest exercises to deepen skills and under-
standing. Sometimes there is only one possible solution, but often you are encouraged to use
your skills and creativity to create something that builds on what you know and lets you
explore one of many possible solutions.

Chapter 1: Getting Started with Visual Basic 2010

Navigate the integrated development environment of Visual Studio. To simplify the pro-
cess of application development, Visual Studio provides an environment that’s common to all
languages, known as an integrated development environment (IDE). The purpose of the IDE
is to enable the developer to do as much as possible with visual tools before writing code. The
IDE provides tools for designing, executing, and debugging your applications. It’s your second
desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Solution The basic components of the Visual Studio IDE are the Form Designer, where
you design the form by dropping and arranging controls, and the code editor, where you
write the code of the application. The controls you can place on the form to design the
application’s interface are contained in the Toolbox window. To set the properties of a
control, you must select it on the form and locate the appropriate property in the Properties
window.

Understand the basics of a Windows application. A Windows application consists of a
visual interface and code. The visual interface is what users see at runtime: a form with con-
trols with which the user can interact — by entering strings, checking or clearing check boxes,
clicking buttons, and so on. The visual interface of the application is designed with visual
tools. The visual elements incorporate a lot of functionality, but you need to write some code
to react to user actions.

Master It Describe the process of building a simple Windows application.

Solution First, you must design the form of the application by dropping controls from
the Toolbox window onto the form. Size and align the controls on the form, and then set
their properties in the Properties window. The controls include quite a bit of functional-
ity right out of the box. A TextBox control with its MultiLine property set to True and its
ScrollBars property set to Vertical is a complete, self-contained text editor.

942 APPENDIX THE BOTTOM LINE

After the visual interface has been designed, you can start coding the application. Win-
dows applications follow an event-driven model: Code the events to which you want your
application to react. The Click events of the various buttons are typical events to which
an application reacts.

Then, there are events that are ignored by developers. The TextBox control, for example,
fires some 60 events, but most applications don’t react to more than one or two of them.
Select the actions to which you want your application to react and program these events
accordingly. When an event is fired, the appropriate event handler is automatically invoked.

Event handlers are subroutines that pass two arguments to the application: the sender
argument, which is the control that fired the event, and the e argument which carries addi-
tional information about the event (information such as the mouse button that was pressed,
the character typed by the user, and so on). To program a specific event for a control,
double-click the control on the design surface and the editor window will come up with the
default event for the control. You can select any other event for the same control to program
in the Events combo box at the top of the editor’s window.

Chapter 2: Handling Data

Declare and use variables. Programs use variables to store information during their execu-
tion, and different types of information are stored in variables of different types. Dates, for
example, are stored in variables of the Date type, while text is stored in variables of the String
type. The various data types expose a lot of functionality that’s specific to a data type; the meth-
ods provided by each data type are listed in the IntelliSense box.

Master It How would you declare and initialize a few variables?

Solution To declare multiple variables in a single statement, append each variable’s name
and type to the Dim statement.

Dim speed As Single, distance As Integer

Variables of the same type can be separated with commas, and you need not repeat the type
of each variable:

Dim First, Last As String, BirthDate As Date

To initialize the variables, append the equals sign and the value as shown here:

Dim speed As Single = 75.5, distance As Integer = 14902

Master It Explain briefly the Explicit, Strict, and Infer options.

Solution These three options determine how Visual Basic handles variable types, and they
can be turned on or off. The Explicit option requires that you declare all variables in your
code before using them. When it’s off, you can use a variable in your code without declaring

CHAPTER 2: HANDLING DATA 943

it. The compiler will create a new variable of the Object type. The Strict option requires that
you declare variables with a specific type. If the Strict option if off, you can declare variables
without a type, with a statement like this:

Dim var1, var2

The last option, Infer, allows you to declare and initialize typed variables without speci-
fying their type. The compiler infers the variable’s type from the value assigned to it. The
following declarations will create a String and a Date variable as long as the Infer option is
on. Otherwise, they will create two object variables:

Dim D = #3/5/1008#, S=′′my name′′

Use the native data types. The CLR recognized the following data types, which you can use
in your code to declare variables: String, numeric data types (Integer, Double, and so on), Date,
Char and Boolean types.

All other variables, or variables that are declared without a type, are Object variables and can
store any data type or any object.

Master It How will the compiler treat the following statement?

Dim amount = 32

Solution The amount variable is not declared with a specific data type. With the default
settings, the compiler will create a new Object variable and store the value 32 in it. If the
Infer option is on, the compiler will create an Integer variable and store the value 32 in it. If
you want to be able to store amounts with a fractional part in this variable, you must assign
a floating-point value to the variable (such as 32.00) or append the R type character to the
value (32R).

Create custom data types. Practical applications need to store and manipulate multiple data
items, not just integers and strings. To maintain information about people, we need to store
each person’s name, date of birth, address, and so on. Products have a name, a description, a
price, and other related items. To represent such entities in our code, we use structures, which
hold many pieces of information about a specific entity together.

Master It Create a structure for storing products and populate it with data.

Solution Structures are declared with the Structure keyword and their fields with the
Dim statement:

Structure Product
Dim ProductCode As String
Dim ProductName As String
Dim Price As Decimal
Dim Stock As Integer

End Structure

944 APPENDIX THE BOTTOM LINE

To represent a specific product, declare a variable of the Product type and set its fields,
which are exposed as properties of the variable:

Dim P1 As Product
P1.ProductCode = ′′SR-0010′′

P1.ProductName = ′′NTR TV-42′′

P1.Price = 374.99
P1.Stock = 3

Use arrays. Arrays are structures for storing sets of data as opposed to single-valued
variables.

Master It How would you declare an array for storing 12 names and another one for stor-
ing 100 names and Social Security numbers?

Solution The first array stores a set of single-valued data (names) and it has a single di-
mension. Since the indexing of the array’s elements starts at 0, the last element’s index for
the first array is 11, and it must be declared as follows:

Dim Names(11) As String

The second array stores a set of pair values (names and SSNs), and it must be declared as a
two-dimensional array:

Dim Persons(100,1) As String

If you’d rather avoid the index 0, you can declare the two arrays as follows:

Dim Names(1 To 11) As String
Dim Persons(1 To 100, 1 To 1) As String

Chapter 3: Visual Basic Programming Essentials

Use Visual Basic’s flow-control statements. Visual Basic provides several statements for
controlling the flow of control in a program: decision statements, which change the course of
execution based on the outcome of a comparison, and loop statements, which repeat a number
of statements while a condition is true or false.

Master It Explain briefly the decision statements of Visual Basic.

Solution The basic decision statement in VB is the If…End If statement, which executes
the statements between the If and End If keywords if the condition specified in the If part
is true. A variation of this statement is the If…Then…Else statement.

If the same expression must be compared to multiple values and the program should exe-
cute different statements depending on the outcome of the comparison, use the Select Case
statement.

Write subroutines and functions. To manage large applications, break your code into small,
manageable units. These units of code are the subroutines and functions. Subroutines perform
actions and don’t return any values. Functions, on the other hand, perform calculations and
return values. Most of the language’s built-in functionality is in the form of functions.

CHAPTER 4: GUI DESIGN AND EVENT-DRIVEN PROGRAMMING 945

Master It How will you create multiple overloaded forms of the same function?

Solution Overloaded functions are variations on the same function with different argu-
ments. All overloaded forms of a function have the same name, and they’re prefixed with
the Overloads keyword. Their lists of arguments, however, are different — either in the
number of arguments or in the argument types.

Pass arguments to subroutines and functions. Procedures and functions communicate with
one another via arguments, which are listed in a pair of parentheses following the procedure’s
name. Each argument has a name and a type. When you call a procedure, you must supply
values for each argument, and the types of the values should match the types listed in the pro-
cedure’s definition.

Master It Explain the difference between passing arguments by value and passing argu-
ments by reference.

Solution The first mechanism, which was the default mechanism with earlier versions
of the language, passes a reference to the argument. Arguments passed by reference are
prefixed by the keyword ByRef in the procedure’s definition. The procedure has access to
the original values of the arguments passed by reference and can modify them. The sec-
ond mechanism passes to the procedure a copy of the original value. Arguments passed by
value are prefixed with the keyword ByVal in the procedure’s definition. The procedure
may change the values of the arguments passed by value, but the changes won’t affect the
value of the original variable.

Chapter 4: GUI Design and Event-Driven Programming

Design graphical user interfaces. A Windows application consists of a graphical user inter-
face and code. The interface of the application is designed with visual tools and consists of
controls that are common to all Windows applications. You drop controls from the Toolbox
window onto the form, size and align the controls on the form, and finally set their properties
through the Properties window. The controls include quite a bit of functionality right out of the
box, and this functionality is readily available to your application without a single line of code.

Master It Describe the process of aligning controls on a form.

Solution To align controls on a form, you should select them in groups, according to
their alignment. Controls can be aligned to the left, right, top, and bottom. After selecting a
group of controls with a common alignment, apply the proper alignment with one of the
commands of the Format � Align menu. Before aligning multiple controls, you should
adjust their spacing. Select the controls you want to space vertically or horizontally and ad-
just their spacing with one of the commands of the Format � Horizontal Spacing and
Format � Vertical Spacing menus. You can also align controls visually, by moving them
with the mouse. As you move a control around, a blue snap line appears every time the
control is aligned with another one on the form.

Program events. Windows applications follow an event-driven model: We code the events to
which we want our application to respond. For example, an application reacts to Click events
of the various buttons. You select the actions to which you want your application to react and
program these events accordingly.

When an event is fired, the appropriate event handler is automatically invoked. Event handlers
are subroutines that pass two arguments to the application: the sender argument (which is

946 APPENDIX THE BOTTOM LINE

an object that represents the control that fired the event) and the e argument (which carries
additional information about the event).

Master It How will you handle certain keystrokes regardless of the control that receives
them?

Solution You can intercept all keystrokes at the form’s level by setting the form’s Key-
Preview property to True. Then insert some code in the form’s KeyPress event handler
to examine the keystroke passed to the event handler and to process it. To detect the key
presses in the KeyPress event handler, use an If statement like the following:

If e.KeyChar = "A" Then
’ process the A key
End If

Write robust applications with error handling. Numerous conditions can cause an applica-
tion to crash, but a well-written application should be able to detect abnormal conditions and
handle them gracefully. To begin with, you should always validate your data before you attempt
to use them in your code. A well-known computer term is ‘‘garbage in, garbage out,’’ which
means you shouldn’t perform any calculations on invalid data.

Master It How will you execute one or more statements in the context of a structured
exception handler?

Solution A structured exception handler has the following syntax:

Try
‘ {statements}

Catch ex As Exception
‘ {statements to handle exception}

Finally
‘ {clean-up statements}

End Try

The statements you want to execute must be inserted in the Try block of the statement. If the
statements are executed successfully, program execution continues with the statements fol-
lowing the End Try statement. If an error occurs, the Catch block is activated, where you can
display the appropriate message and take the proper actions. At the very least, you should
save the user data and then terminate the application. In many cases, it’s even possible to
remedy the situation that caused the exception in the first place. No matter what the Try
block execution outcome (error or no error) is, the Finally block is executed, making it a
convenient location for release and cleanup of reserved resources.

Chapter 5: Basic Windows Controls

Use the TextBox control as a data-entry and text-editing tool. The TextBox control is the
most common element of the Windows interface, short of the Button control, and it’s used
to display and edit text. You can use a TextBox control to prompt users for a single line of
text (such as a product name) or a small document (a product’s detailed description). You can

CHAPTER 5: BASIC WINDOWS CONTROLS 947

actually implement a functional text editor by placing a TextBox control on a form and setting
a few of its properties.

Master It What are the most important properties of the TextBox control? Which ones
would you set in the Properties windows at design time?

Solution The first property you’ll most likely change is the MultiLine property, whose
default value is False. To set the initial text on the control, use the Text or Lines properties.
The Text property returns or sets the text on the control. The Lines property is an array
of string that holds each text line in a separate element. To interact with the user, use the
text-selection properties SelectedText, SelectionLength, and SelectionStart. You can
use these properties to retrieve and manipulate the text selected by the user on the control
or to select text from within your code.

Master It How would you implement a control that suggests lists of words matching the
characters entered by the user?

Solution Use the autocomplete properties AutoCompleteMode, AutoCompleteSource, and
AutoCompleteCustomSource. The AutoCompleteMode property determines whether the
control will suggest the possible strings, automatically complete the current word as you
type, or do both. The AutoCompleteSource property specifies where the strings that will
be displayed will come from and its value is a member of the AutoCompleteSource enu-
meration. If this property is set to AutoCompleteSoure.CustomSource, you must set up
an AutoCompleteStringCollection collection with your custom strings and assign it to the
AutoCompleteCustomSource property.

Use the ListBox, CheckedListBox, and ComboBox controls to present lists of items. The
ListBox control contains a list of items from which the user can select one or more, depending
on the setting of the SelectionMode property.

Master It How would you locate an item in a ListBox control?

Solution To locate a string in a ListBox control, use the FindString and FindString
Exact methods. The FindString method locates a string that partially matches the one
you’re searching for; FindStringExact finds an exact match. Both methods perform
case-insensitive searches and return the index of the item they’ve located in the list.

We usually call the FindStringExact method and then examine its return value. If an exact
match is found, we select the item with the index returned by the FindExact method. If
an exact match is not found, in which case the method returns –1, we call the FindString
method to locate the nearest match.

Use the ScrollBar and TrackBar controls to enable users to specify sizes and positions with
the mouse. The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling
a selector between its minimum and maximum values. The ScrollBar control uses some visual
feedback to display the effects of scrolling on another entity, such as the current view in a long
document.

Master It Which event of the ScrollBar control would you code to provide visual feedback
to the user?

Solution The ScrollBar control fires two events: the Scroll event and the ValueChanged
event. They’re very similar and you can program either event to react to the changes in the

948 APPENDIX THE BOTTOM LINE

ScrollBar control. The advantage of the Scroll event is that it reports the action that caused
it through the e.Type property. You can examine the value of this property in your code
and react to actions like the end of the scroll:

Private Sub blueBar_Scroll(
ByVal sender As System.Object,
ByVal e As System.Windows.Forms.ScrollEventArgs)
Handles blueBar.Scroll

If e.Type = ScrollEventType.EndScroll Then
‘ perform calculations and provide feedback
End If

End Sub

Chapter 6: Working with Forms

Visual form design Forms expose a lot of trivial properties for setting their appearance. In
addition, they expose a few properties that simplify the task of designing forms that can be
resized at runtime. The Anchor property causes a control to be anchored to one or more edges
of the form to which it belongs. The Dock property allows you to place on the form controls
that are docked to one of its edges. To create forms with multiple panes that the user can resize
at runtime, use the SplitContainer control. If you just can’t fit all the controls in a reasonably
sized form, use the AutoScroll properties to create a scrollable form.

Master It You’ve been asked to design a form with three distinct sections. You should also
allow users to resize each section. How will you design this form?

Solution The type of form required is easily designed with visual tools and the help of the
SplitContainer control. Place a SplitContainer control on the form and set its Dock property
to Fill. You’ve just created two vertical panes on the form, and users can change their rel-
ative sizes at any time. To create a third pane, place another SplitContainer control on one
of the first control’s panes and set its Dock property to Fill and its Orientation property
to Horizontal. At this point, the form is covered by three panes and users can change each
pane’s size at the expense of its neighboring panes.

Design applications with multiple forms. Typical applications are made up of multiple
forms: the main form and one or more auxiliary forms. To show an auxiliary form from within
the main form’s code, call the auxiliary form’s Show method, or the ShowDialog method if you
want to display the auxiliary form modally (as a dialog box).

Master It How will you set the values of selected controls in a dialog box, display them,
and then read the values selected by the user from the dialog box?

Solution Create a Form variable that represents the dialog box and then access any control
on the dialog box through its name as usual, prefixed by the form’s name:

Dim Dlg As AuxForm
Dlg.txtName = "name"

CHAPTER 6: WORKING WITH FORMS 949

Then call the form’s ShowDialog method to display it modally and examine the Dialog-
Result property returned by the method. If this value is OK, process the data on the dialog
box; if it isn’t, do not process the dialog box:

If Dlg.ShowDialog = DialogResult.OK Then
UserName = Dlg.TxtName

End If

To display an auxiliary form, just call the Show method. This method doesn’t return a
value, and you can read the auxiliary form’s contents from within the main form’s code
at any time. You can also access the controls of the main form from within the auxiliary
form’s code.

Design dynamic forms. You can create dynamic forms by populating them with controls at
runtime through the form’s Controls collection. First, create instances of the appropriate con-
trols by declaring variables of the corresponding type. Then set the properties of each of these
variables that represent controls. Finally, place the control on the form by adding the corre-
sponding variable to the form’s Controls collection.

Master It How will you add a TextBox control to your form at runtime and assign a han-
dler to the control’s TextChanged event?

Solution Create an instance of the TextBox control, set its Visible property and then add
it to the form’s Controls collection:

Dim TB As New TextBox
TB.Visible = True
’ statements to set other properties,
’ including the control’s location on the form
Me.Controls.Add(TB)

Then write a subroutine that will handle the TextChanged event. This subroutine, let’s call it
TBChanged(), should have the same signature as the TextBox control’s TextChanged event.
Use the AddHandler statement to associate the TBChanged() subroutine with the new con-
trol’s TextChanged event:

AddHandler TB.TextChanged, _
New SystemEventHandler(AddressOf TBChanged)

Design menus. Both form menus and context menus are implemented through the Menu-
Strip control. The items that make up the menu are ToolStripMenuItem objects. The ToolStrip-
MenuItem objects give you absolute control over the structure and appearance of the menus of
your application.

Master It What are the two basic events fired by the ToolStripMenuItem object?

Solution When the user clicks a menu item, the DropDownOpened and Click events are
fired in this order. The DropDownOpened event gives you a chance to modify the menu that’s
about to be opened. After the execution of the DropDownOpened event handler, the Click
event takes place to indicate the selection of a menu command. We rarely program the

950 APPENDIX THE BOTTOM LINE

DropDownOpened event, but every menu item’s Click event handler should contain some
code to react to the selection of the item.

Chapter 7: More Windows Controls

Use the OpenFileDialog and SaveFileDialog controls to prompt users for filenames.
Windows applications use certain controls to prompt users for common information, such
as filenames, colors, and fonts. Visual Studio provides a set of controls that are grouped in
the Dialogs section of the Toolbox. All common dialog controls provide a ShowDialog method,
which displays the corresponding dialog box in a modal way. The ShowDialog method returns
a value of the DialogResult type, which indicates how the dialog box was closed, and you
should examine this value before processing the data.

Master It Your application needs to open an existing file. How will you prompt users for
the file’s name?

Solution First you must drop an instance of the OpenFileDialog control on the form. To
limit the files displayed in the Open dialog box, use the Filter property to specify the rele-
vant file type(s). To display text files only, set the Filter property to Text files|*.txt.
If you want to display multiple filename extensions, use a semicolon to separate exten-
sions with the Filter property; for example, the string Images|*.BMP;*.GIF;*.JPG will
cause the control to select all the files of these three types and no others. The first part of the
expression (Images) is the string that will appear in the drop-down list with the file types.
You should also set the CheckFileExists property to True to make sure the file specified
on the control exists. Then display the Open dialog box by calling its ShowDialog method,
as shown here:

If FileOpenDialog1.ShowDialog =
Windows.Forms.DialogResult.OK
{process file FileOpenDialog1.FileName}

End If

To retrieve the selected file, use the control’s FileName property, which is a string with the
selected file’s path.

Master It You’re developing an application that encrypts multiple files (or resizes many
images) in batch mode. How will you prompt the user for the files to be processed?

Solution There are two techniques to prompt users for multiple filenames. Both tech-
niques, however, are limited in the sense that all files must reside in the same folder. The
first technique is to set the MultiSelect property of the OpenFileDialog control to True.
Users will be able to select multiple files by using the Ctrl and Shift keys. The selected files
will be reported to your application through the FileNames property of the control, which
is an array of strings.

OpenFileDialog1.Multiselect = True
OpenFileDialog1.ShowDialog()
Dim filesEnum As IEnumerator
ListBox1.Items.Clear()
filesEnum =

CHAPTER 7: MORE WINDOWS CONTROLS 951

OpenFileDialog1.FileNames.GetEnumerator()
While filesEnum.MoveNext

‘ current file’s name is filesEnum.Current
End While

The other technique is to use the FolderBrowserDialog control, which prompts users to
select a folder, not individual files. Upon return, the control’s SelectedPath property con-
tains the pathname of the folder selected by the user from the dialog box, and you can use
this property to process all files of a specific type in the selected folder.

Use the ColorDialog and FontDialog controls to prompt users for colors and typefaces. The
Color and Font dialog boxes allow you to prompt users for a color value and a font, respec-
tively. Before showing the corresponding dialog box, set its Color or Font property according
to the current selection, and then call the control’s ShowDialog method.

Master It How will you display color attributes in the Color dialog box when you open it?
How will you display the attributes of the selected text’s font in the Font dialog box when
you open it?

Solution To prompt users to specify a different color for the text on a TextBox control,
execute the following statements:

ColorDialog1.Color = TextBox1.ForeColor
If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.ForeColor = ColorDialog1.Color
End If

To populate the Font dialog box with the font in effect, assign the TextBox control’s Font
property to the FontDialog control’s Font property by using the following statements:

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

Use the RichTextBox control as an advanced text editor to present richly formatted text.
The RichTextBox control is an enhanced TextBox control that can display multiple fonts and
styles, format paragraphs with different styles, and provide a few more-advanced text-editing
features. Even if you don’t need the formatting features of this control, you can use it as an
alternative to the TextBox control. At the very least, the RichTextBox control provides more
editing features, a more-useful undo function, and more-flexible search features.

Master It You want to display a document with a title in large, bold type, followed by a
couple of items in regular style. Which statements will you use to create a document like
this on a RichTextBox control?

Document’s Title

Item 1 Description for item 1

Item 2 Description for item 2

Solution To append text to a RichTextBox control, use the AppendText method. This
method accepts a string as an argument and appends it to the control’s contents. The text is

952 APPENDIX THE BOTTOM LINE

formatted according to the current selection’s font, which you must set accordingly through
the SelectionFont property. To switch to a different font, set the SelectionFont property
again and call the AppendText method.

Assuming that the form contains a control named RichTextBox1, the following statements
will create a document with multiple formats. In this sample, I’m using three different type-
faces for the document.

Dim fntTitle As
New Font("Verdana", 12, FontStyle.Bold)

Dim fntItem As
New Font("Verdana", 10, FontStyle.Bold)

Dim fntText As
New Font("Verdana", 9, FontStyle.Regular)

Editor.SelectionFont = fntTitle
Editor.AppendText("Document’s Title" & vbCrLf)
Editor.SelectionFont = fntItem
Editor.SelectionIndent = 20
Editor.AppendText("Item 1" & vbCrLf)
Editor.SelectionFont = fntText
Editor.SelectionIndent = 40
Editor.AppendText(

"Description for item 1" & vbCrLf)
Editor.SelectionFont = fntItem
Editor.SelectionIndent = 20
Editor.AppendText("Item 2" & vbCrLf)
Editor.SelectionFont = fntText
Editor.SelectionIndent = 40
Editor.AppendText(

"Description for item 2" & vbCrLf)

Create and present hierarchical lists by using the TreeView control. The TreeView control
is used to display a list of hierarchically structured items. Each item in the TreeView control
is represented by a TreeNode object. To access the nodes of the TreeView control, use the
TreeView.Nodes collection. The nodes under a specific node (in other words, the child nodes)
form another collection of Node objects, which you can access by using the expression
TreeView.Nodes(i).Nodes. The basic property of the Node object is the Text property, which
stores the node’s caption. The Node object exposes properties for manipulating its appearance
(its foreground/background color, its font, and so on).

Master It How will you set up a TreeView control with a book’s contents at design time?

Solution Place an instance of the TreeView control on the form and then locate its Nodes
property in the Properties window. Click the ellipsis button to open the TreeNode Editor
dialog box, where you can enter root nodes by clicking the Add Root button and child nodes
under the currently selected node by clicking the Add Child button. The book’s chapters
should be the control’s root nodes, and the sections should be child nodes of those chapter
nodes. If you have nested sections, add them as child nodes of the appropriate node. While
a node is selected in the left pane of the dialog box, you can specify its appearance in the
right pane by setting the font, color, and image-related properties.

CHAPTER 8: WORKING WITH PROJECTS 953

Create and present lists of structured items by using the ListView control. The ListView
control stores a collection of ListViewItem objects, which forms the Items collection, and can
display them in several modes, as specified by the View property. Each ListViewItem object
has a Text property and the SubItems collection. The subitems are not visible at runtime unless
you set the control’s View property to Details and set up the control’s Columns collection.
There must be a column for each subitem you want to display on the control.

Master It How will you set up a ListView control with three columns to display names,
email addresses, and phone numbers at design time?

