كل ما يحتاجه الطالب في جميع الصفوف من أوراق عمل واختبارات ومذكرات، يجده هنا في الروابط التالية لأفضل مواقع تعليمي إماراتي 100 %

<u>ات</u>	اعيات الرياضي	الاجتما	تطبيق المناهج الإماراتية
	ية العلوم	لغرام الاسلاه	الصفحة الرسمية على الت
	ية	يسبوك الانجليز	الصفحة الرسمية على الف
	ىربية	لصفوف اللغة الع	التربية الاخلاقية لجميع اا
			التربية الرياضية
قنوات الفيسبوك	قنوات تلغرام	مجموعات الفيسبوك	مجموعات التلغرام.
الصف الأول	الصف الأول	الصف الأول	الصف الأول
الصف الثاني	الصف الثاني	الصف الثاني	الصف الثاني
الصف الثالث	الصف الثالث	الصف الثالث	الصف الثالث
الصف الرابع	الصف الرابع	الصف الرابع	الصف الرابع
الصف الخامس	الصف الخامس	الصف الخامس	الصف الخامس
الصف السادس	الصف السادس	الصف السادس	الصف السادس
الصف السابع	الصف السابع	الصف السابع	الصف السابع
الصف الثامن	الصف الثامن	الصف الثامن	الصف الثامن
الصف التاسع عام	الصف التاسع عام		الصف التاسع عام
تاسع متقدم	الصف التاسع متقدم	الصف التاسع متقدم	الصف التاسع متقدم
عاشر عام	الصف العاشر عام	الصف العاشر عام	الصف العاشر عام
عاشر متقدم	الصف العاشر متقدم	الصف العاشر متقدم	الصف العاشر متقدم
حادي عشر عام	الحادي عشر عام	الحادي عشر عام	الحادي عشر عام
حادي عشر متقدم الثاني عشر عام	الحادي عشر متقدم الثاني عشر عام	الحادي عشر متقدم الثاني عشر عام	الحادي عشر متقدم ثاني عشر عام
ثانی عشر متقدم	ثانی عشر متقدم	الثاني عشر متقدم	ثانی عشر متقدم

Grade 9 Advanced Mathematics – Term 2 Revision Notes

Square of a Sum	$(a+b)^2 = a^2 + 2ab + b^2$ (a.k.a. as a perfect square)		
Square of a Difference	$(a-b)^2 = a^2 - 2ab + b^2$ (a.k.a. as a perfect square)		
Product of a Sum and a Difference	$(a+b)(a-b)=a^2-b^2$ (a.k.a. as a <u>difference</u> of two squares)	Very useful for Factoring $x^{2} - 9 = (x+3)(x-3)$ $9n^{2} - 4 = (3n+2)(3n-2)$ $16c^{2} - 49d^{2} = (4c+7d)(4c-7d)$ $x^{4} - 25 = (x^{2}+5)(x^{2}-5)$	

Test for Perfect Square and Factoring

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

- The first and last terms must be perfect squares
- The middle term must be twice the product of the square roots of the first and last terms

$$16x^2 + 24x + 9$$

- $\sqrt{16x^2} = 4x$ and $\sqrt{9} = 3$ (both perfect squares)
- 2(4x)(3) = 24x(this is the middle term)
- So this is a perfect square
- We can factorise $16x^2 + 24x + 9 = (4x + 3)^2$

$$9x^2 - 12x + 4$$

- $\sqrt{9x^2} = 3x$ and $\sqrt{4} = 2$ (both perfect squares)
- -2(3x)(2) = -12x(this is the middle term)
- So this is a perfect square
- We can factorise $9x^2 12x + 4 = (3x 2)^2$

$$25x^2 + 20x + 9$$

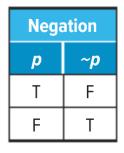
- $\sqrt{25x^2} = 5x$ and $\sqrt{9} = 3$ (both perfect squares)
- 2(5x)(3) = 30x
 this is NOT the middle term
 not a perfect square

