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Abstract 

In this work, a mean-field self-consistent approach 
based on a generalization of the Tanaka-Mori method is 
introduced to predict the mechanical response of polycrystalline 
Mg. The key idea is to homogenize the response of grains 
containing twin domains such that a direct coupling between the 
twin and parent domain is introduced. The work is particularly 
suited to study Mg as it allows for a direct coupling of the 
mechanical response of twin and parent domains. Such coupling 
accounts, for the first time, for relative size and shape effects on 
the development of internal strains in twin domains. 

Introduction 

Due to its low symmetry, plasticity in Mg is typically 
conveyed by the activation of different types of deformation 
modes: twinning and slip[l]. While the motion of dislocations 
mediates both mechanisms, their effects on the development of 
internal strains are different. Indeed, the motion of twinning 
dislocations engenders substantial lattice rotation. 

The role of twinning to plasticity is complex. On the 
one hand the motion of the twinning dislocations provides for a 
strain/stress relaxation. On the other hand, the new orientation of 
the lattice in twin domains can allow for the activation of 
secondary slip and twin, which can either lead to hardening or 
softening. The accuracy of the prediction of the activity of 
secondary slip and twinning is conditional on that of the 
predictions of the stress state in the twin domains. 

Recent high-energy X-ray measurements have revealed 
that at the onset of twinning, the stress state within the twin and 
parent domains can be significantly different [2]. Precisely, it was 
found that the resolved shear stress of the activated tensile twin is 
of opposite sign in the parent and twin phases. These 
"backstresses" can be rationalized by the following two 
considerations. First, at a fine length scale, it is conceivable that, 
upon penetrating the grain boundary opposite to their emission 
site, the twinning partial dislocations lead to a distortion of the 
grain boundary. Such distortion can be the source of long-range 
(back)stresses. However, adopting a reasoning based on the 
conservation of Burgers vector to estimate the energy associated 
with the distortion, it appears unlikely that the dissociation of 
twinning partial dislocations can lead to such effect. 

Second, the lattice rotation associated with twinning and 
the elastic anisotropy of hexagonal crystals yields an elastic 
constant mismatch across the twin interface. The mismatch in 
elastic constants can constrain the twin domain and be the primary 
source of back-stresses. Essentially, the process is similar to the 
volume constraint during corrosion- and described with the Pilling 
Bedworth ratio- or during phase transformation. 

While substantial effort is dedicated to the development 
of full-field methods -both finite element and fast Fourier 
transform based- to model plasticity, mean-field methods remain 
widely used. Indeed mean-field Eshelbian micromechanics 
models allow for a numerically efficient way to model plasticity 
and texture evolutions in high and low symmetry polycrystals [3. 
4]. Currently, the formation of twin domains is treated in two 
different ways whether coupling between the twin and parent 
phases is taken into account or not. In the decoupled approach, the 
mean stress and strain fields within the twin domains are simply 
obtained by solving the elementary inclusion problem of Eshelby 
-after linearization of the constitutive response- whereby the twin 
domain is embedded in a homogeneously equivalent medium. 
Effects arising from elastic mismatches between the twin and 
parent domains are thus not accounted for. In the coupled 
approach, traction continuity conditions between the twin and 
parent domains are imposed on the averaged fields in each phase. 
Therefore this coupling method is more appropriate when the twin 
domains remain relatively thin. In any case, the direct effect of 
elastic mismatches between the twin and parent phases is not 
accounted for. 

In recent work by the authors [5], a third method was 
introduced to solve rigorously a double inclusion problem. This 
topology corresponds to that of a twin domain embedded in a 
parent phase (see Figure 1). The proposed approach, basically 
extending the Tanaka-Mori method [6], and was limited to a 
purely elastic approach and to a double inclusion topology. 
Nonetheless, it was shown that large effects arising from elastic 
mismatches are to be expected. 

twin Parent 
»—. 

Figure 1: Schematic of the topological representation of grains 
containing twins. The red domain denotes the twin volume 

while the blue domain refers to the grain without twin volume 
or parent volume. 
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In the proposed work an extension of previous work is 
proposed such as to introduce the generalized Tanaka-Mori 
method in an elasto-plastic self consistent frameowork (EPSC). 