Solution Drop an instance of the ListView control on the form and set its View property
to Details. Then locate the control’s Columns property in the Properties window and add
three columns to the collection through the ColumnHeader Collection Editor dialog box.
Don’t forget to set their headers and their widths for the fields they will display.

To populate the control at design time, locate its Items property in the Properties window
and click the ellipsis button to open the ListViewItem Collection Editor dialog box. Add a
new item by clicking the Add button. When the new item is added to the list in the left pane
of the dialog box, set its Text property to the desired caption. To add subitems to this item,
locate the SubItems property in the ListViewItem Collection Editor dialog box and click the
ellipsis button next to its value. This will open another dialog box, the ListViewSubItems
Collection Editor dialog box, where you can add as many subitems under the current item
as you wish. You can also set the appearance of the subitems (their font and color) in the
same dialog box.

Master It How would you populate the same control with the same data at runtime?

Solution The following code segment adds two items to the ListView1 control at runtime:

Dim LItem As New ListViewItem()
LItem.Text = "Alfred’s Futterkiste"
LItem.SubItems.Add("Anders Maria")
LItem.SubItems.Add("030-0074321")
LItem.SubItems.Add("030-0076545")
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

LItem = New ListViewItem()
LItem.Text = "Around the Horn"
LItem.SubItems.Add("Hardy Thomas")
LItem.SubItems.Add(" (171) 555-7788")
LItem.SubItems.Add("171) 555-6750")
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

Chapter 8: Working with Projects

Build your own classes. Classes contain code that executes without interacting with the
user. The class’s code is made up of three distinct segments: the declaration of the private

954 APPENDIX THE BOTTOM LINE

variables, the property procedures that set or read the values of the private variables, and
the methods, which are implemented as public subroutines or functions. Only the public
entities (properties and methods) are accessible by any code outside the class. Optionally,
you can implement events that are fired from within the class’s code. Classes are referenced
through variables of the appropriate type, and applications call the members of the class
through these variables. Every time a method is called, or a property is set or read, the cor-
responding code in the class is executed.

Master It How do you implement properties and methods in a custom class?

Solution Any variable declared with the Public access modifier is automatically a prop-
erty. As a class developer, however, you should be able to validate any values assigned
to your class’s properties. To do so, you can implement properties with a special type of
procedure, the property procedure, which has two distinct segments: a Set segment that’s
invoked when an application attempts to set a property and the Get segment, invoked when
an application attempts to read a property’s value. The property has the following structure:

Private m_property As type
Property Property() As type

Get
Property = m_property

End Get
Set (ByVal value As type)
‘ your validation code goes here
‘ If validation succeeds, set the local var

m_property = value
End Set

End Property

The local variable m_property must be declared with the same type as the property. The
Get segment returns the value of the local variable that stores the property’s value. The Set
segment validates the value passed by the calling application and either rejects it or sets the
local variable to this value.

Master It How would you use a constructor to allow developers to create an instance of
your class and populate it with initial data?

Solution Each class has a constructor, which is called every time a new instance of the
class is created with the New keyword. The constructor is implemented with the New() sub-
routine. To allow users to set certain properties of the class when they instantiate it, create as
many New() subroutines as you need. Each version of the New() subroutine should accept
different arguments. The following sample lets you create objects that represent books, pass-
ing a book’s ISBN and/or title:

Public Sub New(ByVal ISBN As String)
MyBase.New()
Me.ISBN = ISBN

End Sub

Public Sub New(ByVal ISBN As String, ByVal Title As String)
MyBase.New()

CHAPTER 8: WORKING WITH PROJECTS 955

Me.ISBN = ISBN
Me.Title = Title

End Sub

This technique bypasses the New constructor, but the appropriate Property procedures are
invoked, as each property is initialized.

Master It Which are the default methods of a custom class that you will most likely over-
ride with more meaningful definitions?

Solution The first method to override is the ToString method, which returns a string that
describes the class. By default, this method returns the name of the class. Your implemen-
tation should return a more meaningful string. The Equals method, which compares two
instances of the same class, is another candidate for overriding because the default Equals
method performs a reference comparison, not an instance comparison.

To override one of the default methods, enter the string

Public Overrides

in the code window and press the spacebar to see the signatures of the overridable methods
in the IntelliSense drop-down box.

Master It How should you handle exceptions in a class?

Solution In general, you should avoid handling all errors in your class because you can’t
be sure how your classes will be used by other developers. It’s also important that you avoid
interacting with the user from within your class’s code with messages boxes or other tech-
niques. The best method of handling errors in a custom class is to raise exceptions and let
the developer of the calling application handle the errors.

Overloading operators. Overloading is a common theme in coding classes (or plain proce-
dures) with Visual Basic. In addition to overloading methods, you can overload operators.
In other words, you can define the rules for adding or subtracting two custom objects, if this
makes sense for your application.

Master It When should you overload operators in a custom class, and why?

Solution It may make absolute sense to add two instances of a custom class (it may
represent length, matrices, vectors, and so on), but the addition operator doesn’t work
with custom classes. To redefine the addition operator so that it will add two instances of
your custom class, you must override the addition operator with an implementation that
adds two instances of a custom class. The following is the signature of a function that
overloads the addition operator:

Public Shared Operator + (
ByVal object1 As customType,
ByVal object2 As customType)
As customType

Dim result As New customType
‘ Insert the code to "add" the two

956 APPENDIX THE BOTTOM LINE

‘ arguments and store the result to
‘ the result variable and return it.
Return result

End Operator

The function that overrides the addition operator accepts two arguments, which are the two
values to be added, and returns a value of the same type. The operator is usually overloaded
because you may wish to add an instance of the custom class to one of the built-in data types
or objects.

Chapter 9: Building Custom Windows Controls

Extend the functionality of existing Windows Forms controls with inheritance. The sim-
plest type of control you can build is one that inherits an existing control. The inherited control
includes all the functionality of the original control plus some extra functionality that’s specific
to an application and that you implement with custom code.

Master It Describe the process of designing an inherited custom control.

Solution To enhance an existing Windows Forms control, insert an Inherits statement
with the name of the control you want to enhance in the project’s Designer.vb file. The
inherited control interface can’t be altered; it’s determined by the parent control. However,
you can implement custom properties and methods, react to events received by the parent
control, or raise custom events from within your new control.

The process of implementing custom properties and methods is identical to building custom
classes. The control’s properties, however, can be prefixed by a number of useful attributes,
like the <Category> and <Description> attributes, which determine the category of the
Properties Browser where the property will appear and the control’s description that will be
shown in the Properties window when the custom property is selected.

Build compound controls that combine multiple existing controls. A compound control
provides a visible interface that combines multiple Windows controls. As a result, this type of
control doesn’t inherit the functionality of any specific control; you must expose its properties
by providing your own code. The UserControl object, on which the compound control is based,
already exposes a large number of members, including some fairly advanced ones such as the
Anchoring and Docking properties, and the usual mouse and key events.

Master It How will you map certain members of a constituent control to custom members
of the compound control?

Solution If the member is a property, you simply return the constituent control’s property
value in the Get section of the Property procedure and set the constituent control’s prop-
erty to the specified value in the Set section of the same procedure. The following Property
procedure maps the WordWrap property of the TextBox1 constituent control to the TextWrap
property of the custom compound control:

Public Property TextWrap() As Boolean
Get

Return TextBox1.WordWrap

CHAPTER 9: BUILDING CUSTOM WINDOWS CONTROLS 957

End Get
Set(ByVal value As Boolean)

TextBox1.WordWrap = value
End Set

End Property

If the member is a method, you just call it from within one of the compound control’s meth-
ods. To map the ResetText method of the TextBox constituent control to the Reset method
of the compound control, add the following method definition:

Public Sub Reset()
TextBox1.ResetText

End Sub

In the UserControl object’s Load event handler, insert the statements that create the
roundPath object, which is an ellipse, and then assign it to the UserControl’s Region
property. Here’s the Load event handler for the EllipticalButton custom control:

Private Sub RoundButton_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles MyBase.Load

Dim G As Graphics
G = Me.CreateGraphics
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)

End Sub

Build custom controls from scratch. User-drawn controls are the most flexible custom con-
trols because you’re in charge of the control’s functionality and appearance. Of course, you
have to implement all the functionality of the control from within your code, so it takes sub-
stantial programming effort to create user-drawn custom controls.

Master It Describe the process of developing a user-drawn custom control.

Solution Since you are responsible for updating the control’s visible area from within
your code, you must provide the code that redraws the control’s surface and insert it in the
UserControl object’s Paint event handler. In drawing the control’s surface, you must take
into consideration the settings of the control’s properties.

Private Sub Label3D_Paint(
ByVal sender As Object,
ByVal e As System.Windows.Forms.PaintEventArgs)
Handles Me.Paint

End Sub

The e argument of the Paint event handler exposes the Graphics property, which you
must use from within your code to draw on the control’s surface. You can use any of the

958 APPENDIX THE BOTTOM LINE

drawing methods you’d use to create shapes, gradients, and text on a Form object or Pic-
tureBox control.

Because custom controls aren’t redrawn by default when they’re resized, you must also
insert the following statement in the control’s Load event handler:

Private Sub Label3D_Load(
ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles MyBase.Load

Me.SetStyle(ControlStyles.ResizeRedraw, True)
End Sub

If the control’s appearance should be different at design time than at runtime, use the
Me.DesignMode property to determine whether the custom control is used in design time
(DesignMode = True), or runtime (DesignMode = False).

Customize the rendering of items in a ListBox control. The Windows controls that present
lists of items display their items in a specific manner. The Framework allows you to take con-
trol of the rendering process and change completely the default appearance of the items on
these controls. The controls that allow you to take charge of the rendering process of their items
are the ListBox, CheckedListBox, ComboBox, and TreeView controls.

To create an owner-drawn control, you must set the DrawMode property to a member of the
DrawMode enumeration and insert the appropriate code in the events MeasureItem and Draw-
Item. The MeasureItem event is where you decide about the dimensions of the rectangle in
which the drawing will take place. The DrawItem event is where you insert the code for ren-
dering the items on the control.

Master It Outline the process of creating a ListBox control that wraps the contents of
lengthy items.

Solution By default, all items in a ListBox control have the same height, which is the
height of a single line of text in the control’s font. To display the selected items in cells of
varying height, do the following:

1. Set the control’s DrawMode property to OwnerDrawVariable.

2. In the control’s MeasureItem event handler, which is invoked every time the control is
about to display an item, insert the statements that calculate the desired height of the
current item’s cell. You will most likely call the MeasureString method of the control’s
Graphics object to retrieve the height of the item (the item may take multiple lines on the
control). Set the e.Height and e.Width properties before exiting the MeasureItem event
handler.

3. In the control’s DrawItem event handler, which displays the current item, insert the
appropriate statements to print the item in a cell with the dimensions calculated in
step 2. The dimensions of the cell in which you must fit the caption of the current
item are given by the property Bounds of the event handler’s e argument. Use the
DrawString method of the control’s Graphics object to draw the item’s caption.

CHAPTER 11: THE FRAMEWORK AT LARGE 959

Chapter 10: Applied Object-Oriented Programming

Use inheritance. Inheritance, which is the true power behind OOP, allows you to create new
classes that encapsulate the functionality of existing classes without editing their code. To
inherit from an existing class, use the Inherits statement, which brings the entire class into
your class.

Master It Explain the inheritance-related attributes of a class’s members.

Solution Any class can be inherited by default. However, you can prevent developers
from inheriting your class with the NonIheritable attribute or by creating an abstract class
with the MustInherit attribute. Classes marked with this attribute can’t be used on their
own; they must be inherited by another class. The parent class members can be optionally
overridden if they’re marked with the Overridable attribute. To prevent derived classes
from overriding specific members, use the NotOverridable attribute. Finally, methods that
override the equivalent methods of the base class must be prefixed with the Overrides
attribute.

Use polymorphism. Polymorphism is the ability to write members that are common to a
number of classes but behave differently, depending on the specific class to which they apply.
Polymorphism is a great way of abstracting implementation details and delegating the imple-
mentation of methods with very specific functionality to the derived classes.

Master It The parent class Person represents parties, and it exposes the GetBalance
method, which returns the outstanding balance of a person. The Customer and Supplier
derived classes implement the GetBalance method differently. How will you use this
method to find out the balance of a customer and/or supplier?

Solution If you have a Customer or Supplier object, you can call the GetBalance method
directly. If you have a collection of objects of either type, you must first cast them to their
parent type and then call the GetBalance method.

Chapter 11: The Framework at Large

Handle files with the My component. The simplest method of saving data to a file is to call
one of the WriteAllBytes or WriteAllText methods of the My.Computer.FileSystem com-
ponent. You can also use the IO namespace to set up a Writer object to send data to a file and a
Reader object to read data from the file.

Master It Show the statements that save a TextBox control’s contents to a file and the state-
ments that reload the same control from the data file. Use the My.Computer.FileSystem
component.

Solution The following statement saves the control’s Text property to a file whose path is
stored in the filename variable. Prompt users with the File Open dialog box for the path of
the file and then use it in your code:

My.Somputer.FileSystem.WriteAllText(filename, TextBox1.Text, True)

960 APPENDIX THE BOTTOM LINE

To read the data back and display it on the same control, use the following statement:

TextBox1.Text = My.Computer.FileSystem.ReadAllText(filename)

Write data to a file with the IO namespace. To send data to a file you must set up a File-
Stream object, which is a channel between the application and the file. To send data to a file,
create a StreamWriter or BinaryWriter object on the appropriate FileStream object. Likewise,
to read from a file, create a StreamReader or BinaryReader on the appropriate FileStream
object. To send data to a file, use the Write and WriteString methods of the appropriate
StreamWriter object. To read data from the file, use the Read, ReadBlock, ReadLine, and
ReadToEnd methods of the StreamReader object.

Master It Write the contents of a TextBox control to a file using the methods of the IO
namespace.

Solution Begin by setting up a FileStream object to connect your application to a data file.
Then create a StreamWriter object on top of the FileStream object and use the Write method
to send data to the file. Don’t forget to close both streams when you’re done.

Dim FS As FileStream
FS = New FileStream(filename, FileMode.Create)
Dim SW As New StreamWriter(FS)
SW.Write(TextBox1.Text)
SW.Close
FS.Close

To read the data back and reload the TextBox control, set up an identical FileStream object,
then create a StreamReader object on top of it, and finally call its ReadToEnd method:

Dim FS As New FileStream(filename,
IO.FileMode.OpenOrCreate, IO.FileAccess.Write)

Dim SR As New StreamReader(FS)
TextBox1.Text = SR.ReadToEnd
FS.Close
SR.Close

Manipulate folders and files. The IO namespace provides the Directory and File classes,
which represent the corresponding entities. Both classes expose a large number of methods
for manipulating folders (CreateDirectory, Delete, GetFiles, and so on) and files (Create,
Delete, Copy, OpenRead, and so on).

Master It How will you retrieve the attributes of a drive, folder, and file using the IO
namespace’s classes?

Solution Start by creating a DriveInfo, DirectoryInfo, and FileInfo object for a specific
drive, folder, and file respectively by specifying the name of the appropriate entity as an
argument:

Dim DrvInfo As New DriveInfo("C:\")
Dim DirInfo As New DirectoryInfo("C:\Program Files")
Dim FInfo As New FileInfo("C:\Program Files\My Apps\Readme.txt")

CHAPTER 11: THE FRAMEWORK AT LARGE 961

Then enter the name of any of these variables and the following period to see the members
they expose in the IntelliSense list. The available space on drive C: is given by the property
DrvInfo.AvailableFreeSpace. The attributes of the Program Files folder are given by the
DirInfo.Attributes property. Finally, the length of the Readme.txt file is given by the
property FInfo.Length.

Use the Char data type to handle characters. The Char data type, which is implemented
with the Char class, exposes methods for handling individual characters (IsLetter, IsDigit,
IsSymbol, and so on). We use the methods of the Char class to manipulate users’ keystrokes
as they happen in certain controls (mostly the TextBox control) and to provide immediate
feedback.

Master It You want to develop an interface that contains several TextBox controls that
accept numeric data. How will you intercept the user’s keystrokes and reject any characters
that are not numeric?

Solution You must program the control’s KeyPress event handler, which reports the char-
acter that was pressed. The following event handler rejects any non-numeric characters
entered in the TextBox1 control:

Private Sub TextBox1_KeyPress(
ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyPressEventArgs)
Handles TextBox1.KeyPress

Dim c As Char = e.KeyChar
If Not (Char.IsDigit(c) Or Char.IsControl(c)) Then

e.Handled = True
End If

End Sub

Use the StringBuilder class to manipulate large or dynamic strings. The StringBuilder class
is very efficient at manipulating long strings, but it doesn’t provide as many methods for han-
dling strings. The StringBuilder class provides a few methods to insert, delete, and replace
characters within a string. Unlike the equivalent methods of the String class, these methods
act directly on the string stored in the current instance of the StringBuilder class.

Master It Assuming that you have populated a ListView control with thousands of lines
of data from a database, how will you implement a function that copies all the data to the
Clipboard?

Solution To copy the ListView control’s data, you must create a long string that contains
tab-delimited strings and then copy it to the Clipboard. Each cell’s value must be converted
to a string and then appended to a StringBuilder variable. Consecutive rows will be sepa-
rated by a carriage return/line feed character.

Start by declaring a StringBuilder variable:

Dim SB As New System.Text.StringBuilder

Then write a loop that iterates through the items in the ListView control:

Dim LI As ListViewItem
For Each LI In ListView1.Items

962 APPENDIX THE BOTTOM LINE

‘ append current row’s cell values to SB
SB.Append(vbCrLf)

Next

In the loop’s body, insert another loop to iterate through the subitems of the current item:

Dim LI As ListViewItem
For Each LI In ListView1.Items

Dim subLI As ListViewItem.ListViewSubItem
For Each subLI In LI.SubItems

SB.Append(subLI.Text & vbTab)
Next
SB.Remove(SB.Length – 1, 1) ‘ remove last tab
SB.Append(vbCrLf)

Next

Use the DateTime and TimeSpan classes to handle dates and time. The Date class repre-
sents dates and time, and it exposes many useful shared methods (such as the IsLeap method,
which returns True if the year passed to the method as an argument is leap; the DaysInMonth
method; and so on). It also exposes many instance methods (such as AddYears, AddDays, Add-
Hours, and so on) for adding time intervals to the current instance of the Date class as well as
many options for formatting date and time values.

The TimeSpan class represents time intervals — from milliseconds to days — with the From-
Days, FromHours, and even FromMilliseconds methods. The difference between two date
variables is a TimeSpan value, and you can convert this value to various time units by using
methods such as TotalDays, TotalHours, TotalMilliseconds, and so on. You can also add a
TimeSpan object to a date variable to obtain another date variable.

Master It How will you use the TimeSpan class to accurately time an operation?

Solution To time an operation, you must create a DateTime variable and set it to the cur-
rent date and time just before the statements you want to execute:

Dim TStart As DateTime = Now

Right after the statements you want to time have been executed, create a new TimeSpan
object that represents the time it took to execute the statements. The duration of the Time-
Span object is the difference between the current time and the time stored in the TStart
variable:

Dim duration As New TimeSpan
Duration = Now.Subtract(TStart)

The duration variable is a time interval, and you can use the methods of the TimeSpan class
to express this interval in various units: duration.MilliSeconds, duration.Seconds, and
so on.

Generate graphics by using the drawing methods. Every object you draw on, such as forms
and PictureBox controls, exposes the CreateGraphics method, which returns a Graphics

CHAPTER 11: THE FRAMEWORK AT LARGE 963

object. The Paint event’s e argument also exposes the Graphics object of the control or form.
To draw something on a control, retrieve its Graphics object and then call the Graphics object’s
drawing methods.

Master It Show how to draw a circle on a form from within the form’s Paint event
handler.

Solution The following statements in the form’s Paint event handler will draw a circle at
the center of Form1:

Private Sub Form1_Paint(
ByVal sender as Object,
ByVal e As System.Windows.Forms.PaintEventArgs)
Handles Me.Paint

Dim diameter = Math.Min(Me.Width, Me.Height)/2
e.Graphics.DrawEllipse(Pens.Blue,

New RectangleF((Me.Width – diameter) / 2,
(Me.Height – diameter) / 2, diameter, diameter))

End Sub

There’s no DrawCircle method; the DrawEllipse method accepts as arguments a Pen object
and a rectangle that encloses the circle to be drawn. If the rectangle is a square, then the equiv-
alent ellipse will be a circle. To force the form to be redrawn every time it’s resized, you must
also insert the following statement in the form’s Load event handler:

Me.SetStyle(ControlStyles.ResizeRedraw, True)

Use the printing controls and dialog boxes. To print with the .NET Framework, you must
add an instance of the PrintDocument control to your form and call its Print method. To pre-
view the same document, you simply assign the PrintDocument object to the Document prop-
erty of the PrintPreviewDialog control and then call the ShowDialog method of the PrintPre-
viewDialog control to display the preview window. You can also display the Print dialog box,
where users can select the printer to which the output will be sent, and the Page Setup dia-
log box, where users can specify the page’s orientation and margins. The two dialog boxes are
implemented with the PrintDialog and PageSetupDialog controls.

Master It Explain the process of generating a simple printout. How will you handle multi-
ple report pages?

Solution Both the PrintDocument.Print and the PrintPreviewDialog.ShowDialog
methods fire the PrintPage event of the PrintDocument control. The code that generates
the actual printout must be placed in the PrintPage event handler, and the same code will
generate the actual printout on the printer (if you’re using the PrintDocument control) or a
preview of the printout (if you’re using the PrintPreviewDialog control).

It’s your responsibility to terminate each page and start a new one every time you complete
the current page by setting the HasMorePages property when you exit the PrintPage event
handler. If the HasMorePages property is True, the PrintPage event is fired again, until the
HasMorePages property becomes False.

964 APPENDIX THE BOTTOM LINE

Any static variables you use to maintain state between successive invocations of the
PrintPage event handler, such as the page number, must be reset every time you start a
new printout. A good place to initialize these variables is the BeginPrint event handler.

Master It Assuming that you have displayed the Page Setup dialog box control to the user,
how will you draw a rectangle that delimits the printing area on the page, taking into con-
sideration the user-specified margins?

Solution First, set up a few variables to store the page’s margins, as specified by the user
on the Page Setup dialog box:

Dim LeftMargin, RightMargin, TopMargin, BottomMargin as Integer
With PrintDocument1.DefaultPageSettings

LeftMargin = .Left
RightMargin = .Right
TopMargin = .Top
BottomMargin = .Bottom

End With

Then calculate the dimensions of the rectangle that delimits the printable area on the page:

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width – LeftMargin – RightMargin
PrintHeight = .Height – TopMargin – BottomMargin

End With

The rectangle you want to draw should start at the point (LeftMargin, TopMargin) and
extend PrintWidth points to the right and PrintHeight points down.

Finally, insert the following statements in the PrintPage event handler to draw the
rectangle:

Dim R As New Rectangle(LeftMargin, TopMargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

Chapter 12: Storing Data in Collections

Make the most of arrays. The simplest method of storing sets of data is to use arrays. They’re
very efficient, and they provide methods to perform advanced operations such as sorting and
searching their elements. Use the Sort method of the Array class to sort an array’s elements.
To search for an element in an array, use the IndexOf and LastIndexOf methods, or use
the BinarySearch method if the array is sorted. The BinarySearch method always returns
an element’s index, which is a positive value for exact matches and a negative value for near
matches.

Master It Explain how you can search an array and find exact and near matches.

CHAPTER 12: STORING DATA IN COLLECTIONS 965

Solution The most efficient method of searching arrays is the BinarySearch method,
which requires that the array is sorted. The simplest form of the BinarySearch method is
the following:

Dim idx As Integer
idx = System.Array.BinarySearch(arrayName, object)

The BinarySearch method returns an integer value, which is the index of the object you’re
searching for in the array. If the object argument is not found, the method returns a
negative value, which is the negative of the index of the next larger item minus one. The
following statements return an exact or near match for the word srchWord in the words
array:

Dim wordIndex As Integer =
Array.BinarySearch(words, srchWord)

If wordIndex >= 0 Then ‘ exact match!
MsgBox("An exact match was found for " &

" at index " & wordIndex.ToString)
Else ‘ Near match

MsgBox("The nearest match is the word " &
words(-wordIndex - 1) &
" at " & (-wordIndex - 1).ToString)

End If

Store data in collections such as List and Dictionary collections. In addition to arrays, the
Framework provides collections, which are dynamic data structures. The most commonly
used collections are the List and the Dictionary. Collections are similar to arrays, but they’re
dynamic structures. List and ArrayList collections store lists of items, whereas Dictionary and
HashTable collections store key-value pairs and allow you to access their elements via a key.
You can add elements by using the Add method and remove existing elements by using the
Remove and RemoveAt methods.

Dictionary collections provide the ContainsKey and ContainsValue methods to find out
whether the collection already contains a specific key or value as well as the GetKeys and
GetValues methods to retrieve all the keys and values from the collection, respectively. As a
reminder, the List and Dictionary collections are strongly typed. Their untyped counterparts
are the ArrayList and HashTable collections.