$$4a^2 - 4a + 2$$

- $\sqrt{2}$ is not a perfect square
- So $4a^2 4a + 2$ is not a perfect square

Factoring Polynomials by Grouping	Polynomials with four or more terms. $ax + bx + ay + by$ $= x(a + b) + x(a + b)$	4qr + 8r + 3q + 6 $= (4qr + 8r) + (3q + 6)$ group terms with common factors $= 4r(q + 2) + 3(q + 2)$ factor the GCF from each group $= (q + 2)(4r + 3)$ distributive property
	= x(a+b) + y(a+b) $= (a+b)(x+y)$	2mk - 12m + 42 - 7k $= (2mk - 12m) + (42 - 7k)$ group terms with common factors $= 2m(k - 6) - 7(k - 6)$ factor the GCF from each group $= (k - 6)(2m - 7)$ distributive property

			Quadratic Expressions easier this will become)		
$x^2 + b^2$	c + c	·	$ax^2 + b$	0x + c	
i.e. $m \cdot p = c$ an	Find m and p with a product of c and a sum of b . i.e. $m \cdot p = c$ and $m + p = b$ then re-write $x^2 + bx + c$ as $(x + m)(x + p)$		Find m and p with a product of ac and a sum of b . i.e. $m \cdot p = ac$ and $m + p = b$ then re-write $ax^2 + bx + c$ as $ax^2 + mx + px + c$ finally factor by grouping.		
$x^2 + 7x + 12$ b and c are both +ve so factors of 12 will be +ve $(x + 3)(x + 4)$	Factors of 12 1, 12 2, 6 3, 4	Sum of Factors 13 8 7	$2x^{2} + 5x + 3$ $ac = 6$ $2x^{2} + 2x + 3x + 3$ $2x(x + 1) + 3(x + 1)$ $(x + 1)(2x + 3)$	Factors of ac 1, 6 2, 3	Sum of Factors 7 5
$x^2 - 22x + 21$ b is -ve and c is +ve so factors of 21 will be -ve $(x-1)(x-21)$	Factors of 21 -1, -21 -3, -7	Sum of Factors -22 -10	$3x^{2} - 17x + 20$ $ac = 60$ $3x^{2} - 5x - 12x + 20$ $x(3x - 5) - 4(3x - 5)$ $(3x - 5)(x - 4)$	Factors of ac -1, -60 -2, -30 -3, -20 -4, -15 -5, -12 -6, -10	Sum of Factors -61 -32 -23 -19 -17 -16
$x^2 + 2x - 15$ c is -ve so factors of -15 have opposite signs (since b is +ve the greater absolute value factor is also +ve) $(x-3)(x+5)$	Factors of -15 -1, +15 -3, +5	Sum of Factors 14 2	$ac = -10$ $2x^{2} - 2x + 5x - 5$ $2x(x - 1) + 5(x - 1)$ $(x - 1)(2x + 5)$	Eactors of ac -1,+10 -2,+5	Sum of Factors 9 3
$x^2 - 7x - 18$ c is -ve so factors of -18 have opposite signs (since b is -ve the greater absolute value factor is also -ve) $(x+2)(x-9)$	Factors of -18 +1, -18 +2, -9 +3, -6	Sum of Factors -17 -7 -3	$6x^{2} - 7x - 3$ $ac = -18$ $6x^{2} + 2x - 9x - 3$ $2x(3x + 1) - 3(3x + 1)$ $(3x + 1)(2x - 3)$	Factors of ac +1,-18 +2,-9 +3,-6	Sum of Factors -17 -7 -3
Determine if a Poly	nomial is Pri	me	Zero Product Property		
$4x^2 - 3x + 5$ $ac = 20$ There are no factors with a sum of -3. So the quadratic expression cannont be factored using integers. Therefore this is prime .	Factors of ac -1, -20 -2, -10 -4, -5	Sum of Factors -21 -12 -9	If the produce of two factors is 0, then at least one of the factors must be 0. If $ab = 0$, then $a = 0$ or $b = 0$ or both a and b equal 0. $(2d + 6)(3d - 15) = 0$ $2d + 6 = 0 \qquad \text{or} \qquad 3d - 15 = 0$ $2d = -6 \qquad \qquad 3d = 15$ $d = -3 \qquad \qquad d = 5$		


