Teacher Annotated Edition

Science Notebook

Glencoe Science

Biology

Consultant

Douglas Fisher, Ph.D.

New York, New York Columbus, Ohio Chicago, Illinois Peoria, Illinois Woodland Hills, California

About the Consultant

Douglas Fisher, Ph.D. is a Professor in the Department of Teacher Education at San Diego State University. He is the recipient of an International Reading Association Celebrate Literacy Award, as well as a Christa McAuliffe Award for Excellence in Teacher Education. He has published numerous articles on reading and literacy, differentiated instruction, and curriculum design as well as books, such as *Improving Adolescent Literacy: Strategies at Work* and *Responsive Curriculum Design in Secondary Schools: Meeting the Diverse Needs of Students.* He has taught a variety of courses in SDSU's teacher credentialing program as well as graduate-level courses on English language development and literacy. He also has taught classes in English, writing, and literacy development to secondary school students.

The **McGraw·Hill** Companies

Copyright © by the McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027

ISBN-13: 978-0-07-874604-8 ISBN-10: 0-07-874604-3

Printed in the United States of America

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10 \quad 024 \quad 11\ 10\ 09\ 08\ 07\ 06$

Table of Contents

To the Teacher	vi
Note-Taking Tips	viii
Chapter 1	
The Study of Life Preview	. 1
Section 1.1	
Section 1.2	
Section 1.3	. 8
Chapter 2	
Principles of Ecology Preview	11
Section 2.1	12
Section 2.2	15
Section 2.3	18

Chapter 3

) 1
21
22
25
28

Chapter 4

Population Ecology Preview	31
Section 4.1	
Section 4.2	35

Chapter 5

Biodiversity and	
Conservation Preview	
Section 5.1	40
Section 5.2	43
Section 5.3	

Chapter 6

Chemistry in Biology Preview	49
Section 6.1	50
Section 6.2	53
Section 6.3	56
Section 6.4	59

Chapter 7

Cellular Structure and

Function	Preview	63
Section	7.1	64
Section	7.2	67
Section	7.3	70
Section	7.4	73

Chapter 8

Cellular Energy Previe	w 77
Section 8.1	
Section 8.2	
Section 8.3	
Chapter 9	

Cellular Reproduction Preview	87
Section 9.1	88
Section 9.2	91
Section 9.3	94

Chapter 10

Sexual Reproduction and

Genetics	Preview	97
Section	10.1	98
Section	10.2	101
Section	10.3	104

Chapter 11

Complex Inheritance and	
Human Heredity Preview	107
Section 11.1	108
Section 11.2	111
Section 11.3	114

Chapter 12

Molecular Genetics Preview	. 117
Section 12.1	. 118
Section 12.2	. 121
Section 12.3	. 124
Section 12.4	. 127

Chapter 13

Genetics and

Biotechnology Preview	131
Section 13.1	
Section 13.2	135
Section 13.3	138

Chapter 14

The History of Life Preview	. 141
Section 14.1	. 142
Section 14.2	. 145

Chapter 15

Evolution Preview	149
Section 15.1	150
Section 15.2	153
Section 15.3	156

Table of Contents

Chapter 16

Primate Evolution Preview	159
Section 16.1	160
Section 16.2	163
Section 16.3	166

Chapter 17

Organizir	ng Life's	
Diversity	Preview	169
Section	17.1	170
Section	17.2	173
Section	17.3	176

Chapter 18

Bacteria and Viruses Preview	179
Section 18.1	180
Section 18.2	183

Chapter 19

Protists F	Preview	187
Section	19.1	188
Section	19.2	191
Section	19.3	194
Section	19.4	197

Chapter 20

Fungi Preview2	201
Section 20.1	
Section 20.2	205
Section 20.3	208

Chapter 21

Introduction to Plants Preview	211
Section 21.1	212
Section 21.2	215
Section 21.3	218
Section 21.4	221

Chapter 22

Plant Structure and

Function	Preview	225
Section	22.1	226
Section	22.2	229
Section	22.3	232

Chapter 23

Reproduction in Plants Preview	235
Šection 23.1	236
Section 23.2	239
Section 23.3	242

Chapter 24

Introduction to Animals Preview	245
Section 24.1	246
Section 24.2	249
Section 24.3	252
Chapter 25	

Chapter 25

Worms and Mollusks Preview	255
Section 25.1	256
Section 25.2	259
Section 25.3	262
Section 25.4	265

Chapter 26

Arthropods Preview	
Section 26.1	
Section 26.2	
Section 26.3	

Chapter 27

Echinoderms and Invertebrate	
Chordates Preview	
Section 27.1	
Section 27.2	

Chapter 28

Fishes and Amphibians Preview	. 287
Section 28.1	. 288
Section 28.2	. 291
Section 28.3	. 294

Chapter 29

Reptiles and Birds Preview	. 297
Section 29.1	. 298
Section 29.2	.301

Chapter 30

Mammals Preview	
Section 30.1	
Section 30.2	

Chapter 31

Animal Behavior Preview	
Section 31.1	
Section 31.2	317

Chapter 32

Integumentary, Skeletal, and

Muscular	Systems	Preview	321
Section	32.2		325
Section	32.3		328

Table of Contents

Chapter 33

Nervous System Preview	331
Section 33.1	
Section 33.2	335
Section 33.3	338
Section 33.4	341

Chapter 34

Circulatory, Respiratory, and

345
346
349
352

Chapter 35

Digestive and

Endocrine Systems Preview	355
Section 35.1	
Section 35.2	359
Section 35.3	362

Chapter 36

Human Reproduction and

Preview	365
	369
	372
	Preview

Chapter 37

Immune System Preview	375
Section 37.1	
Section 37.2	379
Section 37.3	382

To the Teacher

Dear Science Teacher,

As you begin a new school year, one of the biggest challenges you will probably encounter is getting students to read their textbooks. Informational text can overwhelm students, leaving them less likely to read and more likely to become apathetic about learning. I believe that this Science Notebook will help students use their textbooks more effectively as they learn about Biology.

Note-Taking and Student Success

There is considerable research evidence that addresses how students understand difficult concepts and content in school. Glencoe/ McGraw-Hill has developed the *Science Notebook* for science students based upon that research. Evidence indicates that students need to know how to take notes, use graphic organizers, learn vocabulary, and develop their thinking skills by writing, in order to achieve academic success.

The ability to take and organize notes predicts how well students will do in school. Peverly, Brobst, Graham, and Shaw (2003) showed that when students use background knowledge and take notes, they are likely to perform well on tests. Pauk (1974) observed that note-taking was a critical skill for college success. Notes serve as an external storage function (meaning on the paper) that builds comprehension and content understanding (Ganske, 1981). This *Science Notebook* is a tool that students can use to achieve this goal. I would like to share some of the features of this *Science Notebook* with you before you begin teaching.

The Cornell Note-Taking System

First, you will notice that the pages in the *Science Notebook* are arranged in two columns, which will help students organize their thinking. This two-column design is based on the **Cornell Note-Taking System**, developed at Cornell Uni-

versity. Faber, Morris, and Lieberman (2000) found that the Cornell Note-Taking System improves comprehension and increases test scores.

The column on the left side of the page highlights the main ideas and vocabulary of the lesson. This column will help students find information and locate the references in their textbooks quickly. Students can also use this column to sketch drawings that help them visually remember the lesson's information. In the column on the right side of the page, students will write detailed notes about the main ideas and vocabulary. The notes they take in this column will help them focus on the important information in the lesson. As students become more comfortable using the Cornell Note-Taking System, they will see that it is an important tool that helps them organize information.

The Importance of Graphic Organizers

Second, there are many graphic organizers in this *Science Notebook*. Graphic organizers allow students to see the lesson's important information in a visual format. In addition, graphic organizers help students summarize information and remember the content. I hope that you will encourage students to use the graphic organizers because they will help them understand what they are reading.

Research-Based Vocabulary Development

Third, you will notice that vocabulary is introduced and practiced throughout the Science Notebook. When students know the meaning of the words used to discuss information, they are able to understand that information better. Also, students are more likely to be successful in school when they have vocabulary knowledge. When researchers study successful students, they find that as students acquire vocabulary knowledge, their ability to learn improves (Martino and Hoffman, 2002). The Science Notebook focuses on learning words that are very specific to understanding the content of the textbook. The Science Notebook also highlights general academic words that students need to know so that they can understand any textbook. These vocabulary words are based on the Academic Word List (AWL) developed by Averil Coxhead. The AWL includes the most common 570 words found in academic texts, excluding the 2,000 general English words such as the, in, and *that*. Research indicates that students who master the words on Coxhead's list score significantly higher on standardized tests.

Writing Prompts and Note-Taking

Finally, there are a number of writing exercises included in this *Science Notebook*. Writing is a useful tool that helps students understand the information that is being presented. Writing helps them to assess what they have learned. You will see that many of the writing exercises require students to practice the skills of good readers. Good readers *make connections* between their lives and the text and *predict* what will happen next in the reading. They *question* the information and the author of the text, *clarify* information and ideas, and *visualize* what the text is saying. Good readers also *summarize* the information that is presented and *make inferences* or *draw conclusions* about the facts and ideas.

I wish you well as you begin another school year. This *Science Notebook* is designed to help students understand the information in your Biology class. The guide will be a valuable tool that will also provide students with skills that they can use throughout their lives.

I hope you have a successful school year. Sincerely, Douglas Fisher

References

- Faber, J. E., Morris, J. D., and Lieberman, M. G. (2000). The effect of note taking on ninth grade students' comprehension. *Reading Psychology*, 21, 257–270.
- Ganske, L. (1981). Note-taking: A significant and integral part of learning environments. *Educational Communication and Technology: A Journal of Theory, Research, and Development*, 29, 155–175.
- Martino, N. L., and Hoffman, P. R. (2002). An investigation of reading and language abilities of college freshmen. *Journal of Research in Reading*, 25, 310–318.

Pauk, W. (1974). How to Study in College. Boston: Houghton Mifflin.

Peverly, S. T., Brobst, K. E., Graham, M., Shaw, R. (2003). College adults are not good at self-regulation: A study on the relationship of self-regulation, note taking, and test taking. *Journal of Educational Psychology*, 95, 335–346.

Van Leeuwe, J., and Aarnoutse, C. (1998). Relation between reading comprehension, vocabulary, reading pleasure, and reading frequency. *Educational Research and Evaluation*, 4, 143–166.

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in science. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	and	+
such as	i.e.	approximately	*
with	w/	therefore	<i>.</i>
without	w/o	versus	vs

- Use a symbol such as a star (★) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- **Don't** use someone else's notes because they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

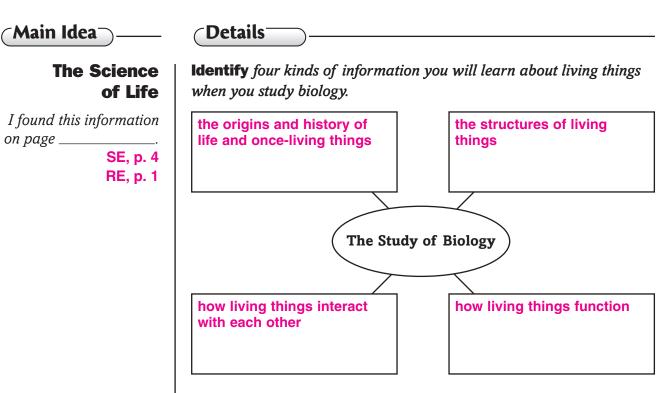
The Study of Life

Before You Read

Use the "What I Know" column to list the things you know about biology. Then list the questions you have about biology in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal


Animals, plants, and even bacteria and viruses are considered living things. But what do we mean when we say that an organism is a living thing? In the space below, describe two characteristics that are common to all living things.

Accept all reasonable responses.

The Study of Life Section 1.1 Introduction to Biology

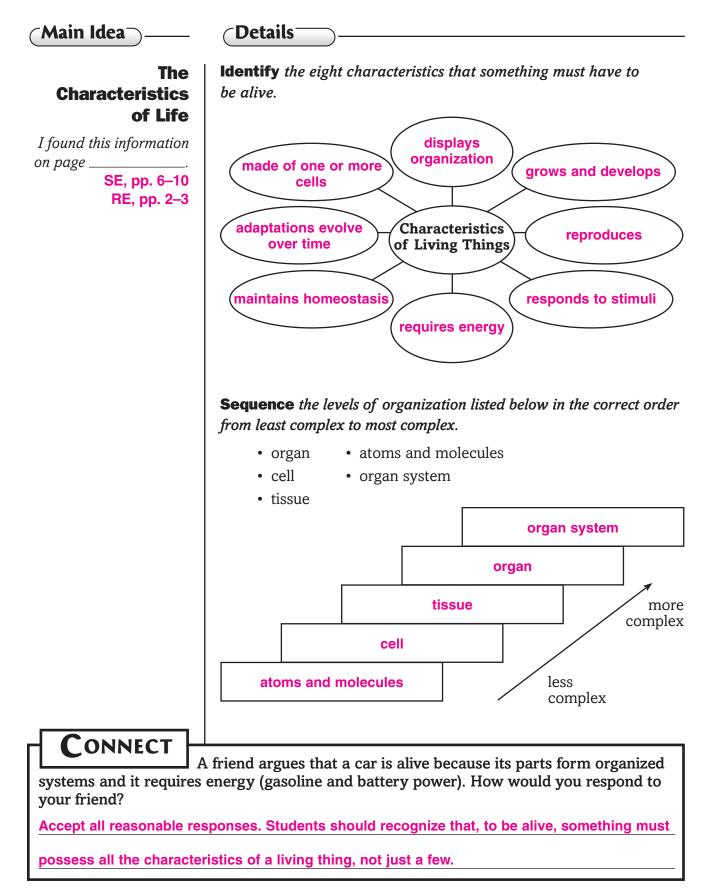
⊂Main Idea⊃	(Details)
	Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.
	1. Accept all reasonable responses.
	2
	3
	5
Review Vocabulary	Use your book or dictionary to define environment.
environment	living and nonliving things that surround an organism and with
	which the organism interacts
N	
New Vocabulary	Use your book or dictionary to help you write the correct
	vocabulary term in each blank.
adaptation	Biology is the science of life. A(n) organism is
biology	anything that has all the characteristics of life. All living things are
0101087	arranged in an orderly way. In other words, living things have
development	organization . Most living things begin as one cell. The addition
growth	of mass is called <u>growth</u> . Over an organism's life, natural
	changes, called <u>development</u> , take place. The production of
homeostasis	offspring, or <u>reproduction</u> , must occur to enable the group of
organism	breeding organisms, or <u>species</u> , to continue to exist. A living
organization	thing also has the ability to react to a(n) <u>stimulus</u> from its
organization	internal or external environment. The reaction is called a
reproduction	response . An organism must be able to maintain its internal
response	conditions. If anything upsets its normal state, processes to restore
-	homeostasis begin. Any inherited characteristic, or adaptation _,
species	developed in a species over time can enhance the species' ability to
stimulus	survive and produce offspring in its environment.

Section 1.1 Introduction to Biology (continued)

What Do Biologists Do?

I found this information on page _____. SE, pp. 5–6 RE, p. 1 **Model** one specific question that a biologist might seek to answer for each of the following areas of study. Accept all reasonable responses.

Area of Study	Question
Diversity of life	How do chimpanzees in the wild gather food?
Diseases	Why does the flu virus change every year?
New technologies	Can a computer-controlled brace enable paralysis victims to walk?
Agriculture	Can crop rotation increase the output of wheat in Nigeria?
Environment	Can environmental education in the Amazon slow the loss of rain forest?


Analyze the specific type of work in biology that you might like to do, and explain why. Accept all reasonable responses.

Type of work: Observe the behavior of birds in the wild

Reason: I am fascinated by the beauty of birds and the ability of

these fragile-looking creatures to fly.

Section 1.1 Introduction to Biology (continued)

The Study of Life Section 1.2 The Nature of Science ⊂Main Idea⁻ Details **Scan** the titles, boldfaced words, pictures, figures, and captions in Section 2. Write two facts you discovered about the nature of science as you scanned the section. 1. Accept all reasonable responses. 2. Review Vocabulary Use your book or dictionary to define investigation. investigation careful search or examination to uncover facts New-Vocabulary Use your book or dictionary to define each term. set of moral principles or values ethics field that applies to science fields such as archaeology and botany, forensics as well as to matters of legal interest units of measurement with divisions that are powers of ten metric system process by which scientists in the same field or who conducted similar peer review research evaluate an experiment's procedures and results body of knowledge based on the study of nature and its physical setting science International System of Units, which are the unit standards of the SI metric system explanation of a natural phenomenon supported by many observations theory and experiments over time Academic Vocabulary Define unbiased to show its scientific meaning. to be objective, impartial, or fair unbiased

Section 1.2 The Nature of Science (continued)

⊂Main Idea⁻

What is science?

I found this information on page _____. SE, pp. 11–14

RE, pp. 4–6

Classify each statement as a characteristic of a science, a pseudoscience, or both.

- makes unbiased observations
- often driven by cultural or commercial goals
- makes claims about the natural world
- physics

Oetails

astrology

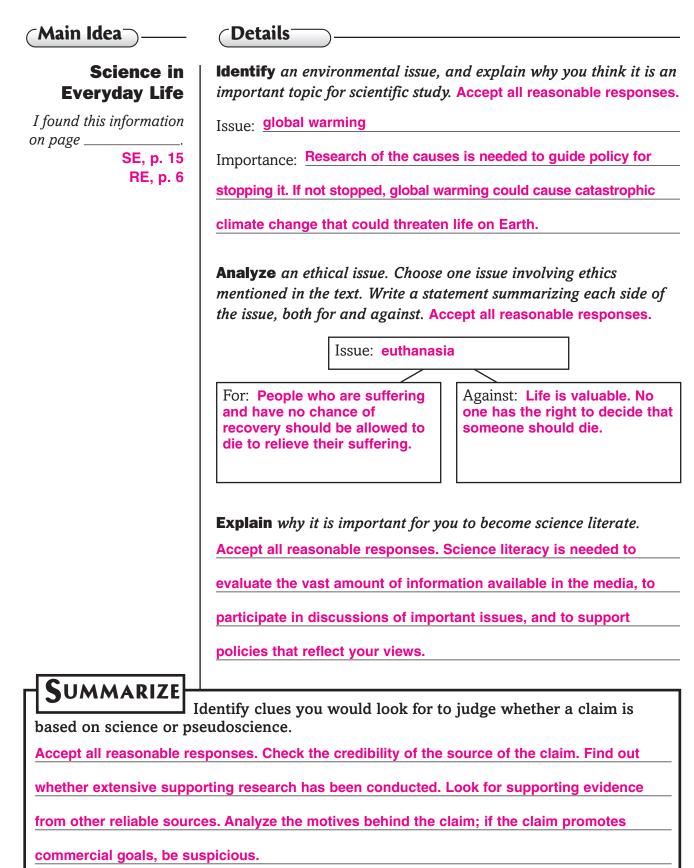
- involves constant reevaluation of what is known
- research designed to justify existing knowledge
- discards observations that are not consistent with beliefs
- bases claims on a large amount of data
- uses peer review

Science	Both	Pseudoscience
 makes unbiased observations 	 makes claims about the natural world 	 often driven by cultural or commercial goals
• physics		 astrology
 involves constant reevaluation of what is known 		 research designed to justify existing knowledge
 bases claims on a large amount of data 		 discards observations that are not consistent with beliefs
uses peer review		

Analyze what is required for a proposed explanation to become accepted as a theory.

The proposed explanation must be supported by enough evidence

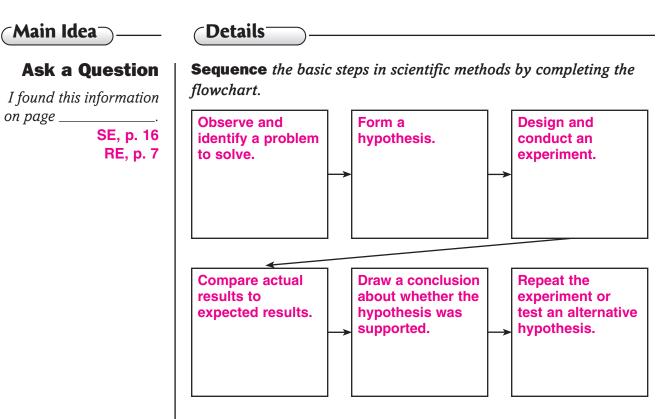
from many observations and experiments over a period of time.


Identify what each SI unit listed below is used to measure.

gram: mass meter: length

second: time

_____ liter: volume


Section 1.2 The Nature of Science (continued)

The Study of Life Section 1.3 Methods of Science

Main Idea	Details
	Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define theory.
theory	an explanation of a natural phenomenon supported by many
	observations and experiments over time
New Vocabulary	Write the correct vocabulary term in the left column for each definition below.
data	information gained from observations
experimental group	group in an experiment that is exposed to the factor being tested
observation	direct method of gathering information in an orderly way
control group	group in an experiment that is not exposed to the factor being tested and is used for comparison
scientific method	organized series of events in scientific inquiry
dependent variable	factor in an experiment that results from or depends on changes to the independent variable
safety symbol	logo that alerts you about a specific danger during lab activities
constant	factor that remains fixed during an experiment while the independent and dependent variables change
independent variable	tested factor in an experiment that might affect the outcome
hypothesis	testable explanation of a situation
experiment	investigation done in a controlled setting that tests a hypothesis
inference	logical conclusion based on gathered information
serendipity	occurrence of accidental or unexpected, but fortunate, results

Section 1.3 Methods of Science (continued)

Form a Hypothesis

I found this information on page _____. SE, p. 18

RE, p. 18

Collect the Data

I found this information on page _____. SE, pp. 18–19 RE, pp. 8–9 **Analyze** the relationship between a hypothesis and a theory.

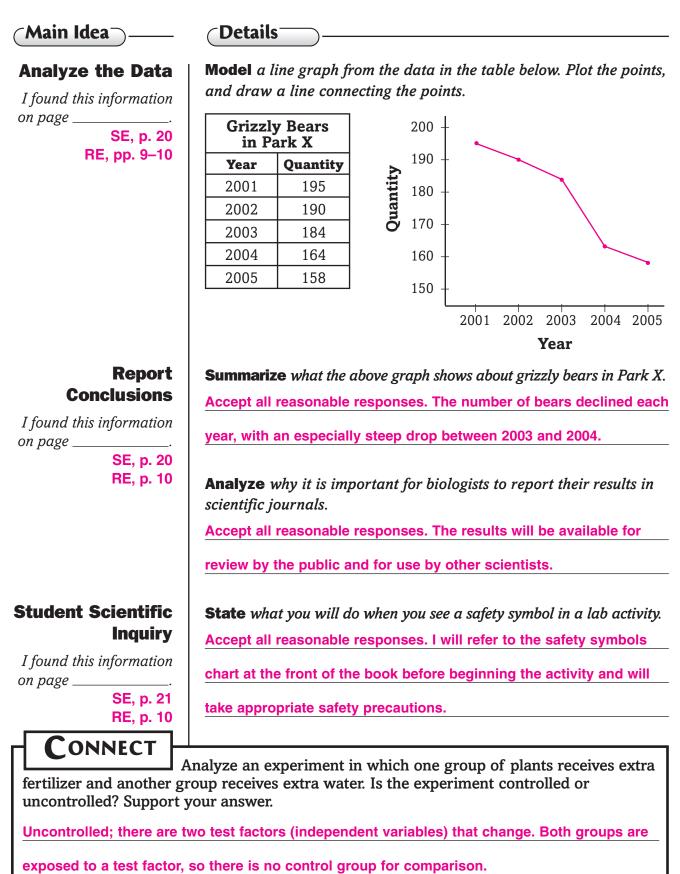
Accept all reasonable responses. A theory is a hypothesis that is

supported by enough evidence from many investigations to be

considered valid by the scientific community.

Identify the parts of the experiment described in the table below.

Experiment: A biologist gives a new kind of food to a group of dogs and compares the weight gain of these dogs over time to a group of similar dogs that do not receive the new food.


Experimental group: the dogs that receive the new food

Control group: the dogs that do not receive the new food

Independent variable: the new kind of food

Dependent variable: weight gain

Section 1.3 Methods of Science (continued)

Principles of Ecology

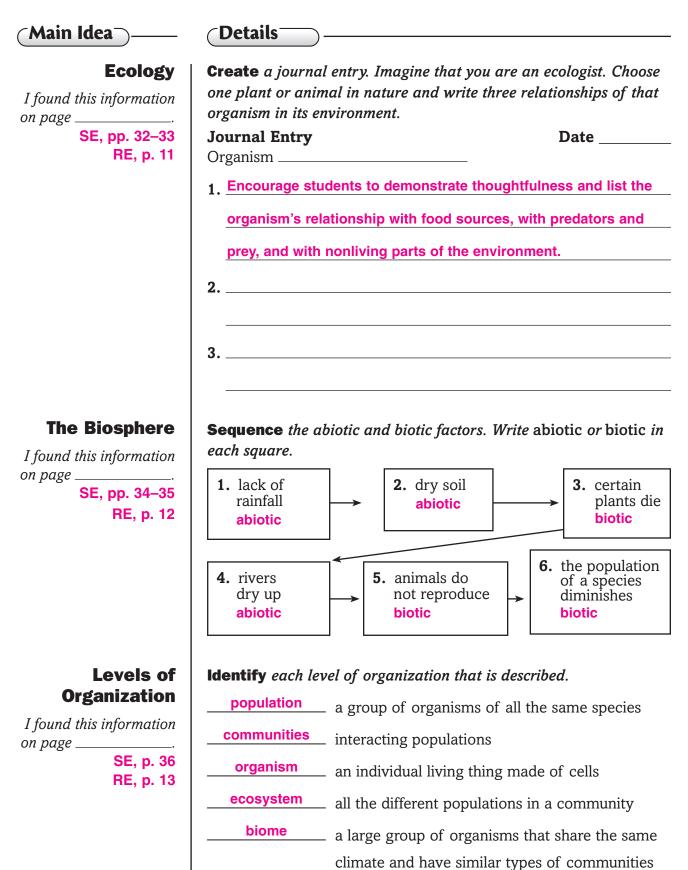
Before You Read

Use the "What I Know" column to list the things you know about ecology. Then list the questions you have about ecology in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

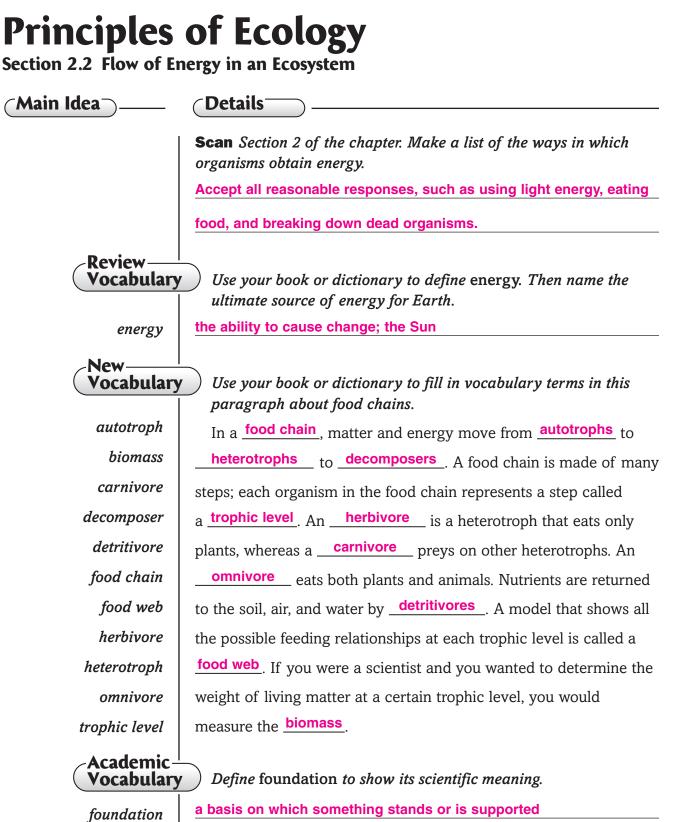
Organisms such as birds get what they need to survive from their environment. Hypothesize why is it important for birds to be able to fly long distances.


Some birds have adaptations that enable them to fly long distances. By flying a long range

or distance, the bird is more likely to find the food on which it survives.

Principles of Ecology Section 2.1 Organisms and Their Relationships

Details ⊂Main Idea^{_} **Skim** Section 1 of the chapter. Write two questions that come to mind from the headings and illustration captions. Accept all reasonable responses. New Vocabulary *Use the vocabulary words in the left margin to complete the graphic* organizer below. List the biological levels from largest to smallest. Levels of Organization abiotic factor biosphere biological community biome biome ecosystem biosphere biological community population biotic factor commensalism Compare the terms in the tables by defining them side by side. ecology habitat area where the niche the role or position that an organism lives out its life organism has in its environment; ecosystem how it meets its needs for food, shelter, and reproduction habitat abiotic factor nonliving part biotic factor living organisms mutualism of an organism's environment, that inhabit an environment such as soil, wind, moisture, niche light, temperature, and available nutrients parasitism population symbiosis permanent, close association between two predation or more organisms of different species commensalism mutualism both parasitism one symbiosis one species benefits species benefit species benefits and and the other species one is harmed is neither harmed nor does it benefit predation the act of one organism consuming another for food


Section 2.1 Organisms and Their Relationship (continued)

Section 2.1 Organisms and Their Relationships (continued)

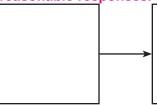
Ecosystem	Model a community with several organisms. Show two organisms
Interactions	occupying the same niche. Below your sketch, explain why those two organisms cannot usually occupy the same niche for long.
I found this information	
on page SE, p. 38	
RE, p. 14	
	Two organisms cannot occupy the same niche for long because they
	compete for the same resources. Eventually, one species will out-
	compete the other.
	1
Community	The testing compared is and nonocities in your
Community Interactions	Rephrase mutualism, commensalism, <i>and</i> parasitism <i>in your own words</i> . <i>Provide an example of each term</i> .
Interactions	own words. Provide an example of each term.
-	own words. Provide an example of each term.
Interactions I found this information on page SE, pp. 38–40	
Interactions I found this information on page	own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help digest our food.
Interactions I found this information on page SE, pp. 38–40	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help digest our food. 2. commensalism: Lichen grows on tree branches.
Interactions I found this information on page SE, pp. 38–40	own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help digest our food.
Interactions I found this information on page SE, pp. 38–40	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help digest our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish.
Interactions I found this information on page SE, pp. 38–40 RE, pp. 14–15	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help diges our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish. Bacteria live inside our bodies. Analyze helpful, neutral, and
Interactions I found this information on page SE, pp. 38–40 RE, pp. 14–15 SUMMARIZE harmful things that ba	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help digest our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish.
Interactions I found this information on page SE, pp. 38–40 RE, pp. 14–15 SUMMARIZE harmful things that ba parasitism, mutualism, a	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help diges our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish. Bacteria live inside our bodies. Analyze helpful, neutral, and cteria do while living in our bodies. Incorporate the terms
Interactions I found this information on page SE, pp. 38–40 RE, pp. 14–15 SUMMARIZE harmful things that ba parasitism, mutualism, mutualism	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help diges our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish. Bacteria live inside our bodies. Analyze helpful, neutral, and cteria do while living in our bodies. Incorporate the terms habitat, and niche in your discussion. sponses. While helpful bacteria use our body as their habitat, they occupy
Interactions I found this information on page SE, pp. 38–40 RE, pp. 14–15 SUMMARIZE harmful things that ba parasitism, mutualism, a Accept all reasonable resonable reso	 own words. Provide an example of each term. 1. mutualism: Certain types of bacteria in our intestines help diges our food. 2. commensalism: Lichen grows on tree branches. 3. parasitism: A lamprey eel feeds on the blood of another fish. Bacteria live inside our bodies. Analyze helpful, neutral, and cteria do while living in our bodies. Incorporate the terms habitat, and niche in your discussion.

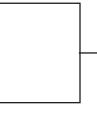
Principles of Ecology 15

Section 2.2 Flow of Energy in an Ecosystem (continued)

(Main Idea)_

(Details


Energy in an Ecosystem


I found this information on page _____. SE, pp. 41–42 RE, pp. 16–17

the table.	-		
Type of Organism	Autotrophs	Heterotrophs	Decomposers
Other name(s) for this type	producers	consumers, herbivores, carnivores, scavengers, omnivores	no other name
Food comes from	soil and the Sun	 eating plants eating animals eating plants and animals 	dead organisms
Chemical reactions that occur	Light energy and carbon dioxide are stored in energy-rich compounds.	The organisms that are eaten are turned into energy and molecules for the consumer's body.	
Examples	algae, plants	bears, lions, deer	fungi, bacteria

Summarize three ways that organisms get energy, by completing

Design *your own three-step example of the* flow of energy. Accept all reasonable responses.

Classify each of the following organisms as an autotroph or a heterotroph. Put an A in front of those that are autotrophs and an H in front of those that are autotrophs.

H 1. Alligator	A 5. Moss	A 9. Dandelion
H 2. Squirrel	H 6. Siberian tiger	H 10. Rabbit
A 3. Maple tree	A 7. Daffodil	 11. Tomato
H 4. Whale	H 8. Rhinoceros	H 12. Cockroach

Section 2.2 Flow of Energy in an Ecosystem (continued)

Models of Energy	Contract a faced chain with a faced such
Flow	Contrast <i>a</i> food chain <i>with a</i> food web.
I found this information	Food chains show how matter and energy move through an
on page	ecosystem. Food webs show all feeding relationships at each trophic
SE, pp. 42–44 RE, pp. 17–18	level in a community.
	State three things that an ecological pyramid shows that food webs and food chains do not show.
	An ecological pyramid shows that energy decreases as you go up
	the trophic levels. There are more organisms in the lower trophic
	levels. An ecological pyramid also shows biomass consumption.
	Create a food web and name the organisms you include. Indicate each organism's trophic level.
	Accept all reasonable drawings. See SE page 43 for an example.
	Analyze the place in the food chain in which you participate. ms from this section that apply to you.
st students will indica	te that they are the top level in their food webs. Strict vegetarians
ght indicate that they a	re heterotrophs and herbivores. Others will report that they are

Principles of Ecology Section 2.3 Cycling of Matter

Name

⊂Main Idea ⊃	(Details)
	Scan the titles, boldfaced words, pictures, figures, and captions in Section 3. Write two facts you discovered about animals as you scanned the section. 1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define cycle. Then give an example of a cycle.
cycle	a series of events that occur in a regular repeating pattern;
	examples of cycles will vary
New Vocabulary	Use your book or dictionary to define each vocabulary term.
biogeochemical cycle	the exchange of matter through the biosphere, which involves living
	organisms, geological processes, and chemical processes
denitrification	a process in which some soil bacteria convert fixed nitrogen
	compounds back into nitrogen gas, which returns to the atmosphere
matter	anything that takes up space and has mass; provides the nutrients
	needed for organisms to function
nitrogen fixation	the process of capture and conversion of nitrogen into a form that is
	usable by plants
nutrient	a chemical substance that an organism must obtain from its environment to sustain life and to undergo life processes

Section 2.3 Cycling of Matter (continued)

(Main Idea)

(Details⁻

Cycles in the Biosphere

I found this information on page _____.

SE, pp. 45–49 RE, pp. 19–22 **Create** minimodels for each cycle of matter in nature. Use words or pictures to sketch a simple example for each type of cycle to show the movement of matter. Accept all reasonable models.

A. The Water Cycle Models should show water falling from clouds as precipitation, moving through the earth and water table back into lakes and oceans, and evaporating again. Models may include tree transpiration.	B. The Carbon Cycle Models should show plants using carbon dioxide to make sugars, animals eating the sugars, respiration, and combustion putting carbon into the air. Models may also show the long-term carbon cycle in which organic matter is buried and converted to fossil fuels. Carbon dioxide is released when fossil fuels are burned.
C. The Nitrogen Cycle Models should show bacteria fixing nitrogen from the air into the soil, plants using it, animals eating plants and making the nitrogen into proteins. Animals make urine that goes into soil, die, and decay back into soil. They may show bacteria putting nitrogen from soil back into air.	D. The Phosphorus Cycle (short-term and long-term) Short-term models should show soil to plants to animals to decay and back to soil. Long- term models should show rocks dissolving into the water table and precipitating back onto the rocks.

Section 2.3 Cycling of Matter (continued)

⊂Main Idea⊃_

(Details

Describe each of the cycles in nature. Identify where each cycle is found, how organisms use them, and what key words relate to them.

	Water	Carbon/ oxygen	Nitrogen	Phosphorus
Where found	underground, in the atmosphere, and on Earth's surface	in all living things, in the atmosphere	in the atmosphere; in plants	cell compounds; in Earth's crust
How used	basis of life for all living things	to life processes; make up molecules such as carbon dioxide and sugar	to produce proteins; in chemical fertilizers	make up bones and teeth
Key words in the cycle	evaporating, water vapor, precipitation, transpiration	photosynthe- sis, cellular respiration, fossil fuel, calcium carbonate	nitrogen fixation, nitrates, decom- posers, ammonia, denitrifica- tion	decomposers, weathering, erosion, phosphates

 SUMMARIZE

 Analyze current farming practices that are designed to make the best use of energy flow in ecosystems and cycles of matter.

 Accept all reasonable responses. Fertilizers replace nitrogen, phosphorus, and other minerals that are lost from the soil when vegetable matter is harvested and removed. Pesticides and herbicides try to stop insects from eating crops, and other plants from stealing the nutrients in the soil from the crop. Greenhouses are used to make the most of the Sun's energy.

Communities, Biomes, and Ecosystems

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Communities, Biomes, and Ecosystems	After You Read
	 Once an ecosystem is established, its plant and animal species remain the same. 	D
	 Over time, a forest can develop from bare rock. 	Α
	 Mountains are not a biome because climate, plants, and animals change with elevation. 	Α
	 Most of Earth's freshwater is locked in ice. 	Α

Science Journal

"Organisms in a community reflect the resources and climate of that community." Give some examples to illustrate this statement.

Accept all reasonable responses.

Communities, Biomes, and Ecosystems

Section 3.1 Community Ecology

Main Idea	(Details)
	Skim Section 1 of the chapter. List three facts you discovered about ecosystems.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	<i>Use your book or dictionary to define</i> abiotic factor.
abiotic factor	the nonliving part of an organism's environment
New Vocabulary	Use the new vocabulary terms to complete the following sentences
	Your <u>community</u> includes the people, other animals,
climax community	plants, bacteria, and fungi in your area. A <u>limiting factor</u>
community	is any abiotic or biotic factor that restricts the numbers, reproduction,
	or distribution of organisms. The ability of any organism to
ecological succession	survive when subjected to abiotic or biotic factors is its
	tolerance . Changing abiotic or biotic factors can trigger
limiting factor	ecological succession
	with another Primary succession occurs when a community
primary succession	becomes established in an area of exposed rock without topsoil.
	Eventually, a stable, mature <u>climax community</u> can develop
secondary succession	from bare rock. If a disturbance, such as fire, removes the
	community but not the soil, an orderly and predictable change
tolerance	called <u>secondary succession</u> restores the community over time.

on page _

Section 3.1 Community Ecology (continued)

Communities

SE, pp. 60–61

RE, pp. 23–24

I found this information

Oetails

Predict how an unusually prolonged drought might affect a biological community.

Accept all reasonable responses. Drought uncharacteristic of the

ecosystem might cause some species of plants and animals to

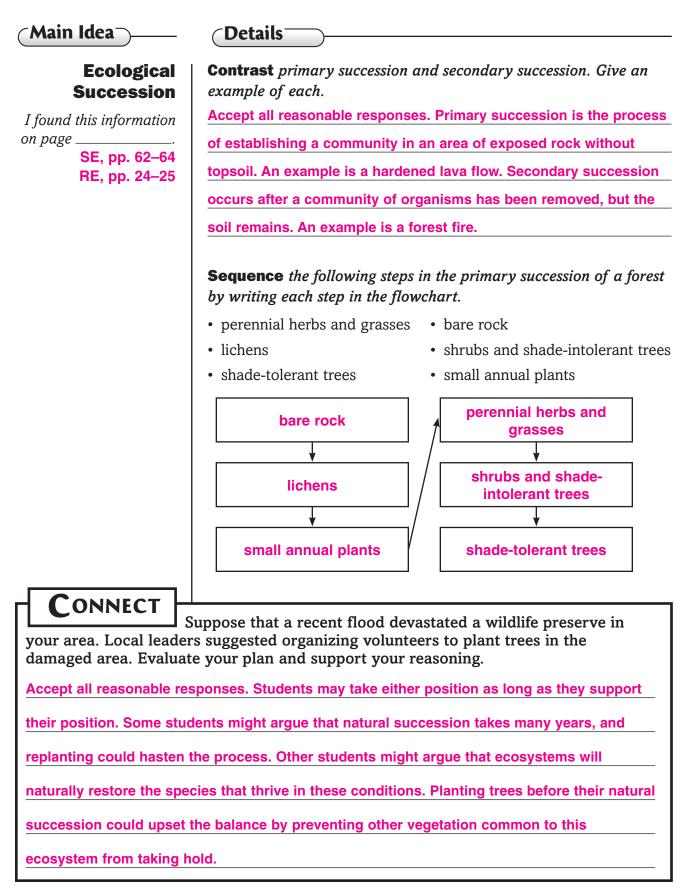
decline or become extinct in the area. Other organisms that feed on

these plants and animals would also decline. Declining species would

be replaced by species that are less sensitive to drought.

Create a tolerance graph similar to the Tolerance of Steelhead Trout figure in your book. Title your graph Tolerance of Plant A. Label the zones. Then label the limits of each zone according to the facts about Plant A listed below.

- can live at an elevation between 1,000 and 2,000 m
- cannot live above 6,000 m
- can live at an elevation between 5,000 and 6,000 m
- grows best between 2,000 and 5,000 m
- cannot live below 1,000 m

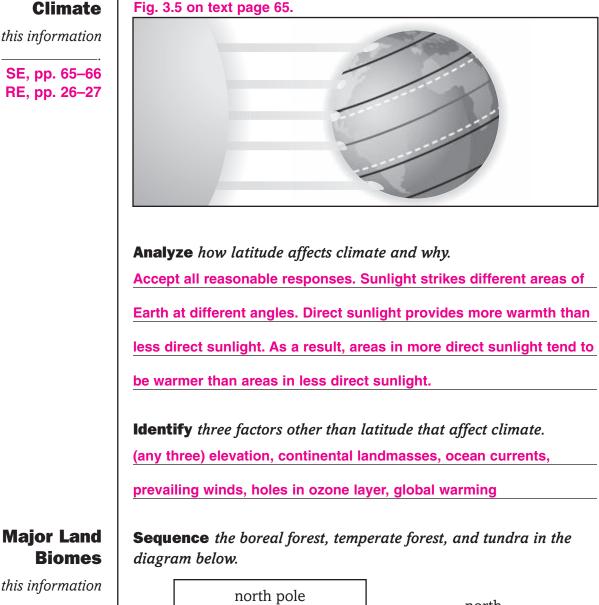

1			
1			

Infer other abiotic factors that might limit the survival of Plant A. Accept all reasonable responses. Abiotic limiting factors might

include temperature, amount of sunlight, and nutrients in the soil.