Master It How will you populate a Dictionary with a few pairs of keys/values and then
iterate though the collection’s items?

Solution To populate the Dictionary, call its Add method and pass the item’s key and
value as arguments:

Dim Dict As New Dictionary(Of Object, Object)
Dict.Add("key1", item1)
Dict.Add("key2", item2)

966 APPENDIX THE BOTTOM LINE

To iterate through the items of a Dictionary collection, you must first extract all the keys
and then use them to access the collection’s elements. The following code segment prints
the keys and values in the Dict variable, which is an instance of the Dictionary class:

Dim Dict As New Dictionary(Of Object, Object)
Dict.Add("1", "A string value")
Dict.Add(1, "Another string value")
Dict.Add("2", 2)
Dim element, key As Object
For Each key In Dict.keys

element = Dict.Item(key)
Debug.WriteLine("Item type = " & element.GetType.ToString
Debug.WriteLine("Key= " & Key.ToString)
Denug.WriteLine("Value= " & element.ToString)

Next

Sort and search collections with custom comparers. Collections provide the Sort method for
sorting their items and several methods to locate items: IndexOf, LastIndexOf, and Binary-
Search. Both sort and search operations are based on comparisons, and the Framework knows
how to compare values’ types only (Integers, Strings, and the other primitive data types). If a
collection contains objects, you must provide a custom function that knows how to compare
two objects of the same type.

Master It How do you specify a custom comparer function for a collection that contains
Rectangle objects?

Solution First you must decide how to compare two object variables of the same type.
For the purposes of this exercise, you can consider two rectangles equal if their perimeters
are equal. To implement a custom comparer, write a class that implements the IComparer
interface. This class should contain a single method, the Compare method, which compares
two objects and returns one of the values –1, 0, and 1:

Class RectangleComparer : Implements IComparer
Public Function Compare(

ByVal o1 As Object, ByVal o2 As Object)
As Integer Implements IComparer.Compare

Dim R1, R2 As Rectangle
Try

R1 = CType(o1, Rectangle)
R2 = CType(o2, Rectangle)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
Dim perim1 As Integer = 2 * (R1.Width+R1.Height)
Dim perim2 As Integer = 2 * (R2.Width+R2.Height)
If perim1 < perim2 Then

Return -1
Else

CHAPTER 13: XML IN MODERN PROGRAMMING 967

If perim1 > perim2 Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

Once this class is in place, you can pass an instance of it to the Sort method. The following
statement sorts the items of the Rects ArrayList collection, assuming that it contains only
Rectangles:

Rects.Sort(New RectangleComparer)

If you want to search the collection for a Rectangle object with the BinarySearch method,
you must pass as arguments to the method not only the object you’re searching for but also
an instance of the custom comparer:

Rects.BinarySearch(
New Rectangle(0, 0, 33, 33), comparer)

Chapter 13: XML in Modern Programming

Create XML documents. XML documents can be built easily with the XElement and XAt-
tribute classes. XElement represents an element, and its constructor accepts as arguments the
element’s name and either the element’s value or a series of attributes and nested elements.
XAttribute represents an attribute, and its constructor accepts as arguments the attribute’s
name and its value. You can also assign an XML document directly to an XElement.

Master It Create the XML segment that describes an object of the Item type, defined by the
following class:

Class Item
Property ID As String
Property Name As String
Property Prices As Price
Property Name As String

Class Price
Property Retail As PriceDetails
Property WholeSale As PriceDetails
Class PriceDetails

Property Price As Decimal
Property VolumeDiscount As Decimal

End Class
Class Dimension

Property Width As Decimal

968 APPENDIX THE BOTTOM LINE

Property Height As Decimal
Property Depth As Decimal

End Class

Solution The first technique is called functional construction, and you build the XML docu-
ment by appending XElements and XAttributes to a variable:

Dim prod = New XElement("Item", New XAttribute("ID", "A001"),
New XElement("Name", "ProductName"),
New XElement("Price",

New XElement("Retail",
New XAttribute("Price", "10.95"),
New XAttribute("VolumeDiscount", "0.25")),

New XElement("WholeSale",
New XAttribute("Price", "8.50"),
New XAttribute("VolumeDiscount", "0.20"))))

Alternatively, you can declare a variable and set it to the equivalent XML document (which
is the same document that the expression prod.ToString will return):

Dim prod = <Item ID="A001">
<Name>ProductName</Name>
<Price>

<Retail Price="10.95" VolumeDiscount="0.25"/>
<WholeSale Price="8.50" VolumeDiscount="0.20"/>

</Price>
</Item>

Navigate through an XML document and locate the information you need. The XElement
class provides a number of methods for accessing the contents of an XML document. The
Elements method returns the child elements of the current element by the name specified with
the argument you pass to the method as a string. The Element method is quite similar, but
it returns the first child element by the specified name. The Descendants method returns all
the elements by the specified name under the current element, regardless of whether they’re
direct children of the current element. Finally, the Attribute method returns the value of the
attribute by the specified name of the current element.

Master It Assuming an XML document with the following structure, write the expressions
to retrieve all cities in the document and all cities under the third country in the document.

<Countries>
<Country>

<City> … </City>
<City> … </City>

</Country>
<Country>
…
</Country>
…

</Countries>

CHAPTER 13: XML IN MODERN PROGRAMMING 969

Solution The following expression returns all cities in the document:

Dim cities =
countries.Elements("Country").Elements("Cities").Elements("City")

The cities variable is an IEnumerable collection of XElement objects. Likewise, to retrieve the
cities of the third country, you must retrieve the Elements collection of the third element:

Dim countryCities =
countries.Elements("Country")(2).Elements("Cities").Elements("City")

Master It Assuming that both country and city names are specified in the document with
the Name element, explain the difference between the queries:

Dim q1 = countries.Elements("Country").Elements("Name")
Dim q2 = countries.Descendants("Name")

Solution The first query returns all country names in the document, because the Elements
method retrieves all elements that are directly under the element to which it’s applied
(not their children’s children, even if the same element name is repeated). The second
query returns all country and city names, because the Descendants method retrieves all
elements by the specified name under the element to which it’s applied (regardless of their
nesting).

Convert arbitrary objects into XML documents and back with serialization. Serialization is
the process of converting an object into a stream of bytes. This process (affectionately known
as dehydration) generates a stream of bytes or characters, which can be stored or transported.
To serialize an object, you can use the BinaryFormatter or SoapFormatter class. You can also
use the XmlSerializer class to convert objects into XML documents. All three classes expose
a Serialize class that accepts as arguments the object to be serialized and a stream object and
writes the serialized version of the object to the specified stream. The opposite of serialization
is called deserialization. To reconstruct the original object, you use the Deserialize method of
the same class you used to serialize the object.

Master It Describe the process of serializing an object with the XmlSerializer class.

Solution First create a Stream object to accept the result of serialization; this stream is
usually associated with a file:

Dim saveFile As New FileStream("Objects.xml", FileMode.Create)

Then create an instance of the XmlSerializer class, passing to its construction the type of
object you want to serialize:

Dim serializer As New XmlSerializer(custom_type)

And finally call the serializer object’s Serialize method, passing as an argument the object
you want to serialize:

serializer.Serialize(stream, object)

970 APPENDIX THE BOTTOM LINE

Chapter 14: An Introduction to LINQ

Perform simple LINQ queries. A LINQ query starts with the structure From variable
Incollection, where variable is a variable name and collection is any collection that
implements the IEnumerable interface (such as an array, a typed collection, or any method
that returns a collection of items). The second mandatory part of the query is the Select part,
which determines the properties of the variable you want in the output. Quite often you select
the same variable that you specify in the From keyword. In most cases, you apply a filtering
expression with the Where keyword. Here’s a typical LINQ query that selects filenames from a
specific folder:

Dim files =
From file In

IO.Directory.GetFiles("C:\Documents")
Where file.EndsWith("doc")

Select file

Master It Write a LINQ query that calculates the sum of the squares of the values in an
array.

Solution To calculate a custom aggregate in a LINQ query, you must create a lambda
expression that performs the aggregation and passes it as an argument to the Aggregate
method. The lambda expression accepts two arguments, the current value of the aggregate
and the current value, and returns the new aggregate. Such a function would have the fol-
lowing signature and implementation:

Function(aggregate, value)
Return(aggregate + value ˆ 2)

End Function

To specify this function as a lambda expression in a LINQ query, call the collection’s
Aggregate method as follows:

Dim sumSquares = data.Aggregate(
Function(sumSquare As Long, n As Integer)

sumSquare + n ˆ 2)

Create and process XML files with LINQ to XML. LINQ to XML allows you to create XML
documents with the XElement and XAttribute classes. You simply create a new XElement
object for each element in your document and create a new XAttribute object for each attribute
in the current element. Alternatively, you can simply insert XML code in your VB code. To
create an XML document dynamically, you can insert embedded expressions that will be
evaluated by the compiler and replaced with their results.

Master It How would you create an HTML document with the filenames in a specific
folder?

CHAPTER 14: AN INTRODUCTION TO LINQ 971

Solution To generate a directory listing, you must first implement the LINQ query that
retrieves the desired information. The query selects the files returned by the GetFiles
method of the IO.Directory class:

Dim files = From file In
IO.Directory.GetFiles(path)

Select New IO.FileInfo(file).Name,
New IO.FileInfo(file).Length

Now you must embed this query into an XML document using expression holes. The XML
document is actually an HTML page that displays a table with two columns, the file’s name
and size, as shown next:

Dim smallFilesHTML = <html>
<table><tr>

<td>FileName</td>
<td>FileSize</td></tr>
<%= From file In

IO.Directory.GetFiles("C:\")
Select <tr><td><%= file %></td> ,
<td>
<%= New IO.FileInfo(file).Length %>
</td></tr>

%>
</table></html>

Process relational data with LINQ to SQL. LINQ to SQL allows you to query relational data
from a database. To access the database, you must first create a DataContext object. Then you
can call this object’s GetTable method to retrieve a table’s rows or the ExecuteQuery method
to retrieve selected rows from one or more tables with a SQL query. The result is stored in a
class designed specifically for the data you’re retrieving via the DataContext object.

Master It Explain the attributes you must use in designing a class for storing a table.

Solution The class must be decorated with the <Table> attribute that specifies the name
of the table that will populate the class:

<Table(Name:="Customers")>Public Class Customers
...
End Class

Each property of this table must be decorated with the <Column> attribute that specifies the
name of the column from which the property will get its value:

<Column(Name:= "CompanyName")>
Public Property Company

...
End Property

972 APPENDIX THE BOTTOM LINE

When you call the GetTable method of the DataContext class, pass the name of the class
as an argument, and the DataContext class will create a new instance of the class and
populate it.

Chapter 15: Programming with ADO.NET

Store data in relational databases. Relational databases store their data in tables and are
based on relationships between these tables. The data are stored in tables, and tables contain
related data, or entities, such as persons, products, orders, and so on. Relationships are imple-
mented by inserting columns with matching values in the two related tables.

Master It How will you relate two tables with a many-to-many relationship?

Solution A many-to-many relationship can’t be implemented with a primary/foreign
key relationship between two tables. To create a many-to-many relationship, you must
create a new table that relates the other two tables to one another by implementing two
one-to-many relationships. Consider the Titles and Authors tables, which have a many-
to-many relationship, because a title can have many authors and the same author may
have written multiple titles. To implement this relationship, you must create an intermedi-
ate table, the TitleAuthors table, which is related to both the Titles and Authors table with
a one-to-many relationship. The TitleAuthors table should store title and author IDs. The
TitleAuthor.TitleID column is the foreign key to the relationship between the Titles and
TitleAuthors tables. Likewise, the TitleAuthor.AuthorID column is the foreign key to the
relationship between the TitleAuthor and Authors tables.

Query databases with SQL. Structured Query Language (SQL) is a universal language for
manipulating tables. SQL is a nonprocedural language, which specifies the operation you want
to perform against a database at a high level, unlike a traditional language such as Visual Basic,
which specifies how to perform the operation. The details of the implementation are left to the
DBMS. SQL consists of a small number of keywords and is optimized for selecting, inserting,
updating, and deleting data.

Master It How would you write a SELECT statement to retrieve selected data from multi-
ple tables?

Solution The SELECT statement’s FROM clause should include the names of two or more
tables, which must be somehow related. To relate the tables, use the JOIN clause, and specify
the primary/foreign keys of the join:

SELECT column1, column2, …
FROM table1 T1 INNER JOIN table2

ON T1.primaryKey = T2.foreignKey
INNER JOIN table3 T3

ON T2.primaryKey = T3.foreignKey
WHERE criteria

Pay attention to the type of join you specify. An inner join requires that the two columns
match and excludes null values. A left join takes into consideration all the qualifying

CHAPTER 15: PROGRAMMING WITH ADO.NET 973

rows of the left table, including the ones that have null in their foreign key column. A
right join takes into consideration all the qualifying rows of the right table, including the
ones that have null in their foreign key column. A full outer join is a combination of
the right and left joins — it takes into consideration null values from both tables involved
in the query.

Submit queries to the database using ADO.NET. ADO.NET is the component of the
Framework that provides the mechanism to contact a database, submit queries, and retrieve
the results of a query. There are two types of queries you can execute against a database:
selection queries that retrieve data from the database based on certain criteria you supply
and action queries that manipulate the data at the database. Action queries do not return any
results, except for the number of rows that were affected by the query.

Master It Describe the basic mechanism for submitting a selection query to the database
and reading the results returned by the query.

Solution First you must connect to the database with a SqlConnection object. The
SqlConnection class’s constructor accepts as argument the credentials it must use to
connect to the database. Then you must create a SqlCommand object, which exposes the
CommandText property. Assign the query you want to execute against the database, and
optionally set the CommandType property. You must also set the Connection object to the
SqlConnection object, open the connection to the database, and finally call the SqlCommand
object’s ExecuteQuery method for selection queries or call the ExecuteNonQuery method
for action queries.

The ExecuteNonQuery method returns an integer, which is the number of rows affected by
the query. The ExecuteQuery method returns a DataReader object, which you can use to
iterate through the results of the query. Call the Read method to read the next row, and
access each row’s column’s with the Item property of the DataReader class. Here is the
pseudocode for accessing the rows of a query that retrieves customer information from
the Northwind database:

CMD.CommandText = "SELECT * FROM Customers WHERE Country = ‘Germany’"
CN.Open()
Dim RDR As SqlDataReader
RDR = CMD.ExecuteReader
While RDR.Read

‘ Call the RDR.Item(col_name) method
‘ to read a specific column of the current row
‘ RDR.Item("CustomerID"), RDR.Item("Country") and so on
‘ Use the RDR.IsDBNull method to determine whether
‘ a column is Null, because Null values must be
‘ handled specially

End While
CN.Close()

It’s imperative that you read the data off the DataReader as soon as possible and then close
the connection to the database as soon as you are done.

974 APPENDIX THE BOTTOM LINE

Chapter 16: Developing Data-Driven Applications

Create and populate DataSets. DataSets are data containers that reside at the client and are
populated with database data. The DataSet is made up of DataTables, which correspond to
database tables, and you can establish relationships between DataTables, just like relating
tables in the database. DataTables, in turn, consist of DataRow objects.

Master It How do you populate DataSets and then submit the changes made at the client
to the database?

Solution To populate a DataSet, you must create a DataAdapter object for each Data-
Table in the DataSet. The DataAdapter class provides the SelectCommand, InsertCommand,
UpdateCommand, and DeleteCommand properties, which are initialized to the SQL statements
that retrieve, set, update, and delete rows from the corresponding database tables. You can
use the CommandBuilder object to build the INSERT, UPDATE, and DELETE statements from
the SELECT statement, which you must supply. After these properties have been set, you
can populate the corresponding DataTable by calling the Fill method of its DataAdapter
object. If the DataSet contains relationships, you must fill the parent tables before the child
tables.

Establish relations between tables in the DataSet. You can think of the DataSet as a small
database that resides at the client, because it consists of tables and the relationships between
them. The relations in a DataSet are DataRelation objects, which are stored in the Relations
property of the DataSet. Each relation is identified by a name, the two tables it relates, and the
fields of the tables on which the relation is based.

Master It How do you navigate through the related rows of two tables?

Solution To navigate through the rows of two related tables, the DataRow object that rep-
resents a row in a DataTable provides the GetChildRows method, which returns the current
row’s child rows as an array of DataRow objects, and the GetParentRow/GetParentRows
methods, which return the current row’s parent row(s). GetParentRow returns a single
DataRow, and GetParentRows returns an array of DataRow objects. Because a DataTable
may be related to multiple DataTables, you must also specify the name of the relation as an
argument to these methods. The following statements retrieve the child rows of a specific
category row in the DataTable with the rows of the Categories table and a specific supplier,
respectively.

DS.Categories(iRow).GetChildRows("CategoriesProducts")
DS.Suppliers(iRow).GetChildRows("SupplierProducts")

Submit changes in the DataSet to the database. The DataSet maintains not only data at the
client but their states and versions too. It knows which rows were added, deleted, or modified
(the DataRowState property), and it also knows the version of each row read from the database
and the current version (the DataRowVersion property).

Master It How will you submit the changes made to a disconnected DataSet to the
database?

Solution To submit the changes made to an untyped DataSet, you must call the Update
method of each DataAdapter object. You must call the Update method of the DataAdapter
objects that correspond to the parent tables first and then the Update method of the

CHAPTER 17: USING THE ENTITY DATA MODEL 975

DataAdapter objects that correspond to the child tables. You can also submit individual
rows to the database, as well as arrays of DataRow objects through the overloaded forms of
the Update method.

Chapter 17: Using the Entity Data Model

Employ deferred loading when querying the Entity Data Model. The Entity Framework
supports the deferred loading (lazy loading) of entities. When deferred loading is activated,
entities in navigation properties are loaded on demand, only after they are accessed. In cases
when you are not certain that the related entity will be accessed (for example, when loading
is dependent on a user action), you can initially load only the root entity and load the related
entities only when they are requested.

Master It How do you activate deferred loading in the Entity Framework?

Solution To enable deferred loading when querying the Entity Framework, set the
DeferredLoadingEnabled property of the ContextOptions property of ObjectContext to
True. For example, use context.ContextOptions.DeferredLoadingEnabled = True.

Use entity inheritance features in the Entity Framework. In the EDM, an inheritance
relationship can be established between entities. When two entities participate in an inheri-
tance relationship, the child entity inherits all the properties of the parent entity. When work-
ing with such an entity in .NET code, you can get major benefits from code reuse based on
inheritance.

Master It Explain how the Entity Framework can map an inheritance relationship between
entities to tables in the database. Why is maintaining the inheritance relationship between
the entities not easily accomplished with relational databases?

Solution The Entity Framework employs two basic mapping strategies for mapping the
inheritance relationship on the database level. In the table-per-type strategy, each type is
mapped to a separate table. The child table contains only child-specific columns. Both the
parent and child table are obliged to have identical primary keys. To retrieve a child type, a
join between the parent and child tables has to be performed.

In the table-per-hierarchy mapping strategy, all types are mapped to the same table. A spe-
cial discriminator column is used to identify the specific type that each row represents.

Since relational databases do not natively support an inheritance relationship, significant
amounts of application code need to be written to implement this relationship on the data-
base level. The Entity Framework provides this feature out of the box and thus can save
developers from writing significant amounts of boilerplate code.

Create and query related entities. In the Entity Data Model, you can establish one-to-many
or many-to-many associations between entities. The association can be established by connect-
ing related entities with the Association tool in the EDM diagram. When querying such entities,
a related entity or set of entities can be accessed through generated navigation properties.

Master It In the Books and Authors application (used as a sample application in
Chapter 17), add a SalesByMonth form that will display the number of copies sold in a
month for each title in the database. Modify the Books and Authors EDM so that the model
can accommodate monthly sales information for each title.

976 APPENDIX THE BOTTOM LINE

Solution Add the SaleByMonth entity to the Books and Authors EDM, and use it to store
the monthly sales information. Establish a one-to-many relationship between the Book and
SaleByMonth entities. Write the query to retrieve the necessary information and display it
on the form.

Start by modifying the EDM:

1. Add a new entity to the EDM, and name it SaleByMonth.

2. Rename the entity set of SaleByMonth to SalesByMonth.

3. Add a Month scalar property of type Int16 to the SaleByMonth entity.

4. Add a Year scalar property of type Int16 to the SaleByMonth entity.

5. Add a CopiesSold scalar property of type Int64 to the SaleByMonth entity.

6. Establish a one-to-many association between the Book and SaleByMonth entities.

7. Add a form named SaleByMonthForm to the project. Add one DataGridView control
and one button control named Display to the SaleByMonthForm form.

8. Fill the DataGridView from the query in the Display button’s Click event handler.

Listing A.1 shows the code for the Display button event handler.

Listing A.1: Using TransactionScope for enlisting external operations

Private Sub Display_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
Display.Click

Dim context As New BooksAndAuthorsContainer
Dim books = context.Books.Include("Sales")
For Each book As Book In books

For Each saleByMonth In book.Sales
gridResult.Rows.Add(New String() {

book.ISBN, book.Title,
saleByMonth.Month.ToString & saleByMonth.Year.ToString(),
saleByMonth.CopiesSold.ToString()})

Next
Next

End Sub

Chapter 18: Building Data-Bound Applications

Design and use typed DataSets. Typed DataSets are created with visual tools at design time
and allow you to write type-safe code. A typed DataSet is a class created by the wizard on the
fly, and it becomes part of the project. The advantage of typed DataSets is that they expose
functionality specific to the selected tables and can be easily bound to Windows forms. The

CHAPTER 18: BUILDING DATA-BOUND APPLICATIONS 977

code that implements a typed DataSet adds methods and properties to a generic DataSet, so all
the functionality of the DataSet object is included in the autogenerated class.

Master It Describe the basic components generated by the wizard when you create a
typed DataSet with the visual tools of Visual Studio.

Solution The basic components of the class that implements a typed DataSet are as fol-
lows: the DataSet, which describes the entire DataSet; the BindingNavigator, which links
the data-bound controls on the form to the DataSet; and the TableAdapter, which links the
DataSet to the database. The DataSet component is based on the DataSet class and enhances
the functionality of an untyped DataSet by adding members that are specific to the data con-
tained in the DataSet. If the DataSet contains the Products table, the typed DataSet exposes
the ProductsRow class, which represents a row of the Products table. The ProductsRow
class, in turn, exposes the columns of the table as properties.

The BindingSource class allows you to retrieve the current row with its Current property,
move to a specific row by setting the Position property, and even suspend temporarily and
restore data binding with SuspendBinding and ResumeBinding.

The TableAdapter class, which is based on the DataAdapter class, provides methods for
loading a DataTable (the Fill method) and submitting the changes made to the DataSet
to the database (the Update method). The TableAdapterManager class, which encapsulates
the functionality of all TableAdapters on the form, provides the UpdateAll method, which
submits the changes in all DataTables to the database.

Bind Windows forms to typed DataSets. The simplest method of designing a data-bound
form is to drop a DataTable, or individual columns, on the form. DataTables are bound to
DataGridView controls, which display the entire DataTable. Individual columns are bound
to simple controls such as TextBox, CheckBox, and DateTimePicker controls, depending on the
column’s type. In addition to the data-bound controls, the editor generates a toolbar control
with some basic navigational tools and the Add/Delete/Save buttons.

Master It Outline the process of binding DataTables to a DataGridView control.

Solution To bind a DataTable to a DataGridView control, locate the desired table in the
Data Sources window, set its binding option to DataGridView, and drop the DataTable on
the form. The editor will create a DataGridView control on the form and map the control’s
columns according to the columns of the DataTable. It will also add a toolbar with the basic
navigational and editing controls on the form.

To bind two related DataTables on the same form, drop the parent DataTable on the form,
and then select the child DataTable under this parent and drop it on the form. To mod-
ify the appearance of the DataGridView controls, open their Tasks menu, and choose Edit
Columns to see the Edit Columns dialog box, where you can set the appearance of the con-
trol’s columns.

Compare a LINQ query used to filter data with an eSQL dynamic query. You can use the
AsDataView extension method of the DataTable class to enable binding of the LINQ query
results when querying the DataSet in LINQ to DataSet technology. In this chapter, you have
seen how a LINQ query can be used to provide filtering capabilities on a data-entry form.

Entity SQL (eSQL) is a query language with syntax similar to Transact-SQL. Entity SQL queries
can be embedded inside the Visual Basic code and can be used to query the Entity Data Model

978 APPENDIX THE BOTTOM LINE

provided by the Entity Framework. You saw how to use Entity SQL to construct dynamic
queries in Chapter 17.

Master It Compare LINQ queries to queries written in Entity SQL. Explain the main bene-
fits and drawbacks of each technology.

Solution LINQ to DataSet technology provides a rich set of querying features for query-
ing the data in the DataSet. LINQ syntax is an integral part of Visual Basic syntax and
as such is processed and verified during the compilation process and supported by
IntelliSense.

