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Abstract 

The as cast microstructure of a DC cast AA3103 alloy consists of 
equiaxed grains with a cellular structure. The periphery of the 
cells contains high volume fractions of intermetallic phases and 
there are large variations in the solid solution level across the 
cells. During a typical homogenisation heat treatment the material 
is heated at 50 tol00°C/hour up to a temperature of 500-600°C 
and held there for some hours. The material is then cooled to 
room temperature (extrusion ingot) or fed into the hot-rolling mill 
(sheet ingot). A model for the metallurgical reactions occurring in 
this system is constructed based on a cylindrical cell geometry. 
The as cast microstructure is adopted from a solidification model 
(Alstruc) that predicts the micro segregation, the volume fraction 
and the composition of the primary phases. A thermodynamic 
description of the two phases Al6(Mn,Fe) and Al15(Mn,Fe)3Si is 
proposed, assuming matrix to be a dilute solution and the phases 
to be regular solutions. Fe and Mn are allowed to substitute each 
other completely. Precipitation, growth and coarsening of the 
phases are modelled individually in each position across the cell, 
each particle is designated to a size class and infinite diffusion is 
assumed inside particles. Diffusion across the cell is accounted 
for. Model results are compared with measured number density 
and size distribution of precipitates and electrical conductivity. 

Introduction 

Aluminium alloys with manganese as the main alloying elements 
(3xxx-alloys) have a wide spread application. These alloys are 
recognised to be highly cost effective and combine good corrosion 
properties and formability with moderate strength. During 
solidification Fe-rich particles form and most of the Mn will be in 
solid solution. 

During the subsequent heat treatment (homogenisation, pre-
heating or soaking) Mn diffuses into the Fe-rich particles formed 
during solidification, Mn-bearing precipitates form, and the micro 
segregation levels out. All these metallurgical processes strongly 
influence the properties during the downstream thermo-
mechanical treatment of the material. 

This work focuses on the metallurgical reactions that occur during 
the post-solidification heat treatment of an AA3103 alloy. Two 
types of intermetallic particles are found in this alloy, Al6(Mn,Fe) 
and a-Al15(Mn,Fe)3Si, see e.g. [28]. Both these phases have a 
non-stoichiometric nature where Fe and Mn can substitute each 
other almost completely. The dominating phase as-cast is the 
Al6(Mn,Fe). During heating to holding temperature Mn-bearing 
precipitates form. During holding the precipitates will coarsen and 
typically some of the Al6(Mn,Fe) (formed during solidification) 
will be transformed into Al15(Mn,Fe)3Si. In this work 
precipitation, growth and coarsening of non-stoichiometric phases 
are treated simultaneously in a domain where the solute elements 
and primary precipitates are distributed in space. 

The precipitation kinetics in Al-Mn alloys have been investigated 
by several authors [1,2,3,4,5,6]. However, very few quantitative 
data for the size and number density of secondary precipitates are 
published. Many authors have previously modelled nucleation, 
growth and coarsening of stoichiometric phases using an average 
particle size (one size "class"), see eg. [7,8,9,10,11]. To have a 
more physical model which handles nucleation, growth and 
coarsening simultaneously, size classes of secondary precipitates 
have recently been introduced [12,13,14]. In these works the size 
classes are generated during nucleation, and the particles in each 
class varies in size during the calculation. 
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The present work is based on the recent work by Myhr and Grong 
[15] where the size classes are fixed (in size). The particles are put 
into the size class corresponding to the critical radius at the time 
(and position in the DAS) and the particles grow and dissolve into 
different size classes during the calculation. In the present work 
this concept is extended to handle non-constant size class widths 
and thus obtained a substantial reduction in the CPU time. 

Model description 

Main assumptions and modelling strategy 
The domain of the model is a 2D section of a cylinder 
representing a cell, or secondary dendrite arm formed during 
solidification. The centre of the cylinder represents the material 
first to solidify, see Figure 1. The solidification model Alstruc 
[16] was used to predict the as-cast micro-segregation and volume 
fraction of the primary constituents versus solid fraction. 

Figure 1. The domain of the model presented in this work. Css is 
the matrix solid solution concentration of an element and ß is a 
phase formed during solidification. 