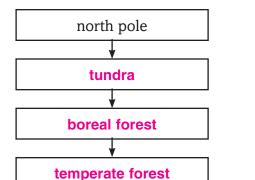
Date _

Section 3.1 Community Ecology (continued)


Communities, Biomes, and Ecosystems Section 3.2 Terrestrial Biomes ⊂Main Idea-Details **Skim** Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions. 1 Accept all reasonable responses. 2. __ Review Vocabulary Use your book or dictionary to define biome. a large group of ecosystems that share the same climate and have biome similar types of plant communities New-Vocabulary Use your book or dictionary to define the following term. distance of any point on the surface of Earth north or south from latitude the equator Compare the terms in the tables by defining them side by side. weather weather: condition of the climate: average weather atmosphere at a specific place conditions in an area, including climate temperature and precipitation and time Describe the vegetation and growing conditions for each biome. tundra: boreal forest: temperate forest: broadboreal forest leaved deciduous trees: treeless: cold dense evergreen temperatures; forest; warmer well-defined seasons desert permafrost than tundra: no permafrost grassland woodlands: grassland: thick desert: variety of sparse temperate forest woods and mixed cover of grasses; plants: dry fertile soil; undershrubs: less ground stems and annual rainfall tropical rain forest than temperate buds tropical savanna forests tropical savanna: tropical seasonal tropical rain forest: tropical seasonal forest grasses and forest: deciduous canopy of tall, broadscattered trees; and evergreen leaved trees with mosses tundra and orchids; understory of less precipitation trees: seasonal than other rainfall shorter trees, shrubs, ferns, woodland tropical areas and creeping plants; warm and rainy year round

Section 3.2 Terrestrial Biomes (continued)

Details


Effects of Latitude and Climate

I found this information on page _ SE, pp. 65–66 RE, pp. 26-27

Model the latitude lines, poles, equator, Tropic of Cancer, Tropic of Capricorn, and the Sun below. Labels should resemble those in

I found this information on page_ SE, pp. 66–72 RE, pp. 27–29

Section 3.2 Terrestrial Biomes (continued)

L

(Details

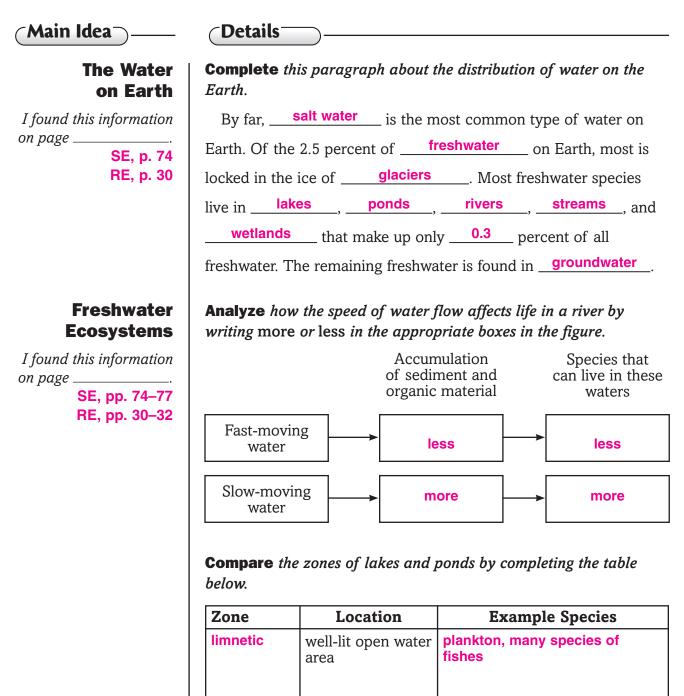
Classify the land biome described by each characteristic below.

	Characteristic	Biome	
	most trees drop their leaves during the dry season	tropical seasonal forest	
	annual rate of evaporation exceeds rate of precipitation	desert	
	open areas of trees and mixed shrubs along the west coasts of North and South America	temperate woodland	
	most diverse of all biomes, with a canopy and understory of vegetation	tropical rain forest	
	grasses and scattered trees; receives less precipitation than other tropical areas	tropical savanna	
	thick cover of grasses with underground stems and buds that can survive fires	temperate grassland	
	dense evergreen forest; also called northern coniferous forest or taiga	boreal forest	
	composed of broad-leaved deciduous trees; has four well-defined seasons	temperate forest	
	treeless; has a layer of permanently frozen soil below the surface called permafrost	tundra	
ther Terrestrial Areas	Analyze why the two land areas below are not to Mountains: Climate characteristics and plant and		
ound this information page	depending on elevation.		
SE, pp. 72–73 RE, p. 29	Polar regions: They are ice masses and not true land areas because		
	they lack exposed soil.		

CONNECT

Compare and contrast a tundra to a desert. Include latitude,

climate, and major biomes.


Accept all reasonable responses.

Communities, Biomes, and Ecosystems

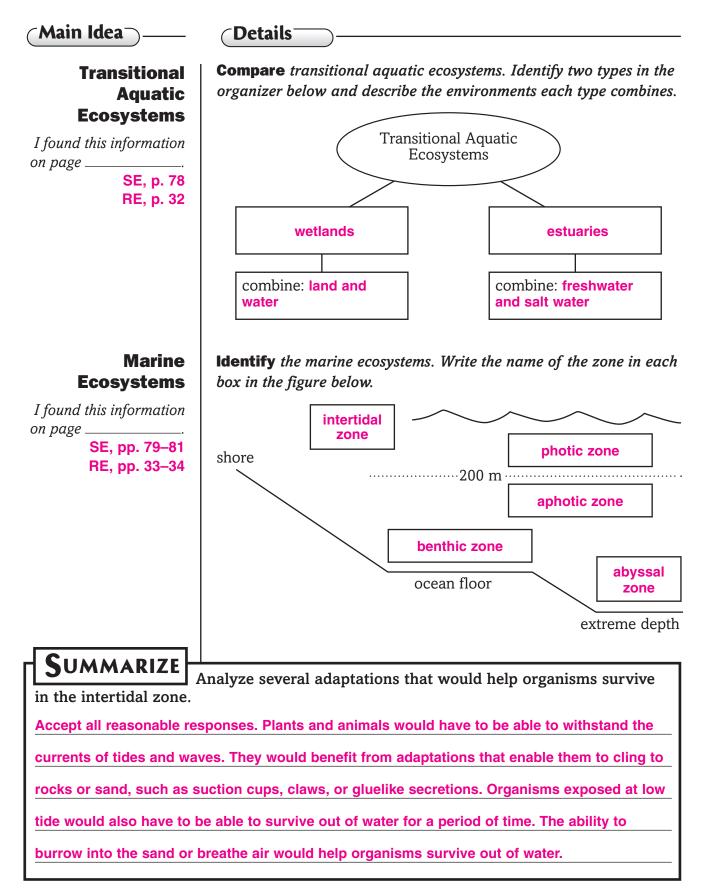
Section 3.3 Aquatic Ecosystems

Main Idea	Details
	Scan the titles, boldfaced words, figures, and captions in Section 3. Write three facts you discovered about aquatic ecosystems.
	1. Accept all reasonable responses.
	2
	3
~Review	
Vocabulary	Use your book or dictionary to define salinity.
salinity	a measure of the amount of salt in a body of water
New Vocabulary	Write the correct term in the left column for each definition below.
profundal zone	deepest areas of a large lake
intertidal zone	narrow band where the ocean meets land
aphotic zone	area of the open ocean that is too deep for sunlight to penetrate
photic zone	area of the open ocean to a depth of about 200 m that is shallow enough for sunlight to penetrate
abyssal zone	deepest region of the ocean
wetlands	areas of land such as marshes, swamps, and bogs that are saturated with water and that support aquatic plants
littoral zone	area of a lake or pond that is closest to shore
estuary	ecosystem that is formed where a freshwater river or stream merges with the ocean
limnetic zone	open water area of a lake or pond that is well lit and dominated by plankton
benthic zone	area of sand, silt, and dead organisms along the ocean floor
sediment	material that is deposited by water, wind, or glaciers
plankton	free-floating photosynthetic autotrophs that live in freshwater or marine ecosystems

Section 3.3 Aquatic Ecosystems (continued)

deepest areas of a

large lake


profundal

littoral	closest to shore	algae, rooted and floating plants, snails, insects, clams, crustaceans, fishes, amphibians
	Commu	nities, Biomes, and Ecosystems 2

light and oxygen

limited due to cold and reduced

Section 3.3 Aquatic Ecosystems (continued)

Population Ecology

Before You Read

Use the "What I Know" column to list the things you know about population biology. Then list the questions you have about population biology in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

White-tailed deer have become so numerous in some areas of the United States that they are a nuisance. Why do you think these deer populations have grown so large?

Accept all reasonable responses. Human land development has removed many deer

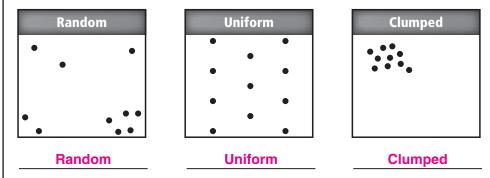
predators and competitors that would have limited the deer populations naturally. The deer

have been able to adapt to the changes in their environments, while many predator and

competitor species could not.

Population Ecology Section 4.1 Population Dynamics

Main Idea	Details		
	Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.		
	1. Accept all reasonable responses.		
	2		
	3		
Review Vocabulary	Use your book or dictionary to	<i>define</i> population.	
population	the members of a single species the	nat share the same geographic	
	location at the same time		
New Vocabulary	Compare the terms in the tables	by defining them side by side.	
carrying capacity	population density the number of organisms per unit	dispersion pattern of spacing of a population within an area	
density-dependent factor	area		
density-independent factor	density-independent factor any factor in the environment that does not depend on the number of members in a population per unit area	density-independent factor any factor in the environment that depends on the number of members in a population per unit area	
dispersion			
emigration	population growth rate speed		
immigration	emigration the number of individuals moving away from a population	immigration the number of individuals moving into a population	
population density			
population growth rate	carrying capacity the maximum number of individuals in a species that an environment can support for the long term		
Academic Vocabulary	Define fluctuate to show its scie	entific meaning.	
fluctuate	to change from high to low levels	or from one thing to another in an	
	unpredictable way		


Section 4.1 Population Dynamics (continued)

CMain Idea →_

(Details

Population Characteristics

I found this information on page _____. SE, pp. 92–94 RE, pp. 35–36 **Identify** *each* pattern of dispersion *represented below*.

Analyze *why populations are limited in their* spatial distribution. Accept all reasonable responses. A species cannot expand into a

new area if it cannot adapt to the biotic and abiotic factors there.

Classify *each limiting factor below as either* density-independent *or* density-dependent *by placing an* X *in the appropriate column.*

Factor	Density- Independent	Density- Dependent
Lava flow	X	
Number of predators		X
Spread of disease		X
Especially cold winter	X	
Toxic chemical spill into a stream	X	
Another species competing for the same resources		x
Diverting a river for irrigation	X	
Fungus that attacks elm trees		X

Analyze how the expansion of housing developments in southern California might limit coyote populations in the area.

Accept all reasonable responses. The developments reduce the land

available for coyote habitat. They might also reduce the habitat for

the coyotes' prey animals, which would decrease the coyotes' food

supply. Less space and less food would limit the coyote populations.

Section 4.1 Population Dynamics (continued)

Oetails ⊂Main Idea⁻ **Identify** four main factors in a population's growth rate. **Population**limiting factors **Factors in Population's Growth Rate** *I found this information* birthrate or natality emigration on page _ • death rate or mortality immigration SE, pp. 94–99 RE, pp. 36–39 **Compare** the general shapes of the curves of population growth graphs. Draw the appropriate graph. Label the lag phase, exponential growth phase, and carrying capacity. Below each graph, describe what the graph shows. Accept all reasonable responses. **Exponential Population Logistic Population** Growth Growth Graph should resemble the Graph should resemble the J-shape of the figure at the top S-shape of the figure at the of text page 97. The lag phase bottom of text page 97. The and exponential growth phase lag phase, exponential growth should be labeled. phase, and carrying capacity should be labeled. This graph shows how a This graph shows typical population would grow if there population growth. After were no limits placed on it by exponential growth, limiting factors slow the growth until the the environment. The population would grow slowly at first, and population stops growing at its later would grow exponentially. carrying capacity. SUMMARIZE Analyze whether humans are *r*-strategists or *k*-strategists. Explain why. Support your reasoning. Humans are *k*-strategists. Humans produce few offspring compared to other species. Human parents invest energy, resources, and time in caring for their offspring, increasing the chances that the young will survive to reproductive age. Humans also fit the profile of a k-strategist as a larger organism with a long life span.

Main Idea	Details	
	Skim Section 2 of the chapter. Make a list of the ways in which human populations change.	
	Accept all reasonable responses.	
Review Vocabular	y Use your book or dictionary to define carrying capacity.	
carrying capacity	the maximum number of individuals in a species that an	
	environment can support for the long term	
New-Vocabulary	Use your book or dictionary to define each term.	
age structure	in a population, the number of males and females in each of three	
	age groups: pre-reproductive stage, reproductive stage, and	
	post-reproductive stage	
lemographic transition	a change in a population from high birth and death rates to low	
	birth and death rates	
demography	the study of human population size, density, distribution, movemen	
uemogrupny	and birth and death rates	
zero population growth (ZPG)	situation in a population in which birthrate equals death rate	

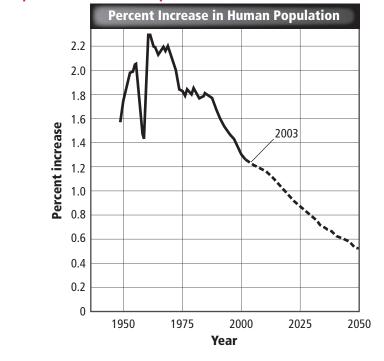
Section 4.2 Human Population (continued)

(Main Idea)

Human Population Growth

I found this information on page _____. SE, pp. 100–101 RE, p. 40 **Summarize** two examples of events that could produce each of the following effects. Accept all reasonable responses.

Effect: decline in world population growth


Events that could produce this effect: worldwide epidemic;

world war

Effect: increase in world population growth

Events that could produce this effect: <u>new medicine reduces death</u> rate; new farming method yields more food per acre

Examine the graph below. Then complete the table that follows. Accept all reasonable responses.

Approximate Growth Rate			
1950	1975	2000	2025 (estimated)
1.7	1.8	1.3	0.9

What are the main reasons for the expected trend in human population between now and 2050?

diseases such as AIDS and voluntary population control

Section 4.2 Human Population (continued)

(Main Idea)_

Details

Trends in Human Population Growth

I found this information on page _____. SE, pp. 102–105 RE, pp. 41–42 **Calculate** the population growth rate for each fictitious country listed in the table below.

Country	ountry Births per 1000		Growth rate (percent)
Х	25	9	1.6
Y	14	4	1
Z	12	15	-0.3

Compare trends in industrialized nations and developing countries in terms of the following factors.

Population growth rate: The population is growing at a faster rate in

developing than in developed countries.

Resource use by individuals: Individuals in industrialized nations

use far more resources than individuals in developing countries.

Identify three factors that could keep the human population from reaching its carrying capacity.

- 1. family planning
- 2. improvements in technology
- 3. limiting the amount of resources each person uses

SUMMARIZE

Imagine that medical science discovered a cure for all cancers. Analyze how this medical achievement might affect life on Earth.

Accept all reasonable responses. The cure would probably decrease the death rate, resulting

in rapid human population growth at first. Then other limiting factors would slow the

exponential growth. Overcrowding would increase the spread of other diseases and of

parasites. The food supply could not support the increased population, leading to starvation.

Competition for resources between humans and other species might decimate animal and

plant populations.

Tie It Together

FURTHER INQUIRY
Create a demographic profile for an imaginary country by describing its population characteristics below. List the sources of your data.
Accept all reasonable responses.
Name of country:
Geographic location:
Is it classified as a developing country or as an industrialized nation?
Population size:
Population density:
Description of the population's spatial distribution across the country's land area:
Birthrate:
Death rate:
Current population growth rate:
Expected population growth rate in the next 10 to 20 years:
General age structure:
Major factors promoting population growth:
Major factors limiting population growth:
Data sources used:

Biodiversity and Conservation

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Biodiversity and Conservation	After You Read
	• Biodiversity is the variety of ecosystems in the biosphere.	D
	• Genetic diversity tends to decrease over time in small pieces of habitat.	Α
	 Nonnative species can damage an ecosystem. 	Α
	• The first national park was established in the United States in 1972.	D

Science Journal

For many years the bald eagle was close to extinction but now lives and reproduces in the wild. Hypothesize how scientists used their knowledge of diversity to save the bald eagle.

Accept all reasonable responses. Scientists studied the effects of the chemical DDT on the

eagle; they understood its nesting habits; they cleaned up its feeding sites.

Biodiversity and Conservation Section 5.1 Biodiversity

Main Idea	(Details
	Skim Section 1 of the chapter. Read the headings and the illustration captions. Write two questions that come to mind.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define gene.
gene	functional unit that controls the expression of inherited traits
New Vocabulary	Use your book or dictionary to define each term.
biodiversity	the variety of species in a particular area
ecosystem diversity	the variety of ecosystems present in the biosphere
extinction	the complete disappearance of a species when its last member dies
genetic diversity	the variety of genes present in a population
species diversity	the variety of different species in a biological community
Academic- Vocabulary	Define diverse to show its scientific meaning.
diverse	made of different qualities

Section 5.1 Biodiversity (continued)

(Main Idea

Oetails

Accept all reasonable responses.

What is **Biodiversity?**

I found this information on page _ SE, pp. 116-118

RE, pp. 43-44

	Rain Forest	Corn Field	Vegetable Garden	Tundra
Plants	hundreds of species of plants	one type of plant	carrots, broccoli, corn, tomatoes, weeds, sunflowers	wild grasses, flowers
Animals	hundreds of species of birds, thousands of species of insects	hundreds of insects, several birds or animals	insects, moles, toads	polar bears, seals, birds

Compare and **contrast** the species biodiversity of different areas.

Describe observable differences among the types of biodiversity using a forest ecosystem. Accept all reasonable responses.

Type of Biodiversity	Example	
Genetic diversity	differences in the coat color of rabbits that live in the forest	
Species diversity	the number of tree species growing in the forest	
Ecosystem diversity	the forest ecosystem is one of many types of ecosystems in the biosphere	

Analyze how genetic diversity in a population of fishes in a stream can help the fishes resist disease.

Accept all reasonable responses. The variety present in a population

of fishes with high genetic diversity increases the chance that some

of the fishes will be able to resist disease, survive, and reproduce.

A population with a low level of diversity is less likely to survive and

reproduce in the face of disease.

Section 5.1 Biodiversity (continued)

Main Idea

The Importance of Biodiversity

I found this information on page _____. SE, pp. 118–121 RE, pp. 44–45

_		- 6		١.,	
	D	et	aı	lS	
	-				

Summarize why species should be preserved as a possible source of useful genes.

	Agriculture	Medicine
Organisms that might have value include	wild relatives of crop plants.	unknown plants and other organisms in remote regions.
These organisms someday might be useful as	a source of genes to give disease resis- tance to crop plants.	a source of new medicines to treat human diseases.

Identify resources and services that a healthy biosphere provides to people. Accept all reasonable responses.

Resources	Services
1. clean water	1. protection from floods
2. clean air	2. decomposition of wastes
3. fertile soil	3. protection from droughts
4. food	4. climate regulation

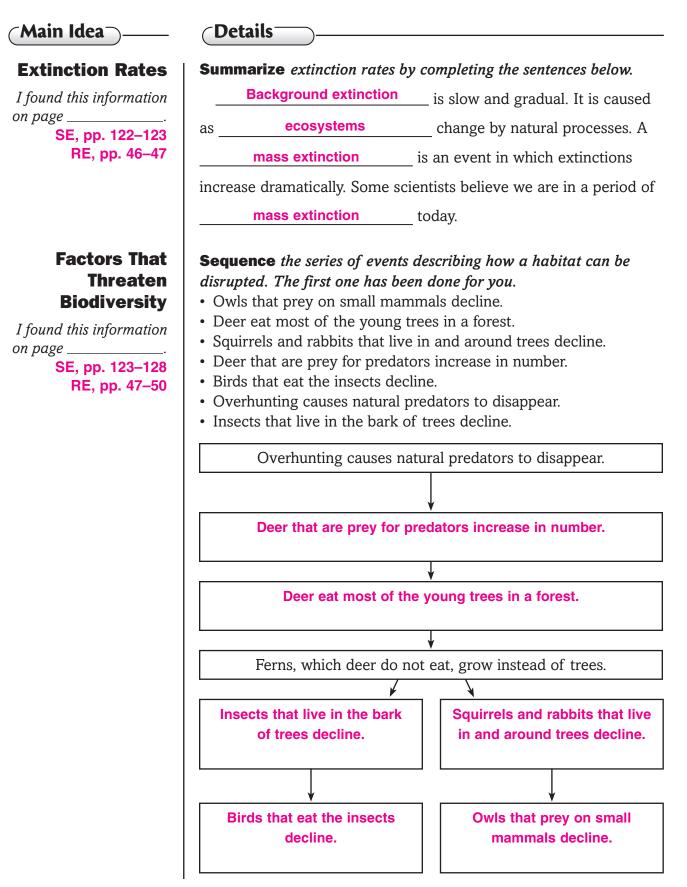
Organize how humans are dependent on plants and animals by describing two ways that you use products of each. Accept all reasonable responses.

Products of Animals	Products of Plants
eating meat	breathing oxygen
wearing wool clothing	eating a salad, wearing cotton

SUMMARIZE

SOMMARIZE Explain how the health of the biosphere impacts the health of people.

Accept all reasonable responses. A healthy biosphere has a high level of biodiversity.


Biodiversity can lead to the possibility of new medicines to treat human diseases. A healthy

biosphere is able to provide clean water and clean air that people need. Healthy ecosystems

can protect people from extreme weather, floods, and droughts.

Biodiversity and Conservation Section 5.2 Threats to Biodiversity ⊂Main Idea⊃ **Oetails Scan** the titles, boldfaced words, figures, and captions in Section 2. List three threats you discovered to biodiversity. 1 Accept all reasonable responses. 2._____ 3. _____ Review Vocabulary Use your book or dictionary to define food web. the interconnected food chains and pathways in which matter and food web energy flow through a group of organisms New Vocabulary Use your book or dictionary to define the following terms. the increased concentration of toxic substances in organisms at a biological magnification high trophic level in the food chain different environmental conditions along an ecosystem's boundaries edge effect water pollution that occurs when substances rich in nitrogen and eutrophication phosphorous flow into waterways the separation of an ecosystem into small pieces of land habitat fragmentation nonnative species that are transported to a new habitat *introduced species* excessive use of a species, often leading to extinction overexploitation

Section 5.2 Threats to Biodiversity (continued)

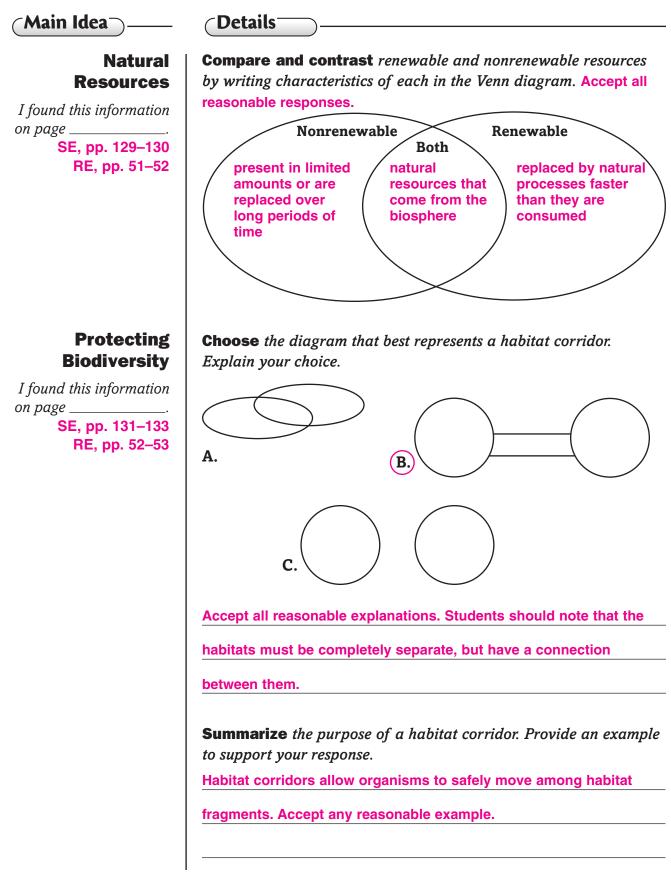
Date _

Section 5.2 Threats to Biodiversity (continued)

-	Explain why carnivores are subject to biological magnification of substances like DDT and PCBs.		
DDT and PC	Bs are pollu	tants that accumulate in bodily tissues.	
These subs	tances enter	the food chain in low amounts. As one	
animal eats	animal eats another, they accumulate in bodily tissues. Because carnivores eat animals that have the substances in their tissues,		
carnivores			
they accum	ulate high le	vels of DDT and PCBs in their own tissues.	
Accept all r	Describe the effects of each change in habitat on species of animal Accept all reasonable responses. Edge effects The organisms that live at the edge of a		
	Accept all reasonable responses. Edge effects The organisms that live at the edge habitat are different from those the in the middle of a habitat, due to the middle of a habitat.		
		conditions.	
Introduced	l species	Introduced species often destroy native	
		species as they feed on them or disturb their habitat.	
Pollution		species as they feed on them or disturb	
	gmentation	species as they feed on them or disturb their habitat. Pollution in the air, water, and land can destroy soil and vegetation and make	

JNNECI

Imagine a habitat near you. Hypothesize what would happen to the ecosystem if one species died out. Support your reasoning with information from this section.


Accept all reasonable responses. Students should describe several species of plants and

animals and understand that as one species dies out, other species will be affected.

Biodiversity and Conservation Section 5.3 Conserving Biodiversity

(Main Idea)	(Details)
	Read the main idea of Section 3 of the chapter and look at the figures and captions in the section. Predict two ways that people are preserving biodiversity.
	1. Accept all reasonable responses.
	2
∠Review—	
Vocabulary	Use your book or dictionary to define natural resources.
natural resources	organisms and materials found in the biosphere
∕New—	
Vocabulary	Use your book or dictionary to define the following terms.
biological	the practice of adding essential materials to restore a degraded
augmentation	ecosystem
bioremediation	a method of using living things, such as bacteria, plants, or fungi, to
	remove toxins from a polluted area
endemic	native to one specific geographic area
nonrenewable resource	a natural resource that is present in limited amounts or requires a
	long period of time to be replaced
renewable resource	a natural resource that is replaced by natural processes faster than
	it is consumed
sustainable use	philosophy that lets people use natural resources in a way that will
	benefit them and maintain the ecosystem

Section 5.3 Conserving Biodiversity (continued)

Section 5.3 Conserving Biodiversity (continued)

Main Idea	Details	
Restoring Ecosystems I found this information on page SE, pp. 134–135 RE, pp. 53–54	Details Organize the factors that impact how long it takes for an ecosyst to recover after a disaster. Factors that affect ecosystem recovery rate Explain the methods ecologists use to restore ecosystems. Method: bioremediation How it works: living things used to remove toxins from a polluted area Example: plants used to remove heavy metals from soil Method: biological augmentation How it works: natural predators are added to a degraded ecosystem Example: ladybugs added to control aphid populations	
Legally Protecting Biodiversity I found this information on page SE, p. 135 RE, p. 54	Rephrase a law or treaty designed to protect biodiversity. Who or what: Endangered Species Act When: 1973 How: gives legal protection to species that are in danger of becoming extinct	
hot spots. Hot spots are locations a extinction. Hot spots con biodiversity. Sustainable	Analyze how sustainable use could preserve biodiversity in around the world with large numbers of species in danger of mprise only 1.5 percent of Earth's land but have a high amount of a use would let people use the resources of these areas in a way ity and long-term health of the ecosystems.	

Chemistry in Biology

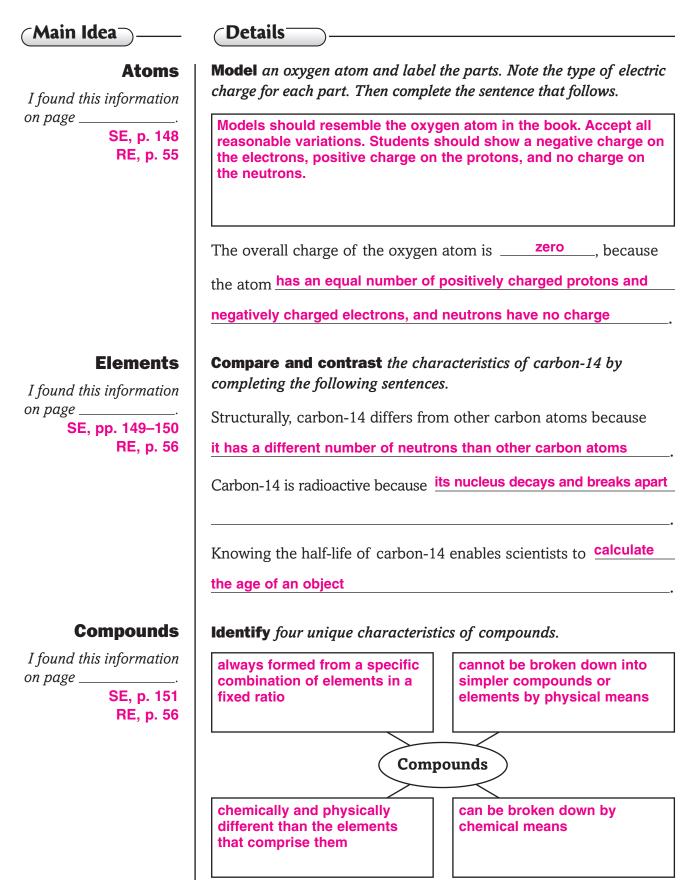
Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

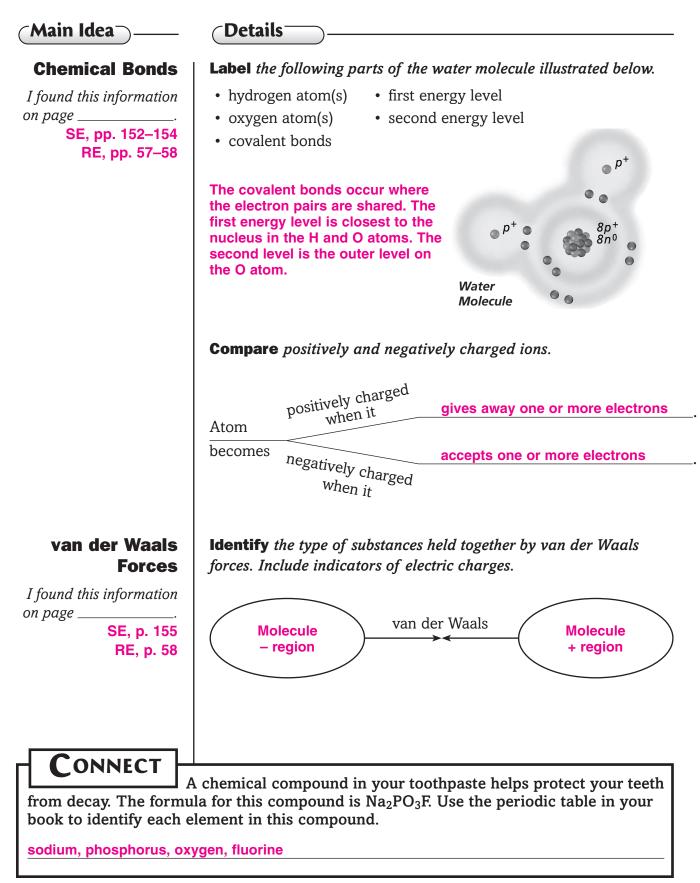
- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Before You Read	Chemistry in Biology	After You Read
	Atoms are the smallest particles in matter.	D
	Chemical reactions occur constantly inside your body.	Α
	• About 70 percent of your body is water.	Α
	• Almost all molecules in living things contain the element carbon.	Α

Science Journal


Consider the characteristics of a living and a nonliving thing. Describe a few ways that the two are alike and a few ways that the two are different.

Accept all reasonable responses.


Chemistry in Biology Section 6.1 Atoms, Elements, and Compounds

Main Idea	(Details)			
	Scan the headings and boldfaced words in Section 1 of the che Predict two things that you think might be discussed.			
	1. Accept all reasonable response	PS		
	2			
~Review	2.			
Vocabulary	y Use your book or dictionary to define substance.			
substance	form of matter that has a uniform a	and unchanging composition		
New Vocabulary	New Vocabulary Compare the terms in the table by defining them side by side.			
atom	atom building block of matter			
electron	nucleus center of an atom that contains protons and neutrons	neutron particles with no charge that are located in the		
neutron		nucleus		
nucleus	proton positively charged particles that are located in the	electron negatively charged particles that are located		
proton	nucleus	outside the nucleus		
	Complete the paragraph below using the terms listed to the left.			
<i>compound</i> A substance that cannot be broken down into other		-		
covalent bond	a(n) <u>element</u> . Carbon-14 is a(n) <u>isotope</u> . It has a			
covatent conta	different number of neutrons than	n other carbon atoms. A(n)		
element	<i>element</i> <u>compound</u> forms when two or more elements combine. The			
ion	chemical bond that holds the elements together is a(n)			
1011	covalent bond when electrons a	re shared. A substance with this		
ionic bond	kind of bond is called a(n)	ecule An atom that has lost or		
isotona	gained one or more electrons becomes a(n) <u>ion</u> , which			
isotope	carries an electric charge. Two of these oppositely charged atoms			
molecule	can form an electrical attraction of	called a(n) <u>ionic bond</u> . An		
1 147 1- C	attraction between oppositely cha	rged regions of molecules is		
van der Waals force	called a(n) van der Waals force			

Section 6.1 Atoms, Elements, and Compounds (continued)

Section 6.1 Atoms, Elements, and Compounds (continued)

Chemistry in Biology Section 6.2 Chemical Reactions **Oetails** ⊂Main Idea^{_} **Skim** Section 2 of the chapter. Write two facts that you discovered as you read the headings and illustration captions. 1 Accept all reasonable responses. 2. _____ **Review**-Vocabulary Use your book or dictionary to define process. series of steps or actions that produces an end product process New-Use your book or dictionary to define each term. Vocabularv minimum amount of energy needed for reactants to form products in activation energy a chemical reaction location where a substrate binds on an enzyme active site substance that lowers the activation energy needed to start a catalyst chemical reaction process by which atoms or groups of atoms in substances are chemical reaction reorganized into different substances protein that speeds up a chemical reaction in a biological process enzyme substance formed during a chemical reaction product starting substance in a chemical reaction reactant reactant that binds to an enzyme substrate Academic Vocabulary Define coefficient to show its scientific meaning. number in front of a reactant or a product in a chemical equation coefficient

Section 6.2 Chemical Reactions (continued)

(Main Idea)_

Reactants and Products

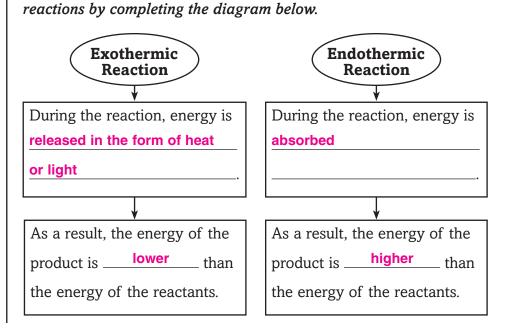
I found this information on page ______. SE, pp. 156–157 RE, pp. 59–60

Label the sides of the following equation as either products or reactants.

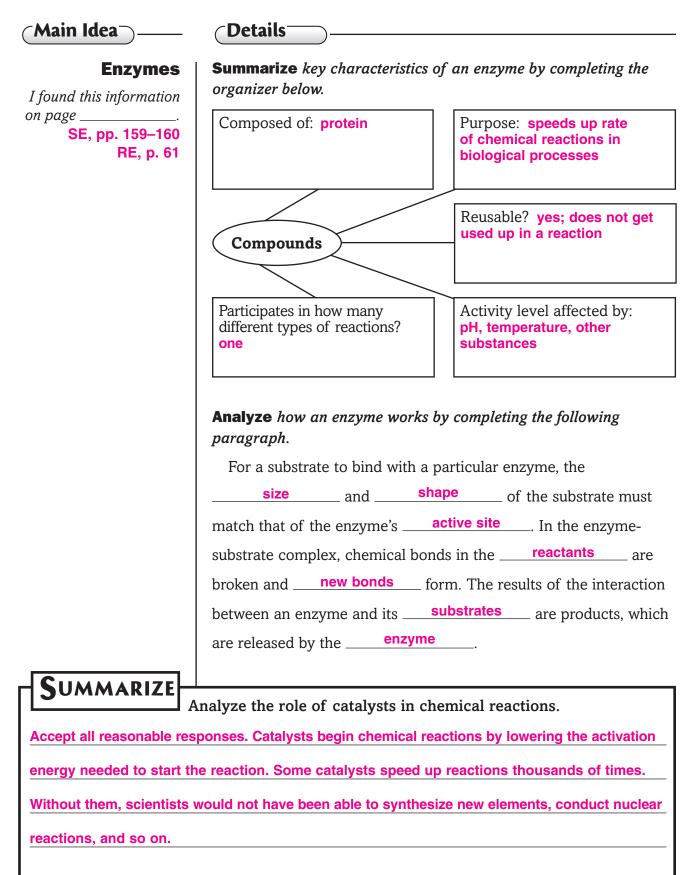
Calculate the number of atoms of each element in the chemical equation above. Record the information in the table below.

Element Symbol	Element Name	Number of Atoms (reactant side)	Number of Atoms (product side)
С	carbon	1	1
н	hydrogen	4	4
0	oxygen	4	4

Analyze the formula to check to see if it is balanced. Support your reasons.


Compare what happens to energy in exothermic and endothermic

Each element has the same number of atoms on both sides of


the equation. No mass has been lost or gained.

Energy of Reactions

I found this information on page _____. SE, pp. 157–158 RE, pp. 60–61

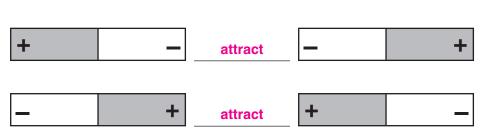
Section 6.2 Chemical Reactions (continued)

Chemistry in Biology Section 6.3 Water and Solutions

Main Idea	Details
	Scan Section 3 of the chapter. Identify two facts you discovered about water.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define physical property.
physical property	characteristic of matter that can be observed or measured without
	changing the composition of the substance
New Vocabulary	Write the correct vocabulary term in the left column for each definition below.
base	substance that releases hydroxide ions when dissolved in water
acid	substance that releases hydrogen ions when dissolved in water
solvent	substance in which another substance is dissolved
buffer	mixture that can react with an acid or a base to keep the pH within a particular range
рН	measure of concentration of hydrogen ions in a solution
solute	substance that is dissolved in a solvent
hydrogen bond	weak interaction involving a hydrogen atom and a fluorine, oxygen, or nitrogen atom
polar molecule	molecule that has oppositely charged regions
solution	mixture that has a uniform composition throughout
mixture	combination of two or more substances in which each substance retains its individual characteristics and properties
Academic Vocabulary	Define suspend to show its scientific meaning.
suspend	to keep from falling or sinking

Section 6.3 Water and Solutions (continued)

(Details

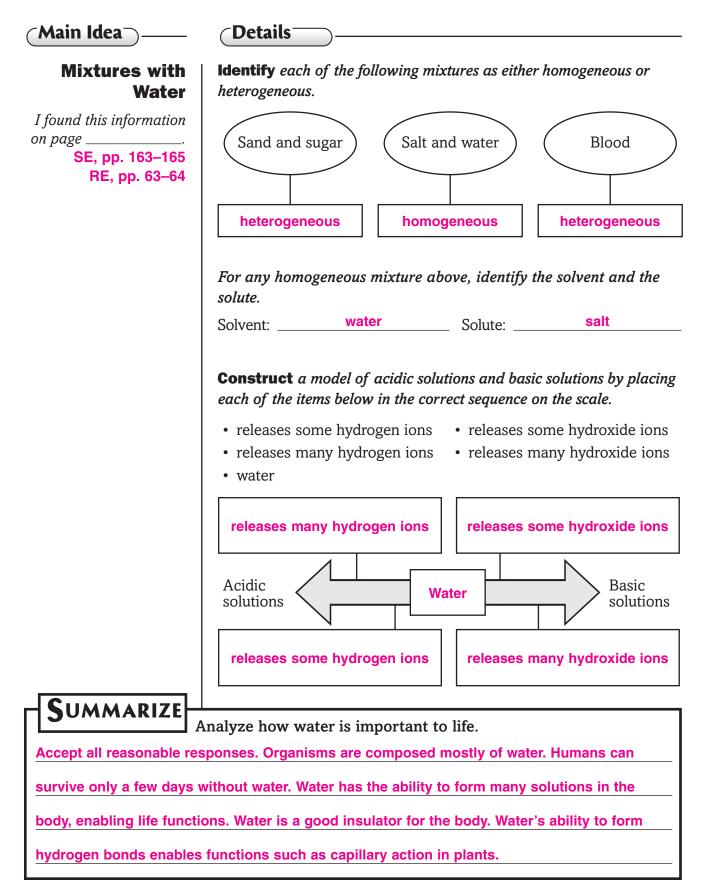

Water's Polarity

I found this information on page _____. SE, p. 161 RE, pp. 62–63

 Analyze polarity by writing attract or repel to complete the diagram.

 +

 repel
 +


Analyze reasons for water's polarity and the effect of polarity.

Polarity of Water		
Reasons for polarity: Electrons are more strongly attracted to the oxygen nucleus than to the hydrogen nuclei, resulting in an unequal distribution of electrons. This, along with the molecule's bent shape, creates oppositely charged regions.	Effects of polarity: Because oppositely charged regions attract, water molecules tend to form electrostatic bonds with other polar molecules and can readily form solutions.	

Identify the properties of water that allow it to help an organism maintain homeostasis.

Property	Description
Universal solvent	Water can separate the ions in many compounds.
Adhesive	Water will form hydrogen bonds with other surfaces. Capillary action is one result.
Polar	Water has a slight positive charge on one side of the molecule and a slight negative charge on the other side.
Cohesive	Water molecules are attracted to each other.

Section 6.3 Water and Solutions (continued)

Chemistry in Biology Section 6.4 The Building Blocks of Life **Oetails** ⊂Main Idea⊃ **Skim** Section 4 of the chapter. Write two facts that you learned from reading the headings and illustration captions. 1 Accept all reasonable responses. 2. _____ Review Vocabulary Use your book or dictionary to define organic compound. carbon-based substance that is the basis of living matter organic compound New-Vocabulary Use your book or dictionary to define each term. component of protein that is a compound made of carbon, nitrogen, amino acid oxygen, hydrogen, and sometimes sulfur compound composed of carbon, hydrogen, and oxygen in a ratio of carbohydrate one oxygen and two hydrogen atoms for each carbon atom molecule made mostly of carbon and hydrogen that makes up the lipid fats, oils, and waxes large molecule that is formed by joining smaller organic molecules macromolecule complex macromolecule that stores and transmits genetic information nucleic acid repeating subunit of a nucleic acid nucleotide molecule made from repeating units of identical or nearly identical polymer compounds called monomers that are linked together by a series of covalent bonds compound made of small carbon compounds called amino acids protein

Section 6.4 The Building Blocks of Life (continued)

Main Idea Organic Chemistry	Contrast <i>an organic compound to an inorganic compound.</i> Any compound that contains carbon is organic. An inorganic			
I found this information on page SE, p. 166	compound is not carbon-based.			
RE, p. 65	Model a carbon atom, and label its parts. Then use a label to point out and briefly explain why carbon can form a variety of organic compounds.			
	Models should resemble the carbon atom in the text, but with labels added for the nucleus, electrons, and first and second energy levels.	It contains four electrons instead of the full eight, enabling covalent bonds to form chains of molecules.		
Macromolecules	Compare the composition and functions	of the four major groups		

Compare the composition and functions of the four major groups of biological macromolecules by completing the table below.

Group	Composition	Functions
Proteins	amino acids made of carbon, nitrogen, oxygen, hydrogen, and sometimes sulfur	transport substances; speed reactions; provide structural support; provide hormones
Nucleic acids	nucleotides made of carbon, nitrogen, oxygen, phosphorus, and hydrogen	store and communicate genetic information
Carbohydrates	carbon, hydrogen, and oxygen in ratio of one oxygen and two hydrogen for each carbon	store energy; provide structural support
Lipids	mostly carbon and hydrogen	store energy; provide steroids; waterproof coatings

I found this information

SE, pp. 167–171 RE, pp. 66–68

on page _____

Section 6.4 The Building Blocks of Life (continued)

Main Idea	Details			
I found this information on page	Evaluate the number carbohydrate describe	0	5	
SE, pp. 167–171 RE, pp. 66–68	(CH ₂ O) ₆			
	Carbon: <u>6</u> H	Hydrogen: 1	2	Oxygen: <u>6</u>
	Ratio of carbon, hydrogen, and oxygen: 1:2:1			
	Type of carbohydrate: monosaccharide/simple sugar Model the two general shapes of proteins named below.			
	Pleat			Helix
	Describe nucleic acids by filling in the following chart.			
		Units that Make Up Nucleotides		
	phosphate	nitrogenou	s base	ribose sugar
	Function of DNA: sto instructions for organ grow, reproduce, and	isms to		stored in DNA to
each of the following m	dentify two examples o nacromolecules: carboh			0
help, read food labels. Accept all reasonable res	ponses. Carbohvdrates a	are found in	pasta, potat	oes. and fruit. Lipids
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·

Tie It Together

You have read about chemical reactions. Now create

FURTHER INQUIRY

a simple science review manual explaining how chemical reactions allow living things to grow and develop. Your review manual should be easy to read and contain basic information and specific examples. Include diagrams to illustrate the ideas. Use the space below to create an outline for your review manual.

