Karnaugh Maps
مخطط كارنوف

اعداد:محمد"آنماعيل

الا هداء

- الي كل من يسلك طريق العلم والمعرفة في هذا المجال

Venn Diagrams

- Venn diagram to represent the space of minterms.
- Example of 2 variables (4 minterms):

Venn Diagrams

- Each set of minterms represents a Boolean function. Examples:

$$
\begin{array}{ll}
\left\{a b, a b^{\prime}\right\} & \rightarrow a b+a b^{\prime}=a\left(b+b^{\prime}\right)=a \\
\left\{a^{\prime} b, a b\right\} & \rightarrow a^{\prime} b+a b=\left(a^{\prime}+a\right) b=b \\
\{a b\} & \rightarrow a b \\
\left\{a b, a b^{\prime}, a^{\prime} b\right\} \rightarrow a b+a b^{\prime}+a^{\prime} b=a+b \\
\} & \rightarrow 0 \\
\left\{a^{\prime} b^{\prime}, a b, a b^{\prime}, a^{\prime} b\right\} \rightarrow 1
\end{array}
$$

What are Karnaugh Maps?

A simpler way to handle most (but not all) jobs of manipulating logic functions.

Karnaugh Map Advantages

- Minimization can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening (graphical)

Almost always used instead of boolean minimization.

Gray Codes

- Gray code is a binary value encoding in which adjacent values only differ by one bit

2bit Gray Code
00
01
11
10

$$
\begin{aligned}
& F=A B \bar{C}+\bar{A} B C+\bar{A} \bar{B} C+A \bar{B} C \\
& F(a, b, c)=a b+\bar{b} c
\end{aligned}
$$

$$
\begin{gathered}
F(a, b, c)=\sum m(2,3,6,7) \\
F(a, b, c)=\bar{a} b+a b=b
\end{gathered}
$$

$$
F(a, b, c, d)=\sum m(0,2,3,6,8,12,13,15)
$$

$$
F=\bar{a} \bar{b} \bar{d}+\bar{a} \bar{b} c+\bar{a} c \bar{d}+a b \bar{d}+a \bar{c} \bar{d}
$$

$$
\begin{aligned}
& F(a, b, c, d)= \sum m(0,2,6,8,12,13,15) \\
&+d(3,9,10) \\
& F=a \bar{c}+\bar{a} \bar{d}+a b d
\end{aligned}
$$

Truth Table Adjacencies

Key idea:
Gray code adjacency allows use of simplification theorems

Problem:
Physical adjacency in truth table does not indicate gray code adjacency

2-Variable Karnaugh Map

A different way to draw a truth table: by folding it

Karnaugh Map

- In a K-map, physical adjacency does imply gray code adjacency

2-Variable Karnaugh Map

A	B	F
0	0	1
0	1	1
1	0	0
1	1	0

2-Variable Karnaugh Map

2-Variable Karnaugh Map

2-Variable Karnaugh Map

2-Variable Karnaugh Map

A	B	F
0	0	1
0	1	1
1	0	0
1	1	0

$$
F=A^{\prime} B^{\prime}+A^{\prime} B=A^{\prime}
$$

2-Variable Karnaugh Map

A	B	F
0	0	1
0	1	1
1	0	0
1	1	0

$$
F=A^{\prime}
$$

Another Example

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

Another Example

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

$F=A+B$

Yet Another Example

Groups of more than two 1's can be combined

Example

2-variable Karnaugh maps are trivial but can be used to introduce the methods you need to learn. The map for a 2-input OR gate looks like this:

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

3-Variable Karnaugh Map Showing Minterm Locations

Note the order of the $B C$ variables:

3-Variable Karnaugh Map Showing Minterm Locations

Note the order of the $B C$ variables:

$$
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}
$$

Adjacencies

- Adjacent squares differ by exactly one variable

Truth Table to Karnaugh Map

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Minimization Example

$$
F=A^{\prime} B+A C
$$

Another Example

$$
F=A^{\prime} C+A C^{\prime}=A \oplus C
$$

Minterm Expansion to K-Map

$$
\mathrm{F}=\sum \mathrm{m}(1,3,4,6)
$$

A		
BC	0	1
00	m0	m4
01	m1	m5
11	m3	m7
10	m2	m6

A		
BC	0	1
00	0	1
01	1	0
11	1	0
10	0	1

Minterms are the 1's, everything else is 0

Maxterm Expansion to KMap

$$
F=\Pi M(0,2,5,7)
$$

A		
BC	0	1
00	M0	M4
01	M1	M5
11	M3	M7
10	M2	M6

Maxterms are the 0's, everything else is 1

Yet Another Example

The larger the group of 1's
the simpler the resulting product term

Boolean Algebra to Karnaugh Map

Plot: $a b{ }^{\prime} c^{\prime}+b c+a$ a

Boolean Algebra to Karnaugh Map

Boolean Algebra to Karnaugh Map

Boolean Algebra to Karnaugh Map

Boolean Algebra to Karnaugh Map

Plot: $a b{ }^{\prime} c^{\prime}+b c+a$ a

Remaining spaces are 0

Boolean Algebra to Karnaugh Map

Now minimize . . .