The main assumptions in the model are: 
1. In the thermodynamic description the matrix is assumed to be 

an ideal solution and the intermetallic particles are assumed 
to be regular solutions. 
The intermetallic particles are assumed to be semi-
stoichiometric. 
All particles are assumed to be spheres. 
The diffusion inside the particles is assumed to be infinitely 
high. 
The "invariant size" and "steady state diffusion field" 
approximations are used in the growth law. 
A weak coupling is applied between the growth of each 
particle and the "macro" diffusion in the domain. 

Thermodynamic description 
The phases in this work are assumed to be semi-stoichiometric in 
the sense that the phase is a mixture of two stoichiometric phases. 
More specific; the composition of the phases is given but Fe and 
Mn can substitute each other completely. 

If we assume the matrix to be a dilute solution the activation 
coefficient for the elements in solution equals unity and the Gibbs 
energy of the matrix is given by (1) [17]. The assumption of a 
regular solution for the intermetallic phases implies no excess 
entropy (ASxs=0) and the Gibbs energy is given by (2) [17]. 

phase 

Gmatra = Σχ"(H.~T-S,) + R^x" l n < (1) 
i i 

: £ x f ( i / , - r - S , ) + A t f x s + ^ r £ x f l n x f (2) 

Where xa
h Ht and St is mole fraction, enthalpy and entropy of 

element i in solid solution respectively, x ,· is the mole fraction of 
element i in the intermetallic phase and AHXS is the enthalpy of 
mixing. This mole fraction is in this work given by the formula of 
the phase and the site fraction of Fe and Mn. Rg is the gas constant 
and T is the temperature. For a semi-stoichiometric phase where 
Fe and Mn can substitute each other completely (2) becomes 
[18]: 

^phase JFe^Fe """ JΜη^Mn """ ^"FeJMn 

+ RgT{xß
Fe+xß

M„XfFe 1 η / Λ +fM„ \nfMn) 
(3) 

Where fFe is the site fraction Fe (fFe + fMn =1), GFe is the Gibbs 
energy for the phase without Mn and Ω is an empirical constant to 
scale the enthalpy of mixing (here assumed to be symmetrical and 
temperature independent). By combining (1) and (3) we get the 
equilibrium solubility product of the phase: 

i 

_ If fpe If Im I -f fpe -f fun \ 
_ Λ ί Έ ΛΜ« \JFe J Mn ) 

(4) 

exp 
mVifFJM 

RJ 

molecule", Cieq
a is the Where m is the number of atoms in the 

equilibrium solid solution concentration of element i in matrix (in 
wt%), xf is the atomic fraction of element i in the phase, 1, 2 and 
3 refer to the different alloying elements in the phase and KFe and 
ΚΜΠ are given by: 

K* ■ AFe exp 
B Mn 

T 
K, AMn exp 

B Mn 

T 
(5) 

The solubility product versus composition and temperature of the 
phase is therefore given by 5 parameters for each phase; AFe, BFe, 
A Mr» ΒΜΠ and Q which all should be determined experimentally. 
The values of these parameters used in this work are shown in 
Table I. 

Table I. The thermodynamic parameters for the two phases 
Al6(Mn,Fe) and Al15(Mn,Fe)3Si used in this work. 

Parameter 
AFe 

BFe 

ΑΜΠ 

ΒΜΠ 

Ω 
m 
V 
' m 
Mi 

r 

Al6(Mn,Fe) 
2.2E+3 [wt%] 

9.2E+3 [K] 
1.35E+4[wt%] 

8.5E+3 [K] 
0 [J/mol] 

7 
9.9E-6 [mVmol] 
0.034 [kg/mol] 

0.1 [J/m2] 

Al15(Mn,Fe)3Si. 
1.5E+12[wt%4] 

3.5E+4 [K] 
7E+20 [wt%4] 

4.5E+4 [K] 
0 [J/mol] 

19 
9E-6 [mVmol] 
0.031 [kg/mol] 

0.07 [J/m2] 

The chemical driving force for precipitation of one mole atoms of 
the phase is given by: 
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Table II. The molar weight, diffusion, conductivity and hardening constants of the elements used in this work, 
Element 

Al 
Si 
Fe 
Mn 

Mj [kg/mol] 
[19] 

0.027 
0.0281 
0.0559 
0.0549 

D0' [m2/s] Q' [J/mol] 
[20] [21] 

2.02E-4 136,000 
5.3E-3 183,400 
3.17E-2 217,000 

A = D· exp Q' 
RT 

L ·=■ _ 

k; [μΩm] 
[22] 

0.026° 
0.0068 
0.032 
0.033 

c; [MPa/wt%2/3] 
[23] 

9.2 

30.3 

Altenpohl gives 0.0267 for this value. 