Accept all reasonable responses.

Cellular Structure and Function

Before You Read

Use the "What I Know" column to list the things you know about cells. Then list the questions you have about cells in the "What I Want to Find Out" column. Accept all reasonable responses.

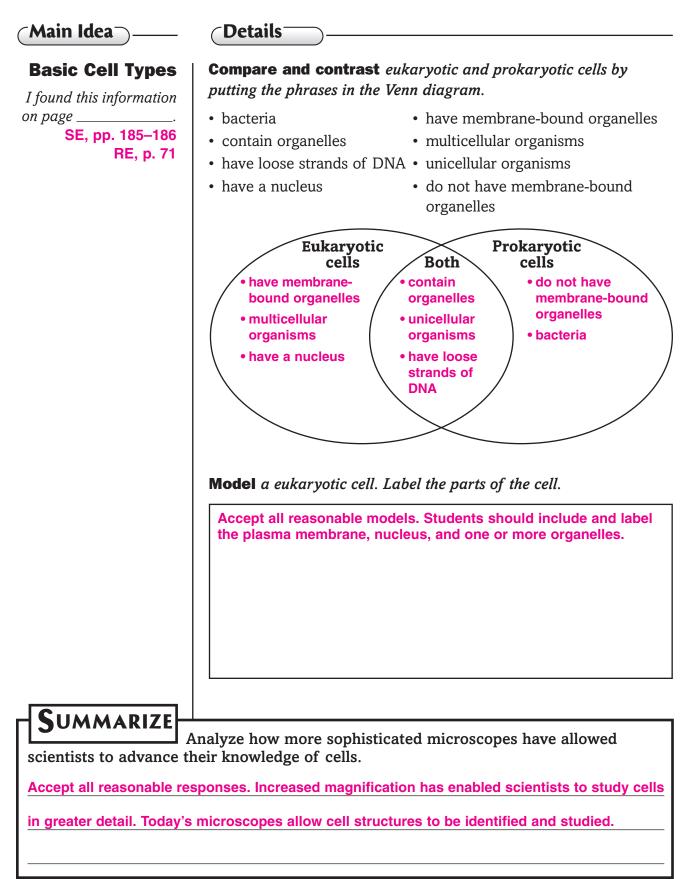
K What I Know	W What I Want to Find Out	L What I Learned

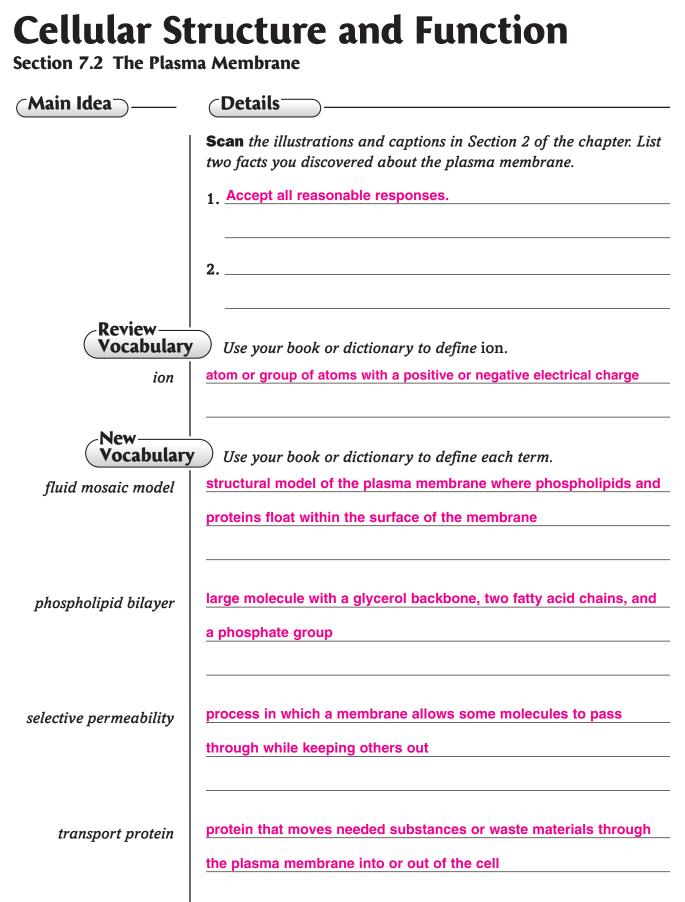
Science Journal

Imagine that you are small enough to fit inside a cell. Describe what you think you might observe while you are there.

Accept all reasonable responses.

Cellular Structure and Function


Section 7.1 Cell Discovery and Theory


Main Idea	Details
	Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	
organization	orderly structure of cells in an organism
New Vocabulary	Use your book or dictionary to define each term.
cell	basic unit of all living things
cell theory	theory that all organisms are made of one or more cells, which are the basic units of life, and that all cells come from other cells
eukaryotic cell	cell with specialized structures, which include the nucleus and other organelles
nucleus	cell organelle that controls the cell's activities and contains DNA
organelle	membrane-bound structure with special functions within eukaryotic cells
plasma membrane	boundary that helps control what enters and leaves a cell
prokaryotic cell	simple cell without specialized structures

Section 7.1 Cell Discovery and Theory (continued)

Main Idea	Details
History of the Cell Theory I found this information on page SE, pp. 182–183 RE, pp. 69–70	Identify the three main ideas of the cell theory. Then write a short sentence for each one describing each idea. Accept all reasonable responses. All living things are made of one or more cells. Sample response: I have seen that an onion is made of cells, and I know an onion was alive because it was a plant.
	Cells are the basic units of structure and function in living things. Sample response: I know our muscles are made of muscle cells. I have seen that plants are made of plant cells.
	All cells come from other cells. Sample response: We learned that living things only come from other living things. You cannot make a cell in a laboratory.
Microscope Technology I found this information on page SE, pp. 183–185	Summarize information about electron microscopes using five or six bullet points. Accept all reasonable responses. Important points are listed below. • Microscopes improved in the 1930s–1940s.
RE, pp. 70–71	 Microscopes allowed scientists to magnify objects up to 500,000 times. They use a beam of electrons instead of a beam of light. Scanning (SEM) can show a cell's 3-D shape.
	Transmission (TEM) can help see inside a cell. Scanning tunneling electron microscope (STM) can show 3-D images of atoms.

Section 7.1 Cell Discovery and Theory (continued)

Date _____

Section 7.2 The Plasma Membrane (continued)

Function of the Plasma	Analyze what would happen if the cell membrane were not selectively permeable. Support your response.		
Membrane	Accept all reasonable analyses. Sample response: The cell might be		
I found this information	destroyed because wastes could not leave and inappropriate molecules		
on page SE, p. 187 RE, p. 72	might enter the cell.		
	Identify five ways that the membrane can deal with materials.		
	keeping molecules out		
	allowing molecules in at any time		
	membrane deals allowing molecules in only at certain times		
	with materials by allowing molecules in only in limited amount		
	expelling wastes from inside the cell		
Structure of the Plasma Membrane	phospholipid functions to make up the fluid membrane.Accept all reasonable responses. The phosphate group forms the polar head ofDiagrams should resemble those on SE p. 188.the molecule. It points outward to interact with the watery environment outside the cell. The nonpolar fatty acid tails point inward toward each other (since two layers make up each membrane) away from the water outside the cell. A barrier is created that is water-soluble on the outside but water-insoluble on the inside.Diagrams should resemble those on SE p. 188.		

Date _____

Section 7.2 The Plasma Membrane (continued)

(Main Idea)	Detai	ls		
I found this information on page SE, pp. 188–190		he plasma membrane. Label each part, and describe the of that part in detail.		
RE, pp. 73–74		ns should clearly show and explain phospholipids, s, and cholesterol.		
	with sur	olipids: polar phosphate heads allow membrane to interact rface water; nonpolar tails are on inside of membrane and difficult for water-soluble particles to move through the ane		
		transport proteins: regulate what is allowed to enter and exit the cell through the membrane		
		erol: keeps phospholipids fluid, prevents them from together		
	receptor	rs: transmit signals to the inside of cells		
	Discuss membran	how the terms fluid and mosaic describe the plasma ne.		
	Fluid:	It is fluid because the phospholipids, proteins, and		
		cholesterol float in the membrane.		
	Mosaic:	It is a mosaic because it has many parts. The proteins		
		create patterns on the membrane's surface.		
homeostasis in the cell.		e role of the plasma membrane in maintaining		
Accept all reasonable res	sponses. As	s a selectively permeable barrier between the inside of the		
cell and the outside envir	ronment, th	e plasma membrane controls the amount of substances		
entering and leaving the	cell and the	e timing of substance flow.		

Cellular Structure and Function

Section 7.3 Structures and Organelles

Main Idea	(Details))			
	Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.				
	1. Accept all reas	sonable response	S.		
	2				
Review Vocabulary	Use your book	or dictionary to	<i>define</i> enzyme.		
enzyme	protein that spee	ds up the rate of a	a chemical reaction	on	
New Vocabulary cell wall	Write each ter describes it.	m in the table und	der the heading th	hat best	
centriole chloroplast	Cell Structure (5)	Related to Genetic Material (2)	Food, Storage, and Waste (5)	Energy (2)	
cilium	cell wall	nucleolus	cytoplasm	chloroplast	
cytoplasm	cilium	ribosome	endoplasmic reticulum	mitochondrion	
cytoskeleton	cytoskeleton		Golgi apparatus		
endoplasmic reticulum	flagellum		lysosome		
flagellum	centriole		vacuole		
Golgi apparatus lysosome mitochondrion	Compare and con noting their differ	-	of terms by defini	ng them and	
nucleolus	Chloroplast		Mitochondrion		
ribosome	plant organelle that captures light and converts it to a chemical		in plants and an energy to a form		
vacuole	Vacuole	Vacuole		Centriole	
	storage compart	ment in a cell	organelle that fu cell division	nctions during	
	Cilium		Flagellum		
	short, hairlike pı aids in locomoti		long, hairlike pro in locomotion	ojection that aids	

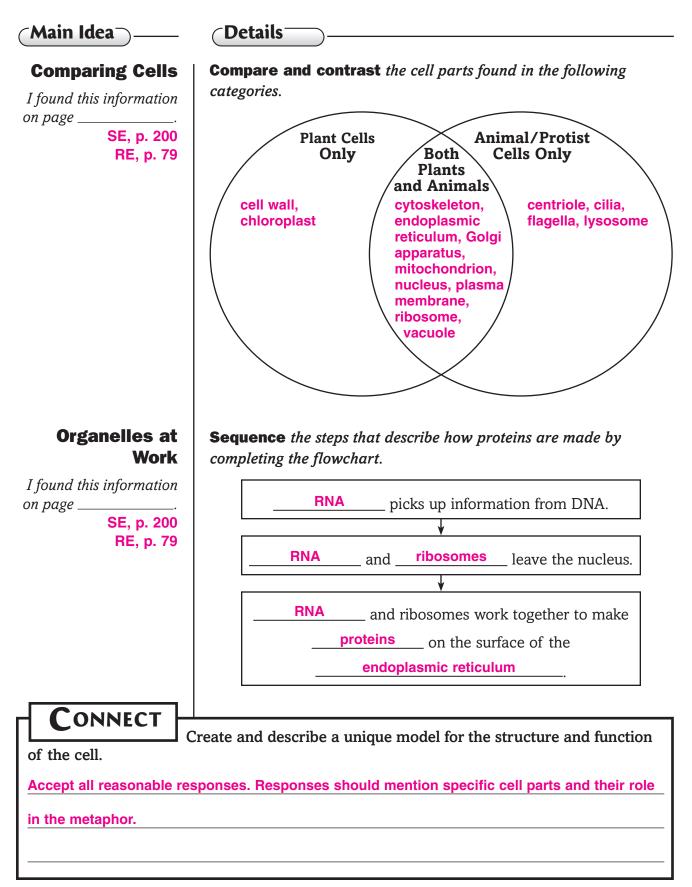
Section 7.3 Structures and Organelles (continued)

(Details

Cytoplasm and Cytoskeleton

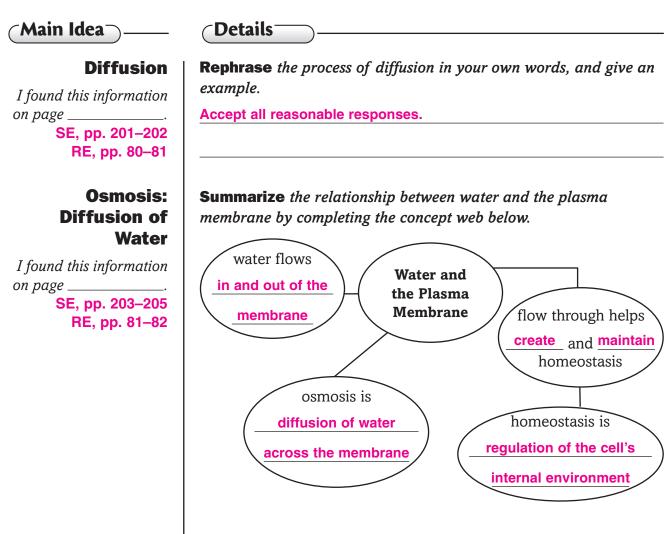
I found this information on page _____. SE, pp. 191–192 RE, p. 75 **Compare** the cytoplasm and cytoskeleton by defining each in the boxes.

Cytoplasm	Cytoskeleton
semifluid material inside the organelles or plasma membrane in which cell processes take place directly	supporting network of long, thin protein fibers forming a framework for the cell and providing an anchor for organelles


Cell Structures

I found this information on page _____. SE, pp. 193–199 RE, pp. 75–78

Identify the part of the cell that corresponds to each functi	on
described.	


nucleus	directs cell processes; contains the cell's DNA; stores information for cell growth, function, and reproduction
nuclear envelope	double membrane that surrounds the nucleus
ribosome	helps manufacture proteins
nucleolus	produces ribosomes inside the nucleus
endoplasmic reticulum	site of ribosome attachment; can be smooth or rough
Golgi apparatus	modifies, sorts, and packages proteins for transport outside the cell
vacuole	membrane-bound storage area within the cell
lysosome	vesicle that contains substances that digest excess or worn-out organelles
centriole	structure near the nucleus that functions during cell division
mitochondrion	converts fuel particles (sugars) into useable energy
chloroplast	captures light energy and converts it to chemical energy through photosynthesis
cell wall	gives support to plant cells
cilia and flagella	projections that allow the cell to move or to move substances along the surface of the cell

Section 7.3 Structures and Organelles (continued)

Cellular Structure and Function Section 7.4 Cellular Transport ⊂Main Idea^{_} **Details Skim** Section 4 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions. 1 Accept all reasonable responses. **2**. _ Review Vocabulary Use your book or dictionary to define homeostasis. regulation of the internal environment to maintain conditions homeostasis suitable for life New Vocabulary Write the correct vocabulary term in the left column for each definition below. endocytosis process by which the plasma membrane surrounds a substance outside the cell and moves it inside the cell active transport movement of substances from a region of lower concentration to a region of higher concentration diffusion net movement of particles from an area where there are many particles of the substance to an area where there are fewer hypertonic solution solution that has a higher concentration of solutes in the cell isotonic solution solution in which the inside of the cell and the solution it is in have the same concentration of water and solutes exocytosis process by which the plasma membrane surrounds a substance inside the cell and moves it outside the cell osmosis diffusion of water across a selectively permeable membrane facilitated diffusion form of transport that uses transport proteins to move other ions and small molecules across the plasma membrane dynamic equilibrium condition in which there is continuous movement but no overall change in concentration hypotonic solution solution that has a lower concentration of solutes in the cell

Section 7.4 Cellular Transport (continued)

Model a cell in a hypertonic, hypotonic, and isotonic solution. Underneath each model, summarize the effect of each solution on the cell. Accept all reasonable responses.

Solutions		
Hypertonic Hypotonic Isotonic		
Pressure inside the cell decreases in a	A cell swells when placed in a	Cell shows no effect when placed in an
hypertonic solution.	hypotonic solution.	isotonic solution.

Section 7.4 Cellular Transport (continued)

Active Transport and Transport of Large Particles	Classify and summarize the fin membrane. Make notes and sketc Accept all reasonable responses.	0,1	
I found this information	Passive Transport		
on page SE, pp. 205–207 RE, p. 82	simple diffusion cell uses no energy to move particles; they just diffuse through membrane	facilitated diffusion transport proteins; assist passive transpor	
	active transport cell uses carrier move particles; r	proteins to help	
	Transport of	Large Particles	
For the analogy, encourage creative and priginal thought that synthesizes the concepts at hand.	exocytosis requires energy, active transport; membrane capsule joins cell membrane and expels material	endocytosis requires energy, active transport; cell engulfs materials with a portion of the cell's plasma membrane and releases the contents within the cell	
	Think of real-life movement betwe		
membrane. Explain ho	fferent kinds of transport that oc w each type of transport works in	n your analogy.	
	sponses. Simple diffusion is like wal		
through a subway gate u	sing a ticket; endocytosis is like rec	eiving shipping: and exocytosis	

Tie It Together

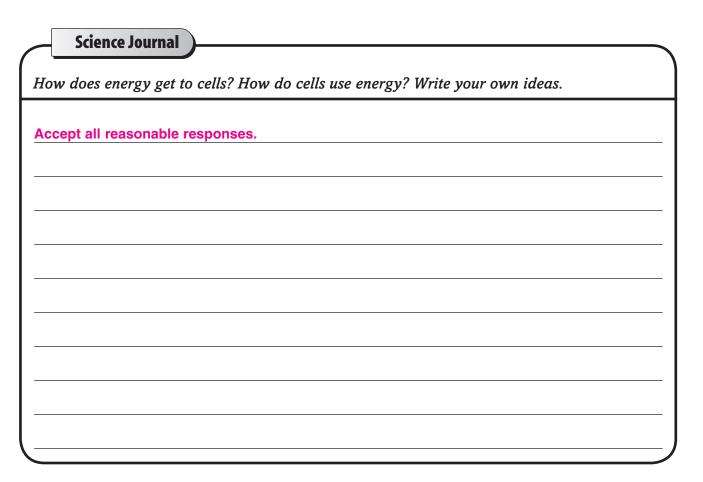
Make a concept web to show the main ideas and

SUMMARIZE

important details in this chapter, and the relationships between the facts you learned. Hint: You might find it easier to list the facts or topics you want to include first, then decide how to connect them in the web.

Accept all reasonable responses.

Date _


Cellular Energy

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Cellular Energy	After You Read
	• Energy can be transformed, but it cannot be created or destroyed.	Α
	• ATP is a molecule used by cells to store energy.	Α
	 Photosynthesis takes place inside the chloroplasts. 	Α
	• Cellular respiration occurs in two stages: glycolysis and the Calvin cycle.	D

Date _

Cellular Energy Section 8.1 How Organisms Obtain Energy

Main Idea	Details
	Scan Section 1 of the chapter and make a list of three general ways in which cells use energy.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define metabolism.
metabolism	all the chemical reactions that occur within an organism
New- Vocabulary	Use your book or dictionary to define each vocabulary term.
adenosine triphosphate	energy-storing molecule in cells, made of an adenosine molecule, a ribose sugar, and three phosphate groups
cellular respiration	catabolic pathway in which organic molecules are broken down to release energy
energy	the ability to do work
metabolism	all of the chemical reactions in a cell
photosynthesis	anabolic pathway in which light energy from the Sun is harvested
	as chemical energy for use by living things
thermodynamics	the study of how energy flows and is transformed in the universe

Name

Section 8.1 How Organisms Obtain Energy (continued)

(Main Idea) **Oetails** Transformation

of Energy

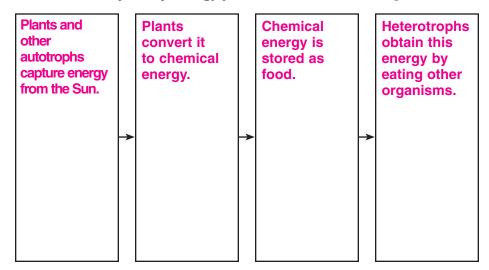
SE, pp. 218–219 RE, pp. 83–84

I found this information

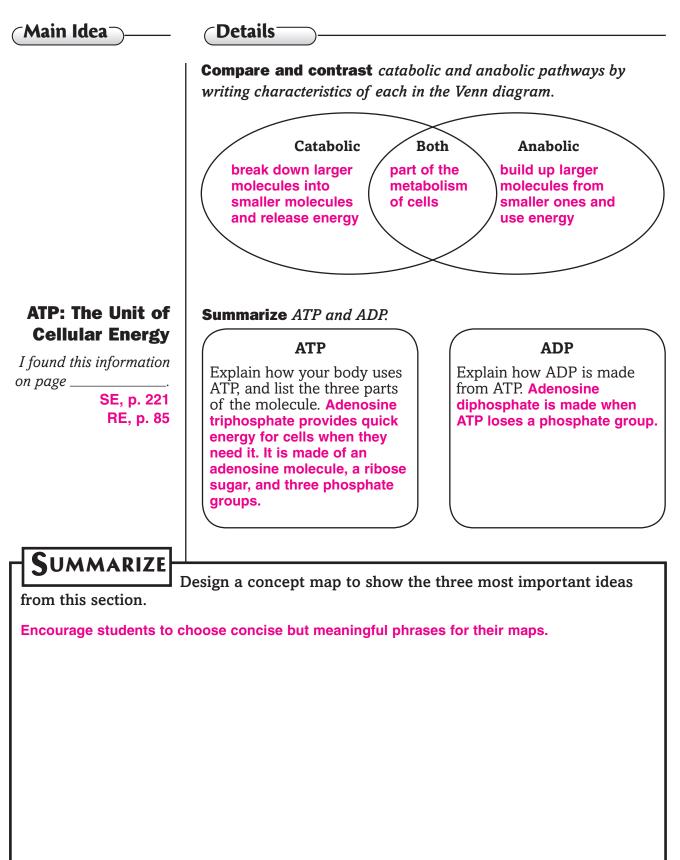
on page _____

Organize at least seven of your body's cell processes that require energy. Accept all reasonable responses.

Energy in Cell Processes	-

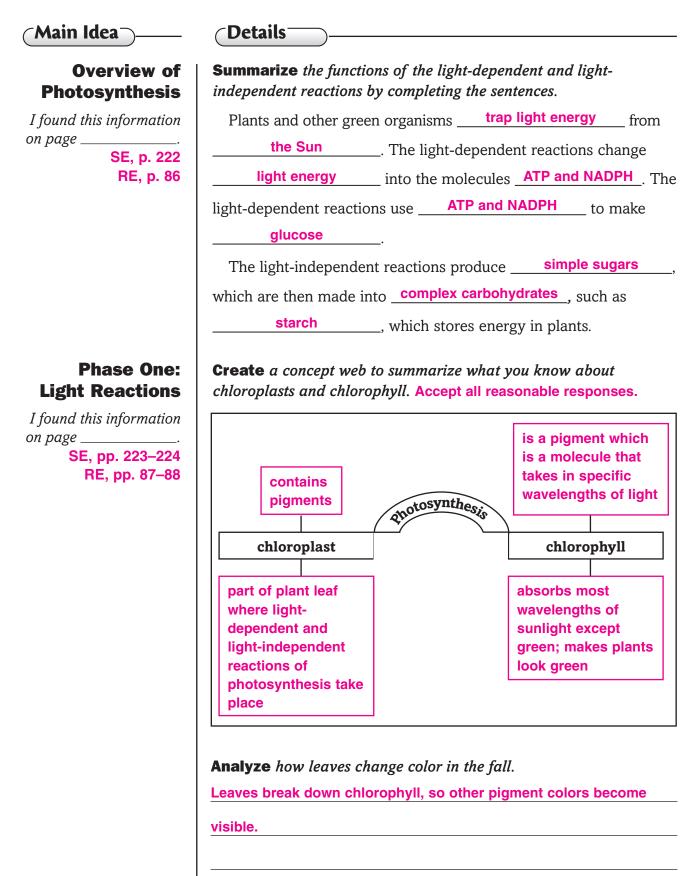

Metabolism

I found this information on page _ SE, p. 220 RE, pp. 84-85


Compare the laws about how energy flows. Give an example of each.

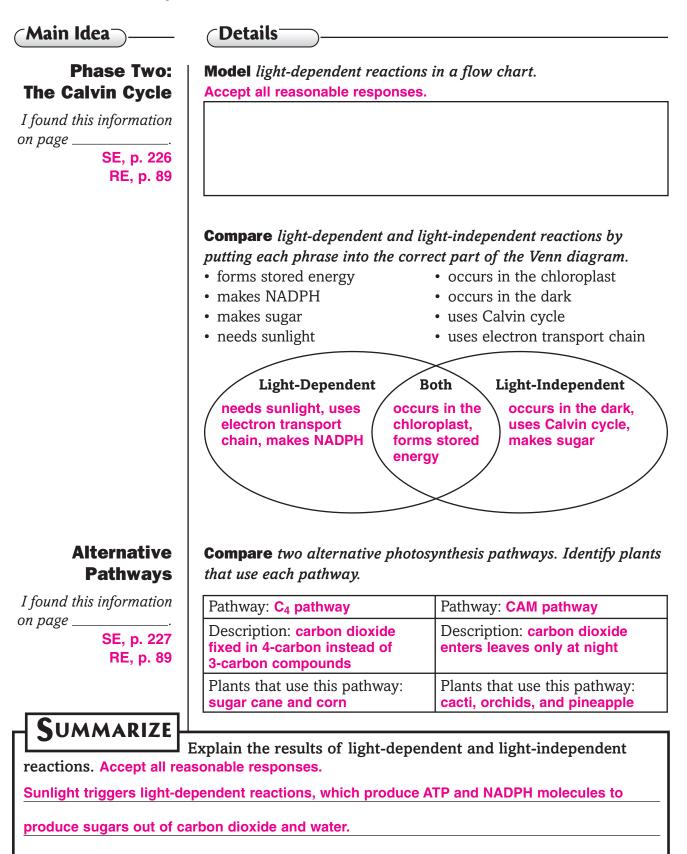
	First Law of Thermodynamics	Second Law of Thermodynamics
Defined	Energy is neither created nor destroyed, only transformed.	The amount of entropy in a system is always increasing.
Example	The body converts stored energy in food into chemical energy.	Some energy is changed to thermal energy as energy moves through food chain.

Sequence the flow of energy from the Sun to heterotrophs.



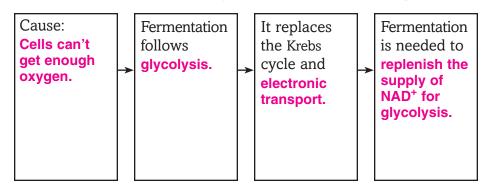
Section 8.1 How Organisms Obtain Energy (continued)

Cellular Energy Section 8.2 Photosynthesis ⊂Main Idea⁻ **Details Scan** Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions. 1. Accept all reasonable responses. 2. __ Review Vocabulary Use your book or dictionary to define carbohydrate. an organic compound containing carbon, hydrogen, and oxygen carbohydrate New-Vocabulary Use your book or dictionary to define each vocabulary term. series of reactions during the light-independent phase of Calvin cycle photosynthesis in which energy is stored in simple sugars a stack of thylakoid membranes on the inside of chloroplasts granum final electron-carrying molecule in light-dependent reactions; NADP+ combines with electrons to form the energy-storage molecule NADPH molecules that absorb specific wavelengths of light pigments an enzyme in the Calvin cycle that converts inorganic carbon rubisco molecules into organic molecules that can be used by the cell the fluid-filled space outside the grana; location of the stroma light-independent reactions of photosynthesis flattened saclike membranes inside chloroplasts; location of the thylakoid light-dependent reactions of photosynthesis Academic Vocabulary Define transport to show its scientific meaning. to carry something from one place to another transport


Section 8.2 Photosynthesis (continued)

Date ___

Section 8.2 Photosynthesis (continued)


Cellular Energy Section 8.3 Cellular Respiration

Main Idea	Details
	Scan the headings, illustrations, and captions in Section 3 of the chapter. Write three facts that you discover about cellular respiration.
	1. Accept all reasonable responses.
	2
	3
∠Review	
Vocabulary	Use your book or dictionary to define cyanobacterium.
cyanobacterium	a type of eubacterium that is a photosynthetic autotroph
New Vocabulary	Read the definitions below and write the correct vocabulary term in the blank.
anaerobic process	metabolic process that does not require oxygen
glycolysis	in cellular respiration, a series of anaerobic chemical reactions in the cytoplasm that break down glucose into pyruvic acid; forms a net profit of two ATP molecules
aerobic	metabolic processes that require oxygen
Krebs cycle	in cellular respiration, a cycle of chemical reactions that break down glucose and produce ATP; energizes electron carriers that pass the energized electrons on to the electron transport chain
fermentation	a series of anaerobic reactions in the cytoplasm that regenerate NAD ⁺ for glycolysis and produce ATP; supplies energy for aerobic organisms when oxygen is low
aerobic respiration	in cellular respiration, the processes that take place in the mitochondrion and require oxygen; includes the Krebs cycle and electron transport

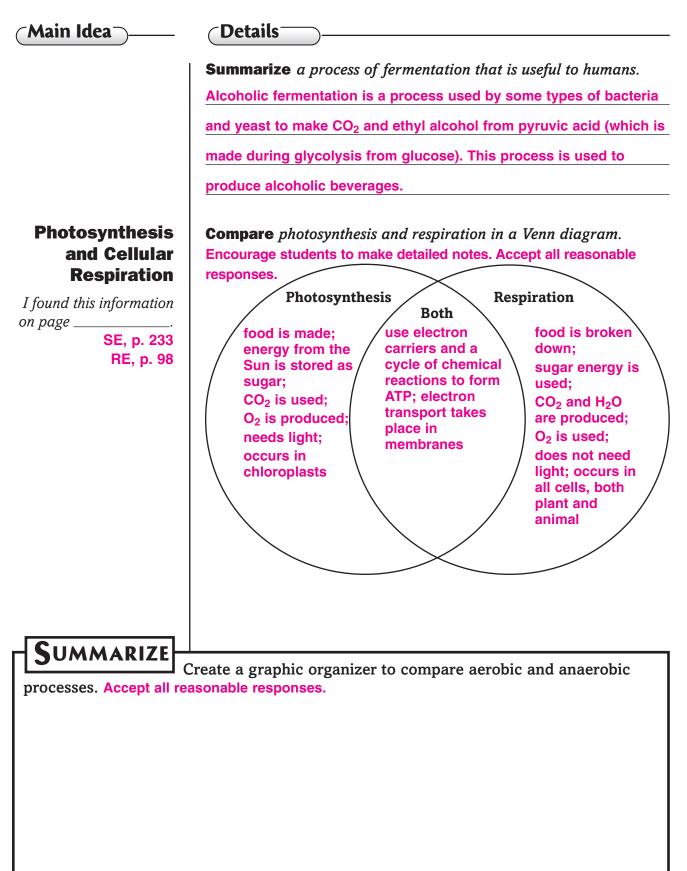
Section 8.3 Cellular Respiration (continued)

· · · · · ·	at describes it.	ı in your own words.
spirations informationSE, p. 228RE, p. 90		
Iysis, Compare and summer, and Accept all reasonable	narize the three stages responses.	of cellular respiratio
ctron Glycolysis	Krebs Cycle	Electron Transpo
ation a series of chemical	a series of chemical reactions that break down pyruvate from glycolysis	ATP made from
reactions that break		high-energy electro
91 down glucose		and protons.
takes place in	takes place in	takes place in
the cytoplasm of	the mitochondria	mitochondrial
the cell		membrane
		provides energy for

Sequence events that lead to fermentation in aerobic organisms.

Anaerobic

Respiration


SE, pp. 231–232

RE, p. 92

I found this information

on page ____

Section 8.3 Cellular Respiration (continued)

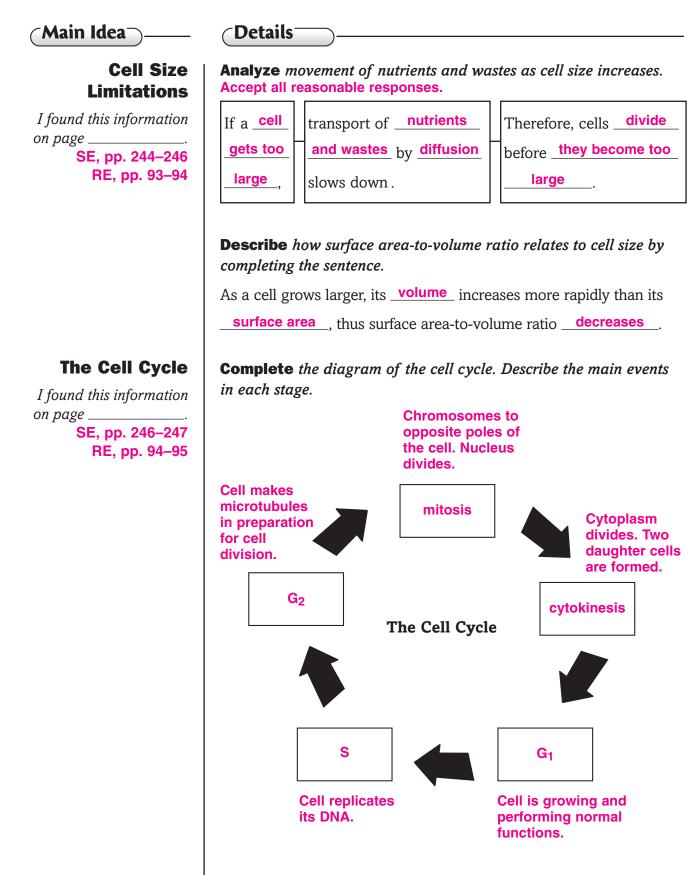
Cellular Reproduction

Before You Read

Use the "What I Know" column to list the things you know about how cells work. Then list the questions you have about how cells work in the "What I Want to Find Out" column. Accept all reasonable responses.

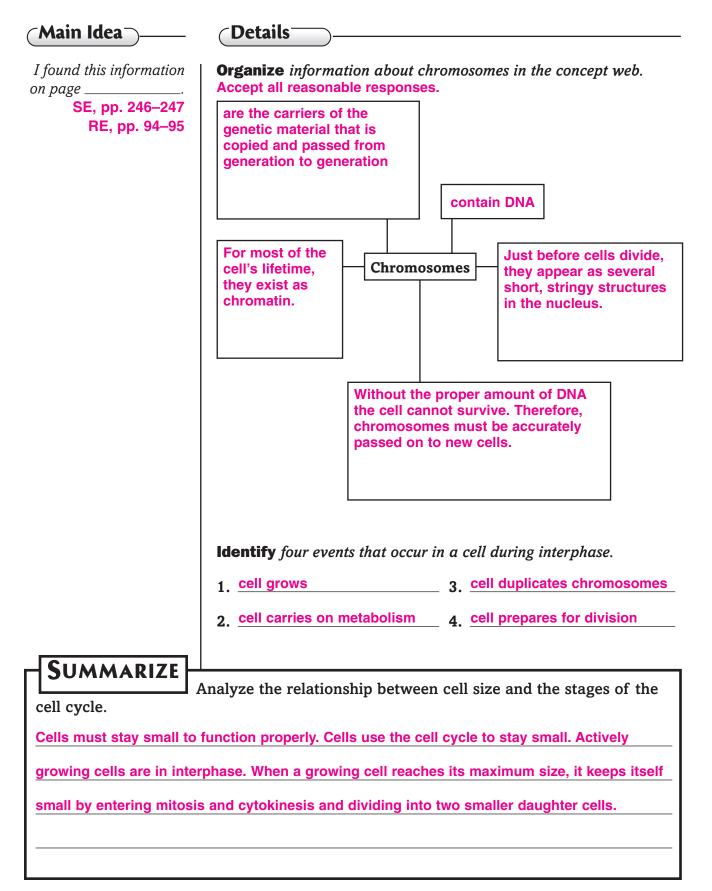
K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

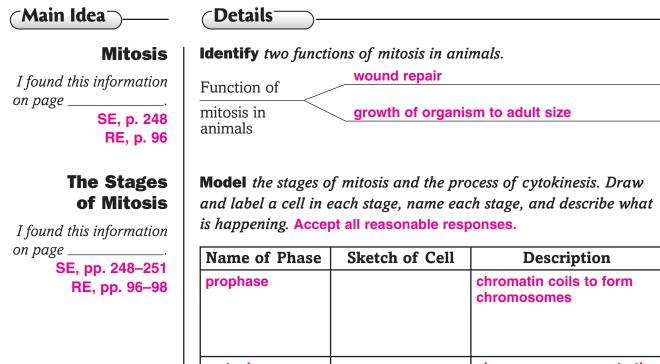

New cells are created in your body every day. Write about the reasons your body might need new cells.

Accept all reasonable responses.

Cellular Reproduction Section 9.1 Cellular Growth


Main Idea	(Details)
	Scan the titles, boldfaced words, pictures, figures, and captions in Section 1. Write three facts you discovered about cellular growth as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define carbohydrate.
carbohydrate	an organic compound containing carbon, hydrogen, and oxygen,
	usually in a 1:2:1 ratio
New Vocabulary	Use your book or dictionary to define each term.
cell cycle	the sequence of events by which cells grow and divide
chromatin	the relaxed form of DNA in the cell's nucleus
chromosome	structure in the nucleus that contains the genetic material
cytokinesis	the stage of the cell cycle in which the cytoplasm divides and a new
	cell is created
interphase	the stage of the cell cycle during which the cell grows, carries out
	normal functions, and copies its DNA
mitosis	the stage of the cell cycle during which the nucleus and nuclear
	material divide

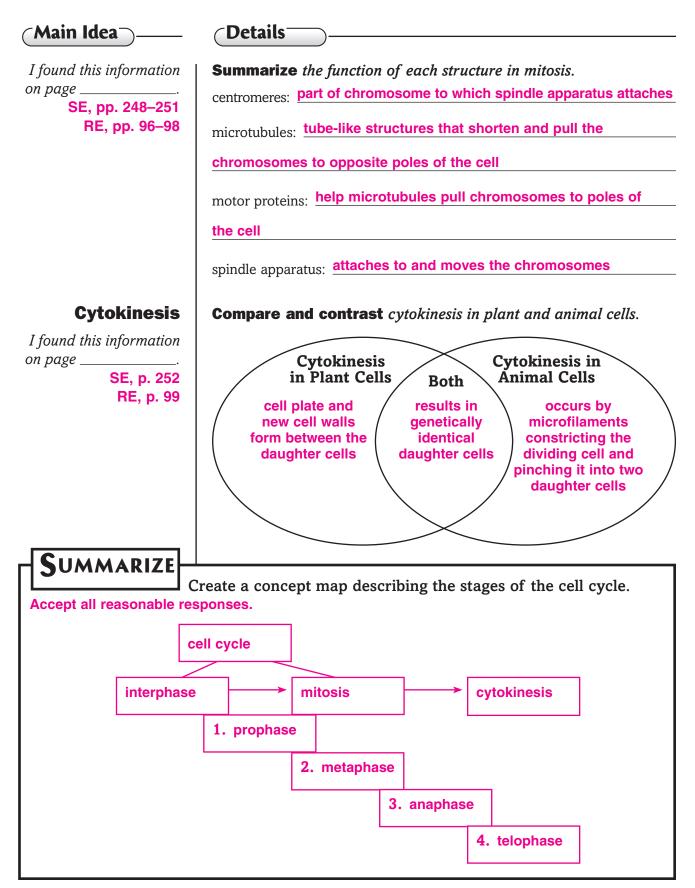
Section 9.1 Cellular Growth (continued)


Date _____

Section 9.1 Cellular Growth (continued)

Cellular Reproduction Section 9.2 Mitosis and Cytokinesis ⊂Main Idea^{_} Details **Scan** Section 2 of the chapter. From the headings and illustrations list the four stages of mitosis. 1. prophase 3 anaphase 2. metaphase _____ 4. telophase **Review**-Vocabulary Use your book or dictionary to define life cycle. the sequence growth and development stages that an organism goes life cycle through during its life New-Vocabulary Use your book or dictionary to define the following terms. the third stage of mitosis, during which the centromeres separate anaphase and the chromatids are pulled apart structure at the center of the chromosome to which the sister centromere chromatids attach the second stage of mitosis, during which the sister chromatids line metaphase up along the equator of the cell the first stage of mitosis, during which the chromatid condenses into prophase chromosomes structures in a chromosome containing identical copies of the DNA sister chromatid structure that helps move and organize the chromosomes during spindle apparatus mitosis; made of spindle fibers, centrioles, and aster fibers the final stage of mitosis, during which the chromosomes migrate to telophase the poles of the cell and then decondense

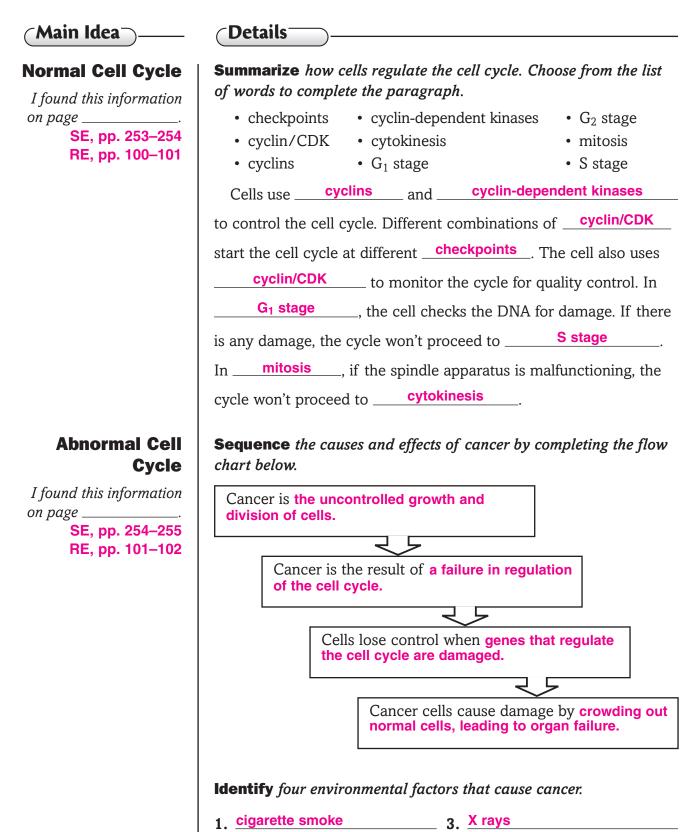
Section 9.2 Mitosis and Cytokinesis (continued)



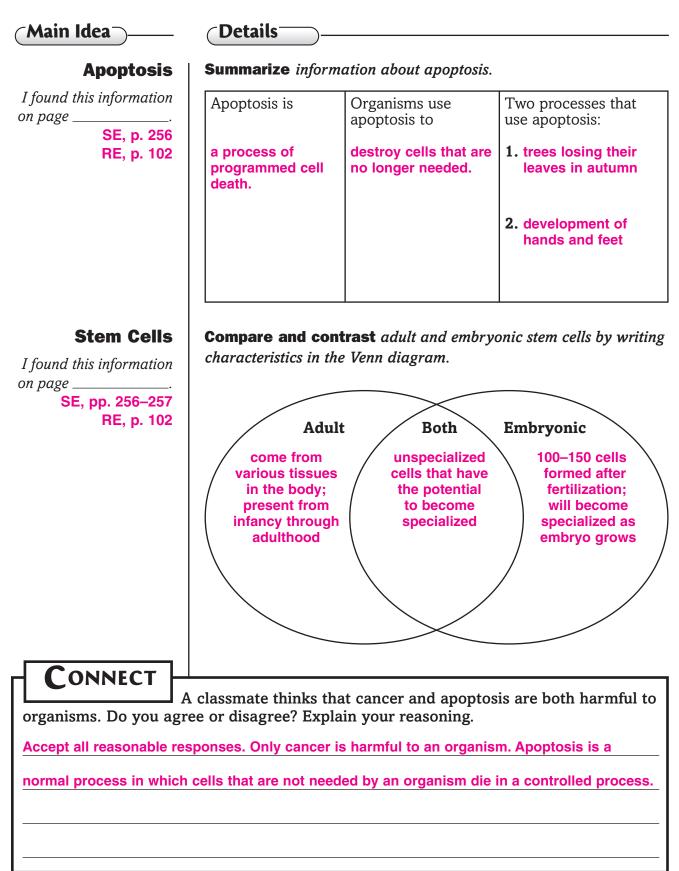
metaphase	chromosomes move to the center of the cell
anaphase	centromeres split and sister chromatids are pulled to the opposite sides of the cell
telophase	two new nuclei are formed and a double membrane begins to form between them
cytokinesis	cell's cytoplasm divides and separates into two new identical cells

Summarize the similarities and differences of any two phases of mitosis.