Generalized elasto-plastic Tanaka Mori method in Elasto 
plasticity 

Let us consider first the topology described in Figure 1 
whereby a grain embedded in a medium contains a twin domain -
appearing in red-. Denoting r the position vector, in an 
incremental theory the constitutive response of the material is 
written as: 

a(r) = L{r)e(r) 
(i) 

σ ε 
Here and denote the Cauchy stress and small 

L 
strain tensors, respectively. denotes the tangent modulus of the 
material. In what follows, t and g used either as subscripts or 
superscripts will refer to the twin domain and grain phase -
including the twinning domain-, 'gt' is used to denote quantities 
associated to the parent phase -i.e. grain without the twin domain-
.At any point within the medium, the tangent modulus can be 
written as the sum of a homogensous modulus, corresponding to 
that of an effective medium and of a spatial variation: 

L(r) = I? + SL(r) 
(2) 

Where, 

ÖL(r') = (U-Ü°)öv (r') + (£-Lt)6vt(r') 
(3) 

δν, 
Here with i=t,g denote characteristic function taken the value 
1 within volume i and zero outside. Applying both equilibrium 
and compatibility conditions on (1) yields the Navier equation. A 
solution of Navier equation is given by the Lippman-Schwinger 
equation: 

¿<r) = É- J Γ'·>-ι·'):ÓL(r'):é(r')dVr, 
(4) 

Γ""" denote the modified 
here V denotes the entire volume. 
Green functions ÖL 

As is null outside the grain, equation 4 
reduces to a sum of two integrals: 

¿(r) = É-¡ Γ'·"(r-r')dVr.:(L* -L,ff):έ* 

- J Γv"(r-r')dVr. -.(L'-L*): έ' (5) 

Here V, and Vg denote the twin and grain domains -with 
the twin-, respectively. From (5), one can compute the average 
strain rate in the twin and parent domains including the twin and 
in the parent domain without the twin: 

e'=^fve(r)dVr 

(6) 

and 

¿*=_ f ¿(r)dY 
(7) 

and 

έ*' = —l— ¡ é{r)dv 
V -V Ji'-K r 

In order to proceed with analytical derivations, it is 
assumed here that the strain rates within the twin and grain (with 
twin) domains are equal to their average within their respective 
volumes. 

Twin domain 

From (5) and (7), the average strain in the twin domain can thus 
be written as: 

é'=É--j J r*'"(r-r')dVr,dVr:{L«-V*)^* 
Viv,lvt 

-Vi.¡vr"('-r')dV,dVr:{i:-L*):é' 
y iv,ir, 

(8) 

If 
reVcV 

t g then 
¡vr°(r-r')dV, 

and 

fyr^r-r')dVr, vi " ' a r e uniform and one obtains the 
following expression of the average strain rate within the twin 
domain: 

? -É-P ' :{L*-L*):? -Pr> :(£-L'y.é1 
(9) 

With: 
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P , : = J . r ' " ( r - r V F . 

Py=¡vr"(r-r')dV. 

(10) 

(11) 

Grain domain 

In the domain associated to the grain (including the 
twin) (5) reduces to: 

fs' = £—f f r'~{r-r'W.ilV -.(Ü-tf):? 

_1 \[[r'-(r-r')dV,dVr:{t-l(y.s' (12) 

reV -V f r-"(r-r')dV. 
However here because 8 ,only * r ' 
is uniform such that the second integral needs to be computed by 
switching the order of the integration signs. 