AG„ =RT\a 
U(c-T 

K 
(6) 

If the composition of the phase and the matrix concentration (at 
the phase/matrix interface) of the other elements present in the 
phase are given (other elements than Al) it is now possible to 
derive the equilibrium concentration of Fe and Mn: 

C,. 

[Mn] 

C' 

N; \eq 

■ fm exp 

: fpe eXP 
Ω(Ι-Λ,)2 

(V) 

/ M I - 1 is the equilibrium Mn concentration with no Fe in the [Mn] 

system given by (4) and (5). In this work Ω is assumed to be zero 
(no enthalpy of mixing). This makes the exponential term in (4) 
and (7) equal to one. 

Nucleation. growth and coarsening 
The nucleation, growth and coarsening of the secondary 
precipitates are treated simultaneously in this work by introducing 
size classes of the precipitating phase [15,24]. When the phase is 
nucleated it is put into the size class that equals the critical size of 
the nuclei. The particle then moves between the size classes as it 
grows/dissolves. The modelling methodology for the size classes 
is described below. 

Only the Al15(Mn,Fe)3Si phase is assumed to nucleate during the 
homogenisation cycle. The nucleation frequency is calculated 
using the following nucleation law [25]: 

N = CN exp 
kBT exp 

t/„. 

RT 
(8) 

CN, Cg and Unuc are the nucleation law parameters. CN is 
proportional to the concentration of the precipitation elements in 
the matrix but is assumed to be a constant in this work. The effect 
of an incubation time in the nucleation is neglected. The following 
values are chosen in this work; CN=2.2E25 [m" s" ], Ce=7.3E-2 

AGh*„m
isgivenby: 

AC. 
Χβπγ7, 

3(AGm/Vmf 
(9) 

^is the surface energy of the phase-matrix interface, and V,„ is the 
volume of one mole atoms of the phase, see Table I. Misfit and 
strain energies are neglected. 

There is an analytical solution of the growth velocity of a 
spherical particle of stoichiometric composition [26]. For non-
stoichiometric particles it is necessary to account for the change in 
composition of the phase. If we assume infinite diffusion inside 
the particles we get the following equation for the growth velocity 
of a spherical particle: 

dRP _ C,-C] D, RP dC^ 
dt CN

PI-C:RP 3(C£-C*) dt 
(10) 

RP is the particle radius, Q is the average matrix concentration of 
element i in the actual DAS-position, Q is the matrix 
composition of element i at the interface between the particle and 
matrix, Dt is the diffusion coefficient of element i in the matrix 
(see Table II) a n d c i is the "normalised" particle concentration 
of element i accounting for differences in density of the phase and 
matrix. Cp- is given by the following expression: 

100%M,Fm" 
MV 

(11) 

Mi is the mole-weight of element i, Vm
a is the molar volume of Al 

(1E-5 [m3/mol] is used in this work) and Ma is the molar weight 
of Al. The molar weight and diffusivity of the elements are given 
in Table II. Since the particles are assumed to be semi-
stoichiometric the increase in the Fe and Mn concentrations in the 
particles have to be equal but with opposite signs. This together 
with (10) gives the following expression for the change in particle 
concentration of Fe and Mn: 

dC 1 C N 
PMn 

■C" 
^ M n p. 

C 
Fe 
N 
PFe 

_ r · UFe (12) 
dt R„ 1 

-x(rN -C* ) 3icN -C* ) 

At the interface of the particle the surface energy will balance the 
chemical driving force for precipitation (6) (thermodynamic 

1030 



■DMjDGCiMfeDi 3From Light Metals 2002, Wolfgang A. Schneider, Editor" 

equilibrium is assumed and strain energy neglected). 
solubility product at the surface, K , will then be: 

The the growth (or dissolution/coarsening) velocity Vk is calculated 
for each radii rk. 