Accept all reasonable responses.


Section 9.2 Mitosis and Cytokinesis (continued)

Cellular Reproduction Section 9.3 Cell Cycle Regulation


Main Idea	Details
	Scan the illustrations and read the captions in Section 3 of the chapter. Write three facts you discovered about stem cells.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	<i>Use your book or dictionary to define</i> nucleotide.
nucleotide	subunit that makes up RNA and DNA
New- Vocabulary	
apoptosis	process of programmed cell death
cancer	uncontrolled growth and division of cells; results from a failure of
	cell cycle regulation
carcinogen	substance known to cause cancer
cyclin	protein that binds to cyclin-dependent kinases to regulate the
	activities of the cell cycle
cyclin-dependent	enzymes that are activated by cyclins and serve to regulate the
kinase	activities of the cell cycle
stem cell	unspecialized cells that have the potential to develop into
	specialized cells

Section 9.3 Cell Cycle Regulation (continued)

2. asbestos 4. ultraviolet radiation

Section 9.3 Cell Cycle Regulation (continued)

Sexual Reproduction and Genetics

Before You Read

Use the "What I Know" column to list the things you know about genetics. Then list the questions you have about genetics in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

Genetics explains why you have inherited certain characteristics from your parents. Write about some characteristics that you have inherited from your own parents, or similarities in other families, animals, or plants that you think might have been inherited.

Accept all reasonable responses.

Sexual Reproduction and Genetics Section 10.1 Meiosis

Main Idea	Details)		
	Skim the heading chapter. Write the scanned the section	ree facts you disco on.	wered about meio	5
	2			
	3			
Review Vocabulary	Use your book	or dictionary to	<i>define</i> chromoso	me.
chromosome	a cellular structu	re that contains D	NA	
New Vocabulary	Use the terms	in the left margin	to complete the p	oaragraph below.
diploid	A segment of I	ONA on a chromo	some that control	s the production
gamete	of a protein is ca	lled a <u>gene</u>	A <u>diploid</u>	cell contains
gene haploid	two copies of each chromosome. A sex cell, or <u>gamete</u> , is <u>haploid</u> , meaning it contains one copy of each chromosome.			
homologous chromosomes	Homologous chromosomes are pairs of chromosomes, one			
meiosis	from each parent			
fertilization crossing over	Describe three pr Accept all reason	able responses.		eproduction.
		Meiosis	Fertilization	Crossing Over
	What happens?	cell division reduces chromosome number	two haploid sex cells, one from each parent combine	segments of homologous chromosomes break and change places
	What is the product?	four haploid cells	a diploid fertilized egg	new combina- tions of genetic material on chromosomes

Section 10.1 Meiosis (continued)

(Main Idea)_

Chromosomes and Chromosome Numbers

I found this information on page ______. **SE, pp. 270–271 RE, pp. 103–104**

Meiosis I, Meiosis II, and The Importance of Meiosis

I found this information on page _____. SE, pp. 271–276

RE, pp. 105–108

(Details

Identify three characteristics that are the same in each member of a pair of homologous chromosomes. Name one thing that is different.

Same	Different
1. length	1. exact version of each gene
2. centromere position	
3. position of genes	

Compare and contrast *the phases of Meiosis I and Meiosis II. Sketch each phase.* Accept all reasonable responses. Sketches should be similar to those in the text.

Meiosis I	Prophase I	Metaphase I	Anaphase I	Telophase I
Description	chromo- somes condense and pair up, spindle forms	spindle fiber attaches to centromere, pulls chro- mosomes to center of cell	chromo- somes move apart from each other toward poles of cell	each pole contains one mem- ber of a pair of homolo- gous chro- mosomes, cell divides
Sketch				
Meiosis II	Prophase II	Metaphase II	Anaphase II	Telophase II
Description	chromo-	haploid	sister	nu ele ex
	somes condense and spindle forms	number of chromo- somes line up at center of cell	chromatids are pulled apart	nuclear membrane and nucleus reforms, cell divides into 4 hap- loid cells

Analyze the chart above to determine the phase of meiosis when crossing over can occur. Mark a star on the correct phase. Students should place a star by Prophase I.

Section 10.1 Meiosis (continued)

Sexual

SE, p. 276 RE, p. 108

Reproduction v. Asexual Reproduction

I found this information

on page ___

(Main	Idea)
-------	--------

Name

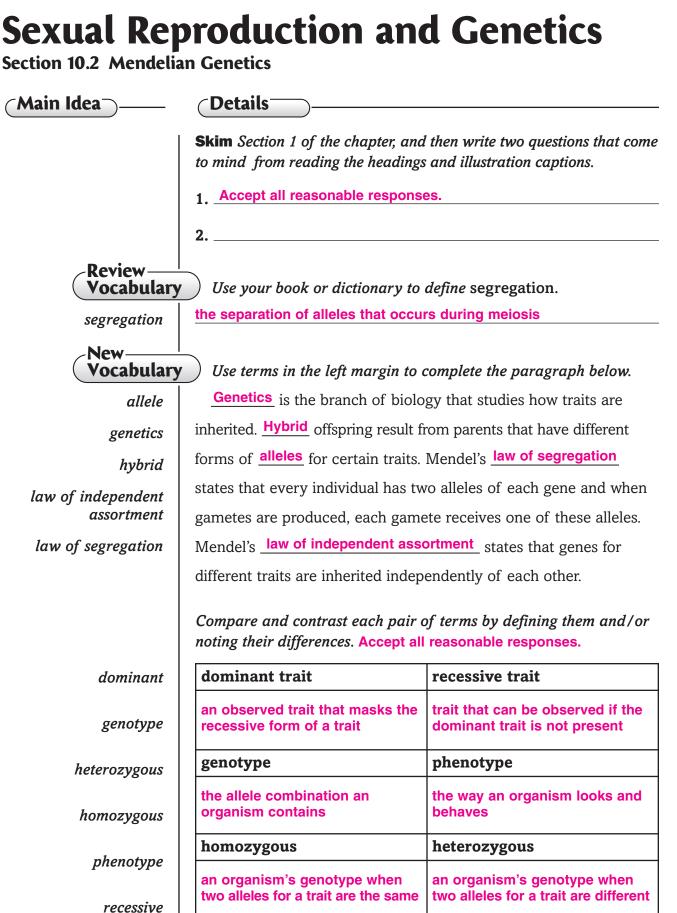
(Details

Compare meiosis and mitosis by filling in the chart below.

	Mitosis	Meiosis
Number of DNA replications	1	1
Number of cell divisions	1	2
Number of daughter cells	2	4
Chromosome number of daughter cells	2 <i>n</i>	n

Organize information on how meiosis produces genetic variation.

	random arrangement of chromosomes at equator
Meiosis produces	
	<pre>crossing over</pre>


Compare sexual reproduction and asexual reproduction by completing the paragraph with the terms below.

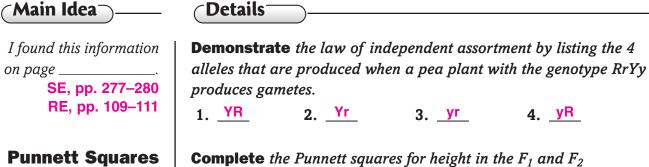
 sexual reproduction protists animals genes asexual reproduction mammals plants genetic diversity 		
In <u>asexual reproduction</u> , an organism inherits its genetic		
material from a single parent. The new organism has the same		
genes as its parent. In sexual reproduction , an		
organism inherits genetic material from two different parents.		
Sexual reproduction increases genetic diversity, whereas		
asexual reproduction does not. <u>Protists</u> , simple <u>animals</u> , and		
most plants can reproduce sexually or asexually. Mammals		
only reproduce sexually.		

SUMMARIZE

Explain how meiosis and fertilization produce genetic variation during sexual reproduction. Crossing over and random sorting of chromosomes during meiosis increase genetic variation. Fertilization increases genetic variation further by combining genetic material from two

different individuals.

Section 10.2 Mendelian Genetics (continued)


Main Idea	Details			
How Genetics Began I found this information on page	Describe how a plant A plant self-pollinates wi same plant.		gametes come from the	
SE, p. 277 RE, p. 109	Infer why Mendel used cross-pollination to study inheritance. Mendel cross-pollinated plants to create offspring that have traits of both plants.			
The Inheritance of Traits	Analyze Mendel's exp plants by completing th	0		
	produced the same training f_{100} studying one green-seed plant with a <u>100</u> percent ye allowed the F ₁ plants to plants. The F ₂ plants we <u>25</u> percent green has two forms, called _ seed color the <u>dom</u>	a yellow-seed plant, the allow and p o self-fertilize to yere to yereto yere to yereto yere	ontrolled variables When he crossed a F_1 offspring were ercent green. He produce F_2 at yellow and that each trait adel called yellow reen seed color the	
	Genotype	Homozygous or Heterozygous	Phenotype	
	YY	homozygous	yellow seeds	
	Үу	heterozygous	yellow seeds	
	yy homozygous green seeds			

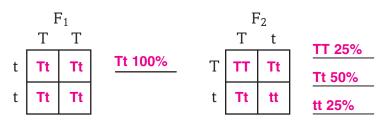
4. **y**R

3. <u>yr</u>

Section 10.2 Mendelian Genetics (continued)

I found this information

SE, pp. 280–282


RE, p. 112

on page _

and **Probability**

Complete the Punnett squares for height in the F_1 and F_2 generations. Tall plants (T) are dominant over short plants (t). Write the expected genotypes and the probability for each.

2. Yr

Identify the genotypes within the Punnett square showing the dihybrid cross of seed color and seed texture. The first row has been done for you. Write the expected phenotypic ratio.

	YR	yR	Yr	yr
YR	YYRR	YyRR	YYRr	YyRr
yR	YyRR	yyRR	YyRr	yyRr
Yr	YYRr	YyRr	YYrr	Yyrr
yr	YyRr	yyRr	Yyrr	yyrr

Phenotypic ratio: 9 yellow round : 3 green round : 3 yellow wrinkled :

1 green wrinkled

SUMMARIZE

Discuss the effects of Mendel's two laws (segregation and independent assortment). Give an example. Accept all reasonable responses.

The law of segregation states that every individual has two alleles of each gene and each

gamete receives one of these alleles. The law of independent assortment states that genes

for different traits are inherited independently. For example, when a pea plant with the

genotype RrYy produces gametes, the alleles R and r will separate from each other and from

the alleles Y and y.

Sexual Reproduction and Genetics

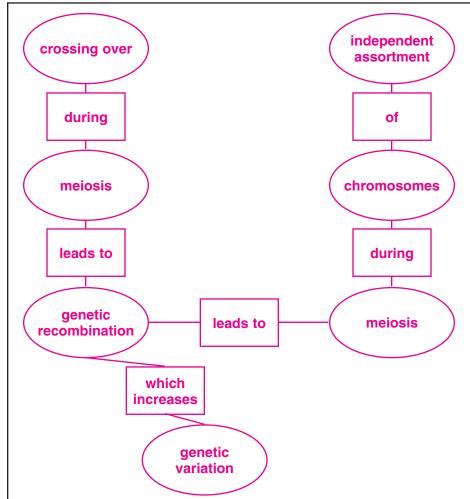
Section 10.3 Gene Linkage and Polyploidy

Main Idea	Details
	Scan the headings, boldfaced words, pictures, figures, and captions in Section 3.
	Read all section titles.
	Read all boldfaced words.
	Look at all pictures and read the captions.
	Look at all figures.
	Read all captions.
	Predict three things that you think will be discussed.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define protein.
protein	the total nitrogenous material in plant and animal tissues
New Vocabulary	Use your book or dictionary to define each term.
genetic recombination	new combinations of genes that result from crossing over and
_	independent assortment
polyploidy	the occurrence of one or more extra sets of all chromosomes in an organism

Section 10.3 Gene Linkage and Polyploidy (continued)

(Details

(Main Idea)_


Genetic Recombination I found this information on page _____.

SE, p. 283 RE, p. 113 **Calculate** the number of chromosome combinations due to independent assortment by filling in the chart. Use the formula 2^n . The first one has been done for you.

Species	Chromosome Number (<i>n</i>)	Possible Combinations
Pea	7	$2^7 = 128$
Housefly	6	2 ⁶ = 64
Cabbage	9	2 ⁹ = 512
Fruit fly	4	2 ⁴ = 16
Frog	13	2 ¹³ = 8192

Gene Linkage and Chromosome Maps

I found this information on page _____. SE, pp. 283–285 RE, p. 114 **Summarize** at least five pieces of information about genetic recombination by creating a concept map below. Accept all reasonable responses.

Section 10.3 Gene Linkage and Polyploidy (continued)

Name

Main Idea —		(Details)		
Main Idea I found this inform on page SE, pp. 283 RE, p		Details Complete the paragraph about gene linkage. • chromosomes • farther • inherited • sequence • crossing over • individual genes • linked Genes close together on the same chromosome are linked. Linked genes are usually inherited together. Chromosomes, notindividual genes, follow Mendel's law of independent assortment. Linked genes might become separated, as a result of Crossing over is more likely to happen if genes are apart on a chromosome. Analyze whether the gene linkage is an exception to, or an example of, Mendel's law of independent assortment. Use an example from your book. Gene linkage is an exception because genes that are located close to each other on the same chromosome usually travel together.		
Polypic	-	Scientists studied th	es that show polyploidy.	etner.
I found this inform on page SE, p RE, p	. 285	1. earthworms 3. wheat 2. goldfish 4. sugar cane		
do not follow all		Compare and contra ndel's laws of inheri	ast gene linkage to polyploidy and h tance.	now they
	G	ene Linkage	Polyploidy	
c ii • E	hromos ndepend	it is controlled by	 Polyploid organisms have more than two sets of chromosomes. They have more than two alleles for each trait. 	

Complex Inheritance and Human Heredity

Before You Read

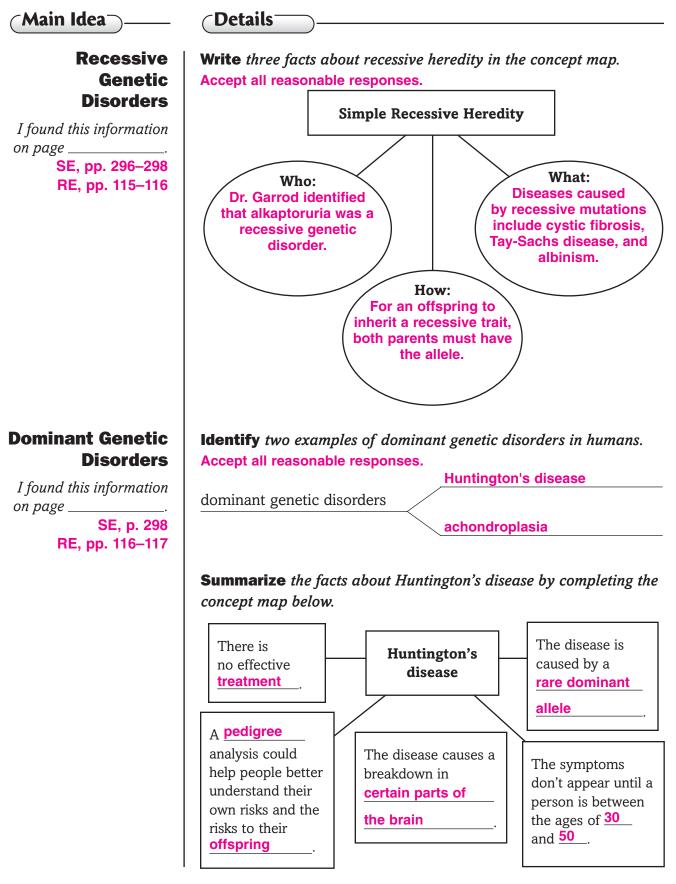
Use the "What I Know" column to list the things you know about human heredity and genetics. Then list the questions you have about these topics in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

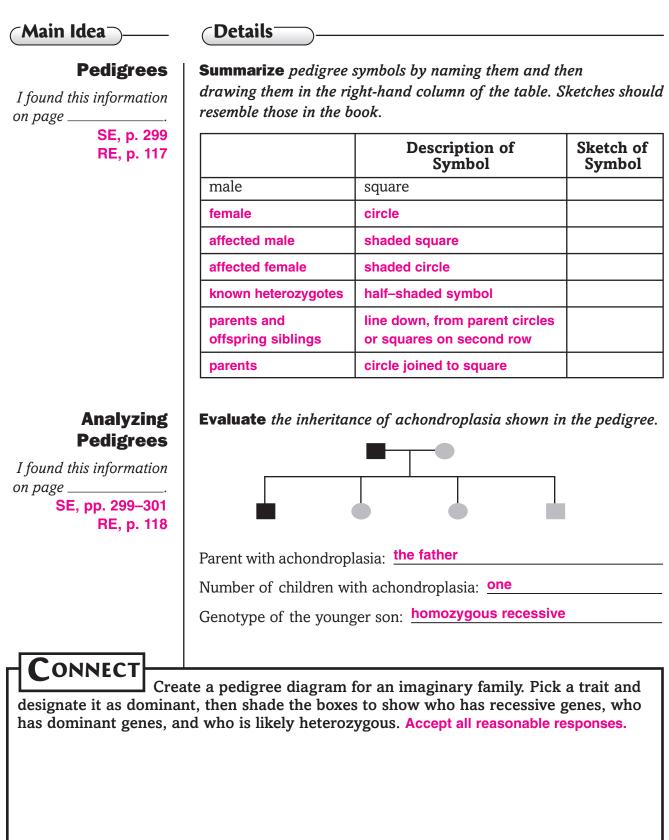
Science Journal

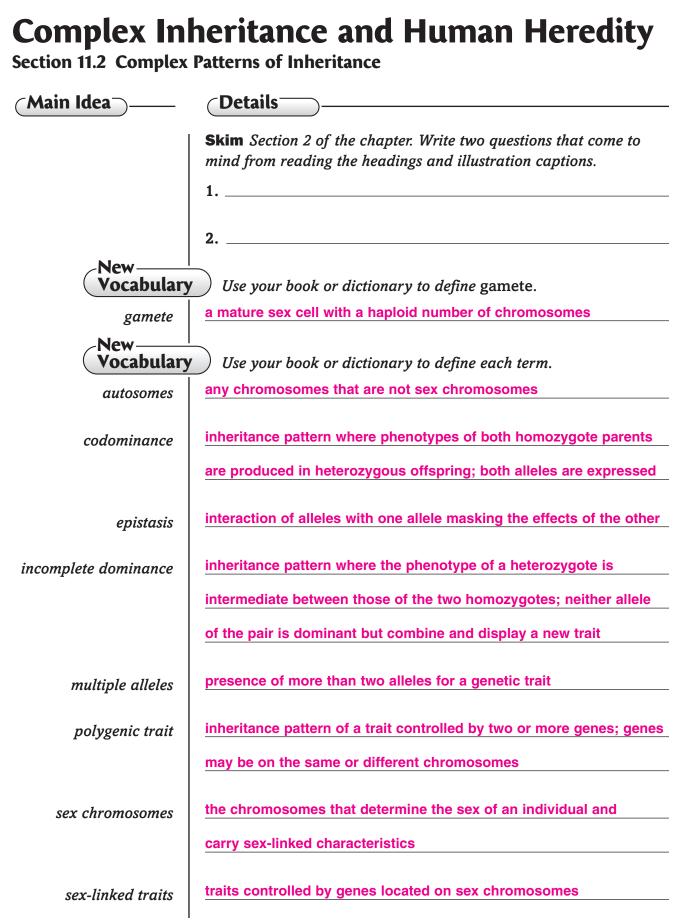
Describe how you think a child's DNA is different from his or her mother's DNA and father's DNA.

Accept all reasonable responses.


Complex Inheritance and Human Heredity

Section 11.1 Basic Patterns of Human Inheritance


Main Idea –	Details
	Skim and Scan Section 1 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	Think about what you already know about patterns of heredity and human genetics.
	Write three facts you discovered about patterns of heredity and human genetics as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define genes.
genes	segments of DNA that control the production of proteins
New Vocabulary	Use your book or dictionary to define each vocabulary term.
carrier	an individual heterozygous for a recessive genetic disorder
pedigree	a diagram of genetic inheritance used by geneticists to trace genetic
	traits
	<i>Explain why pedigrees are needed to identify the carriers of a recessive trait in a family.</i>
	Pedigrees are necessary to find carriers because the recessive traits
	are not readily apparent by looking at the phenotype.
Academic- Vocabular	Define decline to show its scientific meaning.
decline	to gradually waste away; a downward slope


Section 11.1 Basic Patterns of Human Inheritance (continued)

Section 11.1 Basic Patterns of Human Inheritance (continued)

Name

Complex Inheritance and Human Heredity 111

Section 11.2 Complex Patterns of Inheritance (continued)

(Main Idea-

(Details⁻

Incomplete Dominance

I found this information on page _____. SE, p. 302

SE, p. 302 RE, p. 119

Analyze the ratios of offspring of the following snapdragon pairs. Hint: To write the genotypes, designate the dominant red allele as R and the recessive white allele as r.

Parent Flowers	Genotypes of Parent Flowers	Punn	ett Sqı	uare	Ratio of Offspring
red and white	$RR \times rr$	r	R Rr Rr	R Rr Rr	4 pink
pink and white	<i>Rr</i> × <i>rr</i>	r r	R R Rr	r r rr	2 pink: 2 white
red and pink	RR × rr	r R	Rr R RR	rr R RR	2 red: 2 pink
-		r r	Rr	Rr	
pink and pink	Rr × Rr	R r	R RR Rr	r Rr rr	1 red: 2 pink: 1 white

Codominance

I found this information on page _____. SE, pp. 302–303 RE, pp. 119–120

Multiple Alleles

I found this information on page ______. SE, p. 304 RE, pp. 120–121 **Predict** the results if two people who are heterozygous for sicklecell anemia but lead normal lives have a child.

The child might have no alleles for the disease, might be heterozygous,

or might be homozygous for the disease.

Identify the blood group that results from each combination of genotypes. The first one has been done for you.

Possible Genotype Combinations	Phenotypes
A and A	А
A and B	AB
A and O	А
B and B	В
B and O	В
O and O	0

Name_

Section 11.2 Complex Patterns of Inheritance (continued)

Details

(Main Idea)_

Epistasis, Sex Determination, Dosage Compensation, Sex-Linked Traits, and Polygenic Traits I found this information

on page _____. SE, pp. 305–309 RE, pp. 121–123

Environmental Influences

I found this information on page _____.

SE, p. 309 RE, p. 123

Twin Studies

I found this information on page _____. SE, p. 310 RE, p. 123

Analyze the role of each item in inheritance. Give an example of a trait governed by each process.

	Role in Inheritance	Example
Epistasis	interaction where one allele masks another	coat color in Labrador retrievers
Polygenic traits	traits that arise from the interaction of multiple genes	skin color
X-chromosome inactivation	X chromosome stops working in female to balance gene dosage	coat color in calico cats
X-linked traits	traits controlled by genes on the X chromosome	red-green color blindness

Identify *environmental influences that can affect phenotype*.

External factors	Behaviors	
1. heat	1. diet	
2. sunlight	2. exercise	

Describe the use of twin studies in the study of genetics by completing the paragraph.

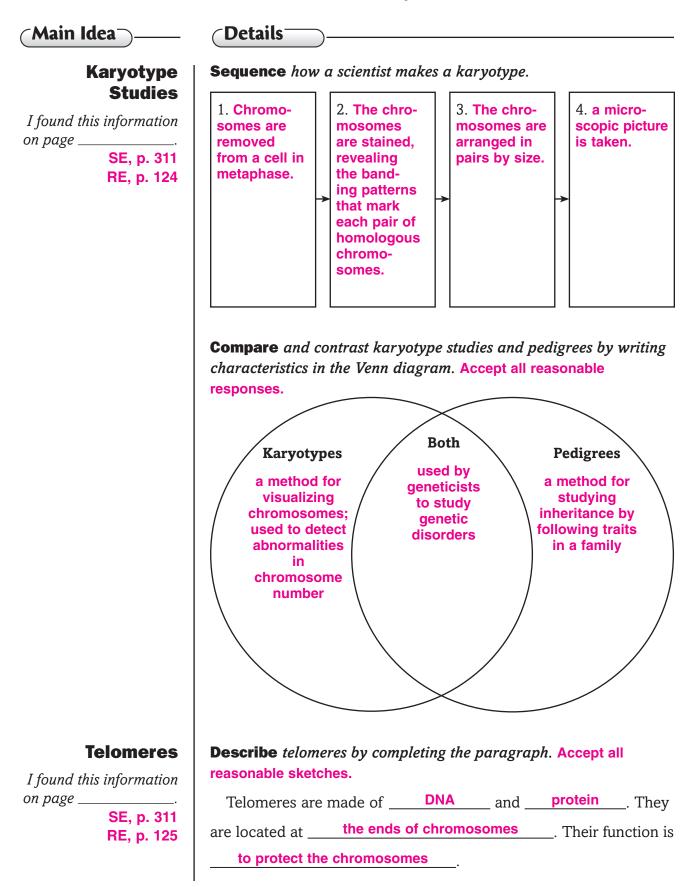
Scientists use twin studies to distinguish between <u>genetic</u> and <u>environmental</u> influences on a trait. If a high percentage of <u>identical twins</u> but not <u>fraternal twins</u> express a trait, there

is a strong chance that the trait is genetic

Think of some traits in people, plants, or animals. Describe one trait and tell whether you think the trait is a dominant/recessive, multiple allele, codominant, incompletely dominant, sex-linked, or polygenic trait. Explain your reasoning.

Accept all reasonable responses. Eye color; some people have blue eyes, some have green,

and some have brown. I think this is a multiple allele situation because there are many


possible colors, and some colors seem dominant over others.

Complex Inheritance and Human Heredity

Section 11.3 Chromosomes and Human Heredity

Main Idea	Details
	Organize Information Make a list of some physical characteristics that appear in your family members or friends. Try to determine how each trait is inherited by examining its inheritance pattern.
	Accept all reasonable responses.
Review Vocabulary	Use your book or dictionary to define mitosis.
mitosis	a process in the nucleus of a dividing cell; made of prophase,
	metaphase, anaphase, and telophase
New-Vocabulary	Use your book or dictionary to define the following terms.
nondisjunction	cell division during which sister chromatids fail to separate properly
telomere	protective caps made of DNA and protein found at the end of
karyotype	chromosomes Define karyotype and describe its use. Then make a sketch of a human karyotype in the space below. chart of homologous chromosome pairs arranged according to size;
	used to pinpoint unusual chromosome numbers in cells
	Accept all reasonable responses.

Section 11.3 Chromosomes and Human Heredity (continued)

Section 11.3 Chromosomes and Human Heredity

Main Idea	Details
Nondisjunction I found this information on page SE, pp. 313–314 RE, pp. 125–126	Model a picture showing the ways that nondisjunction during meiosis can produce a sex cell with an extra copy of a chromosome. Sketches should be similar to parts of Figure 11.20 and should show nondisjunction during meiosis I and meiosis II.
	Model a karyotype of a boy with Down's syndrome. The karyotype should show 22 pairs of autosomes and XY sex chromosomes. There should be 3 copies of chromosome 21.
Fetal Testing I found this information on page SE, pp. 314–315 RE, p. 126	 Summarize the following facts about fetal testing. how an abnormal number of chromosomes is identified A sample of cells is taken from an individual or fetus. four possible results of abnormal chromosome numbers embryo death, Down syndrome, Turner's syndrome, and Klinefelter's syndrome
Klinefelter's syndrome. <u>A person with Klinefelter</u> <u>Nondisjunction in meios</u>	Analyze how nondisjunction during meiosis could lead to 's syndrome has two X chromosomes and one Y chromosome. is I or meiosis II could produce an egg with two sex chromosomes elter's syndrome would result when an XX egg is fertilized with a
sperm carrying a Y chroi	nosome.

Molecular Genetics

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Molecular Genetics	After You Read
	 James Watson and Francis Crick discovered that DNA was the genetic material. 	D
	• DNA replication is the same in prokaryotes and eukaryotes.	D
	 Information in a cell flows from DNA to RNA to protein. 	Α
	• A mutation is a permanent change in a cell's DNA.	Α

Science Journal

Ponies on the Shetland Islands in Scotland have short stature, thick hair, strength, and hardiness so they can thrive in their harsh environment. How do you think the DNA of their population has changed over time?

Accept all reasonable responses.

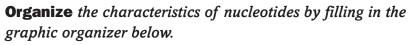
Molecular Genetics

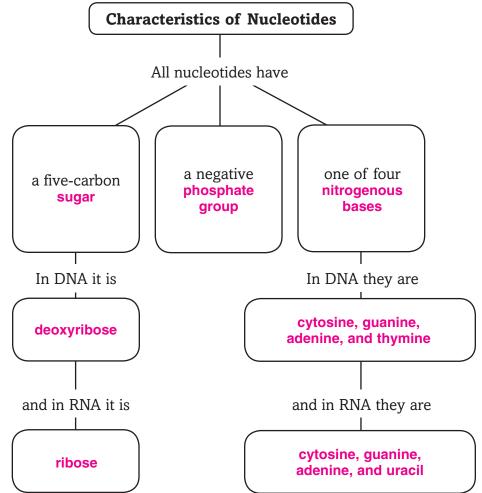
Section 12.1 DNA: The Genetic Material

Main Idea	Details	
	Scan Section 1 of the chapter. Identify the results of three DNA experiments.	
	1. Accept all reasonable responses.	
	2	
	3	
Review Vocabulary	Use your book or dictionary to define nucleic acid.	
nucleic acid	a biomolecule that stores cellular information in the form of a code	
New Vocabulary	Use your book or dictionary to define each term. In the box to the right, make a sketch to help you remember each term.	ıe
double helix	shape of a DNA molecule	٦
	consisting of two strands of	
	nucleotides that are twisted into	
	a coil and held together by the	
	nitrogenous bases	
nucleosome	a structure found in chromosomes	
	in which DNA is coiled around	
	histone proteins	
Academic– Vocabulary	Define transform to show its scientific meaning.	
transform	to cause a change in type or kind	
2		

Section 12.1 DNA: The Genetic Material (continued)

(Details


Discovery of the Genetic Material


I found this information on page _____. SE, pp. 326–328 RE, pp. 127–129 **Complete** the table below about geneticists and their discoveries.

Scientist	Discovery	Year
Fredrick Griffith	discovered a transforming factor that could change rough bacteria into smooth bacteria	1928
Oswald Avery	identified DNA as the transforming factor	1931
Alfred Hershey and Martha Chase	proved that DNA was the genetic material in a virus	1952
James Watson and Francis Crick	discovered that the structure of DNA is a double helix	1953

DNA Structure

I found this information on page _____. SE, pp. 329–331 RE, pp. 130–131

Section 12.1 DNA: The Genetic Material (continued)

Main Idea	(Details)	
I found this information on page SE, pp. 329–331 RE, pp. 130–131	Create a memory device to help ye bases are always paired. Accept all reasonable responses the cytosine with guanine. Sample responses Analyze the DNA molecule by exp to the molecule. Use a sketch to be each case.	hat pair adenine with thymine and ponse: Aunt Tillie and Cousin Gus plaining how each word applies
	Word and What It Means	Sketch of Effect
	complementary: Nitrogenous bases are paired on the inside of the molecule.	Accept all reasonable responses.
	helix: A helix is something twisted into a coil.	
	double (as in "double helix"): DNA is made of two strands that are twisted into a coil.	
Chromosome Structure	Synthesize and rephrase how bases long can fit inside a cell.	a DNA strand that is 200 million
I found this information	A long strand of DNA is coiled aro	und a beadlike group of histone
on page SE, p. 332	proteins to form a nucleosome. The nucleosomes group together in	
RE, p. 131	fibers, then supercoil into a chrom	osome.
SUMMARIZE St Chargaff's rules.	tate how Watson and Crick's DNA	A structure supported
Chargaff's data showed th	nat for any organism, the number of	purine bases in DNA (A and G)
always equals the numbe	r of pyrimidine bases (T and C). Wat	son and Crick's structure showed
that A pairs with T and G	pairs with C, therefore A = T and G =	: C.

Molecular Genetics

I

Section 12.2 Replication of DNA

Main Idea	Details
	Scan Section 2 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
Desires	3
Review Vocabulary	Use your book or dictionary to define template.
template	a molecule of DNA that is a pattern for synthesis or a new DNA
	molecule
New Vocabulary DNA polymerase	 Use your book or dictionary to define the following terms. Then look through the section to find a sentence with each term. Write the sentence. Sentences will vary. enzyme that creates chemical bonds between nucleotides using a DNA strand as a template
Okazaki fragment	small segments of DNA made as DNA polymerase copies DNA 3' to 5' on the lagging strand
semiconservative replication	method of DNA replication in which strands separate, serve as templates, and produce DNA molecules each containing one original strand and one new strand

Section 12.2 Replication of DNA (continued)

(Main Idea)

(Details-

Semiconservative Replication

I found this information on page _____. SE, pp. 333–335 RE, pp. 132–133

Model	During replication, the parental strands	The new DNA molecule is composed of
Semiconservative replication	separate and serve as templates	one parental strand and one new strand

Describe semiconservative DNA replication.

Sequence and model each step in the replication of a DNA molecule. Write about what happens, and draw a DNA molecule going through each step. In the last box, describe and draw the products of replication. Accept all reasonable responses.

A. The DNA unzips.	B. Nucleotides in the cell attach to the unzipped chains (A to T and C to G).
C. The molecule continues to unzip, and nucleotides continue to match and join.	D. Two new DNA molecules will be formed, each containing one parental and one new strand.

Analyze how a DNA molecule acts like a template.

Complementary bases match up to the bases on the original strand,

so the two new molecules are identical to the parent molecule.

Section 12.2 Replication of DNA (continued)

(Main Idea)-

(Details-

I found this information on page _____. SE, pp. 333–335 RE, pp. 132–133 **Complete** the table below on the role of each protein in DNA replication. The first one has been done for you.

Protein	Stage of DNA Replication	Activity
DNA helicase	unwinding	unwinds and unzips the DNA
DNA ligase	joining	links DNA sections after RNA primer is removed
DNA polymerase	base pairing, joining	forms new strand by base pairing; removes RNA primer and fills in with DNA
RNA primase	unwinding	adds on RNA primer to each DNA strand
Single- stranded binding protein	unwinding, base pairing	keeps the strands separate during replication

Comparing DNA Replication in Eukaryotes and Prokaryotes

I found this information on page _____.

SE, p. 335 RE, p. 132 **Contrast** the differences between prokaryotic and eukaryotic DNA replication.

	Eukaryotes	Prokaryotes
Number of origins for DNA replication	many	one
Where replication takes place in the cell	nucleus	cytoplasm

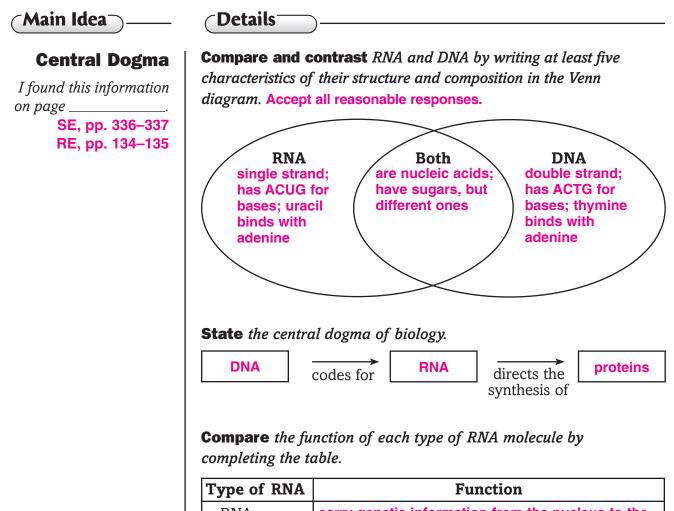
SUMMARIZE

Watson and Crick's model of semiconservative replication.

Watson and Crick predicted that DNA replication is semiconservative, meaning the parental

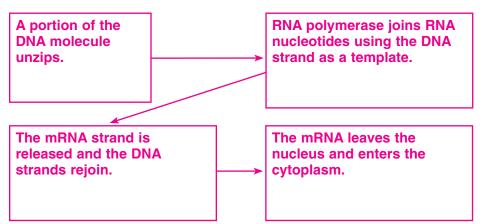
strand serves as template for the daughter strand. DNA polymerase is the enzyme that creates

the daughter strand using the parental DNA as a template.


Molecular Genetics

Section 12.3 DNA, RNA, and Protein

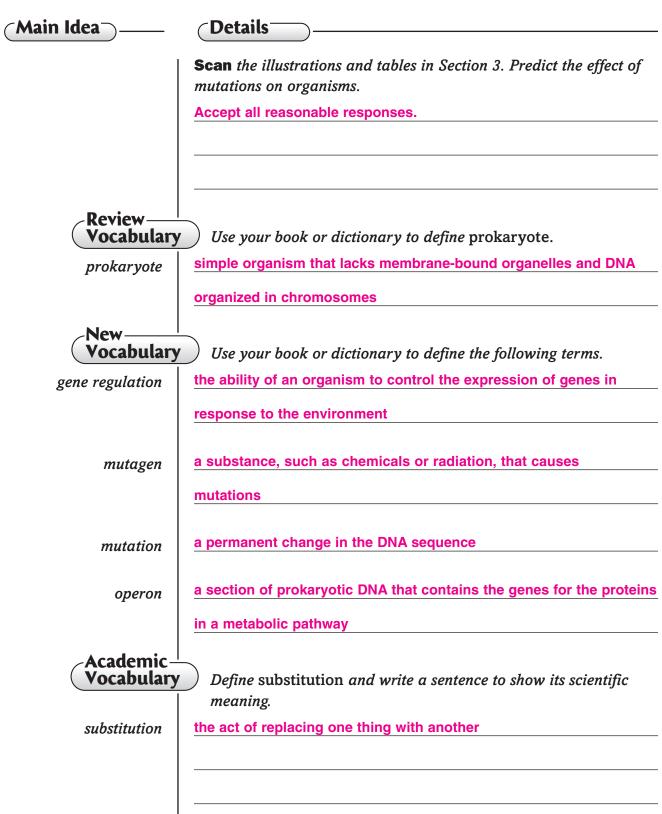
Main Idea	Details
	Scan the headings and boldfaced words for the section. Predict two things that you think might be discussed.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define synthesis.
synthesis	the composition or combination of parts to form a whole
New Vocabulary	Write the correct term in the left column for each definition below.
transcription	process in which RNA is synthesized from DNA
codon	a group of three nitrogenous bases in DNA or mRNA that code for one amino acid
RNA	nucleic acid made of ribose, phosphate, and one of four nitrogenous bases—adenine, cytosine, guanine, or uracil
intron	intervening DNA sequences that are transcribed and then removed from the final mRNA
translation	process by which mRNA directs the synthesis of a protein
messenger RNA	long strands of RNA that are complementary to one strand of DNA
exon	protein coding sequences in DNA that are transcribed into mRNA and translated into protein
transfer RNA	small RNA molecules that transport amino acids to the ribosome
RNA polymerase	an enzyme that catalyzes the synthesis of mRNA using DNA as a template
ribosomal RNA	RNA molecules that make up part of the ribosome



Section 12.3 DNA, RNA, and Protein (continued)

Type of KNA	Function
mRNA	carry genetic information from the nucleus to the cytoplasm to direct protein synthesis
rRNA	form part of the ribosome
tRNA	carry amino acids to the ribosome

Sequence the steps in transcription of RNA.



Section 12.3 DNA, RNA, and Protein (continued)

Main Idea					
The Code, One Gene—	Identify four examples of codons and state the instructions they encode. 1. (GCU) alanine				
One Enzyme I found this information	2. (AAA) lysine				
on page SE, pp. 338–341 RE, pp. 135–138	3. (AUG) methionine, tells the ribosome that this is the start of the amino acid chain				
	4. (UAA) stop, tells ribosome that this is the end of the amino acid chain				
	Model the movement of tRNA molecules showing the translation process.				
	Diagrams should show tRNA molecules moving to a ribosome while carrying amino acids. As each amino acid bonds, the tRNA moves away to bring another amino acid.				
	State the updated version of Beadle and Tatum's hypothesis. One gene codes for one polypeptide				
Describe the activities responses.	Create a flow chart to describe the formation of a protein. of DNA and the three types of RNA. Accept all reasonable ssenger ribosomal transfer RNA delivers				
DNA issues instructions fro	ssenger A brings tructions m DNA to cytoplasm				
	the rRNA uses the instructions to assemble the amino acids in the right order				

Molecular Genetics

Section 12.4 Gene Regulation and Mutation

Section 12.4 Gene Regulation and Mutation (continued)

Oetails

(Main Idea)

Prokaryote Gene Regulation

I found this information on page _____. SE, pp. 342–343 RE, pp. 139–140

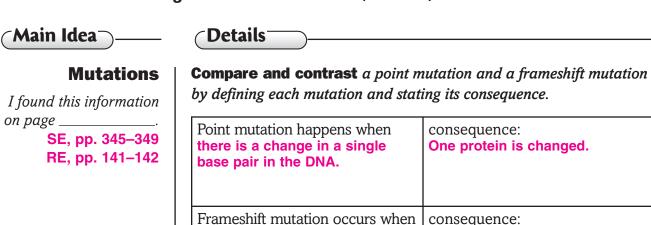
	•		
Describe gene to complete the p	regulation in prokaryote paragraph.	s by using the te	rms below
<i>E. coli</i>environmentgenes	-	 repressor 	erase
An operon is a	a cluster of genes in	E. coli	These
genes make	proteins that wo	ork together in o	ne
metabolic p	athway An operon	is able to respo	nd to
changes in the $_$	environment . The	operator	is a
segment of DNA that acts as a switch for transcription, turning the			
operon on or off. When the operon is on, [RNA polymerase] binds			
to thepron	noter and transcrib	es the DNA. Wh	en the
operon is off, a _	repressor bloc	ks transcription.	

Compare and contrast *the* trp *operon and the* lac *operon.*

	Trp Operon	Lac Operon
Responds to the presence of	tryptophan	allolactose
Transcription is turned on when	no tryptophan is present	allolactose is present
The repressor is active when	tryptophan binds to it	no allolactose is bound to it
When the operon is turned on, the cell can	synthesize tryptophan	digest lactose

Eukaryote Gene Regulation

I found this information on page _____. SE, pp. 344–345 RE, p. 141 Analyze the ways eukaryotes control gene expression.


Molecule	Effect on Gene Expression
Hox genes	determine the body plan of an organism by control- ling gene expression during embryo development
Nucleosomes	control gene expression by inhibiting transcription of DNA in chromosomes
Small interfering RNA	inhibit gene expression by binding to a protein that degrades specific mRNA molecules in the cytoplasm
Transcription factors	regulate genes so that a gene is turned on at the right time and in the right amounts

The whole sequence is changed.

organism than a point mutation.

It is more harmful to an

Section 12.4 Gene Regulation and Mutation (continued)

a single nitrogenous base is added or deleted from the whole

DNA sequence.

		Μ
		N
		Cl re
		Cl de
JMMARIZE		
han in a body cell		cu
gens cause mutatio	ns.	or

Mutation	Result	Sketch
Missense mutation	DNA codes for wrong amino acid	
Nonsense mutation	stop codon replaces amino acid codon	

	Chromosome rearrangement	piece of chromosome is moved to different location
	Chromosome deletion	piece of chromosome is lost
UMMARIZE		
	Discuss why a mutag	en can have longer-lasti
the sector of the sheet of the sector of the	,	

can have longer-lasting effects in a sex cell t

Mutagens cause mutations, or changes in the DNA sequence. In a body cell, the mutation

might kill the cell, or it might be passed to daughter cells in the body. A mutation in a sex cell

can be passed on to the organism's offspring, and all subsequent generations will carry the

mutation.

SUMMARY

Tie It Together

Create a concept web to tie together what you learned

in this chapter about molecular genetics. Hint: You might find it easier to first list the facts or topics you want to include, then decide how to connect them in the web. Accept all reasonable responses.

Genetics and Biotechnology

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- 2. Write an **D** if you disagree with the statement.