Graphing Exponential Growth	$y=ab^x$ $a>0$ $b>1$ $(a ext{ is the } y- ext{intercept})$	(0, a) y	
Graphing Exponential Decay	$y=ab^x$ $a>0$ $0 < b < 1$ $(a ext{ is the } y- ext{ intercept})$	(0, a) y	
Exponential Growth	y = final amount $a = $ initial amount $r = $ rate of change (decimal) $t = $ time	$y = a(1+r)^t$	
Exponential Decay	http://alMana_ y _a_i_com/ae $y = \text{final amount}$ $a = \text{initial amount}$ $r = \text{rate of change (decimal)}$ $t = \text{time}$		
Compound Interest	$A=P\left(1+rac{r}{n} ight)^{nt}$ $A= ext{current amount}$ $P= ext{principal amount (initial)}$ $r= ext{annual interest rate (decimal)}$ $n= ext{no. of times interest is compo}$ $t= ext{time in years}$	1 1 1 11	
Geometric Sequence	n^{th} term $a_n=a_1r^{n-1}$ $a_1=$ first term $r=$ common ratio (2 $^{ m nd}$ term divid	Recursive Formula $a_n = r \cdot a_{n-1}$ (Remember a_{n-1} is the previous term)	

Arithmetic Sequence	n^{th} term $a_n = a_1 + (n-1)d$ $a_1 = ext{first term} \ d = ext{common difference}$	Recursive Formula $a_n = a_{n-1} + d$ (Remember a_{n-1} is the previous term)		
Graphing Radical Function	$oldsymbol{y} = \sqrt{oldsymbol{x}}$ (remember the radicand can't be negative)	x y		
Transformation of Radical Function 1 Dilation	$y=a\sqrt{x}$ $a>1$ Parent function: $y=\sqrt{x}$	$y=a\sqrt{x}$ $0 < a < 1$ Parent function: $y=\sqrt{x}$		
(5 tretched vertically) $y = 5\sqrt{x}$ (9, 15) $y = 2\sqrt{x}$ (1, 5) $(1, 5)$ (1, 2) $(4, 4)$ $y = \sqrt{x}$ (1, 2) $(4, 4)$ $y = \sqrt{x}$ (1, 0) $(1, 0.5)$ (2, 0) $(1, 0.5)$ (3, 0) $(1, 0.5)$ (4, 2) $(2, 0.5)$ (5 tretched vertically) $y = 5\sqrt{x}$ (9, 15) $(1, 0.5)$ (1, 0.5) $(1, 0.5)$ (1, 0.5)		(4,2) $y = \sqrt{x}$ (9,3) $y = \frac{1}{2}\sqrt{x}$ (4,1) $y = \frac{1}{2}\sqrt{x}$		

	$y = a\sqrt{x}$
Transformation of	a < 0
Radical Function 2 Reflection	Parent function: $y=\sqrt{x}$
	(reflection across $x - axis$)
	$y = 3\sqrt{x}$ $y = \sqrt{x}$
	$y = \sqrt{x + h} + k$
Transformation of Radical Function 3	Translate the graph k units UP if $k>0$ and $ k $ units DOWN if $k<0$
	Translate the graph h units LEFT if $h>0$ and $ h $ units RIGHT if $h<0$
Reflection	