K" =Kexp 
mVm2y 

R„TR„ 
(13) 

dC: 

dt 

1 d f „ dC 
= rD, 

r dr\ dr 

If the particle is stoichiometric with only one alloying element 
(13) is equal to the standard Gibbs-Thomson equation [25]. 

The treatment of the size classes and mass balance 
The diffusion equation is solved in one dimension by a finite 
element method along the radial direction from centre to the 
surface of the secondary dendrite arm: 

(14) 

where r is the radius of the dendrite arm. The distributions of the 
matrix concentrations at zero time are the as cast distributions 
from Alstruc. The same spatial discrete resolution as in Alstruc is 
applied (75 elements biased against the surface of the dendrite). In 
the time integration the time step is adjusted by a maximum 
absolute change of matrix concentration for all alloying elements 
at a radial position during one time step (0.00005wt% in the 
calculations shown here). The observed change of matrix 
concentration stems from both micro-segregation and growth of 
particles during the time step. 

In the beginning of a new time step precipitation, growth and 
coarsening of all type of particles are calculated in all the radial 
positions. The content of the alloying elements are summed up 
afterwards, and the differences are added or removed from the 
matrix concentrations before the microsegregation is calculated 
again. The sum of the matrix concentration and the amount of an 
element bound into the particles are kept track of in each radial 
position, and is given by: 

Cf' = C, + \00wt% · — · £ 
Plot ß vf 

(15) 

Where ptot is the total density (2700kg/m in this work), f is the 
volume fraction of particle type ß, and νζ, is the volume of one 
mole of phase β. The mass balance is expressed as the integral in 
space over the dendrite arm and it equals the total or the 
nominal content of the alloy element number i in the alloy. 

I X i ni y 2 n2 ΐ n3 
Γ3 

* Π4 
U 

Figure 2. Illustration of particle size classes. The size of each class 
may be biased such that small intervals are applied for small radii. 

The particles are moved between the classes based on the 
calculated velocities. In solving this problem we can take 
advantage of the fact that all velocities are negative below the 
critical size of the nuclei, and all velocities are positive above. An 
upwind solution is found by first searching for the class which 
includes the critical radii, and then by solving the transport of 
particles in both direction from this point. E.g. if the critical radii 
is located in class number 1, then V2 and V3 are positive, and the 
new number density of particles in class number 2 is calculated 
by: 

Δ«, 
V2At V2At \ V3At (17) 

Only the available number of particles is moved. In the 
calculations shown here rl is equal to 5-10"10m for the secondary 
particles, r2 is 1-10" m and the next values are calculated by 
increasing the values according to the following relation: 

1+i =rk+1.09-(rk-rk J (18) 

A number of 50 classes for the secondary precipitates is applied. 
For the primary precipitates only one size class is used. This class 
is not fixed in size but follows the particles as they grow and 
dissolve. The initial radius of the primary precipitates is set to 
4μιη in this work. 

The fraction of Mn in the non-stoichiometric particles will not be 
equal in the different size classes since the particles do not have a 
common history. After calculating the new number densities the 
new Mn fraction is calculated by a number average between "old" 
and "new" particles of the same size. 

Calculation of hardness and electrical conductivity 
A general expression for the flow stress in a material is 

σ = σ „ + σ „ + σ ■P+fM (19) 

C° 
DAS1 

jrCf"'dr (16) 

Where DAS/2 is the radius of the dendrite arm. 

The particles are distributed in a range of size classes for each 
radial position in the dendrite. This work is based on the work of 
Myrh and Grong [15] but is extended to handle non-constant size 
widths. Each class numbered as k corresponds to a selection of 
particles with radii between rk and rk+1. The number of particles 
per cubic meter inside the class is denoted nk. Then, instead of 
calculating the growth velocity of the mean size of the particles, 

where σ0 is the friction stress, ass is the contribution to the flow 
stress from atoms in solid solution, σρ is the contribution from 
particles and f[u,S) is the contribution from the dislocations. An 
approximate expression for the contribution due to particles is 
[26]: 

c ^ln[L· 
p λ { b 

where cp is a constant, G is the shear modulus, 
vector, λ is the inter particle distance and R 

(20) 

> is the Burgers 
is the average 
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radius of the phase. Similarly, the contribution from the atoms in 
solid solution can approximately be given by [24]: Experiments 

σ„, Σ^Τ (21) 

where c; is a constant for element i and Cfs is the average solid 
solution concentration of element i in the matrix. 