Entity SQL is used inside the Visual Basic code as an embedded query language. Since
Entity SQL code is essentially written in the form of string literals inside Visual Basic code,
it is not compiled. Such code can count only on reduced IntelliSense support. This and
having to learn new language syntax (although fairly similar to Transact-SQL and therefore
probably familiar to Visual Basic .NET programmers) are the main drawbacks of Entity
SQL compared to LINQ.

Since Entity SQL code is not compiled, Entity SQL code can be constructed at runtime. This
is especially handy for writing queries with a large number of criteria combinations that can
only be known at runtime. When writing similar queries in LINQ, you have to include all
the criteria in the query and then provide the means to activate or deactivate certain crite-
ria. Alternatively, you can write chained LINQ queries. LINQ code can be more complex to
write and less efficient to execute than Entity SQL code.

Chapter 19: Accessing the Web

Access a website on the Internet using the WebClient class. The WebClient class provides
an easy and simple way to access resources on the Web programmatically from Visual Basic
code. The WebClient class implements many features of HTTP, making it easy to access the
sites on the Web in the same way the browser application does. The web server will not dis-
tinguish a request coming from a WebClient site from one coming from a user-operated web
browser.

The WebClient class can be very useful in HTML screen scraping scenarios, where the data to
be extracted from HTML is meant to be read by a human, or in lightweight web service proto-
cols like REST and/or AJAX-styled XML and JSON over HTTP.

Master It Use the Headers property of the WebClient class to fine-tune HTTP requests.
Trick Google into believing that a request that you are sending from your Visual Basic appli-
cation is coming from some mobile device.

Solution The WebClient class permits adding different headers to your HTML requests
through its Headers property. The header used to identify the type of client sending the
request is the "user-agent" header. You need to add this header to your HTTP request. The
value of the header should be the string sent by some mobile device. Browsing the Internet,
I found that some LG mobile phones send the following string value as their "user-agent":
"L1G-CU920/V1.0p Obigo/Q05A Profile/MIDP-2.0 Configuration/CLDC-1.1".

CHAPTER 19: ACCESSING THE WEB 979

If you create a new Windows Forms application and add a Download button to the form,
here is the code you need to add to Download button’s event handler in order to receive
Google’s default search page formatted for mobile devices:

Dim client As New WebClient
client.Headers.Add("user-agent",
"L1G-CU920/V1.0p Obigo/Q05A Profile/MIDP-2.0 Configuration/CLDC-1.1")
Dim response = client.DownloadString("http://www.google.com")
Console.WriteLine(response)

This code will write the response to the Output window. Now, if you copy this output, save
it to a googlemobile.html file, and open the file with your web browser, you will see the
Google search page as shown in Figure A.1.

Figure A.1

Google search page
formatted for a
mobile device

Use a WebBrowser control to add web browser functionality to your Windows Forms appli-
cation. The WebBrowser control provides all the basic functionality of a browser in a form
of Windows Forms control. Visually, it consists only of a main browser window. To provide
additional functionality, like an address bar and Back, Forward, Refresh, and other buttons,
you will have to add the appropriate controls and program them yourself. The WebBrowser
control uses the same browser engine as Internet Explorer.

A WebBrowser control’s behavior can be customized to a large degree. You can decide to show
or not show the scroll bars, allow or disallow navigation, show or not show the context menu,
and so forth. Finally, since the control does not contain the address bar, you can also control
which sites a user can access.

Master It Create a custom web browser that can navigate to a limited number of URLs.

980 APPENDIX THE BOTTOM LINE

Solution Use the WebBrowser control to create a browser that can navigate to a limited
number of URLs. Start by creating a new Windows Forms project:

1. Create a new Windows Forms project and name it LimitedBrowser.

2. Add a ComboBox named cboUrls to the form and set its Dock property to Top.

3. Add a WebBrowser control to the form.

4. Fill the Items property of the cboUrls control with the following items:

http://www.google.com
http://www.msdn.com
http://www.yahoo.com
http://www.sybex.com

5. Set the Text property of cboUrls to http://www.sybex.com.

If you run the project now, you will see a form with a combo box at the top and a Web-
Browser control covering the rest of the form, like the one shown in Figure A.2.

Figure A.2

Limited web browser
form

All that is left to be done is to make the WebBrowser control navigate as the user selects a
different item in the combo box cboUrls. To implement navigation functionality, add the
following code to cboUrls’s SelectedIndexChanged event hander:

CHAPTER 20: BUILDING WEB APPLICATIONS 981

Private Sub cboUrls_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cboUrls.SelectedIndexChanged

WebBrowser1.Navigate(cboUrls.Text)
End Sub

Chapter 20: Building Web Applications

Create a basic XHTML/HTML page. Building a basic HTML page is a straightforward pro-
cess using a simple text editor such as Notepad. Knowledge of XHTML/HTML is still a major
asset when developing web applications with Visual Studio 2010.

Master It Develop a web page using HTML that features a heading, some text, an image,
and a link to another page. Convert the page to XHTML and verify it by using the W3C ver-
ification tool at http://validator.w3.org. You might find that you will need to run the
validation a couple of times to get everything right. If you attach and use the style sheet in
the following Master It challenge, you will find that validation will be less problematic.

Solution Note that this solution includes the style sheet created in the next Master It chal-
lenge. As in the examples with other listings in this book, some long lines are wrapped here
in print, but you can leave them all on one line in your code.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">

<head>
<link rel="stylesheet" type="text/css" href="stylesheet.css" />
<title>Basic Page</title>

</head>
<body>

<div class="title">
<h1>Heading</h1>

</div>
<div class="content">

<p>Text</p>
<img src="myimage.jpg" height="100" _

width="100" alt="myimage" />

</div>
<div class="menu">

Microsoft
</div>

</body>
</html>

982 APPENDIX THE BOTTOM LINE

Format a page with CSS. Cascading Style Sheets (CSS) is a powerful tool for controlling the
styles and format of a website. You can manually create style sheets by using a text editor. An
understanding of their operation and syntax is a useful skill when manipulating CSS in Visual
Studio 2010.

Master It Create a CSS style sheet that defines the layout of the web page that you devel-
oped in the previous task, including a header section, a left-hand navigation section, and a
main content section. Include a rollover for the link and apply formatting to the tags that
you have used for your heading and text tags. Attach the style sheet to your web page.

Solution The following code represents the CSS style sheet:

title{
height:80px;
background:lightblue;
margin:5px 10px 10px 10px;
text-align: center;
}

menu{
position: absolute;
top: 110px;
left: 20px;
width: 130px;
background: silver;
padding: 10px;
bottom: 20px;
}

content{
background: lightblue;
padding: 30px;
position: absolute;
top: 110px;
bottom: 20px;
left: 180px;
right: 20px
}

a {
text-decoration:none;
color:blue;
}

a:visited {
text-decoration:none;
color:blue;
}

CHAPTER 20: BUILDING WEB APPLICATIONS 983

a:hover {
text-decoration:none;
font-weight: bold;
color:darkblue;
}

a:active {
text-decoration:none;
color:blue;
}

Set up a master page for your website. Using master pages is a reliable method of controlling
the overall layout and look and feel of your websites and applications. Master pages enable
you to achieve a high level of consistency in your design and are particularly useful if the site
has multiple developers working on it.

Master It Create a website with a master page and attached content page. Use appropriate
controls to give the master page a page heading, My Page, which will appear on all attached
content pages. Use a combination of Button and Label controls on the content page to create
a simple Hello World application.

Solution Start a new website and delete the default.aspx page. Create a new master
page and add a Label control to it above the default ContentPlaceHolder control. Format
the Label control appropriately as a heading and add a page heading: My Page.

Add a content page to your project. Name the page default.aspx. In the content page,
add a Button control and a Label control to the ContentPlaceHolder. (You may need to
right-click the ContentPlaceHolder control and choose the Create Custom Content option.)
Double-click the button and write the following code to set the text property of the label
control to Hello World:

Protected Sub Button1_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = "Hello World"
End Sub

Use some of the ASP.NET intrinsic objects. ASP.NET objects such as the Response, Request,
Session, and Server objects offer a range of important utilities in developing, running, and
maintaining your websites and applications. In addition, they give you access to vital infor-
mation about the client, the server, and any current sessions at runtime.

Master It Create a simple website with a master page and two attached content pages. Use
the Server.Execute method attached to a LinkButton control to navigate between the two
content pages.

Solution Create a new website and delete the default.aspx page. Create a new master
page and attach two content pages. Name one of the pages default.aspx and right-click it
in Solution Explorer to set the page as the startup page from the drop-down context menu.
Name the second page Page2.aspx. Place some distinguishing features on the two pages,
such as Label controls with appropriate text content.

984 APPENDIX THE BOTTOM LINE

Add a LinkButton control to the ContentPlaceHolder in default.aspx. Double-click the
LinkButton control and use Server.Execute in the sub for the Click method to create a
link to page 2.

Protected Sub LinkButton1_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles LinkButton1.Click

Server.Execute("Page2.aspx")
End Sub

Chapter 21: Building and Using Web Services

Create a simple ASP.NET web service. Creating ASP.NET web services is straightforward
with Visual Studio. ASP.NET web services provide a great method for delivering data and
functionality within a distributed environment, including the Internet.

Master It Develop an ASP.NET web service that enables the user to add two numbers.

Solution

1. Open Visual Studio 2010 and choose File � New �Web Site.

2. On the New Web Site dialog box, select ASP.NET Web Service and click OK.

3. In the App_Code/Service.vb file, change the default reference http://tempuri.org to
something more relevant to your service.

4. Replace the default web method, HelloWorld(), with a method of your own. A web
method is implemented like a function in VB, and it’s decorated with the <WebMethod>
attribute.

Consume an ASP.NET web service. Adding a web reference or service reference to a web
service is a key element to creating an application that can consume the web service.

Master It Create a new website and add a service reference to a web service on your
machine.

Solution

1. Open an existing web service with Visual Studio 2010. Run the application to open an
instance of the ASP.NET Development Server that will host the service.

2. Open a new instance of Visual Studio 2010 and create a new website project.

3. Right-click the name of the new project in the Solution Explorer and select Add Service
Reference from the context menu.

4. In the Add Service Reference dialog box, type the URL of the web service running in the
first instance of Visual Studio (the web service being hosted by the ASP.NET Develop-
ment Server).

5. After the service has been discovered, click the OK button to close the dialog box. Now
you can create a variable of the same type in your code and access the service’s members
through this variable.

CHAPTER 21: BUILDING AND USING WEB SERVICES 985

Create a WCF service. WCF services are similar to web services, but they give developers
more options for deployment and they support more data exchange protocols.

Master It Outline the steps involved in building a WCF service.

Solution A WCF service must contain a data contract that specifies the service’s data types
and is implemented as a class with public properties; an operation contract that specifies
the methods of the service and is implemented as an interface; and the actual service that’s
implemented as a class that contains the code of the various methods. The class that imple-
ments the data contract must be marked with the DataContract attribute and the class that
implements the interface must be marked with the ServiceContract attribute. Finally, the
class that implements the methods must be marked with the ServiceBehavior attribute.

Work with ADO.NET Data Services. ADO.NET Data Services is a project component that
exposes, or surfaces, data as a service through HTTP. Data services are built automatically by
Visual Studio based on any data source, and you can access them through URI requests.

Master It How do you access the methods of an ADO.NET data service?

Solution You can access the methods of an ADO.NET data service through your browser
using URL syntax to pass parameters to the method. To access a table, append the name of
the table after the service’s name. To access a specific row in the table, specify the desired
row’s primary key in a pair of parentheses following the table name. To filter a table’s rows,
use the $filter keyword, passing the filtering expression as parameter value.

You can also create a proxy class that encapsulates the functionality of the data service with
the DataSvcUtil.exe utility. Once you have created the proxy, you can create a variable
of this type in your code and use it to access the methods of the data service and use LINQ
statements to query your data.

Index
Note to reader: Bolded page numbers refer to main discussions and definitions. Italicized page numbers refer
to illustrations.

Symbols
(pound) character, 53, 66, 649
% (percent) wildcard character, 649
& (ampersand) character, 531
 : character, 850
[-] wildcard character, 649
[] wildcard character, 649
[∧] wildcard character, 649
_ (underscore) wildcard character, 649
< (less than) character, XML, 531
<%= and %> tags, XML, 599–600
<!--...--> (comments), HTML, 851
> (greater than) character, XML, 531
‘ (apostrophe) character, XML, 531
‘‘ (quotation mark) character, XML, 531

A
ABC principles of WCF, 912
Abort value, DialogResult enumeration, 228, 228
AcceptButton property, 205
Accept/Reject Rule, foreign key constraints, 792,

793
AcceptsReturn property, 164
AcceptsTab property, 164
access keys, 247–248
Action attribute, HTML forms, 854
action queries

defined, 973
deleting rows, 659–660
editing existing rows, 661
inserting new rows, 660–661
overview of, 658

Activated event, 221–222
Activation property, ListView control, 294, 294
Active Server Pages (ASP), 863–864
Add Connection dialog box

checking for sample databases, 634, 635
generating typed DataSet, 771–772, 772

Add Data Source command, 770
Add Item buttons, ListBox, 189
Add method

adding nodes at runtime, 292–293
appending new items to collection, 81

Controls collection, 234
DateTime class, 479, 480
Items collection, 185–186, 297
TimeSpan class, 488–489

Add New Item dialog box
accessing ASP.NET web services with AJAX,

911
adding ADO.NET Data Service, 921
creating master page, 876
creating new EDM, 734
working with LINQ to SQL classes, 615

Add Reference command, 24–25, 334, 570
Add Service Reference dialog box, 896
Add Web Reference command, 24–25
Add Web Reference dialog box, 908, 909
AddDays method, 339
AddExtension property,

OpenFileDialog/SaveFileDialog controls, 262
AddRange method, collections, 503
address, WCF web services, 912, 916–920, 917–920
address visualization form, 833–843

assembling, 834, 835
composing web services, 832–834
constructing geocoding web service

URL/query parameters, 834–836
displaying coordinates on map, 838–842, 843
invoking geocoding web service, 836–837
overview of, 831–832
processing geocoding web service response,

837–838
AddToSuppliers method, ADO.NET Data

Services, 933
ADO.NET, programming with

action queries. see action queries
basic data-access classes. see classes, basic data

access
databases. see databases
overview of, 631
SQL. see SQL (Structured Query Language)
storing data in relational databases, 972
stream- vs. set-based data access, 662

988 ADO.NET DATA SERVICES • ARRAYS

ADO.NET Data Services, 920–938
accessing methods of, 985
building Windows client, 928–932, 929
filtering, 926–928, 927
overview of, 920–926, 922–924, 926
performing transactions, 934–936
real-world scenario, 937–938
securing, 937–939
submitting updates, 932–933

Advanced Options dialog box, TableAdapter
Configuration Wizard, 784, 784

Advanced submenu, Edit, 22
aggregates

calculating with LINQ, 587–589, 592–593
calculating with SQL, 651–653, 652

AJAX (Asynchronous JavaScript and XML)
Extensions controls, 871, 872
overview of, 863
web services implementation, 910–912

algorithms, binary search, 498
align attribute, tag, 850
alignment

Label3D, 369, 371
ListView, 293, 294
LoanCalculator GUI controls, 135–136, 136
MathCalculator GUI buttons, 146

All method, Controls collection, 234
AllowBrowserDrop property, WebBrowser, 818
AllowColumnReorder property, ListView, 294
AllowFullOpen property, ColorDialog, 257
AllowNavigation property, WebBrowser control,

817, 818
AllowScriptChange property, 259
AllowVerticalFonts property, 259
AllSystemSources property, 179
AllUrl property, 179
alt attribute, tag, 850
Amazon.com, 894
American National Standards Institute (ANSI), 52
Amount argument, Pmt() function, 132–133
ampersand (&) character, 531
Ancestors methods, traversing XML documents,

543–544
Anchor property, forms, 216–217, 216–217
anonymous types, LINQ and, 583–584
ANSI (American National Standards Institute), 52
AnyColor property, ColorDialog, 257
apostrophe (’) character, XML, 531
appearance, form

anchoring controls, 216–217, 216–217
Contacts project, 212, 212–213
docking controls, 216, 217–218, 218
elements of, 203–204, 204
form events, 221–223
Form object properties, 204–209, 205, 207
handling keystrokes, 213–214
placing controls, 209–210, 210
processing keys from within code, 214–216
setting TabIndex property, 211, 211
splitting into multiple panes, 219–221, 220–221

Append/AppendFormat methods, 473–474
AppendText method, 443, 951–952
application generator, 242–243
Application object, 875
arguments, 106–125

built-in functions, 111–113
custom functions, 113–115, 114
overloading functions, 118–125, 120, 123–124
overview of, 106–108
passing, 108–111, 115–118, 945

Array class
additional operations of, 498–500
ArraySearch application, 496, 496–497
binary search algorithm, 498
extension methods, 408–411
limitations, 500
overview of, 493
searching arrays, 495–496
sorting arrays, 494
XML serialization of, 567–569

ArrayList class
adding/removing items from, 502–505
collection initializers, 505–506
creating collections, 501–502
extracting items from, 505–506
iterating through collections, 509–510
iterating with enumerators, 520–521
searching collections in, 508–509
serialization, 573–575
sorting collections in, 507–508

arrays, 75–82
collections vs., 81–82
declaring, 75–76, 944
defined, 964
functions returning, 117–118
initializing, 76–78
multidimensional, 78–79, 78–81

ARRAYS, ADVANCED TOPICS • BUSINESS OBJECTS 989

overview of, 75, 75
searching, 964–965

arrays, advanced topics
additional operations, 498–500
ArraySearch application, 496, 496–497
binary search algorithm, 498
limitations, 500
overview of, 493
searching arrays, 495–496
sorting arrays, 494

As keyword, 39, 105
ASP (Active Server Pages), 863–864
ASP.NET

creating web applications, 875–879, 876–879
Development Server, 906
overview of, 864
Web Application option, 864

ASP.NET web service
adding simple AJAX implementation, 910–912
creating simple, 900–903, 902–903, 984
defined, 893
overview of, 898–899
technologies, 899–900

asynchronous download,WebClient class, 830–831
Asynchronous JavaScript and XML. see AJAX

(Asynchronous JavaScript and XML)
asynchronous methods, WebClient class, 828
Attribute property, XML documents, 544
attributes

adding images to web page, 850
entity, 726
HTML form, 854–855
HTML tag, 848
XHTML tag, 847
XML document, 532–534

audio, accessing using My component, 34
authentication, generating typed DataSet, 772
AutoCompleteSource property, TextBox controls,

179–180, 179–180, 947
AutoGenerateColumns property, 798
auto-implemented properties, 319
AutoScaleMode property, 205
AutoScroll property, 205, 205–206, 218–219
AutoScrollMargin property, 206
AutoScrollMinSize property, 206
AutoScrollPosition property, 206
AutoSize property, 11, 14
auxiliary form, MultipleForms project, 229–233
AvailableFreeSpace property, 442, 444

Average extension method, 409
AVG() function, aggregates, 652
axis methods, 543–545

B
barcode reader, 691
baseline alignment, controls, 210, 210
BeginTransaction method, Connection object,

696
bidirectional data binding, 778
binary serialization, 560, 569–571
BinaryFormatter method, 569–571, 572
BinarySearch method, 965

ArraySearch application, 496, 496–497
binary search algorithm, 498
searching arrays, 495–496
searching collections, 508–509

BinaryWriter object, 960
binding. see data binding; data-bound applications
BindingSource class, 781–786

adjusting DataSet properties, 782–784, 783–784
designing data-driven interfaces, 788
handling Identity columns, 782
overview of, 781–782
using as data source, 794

block-level scope, 72, 72–73
body, HTML pages, 848
Booking.com, 894
Books and Authors EDM application, 764–766
Boolean operators, 49, 50
Boolean variables, 50
border attribute, tag, 850
BorderStyle property, 145
boxing, 61, 392
brand independence, Entity Framework, 731
breakpoints, 27, 153
browser. see WebBrowser control
Brush class, 449
bulleted lists (...), displaying, 851
BulletIndent property, RichTextBox, 271, 273
business layer, 692–693
business objects, 687–701

application’s interface, 690–691, 690–693
implementing data-access layer with custom

objects, 693–697, 697
implementing data-access layer with LINQ to

SQL, 697–699
NWOrders application, 689

990 BUTTON CONTROL • CLASSES, CUSTOM

overview of, 687–689
using TransactionScope class, 699–701

Button control
adding to toolbar, 790
address visualization form, 834, 835
creating HTML forms, 855
first VB application, 14–17, 15
LoanCalculator GUI, 135
MathCalculator GUI, 145–146

Byte variable, 49
ByVal keyword, 108–109

C
Cache-Control response header, 828
CalculateStatistics() function, 109–110
calculators. see LoanCalculator project;

MathCalculator project
Cancel value, DialogResult, 228, 228–229
CancelAsync method, WebClient class, 829
CancelButton property, 205
CanUndo/CanRedo properties, RichTextBox, 276
Caption property

DataSet, 782
designing custom controls, 372

capturing
function keys, 177–178
keystrokes, 176–177

cardinality, 728
cart web form, 886–891, 891
Cascading Style Sheets (CSS), 848, 856–860,

982–983
Case statements, 90–91
case-sensitivity

arrays, 496
first VB application, 17–18
SQL, 642
XHTML, 846

casting, 397–398, 417
Catch Exception block, 156–157
Categories table, 636, 636–637, 791–792, 791–794
cells, HTML table, 852
CellStyle Builder dialog box, 797, 797
Changed events, custom Windows controls,

375–376
ChangeExtension method, 444, 445
ChangeInterceptor method, 938
Char class, 463–464, 464–465
Char data type, 51–52, 961
Character variables, 51–52

CharacterCasing property, 164
characters

handling with Char data type, 51–52, 961
strings and. see strings and characters
text management, 850
type, 45, 45
wildcard, 649, 649–650

CheckBox control
creating HTML forms, 856
designing LoanCalculator GUI, 135
designing Windows applications, 130

CheckBoxes property, TreeView, 290
Checked property, 246
CheckedListBox control

basic properties, 183–184, 184
customizing, 382–383
overview of, 182, 182–183
selecting items, 187–188

CheckFileExists property,
OpenFileDialog/SaveFileDialog, 262

CheckPathExists property,
OpenFileDialog/SaveFileDialog, 262

child nodes, tree structure, 287–288
ChildKeyConstraint property rules, 716–717, 717
Choose Toolbox Items command, 25
Choose Your Database Objects page, Data Source

Configuration Wizard, 772–773, 773
Class Diagram Designer, 403, 403, 429
class instantiation, 387
classes

ADO.NET Data Service, 921–922
building WCF service, 913–916
combining code with data, 307–308
defined, 306
objects vs., 305–307, 387–388

classes, basic data access
Command class. see Command class
Connection class, 663–665
data-driven applications, 680, 680–687
DataReader class. see DataReader class
overview of, 662–663
SQL injection attacks, 673–674

classes, custom
adding code, 311–313, 312
auto-implemented properties, 319–320
building Minimal. see Minimal class
building own, 952–953
Class Diagram Designer, 429
combining code with data, 307–308

CLASS-RELATED MODIFIERS • COLOR 991

custom enumerations, 323–325, 325
customizing Equals method, 321–322
customizing ToString method, 320–321
extension methods, 407–411
firing events, 335–338, 336
inheritance and, 401–402
instance and shared methods in, 338–342
Is operator in, 322–323
nesting classes, 344–347
object constructors and, 331–333
objects and, 305–306, 307
overloading operators, 347–351, 351
overview of, 306–307
property procedures, 313–314
read-only properties, 317–318
revising Contacts project, 325, 325–330
StringTools class, 342–344, 344
throwing exceptions, 315–316
unary operators, 351–352
using SimpleClass in other projects, 333–335,

334–335
variants, 352–353
working with, 953–956

class-related modifiers, 418–420
cleanup statements, structured exception handlers,

156
Clear button, 146, 148
Clear method

Controls collection, 234
Items collection, 186, 297

clearDisplay variable, MathCalculator GUI, 148,
150–151

Click event handler, Button control
LoanCalculator GUI, 136–137, 137
MathCalculator GUI, 147–149
programming, 15, 15–17, 19–20

Click event, ToolStripMenuItem, 949–950
Clickable value, HeaderStyle property, 294
client

building Windows, 928–932, 929
maintaining state, 871, 873

client variable, consuming web services, 897
Clipboard, 34
Close command, Control menu, 204, 204
Cloud tab, Start page, 5
CLR (Common Language Runtime), 65, 677–678
code

adding to Minimal class, 311–313, 312
data combined with, 307–308

processing keys from within, 214–216
programming first VB application, 14–18, 15
reuse of, 306. see also inheritance

code editor, 15, 15
code snippets

calculating monthly loan payment, 139–140
in Framework, 434–436, 435
Insert Snippet command, 23
using My component, 33–34
working with, 32–33

code-behind
creating cart web form, 888–890
defined, 864
developing stand-alone web service, 909–910,