Do you see how we obtained it?

Mapping Sum of Product Terms

The 3 -variable map has 12 possible groups of 2 spaces
These become terms with 2 literals

Mapping Sum of Product Terms

The 3-variable map has 6 possible groups of 4 spaces
These become terms with 1 literal

4-Variable Karnaugh Map

AB
CD

AB

Note the row and column orderings.

Required for adjacency

Find a POS Solution

Find solutions to groups of O's to find F' Invert to get F then use DeMorgan's

Dealing With Don't Cares

Dealing With Don'† Cares

$\mathrm{F}=\Sigma \mathrm{m}(1,3,7)+\Sigma \mathrm{d}(0,5)$

$\mathrm{F}=\mathbf{C}$
Circle the x's that help get bigger groups of 1's (or O's if POS) Don't circle the x 's that don't

Minimal K-Map Solutions

Some Terminology and

An Algorithm to Find Them

Prime Implicants

- A group of one or more 1's which are adjacent and can be combined on a Karnaugh Map is called an implicant.
- The biggest group of 1's which can be circled to cover a given 1 is called a primesimplicant.
- They are the only implicants we care about.

Prime Implicants

Are there any additional prime implicants in the map that are not shown above?

All The Prime Implicants

When looking for a minimal solution only circle prime implicants...

A minimal solution will never contain non-prime implicants

Essential Prime Implicants

CD

	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	0	1	1	1

Not all prime implicants are required...
A prime implicant which is the only cover of some 1 is essential - a minimalsolution requires it.

Essential Prime Implicants

Non-essential Prime Implicants

A Minimal Solution Example

AB				
CD	00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	0	1	1	1
10	0	1	1	1

$$
F=A B^{\prime}+B C+A D
$$

Not required...
Minimum

Another Example

AB				
CD	00	01	11	10
00	1	0	0	1
01	1	1	0	0
11	1	9	1	0
10	1	0	0	1.

Another Example

$$
F=A^{\prime} D+B C D+B^{\prime} D^{\prime}
$$

Minimum

$A^{\prime} B^{\prime}$ is not required...
Every one one of its
by multiple implicants
After choosing
essentials, everything is covered...

Finding the Minimum Sum of Products

1. Find each essential prime implicant and include it in the solution.
2. Determine if any minterms are not yet covered.
3. Find the minimal \# of remaining prime implicants which finish the cover.

Yet Another Example

 (Use of non-essential primes)| AB | | | | |
| :---: | :---: | :---: | :---: | :---: |
| CD | 00 | 01 | 11 | 10 |
| 00 | 1 | 1 | 0 | 0 |
| 01 | 0 | 0 | 1 | 1 |
| 11 | 1 | 1 | d | 1 |
| 10 | 1 | 1 | 0 | 0 |

Yet Another Example (Use of non-essential primes)

K-Map Solution Summary

- Identify prime implicants
- Add essentials to solution
- Find a minimum \# non-essentials required to cover rest of map

$$
\begin{aligned}
& n \\
& \sum_{i}^{0} \\
& \frac{1}{0} \\
& \frac{0}{0} \\
& \hline \frac{0}{1} \\
& \frac{0}{1} \\
& 0 \\
& 0 \\
& \frac{0}{0} \\
& 1
\end{aligned}
$$

5-Variable Karnaugh Map

The planes are adjacent to one another (one is above the other in 3D)

Some Implicants in a 5-Variable KMap

5-Variable KMap Example

Find the minimum sum-of-products for:
$F=\sum \mathrm{m}(0,1,4,5,11,14,15,16,17,20,21,30,31)$

5-Variable KMap Example

Find the minimum sum-of-products for:
$F=\sum \mathrm{m}(0,1,4,5,11,14,15,16,17,20,21,30,31)$

6-Variable Karnaugh Map
 CD

$C D$

CD
EF

KMap Summary

- A Kmap is simply a folded truth table
- where physical adjacency implies logical adjacency
- KMaps are most commonly used hand method for logic minimization
- KMaps have other uses for visualizing Boolean equations
- you may see some later.