This is done by applying the Tanaka Mori theorem to 

(12) can be written as: 

¿s = E--\ Ir°"(r-r')dVr,dVr:(L
g-Df):ég 

(13) 

Finally the average strain within the grain domain -i.e. containing 

the twin domain- can be written as: 

é* = E-Pr' :(L* -Ify.e* -?*-¥*' \(E -L'y.g 

(14) 

With, 

pv* = J J r'-~(r-r')dVr,dVr 
(15) 

From equations (12) to (13) one can introduce 
localization and concentrations relations between the strain rate 
imposed on the boundary and that on each volume. One has: 

¿*-
έ' = 

és' 

= A* 

-A': 

V 

:E 
É 
1 

-v, (16) 

The localization tensors are given by: 

(l + (S'(V)-Ss(Vi))):{l + (Ss(Vs)-S^(yg))) 

¿¡-I - ( / + ( £ ' (K)-SS(K))) 

and 

^ ' = ( / + (5'(K().Jf(f/,)))"': 

I-(S*(Vs)-S*(.V()): 

J-(í'(fjr)-í*(K)i))-(/ + (i'(KI).5'(»'l))) 

:(l + (SHVJ-S'*(Vt))) 

(17) 

(18) 

^ - / - ( / + (5'tF)-5s^))) 

/ is the fourth order identity tensor. In (17) and (18), the following 

tensors were introduced: 

S7(^) = PK' :C withj =t,g 
(19) 

Finally, by identification one obtains an expression of 
the localization tensor associated with the grain without twin 
volume: 

A* = -J—lvA'-VA·] (22) 

Extension to polycrystals 

In the previous section localization relations were 
obtained in the case of a double inclusion embedded in an 
effective medium. These relationships can be used in an elasto-
plastic self-consistent method as that derived by Hill and 
implemented in EPSC [7]. 

Consider now a different topology whereby it is desired 
to homogenize the elasto-plastic response of a polycrystal. The 
effective response of the polycrystal is given by: 

t = lf :E (23) 
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Here ¿* denotes the macroscopic Cauchy stress rate. Using the 
same tangent/ incremental approach, the local constitutive 
response of each crystal is written as: 

&e = Lcbc (24) 
The superscript c refers to a crystal. Note that, with the 

linearization adopted here the grain modulus is dependent on the 
grain shape and on its plastic history. In the self-consistent 
approach it is assumed that each crystal is embedded in an infinite 
medium with properties and behavior equal to that of the 
polycrystal. 

From this point two cases are to be identified: either a 
twin domain has formed within a grain or not. Therefore two 
different types of localization relations have to be used. 

Twin free grains 

Following similar steps as that of Hill [8], the equivalent 
inclusion method leads to the following relationship between the 

(a* -±) = -L* :(Sr' -ϊ):(? -É) 
(25) 

From (25), the effective stiffness L tensor can be defined as: 

£=L*:(S-l-l) (26) 

S denotes the elasto-plastic Eshelby tensor. Using the local and 
global constitutive responses, the following localization 
relationship can be obtained: 

éc=Ac:É (27) 

where 

Ae=(Le + L')~l:{lf + i:). (28) 

Grains containing a twin domain 

In existing approaches whether a grain contains a twin 
or not, equation (28) is used to quantify the localization tensor of 
the crystal. In the present approach, it is acknowledged that when 
a grain contains a twin, the topology of the problem has changed 
and becomes equivalent to that treated in equations. Therefore, in 
grains containing twins, it is necessary to separate the twin and 
parent phases and use: 

Ac = A' for the twin phase (29) 

and 

Ac = A0 for the parent phase (30) 

With this, a direct micromechanical coupling between the 
different phases is introduced. 

Self consistency 

Finally, the effective response of the material is 
obtained by considering macro-homogeneity conditions. Focusing 
on the strain increment one has: 

Ε = {εή (30) 

Here terms in brackets denote volume averages. In 
addition, if one introduces the localization relations into the 
macro-homogeneity condition on stress, the effective tangent 
modulus of the polycrystal can be uniquely determined self-
consistently with: 

i f ={LCAC)(AC\X (31) 

Conclusion 

In this work, a new self-consistent homogenization 
scheme is introduced in order to accurately predict the 
development of internal strains during twinning in polycrystals. 
The model is based on the introduction of new localization 
functions introducing a direct coupling between parent and twin 
domains. These are obtained by extending a generalized Tanaka 
Mori method to an elasto-plastic medium. While this has not been 
done yet, the model is well suited to be applied to the case of pure 
polycrystalline Mg. Among others it would be necessary to study 
the effect of these new localization relations on the predictions of 
internal stress in twins. 
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