910
collection initializers, Array class, 505–506
collections

adding/removing list items, 502–505
additional, 519
advanced array topics. see Array class
collection types. see collections
creating, 501–502
Dictionary, 510–512, 965–966
dynamic data storage, 81–82
extracting items from, 506–507
HashTable, 512–513
IComparer interface. see IComparer interface
IEnumerator interface. see IEnumerator

interface
implementing custom comparers, 966–967
iterating through lists, 509–510
List, 965
overview of, 493, 500–501
querying with LINQ, 584–586
searching arrays, 964–965
searching lists, 508–509
serialization, 573–575
SortedList, 518–519
sorting lists, 507–508
transforming into XML segments, 596–597
WordFrequencies application, 513–517, 514
XML serialization of, 567–569

color
creating graphics, 448
as important design element, 12
MathCalculator GUI, 145
prompting users for, 951

992 COLOR PROPERTY • CONTACTS PROJECT

Color property
ColorDialog, 257
FontDialog, 259

ColorClick event, 377–378
ColorDialog control

function of, 255
prompting users for colors, 951
properties, 256, 256–258

ColorEdit control, 365, 365–368, 377–378
Colors project, 198, 198–200
Column attribute, LINQ to SQL, 611–613
column names, aliasing, 648–649
ColumnHeader Collection Editor dialog box,

ListView, 295–296, 296
columns

creating HTML tables, 852
customizing appearance, 794–798, 795–797
data binding, 778–780, 779–780
displaying lookup, DataGridView, 798,

798–799
handling Identity, 716
retrieving database update errors, 716

Columns collection, DataTable class, 707–708
ColumnType property, 795–796
Combine method, 444, 445
ComboBox control

adding items at runtime, 195, 195–196
creating user friendly application, 18–19, 18–21
customizing, 382–383
displaying options, 18
FlexCombo project design, 196–197
NWOrders application UI, 690–691
overview of, 182, 182–183
properties, 183–184, 184
selecting items, 187–188
types, 193–194, 193–195
Windows application design, 130

Command class
application of, 665–667
empty strings vs. null values, 675
executing selection queries, 667–668
executing statements during transactions, 696
executing stored procedures, 667
handling special characters, 674–675
retrieving multiple values from stored

procedures, 670–673
using Commands with parameters, 669–670

command prompt window, 30–32, 31
Command window, 24, 27–28

CommandBuilder class, 705–707
commands, Control menu, 204, 204
CommandText property, 973
CommandType property, 973
comments, 22, 851
Commit method, Transaction object, 696
Common Controls tab, Toolbox window, 8, 8, 26
Common Language Runtime (CLR), 65, 677–678
Compare method

DateTime class, 479
features of, 467–468
implementing custom comparers, 966

CompareOrdinal method, 468
comparers, custom, 966–967
Complete Word, IntelliSense, 23
complex property, adding to entity, 747–748
complex types, Entity Framework, 729
compound controls

ColorEdit, 365, 365–368
mapping members to, 956–957
overview of, 364–365

Concat method, 468
concatenation operator (&), variants, 60
conceptual model, EDM structure, 738
conditions, 86
Configuration Editor, WCF services, 917–919,

917–919
configuration wizard, 5
connection

Data Source Configuration Wizard, 770–772,
771–772

to web services, 908
Connection class, 663–665
connectionString setting, NWOrders application,

690
console application, building, 30–32
constants, 74
constituent controls, 364
constraints, aborting transactions, 697, 697
constructors, 331–333, 954–955
consuming web services

ADO.NET Data service, 928–929, 929
ASP.NET, 902–903, 984
overview of, 894–898, 895, 897–898

contacts, 328–330
Contacts project

revising for database, 680, 680–687
revising with custom classes, 325, 325–330
TabIndex property, 212, 212–213

CONTAINS METHOD, ITEMS COLLECTION • CUSTOM CLASSES 993

Contains method, Items collection, 187
content pages, 874
context menus, 251, 818, 819
Context object, 875
Continue statement, 102
ContinueUpdateOnError property, DataAdapters,

788
contract, WCF web service, 912, 916–920, 917–920
Control menu commands, 204, 204
control structures, nested, 99–102
control variable, LINQ queries, 579
ControlBox property, 207
controls. see also Windows controls

address visualization form, 834, 835
AJAX Extensions, 870, 872
alignment of, 130, 135–136, 136
consuming web services, 907
creating first VB application, 13–18, 14–15
creating web applications, 865, 867–871,

867–871
data, 868, 869
dialog, 950
HTML, 871, 873
LoanCalculator GUI, 134, 134–135
login, 870, 871
manipulating in Intermediate window, 28
navigation, 868, 870
reporting, 871
Standard (web form), 867, 867–868
TextBox, 946–947
understanding. see Windows Form Designer
validation, 868, 869
WebParts, 870, 872
Windows applications, 941–942

Controls collection, 234–236, 235, 949
conversions

handling dates between locales, 54–55
of strings and numbers, 51
variable type, 62, 62–63
widening and narrowing, 64, 64–65

Convert class, 62, 62–63
Convert To Upper/Lower commands, 170
cookies

classes supporting, 828
maintaining state using, 871
managing with HttpWebRequest and

HttpWebResponse, 831
Copy command, 170–171, 170–171, 244
Copy method

Array class, 498–499
IO.File class, 442, 443
RichTextBox control, 276–277

CopyTo method
Array class, 498–499
manipulating Items collection, 187

COUNT() function, aggregates, 652
Count property

Controls collection, 234
Items collection, 186, 297

counter variable, 93–95
CountFiles() function, 121–124, 124–125
Create Directory For Solution check box, 6
Create/CreateText methods, IO.File class, 442,

443
CreateDirectory method, IO.Directory class, 441,

441
CreateEntityName method, EDM, 764
CreateGraphics method, 962–963
CreateQuery method, Windows client, 930–931
CRM system, Entity Framework, 729–731, 730
C-S mapping content. EDM structure, 739
CSDL (Conceptual Schema Definition Language),

738
CSS (Cascading Style Sheets), 848, 856–860,

982–983
CType() function, 352–353
cultural differences, date formats, 477–478,

537–538
curly brackets, collection initializers, 502–505
cursor position, 167–168
custom classes

adding code, 311–313, 312
auto-implemented properties, 319–320
building Minimal. see Minimal class
Class Diagram Designer, 429
combining code with data, 307–308
custom enumerations, 323–325, 325
customizing Equals method, 321–322
customizing ToString method, 320–321
extension methods, 407–411
firing events, 335–338, 336
implementing read-only properties, 317–318
implementing unary operators, 351–352
inheritance, 401–402
instance and shared methods, 338–342
Is operator, 322–323
nesting classes, 344–347
object constructors and, 331–333

994 CUSTOM COMPARER FUNCTION • DATA TYPES

objects and, 305–306, 307
overloading operators, 347–351, 351
overview of, 306–307, 953–956
property procedures, 313–314
revising Contacts project, 325, 325–330
StringTools class, 342–344, 344
throwing exceptions, 315–316
using SimpleClass in other projects, 333–335,

334–335
variants, 352–353

custom comparer function, 966–967
custom data types, 942–943
custom enumerations, Minimal classes, 323–325
custom events, 377–378
custom functions, 113–115
custom functions, LINQ to XML, 603
custom objects, XML serialization of, 563–567
custom sorting, IComparer interface, 522–523
custom Visual Studio IDE, 29
custom Windows controls. see Windows controls,

building custom
CustomColors property, ColorDialog, 257–258
Customers table, Northwind database, 637, 638
CustomerTotals stored procedure, 670–673
CustomExplorer project, 299–300, 300
Customize command, 7
CustomSource property, AutoCompleteSource,

179
Cut command, 170–171, 170–171, 244
Cut method, RichTextBox, 276–277

D
data

code combined with, 307–308
combining from multiple tables, 647
displaying delimited, 274
ListBox control for storage of, 331
persisting, 559
querying with LINQ. see LINQ (Language

Integrated Query)
streaming in Framework, 445–446

data, handling
data types. see data types
large sets of, 517
repeated items, 239–241, 240
variables. see variables

data, storing in collections
additional collections, 519
Array class. see Array class

collection types. see collections
Dictionary collection, 510–512
HashTable collection, 512–513
IComparer. see IComparer interface
IEnumerator. see IEnumerator interface
overview of, 493
SortedList collection, 518–519
WordFrequencies application, 513–517, 514

data binding, 778–786. see also data-bound
applications

BindingSource class, 781–786, 783–784, 786
of DataGridView to DataTable, 779–780
overview of, 778–780
real-world scenario, 784–785
WCF web service, 912, 916–920, 917–920

data controls, 868, 869
Data Manipulation Language (DML), 643
data manipulation, XML

editing documents, 549–551
lambda expressions, 557–559, 559
locating information, 547–549
overview of, 546–547
segments as literals, 551–557, 554

Data menu, 25, 770
data model, and Entity Framework, 726–728, 727
data source

adding ADO.NET Data Service, 921–922
using BindingSource class as, 794

Data Source Configuration Wizard, 770–771, 771
Data Sources window

binding hierarchical tables, 791, 791–792
generating typed DataSet, 773, 774

Data tab, Start page, 5
data types

Boolean, 50
Byte, 49
CLR vs. SQL, 677–678
converting variable, 62, 62–63
creating custom, 68, 68–70, 70, 942–943
Date, 53–54
native, 942
now part of CLR, 65
numeric, 42, 42
objects vs. basic, 61
Signed Byte (SByte)e, 49
String, 50–51
user-defined, 68, 68–70, 70
variable, 37–38
XML as, 540, 540–542

DATA VALIDATION. SEE VALIDATING DATA • DATAREADER CLASS 995

data validation. see validating data
data-access classes

building data-driven applications, 680, 680–687
Command class. see Command class
Connection class, 663–665
DataReader class. see DataReader class
overview of, 662–663
SQL injection attacks, 673–674

data-access layer
with DataContext object, 700–701
defined, 692
implementing with custom objects, 693–697,

697
implementing with LINQ to SQL, 697–699

DataAdapters
DataAdapter class, 703, 703–705
designing data-driven interfaces, 788
filling DataSets, 702–703
loading DataSets, 720–721
populating DataTables of typed DataSet with,

774–775
udpating database, 715–716

Database Designer tool, 641
Database icon, Data Source Configuration Wizard,

770, 771
database management system (DBMS), 631
databases

classes for accessing. see data-access classes
connecting EDM to, 734
Contacts application with, 680, 680–687
generating structure with EDM Designer,

749–750, 750
obtaining Northwind/Pubs sample databases,

633–635, 635
overview of, 631–632
submitting changes in DataSet to, 974–975
understanding relations, 640–641, 641
using relational, 632–633, 633

data-bound applications
data binding. see data binding
designing and using typed DataSets. see typed

DataSets
overview of, 769, 975–976

data-bound applications, interface design
adjusting DataGridView appearance, 794–799,

795–798
binding hierarchical tables, 791–792, 791–794
building more-functional interfaces, 801,

801–808, 805

data binding with LINQ, 808–810, 809
editing data in hierarchical tables, 799–801, 800
enhancing navigational tools, 789–791
overview of, 786–789, 787–789

DataColumn class, 707–708
DataContext object

creating, 618
implementing data-access layer with, 700–701
role in LINQ to SQL, 609–610, 614

data-driven applications, 687–723
creating and populating DataSet, 974
creating simple DataSet, 717–723
defined, 687
establish relations between tables in DataSet,

974
performing update operations, 714–717
storing data in DataSets. see DataSets
using business objects. see business objects

data-entry
Contacts application, 212, 212–213
Enter keystroke and, 211–212
TextBox control and, 181, 181–182

DataGridView control
adjusting appearance, 794–799, 795–798
binding hierarchical tables, 791–792, 791–794
binding to DataTable, 786–787, 787
building more-functional interfaces, 801–804
customizing column appearance, 794–798,

795–797
data binding, 778–780, 779–780
displaying lookup columns, 798, 798–799
enhancing navigational tools, 789–791
using BindingSource as data source, 794
viewing deleted rows, 804–808, 805
viewing update errors, 787–789, 789

DataGridViewButtonColumn, 796
DataGridViewCheckBoxColumn, 796
DataGridViewComboBoxColumn, 796, 796
DataGridViewImageColumn, 797
DataGridViewLinkColumn, 797
DataGridViewTextBoxColumn, 797
DataReader class

application of, 678–679
CLR types vs. SQL types, 677–678
overview of, 676
properties/methods, 676–677
reading multiple result sets, 679–680

996 DATAROW OBJECTS • DECISION STATEMENTS

DataRow objects
adding and deleting rows, 710–711
navigation through DataSet, 711–712
row states and versions, 712–714, 713
working with rows, 708–709

DataRowState enumeration, 712–713, 713, 722
DataRowVersion enumeration, 714, 714, 722
DataService project. see ADO.NET Data Services
DataSet, LINQ to, 581
DataSet Designer window, 782–784, 783–784
DataSetOperations project, 770–778

adding third form to, 786
generating typed DataSet, 770–774, 771–774
iterating through linked DataTables, 776,

776–777
manipulating rows of typed DataTables, 777,

777–778
operations on typed DataSet, 774–776, 775

DataSets, 701–714
accessing tables, 707–708
adding and deleting rows, 710–711
creating and populating, 974
creating SimpleDataSet project. see

SimpleDataSet project
establishing relations between tables in, 974
handling null values, 709–710
navigating through, 711–714, 713
overview of, 701–702
populating and displaying, 721
submitting changes to database, 974–975
typed. see typed DataSets
typed vs. untyped, 769–770
working with Entity Framework vs., 751
working with rows, 708–709

DataSets, filling, 702–707
CommandBuilder class, 705–707
DataAdapter class, 703, 703–705
overview of, 702–703

DataSource property, data binding, 779
DataSvcUtil.exe utility, 928–932
DataTables

accessing DataSet’s tables, 707–708
adding and deleting rows, 710–711
data binding, 778–780, 779–780
establishing relations between tables in

DataSet, 974
generating typed DataSet, 773, 774
iterating through linked, 776–777, 776–777

navigation through DataSet, 711–714, 713
populating DataSet using Fill method, 703
populating typed DataSet, 774–775
updating row of typed, 777, 777
working with rows, 708–709

DataView class, 808
date formats, 477–478, 537–538
Date property, 478
Date variables, 53–54, 54–55
DateTime class

date conversion methods, 483, 484
dates as numeric values, 483–485
defined, 962
for different cultures, 477–478
format characters, 482–483, 483
methods, 479–480
overview of, 476
properties, 478–479
standard format patterns, 480–481, 481

DateTime values, XML documents, 538
Day property, WeatherForecast class, 897–898
DayOfWeek/DayOfYear properties, 478
Day(s) property

DateTime class, 478
TimeSpan value, 487

DaysInMonth method
DateTime class, 479
as shared method, 339

dblProperty, Minimal class, 311–313
DBMS (database management system), 631
Deactivate event, 221–222
Debug menu, 25
debugging

defined, 155
MathCalculator GUI, 152–155
by printing to Intermediate window, 27–28
Web applications, 866
Web applications using Fiddler, 826, 826

Debug.Write method, 27
Debug.WriteLine statement, 27, 155
Decimal data type, 44–46
decision statements

defined, 86
If...Then, 86–87
If...Then...Else, 87–90
nested control structures, 99–102
overview of, 944
Select Case, 90–91

DECLARATIONS • DOWNLOAD*COMPLETED EVENTS, WEBCLIENT CLASS 997

declarations
array, 75–76
constant, 74
variable, 38–40

declarative languages, 530
Default value, Alignment property, 294
DefaultCellStyle property, 797–798
DefaultExt property, 262
DefaultValue attribute, 363
DefaultValue property, DataSet, 782
deferred (lazy) loading, 762–763, 975
dehydration, 969. see also serialization
Delete method

entity instances, 764
of IO.Directory class, 441, 441
of IO.File class, 442, 443
rows, 710–711

Delete rule, foreign key constraints, 792, 793
DELETE statement

optimistic concurrency, 784
rows, 659–660
TableAdapter Configuration Wizard, 784, 784

delimited data, 274
delimiters, 470
deploying web service, 905–906, 906
DereferenceLinks property, 262–263
derived class keywords, 419, 420
Descendants methods, traversing XML

documents, 543–544
deserialization, 559, 969
Deserialize method

with collections, 574–575
with custom objects, 567
with individual objects, 563, 571–573
serialization process and, 560–561

Design Patterns: Elements of Reusable Object-Oriented
Software (Gama et al.), 731

Details property, WeatherForecast class, 897–898
Details value, View property, 293
dialog boxes

forms vs., 226–229, 227–228
MultipleForms project, 229–233, 230
testing custom Windows controls, 374, 374–375

dialog controls
ColorDialog, 256, 256–258
FolderBrowser demo project, 267–269
FolderBrowserDialog, 266, 266–267
FontDialog, 258
FontDialog control, 258–261

MultipleFiles project, 265, 265–266
OpenDialog/SaveDialog, 261–265
OpenFileDialog/SaveFileDialog, 261
overview of, 254, 254–255
using, 255–256

DialogResult property, 228, 228–229
Dictionary collection

creating, 81–82
populating, 965–966
storing data in, 510–512
XML serialization of, 567–569

DigitClick event handler, Button control, 148
Dim statement

declaring arrays, 75–76
declaring variables, 39
declaring variants, 59

DirectCast() function, 63
Directory class, 441, 441–442
DirectoryInfo class, 443–444
DiscardChanges() function, 280
DISCO document, 908
DisplayStyle property, ComboBox control, 22
DISTINCT keyword, 649
Distinct method, LINQ, 589
<div> tag, CSS, 858–860, 860
<div> tag, HTML, 854
<div> tags, CSS, 854, 858–860, 860
DML (Data Manipulation Language), 643
Dock property

form design, 216, 217–218, 218
WebBrowser, 817, 823

docked windows, IDE, 9–10, 10
!DOCTYPE definition, 847, 848
Document Object Model (DOM), AJAX, 863
Document property, WebBrowser, 820–821
documentation, overloaded functions and

methods, 124–125
DocumentCompleted event, WebBrowser, 822
DocumentStream property, WebBrowser, 820
DocumentText property, WebBrowser, 819–820
Do...Loop statement, 96–98
DOM (Document Object Model), AJAX, 863
_doPostBack function, 879
double data type, 41–44, 143, 143
double-precision numbers, 41–44
Download methods, WebClient class, 828, 829
Download*Async methods, WebClient class, 829,

830, 837
Download*Completed events, WebClient class, 829

998 DOWNLOADSTRINGCOMPLETED EVENT HANDLER • EMPLOYEES TABLE, NORTHWIND DATABASE

DownloadStringCompleted event handler,
837–838

drag-and-drop behavior, WebBrowser, 818
DrawImage method, 453, 461–462
drawing, in Framework. see also graphics
generating gradients, 453–454

generating printouts, 460, 460–462
Graphics object, 446–447
Image class, 454–455
methods, 449–453, 453
overview of, 446
Pen/Brush classes, 449
Point/Rectangle classes, 447
Size/Color/Font classes, 448

DrawItem event handler, 958
DrawItem events, 382–383
DrawMode property, 383, 386
DrawMode property, 958
DrawString method, 451–452, 459
DriveFormat/DriveType properties, 442, 444
DriveInfo class, 442, 444
DropDown/DropDownLists, 193–194, 193–195
DropDownOpened event, 949–950
Due argument, Pmt() function, 132
dynamic content, adding, 599–601
dynamic forms

creating event handlers at runtime, 241–242
designing application generators, 242–243
DynamicForm project, 236–239, 237
Form’s Controls collection, 234
handling repeated data items, 239–241, 240
overview of, 233, 949
ShowControls project, 234–236, 235

Dynamic Help command, 26
dynamic queries, advanced search forms with

eSQL, 755–758
DynamicForm project, 236–239, 237

E
e argument, event handlers, 16
early-bound variables, 398–399
edge alignment, controls, 210, 210
Edit Columns dialog box, 795, 795–799, 798
Edit DataSet button, 717, 718, 722
Edit menu

Advanced, 22
captions and names, 243–244, 244
IntelliSense, 22–23, 23

Outlining, 24
in RTFPad project, 281–283

editing
columns, 795, 795
commands, TextPad application, 169–171,

170–171
data in hierarchical tables, 799–801, 800
RichTextBox control, 275–276
TextBox control, 168

EditPad Pro, 848
EDM (Entity Data Model), 975

adding complex property to entity, 747–748
adding many-to-many association, 748–749,

975–976
adding one-to-many association, 748, 975–976
connecting to database, 734
creating entity, 735
creating new, 734
creating primary key, 735
creating scalar property, 735–736
deferred (lazy) loading, 759–763, 975
entity inheritance, 743–747, 975
generating database structure, 749–751, 750
modifying data with Entity Framework,

763–767
overview of, 732–733
querying, 751
reverse-engineering, 767
using EDM Designer, 733, 733
using eSQL, 754–758
using LINQ to Entities, 752–754
using Query Builder methods and

ObjectQuery class, 758–759
EDM (Entity Data Model), structure, 736–743

C-S mapping content, 739
CSDL content, 738
SSDL content, 739
XML content, 736–738

EDM Designer, 733, 733–734
EDM diagram, 733, 733
Effect property, Label3D control, 370, 371
Element/Elements methods, 543
elements, XML documents, 530–534
elliptical controls, 379, 379–382
Else keyword, 87–90
ElseIf statement, 87–90
<embed> tag, media, 851
embedding media, HTML, 851
Employees table, Northwind database, 637

EMPTY PROPERTY, TIMESPAN • EXPEDIA.COM 999

Empty property, TimeSpan, 486, 486
empty strings, 675
Enabled property, 246
encapsulation ,306
end nodes, tree structure, 287
End Try statement, exception handling, 156, 158
end variable, For...Next loops, 93–95
endpoints, WCF services, 918–919, 919
EndsWith method, 468
enhanced label controls. see Label3D control
Enter key, 181, 181–182, 211–212
EnterFocusColor property, 360–361
entities

adding complex property to, 747–748
adding inheritance between, 743–747
creating new instances, 764
creating to add to EDM, 735
defined, 632
deleting, 764
EDM defining, 732
establishing relationship between, 728, 765–766
identifying by primary key, 726
LINQ to, 581
many-to-many association between, 748–749
one-to-many association between, 748
updating, 765

Entity Data Model. see EDM (Entity Data Model)
Entity Data Model Wizard, 734
Entity Framework, 725–732

data store and brand independence, 731–732
EDM. see EDM (Entity Data Model)
expressiveness of data model, 726–728, 727
inheritance mapping, 744–747
isolation of application from data structural

changes, 732
modifying data, 763–767
overview of, 725–726
rich modeling constructs for representing data,

728–731
entity references, XML documents, 531
Entity SQL (eSQL), 754–758, 977–978
entity-relationship diagram, 728
Enum keyword, 137–138
enumeration types, 137–138
enumerations, custom, 323–325, 325
environment, setting options, 29–30
Equals button, 150, 151, 158
Equals method, 321–322
ERM (entity-relationship model)

designing data, 726–727
EDM implementing. see EDM (Entity Data

Model)
entity-relationship diagram, 728

error handling
in classes, 315–316
data-entry, 803–804
exceptions vs. errors, 155
overview of, 143–144
updating database, 715
writing robust applications, 946

Error List window, 28–29
error propagation, 43
eSQL (Entity SQL), 754–758, 977–978
ETag response header, 828
event handlers

changing name of controls after inserting code
in, 16

creating at runtime, 241–242
creating first VB application, 16
defined, 14
designing Windows applications, 130
overview of, 942
programming events, 945–946
programming loan calculator GUI, 136–140,

137
programming MathCalculator GUI, 147–149

events
Changed, 375–376
firing class, 335–338, 336
HTML, 861, 861–862
overview of, 942
programming, 945–946
raising custom, 377–378
WebBrowser control, 822
WebClient class, 829

exceptions
errors vs., 155
MathCalculator project, 155–158
within property procedures, 315–316

ExecuteNonQuery method, 696, 973
ExecuteQuery method, 613–615, 973
Exists method

IO.Directory class, 441, 442
IO.File class, 442, 443

Exit command, 170, 244
Exit statement, 102
Exit Sub statement, 103–104
Expedia.com, 894

1000 EXPLICIT LOADING • FONT PROPERTY

explicit loading, 761–762
Explicit option, 55–59, 942
Expression Blend, 12
expressions, 27, 91–93
extensible HTML (XHTML), 846–847
Extensible Markup Language. see XML (Extensible

Markup Language)
extension methods, 407–411, 583–584
external events, 333
ExtractFileName method, 342
ExtractPathName method, 342

F
fetch translators, 753–754
Fiddler tool, 826, 826
FieldCount property, DataReader object, 676
fields

calculated, 651
hidden in web page, 873
properties vs., 314, 395
relational database, 633
selection list, 646
TimeSpan object, 486

File class, 442, 443
File menu

captions and names, 243–244, 244
overview of, 21–22
in RTFPad project, 279–281

filenames, prompting users for multiple, 950
FileName(s) properties, 263, 264, 950–951
files

handling with My component, 959–960
manipulating in IO namespace, 960–961
writing data with IO namespace to, 960