Before You Read	Genetics and Biotechnology	After You Read
	• Hybridization is a type of selective breeding.	Α
	Genetic engineering is the process of breeding animals for desired traits.	D
	• Polymerase chain reaction is a way to make millions of copies of a fragment of DNA.	Α
	• Scientists have determined the sequence of all human DNA.	Α

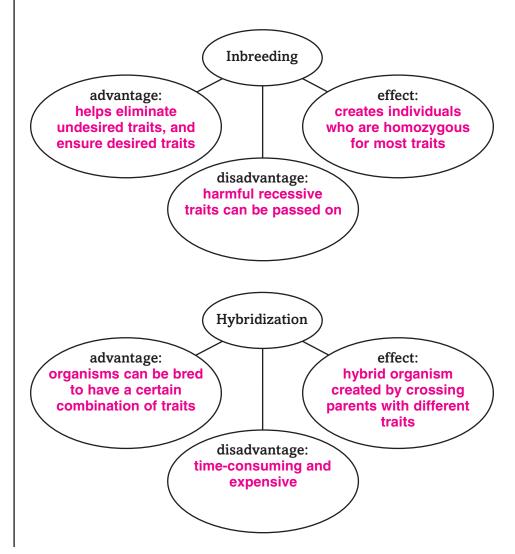
Science Journal

Describe two examples of genetic technology that have affected your life or that you have read about in the news.

Accept all reasonable responses.



Genetics and Biotechnology


Section 13.1 Applied Genetics

Main Idea	Details
	Scan Section 1 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	Write three facts you discovered about genetic technology.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define hybrid.
hybrid	an organism whose parents have different forms of a trait
New Vocabulary inbreeding	Use your book or dictionary to define each term. Then look through the section to find a sentence with each term and write the sentence. Sentences will vary; important points are listed. mating between closely related individuals; ensures that offspring
_	are homozygous for most traits, but also brings out harmful,
	recessive traits
selective breeding	the process of breeding plants and animals for desired traits
test cross	mating of an individual of unknown genotype with an individual of
	known genotype; can help determine the unknown genotype of the
	parent

Section 13.1 Applied Genetics (continued)

Analyze inbreeding and hybridization by identifying the effect, an advantage, and a disadvantage of each.

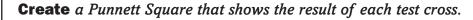
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

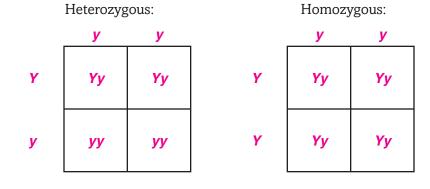
Section 13.1 Applied Genetics (continued)

Details

⊂Main Idea⁻

Test Cross


I found this information on page ______.

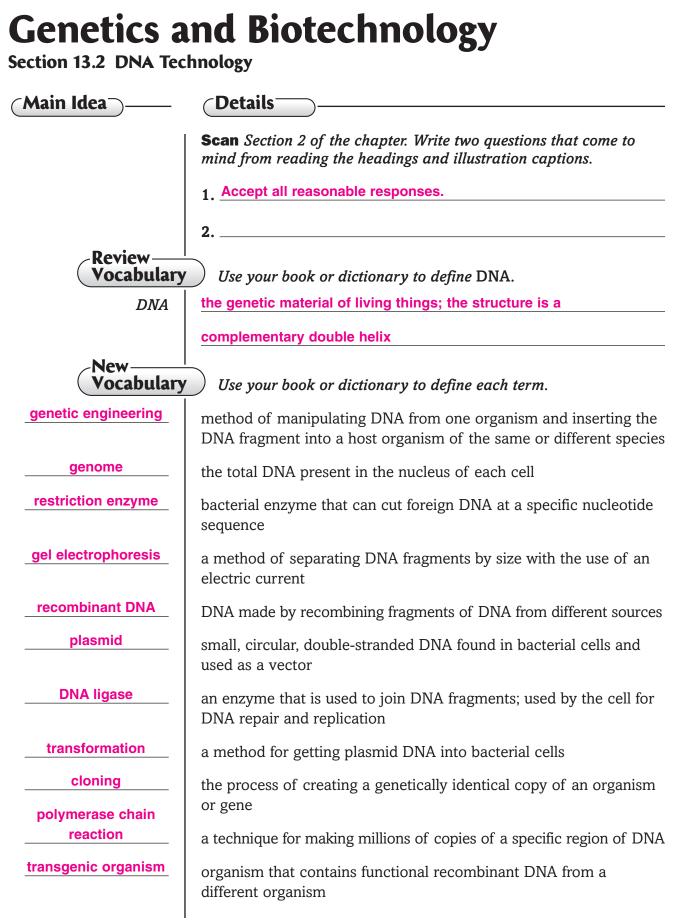

SE, p. 362 RE, pp. 144–145 **Analyze** the use of a test cross to determine the genotype of a yellow flower by completing the prompts. The first one has been done for you.

The genotype of the white flower: <u>yy</u>

Possible genotypes of the yellow flower: **YY or Yy**

	Possible Phenotypes	Possible Genotypes
offspring if the yellow flower is heterozygous	50% white 50% yellow	white: yy yellow: YY or Yy
offspring if the yellow flower is homozygous	100% yellow	YY or Yy

Summarize how test crosses work by using the words genotype and phenotype to complete the sentence.


In a test cross, the <u>phenotype</u> of the offspring can reveal

the **genotype** of the parents.

Selective breeding practices have been used since ancient times. Provide specific examples where selective breeding has resulted in plants or animals that are familiar to us today.

Accept all reasonable responses. Clydesdale horses, Angus cattle, German shepherds,

Saint Bernards, huskies, corn, beans, flowers

Date ____

Section 13.2 DNA Technology (continued)

⊂Main Idea⁻

Genetic Engineering

I found this information on page ______. SE, p. 363 RE, p. 146

DNA Tools

I found this information on page _____. SE, pp. 364–365 RE, pp. 146–147

Recombinant DNA Technology

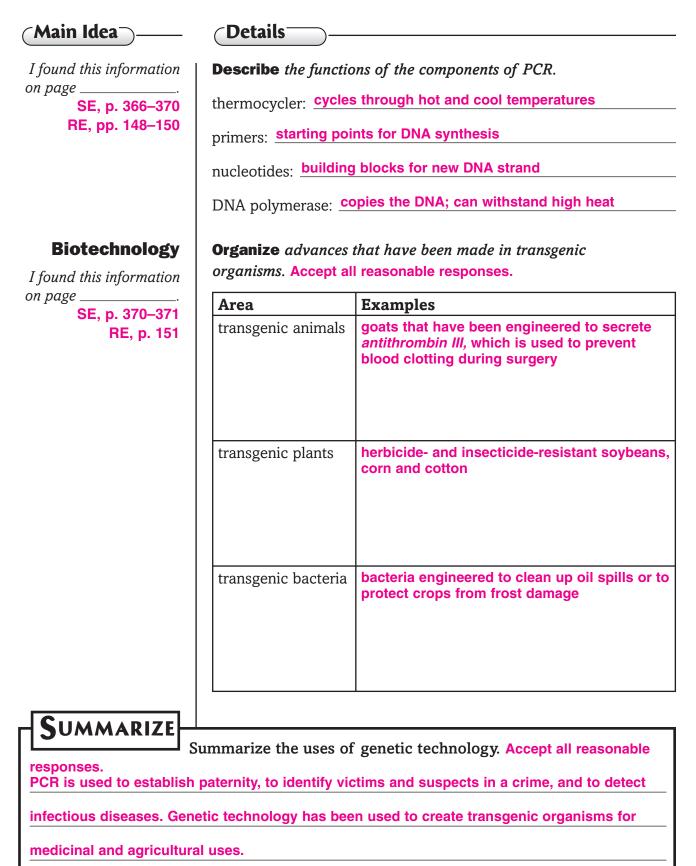
I found this information on page _____. SE, pp. 366–370

RE, pp. 148–150

C	D	el	tai	il	S	-

Identify one transgenic organism from this chapter. Describe how it was created. Then use your imagination to think of another possible transgenic organism that could be made and identify the original organisms that could be used to make it.

A glowing mosquito was created by putting GFP from a jellyfish into a mosquito. Accept all imagined transgenic organisms, for example, horses with wings (a horse and an eagle).

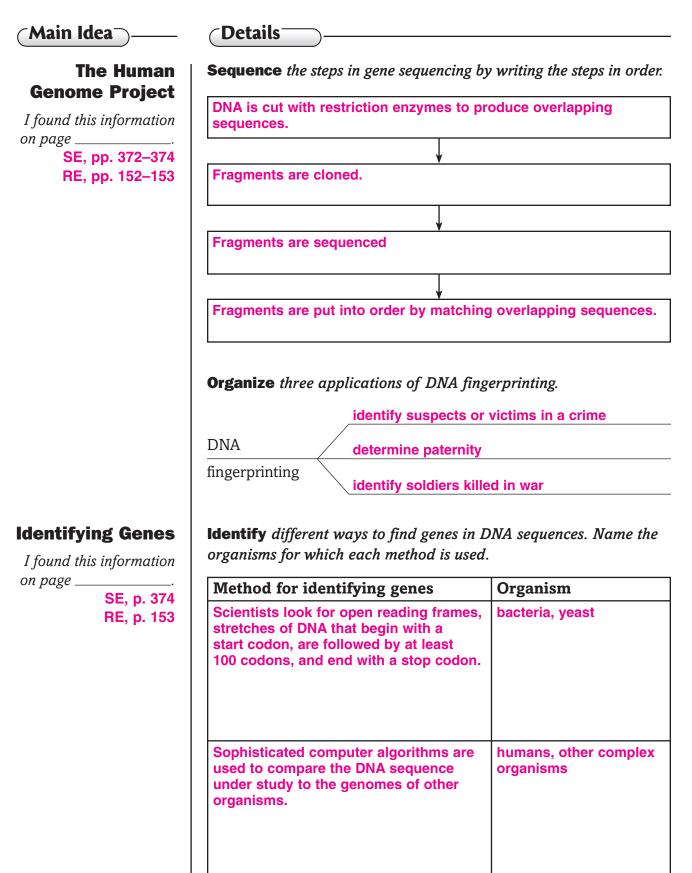

Complete the paragraph about DNA tools by using the words below.

• Eco RI • blunt ends • gel electrophoresis • sticky ends restriction enzymes restriction enzymes to cut DNA at specific Scientists use gel electrophoresis sequences, and _ to separate fragments restriction enzymes create DNA with based on size. Some single-stranded, _____sticky ends Eco RI is an example of this type of enzyme. The resulting DNA fragments can be joined with other DNA fragments that have complementary sticky ends . Other restriction enzymes create blunt ends _____, which can be joined to another DNA blunt ends fragment that has

Compare the DNA tools and techniques used in genetic engineering.

Genetic Engineering Application	Tool or Technique Used	
Make millions of copies of a region of DNA	polymerase chain reaction	
Determine the order of nucleotides	DNA sequencing	
Chemically join together two fragments of DNA	DNA ligase	
Carry recombinant DNA into bacteria	plasmid	
Produce large amounts of recombinant DNA	DNA cloning	

Section 13.2 DNA Technology (continued)



Genetics and Biotechnology

Section 13.3 The Human Genome

(Main Idea)	Details
	 Scan Section 3 of the chapter. Use the checklist as a guide. Read all section titles. Read all boldfaced words. Look at all illustrations and read the captions. Write three facts you discovered as you scanned the section. Accept all reasonable responses. 3.
New	
Vocabulary	Use your book or dictionary to define each term. the creation and maintenance of databases to handle large amounts
bioinformatics	of biological data
DNA microarray	tiny microscope slides or silicon chips dotted with DNA fragments
haplotype	regions of the human genome containing linked variations
pharmacogenomics	the study of the effect of genetics on the body's response to drugs
single nucleotide	single nucleotide variations in human genomes; present in at least
polymorphism	1 percent of the human population
Academic- Vocabulary	using sequence.
sequence	a continuous series

Section 13.3 The Human Genome (continued)

Section 13.3 The Human Genome (continued)

(Main Idea)-

Details

Bioinformatics ,
DNA Microarrays,
The Genome
and Genetic
Disorders,
Genomics and
Proteomics
I found this information
on page

SE, pp. 375–379 RE, pp. 153–156 **Organize** the techniques that have arisen in the age of genomics. Give one benefit or application for each technique. The first one has been done for you.

Description	Technique	Application or Benefit
inserting recombinant DNA into human cells to treat diseases	gene therapy	might someday be used to cure genetic diseases
slides or chips used to analyze complex changes in gene expression	DNA microarrays	large amount of information can be stored in a small space
an international effort to describe regions of linked variations in the human genome	НарМар	identify genes that cause disease in humans
the study of how to manage large amounts of biological information	bioinformatics	allows the study of gene evolution by comparing proteins from different organisms
the study of all of the DNA in the genome of an organism	genomics	powerful method for determining the function of human genes
the study and cataloging of an organism's proteins	proteomics	development of new drugs to treat diabetes, obesity, artherosclerosis
the study of how to match a person's genetics to the drugs they are prescribed	pharmacogenomics	genetically-tailored drugs

SUMMARIZE

Discuss the applications of genetic technology that you think might affect your life in the future and the limitations you think there will be on DNA technology.

Accept all reasonable responses.

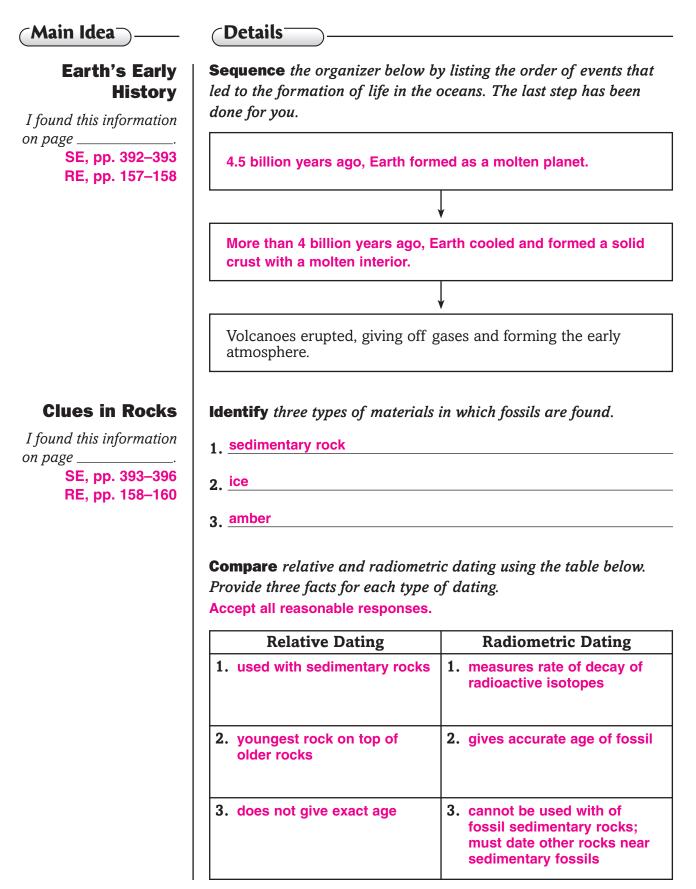
The History of Life

Before You Read

Use the "What I Know" column to list the things you know about the history of life. Then list the questions you have about the history of life in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal


Think about early life on Earth. Describe the physical conditions that needed to be present in order for life to begin to form.

Accept all reasonable responses.

The History of Life Section 14.1 Fossil Evidence of Change

Main Idea	Details		
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.		
	1. Accept all reasonable responses.		
	2		
5	۷		
Review— Vocabulary	Use your book or dictionary to define extinction.		
extinction	the death of all individuals of a species		
∕ New	$\overline{}$		
Vocabulary	Use the terms in the left column to complete the paragraph below.		
Cambrian explosion	Scientists measure Earth's geological and biological events using		
era	the <u>geologic time scale</u> , which is divided into <u>eras</u>		
eru	and <u>periods</u> . The <u>Cambrian explosion</u> is the name of a		
fossil	period of rapid change during which the ancestors of most animal		
	groups emerged. A layer of soot found between rock layers		
geologic time scale	worldwide, known as theK-T boundary, might indicate		
half-life	that a large meteorite collided with Earth.		
	The theory of plate tectonics describes Earth's surface as		
K-T boundary	large plates that move over Earth's thick, liquid interior. These plates		
law of superposition	are made up of various types of rocks. Paleontologists are		
	scientists who study <u>fossils</u> . They determine the relative age		
paleontologist	of rocks using <u>relative dating</u> , which compares the sequence of		
period	rock layers. The <u>law of superposition</u> states that younger rock		
1	layers are deposited on top of older rock layers. Another method of		
plate tectonics	determining the age of rocks is <u>radiometric dating</u> , which		
radiometric dating	measures the decay of radioactive isotopes. The rate of decay can		
, automotive duting	be measured using <u>half-lives</u> , the amount of time required		
relative dating	for half of a radioactive isotope to decay.		

Section 14.1 Fossil Evidence of Change (continued)

Section 14.1 Fossil Evidence of Change (continued)

(Main Idea)-

(Details[—]

below.

The Geologic Time Scale

I found this information on page _____. SE, pp. 396–400 RE, pp. 160–163

Geologic Era	Major Biological Events	Organisms that Appeared	Other Facts
Precambrian	life began, eukaryotic cells evolved	unicellular life, eukaryotic cells, small marine animals	includes Earth's formation, almost 90% of Earth's entire history
Paleozoic	Cambrian explosion at beginning of Paleozoic, mass extinction at end	fish, amphib- ians, early land plants, reptiles	drastic changes in animal life occur
Mesozoic	mass extinction of dinosaurs, possibly caused by meteorite impact	dinosaurs, small mammals, flowering plants, birds	continents shift dramatically
Cenozoic	following extinction of dinosaurs, mammals diversify	large mammals, humans	most recent era

Summarize the four eras of the geologic time scale using the table

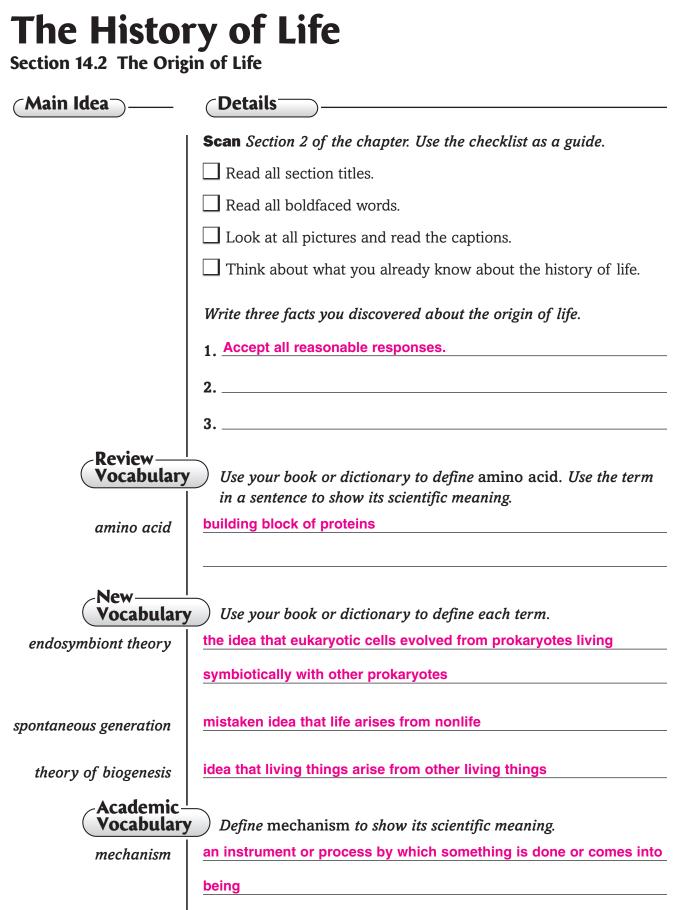
Rephrase the current theory on the cause of the mass extinction at the end of the Mesozoic era. Accept all reasonable responses.

Scientists propose that Earth was struck by a giant meteor, which

caused a tremendous amount of dust to enter the atmosphere. This

led to climate change. Species that could not adjust to the new

climate disappeared.

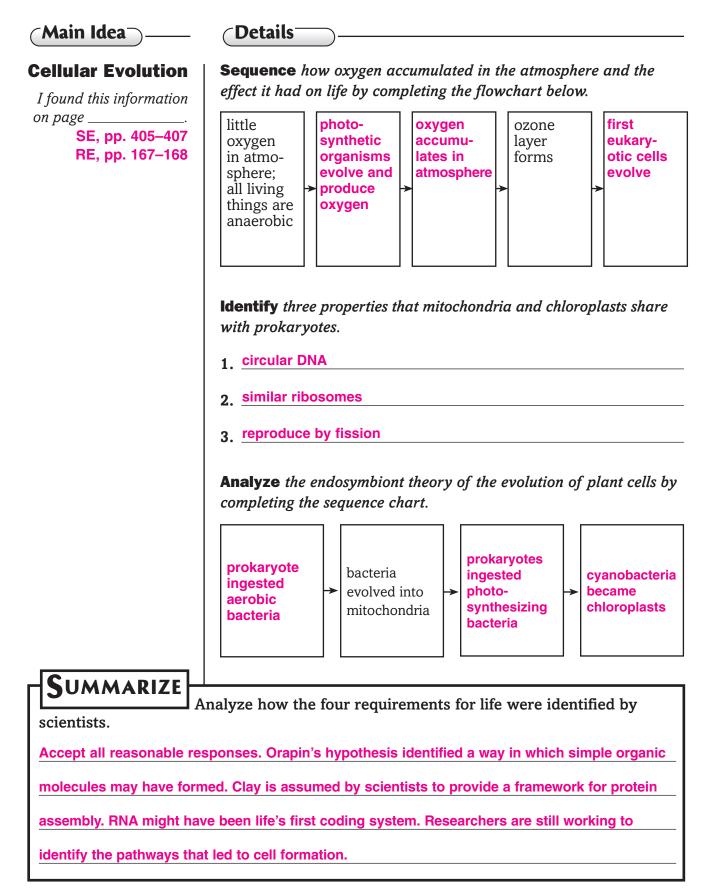

SUMMARIZE

Discuss how palentologists use relative and radiometric dating to support the geologic timescale.

Accept all reasonable responses. Paleontologists use relative dating to identify the age of rock

layers. They use radiometric dating to accurately date fossils. Findings from both tools were

helpful in structuring the geologic time scale and in determining the exact dates on the scale.



proteins

Section 14.2 The Origin of Life (continued)

← Main Idea つ Details **Origins: Create** a cartoon that illustrates how Redi's experiment was used **Early Ideas** to disprove spontaneous generation. *I* found this information Cartoons will vary but should include at least two different jars. One jar should be open with a piece of meat on the bottom, and a on page ___ SE, pp. 401–402 second jar should be covered with a piece of meat on the bottom. Students should show that there are flies and, later, maggots on RE, pp. 164–165 the meat that is uncovered. The flies can be shown circling around the covered jar of meat but no maggots or flies should be shown inside the covered jar. **Compare** spontaneous generation and biogenesis. Accept all reasonable responses. **Biogenesis Spontaneous** Both suggested that idea that living ideas to something alive things come only explain how could come from from other living living an object that is things. things are not alive formed **Origins: Model** Oparin's primordial soup hypothesis for the formation of **Modern Ideas** simple organic molecules by filling in the graphic organizer below. *I* found this information lightning on page ___ started chemical reactions of gases SE, pp. 402–404 small organic molecules formed in the early RE, pp. 165–167 UV light from the atmosphere Sun **Identify** four requirements for life using the concept map below. simple Requirements for Life organic a way to molecules, the form cells from building blocks molecules of life a way to a coding synthesize system for proteins from replicating amino acids

Section 14.2 The Origin of Life (continued)

SUMMARIZE

Tie It Together

Write an analogy to explain the difference between

radiometric and relative dating. Develop a second analogy to explain the endosymbiont theory. Accept all reasonable responses.

Analogy of dating methods used by palentologists:

Analogy of endosymbiont theory:

Evolution

Before You Read

Use the "What I Know" column to list the things you know about evolution. Then list the questions you have about evolution in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

Life has evolved slowly on Earth. Certain organisms evolved in response to changes in their environment. Describe an adaptation of an organism that you see around you. How has the organism become better suited to its environment as a result of this adaptation?

Accept all reasonable responses.

Evolution Section 15.1 Darwin's Theory of Natural Selection

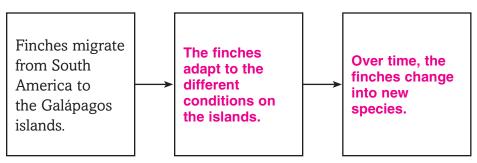
Main Idea	Details
	Skim Section 1 of the chapter. Write three questions that come to mind from reading the headings and illustration captions.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define selective breeding.
selective breeding	process by which a breeder develops a plant or animal to have
J	certain traits
New Vocabulary	Use your book or dictionary to define each term.
artificial selection	process of breeding organisms with specific traits to produce
	offspring with the same traits; selective breeding
evolution	change in a species over time
natural selection	occurs in nature when organisms with favorable variations survive,
	reproduce, and pass their variations to the next generation
	Write a short paragraph that uses at least two of the terms above.
	Accept all reasonable responses.

Section 15.1 Darwin's Theory of Natural Selection (continued)

Oetails

(Main Idea)_

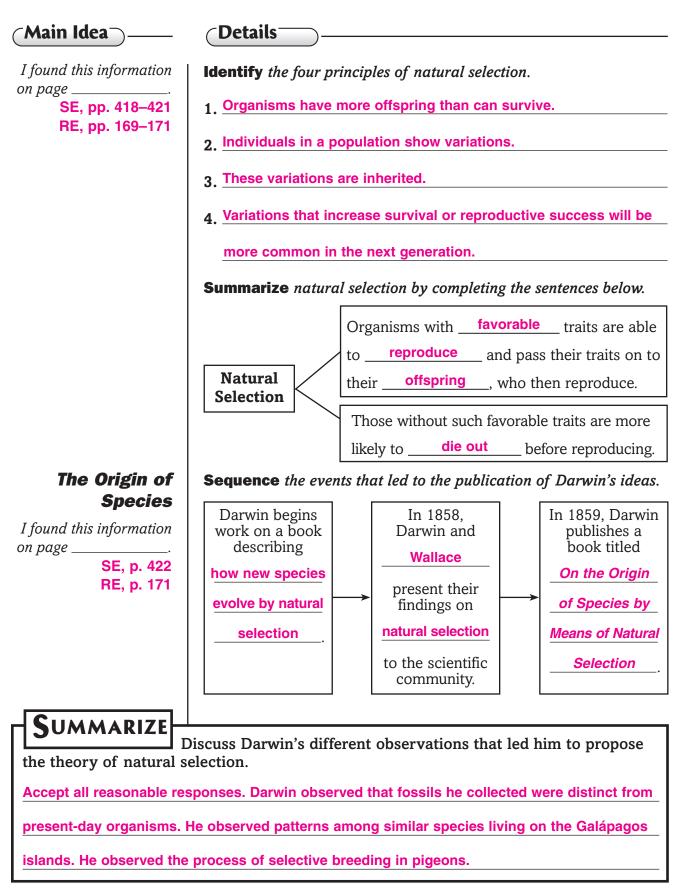
Developing the Theory of Natural Selection


I found this information on page _____. SE, pp. 418–421 RE, pp. 169–171 **Summarize** three observations Darwin made in his research on the South American mainland.

- 1. marine fossils present in Andes mountains
- 2. giant fossil versions of small, present-day animals
- 3. earthquakes can move rocks great distances

Identify three organisms from the Galápagos Islands and their distinguishing characteristics.

Organism	Variation	
Mockingbirds	different mockingbirds present on each island	
Tortoises	tortoises on each island have different shells	
Finches	new species different from mainland species	


Analyze Darwin's hypothesis on the origin of Galápagos finches by filling in the flow chart. The first step has been done for you.

Summarize three observations that Darwin made in his research with pigeons.

- 1. small variations in traits of individual pigeons
- 2. traits inherited by offspring
- 3. traits promoted in offspring by selection and breeding

Section 15.1 Darwin's Theory of Natural Selection (continued)

Name Date **Evolution** Section 15.2 Evidence of Evolution ⊂Main Idea-Details **Scan** Section 2 of the chapter. List the lines of evidence that support Darwin's theory of evolution by natural selection. Accept all reasonable responses. Answers may include fossils, anatomy, embryology, biochemistry. Review Vocabulary Use your book or dictionary to define fossil. remains of an organism or its activities fossil New-Vocabulary Use your book or dictionary to define the following terms. structures with a similar function but different form and not arising analogous structures from a common ancestor trait shared by species and common ancestors ancestral trait study of the distribution of plants and animals on Earth biogeography adaptation in which a species blends in with its environment camouflage newly evolved traits not found in common ancestors derived trait early stage of development of a plant or animal embryo count of offspring born to an individual with a trait compared to an fitness individual without that trait anatomically similar structures with a common evolutionary origin homologous structures

mimicry

vestigial structure

adaptation in which one species resembles another species

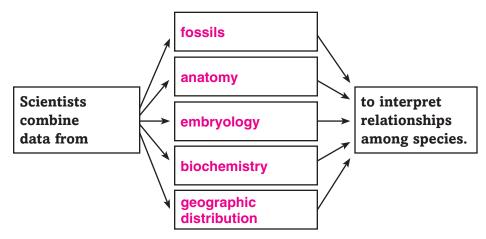
reduced form of a structure that is functional in other organisms

Section 15.2 Evidence of Evolution (continued)

(Main Idea)_

(Details

Summarize the role that anatomy plays in teaching us about evolution by completing the table below.


I found this information on page _____. SE, pp. 423–428 RE, pp. 172–174

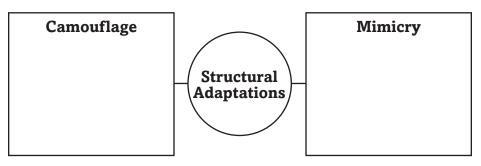
Support for

Evolution

Structure	What is it?	Example
Homologous structure	structural features with common evolutionary origin	forelimbs of humans, cats, and bats are similar
Analogous structure	body parts that are similar in function but evolved from a different ancestor	birds and insects both have wings
Vestigial structure	body structure no longer serving a purpose	wings of kiwis
Embryo	earliest stage of growth and development of a plant or animal	embryos of fishes, birds, reptiles, and mammals have structures that suggest they had common ancestors

Identify ways scientists interpret relationships among species by completing the organizer below.

Section 15.2 Evidence of Evolution (continued)


Oetails

Adaptation

I found this information on page _____. SE, pp. 428–430 RE, p. 175 **Compare** similarities and differences between adaptations and non-adaptations by writing yes or no in the table. Then give an example of an adaptation and a non-adaptation.

Characteristics	Adaptations	Non-Adaptations
inherited traits	yes	yes
increase survival or reproduction	yes	no
by-product arising from other evolutionary changes	no	yes
Example:	Accept all reasonable responses.	Accept all reasonable responses.

Apply Give examples of how animals use camouflage and mimicry in order to protect themselves. Use examples that are not given in your book. Accept all reasonable responses.

Analyze how antibiotics can lose their effectiveness over time.

The bacteria can undergo physiological adaptations to keep them

from being killed by various antibiotics.

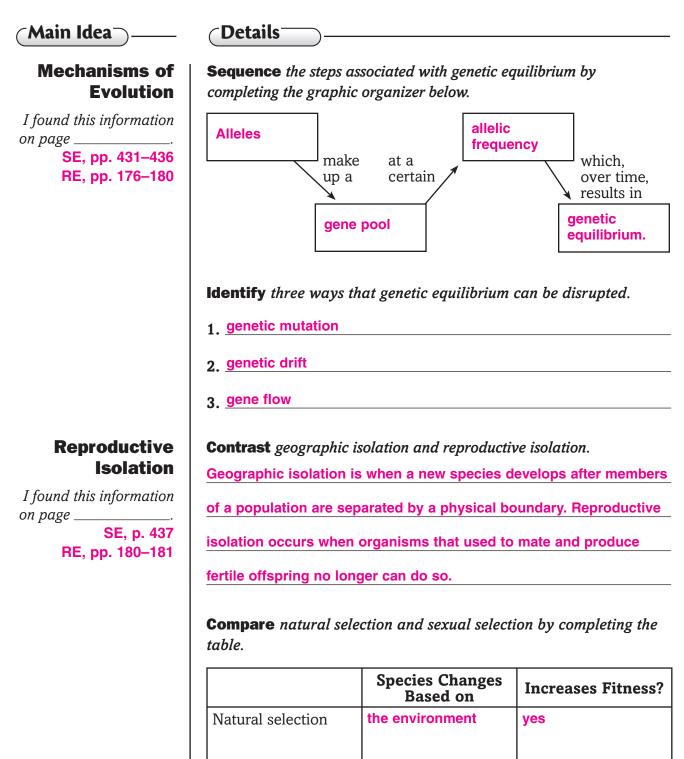
SUMMARIZE Explain why fossils are important tools in understanding

evolution.

Accept all reasonable responses. Fossils teach us about the structure of organisms from the

past. Fossils show species that are intermediate between other species. Fossils clarify the

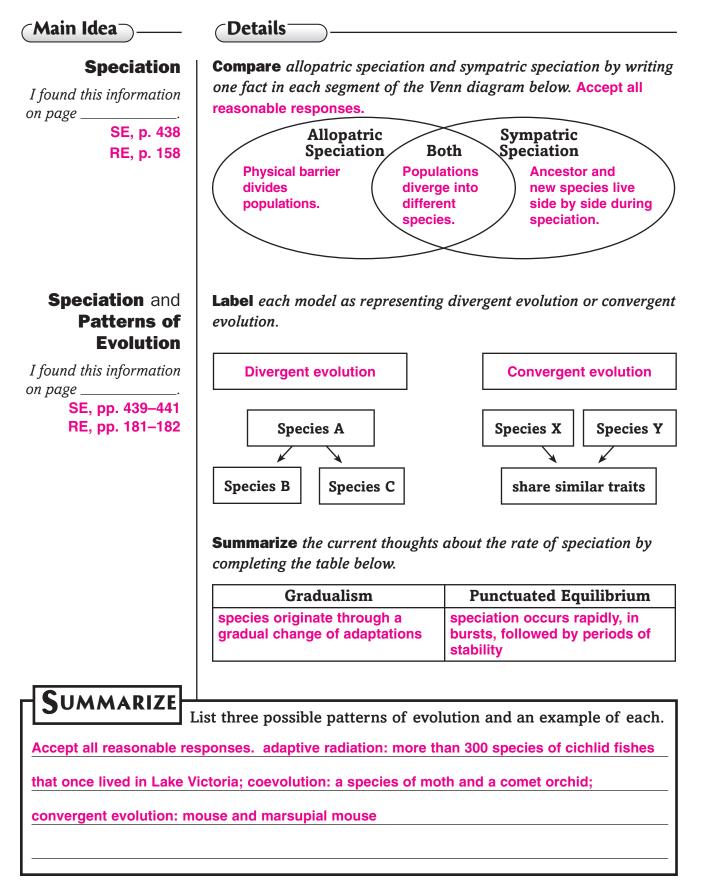
evolutionary relationships between species.


Evolution

Section 15.3 Shaping Evolutionary Theory

Main Idea	Details
	Scan Section 3 of the chapter. Write two facts that you discover.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define allele.
allele	alternate forms of a gene
New Vocabulary	
Hardy-Weinberg	definition below.
Principle	allele frequencies remain the same unless acted upon by a factor
founder effect	random evolution that occurs in a small, separate subpopulation
bottleneck	process of a large population declining in number then rebounding to a large number again
prezygotic isolating mechanism	mechanism that operates before fertilization occurs
genetic drift	change in the allele frequencies in a population by chance
stabilizing selection postzygotic isolating mechanism	selection which removes organisms with extreme expressions of a trait
	mechanism that operates after fertilization occurs to ensure that resulting hybrid remains infertile
directional selection	selection which shifts a population toward an extreme trait
disruptive selection	selection which removes individuals with average traits
sexual selection	change in a trait based on competition for mates
allopatric speciation	speciation in the presence of a barrier
sympatric speciation	speciation without any barriers

Section 15.3 Shaping Evolutionary Theory (continued)


Sexual selection

competition for a

mate

not always

Section 15.3 Shaping Evolutionary Theory (continued)

Primate Evolution

Before You Read

Use the "What I Know" column to list the things you know about the way primates evolved. Then list the questions you have about primate evolution in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

The ability of an organism to adapt to its surroundings is needed for survival. Describe the adaptations you think were most important to the survival of primates in a variety of climates.

Accept all reasonable responses.

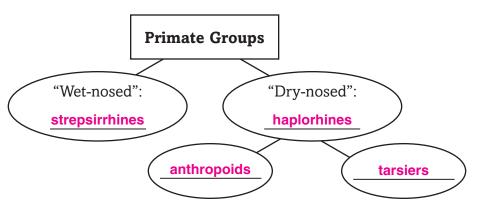
Primate Evolution

Section 16.1 Primates

Main Idea	Details
	Scan the title and main idea of Section 1. List two things that might be discussed in this section.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define extinction.
extinction	the condition of no longer existing
New- Vocabulary	Use your book or dictionary to define each term.
anthropoid	humanlike primate that appears to be more closely related to present-
	day humans than it is to present-day chimpanzees and bonobos
arboreal	tree-dwelling
binocular vision	overlapping fields of vision
diurnal	active during the day
hominin	humanlike primate
nocturnal	active at night
opposable first digit	either a toe or a thumb that is set apart from other digits and can be
	brought across the palm or foot so that it touches or nearly touches
	the other digits
prehensile tail	tail that functions like a fifth limb
Academic- Vocabulary	Define diverge to show its scientific meaning.
diverge	to become different in character or form

Section 16.1 Primates (continued)

(Main Idea)_


Characteristics of Primates

I found this information on page _____. SE, pp. 452–454 RE, pp. 183–184 **Details**

Identify the benefits of the following primate characteristics. Accept all reasonable responses.

Primate Characteristic	Benefits
Opposable first digit	can grasp objects with a powerful grip
Binocular vision	enables greater depth perception
Unspecialized teeth	suitable for diverse diets
Flexible shoulders and hips	enable easy movement through trees, walking on four limbs and some upright walking
Large, complex brain	enhanced memory and coordination; problem-solving abilities; well- developed social skills; complex communication
Low reproductive rate	extended dependency period allows time to learn complex social interaction

Identify the primate groups in the diagram below.

Strepsirrhines

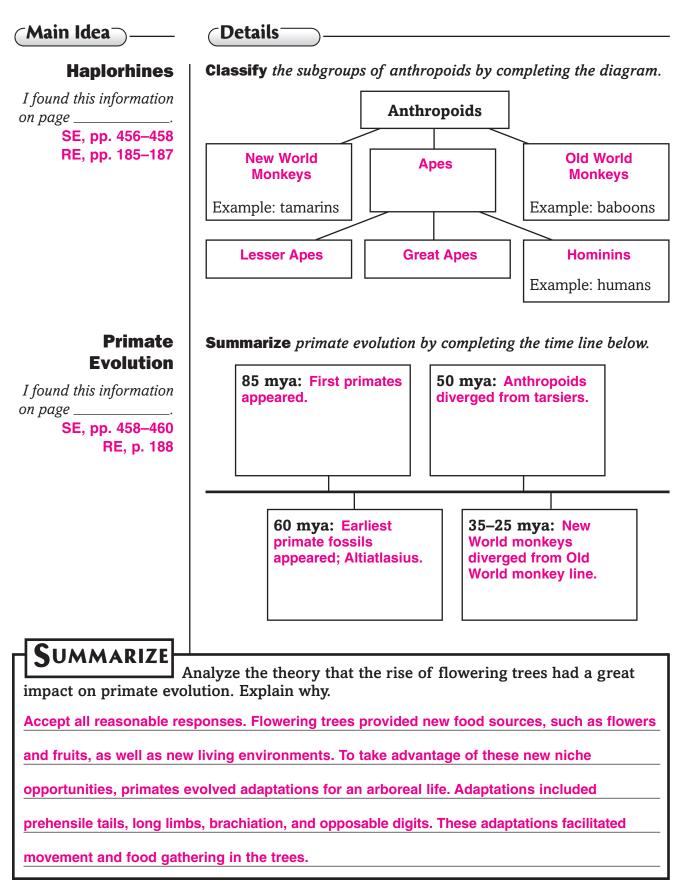
Primate Groups

SE, p. 455 RE, p. 184

I found this information

on page _

I found this information on page _____. SE, pp. 455–456 RE, p. 185 **Summarize** a theory on why lemurs are found only on Madagascar and nearby islands.

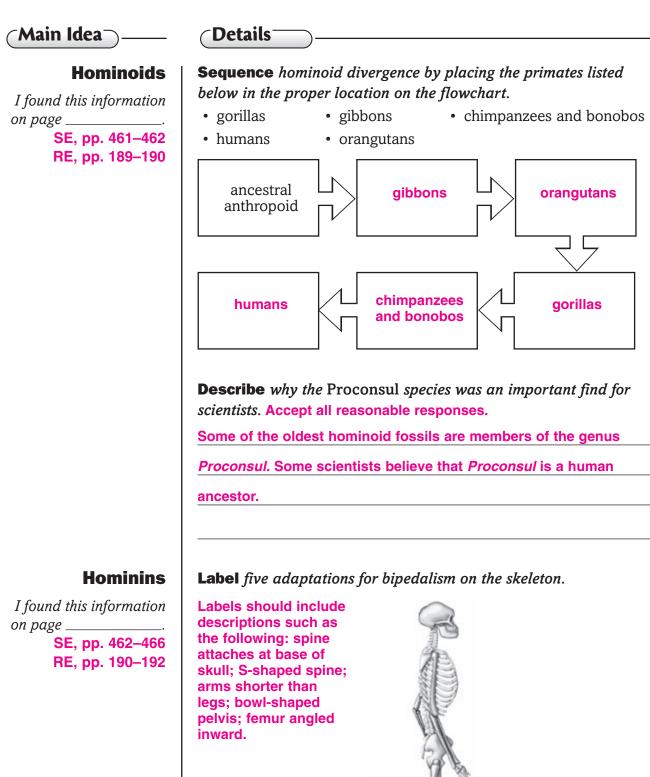

Accept all reasonable responses. During the time lemurs evolved,

Madagascar drifted away from the African mainland. Lemurs might

have migrated there on rafts of leaves. There they evolved in

reproductive isolation.

Section 16.1 Primates (continued)



Primate Evolution

Section 16.2 Hominoids to Hominins

Main Idea	Details
	Scan the time line and other illustrations in Section 2 of the chapter. Write two questions that come to mind.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define savanna.
savanna	flat grassland of tropical or subtropical regions
New Vocabulary	Use your book or dictionary to define each term.
australopithecine	hominin group that lived in the east-central and southern part of
	Africa between 4.2 and 1 million years ago; first truly bipedal
	hominin
bipedal	ability to walk upright on two legs
hominoid	any nonmonkey anthropoid, including a human
	Place the first australopithecines and first hominoids in the general time line below.
	hominoids australopithecines
	about 25 mya about 4.2 mya

Section 16.2 Hominoids to Hominins (continued)

Date __

Section 16.2 Hominoids to Hominins (continued)

Oetails *I* found this information **Describe** some potential advantages and disadvantages of on page _____ bipedalism compared to quadrupedalism. Accept all reasonable SE, pp. 462–466 responses. RE, pp. 190–192 Disadvantages of bipedalism: Advantages of bipedalism: individuals easier for predators could travel longer distances to to see; slower running speed; search for food; could spot food greater strain on hips and back; sources more easily; might might require more energy reduce total area of body exposed to sunlight and increase area exposed to cooling winds; hands free to carry objects or for other purposes; could reach fruit on low branches

Identify a key discovery by each of the following scientists. Then analyze how the discovery contributed to the debate about which adaptation evolved first: larger brain or bipedalism.

Raymond Dart	Donald Johanson	Mary Leakey
Discovery: Taung baby	Discovery: Lucy	Discovery: fossilized australopithecine footprints
Analysis: placement of the foramen magnum in the skull suggested that this small-brained australopithecine was bipedal	Analysis: helped resolve the debate; Lucy's hip and knee joints showed that she was clearly bipedal	Analysis: supplied further evidence that australopithecines were bipedal

Analyze why scientists have difficulty classifying many

hominin fossils.

Accept all reasonable responses. Hominins followed mosaic evolution—different body parts

and behaviors evolved at different rates. As a result, early hominin fossils showed a

patchwork of human and apelike traits. A variety of hominin species lived alongside human

ancestors but were not direct human ancestors themselves.