During solidification dislocations will form as a result of the 
uneven cooling rates in the different positions in the billet. Hence, 
during the post solidification heat treatment, recovery reactions 
will occur according to the following equation [27]: 

dp, 
dt 

-BpvDbpfn exp 
RJ 

2sinh 
ApGb*p? (22) 

The definition and values used in the equation can be found in 
Table III. The flow stress is hence given by: 

This work is concentrated on only one alloy, AA3103. The 
chemical composition of the alloy is given in Table IV. The 
material was cut from the mid radius of a 178mm diameter 
extrusion billet. 

Table IV. The chemical composition of the investigated AA3103 

Element 
[Wt%] 

Fe 
0.54 

alloy. 
Si 
0.12 

Mn 
1.06 

Others 
<0.02 

Four homogenisation treatments were applied to the material 
(started at room temperature): 

100K/h heating to 550°C-
100K/h heating to 570°C -
100K/h heating to 590°C -
100K/h heating to 610°C ■ 

•Holding at 550°C for 24h 
■ Holding at 570°C for 24h 
• Holding at 590°C for 24h 
■ Holding at 610°C for 24h 

^4crr+cpfJ^yaiMGb4p- (23) 

Table III. Definition and values of the parameters used in the 
calculation of yield stress. 

Parameter 
CP 

G 
b 
λ 

RP 

α,ι 

M 

Pi 

P°i 
Ap 

Bp 

VD 

QP 

Definition 
Particle hardening constant 

Shear modulus of Al 
Burgers vector of Al 
Average Interparticle 

distance 
Average particle radius 

Internal dislocation 
hardening constant 

Taylor factor 
Internal dislocation density 

Initial value of pt 

(Average distance between 
atoms in solid solution)/^ 

Constant in the recovery eq. 
Debye frequency 

Activation energy for solute 
diffusion 

Value 
0.29 

2.55e+4 MPa 
2.86E-10m 

λ=Ν"1/3 

Number average 
0.3 

3 
Calculated from 

J> 
Pi 

1.8E+13rn2 

A --x"~2'3 

P ~ -y M» 

2E+6 
1E+13 

210,000 J/mol 

To obtain the hardness from the calculated flow stress values the 
following empirical equation was used [24]: 

# Γ = 0.33σ + 16 (24) 

The electrical conductivity, κ, of an alloy is normally predicted 
using equation (25) [23]. Where kA1 is the electrical resistivity of 
pure aluminium, kt is a constant for element i and C/s is the 
average solid solution concentration of element i in the matrix. 
The ^-values are given in Table II. 

1 
K 

-kA!+^k,cr (25) 

During heating and holding samples were quenched and the 
precipitate size distribution and precipitate number density were 
measured in TEM. In addition, hardness and electrical 
conductivity were measured. The measurements are shown 
together with the model predictions below. 

Results 

Figure 3 shows how the secondary precipitates appeared in TEM 
during heating, quenched from 550 and 610°C. The density of 
particles is higher and the particle size is smaller in the 550°C 
sample compared to the 610°C sample. Most of the precipitates 
are plates but some rods can also be seen. The measured and 
calculated hardness during heating and holding at 550, 570, 590 
and 610°C are shown in Figure 4. A general good agreement can 
be seen except from the calculated peak during heating at around 
17000s, corresponding to around 500°C. The calculated hardness 
during holding at 550°C is generally somewhat high. Figure 5 is a 
comparison between the measured and calculated electrical 
conductivity during heating and holding at different temperatures. 
The conductivity was largely overestimated during heating at 
around 18000s, corresponding to 500-550°C. During holding the 
model predicts higher conductivity for the low temperatures. The 
agreement is however good for the highest temperature. The 
measured and calculated cumulative size distributions are shown 
in Figure 6. The measurements show a wider spread in the sizes 
compared to the calculations. 

The measured and calculated number densities of the secondary 
precipitates are shown in Figure 7. A general good agreement can 
be seen. This means that both the nucleation and coarsening are 
well reproduced in the model. The growth was however 
overestimated (too large increase in the conductivity during 
holding). 