FileStream object, 960
FileSystem property, 179
Fill method

adding Refresh Data button to call, 790
populating and displaying DataSet, 703, 721
populating typed DataSet with proper

TableAdapters, 775–776
Filter() function, Array class, 499–500
Filter property, BindingSource class, 781
Filter/FilterIndex properties, 263
filtering

ADO.NET Data Services and, 926–928, 927
with LINQ vs. eSQL dynamic query, 977–978
product data with LINQ, 809, 809–810

Finally block, 156, 158
Find & Replace command, 170
Find button, adding to toolbar, 790
Find method, BindingSource class, 781–782
Find/Find Next buttons, TextPad application,

172–175
FindString method, ListBox control, 947
FindStringExact method, ListBox control, 947
FindStringFindStringExact methods, 191
FixedPitchOnly property, FontDialog control, 259
FixedToolWindow value, 207, 207
FlexComboBox project, 195, 196–197
flow format, HTML, 854
flow-control, defined, 944
flow-control statements, 85–102

Continue statement, 102
Do...Loop loop, 96–98
For Each...Next loop, 95–96
Exit statement, 102
For...Next loop, 93–95
If...Then statements, 86–87
If...Then...Else statements, 87–90
nesting, 99–102
overview of, 85–86
Select Case statements, 90–91
short-circuiting expression evaluation, 91–93
While...End While loop, 98–99

FocusedTextBox control
adding functionality, 359–362
building, 357, 357–359, 359
classifying properties, 363–364
inheritance and, 401–402
testing, 362, 362–363

FolderBrowserDialog control
defined, 951
function, 255
properties, 266, 266–267
sample application, 267–269

folders
creating in Solution Explorer window, 26
creating/removing project, 6
manipulating in IO namespace, 960–961

Font class, 448
Font command, 170
font families, 11–12
Font property

FontDialog control, 259–260
Label3D control, 369

FONTDIALOG CONTROL • FUNCTIONS 1001

FontDialog control
function, 254, 255
overview of, 951
properties, 258, 258–261

FontMustExist property, FontDialog control, 260
fonts

creating first VB application, 14
as design element, 11–12
designing LoanCalculator GUI, 133–135, 134
designing MathCalculator GUI, 145
HTML text management tags, 849

footers, master page setup, 874
For Each...Next loop statement, 95–96, 708
For Next loop statement, 708
forecast variable, consuming web services, 897
foreign key constraints, 793, 793
foreign keys, relational databases, 640
form design

anchoring controls, 216–217, 216–217
Contacts project, 212, 212–213
docking controls, 216, 217–218, 218
dynamic forms, 949
elements of, 203–204, 204
form events, 221–223
Form object properties, 204–209, 205, 207
handling keystrokes, 213–214
multiple forms, 948–949
placing controls, 209–210, 210
processing keys from within code, 214–216
setting TabIndex property, 211, 211
splitting into multiple panes, 219–221, 220–221
working with, 948

Form Designer, 7
<form> tag, HTML, 854–855
<form>...</form> tags, HTML, 854–855
Format menu, 25
Format menu commands, 171–172, 283–284
formats

microformats on websites, 863
number, 65–68, 66–67
pages in HTML, 853–854, 854
pages with CSS, 858–860, 860

formatString argument, 65–66
FormBorderStyle property, 207, 207
FormClosed event, 222
FormClosing event, 222
forms

appearance of. see form design
binding to typed DataSets, 977

building dynamic. see dynamic forms
controls. see controls
designing menus. see menus, designing
events triggered by Form objects, 221–223
HTML. see HTML forms
HTML element events, 861
overview of, 203

forms, loading and showing
forms vs. dialog boxes, 226–229, 227–228
multiple instances of single form, 226
MultipleForms project, 229–233, 230
overview of, 223–224
sharing variables, 225–226
Startup Form, 224–225

form-wide variables, 150
For...Next loop statement, 93–95, 101
fragment caching, 864
frames, HTML, 854
Framework

drawing and painting. see graphics
extending classes, 410–411
handling dates. see DateTime class
handling files with My component, 436–440,

959–960
handling strings and characters. see strings and

characters
handling time. see TimeSpan class
IO namespace. see IO namespace
manipulating folders and files, 960–961
overview of, 433–434
printing controls and dialog boxes, 963
using code snippets, 434–436, 435

front-end applications, 687
full joins, in SQL, 654
FullRowSelect property

ListView control, 295
TreeView control, 290

function keys, 153
Function keyword, 105
functional construction, 539
Function...End Function statements, 104–106
functions

accepting arguments. see arguments
built-in, 111–113
custom, 113–115, 603
documenting overloaded, 124–125
overloading, 118–125, 120, 123–124
passing arguments to, 945
returning arrays, 117–118

1002 FUTUREVALUE ARGUMENT, PMT() FUNCTION • HEADERS

returning multiple values, 109–110
subroutines vs., 103
validating user input, 71–72
writing and using, 104–106, 944–945

FutureValue argument, Pmt() function, 132–133

G
Garbage Collector (GC), 393–394
geocoding service. see Yahoo! Geocoding API
Get section

auto-implemented properties, 319–320
ColorEdit control, 366–367
property procedures, 313–314, 395

Get<type> method, 676, 677
GetAttributes method, 442, 443
GetChanges method, 712–713, 777–778
GetChildRows method, DataRow object, 712
GetColumsInError method, DataRow object, 716
GetCurrentDirectory method, 441, 442
GetDirectoryName method, 444, 445
GetDrives method, 442, 444
GetEnumerator method, 520–522
GetErrors property, 715
GetFiles/GetFileName methods, 441, 442, 444,

445
GetName method, DataReader, 677
GetNumericValue method, 464, 464
GetOrdinal method, DataReader, 677
GetParentRow method, DataRow object, 712
GetParentRows method, DataRow object, 712
GetProcesses method, 95
GetRange method, collections, 506–507
GetSql<type> method, DataReader, 676
GetTempFile/GetTempPath methods, 444, 445
getting started

building console application, 30–32
creating first VB application, 13–18, 14–15
creating user friendly application, 18–19, 18–21
exploring IDE. see IDE (integrated

development environment)
IDE components, 21–29
overview of, 3
setting environment options, 29–30
using code snippets, 32–33
using My component, 33–36

GetType method, 58–59, 70
GetType operator, 70–71
GetUnicodeCategory method, 464, 464
GetValue(s) method, DataReader, 676–677

Go navigation methods, WebBrowser, 821, 821
Google Maps service, 833–834, 838–842, 843
gradients, 453–454
graphical user interface. see GUI (graphical user

interface) design
graphics

drawing methods, 449–453, 453, 962–963
gradients, 453–454
Graphics object, 446–447
Image class, 454–455
overview of, 446
Pen/Brush classes, 449
Point/Rectangle classes, 447
printing. see printing
printouts, 460, 460–462
Size/Color/Font classes, 448

Graphics object, 446–447
greater than (>) character, XML, 531
grid control, adding, 881–883
Gridlines property, ListView, 295
grids, customizing appearance, 795
GROUP BY clause, rows, 656–658
grouping

with LINQ, 591–592
rows with SQL, 656–658

Groups property, ListView, 295
GUI (graphical user interface) design

alignment of controls on form, 945
building calculator. see MathCalculator project
building loan calculator. see LoanCalculator

project
designing Windows applications, 129–130
NWOrders application, 690–691, 690–693
overview of, 945
programming events, 945–946

H
Handles keyword, 16
HasErrors property, updating database, 715
HashTable collection

iterating with enumerators, 521–522
storing data in, 512–513
for WordFrequencies project, 513–517, 514

HasRows property, DataReader, 676
HAVING clause, 658
hCard specification, 863
headers

HTML page. see controls
master page, 874

HEADERS PROPERTY, WEBCLIENT CLASS • IIF() FUNCTION 1003

Headers property, WebClient class, 828
HeaderStyle property, ListView, 294
headings

HTML table, 852
HTML text management tags, 849

height attribute, tag, 850
Hello method, ASP.NET web service, 901–902,

902
HelloWorld web service, 901–903, 902–903
Help menu, 26
hidden fields, 873
HideSelection property, 168, 290
hierarchical tables

binding, 791–792, 791–794
editing data in, 799–801, 800

hierarchy of classes, 403, 403
HistoryList property, 179
horizontal partitioning, 732
horizontal resolution, Image class, 454
horizontal rules (<hr> tag), HTML, 850
HotTracking property, TreeView, 290
Hour(s) property, DateTime class, 478
Hour(s) property, TimeSpan value, 487
href attribute, <a> tag, 850
HTML (Hypertext Markup Language)

comments, 851
creating basic page, 981
defined, 871
embedding media, 851
forms and form elements, 854–856
horizontal rules, 850
images, 850
links, 850–851
lists, 851
overview of, 847, 873
page construction, 848–849, 849
page formatting, 853–854, 854
RTF comparison, 270–271
scripts, 851
tables, 852–853, 853
tags for transforming XML documents,

601–605, 602
text management, 849–850
upgrading to XHTML from, 847
web development and, 845–846

HTML forms
elements, 854–856
embedding Yahoo! Finance badge, 824–825,

825

overview of, 854
WebBrowser Document property, 820–821

HTTP
debugging proxy, 826, 826
publishing services on Internet, 827
web services using, 917

HttpWebRequest class, 831
HttpWebResponse class, 831

I
IComparer interface

custom sorting, 522–523
implementing, 523–525
implementing custom comparers, 966–967
implementing multiple comparers, 525–527
overview of, 519–520

IDE (integrated development environment), 3–15
font as design element, 11–12
overview of, 3–4
rearranging windows, 9
Start Page, 4, 4–5
starting new project, 5–7, 6–7
using Windows Form Designer, 7–13, 8–11, 13

IDE (integrated development environment)
components, 5–15

Command and Immediate windows, 27–28
components, 941
Error List window, 28–29
menus, 22–26
Output window, 27
overview of, 941
Properties window, 26–27
Solution Explorer window, 26
Toolbox window, 26

Identity columns
adjusting DataSet properties, 783
BindingSource class and, 782
data-driven applications, 716–717, 717

IEnumerable interface
LINQ and, 584–586
sample application, 589–591

IEnumerator interface
enumerating collections, 520–522
overview of, 519–520

iFrames (inline frames), 854
If...Then statement, 86–87, 101–102
If...Then...Else statement, 87–90
Ignore value, DialogResult, 228, 228
IIf() function, 89

1004 IIS (INTERNET INFORMATION SERVICES) • ISNULL() FUNCTION

IIS (Internet Information Services), 863, 905–906,
906

Image class, 454–455
images (tag), 850, 853, 853
Immediate window

debugging by printing to, 27–28, 155
defined, 24

Inches application, TrackBar, 200–201
Include method, EDM, 759–761
increment variable, For...Next loops, 93–95
Indent property, TreeView, 290
Index command, 26
IndexOf method

applying to any string, 149
features of, 469
searching arrays, 495–496
searching collections, 508–509

IndexOfAny method, 469
Infer option, 55–59, 942
Infinity value, 46–49
inheritance

adding between entities, 743–747
class-related modifiers and, 418–420
designing with, 402–407, 403
Entity Framework and, 730–731, 975
finding entity of specific type, 753–754
how to apply, 401–402
InheritanceKeywords application, 420–423
overview of, 400
sample application, 423–428
understanding, 959

InheritanceKeywords project, 420–423
Inherits statement, 419, 959
InitialDirectory property, 263–264
initialization

ArrayList collection, 505–506
arrays, 76–78
multidimensional arrays, 79–80
variables, 40, 74

inline frames (iFrames), 854
inner joins, SQL, 654
<input> tag, HTML, 856
Insert method

adding items to collection, 503
features, 470, 474
manipulating Items collection, 186

Insert Snippet, IntelliSense, 23, 32–33
INSERT statement, rows, 660–661
InsertRange method, collections, 503

instance methods
custom classes, 338–342
shared methods vs., 395–396

Integer values, Unicode or ANSI, 52
Integer variables, 41
IntegralHeight property, 183
integrated development environment. see IDE

(integrated development environment)
IntelliSense submenu, Edit, 22–23, 23
interceptors, 937
InterestRate argument, Pmt() function, 132–133
interface

data-bound applications. see data-bound
applications, interface design

defined, 519–520
designing modern, 12
GUI. see GUI (graphical user interface) design

Internet Explorer
script debugging, 866, 866
WebBrowser and, 816

Internet Information Services (IIS), 863, 905–906,
906

Interval methods, TimeSpan, 488
intervals, TimeSpan, 486, 487
IO namespace

Directory class in, 441, 441–442
manipulating folders and files in, 960–961
overview of, 440, 441
streaming data with, 445–446
writing data to file with, 960

IO.Directory class, 441, 441–442
IO.DirectoryInfo class, 443–444
IO.DriveInfo class, 442, 444
IO.File class, 442, 443
IO.Path class, 444, 445
irregularly shaped controls, 379, 379–382
Is operator, Minimal class, 322–323
ISBNCheckDigit() function, 113–115
IsContactNameNull method, DataRows, 709
IsDate() function, validating user input, 71
IsDbNull method, DataReader, 677
IsLeapYear method, 479
IsLetter/IsDigit/IsLetterOrDigit methods,

464, 465–466
IsLower/IsUpper methods, 464, 464
ISNULL() function

DataRows, 709
selection queries, 650
T-SQL, 709

ISNUMERIC() FUNCTION, VALIDATION • LINQ (LANGUAGE INTEGRATED QUERY) 1005

IsNumeric() function, validation, 71
IsOnDropDown property, 246
_IsPostBack() function, 879
IsPunctuation/IsSymbol/IsControl methods,

464, 465
IsWebBrowserContextMenuEnabled property,

818, 819
Item property, Items collection, 297
Items collection, 184–187, 297
Items Collection Editor, 245, 245
Items property

ComboBox control, 18, 19
defined, 185
populating control at design time, 183

J
JavaScript

AJAX. see AJAX (Asynchronous JavaScript
and XML)

conforming to XHTML case syntax, 847
displaying code errors in WebBrowser,

818–819, 819
embedding into HMTL pages, 861–862,

861–863
JavaScript Bible, Sixth Edition (Goodman and

Morrison), 862
JavaScript Object Notation (JSON), 827
Join method, 470
join table, 730
joins, 653–656
JSON (JavaScript Object Notation), 827

K
key fields, 633
keyboard events, 861
keyboard shortcuts, 153, 818
KeyPress event, 15–16, 152, 176–177
KeyPreview property, 152, 208–209
keys

capturing, 176–177
capturing function, 177–178
Dictionary collection, 510–512
foreign, 633, 633
handling, 213–214
processing from within code, 214–216
SortedList collection and, 518–519
using Access and Shortcut, 247–248

keystrokes, at form level, 152

KeyUp/KeyDown events, 177–178, 181–182, 213–214
known issues, 155

L
Label control

address visualization form, 834, 835
consuming web service, 907
LoanCalculator GUI, 134, 134
MathCalculator GUI, 145

Label3D control
Changed events, 375–376
designing, 370–374
in other projects, 378, 378
overview of, 368–369, 369
specifications, 369–370
testing, 374, 374–375

LabelEdit property, ListView, 295
lambda expressions, 557–559, 559
Language Integrated Query. see LINQ (Language

Integrated Query)
language variable, 17, 17
LargeChange property, ScrollBar, 198
LargeChange property, TrackBar, 200–201
LastIndexOf method

features, 469
searching arrays, 495–496

LastIndexOf method, collections, 508–509
late-bound variables, 398–399
leaf nodes, tree structure, 287–288
left joins, SQL, 653
Left value, Alignment property, 294
LengthUnits project, 348–351
LengthUnits sample project, 351
less than (<) character, XML, 531
lifetime, variable, 73–74, 73–74
lightweight web services, 827
LIKE operator, 649, 649–650
line break tag (
), 850
Lines property, 166
<link> tag, HTML, 857
LinkedDataTables project, 791–792, 791–794,

800–801
links, 850–851. see also HTML (Hypertext Markup

Language)
LINQ (Language Integrated Query)

building Windows client, 930–932
components, 580–581
creating cart web form, 886–888
data binding with, 808–810, 809

1006 LINQ TO OBJECTS • LOADPROPERTY METHOD, WINDOWS CLIENT

to DataSet, 581
to Entities, 581, 752–754
filtering data with eSQL dynamic query vs.,

977–978
overview of, 577
performing simple queries, 970
queries, 578–579

LINQ to Objects
aggregating with, 587–589
anonymous types/extension methods, 583–584
examples, 589, 589–591
grouping and aggregating, 591–593
LINQ component, 580
overview of, 581–582
querying arbitrary collections, 584–586
transforming objects, 593–597, 596

LINQ to SQL
accessing tables. see tables, accessing with

LINQ
Classes component, 580–581, 615–618, 615–618
DataContext object, 618
implementing data-access layer, 697–699
processing relational data with, 971–972
retrieving data with ExecuteQuery method,

613–615
sample application, 609–613

LINQ to XML
adding dynamic content to XML, 599–601
consuming web services, 895, 895–896
LINQ component, 580
overview of, 597–598
transforming XML documents, 601–605, 602
working with XML files, 605–609, 606, 970–971

List class
adding/removing items from, 502–505
collection initializers, 505–506
creating collections, 501–502
extracting items from, 505–506
iterating through collections, 509–510
sorting collections in, 507–508
XML serialization of, 567–569

list controls, customizing, 382–385, 383
List Members, IntelliSense, 22–23, 23
list structure, ListView, 288–289, 289
List value, View property, 293
ListBox control

adding, editing and deleting contacts from,
328–330

ArraySearch application, 496, 496–497

customizing rendering of items, 958–959
for data storage/as navigational tool, 331
Demo application, 188, 188–191
designing owner-drawn, 382–385, 383
ListBoxFind application, 191, 191–193
locating item in, 947
manipulating Items collection, 184–187
overview of, 182, 182–183
properties, 183–184, 184
revising Contacts project, 325–328
selecting items, 187–188

ListBox Demo project
Add Item buttons, 189
moving items between lists, 190
overview of, 188, 188–189
removing items from two lists, 189–190
searching ListBox, 191

ListBoxFind application, 191, 191–193
lists, HTML, 851, 855–856
ListView control

Columns collection, 295–296, 296
CustomExplorer application, 299–300, 300
items and subitems, 296, 296–297
Items collection, 297
list structure, 289
nested loop example, 101
populating with data, 952
processing selected items, 299
properties, 293–294, 293–295
reference types, 392–394
SubItems collection, 298–299
tree and list structures, 288–289
with TreeView control, 286, 286–287

ListViewItem Collection Editor dialog box, 296,
296–297

Load DataSet button, 718, 719–721
Load event handler, 20, 787
Load method, EDM, 761–762
LoadFile method, RichTextBox, 274–275, 275
loading, querying Entity Data Model, 761–763
loading forms

forms vs. dialog boxes, 226–229, 227–228
multiple instances of single form, 226
MultipleForms project, 229–233, 230
overview of, 223–224
sharing variables, 225–226
Startup Form, 224–225

LoadProperty method, Windows client, 930

LOANCALCULATOR PROJECT • METHOD ATTRIBUTE, HTML FORMS 1007

LoanCalculator project
building loan calculator, 130–131
designing user interface, 133–136
how it works, 131–133, 132
programming, 136–140, 137
validating data, 140, 140–144, 143

local variables, lifetime, 73, 73–74
Location property, 209
Locked property, 164
logical model, EDM structure, 739
login controls, 870, 871, 874
long menus, 249, 249
Long variables, 41
lookup columns

displaying in DataGridView, 798, 798–799
editing in hierarchical tables, 799–801, 800

loop statements
Do...Loop , 96–98
For Each...Next, 95–96
For...Next, 93–95
nested control structures, 99–102
using Exit and Continue statements, 102
While...End While, 98–99

M
Macros command, 25
Main() subroutine, 31
Mandatory/MandatoryColor properties, controls,

360–361
many-to-many association

between entities, 748–749
Entity Data Model, 975–976
Entity Framework, 730, 730
generating database structure, 751

many-to-many relationship
defined, 639
relating two tables with, 972

mapping, Entity Framework inheritance, 744–747
Mapping Details window, EDM diagram, 733, 733
Mapping Specification Language (MSL), EDM

structure, 739
.master filename, 874
master pages, 874–875, 983
Mastering Integrated HTML and CSS (DeBolt),

848, 860
materialize, EDM, 759–760
math operations, coding, 149, 149–152
MathCalculator project, 144–158

basic debugging, 152–155

coding math operations, 149, 149–152
designing user interface, 145–146
exception handling, 155–158
overview of, 144–145, 145
programming, 147–149

MathOperator variable, 149–152, 154–155
MAX() function, aggregates, 652
Maximize command, 204, 204
MaximizeBox property, 207
MaximizeSize property, 207–208
Maximum property, ScrollBar, 197–198
MaxLength property, 162–163
MaxSize property, FontDialog, 260
MaxValue property, TimeSpan, 486, 486
MeasureItem event handler, 382–383, 958
MeasureString method, 451–452, 459–460
media, embedding in web page, 851
members

BindingSource class, 781
variable, 61
WeatherForecast class, 897–898

memory leak problem, exception handling,
156–157

menus, designing
adding/removing commands at runtime,

250–251
creating context menus, 251
creating short and long, 249, 249
menu editor, 243–246, 244–245
overview of, 243
programming menu commands, 246–247
with ToolStripMenuItem events, 949–950
with ToolStripMenuItem properties, 246
using access and shortcut keys, 247–248

menus, IDE, 22–26
Data, 25
Debug, 25
Edit, 22–24
File, 21–22
Format, 25
Help, 26
Project, 24–25
Tools, 25
View, 24
Window, 25

Menus & Toolbars tab, Toolbox window, 26
<meta> tag, HTML, 849
Method attribute, HTML forms, 854

1008 METHODS • MY.WEBSERVICE COMPONENT

methods
custom class, 954
data-type conversion, 62, 62–63
documenting overloaded, 124–125
Request object, 876
Response object, 877
Server object, 878
Session object, 878
Trace object, 879
variable, 61
WCF web service, 914–915
WebBrowser control, 821–822
WebClient class, 828–829

MetricUnits class, 348–351, 351
microformats, 863
Microsoft IIS 7 Implementation and Administration

(Mueller), 905
MicrosoftReportViewer, 871
Millisecond(s) property

DateTime class, 478
TimeSpan value, 487

Min() function
calculating aggregates, 652
implementing arguments, 106–108
overloaded implementations of, 119–120

Minimal class
adding code to, 311–313
auto-implemented properties, 319–320
building, 308–311, 309
custom enumerations, 323–325, 325
customizing Equals method, 321–322
customizing ToString method, 320–321
implementing read-only properties, 317–318
Is operator, 322–323
shared variable, 341–342
throwing exceptions, 315–316
using property procedures, 313–314

Minimize command, Control menu, 204, 204
MinimizeBox property, 207
MinimizeSize property, 207–208
Minimum property, ScrollBar, 197–198
MinSize property, FontDialog, 260
Minute(s) property

DateTime class, 478
TimeSpan, 487

MinValue property, TimeSpan, 486, 486
missing information, Nullable variables for, 391
mobile phones, accessing web, 846
Model Browser window, EDM diagram, 733

modifiers, class-related, 418–420
module-level scope, 72
monthly payments

building loan calculator GUI, 132–133
calculating using code snippet, 139–140
programming loan calculator GUI, 136–140,

137
validating data, 140, 140–144, 143

MonthName() built-in function, 112
mouse events, HTML, 861
Move command, 204, 204
Move method, 441, 442, 442–443
MoveNext method, collections, 520–522
MsgBox() function, 17
MSL (Mapping Specification Language), EDM

structure, 739
MultiColumn property, 183–184
multidimensional arrays, 78–79, 78–81
MultiExtended property, SelectionMode, 184
Multiline property, 12–13, 13
MultiLine property, 162
multiple forms, 948–949
multiple result sets, 679–680
MultipleFiles project, 265, 265–266
MultipleForms project, 229–233, 230
MultiSelect property

ListView control, 295
OpenFileDialog control, 950
OpenFileDialog/SaveFileDialog controls, 264
SaveFileDialog control, 264

MultiSimple property, SelectionMode
enumeration, 184

MustInherit keyword, 418
MustOverride keyword, 419
My component

handling files, 959–960
how to apply, 439–440
overview of, 436
subcomponents of, 436–439, 438
using, 33–36

My.Application component, 33–34, 436
MyBase keyword, 419, 422–423
MyClass keyword, 422–423
My.Computer component, 33–35, 437–438
My.Forms component, 35, 438
My.Settings component, 35, 438, 438–439
My.User component, 35, 439
My.WebService component

adding code-behind, 909–910, 910

NAME ATTRIBUTE, <A> TAG • NUMERIC VALUES, DATES AS 1009

adding simple AJAX implementation, 910–912
adding web reference, 908–909, 909
building, 904–905
consuming, 906–907, 907
defined, 35
deploying, 905–906, 906
functions of, 439
overview of, 903