Primate Evolution

Section 16.3 Human Ancestry

Main Idea	Details		
	Scan Section 3 of the chapter. Use the checklist as a guide.		
	Read all section titles.		
	Read all boldfaced words.		
	Read all tables, figures, and graphs.		
	Look at all pictures and read the captions.		
	Write two facts you discovered as you scanned the section.		
	1. Accept all reasonable responses.		
	2		
~Review			
Vocabulary	Use your book or dictionary to define mitochondrion.		
mitochondrion	organelle found in eukaryotic cells containing genetic material		
	and responsible for cellular energy		
New- Vocabulary	Use your book or dictionary to define each term.		
Cro-Magnon	first fully modern human group; expressed itself symbolically and		
5	artistically, developed sophisticated tools and weapons, was the first		
	to fish, tailor clothing, and domesticate animals		
Homo	genus that includes living and extinct humans		
Neanderthal	distinct human species that evolved exclusively in Europe and Asia		
	about 200,000 years ago, likely from <i>H. erectus</i> or a <i>Homo</i> intermediary;		
	larger and more heavily muscled than modern humans		

on page _

Section 16.3 Human Ancestry (continued)

Oetails

CMain Idea⁻

I found this information

SE, pp. 467–470

RE, pp. 193–195

The *Homo* Genus | Id

Identify the correct species from the list below for each of the following characteristics.

- H. habilis H. erectus H. heidelbergensis
- H. ergaster H. floresiensis H. neanderthalensis

Characteristic	Homo Species
Evidence suggests they cared for their sick and buried their dead	H. neanderthalensis
More versatile than predecessors; adapted successfully to a variety of environments	H. erectus
First undisputed member of the <i>Homo</i> genus	H. habilis
Nicknamed "The Hobbit" because of its small size	H. floresiensis
Larger and more heavily muscled than modern humans	H. neanderthalensis
Believed to have had the first human nose (nostrils facing downward)	H. ergaster
Classification for various transitional fossils that display a mosaic of <i>H. ergaster</i> and <i>H. sapiens</i> traits	H. heidelbergensis
Name means "handy man" because of association with primitive stone tools	H. habilis
Probably evolved from <i>H. erectus</i> or a <i>Homo</i> intermediary	H. neanderthalensis
First African <i>Homo</i> species to migrate in large numbers to Asia and Europe	H. ergaster
Serves as evidence that <i>H. erectus</i> or some other ancient hominin species remained on Earth until 12,000 years ago	H. floresiensis

Identify a Homo species that scientists hypothesize to be a human ancestor, based on features shared with modern humans.

Homo ergaster

Identify a Homo species that scientists believe was not a human ancestor, based on DNA tests on fossil bones.

Homo neanderthalensis

Section 16.3 Human Ancestry (continued)

Main Idea	Details
Emergence of Modern Humans	Rephrase two hypotheses proposed to explain the global dominance of modern humans.
I found this information on page SE, pp. 471–473 RE, pp. 195–196	Multiregional evolution model: Modern humans evolved from several dispersed populations of early Homo species at the same time in different areas of the world. Modern races of humans arose in isolated populations by convergent evolution.
	"Out of Africa" hypothesis: Modern humans evolved only once, in Africa, and then migrated to all parts of the world, eventually displacing other hominins.
	Summarize a scientific study that supported the "Out of Africa" hypothesis by completing the paragraph.
	• Africans have the most variation in mitochondrial DNA • mitochondrial DNA is inherited only from the mother
	 mitochondrial DNA changes very little over time the population with the most variation had the longest existence
	Because, mitochondrial DNA changes very little over time,
	scientists reasoned that the population with the most variation
	had the longest existence
	humans, scientists found that Africans have the most variation
	in mitochondrial DNA .Because mitochondrial DNA is
	inherited only from the mother, scientists concluded that
	H. sapiens emerged in Africa from a hypothetical "Mitochondrial Eve."
	Contrast <i>Homo sapiens</i> to all other <i>Homo</i> species. Accept all
reasonable responses.	cile with thinner skeletons, rounder skulls, smaller faces, and
	an all other <i>Homo</i> species. Their brains are larger than all except

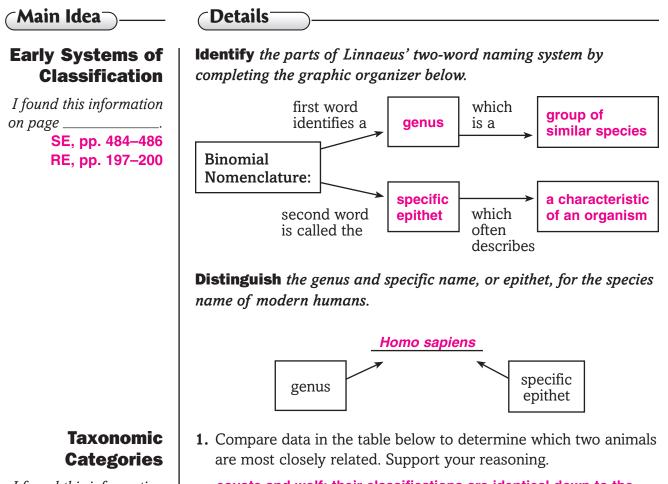
Neanderthals. They have developed complex language and culture.

Organizing Life's Diversity Before You Read

Use the "What I Know" column to list the things you know about life's diversity. Then list the questions you have about diversity in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal


Consider several living organisms that you see around you. Describe some characteristics that biologists might use when trying to classify, or organize, them into similar species.

Accept all reasonable responses.

Organizing Life's Diversity Section 17.1 The History of Classification

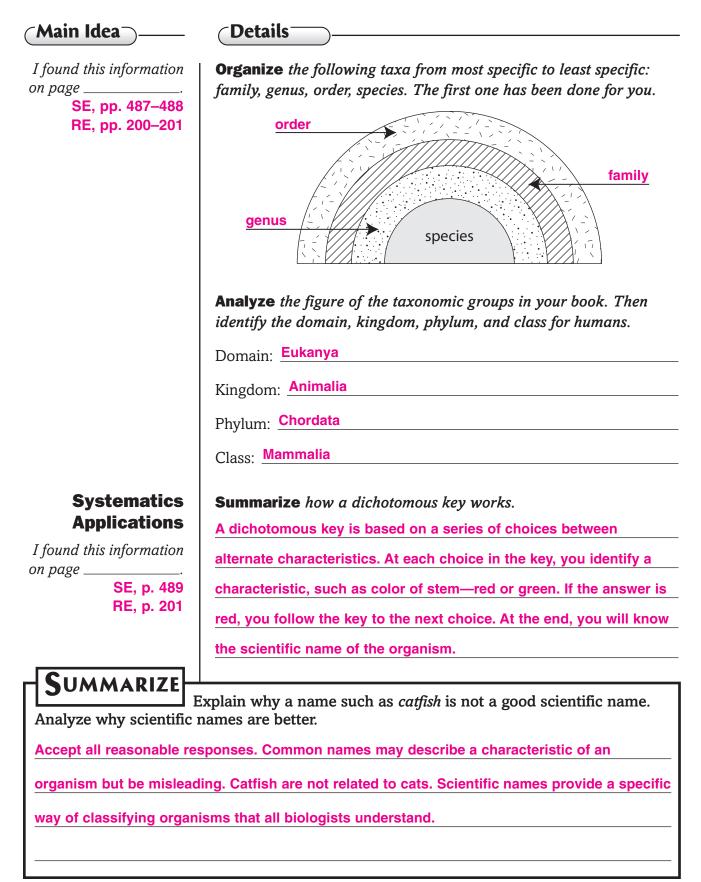
Main Idea	Details		
	Scan Section 1 of the chapter. Write three questions that come to mind from reading the headings and the illustration captions. 1. Accept all reasonable responses.		
	2		
	3		
Review Vocabulary	Use your book or dictionary to	define morphology.	
morphology	the structure and form of an organized	nism or one of its parts	
New Vocabulary binominal nomenclature	naming system or a taxonomic		
class	Linnaeus' System	Taxonomic Group	
division domain family genus kingdom order phylum	binominal nomenclature genus	class division family kingdom order phylum domain	
	Use your book to define each terr		
classification	grouping of objects or information	n based on a set of criteria	
taxon	a named group of organisms		
taxonomy	a discipline of biology primarily c	oncerned with identifying, naming,	
	and classifying species based on	natural relationships	

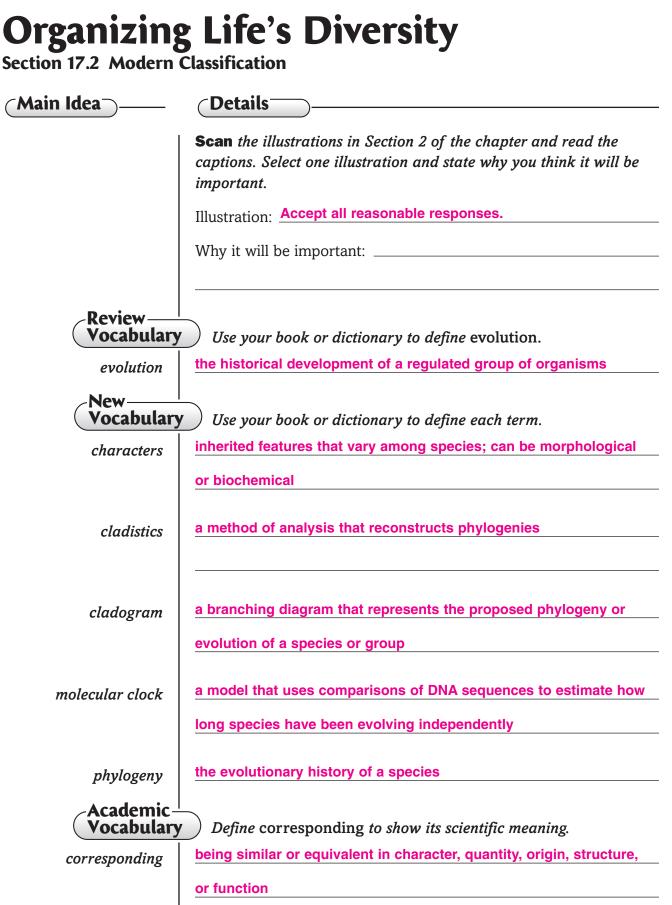
Section 17.1 The History of Classification (continued)

I found this information on page _____. SE, pp. 487–488

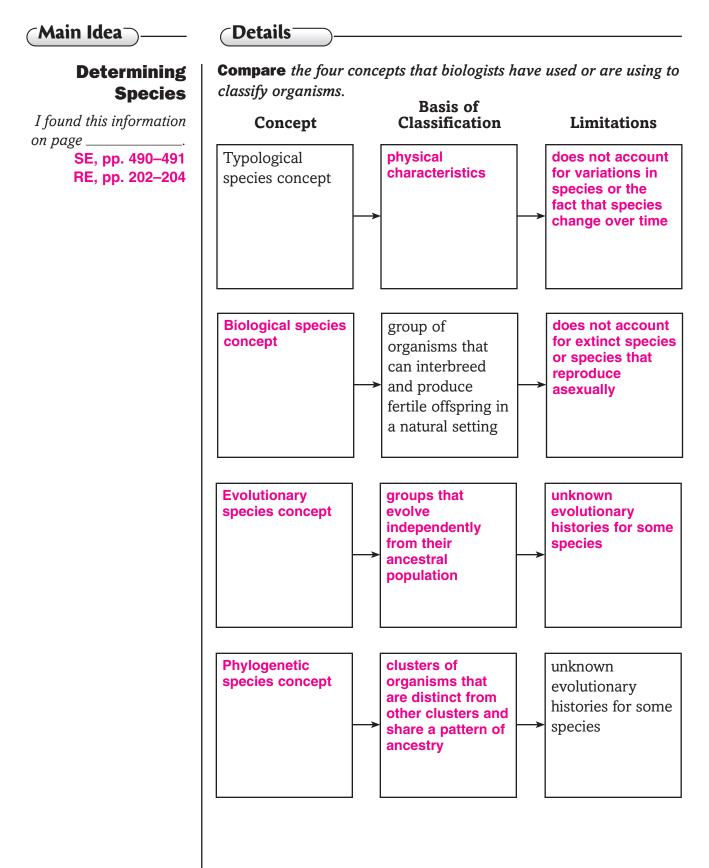
RE, pp. 200-201

coyote and wolf; their classifications are identical down to the

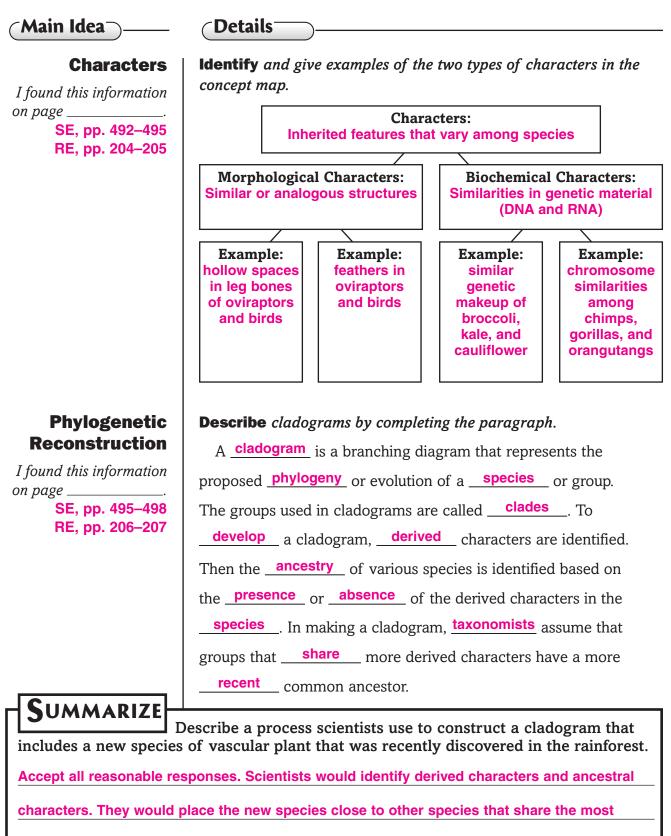

species level


Classification of Selected Mammals				
Kingdom	Animalia	Animalia	Animalia	Animalia
Phylum	Chordata	Chordata	Chordata	Chordata
Class	Mammalia	Mammalia	Mammalia	Mammalia
Order	Cetacea	Carnivora	Carnivora	Carnivora
Family	Mysticeti	Felidae	Canidae	Canidae
Genus	Balenopora	Felis	Canis	Canis
Species	B. physalis	F. catus	C. latrans	C. lupus
Common name	Blue whale	Domestic cat	Coyote	Wolf

2. Analyze at which level the blue whale diverges from the other animals on the table.


at the order level

Section 17.1 The History of Classification (continued)



Section 17.2 Modern Classification (continued)

Section 17.2 Modern Classification (continued)

derived characters.

Organizing Life's Diversity Section 17.3 Domains and Kingdoms

Main Idea	Details
	Scan Section 3 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	Think about what you already know about groups of organisms.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define eukaryote.
eukaryote	an organism composed of one or more cells containing a nucleus
	and membrane-bound organelles
New Vocabulary	Use your book or dictionary to define each term.
Archaea	a kingdom of prokaryotes whose cell walls do not contain
	peptidoglycan; sometimes called extremophiles
eubacteria	a kingdom of prokaryotes whose cell walls contain peptidoglycan
fungus	eukaryotic organisms that can be unicellular or multicellular and
	absorbs nutrients from organic materials in its environment; have
	cell walls that contain chitin
protists	eukaryotic organisms that can be unicellular, colonial, or
	multicellular: subclassified as algae, protozoans, and fungus-like

Date __

Section 17.3 Domains and Kingdoms (continued)

Main Idea Details Grouping Species | Rephrase why the members formerly

I found this information on page _____. SE, p. 499 RE, p. 208

Domain Bacteria

I found this information on page _____. SE, pp. 499–500 RE, pp. 208–209

Domain Archaea

I found this information on page _____. SE, p. 500 RE, p. 209

Domain Eukarya

I found this information on page _____. SE, pp. 501–503 RE, pp. 209–212 **Rephrase** why the members formerly in the Kingdom Monera were separated into the two new domains Bacteria and Archaea.

Biochemical studies showed that there were two different types of

bacteria, so they were divided into two domains.

Model the cell walls of eubacteria. Label the features of eubacteria. Accept all reasonable drawings.

Analyze why archaebacteria are sometimes called extremophiles. Archaebacteria are called extremophiles because they live in some

of the most extreme environments on Earth, including boiling hot

springs, salty lakes, thermal vents, and mud.

Organize the kingdoms in the Domain Eukarya and describe their cell structure. List each kingdom's sources of energy and other important characteristics.

Kingdom	Cell Structure	Energy Sources	Other Characteristics
Eubacteria	strong cell walls	heterotrophs, autotrophs, and chemo- synthetic	live in most habitats
Archaebacteria	have cell walls that are different from eubacteria	autotrophs, chemo- synthetic, and photosynthetic	live in extreme environments

Section 17.3 Domains and Kingdoms (continued)

Main Idea	(Details	\supset ———		
I found this information on page SE, pp. 501–503 RE, pp. 209–212	Kingdom	Cell Structure	Energy Sources	Other Characteristics
	Protists	unicellular or multicellular	autotrophs, heterotrophs	simple organ systems
	Fungi	unicellular or multicellular	heterotrophs	stationary
	Plants	have cell walls	autotrophs	stationary
	Animals	no cell walls	heterotrophs	most able to move

SUMMARIZE

Model a diagram of the relationship between domains and kingdoms. Accept all reasonable responses.

Bacteria and Viruses

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- **1.** Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

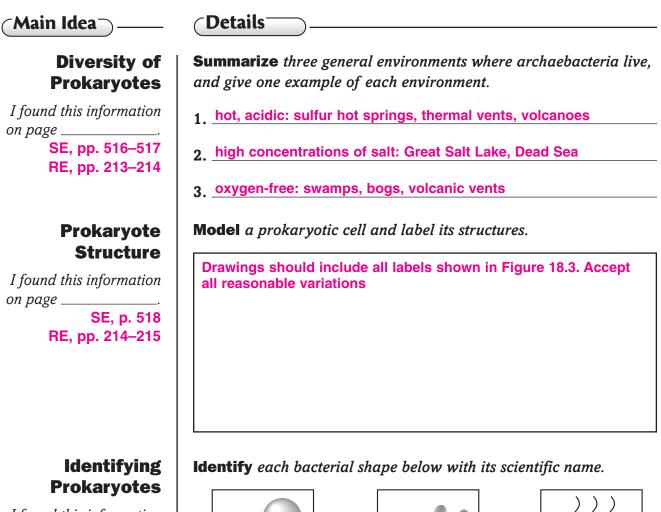
Before You Read	Bacteria and Viruses	After You Read
	• Bacteria can live in a thermal vent on the ocean floor, where temperatures top 80°C.	Α
	 If you have bacteria in your intestines, you will get sick. 	D
	• Some viruses remain inactive for years inside human cells.	Α
	• <i>Mad cow</i> disease is caused by a protein.	Α

Science Journal

Many viruses and bacteria can cause diseases in animals and plants. Write about a disease that you know of that is caused by a virus or a bacteria. Be sure to discuss how the disease is treated.

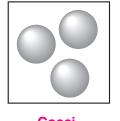
Accept all reasonable responses.

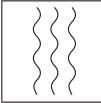
Bacteria and Viruses


Section 18.1 Bacteria

(Main Idea)	(Details)
	 Scan Section 1 of the chapter. Write two facts that you discovered as you scanned the section. 1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define prokaryotic cell.
prokaryotic cell	cell that does not contain any membrane-bound organelles
New- Vocabulary	Use your book or dictionary to define each term.
bacteria	unicellular prokaryotic microorganisms
binary fission	division of a cell into two genetically identical cells
capsule	layer of secreted polysaccharides around a prokaryotic cell wall
conjugation	method of reproduction in which two prokaryotes attach to each
	other and exchange genetic information
endospore	structure produced by some bacteria during harsh environmental
	conditions that contains genetic information and can germinate into
	a new bacterial cell when conditions improve
nucleoid	area of a prokaryotic cell that holds the chromosome
pilus	submicroscopic, hairlike structure made of protein that is found on
-	the outer surface of some bacteria

Date ____


Section 18.1 Bacteria (continued)

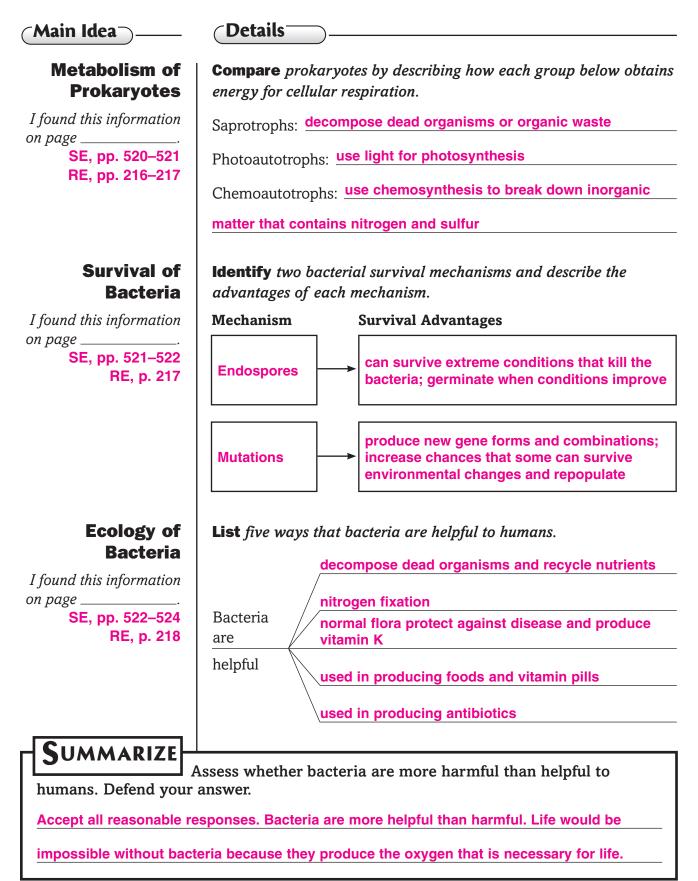

I found this information on page __ SE, p. 519 RE, p. 215

Reproduction of Prokaryotes

I found this information on page ____ SE, p. 520 RE, pp. 215–216

Cocci

Spirilli/Spirochetes


Compare prokaryote reproduction by completing the table below.

Reproduction Method	Binary Fission	Conjugation
Process	chromosome replicates, cell elongates, new plasma membrane and cell wall form and separate cell	two individuals use pili to attach to each other and exchange genetic material
Result	two genetically identical cells	new gene combination

Name.

Date _____

Section 18.1 Bacteria (continued)

Bacteria and Viruses Section 18.2 Viruses and Prions ⊂Main Idea⊃ Details **Scan** the table and time line in Section 2 of the chapter. Write three facts you discovered about viruses from these elements. 1 Accept all reasonable responses. 2._____ 3. Review Vocabulary Use your book or dictionary to define protein. large, complex polymer composed of carbon, hydrogen, oxygen, protein nitrogen, and sometimes sulfur New-Use the new vocabulary terms in the left column to complete the Vocabulary following paragraph. A _____ is genetic material within a protein coat, but capsid it has no organelles or other characteristics of life. The genetic lysogenic cycle material lies inside its <u>capsid</u>, or outer layer of protein. In the **lytic cycle**, viral genes instruct the host cell to make lytic cycle many copies of the viral RNA or DNA. Some viruses replicate in a lysogenic cycle ____, in which the viral DNA integrates into a host prion chromosome and lies dormant for some time. A <u>retrovirus</u> such as the HIV virus, contains RNA instead of DNA. Mutation in retrovirus the genes of a normal protein called a <u>prion</u> is responsible virus for diseases such as "mad cow." Academic Vocabulary Define widespread to show its scientific meaning. widely diffused or prevalent widespread

Section 18.2 Viruses and Prions (continued)

(Main Idea)	(Details)
Viruses	Model of one type of virus. Label its parts.
I found this information on page SE, pp. 525–527 RE, pp. 219–220	Drawings should resemble one of the virus diagrams in Figure 18.1.
Viral Infection I found this information on page	Synthesize why many viruses cannot pass from one species to another. The virus attaches to the host cell using specific receptors on the
SE, pp. 527–529	
RE, pp. 220–221	plasma membrane of the host. Different types of organisms have
	receptors for different types of viruses, limiting transmission
	between species.
	Label steps A, B, C, D, and E of a lytic cycle in the figure below.Use the following terms.• Assembly• Attachment• Lysis and Release• Replication
	Bacterial host cell
	A Attachment B Entry The bacteriophage injects its nucleic acid into the bacterial cell. C Lysis and Release The host cell breaks open and releases new virus particles.
	D Assembly New virus particles are assembled.

Date _____

Section 18.2 Viruses and Prions (continued)

	Sequence the steps of a lysogenic cycle.		
	Viral DNA integrates into a chromosome of a host cell.		
	There the viral genes remain dormant for months or years.		
	Activation triggers the lytic cycle to begin.		
	New viruses leave the cell by exe	ocytosis or by bursting the cell.	
on page SE, p. 530 RE, pp. 221–222	After HIV attaches to a cell and releases its RNA, the reverse transcriptase enzyme synthesizes DNA using the viral RNA as a template.		
	Summarize information about p	prions by completing the table.	
Prions			
Prions I found this information on page SE, p. 531 RE, p. 222	What is a prion? a protein that normally exists in cells but can cause infection or disease	What causes a prion to become harmful? It mutates.	
I found this information on page SE, p. 531	What is a prion? a protein that normally exists in cells but can cause infection or	harmful?	
found this information on page SE, p. 531	What is a prion? a protein that normally exists in cells but can cause infection or disease How might humans contract a	harmful? It mutates. What is the result of prion	

SYNTHESIZE

Tie It Together

Create a quiz to help you review key topic	s in this
chapter. Write one question with its answer	r for each major topic listed below.
Accept all reasonable responses. Make sur	e all answers are correct.
Topic: Diversity of Prokaryotes	Topic: Metabolism of Prokaryotes
Question:	Question:
Answer:	Answer:
Topic: Prokaryote Structure	Topic: Ecology of Bacteria
Question:	Question:
Answer:	Answer:
Topic: Identifying Prokaryotes	Topic: Viruses
Question:	Question:
Answer:	Answer:
Topic: Reproduction of Prokaryotes	Topic: Retroviruses
Question:	Question:
Answer:	Answer:
Topic: Survival of Bacteria	Topic: Prions
Question:	Question:
Answer:	Answer:

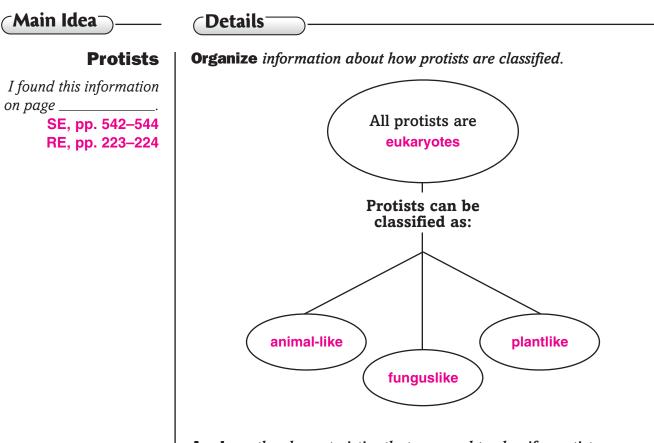
Protists

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Protists	After You Read
	• Protists are not animals, plants, or fungi.	Α
	• Some amoebas have a hard covering like a shell.	D
	Protists cannot make their own food.	D
	• A type of downy mildew was responsible for widespread starvation in 19th century Ireland.	А


Science Journal

Protists are the base for most food chains in aquatic environments. Describe how protists might contribute to an important food source—fish and other seafood.

Accept all reasonable responses.

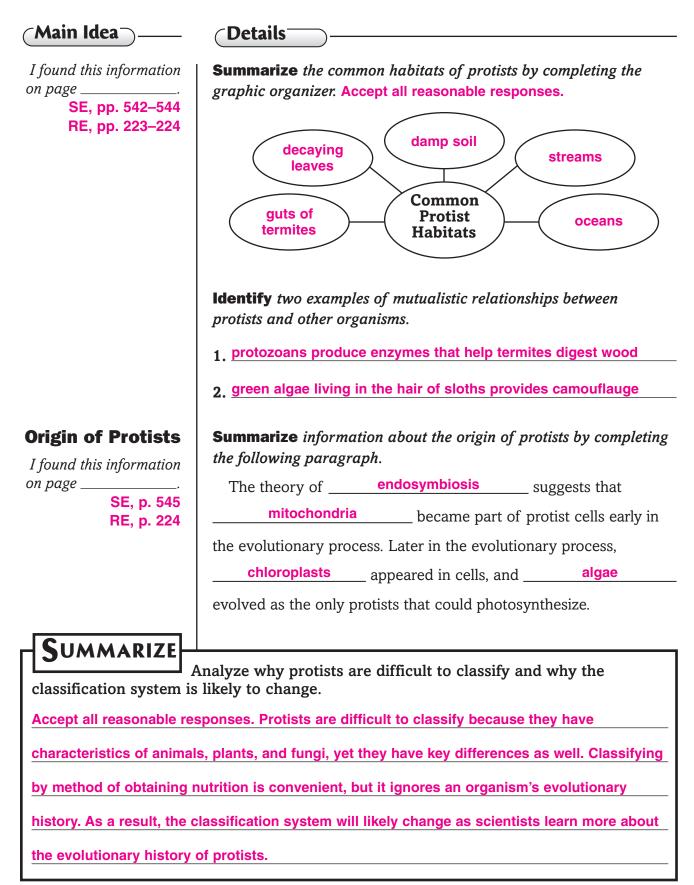
Name	Date
Protists Section 19.1 Introduct	tion to Protists
Main Idea	(Details)
	Scan the table and pictures in Section 1 of the chapter. Read all captions. List three facts that you discovered about protists.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define heterotroph. Then use the term in a sentence to show its scientific meaning. organism that cannot make its own food and must get its energy and nutrients from other organisms
∠New	
Vocabulary	Use your book or dictionary to define each vocabulary term. Then use each term in a sentence.
microsporidium	microscopic protozoan that lives in the guts of termites and produces enzymes that digest wood
protozoan	unicellular, heterotrophic, animal-like protist

Section 19.1 Introduction to Protists (continued)

Analyze the characteristics that are used to classify protists.

Type of Protist	Characteristic	Example
Animal-like	heterotrophic	protozoans
Plantlike	photosynthetic	algae
Funguslike	absorb nutrients from other organisms	water mold

List two characteristics that distinguish funguslike protists from fungi.


centrioles

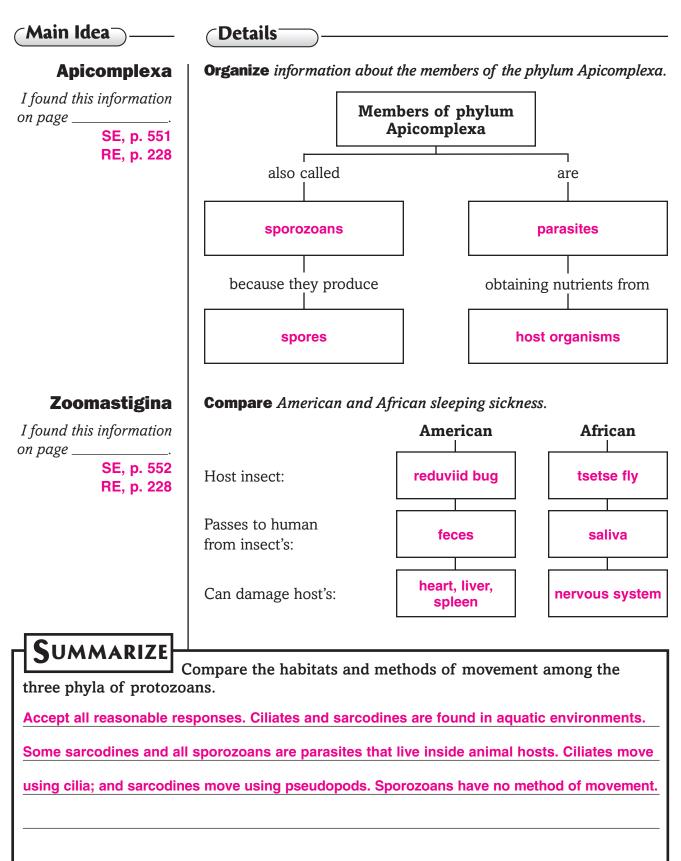
distinguishing characteristics

of funguslike protists

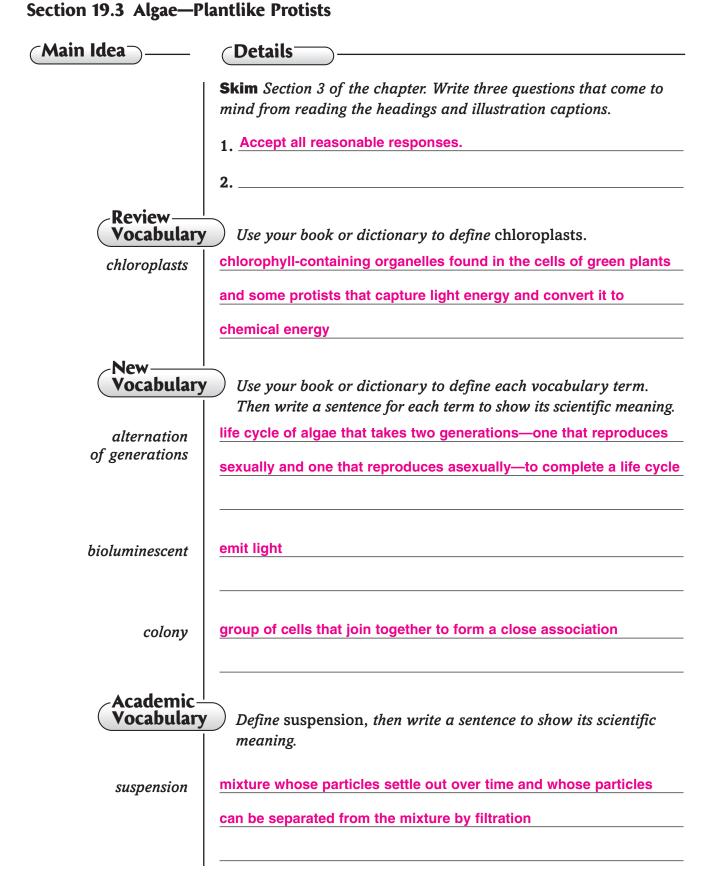
composition of cell wall

Section 19.1 Introduction to Protists (continued)

Protists Section 19.2 Protozoans—Animal-like Protists ⊂Main Idea⁻ Details **Scan** Section 2 of the chapter. Use the checklist as a guide. Read all section titles. Read all boldfaced words. Look at all illustrations and read the captions. Think about what you already know about protists. Write two facts you discovered as you scanned the section. 1. Accept all reasonable responses. 2. __ Review Vocabulary Use your book or dictionary to define hypotonic. concentration of dissolved substances is lower in the solution hypotonic outside the cell than the concentration inside the cell New Vocabulary Use your book or dictionary to define each vocabulary term. structure that collects the excess water from the cytoplasm and contractile vacuole expels it from the cell membrane that covers a paramecium pellicle temporary extensions of cytoplasm, used for feeding and locomotion pseudopod hard, porous covering similar to a shell that surrounds the test plasma membrane of some types of amoebas elongated, cylindrical body that can discharge a spinelike structure trichocyst


192 *Protists*

Section 19.2 Protozoans—Animal-like Protists (continued)


Main Idea Ciliophora	Details Model and label a paramecium and its parts in the space below. Label the following parts with a brief description of each part.		
I found this information on page SE, pp. 546–549 RE, pp. 225–227 SE, p. 500 RE, pp. 227–228	 anal pore cilia contractile vacuole ectoplasm 	 gullet micronucleus macronucleus oral groove 	
	Student drawings may resemble Figure 19.6 on SE, p. 548. Accept all reasonable responses. Student drawings may resemble Figure 19.6 on SE, p. 548. Accept all reasonable responses. Organize facts about amoebas in the table below. Accept all reasonable responses.		
	Phylum: Sarcodina	Excretion method: through outer membranes by diffusion	
	Habitats: salt water, freshwater streams, muddy bottoms of ponds, damp moss and leaves, inside animal host	Feeding method: extend pseudopodia to envelop small organism, form a food vacuole where enzymes break down food	
	Body structures: outer plasma membrane, inner ectoplasm membrane, cytoplasm, nucleus, food vacuoles, contractile vacuole	Reproduction method: asexually by cell division; some form cysts during harsh environmental conditions	

_____ Date _____

Section 19.2 Protozoans—Animal-like Protists (continued)

Protists

Section 19.3 Algae—Plantlike Protists (continued)

haracteristics	Organize information about alga	e by completing the chart.	
of Algae	Algae		
I found this information on page SE, p. 553 RE, p. 229 Diversity of Algae I found this information on page SE, pp. 554–559 RE, pp. 229–232	Like plants: contain photosynthetic pigments that enable algae to produce food using energy from the Sun	Unlike plants: lack roots, leaves, and other structures typical of plants	
	Function of secondary pigments: allow algae to absorb light energy in deep water	Found in many colors because: secondary pigments reflect ligh at different wavelengths	
	 b. meiosis c. mitosis Asexual Reproduction	 d. gametes released e. wall formation around cell f. zygote Sexual Reproduction	
	c b c b c c c b c c c c c c c c c c	d a f	
	Like plants	enoids 1. lack cell wall	
	chlorophyll		

Section 19.3 Algae—Plantlike Protists (continued)

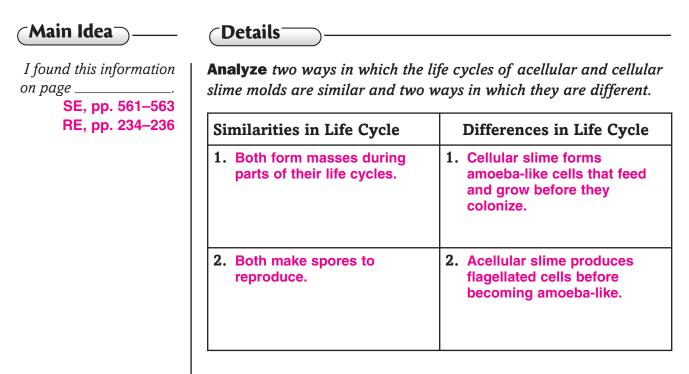
Uses for Algae	Summarize the common uses for algae more than once.	e. Algae types may be used
<i>page</i> SE, pp. 554–559	Common Uses	Type of Algae
RE, pp. 229–232	Used for filtering water supplies	diatoms
	Used to stabilize syrups	red and brown algae
	Used in the preparation of scientific ge	els red algae
	Used as abrasives	diatoms
	Used in salads	green algae
	Used to thicken puddings and shampo	OS red algae
	Used to preserve canned meat and fish	n red algae
on page SE, p. 560 RE, p. 233	The gametes join to form a	ertain cells in the sporophyt ndergo <u>meiosis</u>
		hese spores are <u>haploid</u>
	form of the algae will develop.	at develop into new gametophytes
UMMARIZE		
U	se the terms <i>meiosis, fertilization, diploid,</i> understanding of alternation of generat	A

Protists

Section 19.4 Funguslike Protists

Main Idea	Details
	Scan Section 4 of the chapter. Write three facts that you discovered about cellular and acellular slime molds.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define cellulose.
cellulose	glucose polymer that forms the cell walls of plants and some
	funguslike protists
New Vocabulary	Use your book or dictionary to define each vocabulary term.
acrasin	chemical given off by a starving cellular slime mold, signaling slime
	molds to congregate into a colony that functions like a single
	organism and eventually reproduces asexually
plasmodium	mobile mass of cytoplasm that contains many diploid nuclei but
	no separate cells
Academic- Vocabulary	Define phase to show its scientific meaning. Then use the word in a sentence.
phase	particular state in a regular cycle of changes

Section 19.4 Funguslike Protists (continued)


(Main Idea)

Slime Molds

Compare slime molds to fungi by completing the table below.

I found this information on page	Similarities in Slime Molds and Fungi
SE, pp. 561–563 RE, pp. 234–236	Reproduce using: spores
··, pp	Feed on: decaying organic matter
	Absorb nutrients through: cell walls
	Contrast slime molds and fungi by completing the following sentence.
	The cell walls of fungi are composed of <u>chitin</u> , and cell walls in slime molds contain <u>cellulose or celluloselike compounds</u> .
	Compare and contrast acellular and cellular slime molds by using the following phrases to complete the Venn diagram.
	 move and surround food like amoebas flagellated during part of life cycle most of life cycle spent as form colonies when food is scarce mobile mass of cytoplasm with no separate cells make spores to reproduce
	single, amoeba-like cells Acellular Slime Molds • flagellated during part of life cycle spores to cellular Slime Molds • form colonies when food is conrections
	mobile mass of cytoplasm with no separate cells reproduce move and surround food like amoebas separate cells separate cells separate cells separate cells separate cells

Section 19.4 Funguslike Protists (continued)

Water Molds and Downy Mildew

I found this information on page _____. SE, pp. 564–565 RE, p. 236 **Organize** information about water molds and downy mildews by completing the table below.

Water Molds and Downy Mildews		
Habitat	in water or damp places	
Source of nutrition	from surrounding water or soil or from other organisms	
Similarities to fungi	they envelop their food with a mass of threads; they break down the tissue and absorb nutrients through their cell walls	
Differences from fungi	their cell walls are made of cellulose and celluloselike compounds and they produce flagellated reproductive cells	

Tie It Together

Malaria is a disease caused by sporozoans. It is spread

by mosquitoes. Consider which would have a greater benefit—developing a drug that would cure malaria or developing an insecticide that would kill all mosquitoes. List the possible advantages and disadvantages of each approach. Then make a conclusion about which choice would be better.

Accept all reasonable responses

Malaria Drug	
Advantages	Disadvantages
Insecticide Advantages	Disadvantages
Conclusions	

SUMMARIZE

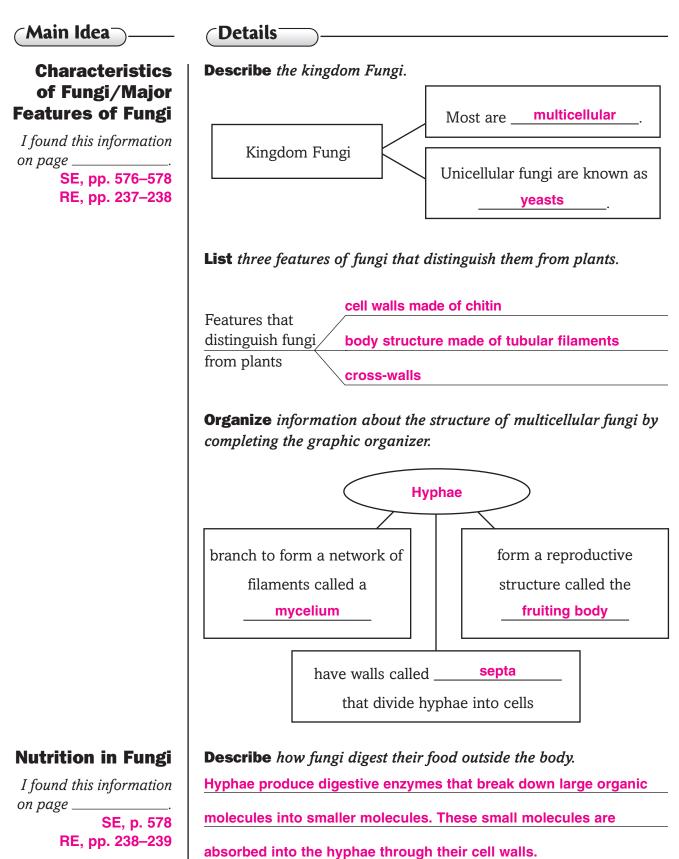
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Fungi Before You Read

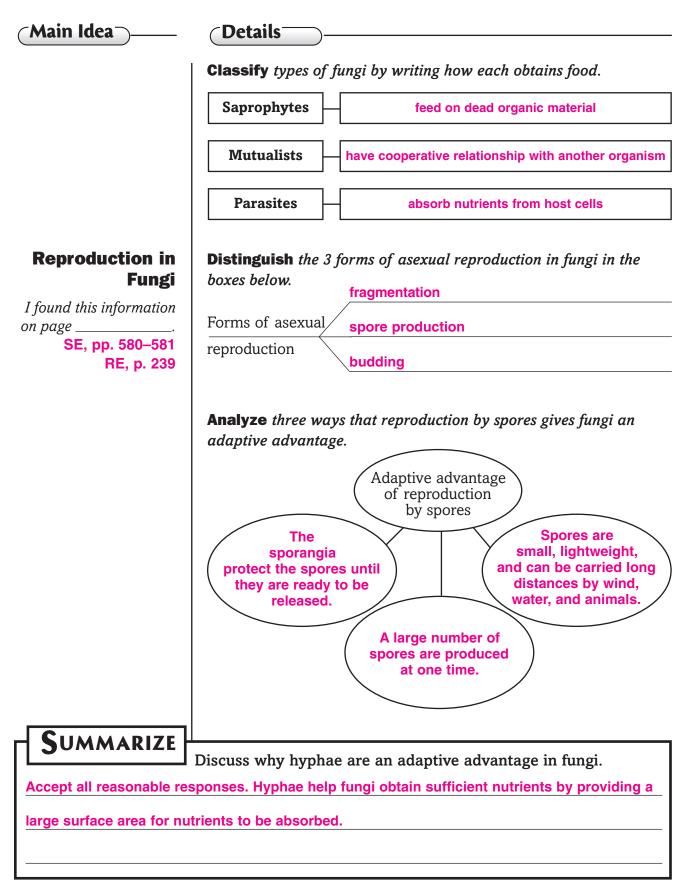
Use the "What I Know" column to list the things you know about fungi. Then list the questions you have about fungi in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal


Fungi can be both helpful and harmful to humans. On the lines below, write two things that you already know about fungi.