The calculated volume fraction of the phases and the site fraction 
Mn in the phases during heating and holding at 610°C are shown 
in Figure 8 and 9 respectively. Only small changes in the volume 
fraction of the primary phases were predicted. The calculated site 
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Fv 

Figure 3. Pictures of the secondary precipitates (TEM) during 
heating (and quenching) from 550°C (left) and 610°C (right). 
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fraction Mn in the secondary precipitates was first decreasing 
during heating and thereafter increasing to 0.95. 

During holding fj^ decreased for the secondary precipitates and 
increased in the primary precipitates approaching 0.56 for 
Al6(Mn,Fe) and 0.48 for Al15(Mn,Fe)3Si after 24hours at 610°C. 

Figure 10 is a 3D plot of the solid solution level of Si versus 
DAS-position and time (heating and holding at 610°C). At the 
start of heat treatment there is a strong micro-segregation of Si 
over the DAS. During heating (before the nucleation of secondary 
precipitates starts) this segregation is levelling out. After this the 
Si content is decreasing due to precipitation and growth of the 
Al15(Mn,Fe)3Si phase. When the precipitates dissolve again (still 
during heating) the Si content increases. Finally, during holding 
the Si content decreases again due to an increase in the volume 
fraction Al15(Mn,Fe)3Si. 
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Figure 4. Measured and calculated hardness during heating 
(100K/h) and holding at 550, 570, 590 and 610°C. 

Figure 6. Measured and calculated cumulative size distribution of 
dispersoids during heating. 
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Figure 5. Measured and calculated electrical conductivity during 
heating (100K/h) and holding at 550, 570, 590 and 610°C. 
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Figure 7. Measured and calculated number density of dispersoids 
during heating and holding. 
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Figure 8. Calculated development of the volume fraction of the 
different phases during heating (100K/h) and holding at 610°C. 
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Figure 9. Calculated development of the site fraction Mn in the 
phases during heating (100K/h) and holding at 610°C. 

Figure 10. Calculated distribution of the solid solution level of Si 
versus DAS-position (axis pointing inwards) and time (axis 
pointing to the right). 

Discussion 

The thermodynamic model used in this work (equations (4)-(7)) is 
the simplest imaginable to describe non-stoichiometric phases. 
The constants in Table I are based on our available experimental 
data for these phases. The model predictions will be sensible to 
the thermodynamic description but the observed disagreement 
between measurements and calculations in this work is probably 
not due to errors in the thermodynamic description. 

The nucleation model (equation (8)) is the classical way of model 
nucleation. The equation does often have an incubation time term. 
This term was originally introduced to explain an observed delay 
in nucleation in isothermal studies. In this work a slow heating 
rate was used and the need of an incubation time is not believed to 
be necessary (equilibrium distribution of clusters during heating). 
The parameters in the nucleation law were tuned to give good 
correlation with measured number densities and will not be 
discussed further. 

The growth shortly after nucleation seems to be overestimated in 
the model, see Figure 5. The number densities are of the correct 
order but the conductivity is too high. Several possible 
explanations could be the reason for the differences between the 
measured and modelled volume fraction during early growth. We 
assume sphere particles while the morphology of the particles is 
more plate-like. The basic assumption of a stationary diffusion 
field around the particles can also be questioned. In the model the 
composition of the secondary precipitates change very rapidly 
during heating. It is difficult to imagine that the diffusion field has 
sufficient time to become "stationary" during these rapid changes. 
If there are significant strain energies or mismatch energies related 
to the growth of the precipitates this will slow down the growth. 
To obtain good correlation temperature, or size, dependent 
energies have to be introduced to reproduce the volume fraction 
precipitates for higher temperatures. Normally these energies are 
considered to be a volume constant for the phase. The precipitates 
were observed to be unevenly distributed inside the matrix 
(locally inside the DAS). In the model however the particles are 
uniformly distributed within the DAS-element and therefore have 
more matrix to grow into. All these points will slow down the 
average growth. It is also possible that the precipitates influence 
the conductivity measurements. 

Transformation of primary Al6(Mn,Fe) to Al15(Mn,Fe)3Si is 
known to occur in Al-Mn-Fe-Si alloys [28, 29]. Very little 
transformation is expected in the alloy investigated in this work. 
This is due to the high Fe and low Si content [28]. 
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