Simplifying a Square Root with Variables				
Variables with EVEN exponents in radicand and the simplified answer has an EVEN exponent $\sqrt{x^4}=x^2$		Variables with EVEN exponents in radicand and the simplified answer has an ODD exponent (must use ABSOLUTE VALUE symbol $\sqrt{x^2} = x $	er Variables with ODD exponents in radicand	
$\sqrt{x^8} = $	x^4	$\sqrt{x^6} = x^3 $	$\sqrt{x^{13}} = \sqrt{x^{12}}\sqrt{x} = x^6\sqrt{x}$	
$\sqrt{x^{12}} =$	<i>x</i> ⁶	$\sqrt{x^{22}} = x^{11} $	$\sqrt{x^{15}} = \sqrt{x^{14}}\sqrt{x} = x^7 \sqrt{x}$	
Direct Variation		y = kx	k is known as the <i>constant of variation</i> or <i>constant of proportionality</i>	
Inverse Variation		$xy = k$ $x \neq 0$ and $y \neq 0$	k is a non-zero constant	
Product Rule for Inverse Variation	$x_1y_1=x_2y_2$		If (x_1, y_1) and (x_2, y_2) are solutions of an inverse variation then the products x_1 y_1 and x_2 y_2 are equal.	
Excluded Values for a Rational Function $\left(y = \frac{1}{x}\right)$	Division by zero is undefined. Any value that results in a denominator of zero is excluded from the domain of a rational function.		$y = \frac{5}{4x - 8}$ OM $4x - 8 = 0$ $4x = 8$ $x = 2$ The excluded value is $x = 2$	
Asymptotes	$y = \frac{a}{x - b} + c$ $a \neq 0$ vertical asymptote: $x = b$ horizontal asymptote: $y = c$		y = c x $x = b$	
Point	A point is a location. It has neither shape nor size. ${f point} \ {m A}$		A •	
Line	There is exactly one line through any two points. line m , line PQ or \overrightarrow{PQ} , line QP or \overrightarrow{QP}		P Q m	
Plane	There is exactly one plane through any three points that are not collinear. plane \mathcal{K} , plane BCD , plane BDC , plane CBD , plane CDB , plane DBC , plane DCB		B•	

	T			
Collinear	Points that lie on the	e same line.		
Coplanar	Points that lie in the same plane.			
Segment	A line segment can be measured because it has two end points. Label: \overline{AB} or \overline{BA} Measure: AB or BA	АВ		
Congruent segments	Congruent segments have the same measure. $\cong \text{``is congruent to''}$ $\overline{AB} \cong \overline{CD} \text{ which means } AB = CD$	1.7 cm D		
Distance Formula	If P has coordinates $(x_1$, $y_1)$ and Q has coordinates $(x_2$, $y_2)$ then $PQ = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	$Q(x_2, y_2)$ $Q(x_1, y_1)$		
Midpoint Formula	If \overline{PQ} has midpoints $P(x_1, y_1)$ and $Q(x_2, y_2)$ in the coordinate plane, then the midpoint M of \overline{PQ} has coordinates $M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Truth Tables			

Conjunction					
$p q p \land q$					
Т	T	Т			
Т	F	F			
F	T	F			
F	F	F			

"and"

Disjunction					
$p q p \lor q$					
T	T	Т			
Т	F	Т			
F	ТТ				
F	F	F			

"or"

		Conditional Statements			
	$m{p} o m{q}$	p	q	p o q	
Conditional	read as if <i>p then q</i> or <i>p implies q</i>	Т	Т	Т	
Statement	$oldsymbol{p}$ is the hypothesis	T	F	F	
	q is the conclusion	F	Т	Т	
		F	F	Т	
	Related Conditionals				
p o q	Conditional	Logically Equivalent Statements			
q o p	Converse	 A conditional and its contrapositive are logically convivalent 			
$\sim p \rightarrow \sim q$	Inverse	 equivalent The converse and inverse of a conditional are logically equivalent 			
$\sim q \rightarrow \sim p$	Contrapositive				
Inductive Reasoning	Inductive reasoning uses patterns and observations to make a conjecture.				
Deductive Reasoning	Deductive reasoning uses facts, rules, definitions and properties to make a conjecture.				
Law of	If $oldsymbol{p} o oldsymbol{q}$ and $oldsymbol{p}$ is true,	Helps us determine if a conclusion			
Detachment	then $oldsymbol{q}$ is true.				
	If $oldsymbol{p} o oldsymbol{q}$ and $oldsymbol{q} o oldsymbol{r}$ are true	is valid or not.			
Law of Syllogism	then $oldsymbol{p} ightarrow oldsymbol{r}$ is true.				