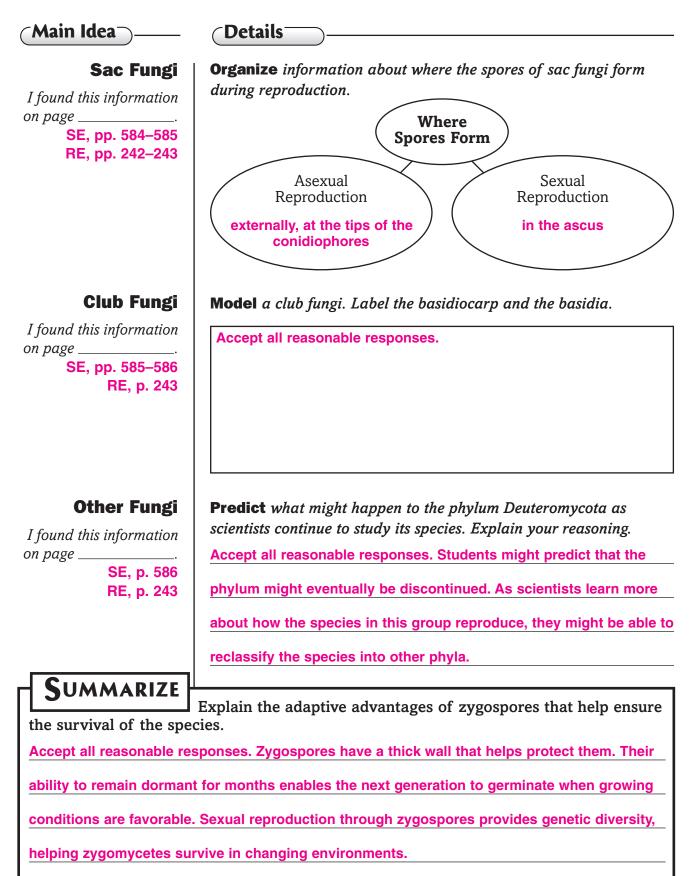
Accept all reasonable responses.


Name	Date		
Fungi			
Section 20.1 Introduc	ction to Fungi		
Main Idea	Details		
	Scan the figures and read the figure captions in Section 1 of the chapter. Write two facts that you discovered about fungi.		
	1. Accept all reasonable responses.		
	2		
Review Vocabulary	Use your book or dictionary to define saprobe.		
saprobe	organism that feeds on dead organisms or organic wastes		
New Vocabulary	Use your book or dictionary to define each term.		
chitin	strong, flexible polysaccharide found in the cell walls of all fungi and		
	in the exoskeletons of insects and crustaceans		
fruiting body	in fungi, the reproductive structure that grows above the ground		
haustoria	in fungi, specialized hyphae that grow into a host's tissues and absorb their nutrients		
hyphae	tubular filaments that are the basic structural units of multicellular fungi		
mycelium	in fungi, netlike mass created by the hyphae as they grow at their tips and branch repeatedly		
septa	cross-walls that divide the hyphae of a fungus into cells		
sporangium	a sac or case in which spores are produced		
spore	a reproductive haploid cell with a hard outer coat that develops into		
	a new organism without the fusion of gametes		

Date _

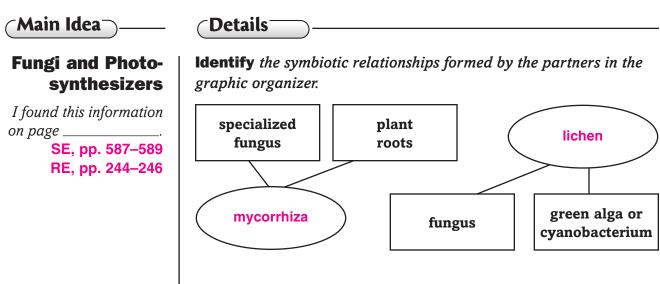
Section 20.1 Introduction to Fungi (continued)

Section 20.1 Introduction to Fungi (continued)



Main Idea –	Details Skim Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.		
	1. Accept all reasonable responses.		
	2		
~Review			
Vocabulary	y) Use your book or dictionary to define flagellated.		
flagellated	having long projections that propel organisms with a whiplike		
	motion		
New Vocabular	Write the correct vocabulary term in the left column for each		
	definition below.		
stolons	<i>definition below.</i> in molds, hyphae that spread across the surface of food		
stolons			
	in molds, hyphae that spread across the surface of food		
rhizoids	in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients		
rhizoids gametangium	in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients a mold reproductive structure that contains a haploid nucleus in sac fungi, hyphae that produce spores on their tips for asexual		
rhizoids gametangium conidiophores	 in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients a mold reproductive structure that contains a haploid nucleus in sac fungi, hyphae that produce spores on their tips for asexual reproduction in sac fungi, a reproductive structure where a zygote forms during sexual reproduction 		
rhizoids gametangium conidiophores ascocarp	 in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients a mold reproductive structure that contains a haploid nucleus in sac fungi, hyphae that produce spores on their tips for asexual reproduction in sac fungi, a reproductive structure where a zygote forms during sexual reproduction in sac fungi, a saclike structure where spores develop during sexual 		
rhizoids gametangium conidiophores ascocarp ascus	 in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients a mold reproductive structure that contains a haploid nucleus in sac fungi, hyphae that produce spores on their tips for asexual reproduction in sac fungi, a reproductive structure where a zygote forms during sexual reproduction in sac fungi, a saclike structure where spores develop during sexual reproduction 		
rhizoids gametangium conidiophores ascocarp ascus ascospores	 in molds, hyphae that spread across the surface of food in molds, hyphae that penetrate food and absorb nutrients a mold reproductive structure that contains a haploid nucleus in sac fungi, hyphae that produce spores on their tips for asexual reproduction in sac fungi, a reproductive structure where a zygote forms during sexual reproduction in sac fungi, a saclike structure where spores develop during sexua reproduction spores produced by the ascus in sac fungi 		

Section 20.2 Diversity of Fungi (continued)


Main Idea	Details			
Classification of Fungi I found this information on page SE, p. 582 RE, p. 240	Model a phylogenetic tree for fungi and label the major phyla. Drawings should resemble Figure 20.8, with all major phyla labeled.			
Chytrids I found this information on page SE, p. 582 RE, p. 240	Summarize the eviden chytrids as protists and Chytrids are like pr flagellated spores	l later recl	assification Chytric similar	as fungi. Is are like fungi. protein and DNA ces, chitin-containing
Common Molds I found this information on page SE, p. 583 RE, pp. 241–242	Sequence how zygom graphic organizer. One plus and one minus hyphae grow together and fuse.	Each hy produce gametar which c	rphae es a	The haploid nuclei from each gametangium fuse to form a diploid zygote.
	The resulting sporangium pro- duces haploid spores that can grow into new mycelium.	In favora conditio the zygo germina undergo meiosis	ons, ospore ites and oes	The zygote develops a thick wall and becomes a dormant zygospore.

Section 20.2 Diversity of Fungi (continued)

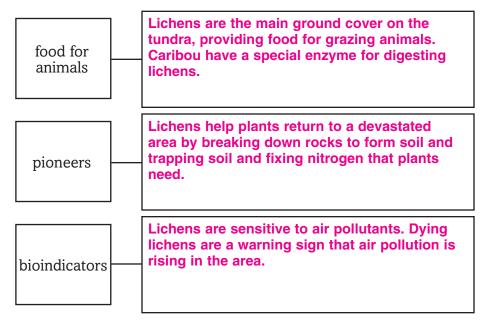
ame Date	
Fungi Section 20.3 Ecolog	y of Fungi
⊂Main Idea ⊃	(Details)
	Scan Section 3 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables.
	Look at all pictures and read the captions.
	Write two facts you discovered about the ecology of fungi.
	1. Accept all reasonable responses.
	2
Review Vocabulary cyanobacterium New Vocabulary	a bacterium that is a photosynthetic autotroph
bioindicator	a living organism that is sensitive to changes in environmental
	conditions and is one of the first organisms to respond to changing conditions
lichen	a symbiotic relationship between a fungus and a photosynthetic partner
mycorrhiza	a symbiotic relationship between a specialized fungus and plant roots
Academic- Vocabulary	Define cooperate to show its scientific meaning.
cooperate	to work or act together toward a common end or purpose

Section 20.3 Ecology of Fungi (continued)

Complete the paragraph below to describe mycorrhizal relationships.

Infection by a fungal partner helps orchid seeds to

germinate. The fungal partner of a *Eucalyptus* tree


absorbs <u>minerals</u> for the tree. The tree can absorb more

water because the <u>hyphae</u> of the fungus increase the

surface area of the tree's roots. In return, the fungus receives

carbohydrates and amino acids from the tree.

Analyze the benefits of lichens as . . .

Section 20.3 Ecology of Fungi (continued)

(Main Idea)_

(Details

Organize the beneficial effects of fungi in the table below.

Humans I found this information on page _____. SE, pp. 589–591 RE, p. 246

Fungi and

Role of Fungi	Benefits to Humans
as decomposers	recycle nutrients; prevent dead organisms from littering the surface of Earth
in medicine	penicillin; treat high blood pressure, bleeding, migraine headaches; promote contractions during childbirth; help bodies of transplant patients avoid rejecting new organ
in foods	humans eat mushrooms and truffles; yeast used to make bread, beer, and wine; flavor cheeses and colas; used to make soy sauce
in bioremediation	used in environmental clean-up projects; decompose organic materials in pollutants, breaking them down into harmless substances

Describe the harmful effects of fungi on each of the following.

Plants	Humans
kill American elm and American chestnut trees; spread quickly from tree to tree; damage some crops	cause athlete's foot, ringworm, yeast infections, and oral thrush

SUMMARIZE

Compare and contrast mycorrhizae and lichens.

Accept all reasonable responses. Both involve symbiotic relationships between a fungus and

another organism. A mycorrhizae is made up of a fungus and a plant, while a lichen is made

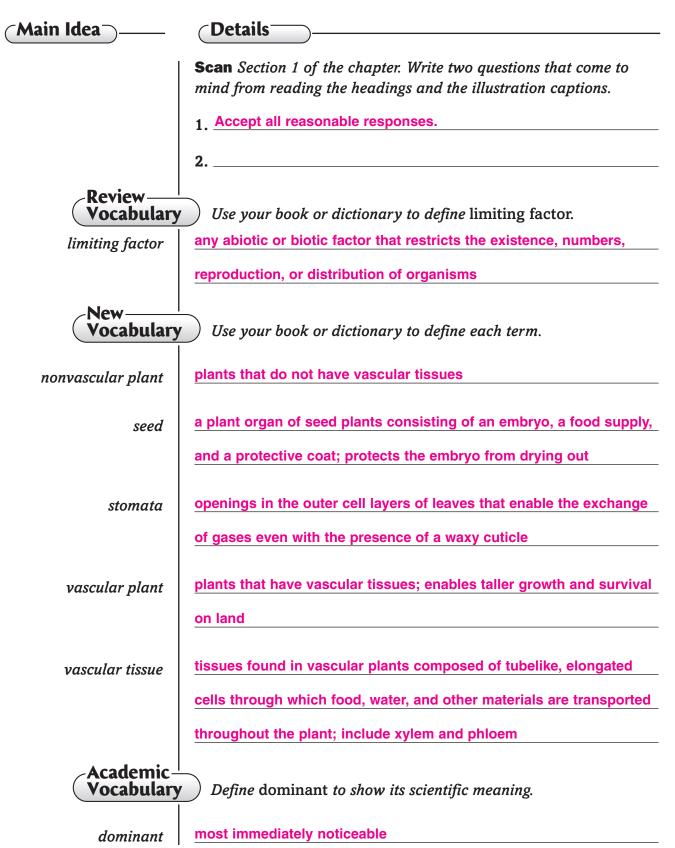
up of a fungus and an algae or cyanobacteria.

Introduction to Plants

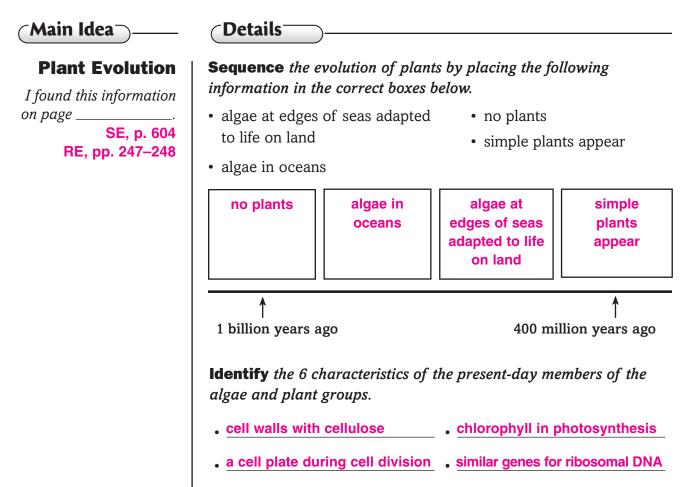
Before You Read

Use the "What I Know" column to list the things you know about plants. Then list the questions you have about plants in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned


Science Journal

Plants are found in many different environments. Describe some of the plants with which you are familiar. Identify the environment in which each lives.


Accept all reasonable responses.

Introduction to Plants

Section 21.1 Plant Evolution and Adaptations

Section 21.1 Plant Evolution and Adaptations (continued)

• same types of enzymes in vesicle • store food in the form of starch

Organize the plant organs by completing the table below. The first row has been filled in for you.

	Location	Purpose	Plant organ?
cuticle	on stems and leaves	reduce water loss	no
leaf	grows from stem	photosynthesis, gas exchange	yes
root	bottom of stem	absorbs water and nutrients	yes
stem	middle of plant	provides support for growth	yes
seed	on plant	protects embryo from drying	yes

Plant Adaptations to Land Environments

I found this information on page _____. SE, pp. 605–607 RE, pp. 248–249

Section 21.1 Plant Evolution and Adaptations (continued)

Alternation of Generations	Compare the gametophyte gener of plants. Accept all reasonable r	ration and the sporophyte generation responses.
I found this information	Gametophyte Generation	Sporophyte Generation
on page SE, p. 607 RE, pp. 249–250	haploid	diploid
	produces sperm and eggs	produced from the diploid zygote
	sperm and eggs form a diploid zygote	multicellular
	microscopic in size	produces spores
		usually dominant over the gametophyte generation
Plant Classification I found this information on page SE, p. 609 RE, p. 250	of nonvascular plants, an NS in j and a VS in front of vascular pla <u>VS</u> cycadophytes	ants with seeds.
Classification I found this information on page SE, p. 609	of nonvascular plants, an NS in j and a VS in front of vascular pla <u>VS</u> cycadophytes <u>VS</u> anthophytes	front of seedless vascular plants, ants with seeds. <u>NV</u> anthocerophytes <u>NV</u> bryophytes
Classification I found this information on page SE, p. 609	of nonvascular plants, an NS in j and a VS in front of vascular pla <u>VS</u> cycadophytes	front of seedless vascular plants, ants with seeds. <u>NV</u> anthocerophytes
Classification I found this information on page SE, p. 609	of nonvascular plants, an NS in j and a VS in front of vascular pla <u>VS</u> cycadophytes <u>VS</u> anthophytes	front of seedless vascular plants, ants with seeds. <u>NV</u> anthocerophytes <u>NV</u> bryophytes
Classification I found this information on page SE, p. 609	of nonvascular plants, an NS in j and a VS in front of vascular pla <u>VS</u> cycadophytes <u>VS</u> anthophytes <u>VS</u> coniferophytes	front of seedless vascular plants, ants with seeds.NVanthocerophytesNVbryophytesVSginkgophytes
Classification I found this information on page SE, p. 609 RE, p. 250 SUMMARIZE	of nonvascular plants, an NS in j and a VS in front of vascular plantsVScycadophytesVSanthophytesVSconiferophytesNSpterophytesNVhepaticophytes	front of seedless vascular plants, ants with seeds. NV anthocerophytes NV bryophytes VS ginkgophytes VS gnetophytes NS lycophytes
Classification I found this information on page SE, p. 609 RE, p. 250 SUMMARIZE	of nonvascular plants, an NS in j and a VS in front of vascular plants	front of seedless vascular plants, ants with seeds.NVanthocerophytesNVbryophytesVSginkgophytesVSgnetophytesNSlycophytes
Classification I found this information on page SE, p. 609 RE, p. 250 SUMMARIZE plants than in non-seed	of nonvascular plants, an NS in j and a VS in front of vascular plants	front of seedless vascular plants, ants with seeds. NV anthocerophytes NV bryophytes VS ginkgophytes VS gnetophytes NS lycophytes the egg differently in seed

Main Idea	Details
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables and graphs.
	Look at all pictures and read the captions.
	Think about what you already know about the diversity of plants.
	Write three facts you discovered about the diversity of plants as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define symbiosis.
symbiosis	a relationship in which two organisms live together in a close
	association
New- Vocabular	y Use your book or dictionary to define the following term.
thallose	a liverwort with a body resembling a fleshy, lobed structure

Section 21.2 Nonvascular Plants (continued)

← Main Idea⁻ **Oetails Diversity of Analyze** why nonvascular plants need to be near water. Nonvascular Nonvascular plants need water for life functions such as reproduction **Plants** and photosynthesis. A steady supply of water is not available *I* found this information on page _ everywhere, so nonvascular plants need to be in moist habitats. SE, pp. 610–612 RE, pp. 251–252 **Model** and label an example of a sporophyte attached to a gametophyte. Sketches should resemble Figure 21.9 in the book, with sporophyte and gametophyte properly labeled. **Compare** characteristics of bryophytes, hepaticophytes, and anthocerophytes by completing the table below. Accept all reasonable responses. Description **Environment** Example small plants Bryophyta variety of habitats mosses, peat with leafy stems moss thallose body, liverworts Hepaticophyta grown on damp shape of soil, tropical liverwort jungles, and places with dense gametophyte looks like an fog animal's liver thallose body, moist Anthocerophyta hornworts shape of environments hornwort sporophyte looks like an animal's horn

Section 21.2 Nonvascular Plants (continued)

```
(Main Idea)_
```

(Details—

Organize the following terms with the correct definition below: sporophyte, gametophyte, thallus, and rhizoid.

Term	Definition	
rhizoid	colorless, multicellular structures found in nonvascular plants; used to help anchor the plants to the soil	
thallus	broad shape resembling a fleshy lobed leaf	
sporophyte	diploid generation; grow attached to gametophytes	
gametophyte	haploid generation; dominant generation	

Conclude how anthocerophytes became known as hornworts.

The sporophyte of an anthocerophyte resembles the horn of an animal.

Create a graphic organizer that models the possible common ancestry of nonvascular and vascular plants. Accept all reasonable responses.

common ancestor; probably had alternating sporophyte and gametophyte generations, cellulose in cell walls, and chlorophyll nonvascular plants

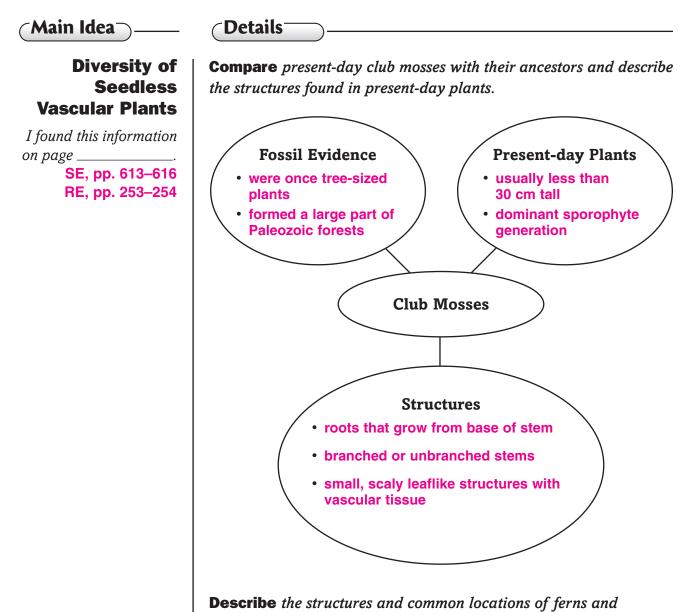
vascular plants

SUMMARIZE

Classify each group of nonvascular plants by naming one species of the group and one identifiable structure on that species. Accept all reasonable responses.

Bryophytes

Anthocerophytes


Hepaticophytes

Introduction to Plants

Section 21.3 Seedless Vascular Plants

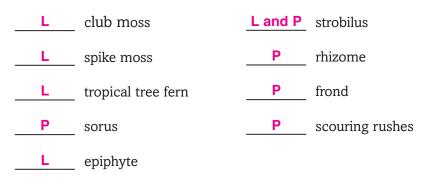
Main Idea	Details
	Predict the primary difference between the plants you read about in Section 2 of the chapter and the seedless vascular plants that you will read about in Section 3.
	Accept all reasonable responses. Students should recognize that
	vascular tissue is the main difference between the two plant groups.
~Review	
Vocabulary	Use your book or dictionary to define spore.
spore	a reproductive haploid cell with a hard outer coat that can develop
	into a new organism without the fusion of gametes
~New	
Vocabulary	Use your book or dictionary to define each term.
epiphyte	a plant that lives anchored to an object or another plant
rhizome	thick, underground stem of a fern and other vascular plants; often
	functions as an organ for food storage
sorus	clusters of sporangia usually found on the surface of fern fronds
sporangium	a structure in ferns that forms spores; a cluster of sporangia form a
	sorus
strobilus	compact cluster of spore-bearing leaves produced by some non-seed
	vascular plants

Section 21.3 Seedless Vascular Plants (continued)

horsetails.

	Ferns	Horsetails
Structures	roots produced from sporophyte; rhizome used to store food; photosynthetic fronds; sporangium where spores form	ribbed, hollow stems with strobili at tips, scalelike leaves, roots
Locations	moist or dry environments	wet environments

Section 21.3 Seedless Vascular Plants (continued)


(Main Idea)-

(Details

Compare the 2 divisions of non-seed vascular plants by completing the table below.

Lycophyta	Pterophyta
club moss or spike moss; sporophyte generation is dominant; sporophyte has roots, stems, and leaflike structures; a single vein of vascular tissue runs through each leaflike structure	ferns and horsetails; become dormant when water is scarce; sporophyte generation has roots, stems, leaves, and rhizomes; the main stem is underground; first of vascular plants to have evolved leaves with veins of branching vascular tissue

Identify each of the following plants or plant structures as lycophyte or pterophyte. Write L for lycophyte and P for pterophyte.

SUMMARIZE

Model the two main groups of non-seed vascular plants. Label the important features of each group and give an example of each one. Accept all reasonable responses.

Main Idea	Details
	Scan the illustrations and read the captions. List two conclusions that you can draw about seeds and cones.
	1. Accept all reasonable responses.
	2
Review Vocabulary	<i>Use your book or dictionary to define</i> parasite.
parasite	an organism that benefits at the expense of another organism
New Vocabulary annual	Use your book or dictionary to define each term. anthophyte that lives for one year or less
biennial	anthophyte that has a life span of two years
cone	reproductive structures of cycads and other gymnosperm plants; may be male or female
cotyledon	structure of seed plant embryo that stores or absorbs food for the developing embryo

Section 21.4 Vascular Seed Plants (continued)

(Details

(Main Idea)

Diversity of Seed Plants

I found this information on page _____. SE, pp. 617–621 RE, pp. 255–257

responses.	Planta with same and	und hoforo plants
Division Cycadophyta:	Plants with cones evol	ived before plants
flowers. Cycads have s	oft stems consisting m	ostly of storage ti
They live in the tropics	or in subtropical zone	S.
Division Gnetophyta: L	ong-lived plants with u	inusual structural
adaptations. Only one	lives in the United State	es. <i>Welwitschia</i> tal
moisture directly from	fog, dew, or rain.	
Division Ginkgophyta:	One living species, Gir	nkgo biloba, has
fern-shaped leaves witl		
plants.		
Division Coniferophyta	: Cone-bearing plants	with a wide range
sizes. Male and female		
adapted as waxy needl	es to survive cold, dry	climates.
Division Anthophyta:	Flowering plants, also k	nown as angiospe
widely distributed, anth	nophytes make up 75 p	ercent of the plant
kingdom. They are ada	pted to a wide variety c	of environments.
Identify the life span of list one example of each		g types of plants o
Annual: one growing season; tomatoes	Biennial: two years; carrots	Perennial: severa years; roses

Section 21.4 Vascular Seed Plants (continued)

```
(Main Idea)_
```

(Details

Compare the characteristics of the different divisions of seed plants by completing the table below. The first one has been done for you.

	Reproduction	Environment	Examples
Cycadophyta	males produce pollen grains from cones, pollen produce motile sperm	tropics and subtropics	there are about 100 species today
Ginkgophyta	males produce pollen grains from cones, pollen produce motile sperm	male ginkgoes planted in cities—they tolerate smog and pollution	Ginkgo biloba
Gnetophyta	none given	found in deserts or mountains of Asia, Africa, North America, Central or South America	tropical climbing plants and shrub-like plants
Coniferophyta	reproductive structures produced in cones	found in many forest environments	pine, fir, spruce, juniper, cedar, redwood, yew, larch
Anthophyta	enclose seeds in a fruit	found in a variety of environments	fruit trees

CONNECT

Suppose you want to plant a vegetable garden. Research the soil conditions and overall climate in your area. Then describe a plant that should be successful, and explain your reasoning.

Accept all reasonable responses.

Tie It Together

You have read about the three types of plants:

FURTHER INQUIRY

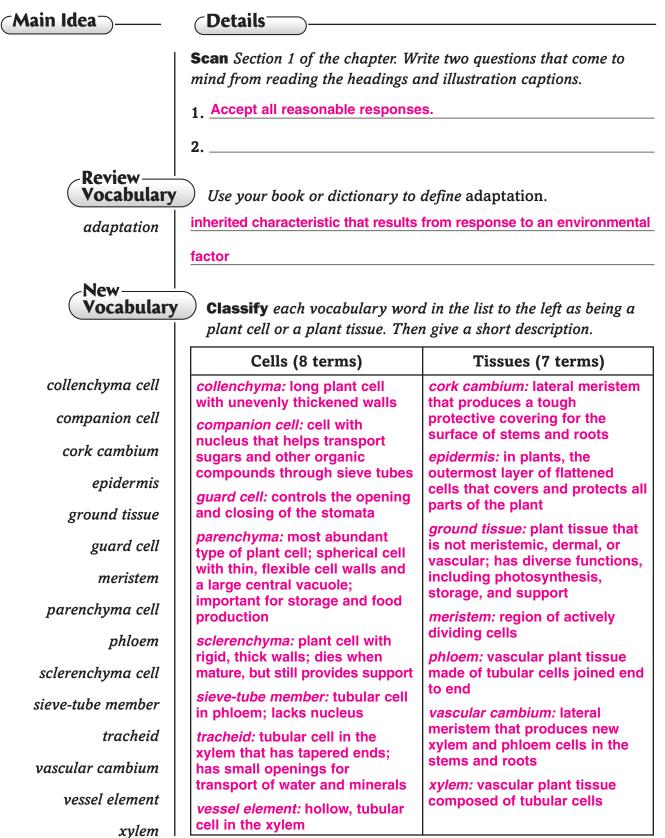
nonvascular plants, non-seed vascular plants, and seed plants. Now create a quick identification guide to common plants in your area. Your plant guide should be easy to read, yet contain basic information about the reproduction, environment, general structure, and significant characteristics of each plant. Include one plant from each type. Remember that a good plant guide has well-labeled diagrams. When you are finished, share your plant guide with your class. Accept all reasonable responses.

Plant Structure and Function

Before You Read

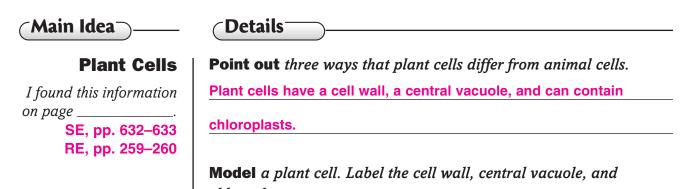
Use the "What I Know" column to list the things you know about plant structure and function. Then list the questions you have about plant structure and function in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned


Science Journal

Describe some plants that you eat. Then describe some products that you use that come from plants.

Accept all reasonable responses.


Plant Structure and Function

Section 22.1 Plant Cells and Tissues

226

Section 22.1 Plant Cells and Tissues (continued)

chloroplast.
Accept all reasonable responses. The cell wall, central vacuole,

and chloroplast should be accurately labeled.

Compare the three types of plant cells by completing the table below. Describe one characteristic and one function for each type of cell.

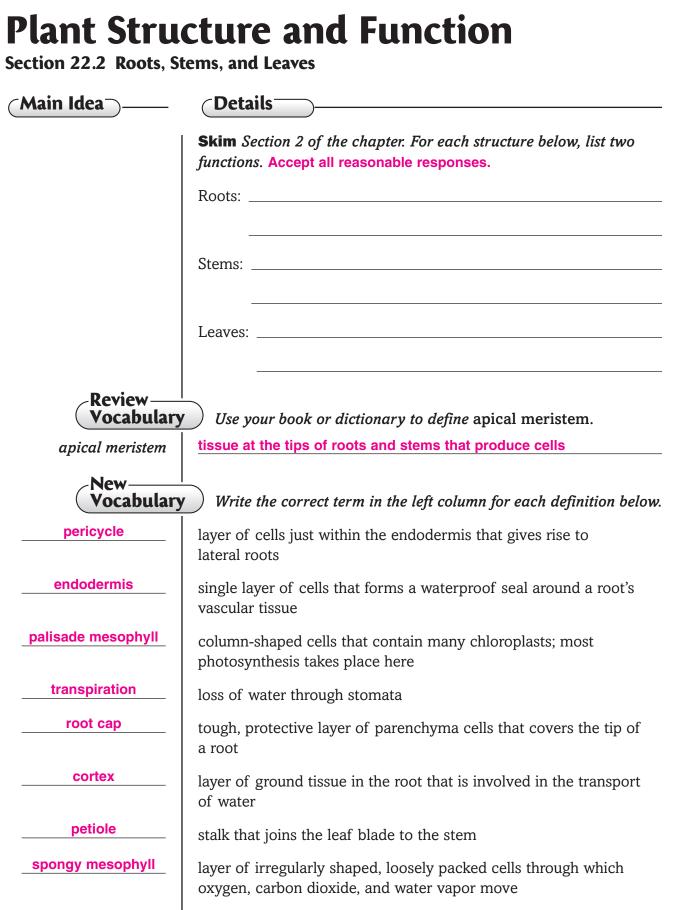
	Parenchyma	Collenchyma	Sclerenchyma
Characteristic	sphere-shaped cells that have thin, flexible walls	long cells with unevenly thickened cell walls	thick and rigid cells that often die when they mature
Function	used for storage and food production	provide strength and support for surrounding tissue	provide support for plant

Plant Tissues

I found this information on page _____. SE, pp. 634–638 RE, pp. 260–262 **Summarize** the function of each of the following.

epidermis: covers and protects the body of a plant

stomata: control the exchange of gases


guard cells: control the opening and closing of stomata

trichomes: reduce the evaporation of water from the plant

Section 22.1 Plant Cells and Tissues (continued)

⊂Main Idea ⊃	(Details)		
I found this information on page	Model a sketch of phacompanion cell		<i>he following parts.</i> • sieve tube member
SE, pp. 634–638 RE, pp. 260–262	Sketches should rese should be accurately	mble SE Figure 22.	
	Analyze ground tissue Made up of:	e by completing the	e organizer below. Functions include:
	sclerenchyma cells		photosynthesis
	parenchyma cells	Ground	storage
	collenchyma cells		support
Cells as well as the four	Iodel a plant. Include c types of tissues. Acce		

Section 22.2 Roots, Stems, and Leaves (continued)

∽Main Idea-

∂ Details

Roots *I found this information on page* _____. **SE, pp. 639–641 RE, pp. 263–264**

Compare the two main types of root systems. Describe taproots and fibrous roots, then make a sketch of each type.

Taproots	Fibrous Roots
Definition: single, thick structures with smaller branching roots	Definition: have many small branching roots that grow from a central point
Sketch: Accept all reasonable responses.	Sketch: Accept all reasonable responses.

Sequence the layers of cells of roots beginning with the outermost layer.

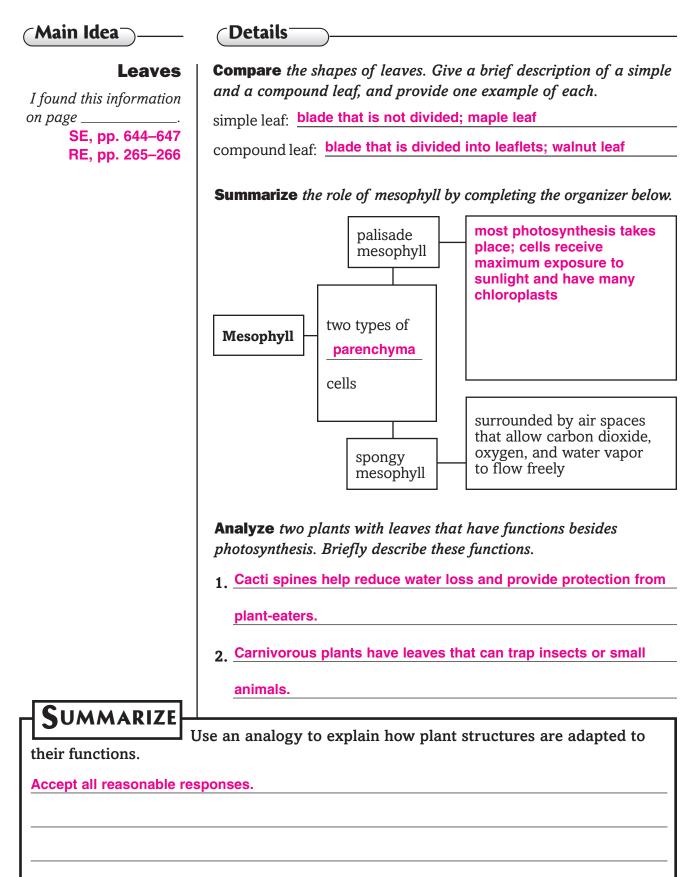
<u>3</u> endodermis <u>1</u> epidermis <u>4</u> pericycle <u>2</u> cortex

Stems

I found this information on page _____. **SE, pp. 642–643 RE, pp. 264–265** A tuber is a swollen stem that has buds from which new plants grow.

A corm is a short thickened stem surrounded by leaf scales. Rhizomes

also store food.


Summarize the information on stems in the blanks in the paragraph below.

Distinguish among the three stems that store food.

Stems vary in their size and <u>strength</u>. The main function of a plant's stem is <u>support</u> of the <u>leaves</u> and <u>reproductive</u> structures. They also <u>transport</u> water and dissolved substances throughout the plant. The annual growth of bundles of <u>xylem</u> and <u>phloem</u> in the stem can lead to the formation of <u>growth rings</u> that reveal the <u>age</u> of the plant. Some stems, such as <u>tubers</u>, bulbs, and <u>corms</u>, store <u>food</u>.

Date _

Section 22.2 Roots, Stems, and Leaves (continued)

Plant Structure and Function

Section 22.3 Plant Hormones and Responses

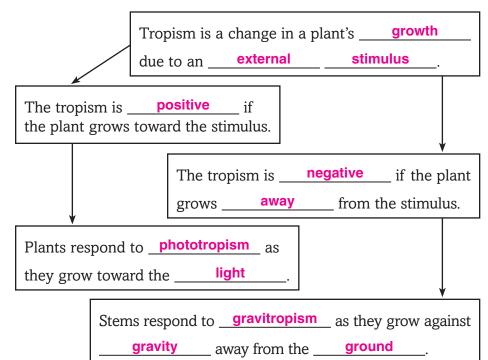
Main Idea	Details	
	Scan Section 3 of the chapter. Use the checklist as a guide.	
	Read all section titles.	
	Read all boldfaced words.	
	Read all tables.	
	Look at all pictures and read the captions.	
	Write two facts you discovered about plant hormones.	
	1. Accept all reasonable responses.	
	2	
~Review		
Vocabulary	<i>Use your book or dictionary to define</i> active transport.	
active transport	the movement of materials across the plasma membrane against a	
	concentration gradient; requires energy	
New Vocabulary	Use your book or dictionary to define each term.	
auxins	group of plant hormones that promote cell elongation	
cytokinins	group of hormones that stimulate mitosis and cell division	
ethylene	plant hormone that promotes the ripening of fruit	
gibberellins	group of plant hormones that cause plants to grow taller by	
	stimulating cell elongation	
nastic response	responsive movement of a plant not dependent on the direction of the stimulus	
tropism	growth response of a plant to an external stimulus	

Section 22.3 Plant Hormones and Responses (continued)

(Details

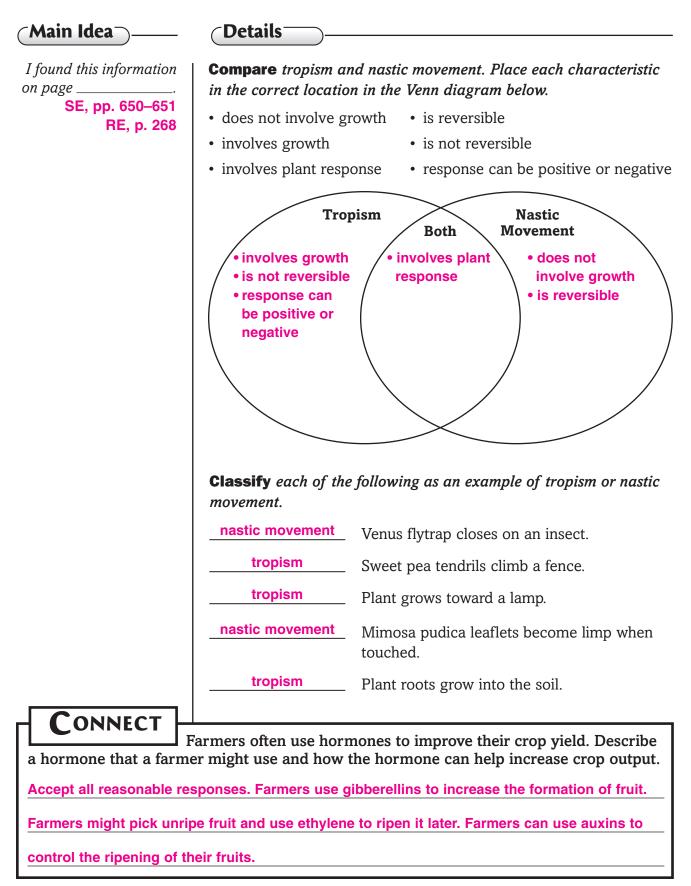
Plant Hormones

I found this information on page _____. SE, pp. 648–650 RE, pp. 267–268


Hormone	How This Hormone Regulates Growth	Characteristic of This Hormone	Another Benefit of This Hormone
Auxin	causes cells to lengthen or elongate	produced in apical meristems	delays fruit formation and keeps side branches from growing
Gibberellin	helps cells elongate	some dwarf plants do not produce these	increases the rate at which seeds begin to grow and buds develop
Cytokinin	stimulates the production of proteins needed for mitosis	effects are enhanced by other hormones	plant cells would never divide without it
Ethylene	causes cell walls to weaken and soften	is a gas made of carbon and hydrogen	speeds ripening of fruits

Compare four plant hormones by completing the table below.

Plant Responses


I found this information on page _____. SE, pp. 650–651 RE, p. 268

Summarize the two types of tropisms in the organizer below.

Section 22.3 Plant Hormones and Responses (continued)

Name

Reproduction in Plants

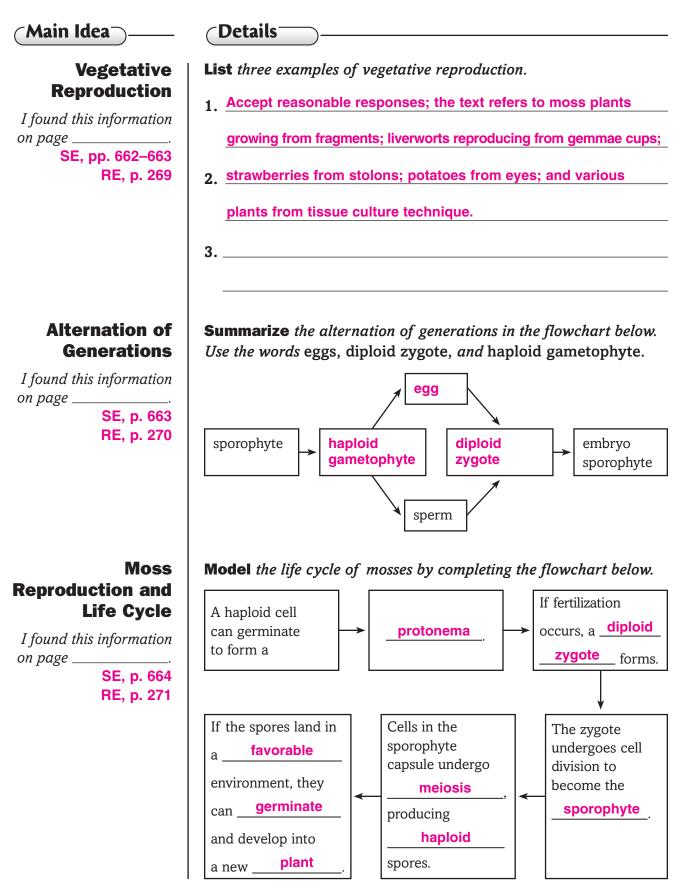
Before You Read

Use the "What I Know" column to list the things you know about plant reproduction. Then list the questions you have about reproduction in plants in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

Explain how you think life on Earth would be affected if plants were to stop reproducing.


Α

ept all reasonable responses.	
· · · · · · · · · · · · · · · · · · ·	

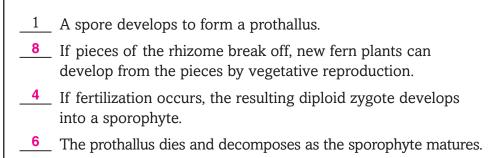
Reproduction in Plants Section 23.1 Introduction to Plant Reproduction

Main Idea	Details
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define flagellated.
flagellated	having one or more flagella that propel a cell by whiplike motion
New Vocabulary	Use your book or dictionary to define each term.
chemotaxis	movement of moss sperm through a film of water to the
	archegonia in response to chemicals produced by archegonia
heterosporous	in conifers, the production of two types of spores that develop into
	male or female gametophytes
megaspore	female spore formed by some plants; develops into a female gametophyte
micropyle	opening in the ovule through which the pollen tube enters
microspore	male spore formed by some plants; develops into a male gametophyte
prothallus	tiny heart-shaped fern gametophyte that grows from spores;
	contains chloroplasts
protonema	in mosses, a small green filament of haploid cells that develops from
	a spore; develops into the gametophyte
vegetative reproduction	type of asexual reproduction in plants where a new plant is
	produced from existing plant organs or parts of organs

Section 23.1 Introduction to Plant Reproduction (continued)

Section 23.1 Introduction to Plant Reproduction (continued)

Details


for you.