N
name attribute, <a> tag, 851
Name attribute, HTML forms, 854
named arguments, 116–117
Named Pipes, 917
NamedColor property, ColorEdit control, 366–367
naming conventions

changing name of controls, 16
constants, 74
functions, 105
LoanCalculator TextBox control, 134, 134
typed DataSets, 773
variables, 37, 39–40
WCF web service, 918, 918–919

NaN value, 46–48
narrowing conversions, 64–65
Navigate method, WebBrowser, 817, 821
Navigating event, WebBrowser, 822
navigation

accessing tables with LINQ, 620–624
defined, 868
enhancing tools, 789–791
ListBox control, 331
master page, 874
overview of, 870
through DataSet, 711–714, 713
WebBroswer events, 822
WebBrowser control, 979–981, 980
WebBrowser methods, 821–822

NegateNumber method, Minimal class, 311–313
nested control structures, 99–102
nesting classes, 344–347
New() subroutine, 954–955
New command, 170, 244
New Connection button, Data Source

Configuration Wizard, 770–771
New keyword

creating ArrayList class, 501–502
creating variables as true objects, 81
declaring object variables, 388–389

with Minimal class, 312–313
multiple instances of single form, 226

new order, databases, 625–628, 627
New() procedure, 388
New Project dialog box

building console application, 30–32, 31
choosing ASP.NET web application, 864, 865
creating new EDM, 734
starting new project, 6, 6

New() subroutine, 331–333
New Web Site dialog box

choosing ASP.NET website, 864, 865
consuming web service, 907
developing stand-alone web service, 904
setting up ASP.NET web service, 901

New Web Site option, File menu, 864
newOrder variable, 695–697
Next method, System.Random class, 118–119
nodes

adding at design time, 290–291, 291
adding at runtime, 291–293
in tree structure, 287, 287–288

Nodes collection, 292–293
Nonclickable value, HeaderStyle property, 294
nondeterministic lifetime, objects, 393
None value

DialogResult enumeration, 228
FormBorderStyle enumeration, 207, 207
HeaderStyle property, 294

NonRectangularControl project, 379–382
<NonSerialized> attribute, XML, 562–563
normalization, 632
Notepad2, 848
NotInheritable keyword, 418
NotOverridable keyword, 419
Now() function, 53
null values

in data-driven applications, 709–710
vs. empty strings, 675
in SQL, 650

Nullable variables, OOP, 390–391
NullValue property, DataSet, 782
Num2String method, 342
Number Lines command, 170, 172
numbered lists (...), 851
numbers

formatting, 65–68, 66–67
in XML documents, 537–538

numeric values, dates as, 483–485

1010 NUMERIC VARIABLES • OOP (OBJECT-ORIENTED PROGRAMMING)

numeric variables, 41–49
Boolean, 50
Byte, 49
Decimal data type, 44–46
double-precision numbers, 41–44
formatting numbers, 65–68, 66–67
Infinity and NaN, 46–49
Integer, 41
overview of, 41
Signed Byte, 49
single-precision numbers, 41–44
type characters, 45, 45
types of, 42

NWOrders application
application’s interface, 690–691, 690–693
developing, 689
implementing with custom objects, 693–697,

697
implementing with LINQ to SQL, 697–699
TransactionScope class and, 699–701

O
Object icon, Data Source Configuration Wizard,

770, 771
Object Services, Entity Framework, 739–743
object variables (variants)

objects vs., 388–389
overloading of, 352–353
overview of, 59–60

ObjectContext class, 763–766
ObjectQuery class, 758–759
objects

ASP.NET, 875–876
basic data types vs., 61
building Minimal class. see Minimal class
classes vs., 305–308, 387–388
constructors, 331–333
Garbage Collector removing, 393–394
nesting classes, 344–347
object variables vs., 388–389
operator overloading. see operator overloading
overview of, 305
serialization of individual, 571–573
StringTools class, 342–344, 344
transforming collections of, 593–597, 596
variables as. see variables as objects
XML serialization of, 562–563

Objects, LINQ to
aggregating with, 587–589

anonymous types/extension methods, 583–584
examples, 589, 589–591
grouping and aggregating, 591–593
LINQ component, 580
overview of, 581–582
querying arbitrary collections, 584–586
transforming objects, 593–597, 596

offending operation (statement), 158
Office tab, Start page, 5
OfType operator, 753–754
OK value, DialogResult enumeration, 228,

228–229
One property, SelectionMode enumeration, 184
OneClick value, Activation property, 294
one-dimensional arrays, 78, 78
one-to-many association

defined, 639
Entity Data Model, 975–976
establishing between entities, 748

online ordering application, 879–891
creating cart web form, 886–891, 891
creating Products web form, 880–883, 882
creating project, 880
creating Quantity web form, 883–886, 885
overview of, 879

online references
AJAX tutorial, 863
ASP.NET AJAX Control Toolkit, 871
Cascading Style Sheets, 860
eSQL language, 755
Expression Blend, 12
Google Maps service, 833
GUI guidelines for Windows 7 and Windows

Vista, 133
HTML, 848
HTML text editors, 848
HTML text management tags, 850
IIS, 905
Internet Information Services, 905
JavaScript tutorial, 863
microformats, 863
request/response headers, 828
Yahoo! badges, 823
Yahoo! Geocoding API, 832

OnPaint method, controls, 372–373
OnQueryOrders function, 937–938
OOP (object-oriented programming)

Class Diagram Designer, 429
classes vs. objects, 387–388

OPEN COMMAND • PEN CLASS 1011

class-related modifiers. see class-related
modifiers

early vs. late binding, 398–399
extension methods, 407–411
inheritance. see inheritance
InheritanceKeywords project, 420–423
objects vs. object variables, 388–389
polymorphism. see polymorphism
properties vs. fields, 395
reference types, 392–394
shared vs. instance members, 395–396
type casting, 397–398
uninitialized and Nullable variables, 390–391
value types, 391–392
variable types, 399–400

Open command, 170, 244
Open dialog box, 265, 265–266
OpenFile method, 264–265
OpenFileDialog control

function of, 254, 254
overview of, 261, 261–262
prompting users for filenames with, 950
properties, 262–265

OpenRead method, WebClient class, 829
OpenReadAsync method, WebClient class, 829
OpenRead/OpenText methods, 442, 443
Operand1 variable, 149–152, 153–154
Operand2 variable, 149–152, 153–154
operator overloading

addition and subtraction operators, 348–351,
351

overview of, 347–348
unary operators, 351–352
variants, 352–353

optimistic concurrency, 784, 784–785
Option Explicit statement, 56
Options command, 25
Options dialog box

customizing work environment, 29–30, 29–30
setting variable-related options, 56–57, 57

order, new, 625–628
ORDER BY clause, rows, 650–651
Order class, 688
Order Details table, 637, 638
Orders table, 637, 638
Others window command, View, 24
Outlining submenu, Edit, 24
output, sending to Intermediate window, 27
Output window, 24, 27

overflow error, 142–143, 143
overloaded functions, 945
overloading operators, 118–125, 120, 123–124,

955–956
Overridable keyword, 414–415, 419
Overrides keyword, 69, 320–321, 420
owner-drawn controls, 382–385, 383

P
padding, HTML tables, 852
PadLeft/PadRight methods, 472
Page Color command, 170
page construction, HTML, 848–849, 849
page formatting, HTML, 853–854, 854
page geometry, printing, 458–459
PageSetupDialog control, 457–458
Paint event handler, 223, 380–381, 963
painting, Framework

drawing methods, 449–453, 453
generating gradients, 453–454
generating printouts, 460, 460–462
Graphics object, 446–447
Image class, 454–455
overview of, 446
Pen/Brush classes, 449
Point/Rectangle classes, 447
Size/Color/Font classes, 448

ParamArray keyword, 115–116
Parameter class, 669–670
Parameter Info feature, IntelliSense, 23, 133
parameterized constructors, 331–333, 388
parameterized queries, 674–675
parent class keywords, 418
parent class member keywords, 419–420
parent nodes, 288
Parse method, 53–54, 477–478
passing arguments

functions returning arrays, 117–118
named arguments, 116–117
unknown number of, 115–116
by value vs. reference, 108–111

PasswordChar property, 164
passwords, typed DataSet, 772
Paste command, 170–171, 170–171, 244
Paste method, RichTextBox control, 276–277
Path class, 444, 445
PathSeparator property, TreeView, 290
PDAs, accessing web, 846
Pen class, 449

1012 PERCENT (%) WILDCARD CHARACTER • PROPERTIES

percent (%) wildcard character, 649
Period button, 146, 149
persisting data, 559
picture numeric format strings, 67, 67–68
PictureBox contol, 218–219
pixels, creating graphics, 454–455
PlainText format, 275
Play method, My component, 33–34
Plus button, 149–150
Pmt() function

as built-in function, 111–112
loan calculator GUI, 132–133, 139–140

Point class, graphics, 447
polymorphism

building Shape classes, 413, 413–416
overview of, 411–413, 959
testing Shape classes, 416–417

postback, 879
pound (#) character, 53, 66, 649
predicates, 409–410
primary keys

creating, 735
identifying entities by, 726
in relational databases, 633, 633, 640
using Social Security number as, 726–727

Print command, 170, 244
Print method, WebBrowser, 822
PrintDialog control, 457
PrintDocument control, 455–457, 456
printing

basic methods, 459–460
generating simple printout, 963–964
to Immediate window, 155
overview of, 455
page geometry, 458–459
PageSetupDialog control, 457–458
PrintDialog control, 457
PrintDocument control, 455–457, 456
PrintPreviewDialog control, 458

Printing tab, Toolbox window, 26
printouts, 460, 460–462
PrintPage event handler, 456, 456–457, 461–462
PrintPreviewDialog control, 458
Private keyword, 419
problem domain, 726, 728
procedures

functions, 104–106
subroutines, 103–104
writing and using, 102–103

Process menu commands, TextPad application,
171–172

product orders. see NWOrders application; online
ordering application

product storage, 402–407, 403
Products table, 636, 636
Products.aspx web form, 880–883, 882
ProductStock property, 344–345
‘‘program to an abstraction’’ principle, 731–732
‘‘program to an interface, not an implementation’’

principle, 731
programming

arguments. see arguments
flow-control. see flow-control statements
LoanCalculator GUI, 136–140, 137
MathCalculator GUI, 147–149
writing and using procedures, 102–106

programming, with ADO.NET
action queries. see action queries
basic data-access classes. see data-access classes
databases. see databases
overview of, 631
SQL. see SQL (Structured Query Language)
stream- vs set-based data access, 662

progress events, 333
Project menu, 24–25
Project Properties command, 24
projects

building own classes, 952–953
creating first VB application, 13–18, 14–15
creating user friendly application, 18–19, 18–21
starting new, 5–7, 6

Projects and Solutions options, 29–30, 30
properties

adding to entities, 747–748
autocomplete, 179–180, 179–180
auto-implemented, 319–320
binding hierarchical tables, 791–792, 792
calculating values on fly, 318
column appearance, 795
control appearance, 8–11, 10
control function, 12
custom classes, 954
DataColumn class, 707–708
DataReader object, 676–677
DataSet state members, 712–713, 713
DateTime class, 478–479
displaying in Solution Explorer window, 26
fields vs., 314, 395

PROPERTIES WINDOW (PROPERTIES BROWSER) • RELATIONSHIPS 1013

FocusedTextBox control, 363–364
Form object, 204–209, 205, 207
implementing read-only, 317–318
implementing with procedures, 313–314
items in EDM diagrams, 733, 733
ListBox/CheckedListBox/ComboBox control,

183–184, 184
ListView control, 293–294, 293–295
Request object, 876
Response object, 877
Server object, 877
Session object, 878
SqlDataAdapter object, 703, 703
TextBox control, 947
TextBox control basic, 162–164
text-manipulation, 165–166
text-selection, 167–168
TimeSpan class, 486–488
Trace object, 879
TreeView control, 289, 289–290
variable, 61
WebBrowser, 816–821
WebClient class, 827–828

Properties window (Properties Browser), 26–27
property procedures

auto-implemented properties, 319–320
defined, 954
implementing properties with, 313–314
implementing read-only properties, 317–318
throwing exceptions, 315–316

Protected/ProtectedFriend keywords, 419, 420
prototypes, 131
proxy, Windows client, 928–930, 929
Public keyword, 225–226, 419
Public statement, 75–76
Public variables, 73
Publishers table, 640
Pubs database, 633–635, 635, 638–640, 639
pushpin icon, 11

Q
Quantity.aspx web form, 883–886, 885
queries

action. see action queries
Entity Data Model, with eSQL, 754–758, 755
Entity Data Model, with LINQ to Entities,

752–754
Entity Data Model, with ObjectQuery class,

758–759

Entity Framework options, 731
selection. see selection queries
types of SQL, 643
using Query Designer of Visual Studio,

644–645, 645
using SQL Server Management Studio,

643–644, 644
Query Builder tool, 641
Query Designer of Visual Studio, 644–645, 645
QueryInterceptor attribute, 937–938
QueryString property, WebClient class, 827
Queue collection, 519
Quick Info, IntelliSense, 23
quotation mark (’’) character, XML, 531

R
radio buttons, 856
Read method, DataReader object, 676
Read Products and Related Tables button,

DataSets, 721
ReadOnly property

functions of, 164
implementing, 317–318
LoanCalculator TextBox control, 134
NamedColor property, 367

ReadOnlyChecked property, 264
Recent Projects tab, Start page, 5
RecentlyUsedList property,
AutoCompleteSource, 179

Rectangle class, 447
Redo command, 175–176, 244
Redo/RedoActionName properties, RichTextBox,

276
refactoring code, 110–111
reference

adding to remote web service, 896–897, 897
developing stand-alone web service, 908–909,

909
exploring types, 392–394
passing arguments by, 108–111

referential integrity, 640–641
Refresh Data button, 790
Refresh method, WebBrowser, 821–822
Reject Changes button, 718, 718
relational databases, 632–633, 633, 972
relationships

binding hierarchical tables, 792, 792–793
entity, 728

1014 REMOVE METHOD • SAVEFILEDIALOG CONTROL

Entity Data Model defining, 732
establishing between entity instances, 765–766

Remove method
Controls collection, 234
features of, 471, 474
Items collection, 81, 187, 297, 504
SortedList collection, 519

Remove Selected Item(s) buttons, 189–190
RemoveAt method, 187, 710–711
Replace method, 471, 474–475
Replace/Replace All buttons, TextPad application,

172–175
reporting controls, 871
Representational State Transfer (RESTful) web

service, 832
request headers, WebClient class, 828
Request object, 875, 876
Reset method, 520–522
Resize/ResizeBegin/ResizeEnd events, 222–223
Response object, 875, 877
ResponseHeaders property, WebClient class, 828
RESTful (Representational State Transfer) web

service, 832
Restore command, Control menu, 204, 204
RestoreDirectory property, 264
result variable, 151, 154
Retry value, DialogResult, 228, 228
return values

functions, 104–106
passing arguments, 115–118

Reverse method, Array class, 498
reverse-engineering, EDM, 767
ReverseString method, Minimal class, 311–313
Rich Text format (RTF)

basics, 270–271
RTFPad application. see RTFPad project

RichNoOLEObjs format, 275
RichTextBox control

advanced editing features, 275–276
appending text to, 951–952
cutting, copying and pasting, 276–277
displaying delimited data, 274
methods, 274–275, 275
overview of, 269–270, 270
RTF language, 270–271
RTFPad project. see RTFPad project
text manipulation/formatting properties, 271,

271–273

RichTextBoxStreamType enumeration, 274–275,
275

right joins, SQL, 653–654
Rollback method, Transaction object, 696
root nodes, tree structure, 287, 287
RootFolder property, FolderBrowserDialog, 267
RoundButton control, 379, 379–382
rows

adding and deleting DataSet, 710–711
creating HTML tables, 852
deleting, 659–660
editing existing, 661
grouping, 656–658
inserting new, 660–661
limiting data access, 937–938
navigation through DataSet, 711–712
rejecting changes in all, 718, 718
retrieving database update errors, 715–716
sorting with ORDER BY, 650–651
states and versions, 712–714, 713
viewing deleted, 804–808, 805
viewing update errors on, 789
working with DataSet, 708–709

RTF (Rich Text format)
basics, 270–271
RTFPad application. see RTFPad project

RTFPad project
Edit menu, 281–283
File menu, 279–281
Format menu, 283–284
overview of, 277–279
Search & Replace dialog box, 284, 284–286

runtime
adding nodes at, 291–293
building dynamic forms at. see dynamic forms
creating event handlers at, 241–242
DynamicForm project and, 236–239, 237
manipulating menus at, 248–251

S
Save button, toolbar, 787
Save DataSet button, 718, 719
SaveChanges method, 764–766, 933, 936
SaveContact function, 329–330
SaveFile method, 264–265, 274
SaveFileDialog control

function of, 255
overview of, 261, 261–262
prompting users for filenames, 950

SAVEORDER METHOD • SERIALIZE METHOD 1015

SaveOrder method, 695–696
Save/Save As commands, 170, 244
SByte data type, 42, 51
scalar property, 735–736
scancode, 177
schema, XML document, 534–537, 537
scope (visibility)

constants, 74
variables, 71–73, 72

<script> tag, HTML, 851
<script>...<script> tag, HTML, 851
ScriptErrorsSuppressed property, WebBrowser,

818, 819
scripts, inserting non-HTML code into pages, 851
Scroll event, 223
Scroll method, 206
Scrollable property, ListView, 295
ScrollBar control

Colors application, 198, 198
events, 199–200
function of, 197–198
overview of, 197
providing visual feedback to user, 947–948

ScrollBars property, 12, 163
ScrollBarsEnabled property, WebBrowser,

818, 823
Seago font, 12, 134
Search and Replace operations

RTFPad project, 284, 284–286
TextPad application, 172–175

Second(s) property
DateTime class, 478
TimeSpan value, 487

security
ADO.NET Data Services, 937–939
WebBrowser and, 816

Select All command, 170, 244
Select Case statement, 90–91
SELECT statement

Data Source Configuration Wizard, 783, 783
querying databases with SQL, 972–973
for selection queries. see selection queries

<select> tag, HTML, 855–856
SelectedIndex property, ComboBox control, 20
SelectedListItemCollection collection,

ListView, 299
SelectedPath property, FolderBrowserDialog, 267
SelectedText property

functions of, 167
RichTextBox, 271, 272

selection list, 646
selection queries

aliasing column names, 648–649
aliasing table names, 647–648
calculating aggregates, 651–653, 652
combining data from multiple tables, 647
executing with Command class, 667–668
grouping rows, 656–658
LIKE operator, 649, 649–650
limiting with WHERE, 646
not joining tables with WHERE clause, 655–656
null values and ISNULL() function, 650
SELECT statement in, 645–646
skipping duplicates with DISTINCT, 649
sorting rows with ORDER BY, 650–651
submitting queries to database in ADO.NET,

973
using SQL joins, 653–654
working with calculated fields, 651

SelectionAlignment property, RichTextBox, 271,
272

SelectionBullet property, RichTextBox, 271, 273
SelectionHangingIndent property, RichTextBox,

271, 272–273, 273
SelectionIndent property, RichTextBox, 271,

272–273, 273
SelectionLength property, 167–168, 271, 272
SelectionMode property, 184, 184, 187–188
SelectionRightIndent property, RichTextBox,

271, 272–273, 273
SelectionStart property, 167–168, 271, 272
SelectionTabs property, RichTextBox, 271, 273
selectors, 409–410
Select/SelectAll methods, RichTextBox, 275
sender argument, event handlers, 16
serialization

of collections, 573–575
of collections of objects, 567–569
of custom objects, 563–567
defined, 330
of individual objects, 562–563
other serialization types, 560
overview of, 559
process of, 560–561
types, 560, 569–571
with XMLSerializer class, 969

Serialize method, 560–561

1016 SERVER, ADO.NET DATA SERVICE • SPLIT METHOD

server, ADO.NET Data Service, 923, 923
Server Explorer tool, 641
Server object

defined, 875
methods, 878
properties, 877

server-side
maintaining state, 873–874
technologies, 863–864

Service option, Data Source Configuration Wizard,
770, 771

Session object, 875, 878
session variables, 873, 874
Set section

auto-implemented properties, 319–320
ColorEdit control, 366–367
property procedures, 313–314, 395

set-based data access, 662
Set-Cookie response header, 828
SetCurrentDirectory method, 441, 442
SetEntitySetAccessRule method, 937
SetRange method, 504
SetServiceOeprationAccess Rule method, 937
Shape classes, 413, 413–417
Shared Members sample project, 339–340
shared methods

custom classes, 338–342
instance methods vs., 395–396

SharePoint tab, Start page, 5
Shippers table, Northwind database, 638
short menus, 249, 249
Short variables, 41
short-circuiting expression evaluation, 91–93
shortcut keys, 247, 248
Show Deleted Rows button, 804–807, 805
Show Edits button, 717–718, 718, 722–723
Show navigation methods, WebBrowser, 822, 822
ShowApply property, FontDialog, 260
ShowColor property, FontDialog, 259
ShowColor() subroutine, ColorEdit, 366–368
ShowControls project, 234–236, 235
ShowDataSet() subroutine, 721
ShowDialog method, 950–951
ShowEffects property, FontDialog, 260–261
ShowLines property, TreeView, 290
ShowNewFolderButton property,

FolderBrowserDialog, 267
ShowPlusMinus property, TreeView, 290

ShowReadOnly property,
OpenFileDialog/SaveFileDialog, 264

ShowRootLines property, TreeView, 290
Signed Byte (SByte) data type, 42, 51
SilverLight applications, 894
Simple ComboBox style, 193–194, 193–195
SimpleClass project, 333–335, 334–335
SimpleDataSet project, 717–723

populating and displaying DataSet, 721
populating DataSet at client, 717, 718
saving and loading DataSet, 719, 719
setting up DataAdapters, 720–721
viewing changes in client DataSet, 717, 718
viewing edited rows, 722–723
viewing rows failing to update, 719–720, 720

single data type, 41–44
single quotes, 674–675
single-precision numbers, 41–44
SizableSizableToolWindow values, 207

of FormBorderStyle enumeration, 207
Size class, graphics, 448
Size command, Control menu, 204, 204
Size property, 209
SizeGripStyle property, 209
Skip/SkipWhile methods, LINQ, 589
SmallChange property

ScrollBar, 198
TrackBar, 200–201

SmallIcon value, View property, 293
snap lines, 14, 145–146
SnapToGrid value, Alignment property, 294
snippets. see code snippets
SOAP (Simple Object Access Protocol)

ASP.NET web services, 899–900
Discovery, 900
serialization, 560, 569–571

SoapFormatter method, 570, 572–573
Social Security number, as primary key, 726–727
SolidColorOnly property, ColorDialog, 258
Solution Explorer window, 26, 908
solutions, starting new project, 6
Sort method, 494, 507–509
Sorted property, 184, 290
SortedList collection, 518–519
Sorting property, ListView, 295
special characters

handling, 674–675
text management, 850

Split method, 470–471, 514–516

SPLITCONTAINER CONTROL • STYLES 1017

SplitContainer control, 219–221, 220–221
SQL (Structured Query Language)

data types, 677–678
executing statements, 643–645, 644–645
overview of, 642–643
processing relational data with LINQ.

see LINQ to SQL
querying databases with, 972
selection queries. see selection queries
wildcard characters, 649, 649–650

SQL, LINQ to
accessing tables. see tables, accessing with

LINQ
DataContext object, 618
as LINQ component, 580–581
LINQ to SQL classes, 615–618, 615–618
retrieving data with ExecuteQuery method,

613–615
sample application, 609–613

SQL Server
extracting data in XML format from, 605–609,

606
Management Studio, 643–644, 644
NWOrders application, 690
SQL injection attacks against, 673–674

SQL Server Profiler, 751
SQL statement, Data Source Configuration

Wizard, 783, 783
SqlConnection object, 973
src attribute, tag, 850
SSDL (Store Schema Definition Language), 739
Stack collection, 519
stand-alone web services, 903–910

adding code-behind, 909–910, 910
adding web reference, 908–909, 909
building MyWebService, 904–905
consuming MyWebService, 906–907, 907
deploying MyWebService, 905–906, 906
overview of, 903
real-world scenario, 906

Standard (web form) controls
creating web applications, 867, 867–868
defined, 867–868
overview of, 867

Standard value, Activation property, 294
Start Page, 4, 4–6
start variable, For...Next loops, 93–95
StartPosition property, 209
StartsWith method, 468

Startup Form combo box, 224–225
state, maintaining, 871, 873–874
statements, executing, 27
statements block, exception handling, 156–157
states, row, 712–713, 713
Static keyword, preserving variable lifetime, 73,

73–74
Statistics() function, 117–118
Stock Quotes project, 823–825
stocking products, 344–345
Stop method, WebBrowser, 821–822
StopWatch class, 489–490
storage

data. see DataSets
EDM schema model, 732

Store Schema Definition Language (SSDL), 739
stored procedures, 667, 670–673
stream-based data access, 662
streaming, 445–446
StreamWriter object, 960
Strict option, 55–59, 942
strictly typed variables, 57–58
String class

methods, 467–472
overview of, 466
properties, 466–467

String Collection Editor dialog box, 19, 19
StringBuilder class

efficiency of, 475–476
manipulating large or dynamic strings,

961–962
overview of, 472–473
properties and methods, 473–475

strings and characters
Char data type, 463–466, 464–465, 961
overview of, 463
String class, 466–472
StringBuilder class, 472–476, 961–962

StringTools class, 342–344, 344
strProperty, Minimal class, 311–313
structured exception handlers, 156, 946
structures

creating custom data types, 68, 68–70, 70,
942–943

using array of, 78
<style> tag, CSS, 857–858
styles

formatting with CSS, 857–858
HTML text management tags, 849–850

1018 SUB...END SUB STATEMENTS, SUBROUTINES • TEXT PROPERTY

Sub...End Sub statements, subroutines, 103–104
SubItems collection, ListView, 298–299
Submit Edits button, 718, 719–720, 723
SubmitChanges method, TransactionScope,

699–700
subroutines

accepting arguments. see arguments
functions gradually replacing, 105
functions vs., 103
passing arguments to, 945
writing and using, 103–104, 944

Subtract method
DateTime, 480
TimeSpan, 489

Sum extension method, 409–410
SUM() function, aggregates, 652
Suppliers table, Northwind database, 636, 636
synchronous methods, WebClient, 828
SystemInformation object, Form objects, 208
System.Uri class, 817

T
TabIndex property

Contacts project, 211–213
form controls, 211–212

Table attribute, LINQ to SQL, 611–613
table partitioning, 732
<table> tag, HTML, 852
<table>...<> tags, HTML, 852
TableAdapter Configuration Wizard, 783–784,

783–786
TableAdapters, 774–776, 788
table-per-hierarchy inheritance, 745
table-per-type inheritance mapping, 744–745
tables

accessing DataSet, 707–708
adding ADO.NET Data Service, 922, 922–923
adding and deleting rows, 710–711
aliasing names in, 647–648
binding hierarchical, 791–792, 791–794
combining data from multiple, 647
editing data in hierarchical, 799–801, 800
establishing relations between DataSet, 974
formatting pages in HTML, 854
generating typed DataSet, 773, 774
HTML, 852–853, 853
navigation through DataSet, 711–714, 713
not joining with WHERE clause, 655–656

rejecting changes in all, 718, 718
working with rows, 708–709

tables, accessing with LINQ, 632–633
creating a new order, 625–628, 627
navigation methods, 620–624
overview of, 619–620
updates, 624–625, 625

Tables Designer tool, 641
tags

applying styles to HTML, 857
HTML page construction, 848–849
HTML text management, 849–850
inserting dynamic content, 599–600
table, 852
transforming XML documents, 601–605, 602
XHTML, 846–847
XML documents, 530–534

Take(N),TakeWhile(Expression) method, 588
target attribute, <a> tag, 851
<td> tag, HTML, 852
<td>...</td> tags, HTML, 852
testing

ASP.NET web service, 901–902
ColorEdit control, 368
custom comparers, 526–527
custom Windows controls, 374, 374–375
FocusedTextBox control, 362, 362–363
for Infinity or NaN value, 48–49
Shape classes, 416–417
short code segments with console applications,

32
StringTools class, 343–344, 344
using Boolean variables in, 50
WCF web service, 916, 919–920, 920
web services, 905, 906

text
formatting on web. see HTML (Hypertext

Markup Language)
managing with HTML tags, 849–850
manipulation properties, 165–166
selection properties, 167–168
String data type storing only, 50–51

Text Color command, 170
Text control, 855
text editors, 163–164, 848
Text property

ComboBox, 21
functions of, 165–166
ListBox/CheckedListBox/ComboBox, 184

TEXTALIGN PROPERTY • TREEVIEW CONTROL 1019

TextAlign property, 162
<textarea> tag, HTML, 855
TextBox control

autocomplete properties, 179–180, 179–180
basic properties, 162–164
capturing function keys, 177–178
capturing keystrokes, 176–177
data entry with, 181, 181–182, 946–947
designing address visualization form, 834, 835
designing dynamic forms, 949
designing LoanCalculator GUI, 134, 134–135
designing Windows applications, 130
enhancing, 401–402
NWOrders application UI, 690–692
overview of, 161, 162
replacing Button controls on toolbar with, 790
as text editor, 163–164
text-manipulation properties, 165–166
TextPad project. see TextPad application
text-selection properties, 167–168
undoing edits, 168
Undo/Redo commands, 175–176
writing contents to file with IO namespace, 960

TextChanged event, dynamic forms, 949
TextPad application

editing commands, 169–171, 170–171
overview of, 168–169, 169
Process and Format menus, 171–172
Search and Replace, 172–175

TextTextOLEObjs format, 275
<th> tag, HTML, 852
<th>...</th> tags, HTML, 852
thin client, 894
TickFrequency property, Inches application,

200–201
Ticks property

DateTime, 479
TimeSpan, 487

TicksPerDay/TicksPerHour properties,
TimeSpan, 486, 486

Tile value, View property, 293
time events, 333
TimeOfDay property, 478
TimeSpan class

defined, 53–54
methods, 488–489, 489
overloading operators in, 347–348
overview of, 485–486
properties, 486–488

StopWatch class, 489–490
timing operation with, 962

<title> tag, HTML, 849
Title/TitleAuthor tables, 638, 639, 639
Today() function, 53
ToLower/ToUpper methods, 464, 465
toolbars

designing data-driven interfaces, 787–787
enhancing navigation, 789–791
toggling IDE, 7

Toolbox, Windows Forms, 7–8, 8, 22
Toolbox window, 26, 733
Tools menu, 25
ToolStripMenuItem class, 246
ToolStripMenuItem object, 949–950
Top value, Alignment property, 294
TopMost property, 209
ToString method

Char data type, 464, 465
customizing, 320–321
DateTime class, 480
features of, 475
formatting numbers, 65–66, 66
overriding default implementation of, 69
standard numeric format strings, 66, 66–67

TotalSize/TotalFreeSize properties, 442, 444
ToTraceString method, ObjectQuery, 758–759
<tr> tag, HTML, 852
<tr>...</tr> tags, HTML, 852
Trace object, 875, 879
TrackBar control

defined, 947
function of, 200
Inches application, 200–201
overview of, 197

transactions
ADO.NET Data Services, 934–936
implementing with custom objects, 693–697,

697
implementing with LINQ to SQL, 697–699
implementing with TransactionScope, 699–701
using in Entity Framework, 766

TransactionScope class, 699–701, 766
tree structure, TreeView, 287–288, 287–288
TreeNode Editor dialog box, TreeView, 290–291,

291
TreeView control

adding nodes at design time, 290–291, 291, 952
adding nodes at runtime, 291–293

1020 TRYCAST() FUNCTION • VALUES

CustomExplorer application, 299–300, 300
customizing, 382–383
with ListView control, 286, 286–287
properties, 289, 289–290
tree structure in, 287–288, 287–288

TryCast() function, 397, 399
TwoClick value, Activation property, 294
type casting, 397–398, 417
type characters, 45, 45
type inference, 58–59
typed collections, 501
typed DataSets, 769–778

basic operations, 774–776, 775
binding Windows forms to, 977
creating, 976–977
filtering data with LINQ query vs. eSQL

dynamic query, 977–978
generating, 770–774, 771–774
iterating through linked DataTables, 776,

776–777
manipulating rows of typed DataTables, 777,

777–778
untyped vs., 702, 769–770

U
UDDI (Universal Description, Discovery, and

Integration), ASP.NET, 900
UI layer, 692
unary operators, 351–352
underscore (_) wildcard character, 649
Undo command, 170, 175–176, 244
Undo/UndoActionName properties, RichTextBox,

276
Unicode, Integer values, 52
UnicodePlainText format, 275
uninitialized variables, OOP, 390–391
Universal Description, Discovery, and Integration

(UDDI), ASP.NET, 900
untyped collections, 501
untyped DataSets, 702
Update method, 778
Update method, DataAdapter, 703, 715
Update rule, foreign key constraints, 792, 793
UPDATE statement, 661, 784, 784, 784
UpdateRule property, ChildKeyConstraint,

716–717, 717
updates

accessing tables with LINQ, 624–625, 625
ADO.NET Data Services, 932–933

with DataAdapter, 715–716
entity instances, 765
handling Identity columns, 716–717, 717
hierarchical DataSet, 800–801
overview of, 714–715
submitting changes in DataSet, 974–975
viewing errors on form control, 787–789, 789

Upload methods, WebClient class, 829
Upload*Async methods, WebClient class, 829
Upload*Completed events, WebClient class, 829
URI (Uniform Resource Identifier), 817
URL

configuring ADO.NET Data Service, 923–925,
924

filtering data through, ADO.NET Data Service,
926–928, 927

incorporating state information in, 873
URL property, WebBrowser, 817, 824
URL query, 832–833
usemap attribute, tag, 850
user-defined data types, 68, 68–70, 70
user-drawn controls

Changed events in, 375–376
control specifications, 369–370
creating, 957–958
designing, 370–374
overview of, 368–369, 369
testing, 374, 374–375
using in other projects, 378, 378

V
validating data

HTML forms, 820–821
LoanCalculator project, 140, 140–144, 143
writing well-behaved applications, 142

validation controls, 868, 869
Value property, ScrollBar, 197–198
value types, 391–392
values

dates as numeric, 483–485
DialogResult property, 228, 228–229
Dictionary collection, 510–512
editing DataTable rows, 708–709
FormBorderStyle property, 207, 207
handling Identity columns, 716–717, 717
multiple, retrieving from stored procedures,

670–673
null, 650, 675
Parameter class, 669–670

VARIABLES • WEB SERVICES 1021

passing arguments by, 108–111
TimeSpan, 486, 487
using variables to store, 61
variable, 37

variables
arrays. see arrays
Boolean, 50
Byte, 49
character, 51–53
coding math operations, 149, 149–152
constants, 74
creating first VB application, 17, 17
date, 53–55
declaring, 38–40
declaring and using, 942
form-wide, 150
initialization, 40
naming conventions, 39–40
numeric. see numeric variables
object, 59–60
Object, 388–389
overview of, 37–38
sharing public, 225–226
Strict, Explicit, and Infer options, 55–59, 942
string, 50–51
uninitialized and Nullable, 390–391
value, 391–392

variables as objects, 60–74
basic data types vs. objects, 61
casting variable types, 397–398
converting variable types, 62, 62–65, 64
discovering variable types, 399–400
early vs. late binding of, 398–399
examining variable types, 70–71
formatting numbers, 65–68, 66–67
lifetime, 73–74, 73–74
overview of, 60–62
scope, 71–73, 72
user-defined data types, 68, 68–70, 70

variants. see object variables (variants)
VB axis properties, 544–545
Verdana font, 12, 134
versions, row, 713–714
vertical partitioning, 732
vertical resolution, Image class, 454
View menu, 24
View property, ListView, 293, 293
view state, 864

ViewAddressOnAMap project. see address
visualization form

ViewState settings, 874
Visible property, 246
visual database tools, 641, 641
VolumeLabel property, 442, 444

W
WCF (Windows Communication Foundation) web

services, 912–920
building, 912–916, 985
configuring, 916–920, 917–920
defined, 894
overview of, 899, 912

WCF Test Client Utility, 916, 919–920, 920
WcfSvcHost utility, 916
weather forecast web services, 895, 895–898,

897–898
WeatherData property, 897–898
WeatherImage property, 898
WeatherService project, 896–898, 897
Web access, 815–843

address visualization. see address visualization
form

HttpWebRequest and HttpWebResponse
classes, 831

using Fiddler, 826
WebBrowser control, 816–821, 979–981
WebBrowser control methods, 821–822
WebClient class, 827–831, 978

Web applications, creating, 845–892. see also online
ordering application

AJAX, 863
with ASP.NET intrinsic objects, 983–984
ASP.NET objects, 875–879, 876–879
Cascading Style Sheets, 856–860, 982
controls, 867–871, 867–871
developing for web, 845–846
JavaScript, 861–862, 861–863
maintaining state, 871–874, 872–873
master page, 874–875, 983
microformats, 863
overview of, 864–866, 865–866
postback, 879
server-side technologies, 863–864
understanding HTML and XHTML, 846–847
working with HTML. see HTML (Hypertext

Markup Language)
web services, 893–938

1022 WEB SITE ADMINISTRATION TOOL • WSDL (WEB SERVICES DESCRIPTION LANGUAGE)

ADO.NET Data Services. see ADO.NET Data
Services

AJAX implementation, 910–912
ASP.NET, 898–903, 902–903, 984
composing address visualization form,

832–834
consuming, 894–898, 895, 897–898
consuming ASP.NET, 902–903, 984
stand-alone, 903–910, 906–907, 909–910
technologies associated with, 899–900
types of, 893–894
understanding, 894
using HTTP to transport data in lightweight,

827
WCF, 899, 912–920, 917–920, 985

Web Site Administration tool, 870, 870
Web tab, Start page, 5
WebBrowser control

adding functionality of, 979–981, 980
events, 822
methods, 821–822
overview of, 816
properties, 816–821
Stock Quotes project, 823–825

WebBrowserShortcutsEnabled property, 818
WebClient class

accessing Web with, 827–831, 978–979, 979
asynchronous download, 830–831
defined, 827
events, 829
methods, 828–829
properties, 827–828

Web.config file, 866
WebParts controls, 870, 872
WebRequest object, 896
WebResponse object, 896
WeekDayName() function, 112–113
Welcome tab, Start page, 5
WHERE clause, 646, 655–656
Where extension method, 409–410, 557–558
Where operator, 931
white space, 22, 850
widening conversions, 64, 64–65
width attribute, tag, 850
wildcard characters, 649, 649–650
window events, HTML, 862
Window menu, 25
windows, rearranging IDE, 9
Windows applications

basics, 941
console applications vs., 31
consuming web services, 898, 898
designing, 129–130, 941–942

Windows authentication, 772
Windows Communication Foundation. see WCF

(Windows Communication Foundation) web
services

Windows controls
anchoring, 216–217, 216–217
Checked ListBox. see CheckedListBox control
ComboBox. see ComboBox control
common dialog. see dialog controls
docking, 216, 217–218, 218
ListBox. see ListBox control
ListView. see ListView control
overview of, 161, 253
placing on forms, 209–210, 210
RichTextBox. see RichTextBox control
ScrollBar, 197–200
TextBox. see TextBox control
TrackBar, 197, 200, 200–201
TreeView. see TreeView control

Windows controls, building custom
compound controls, 364–368, 956
customizing list controls, 382–385, 383
irregularly shaped, 379, 379–382
overview of, 955–956
raising custom events, 377–378
rendering of items, 958
user-drawn. see user-drawn controls
user-drawn controls. see user-drawn controls

Windows controls, enhanced
adding functionality, 359–362, 956
building FocusedTextBox control, 357, 357–359,

359
classifying properties, 363–364
overview of, 355–357
testing FocusedTextBox control, 362, 362–363

Windows Form Designer
building interface, 7–13, 8–11, 13
first VB application, 13, 15

Windows forms. see forms
Windows tab, Start page, 5
With statement, My component, 34
word wrap, 22, 170
WordWrap property, 12, 163, 364–365
WSDL (Web Services Description Language), 900

XATTRIBUTE • ZERO PROPERTY, TIMESPAN 1023

X
XAttribute, 538–539, 545–546
XComment, 538
x-coordinate, Point class, 447
XDocument, 538
XElement class

accessing contents of XML document, 968–969
editing XML documents, 545–546, 549–550
Element method and, 543
function of, 538–539
saving/loading XML documents and, 542–543
using lambda expressions, 557–559, 559

XHTML (extensible HTML), 846–847
XML (Extensible Markup Language)

accessing contents of document, 968–969
consuming web services, 895, 895–896
creating and processing files with LINQ. see

LINQ to XML
creating documents, 967–968
as data type, 540, 540–542
editing XML documents, 545–546
EDM structure, 736–738
introduction to, 530, 530–534
LINQ to XML component. see LINQ to XML
manipulating. see XML data manipulation
numbers and dates, 537–538
overview of, 529
saving and loading, 542, 542–543
schema, 534–537, 537
serialization. see XML serialization
transforming collections into, 596–597

traversing, 543–545
web services. see ASP.NET web service

XML data manipulation
editing documents, 549–551
locating information, 547–549
overview of, 546–547
using lambda expressions, 557–559, 559
using segments as literals, 551–557, 554

XML serialization
of collections of objects, 567–569
of custom objects, 563–567
of individual objects, 562–563
other serialization types, 560
overview of, 559, 969
process of, 560–561

XMLSerializer class, 560–563, 568–569, 969

Y
Yahoo! badges, 823–825, 825
Yahoo! Geocoding API

constructing URL and query parameters,
834–836

implementing address visualization form,
832–833

invoking web service, 836–837
processing response, 837–838

y-coordinate, Point class, 447
Yes value, DialogResult, 228, 228

Z
Zero property, TimeSpan, 486, 486

The Visual Basic Book
Programmers Count On

If you want to learn how to use Visual Basic 2010, you’ve come to the right
place. New users, you’ll build a simple VB application in the very fi rst chapter,
getting you quickly up to speed on the VB user interface and simple coding.
Intermediate and advanced users, you can bypass the basics and jump straight
to building data-driven applications, working with .NET 4.0 framework,
creating rich client and web applications, programming with web services,
and much more. Packed with step-by-step instruction and real-world scenarios
for users of all levels, this book is what you need to build top-level skills in
Visual Basic 2010.

COVERAGE INCLUDES:

• Getting started with Visual Basic 2010
• Mastering VB programming essentials, including GUI design,

event-driven programming, basic Windows controls, and more
• Working with custom classes, controls, and objects
• Understanding the .NET framework, including XML, LINQ, and

storing data in collections
• Programming with ADO.NET, using the data entity model, and

understanding DataSets
• Building web applications and programming with web services
• Getting the most out of advanced Windows controls such as ListView

and TreeView controls

Master Visual Basic 2010
and .NET Framework 4.0

Understand the Core
Language and User
Interface

Find a Wealth of Content
for All Users

Create Custom, Practical,
Data-Driven Applications
and Web Apps

Reinforce Your Skills with
Real-World Examples

ABOUT THE AUTHOR

Evangelos Petroutsos is a computer engineer who has worked for the California Institute of Technology and MCI. Currently, he writes
computer books and articles, teaches networking and programming courses, and works as a computer communications consultant. He is the
author of the Sybex titles Mastering Microsoft Visual Basic 2008 and Mastering Microsoft Visual Basic 2005, among other books.

CATEGORY

COMPUTERS/Programming
Languages/Visual Basic

$59.99 US
$71.99 CAN SERIOUS SKILLS.

Visual Basic® 2010

MASTERING

Build Rich Client and
Web Applications with
Visual Basic

Work with the .NET
Framework 4.0

ISBN 978-0-470-53287-4

www.sybex.com/go/masteringvb2010
www.sybex.com

MASTERING

V
isual B

asic
® 2010

Petroutsos

spine=2.11”

Microsoft®

Microsoft®

Evangelos Petroutsos

	Mastering Microsoft Visual Basic 2010
	About the Author
	Contents at a Glance
	Contents
	Introduction
	The Mastering Series
	Who Should Read This Book?
	How about the Advanced Topics?
	The Structure of the Book
	Downloading This Book’s Code

	Part 1: Visual Basic: The Language
	Chapter 1: Getting Started with Visual Basic 2010
	Exploring the Integrated Development Environment
	Creating Your First VB Application
	Understanding the IDE Components
	Setting Environment Options
	Building a Console Application
	Using Code Snippets
	Using the My Component
	The Bottom Line

	Chapter 2: Handling Data
	Variables
	Variables as Objects
	Constants
	Arrays
	The Bottom Line

	Chapter 3: Visual Basic Programming Essentials
	Flow-Control Statements
	Writing and Using Procedures
	Arguments
	The Bottom Line

	Part 2: Developing Windows Applications
	Chapter 4: GUI Design and Event-Driven Programming
	On Designing Windows Applications
	Building a Loan Calculator
	Building a Calculator
	The Bottom Line

	Chapter 5: Basic Windows Controls
	The TextBox Control
	The ListBox, CheckedListBox, and ComboBox Controls
	The ScrollBar and TrackBar Controls
	The Bottom Line

	Chapter 6: Working with Forms
	The Appearance of Forms
	Loading and Showing Forms
	Building Dynamic Forms at Runtime
	Designing Menus
	The Bottom Line

	Chapter 7: More Windows Controls
	The Common Dialog Controls
	The RichTextBox Control
	The TreeView and ListView Controls
	The Bottom Line

	Part 3: Working with Custom Classes and Controls
	Chapter 8: Working with Objects
	Classes and Objects
	What Is a Class?
	Building the Minimal Class
	A ‘‘Real’’ Class
	Operator Overloading
	The Bottom Line

	Chapter 9: Building Custom Windows Controls
	On Designing Windows Controls
	Enhancing Existing Controls
	Building Compound Controls
	Building User-Drawn Controls
	Designing Irregularly Shaped Controls
	Customizing List Controls
	The Bottom Line

	Chapter 10: Applied Object-Oriented Programming
	Issues in Object-Oriented Programming
	Inheritance
	Extension Methods
	Polymorphism
	Who Can Inherit What?
	The Bottom Line

	Part 4: Working with the .NET Framework
	Chapter 11: The Framework at Large
	What Is the Framework?
	Using Snippets
	Using the My Component
	The IO Namespace
	Drawing and Painting
	The Image Class
	Printing
	Handling Strings and Characters
	Handling Dates and Time
	The Bottom Line

	Chapter 12: Storing Data in Collections
	Advanced Array Topics
	Collection Types
	The Dictionary Collection
	The HashTable Collection
	The SortedList Collection
	Other Collections
	The IEnumerator and IComparer Interfaces
	The Bottom Line

	Chapter 13: XML in Modern Programming
	A Very Quick Introduction to XML
	Manipulating XML with VB
	Traversing XML Documents
	VB 2010 at Work: Manipulating XML Data
	XML Serialization
	Other Types of Serialization
	The Bottom Line

	Chapter 14: An Introduction to LINQ
	What Is LINQ?
	LINQ to Objects
	LINQ to XML
	LINQ to SQL
	The Bottom Line

	Part 5: Developing Data-Driven Applications
	Chapter 15: Programming with ADO.NET
	What Is a Database?
	SQL: An Overview
	Action Queries
	Stream-versus Set-Based Data Access
	The Basic Data-Access Classes
	The Bottom Line

	Chapter 16: Developing Data-Driven Applications
	Using Business Objects
	Storing Data in DataSets
	Performing Update Operations
	VB 2010 at Work: The SimpleDataSet Project
	The Bottom Line

	Chapter 17: Using the Entity Data Model
	The Entity Framework: Raising the Data Abstraction Bar
	Putting the EDM to Work
	Reverse-Engineering an Entity Data Model
	The Bottom Line

	Chapter 18: Building Data-Bound Applications
	Working with Typed DataSets
	Data Binding
	Designing Data-Driven Interfaces the Easy Way
	The Bottom Line

	Part 6: Developing for the Web
	Chapter 19: Accessing the Web
	The WebBrowser Control
	Accessing the Web with the WebClient and HttpWebRequest/Response Classes
	Putting It All Together: The Address Visualization Form
	The Bottom Line

	Chapter 20: Building Web Applications
	Developing for the Web
	Understanding HTML and XHTML
	Working with HTML
	Cascading Style Sheets (CSS)
	JavaScript
	Microformats
	Server-Side Technologies
	Creating a Web Application
	Controls
	Maintaining State
	Master Pages
	ASP.NET Objects
	Postback
	VB 2010 at Work: Online Ordering Application
	The Bottom Line

	Chapter 21: Building and Using Web Services
	Using ASP.NET and WCF Web Services
	Understanding Technologies Associated with Web Services
	Creating a Simple ASP.NET Web Service
	Developing a Stand-Alone Web Service
	Simple AJAX Implementation
	Building and Using WCF Services
	ADO.NET Data Services
	The Bottom Line

	Appendix: The Bottom Line
	Chapter 1: Getting Started with Visual Basic 2010
	Chapter 2: Handling Data
	Chapter 3: Visual Basic Programming Essentials
	Chapter 4: GUI Design and Event-Driven Programming
	Chapter 5: Basic Windows Controls
	Chapter 6: Working with Forms
	Chapter 7: More Windows Controls
	Chapter 8: Working with Projects
	Chapter 9: Building Custom Windows Controls
	Chapter 10: Applied Object-Oriented Programming
	Chapter 11: The Framework at Large
	Chapter 12: Storing Data in Collections
	Chapter 13: XML in Modern Programming
	Chapter 14: An Introduction to LINQ
	Chapter 15: Programming with ADO. NET
	Chapter 16: Developing Data-Driven Applications
	Chapter 17: Using the Entity Data Model
	Chapter 18: Building Data-Bound Applications
	Chapter 19: Accessing the Web
	Chapter 20: Building Web Applications
	Chapter 21: Building and Using Web Services

	Index