(Main Idea)

Fern Reproduction and Life Cycle

I found this information on page _____. SE, p. 665

RE, p. 272

Sequence the life cycle of ferns by numbering the following steps

in the order that they occur. The first and last steps have been done

- **7** The mature fern consists of rhizomes from which roots and fronds grow.
- <u>3</u> Sperm released by antheridia swim to eggs in archegonia.
- 5 As soon as the sporophyte produces green fronds, it can carry on photosynthesis and live on its own.
- **2** The prothallus produces archegonia and antheridia on its surface.
- 9 The cycle continues when sporangia develop on the fronds, and spores are released.

Conifer Reproduction and Life Cycle

I found this information on page _____. SE, pp. 665–667 RE, p. 273

SUMMARIZE

Compare female and male conifer cones in the table below. List two facts about each type of cone. Accept all reasonable responses.

Female Cones	Male Cones
larger than male cones; two ovules form on each scale; megaspores eventually become female gametophyte; depend on sporophyte for protection and nutrition	sporangia undergo meiosis to microspores; pollen grains transported on air currents

Create a graphic organizer to compare the reproductive structure of mosses, ferns, and conifers. Accept all reasonable responses.

Reproduction in Plants Section 23.2 Flowers

Main Idea	(Details)		
	Skim Section 2 of the chapter. Write two facts you discover about flower organs or adaptations.		
	1. Accept all reasonable response	s	
	2		
Review Vocabulary	Use your book or dictionary to	<i>define</i> nocturnal.	
nocturnal	active only at night		
New Vocabulary			
photoperiodism	flowering plant response to differer	nces in the length of night and day	
	Classify each term as being a type of plant or a part of a plant. Write a brief definition of each term.		
	Type of Flowering Plant (4 terms)	Part of Flowering Plant (4 terms)	
day-neutral plant	<i>day-neutral plant:</i> plant that flowers over a range in the number of daylight hours	<i>petal:</i> leaflike flower organ, usually brightly colored structure at the top of a stem	
intermediate-day plant			
long-day plant	<i>intermediate-day plant:</i> plant that flowers as long as the number of hours of darkness is neither too great nor too few	<i>pistil:</i> female reproductive organ of a flower	
petal			
pistil	<i>long-day plant:</i> plant that flowers when the number of daylight hours is longer than its critical period	<i>sepal:</i> leaflike, usually green structure that encircles the top of a flower stem below the petals and protects the bud	
sepal			
short-day plant	<i>short-day plant:</i> plant that flowers when the number of daylight hours is shorter than its critical period	<i>stamen:</i> male reproductive organ of a flower consisting of an anther and a filament	
stamen			

Section 23.2 Flowers (continued)

(Main Idea⁻

(Details

Flower Organs *I found this information*

on page _____. SE, pp. 668–669 RE, pp. 274–275

Compare the organs of a flower in the table below. Give the	?
location and function for each organ.	

Organ	Location	Function
Petal	top of stem	attracts pollinators; provides surface for insect pollinators to rest on
Stamen	inside flower; anther at top of filament	male reproductive organ
Sepal	outermost part of flower	protective covering for flower bud
Pistil	attached to stem inside flower	female reproductive organ

Model a complete flower and label the petals, sepals, stamen, and pistil.

Sketches should resemble the one on SE p. 668. The four organs should be labeled appropriately.

Section 23.2 Flowers (continued)

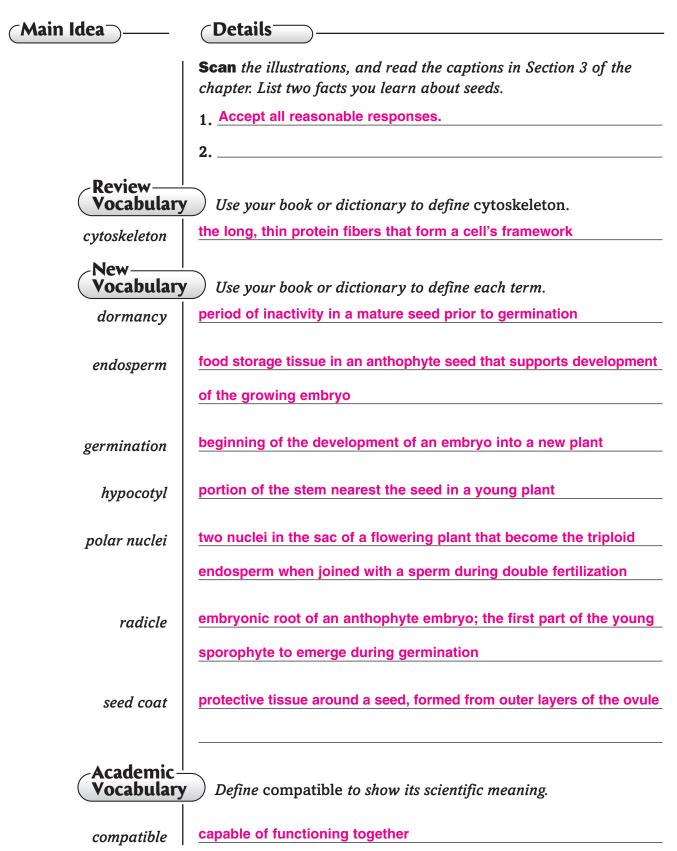
Flower Adaptations

I found this information on page _____ SE, pp. 669–673 RE, pp. 275–277

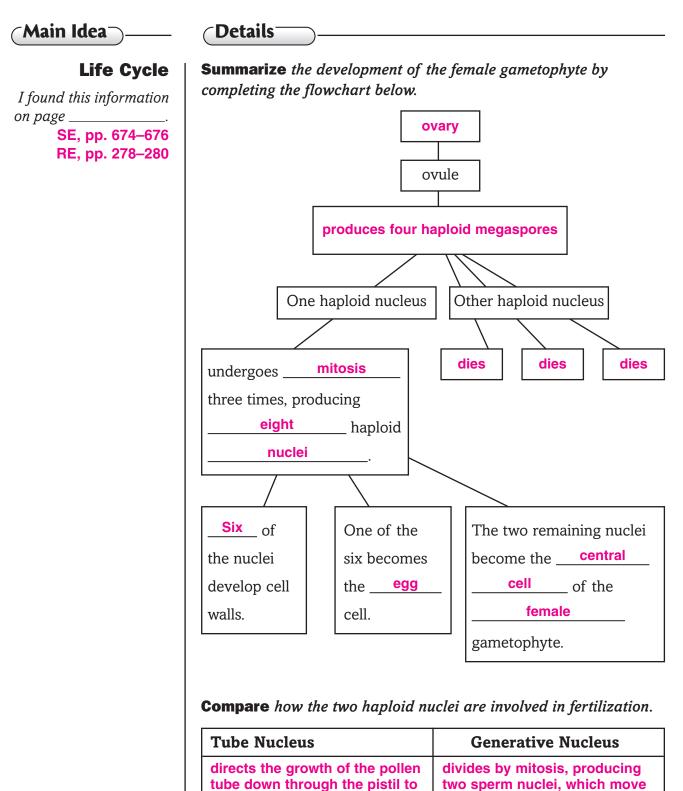
Details	
Identify the t	hree types of pollination.
	animal pollination
Types of	wind pollination
pollination	self-pollination

Compare the four types of plants based on their critical periods.

Plant Type	Flowering Season	Characteristic	Example
Short-day plant	winter, spring, or fall	flower when the number of hours of darkness is greater than the critical period	poinsettias, pansies, tulips, chrysanthemums
Long-day plant	summer	flower when the number of hours darkness is less than the critical period	lettuce, spinach, aster, coneflowers, potatoes
Day-neutral plant	any season	flower over a range in the number of hours of darkness	roses, corn, cotton, buckwheat, tomatoes
Intermediate- day plant	any season	will flower if the number of hours of darkness is neither too great or too few	sugarcane, some grasses


SUMMARIZE

Collect a flower from your home or neighborhood. On a separate sheet of paper, draw a diagram of the plant and label the major parts. List its critical period, flower adaptations, and methods of pollination. Accept all reasonable responses.


Date _

Reproduction in Plants

Section 23.3 Flowering Plants

Section 23.3 Flowering Plants (continued)

the ovary

down the pollen tube to the

microphyle

Section 23.3 Flowering Plants (continued)

Name

pp. 676–679 pp. 280–282 contains and embryo and a food supply covered by a protective coat begins when fertilization occurs; zygote divides and develops into embryo plant; triploid central cell develops into endosperm; wall of ovule becomes seed coat protection of seeds, dispersal of seeds, dispersal of seeds, ensures the fruit Fruit includes the ripened ovary of a flower as seed forms, the ovary becomes the fruit protection of seeds, dispersal of seeds, ensures future generation Analyze the specific conditions that the following seeds need to germinate. some conifer and wildflower seeds: must be exposed to fire apple seeds: need a period of freezing temperatures coconut seeds: have to soak in salt water	SeedContains and embryo and a food supply covered by a protective coatDegins with fertilization occurs; zygote divides and develops into embryo plant; triploid central cell develops into endosperm; wall of ovule becomes seed coatProtection of seeds, dispersal of seeds, ensures future generationFruitincludes the ripened ovary of a floweras seed forms, the ovary becomes the fruitprotection of seeds, dispersal of seeds, ensures future generationAnalyze the specific conditions that the following seeds need to germinate.some conifer and wildflower seeds: need a period of freezing temperatures	-		Structure	Formation	Benefit to Plan	
ripened ovary of a flower ovary becomes the fruit seeds, dispersal of seeds, ensures future generation Analyze the specific conditions that the following seeds need to germinate. some conifer and wildflower seeds: <u>must be exposed to fire</u> apple seeds: <u>need a period of freezing temperatures</u> coconut seeds: <u>have to soak in salt water</u>	ripened ovary of a flower ovary becomes the fruit seeds, dispersal of seeds, ensures future generation Analyze the specific conditions that the following seeds need to germinate. some conifer and wildflower seeds: must be exposed to fire apple seeds: need a period of freezing temperatures coconut seeds: have to soak in salt water	this information E, pp. 676–679 E, pp. 280–282	Seed	embryo and a food supply covered by	fertilization occurs; zygote divides and develops into embryo plant; triploid central cell develops into endosperm; wall of ovule becomes		
germinate. some conifer and wildflower seeds: <u>must be exposed to fire</u> apple seeds: <u>need a period of freezing temperatures</u> coconut seeds: <u>have to soak in salt water</u>	germinate. some conifer and wildflower seeds: must be exposed to fire apple seeds: need a period of freezing temperatures coconut seeds: have to soak in salt water Create a flowchart to describe the life cycle of flowering plants.		Fruit	ripened ovary	ovary becomes	-	
coconut seeds: have to soak in salt water	ARIZE Create a flowchart to describe the life cycle of flowering plants.		germinate.				
MARIZE	MARIZE Create a flowchart to describe the life cycle of flowering plants.		apple seeds: need a period of freezing temperatures				
MARIZE	Create a flowchart to describe the life cycle of flowering plants.		coconu	t seeds: have to soa	k in salt water		

Introduction to Animals

Before You Read

Use the "What I Know" column to list the things you know about animals. Then list the questions you have about animals in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Introduction to Animals

Section 24.1 Animal Characteristics

Main Idea	(Details)		
	 Scan the titles, boldfaced words, pictures, figures, and captions in Section 1 of the chapter. Write two facts you discovered about animals as you scanned the section. 1. Accept all reasonable responses. 2 		
Review Vocabulary	Use your book or dictionary to	o define protist.	
protist	diverse group of unicellular or multicellular eukaryotes that lack		
	complex organ systems and live	in moist environments	
New Vocabulary	Compare the terms in the table	e by defining them side by side.	
blastula	vertebrate animal with an endoskeleton and a backbone	invertebrate animal without a backbone	
endoskeleton exoskeleton	endoskeleton internal skeleton	exoskeleton hard or tough outer covering that provides a framework of support	
external fertilization gastrula	internal fertilization sperm and egg combine inside the animal's body	external fertilization sperm and egg combine outside the animal's body	
hermaphrodite internal fertilization	blastula fluid-filled ball of cells formed during early embryo development	gastrula two-cell-layer sac with an opening at one end, formed when blastula cells move	
invertebrate		inward during embryo development	
vertebrate	hermaphrodite produces both e	ggs and sperm in the same body	
zygote	zygote fertilized egg cell		
List the cell layers from the most interior to the most exterior. Identify the tissues that develop from each layer.			
ectoderm	Layers of Cells in the Gastru		
endoderm	ectoderm: nervous tissue and skin endoderm: digestive organs and lining of the digestive tract mesoderm: muscle tissue, circulatory system, excretory system,		
mesoderm	and, in some animals, respiratory system		

Date _____

Section 24.1 Animal Characteristics (continued)

(Main Idea)_

General Animal Features and Feeding and Digestion

I found this information on page _____. SE, p. 692 RE, p. 283 (Details

Identify the following facts about animals.

earliest true animals from which all others likely evolved

choanoflagellates

features that mark the branching points of the evolutionary tree

adaptations in form

way that animals differ from plants in obtaining food

Plants make their own food from sunlight; animals get their food by

eating organisms.

Classify each animal below as having an endoskeleton or an exoskeleton.

beetle exoskeleton	shark endoskeleton
horse endoskeleton	cicada exoskeleton

Support

I found this information on page _____. SE, p. 693 RE, p. 283

Habitats

RE, p. 284

I found this information on page _____. SE, p. 693 that enables an animal to live in that habitat.

Habitat
Adaptation

Analyze each habitat below. Give an example of an adaptation

Habitat	Adaptation
Polar region	Accept all reasonable responses.
Ocean	
Rain forest	

Animal Cell Structure and Movement

I found this information on page ______. SE, p. 694 RE, p. 284

Summarize the important differences between animals and plants.

Accept all reasonable responses.

Section 24.1 Animal Characteristics (continued)

Details ⁻Main Idea⁻ **Sequence** the development of an animal from fertilization to birth Reproduction by completing the following paragraph. I found this information During <u>sexual</u> reproduction, fertilization occurs on page _____ SE, pp. 695–697 egg cell is penetrated by a _____ sperm cell when an ____ RE, pp. 284–285 zygote _____. After _____ mitosis and cell division forming a _____ begin, the egg is called an embryo. The cells form a fluid-filled ball blastula _____. Some cells migrate inside, forming a called a cup-shaped structure called the ______ gastrula _____, which has two cell layers. The layer on the outside is the _____ectoderm and will form the _____ nerve tissue and skin _____. The inner layer is called the <u>endoderm</u>, which will form the animals's digestive tract lining and digestive organs All animals retain the two embryonic cell layers throughout their lives, but others develop a third cell layer, the <u>mesoderm</u>, between the other layers. This layer forms _____ the muscles and other systems of the body **Identify** the tissue types into which each layer develops. **Forms These Tissues Cell Layer** Mesoderm muscle, circulatory, excretory, sometimes respiratory Ectoderm skin, nerve digestive tract lining and organs Endoderm **S**UMMARIZE Next to each prefix, write a vocabulary word from this section that uses this prefix. Then write what you think the prefix means. endo- endoskeleton or endoderm; inside

exo- exoskeleton; outside

meso- mesoderm; middle

Introduction to Animals Section 24.2 Animal Body Plans **Details** ⊂Main Idea¬ **Scan** the figures and read the captions in Section 2 of the chapter. Write two facts that you discovered about animal body plans. 1 Accept all reasonable responses. 2. _____ Review Use your book or dictionary to define phylogeny. Vocabulary evolutionary history of a species based on comparative relationships phylogeny of structures and comparisons of modern life-forms with fossils New Vocabulary *Compare the terms within each table by writing their definitions.* acoelomate anterior head posterior tail dorsal **upper** ventral lower surface of end of bilateral end of surface of animals where bilaterally bilaterally bilaterally anterior symmetrical sensory organs symmetrical symmetrical are often animals animals animals bilateral symmetry located cephalization body plan that tends to concentrate nervous tissue and sensory organs at the anterior end of the animal cephalization coelom symmetry term describing the arrangement of an animal's body structures deuterostome bilateral can be divided down radial can be divided along any the body's length into two plane, through a central axis, similar right and left halves into roughly equal halves dorsal posterior protostome animal with a deuterostome animal whose protostome mouth that develops from the mouth develops from cells other opening in the gastrula than those at the opening of the gastrula pseudocoelom coelom fluid-filled acoelomate an psuedocoelom radial symmetry fluid-filled body body cavity animal without a fluid-filled body completely coelom *symmetry* surrounded by with mesoderm mesoderm ventral

Section 24.2 Animal Body Plans (continued)

(Main Idea)_

Evolution of Animal Body Plans and Development of Tissues

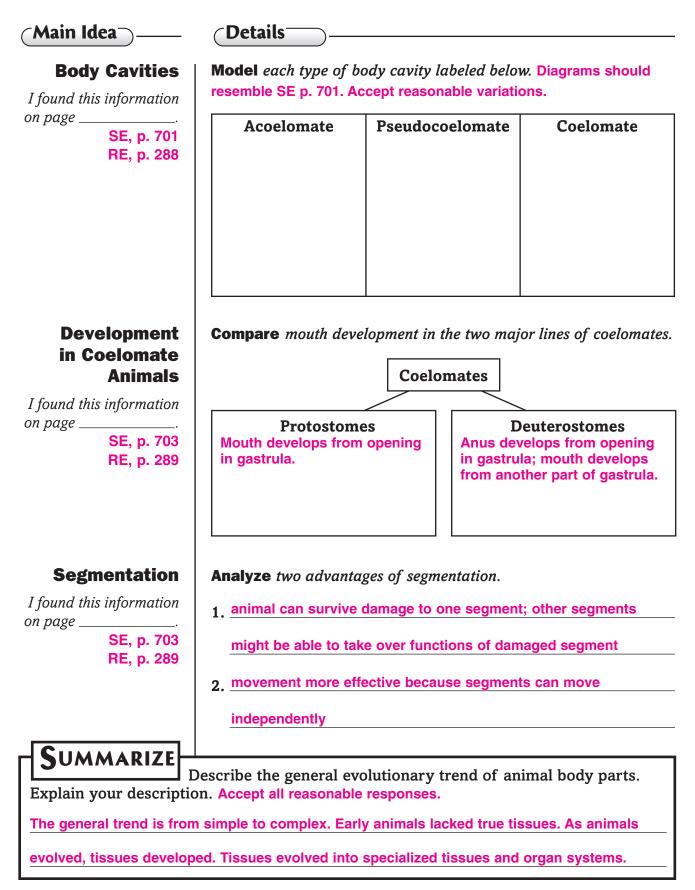
I found this information on page _____. SE, pp. 698–699 RE, pp. 286–287

Symmetry

I found this information on page _____. SE, p. 700 RE, pp. 287–288

		•	
)eta	116	
		1113	,
· · ·			

Model an evolutionary tree, and show what the trunk, branches, and branching points represent. Accept all reasonable responses.


Analyze the evolutionary sequence by completing the sentences.

The earliest animals had <u>asymmetrical</u> body plans, as do their modern descendants, such as <u>sponges</u> .			
¥			
Later, sea stars, hydras, and other animals appeared with			
They were able to detect and			
capture <u>prey</u> coming from any direction.			
↓			
The last body plan to develop was bilateral symmetry			
with a head at the anterior end of the body and a tail at			
the posterior end of the body.			

Model a bilaterally symmetrical being. Then create characters showing asymmetry and radial symmetry. Use your imagination. List the number of arms, legs, eyes, etc., that each character has. Accept all reasonable responses.

Bilateral Symmetry	Radial Symmetry	Asymmetry
body parts: 2 eyes, 2 legs, 2 arms, 1 nose in center	body parts:	body parts:

Section 24.2 Animal Body Plans (continued)

Introduction to Animals

Section 24.3 Sponges and Cnidarians

Main Idea	(Details
	Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define diploid.
diploid	cell with two of each kind of chromosome
New- Vocabulary	Use your book or dictionary to define each term.
cnidocyte	stinging cell
filter feeder	organism that gets its food by filtering small particles from water
gastrovascular cavity	in cnidarians, large cavity where digestion takes place
medusa	cnidarian body form in which the body is umbrella-shaped with
	tentacles that hang down
nematocyst	capsule holding a coiled, threadlike tube containing poison and barbs
nerve net	nervous system of cnidarians that conducts impulses to and from all
	parts of the body
polyp	cnidarian body form in which the body is tube-shaped with a mouth surrounded by tentacles
sessile	organism that attaches to one place and stays there
Academic- Vocabulary	Define survive to show its scientific meaning.
survive	to remain alive

Section 24.3 Sponges and Cnidarians (continued)

(Main Idea)-

I found this information

SE, pp. 705–709

RE, pp. 290–292

on page _____

Sponges

(Details

Model a sponge. Use the figure in your book to help you. Label the six parts that are listed in the table below on your diagram. Then describe the function of each part in the table below.

Diagrams should resemble the illustration on SE p. 706. Accept all reasonable responses.

Sponges		
Body Part	Function of Body Part	
Osculum	water and wastes expelled through this mouthlike opening at the top of the sponge	
Epithelial-like cells	thin, flat cells that contract (and close pores) in response to touch or an irritating chemical	
Collar cells	cells that line the interior of the sponge; their agella whip back and forth to draw in water	
Pores	cells that surround pores and allow water (with food and oxygen) into the sponge's body	
Archaeocytes	carry nutrients to other cells, aid in reproduction, and produce spicule chemicals	
Spicules	small, needlelike structures between cell layers that form the support structure	

Section 24.3 Sponges and Cnidarians (continued)

∂Details

Compare a polyp with a medusa by filling in the table.

I found this information on page _____. SE, pp. 710–715 RE, pp. 292–294

Cnidarians

	Polyp	Medusa
Body shape	tubelike	umbrella (bell)
Position of mouth	top side	underside
Position of tentacles	top side	underside

Model the complete life cycle of a jellyfish.

Diagrams should resemble SE p. 712. Accept all reasonable responses.

SUMMARIZE Compare cnidarians and sponges.

Accept all reasonable responses. Both groups have one body opening and two cell layers,

although cnidarian cell layers are organized into tissues. Cnidarians have radial symmetry, but

sponges are asymmetrical. Most cnidarians have polyp and medusa stages in their life cycle.

Most sponges have the same form throughout their life cycle.

Worms and Mollusks

Before You Read

Use the "What I Know" column to list the things you know about worms and mollusks. Then list the questions you have about these organisms in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

Even the simplest organism has a role in the ecological community. Hypothesize the role of mollusks in their ecosystems. Why would people need to know about worms?

Accept all reasonable responses.

Worms and Mollusks

Section 25.1 Flatworms

Main Idea	Details
	Scan the illustrations and read the captions in Section 1 of the chapter. List three characteristics of flatworms that you discovered.
	1. Accept all reasonable responses.
	2
	3.
~Review	
Vocabulary	Use your book or dictionary to define acoelomate.
acoelomate	an animal that has no body cavity
New Vocabulary	Use your book or dictionary to define each term.
flame cells	in flatworms, bubblelike cells lined with cilia that help move water
	and excretory substances out of the body
ganglion	group of nerve cell bodies that coordinates incoming and outgoing
	nerve signals in flatworms
pharynx	in planarians, the tubelike, muscular organ that extends from the
	mouth; aids in feeding and digestion
proglottid	a section of a tapeworm that contains muscles, nerves, flame cells,
	and male and female reproductive organs
regeneration	replacement or regrowth of missing body parts
scolex	knob-shaped head of a tapeworm, with hooks and suckers that
	attach to the intestinal lining of a host

Section 25.1 Flatworms (continued)

(Main Idea⁻

(Details-

Body Structure

I found this information on page _____. SE, pp. 726–728 RE, pp. 295–297 Summarize facts about flatworms in the table.

Accept all reasonable responses.

Size Range 1mm to several meters	Number of Species about 20,000
Preferred Environments freshwater, marine, moist land and inside living bodies	Adaptations for Movement of Free-living Flatworm cilia on undersides, mucous production
Diet of a Free-living Flatworm dead or slow-moving organisms	Symmetry bilaterally symmetrical
What Happens When Free-living Flatworms Are Damaged can regenerate, or grow new body parts	Adaptations for Parasitic Lifestyle hooks and suckers, reduced or no digestive system

Model a flatworm. Label at least nine body parts.

Diagrams should resemble SE p. 727. Accept all reasonable responses.

Name

Date _____

Section 25.1 Flatworms (continued)

Diversity of Flatworms	Identify the correct flatworm class for each characteristic below and write it in the appropriate box. Some characteristics may		
ound this information	belong in more than	one class.	
on page SE. pp. 729–730 RE, p. 297	• parasit	ic	• flukes
	- 1100-110	ring	 auricles
	• scolex		 proglottids
	• eyespo	ots	• planaria
	Classes of Flatwo	orms	
	Trematodes	Cestodes	Turbellarians
	parasitic flukes	parasitic scolex proglottids	free-living eyespots auricles planaria
	Diagrams should read	of a fluke. semble SE p. 729.	
	Diagrams should read		
CONNECT	Diagrams should read		
Connect an cause.	Diagrams should read	semble SE p. 729.	tapeworms and fluke
CONNECT an cause. Group	Identify and describe a	semble SE p. 729.	-
an cause. Group	Identify and describe a	semble SE p. 729. human disorder that man Disorder Cause in burrow through inte	ed

Worms and Mollusks Section 25.2 Roundworms and Rotifers ⊂ Main Idea 🔿 C Details[−] **Scan** Section 2 of the chapter. Use the checklist as a guide. Read all the section titles. Read all boldfaced words. Look at all illustrations and read the captions. Think about what you already know about worms. Write three facts that you discovered about roundworms and rotifers. 1. Accept all reasonable responses. 2._____ 3. _____ **Review**-Vocabulary Use your book or dictionary to define cilia. short, numerous projections that look like hairs cilia New-Vocabulary Use your book or dictionary to define each term. Then write a sentence using the word to show its scientific meaning. fluid within a closed space that provides rigid support for muscles hydrostatic skeleton to work against a disease caused by the roundworm Trichinella that can be ingested trichinosis in raw or undercooked pork, pork products, or wild game

It acts as a hydrostatic skeleton. The fluid within

the pseudocoelom provides rigid support for the

muscles to work against.

Section 25.2 Roundworms and Rotifers (continued)

(Main Idea)	(Details)			
Body Structure of Roundworms		Organize <i>information about roundworms by filling in the chart below.</i> Accept all reasonable responses .		
I found this information on page SE. pp. 731–733 RE, pp. 298–299	Phylum: Nemate	oda	Symmetry: bilateral	
	Habitats: everywhere from marine and freshwater habitats to land; some are parasites on plants and animals			
	Body shape: cylindrical, unsegmented, tapered at both ends			
	Food: some are predators on tiny invertebrates, others feed on decaying plant and animal matter, some feed on living hosts			
	Digestive tract of free-living forms: one way, with food entering the mouth and wastes exiting through the anus at the other end			
			ns: none, they depend on d gases throughout the body	
		detect: touch ar reen light and dar	nd chemicals, some can detect k	
	Reproduction m	ethod: sexual	Type of fertilization: internal	
	Analyze the mov	ement of roundwo	orms.	
	Roundworm Movement			
	Thrashing Movement	They have muscles that run the length of their bodies. As one muscle contracts, another relaxes, causing a thrashing movement.		

Role of

Pseudocoelom

Section 25.2 Roundworms and Rotifers (continued)

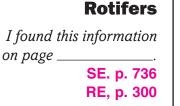
Diversity of Roundworms

I found this information on page _____. SE, pp. 733–735 RE, pp. 299–300 **Oetails**

Identify the roundworm that matches each description.

Animal	Description
pinworm	most common roundworm parasite in the U.S.
hookworm	enters the human body through bare feet
Ascaris	world's most common roundworm infection
Trichinella	carried by infected, undercooked pork
nematode	causes plant diseases
filarial worm	mosquito acts as intermediate host

Identify a negative and a positive effect of nematodes on plants.


Negative: By attaching themselves to plant roots, nematodes can

cause the plants to sicken.

Positive: If added to soil infected with crop pests, nematodes can

control the spread of the pest insects.

Analyze the cilia of rotifers by completing the graphic organizer below.

CONNECT

Locations: 1. mouth 2. anterior end ← Cilia →

Uses:

- 1. movement
- 2. gather food

Compare the digestive tracts of roundworms with those in freeliving flatworms. What does the comparison suggest about the probable evolutionary history of roundworms?

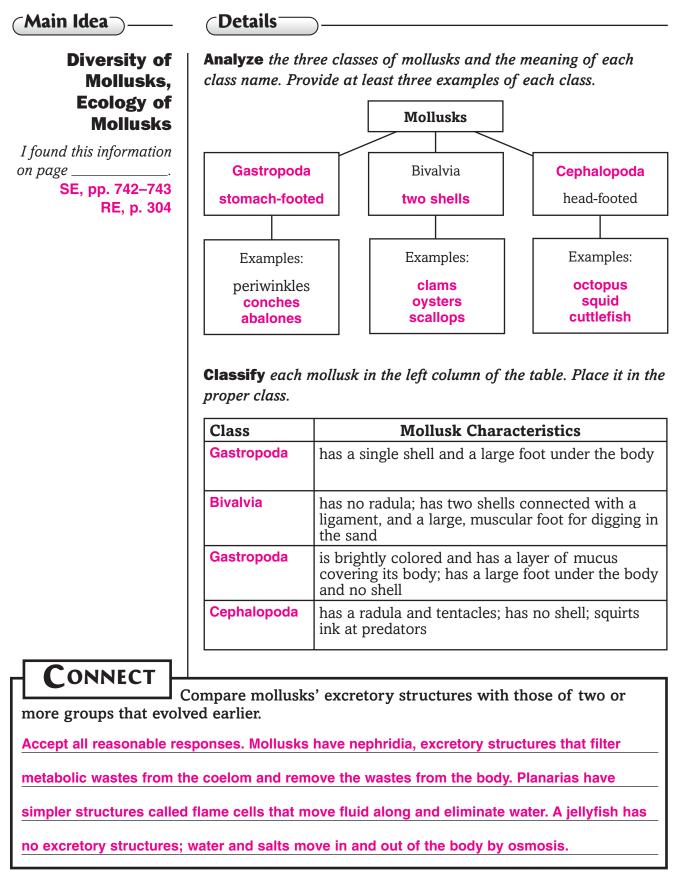
Accept all reasonable responses. Free-living flatworms have a digestive tract with only one

opening; wastes are ejected through the mouth. Roundworms have digestive tracts with two

openings; wastes are ejected through the anus. The digestive tract of roundworms is more

advanced, so roundworms probably appeared later than flatworms.

Worms and Mollusks

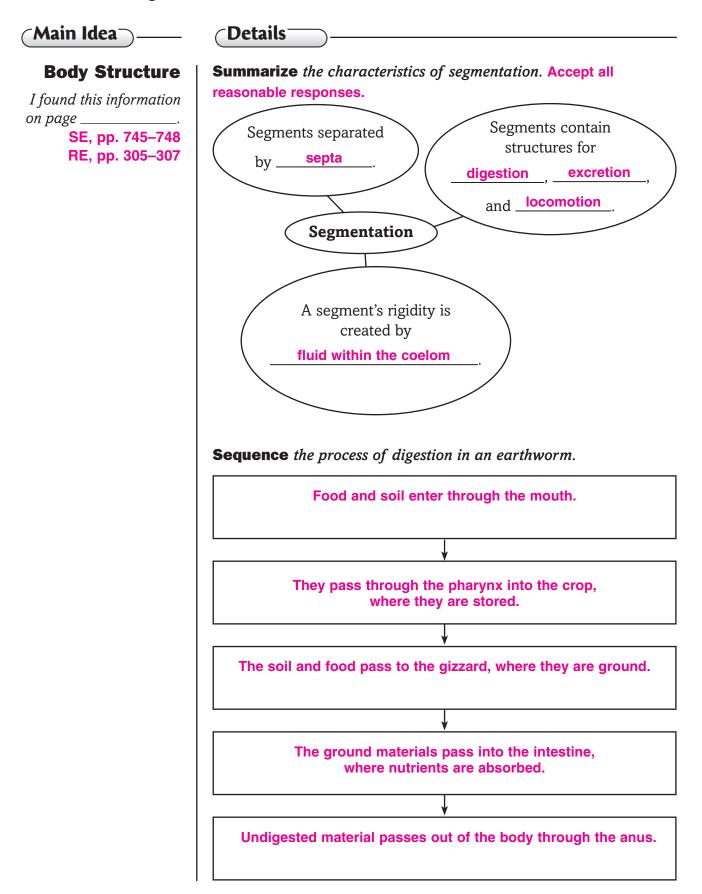

Section 25.3 Mollusks

Main Idea	Details
	Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define herbivore.
herbivore	an organism that eats only plants
New Vocabulary	Use your book or dictionary to define each term.
closed circulatory	system in which blood moves through the body enclosed entirely in
system	blood vessels
gills	respiratory structures on the mantle that consist of a system of
	filamentous projections; used to move water into and through mantle
mantle	a membrane that surrounds the internal organs of a mollusk;
	in mollusks with shells, it secretes the shell
nephridia	organs that remove metabolic wastes from an animal's body
open circulatory	system in which blood moves through vessels into open spaces
system	around the body organs
radula	in the mouth of many mollusks, the rasping, tonguelike organ with
	rows of teeth; used to drill, scrape, or tear up food
siphon	a tube in octopuses and squids used to expel water taken into the mantle cavity

Section 25.3 Mollusks (continued)

Main Idea	Details		
Body Structure	Model a snail and a squid. Label the body parts of each.		
I found this information on page SE, pp. 737–741 RE, pp. 301–303	Diagrams should resemble SE p. responses.	738. Accept all reasonable	
	List the snail and squid structure	rs that differ.	
	the snail's foot, the squid's tentacles, and the squid's reduced		
	internal shell		
	Distinguish two ways mollusks j Radula: <mark>a tonguelike organ with r</mark>		
	and tear up food		
	Filter feeders: draw in food from t	he water and strain it	
	Compare the way mollusks repr	oduce in water and on land.	
	in water: eggs and sperm are released at the same time and fertilization is external	on land: many land mollusks are hermaphrodites and produce both sperm and eggs, and fertilization takes place within the animal	

Section 25.3 Mollusks (continued)



Worms and Mollusks

Section 25.4 Segmented Worms

Main Idea	Details
	Skim Section 4 of the chapter. Write three facts that you discovered about segmented worms.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define protostome.
protostome	an animal with a mouth that develops from the opening in the
	gastrula
New Vocabulary	Use your book or dictionary to define each term.
clitellum	a thickened band of segments that produces a cocoon from which
	young earthworms hatch
crop	part of the worm's digestive tract where food and soil taken in by the
	mouth are stored before passing on to the gizzard
gizzard	muscular sac containing hard particles that help grind soil and food
	before they pass into the intestine
setae	tiny bristles on each segment that push into the soil and anchor the
	worm during movement
Academic- Vocabulary	Define convert to show its scientific meaning.
convert	to change from one form to another

Section 25.4 Segmented Worms (continued)

Name_

Date _____

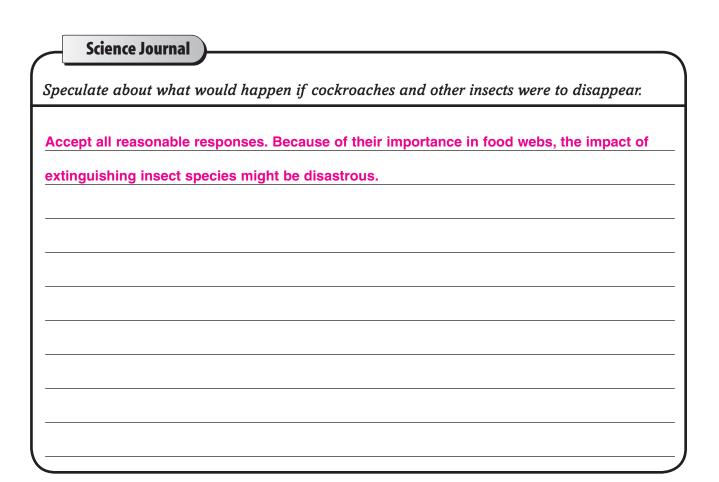
Section 25.4 Segmented Worms (continued)

Main Idea	(Details)		
Diversity of Annelids/Ecology of Annelids/	Organize information about annelids. Identify two characteristics of each annelid. Then write the class to which they belong. Accept all reasonable responses.		
Evolution of Mollusks and Annelids I found this information on page SE, pp. 748–751 RE, pp. 307–308	fanworms bristleworms	leeches	earthworms
	well-developed sense organs, including eyes; many setae; parapodia	flattened bodies; no setae; front and rear suckers; saliva contains chemical anesthetic	ingest soil to extract nutrients; aerate the soil
	Class: Polychaeta	Class: Hirudinea	Class: Oligochaeta
	Marine Polychaetes	aerate the soil convert organic debris on nto carbon dioxide food for marine predator	
	Sequence these developments in the evolution of annelids: body suckers, parapodia, clitella. From earliest to latest: parapodia, clitella, body suckers		
SUMMARIZE	From earliest to lates	t: parapodia, cintelia, bol	
	llusks. State the advar sponses. Annelids have	closed circulatory syste	pe. ems, with the blood
which the blood flows th			
more efficient means for	gas exchanges (oxyger	n and carbon dioxide) in	the animal.

SUMMARIZE

Tie It Together

Create a mini poster that highlights the diversity of worms. Accept all reasonable responses.

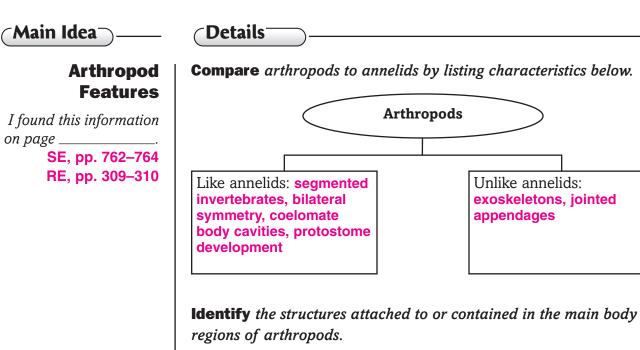

Arthropods

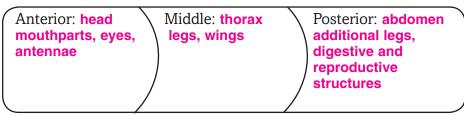
Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Arthropods	After You Read
	• A lobster's hard covering cannot grow as the animal grows.	Α
	• A spider begins digesting its food while the food is outside its body.	Α
	• When you try to swat a fly, it often escapes because it can sense changes in airflow.	Α
	 A newly hatched butterfly looks like an adult butterfly only smaller. 	D




Arthropods Section 26.1 Arthropod Characteristics

Main Idea	(Details)
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define ganglion.
ganglion	a group of nerve cell bodies that coordinates messages
New- Vocabulary	Write the correct term in the left column for each definition below.
cephalothorax	body structure consisting of fused thorax and head regions
spiracle	opening from the tracheae or book lungs to the outside of an arthropod's body
tracheal tube	tube that branches into smaller and smaller tubules to carry oxygen throughout the body
abdomen	body region of fused segments at the posterior end of an arthropod that contains digestive structures and reproductive organs
Malpighian tubule	in most arthropods, structure that removes cellular wastes from the blood and empties into the gut
book lung	saclike pocket with highly folded walls for respiration
molting	in arthropods, process of shedding an exoskeleton
thorax	middle body region, consisting of three fused main segments to which, in many arthropods, legs and wings are attached
appendage	structure that grows and extends from an animal's body
mandible	mouthpart in arthropods that can be adapted for biting and chewing
pheromone	chemical secreted by many animal species that influences the behavior of other animals of the same species
Academic- Vocabulary	Define transport to show its scientific meaning.

transport to transfer from one place to another

Section 26.1 Arthropod Characteristics (continued)

What regions are fused in a cephalothorax? head and thorax

Analyze the advantages and disadvantages of an exoskeleton.

Advantages	Disadvantages
framework for support, protects soft body tissues, slows water loss in terrestrial animals, provides place for muscle attachment	adds weight, limits body size, made of nonliving material so must be shed to allow room to grow

Evaluate the role of the body functions below in the molting process.

Fluid secreted by skin glands: softens and eventually cracks the old

exoskeleton

Increased blood circulation: puffs up the animal to make the new

hardening exoskeleton larger for growing room

Section 26.1 Arthropod Characteristics (continued)

Main Idea	Details			
Body Structure of Arthropods <i>I found this information</i>	Model three types of arthropod respiratory structures. Identify the habitat—aquatic or terrestrial—of the arthropods with that type of respiratory system. Label the spiracles.			
on page SE, pp. 765–769 RE, pp. 310–312	No spiracles should appear in the diagram of gills.	Spiracles should appear and be labeled in the diagram of tracheal tubes.	Spiracles should appear and be labeled in the diagram of book lungs.	
	Structure: Gills	Structure: Tracheal tubes	Structure: Book lungs	
	Habitat: Aquatic	Habitat: Terrestrial	Habitat: Terrestrial	
	Rephrase one key fact about arthropods for each function below. Excretion: Malpighian tubules remove cellular wastes from the blood			
	and help terrestrial arthropods preserve water balance. Chemical communication: Pheromones signal behaviors such as mating and feeding, and ants use them to create scent trails.			
	Movement: Muscles attach to inner surface of exoskeleton and			
	strength of contraction depends on nerve impulse rate.			
environments. Explain I Accept all reasonable res changes as they fly. Tymp	ponses. Compound eyes panums or the forelegs o	helpful to the arthropo s enable arthropods to a of crickets allow for quic	ods. nalyze landscape k responses to	
sound waves. Limbs attac	ched to the inside of exo		a movement.	

Arthropods Section 26.2 Arthropod Diversity ⊂Main Idea^{_} **Details Scan** Section 2 of the chapter. Use the checklist as a guide. Read all section titles. Read all boldfaced words. Read all tables, figures, graphs, and captions. Write two facts you discovered as you scanned the section. 1 Accept all reasonable responses. 2. _____ Review Vocabulary Use your book or dictionary to define sessile. an organism that is attached to and stays in one place sessile New-Vocabularv Use your book or dictionary to define each term. arachnid mouthpart that is adapted to function as a fang or pincer chelicera and often is connected to a poison gland front leg of a crustacean that has a large claw adapted to catch and cheliped crush food arachnid appendage used to sense and hold prey; also used for pedipalp reproduction in male spiders and as large pincers in scorpions spinneret structure located at the end of a spider's abdomen that spins secreted fluid protein into silk for web-building crustacean appendage located behind the walking legs that is used swimmeret

as a flipper during swimming

Section 26.2 Arthropod Diversity (continued)

Main Idea	Details		
Arthropod Groups I found this information	Compare the common characteristics of the major arthropology groups.		
on page SE, p. 770	Arthropo	od Groups	
RE, p. 313	Example: crab Group: <u>crustaceans</u> Antennae: <u>two pairs</u> Eyes: <u>two compound</u> Body sections: <u>two—abdomen</u> <u>and cephalothorax</u> Appendages: <u>mandibles, five</u> <u>pairs of legs, swimmerets</u>	Example: fly Group: <u>insects and relatives</u> Antennae: <u>yes</u> Eyes: <u>compound and simple</u> Body sections: <u>three—head,</u> <u>thorax, abdomen</u> Appendages: <u>three pairs of</u> <u>legs; two pairs of wings</u>	
	Example: wolf spider Group: spiders and relatives Antennae: none Body sections: two—cephalc Appendages: six pairs, jointe pairs of walking legs)		
Crustaceans I found this information on page SE, p. 771 RE, p. 314	Model a lobster and label its appendages. Sketches should resemble the figure on SE p. 771. Accept all reasonable variations. Students should include: antennae, eye, chelipeds, walking legs, and swimmerets.		

Section 26.2 Arthropod Diversity (continued)

(Main Idea-

(Details

Spiders and Their Relatives

I found this information on page _____. SE, pp. 771–774 RE, pp. 314–315 **Distinguish** the arachnid appendage for each description below. Names will be used more than once.

Appendage	Description	
spinnerets	create silk from fluid protein	
chelicerae	function as fangs or pincers	
pedipalps	used for sensing and holding prey	
chelicerae	often connected to a poison gland	
spinnerets	located at the end of a spider's abdomen	
pedipalps	large pincers on scorpions	

Analyze ways in which a spider uses the web it constructs.

- to capture prey
- to wrap prey until the spider is ready to feed
- Male spider deposits sperm.
- Female spider lays her eggs in a cocoon of spun silk.

Conclude why the leaflike plates on the posterior appendages are important to a female horseshoe crab during reproduction.

The posterior appendages are modified for digging. The female uses

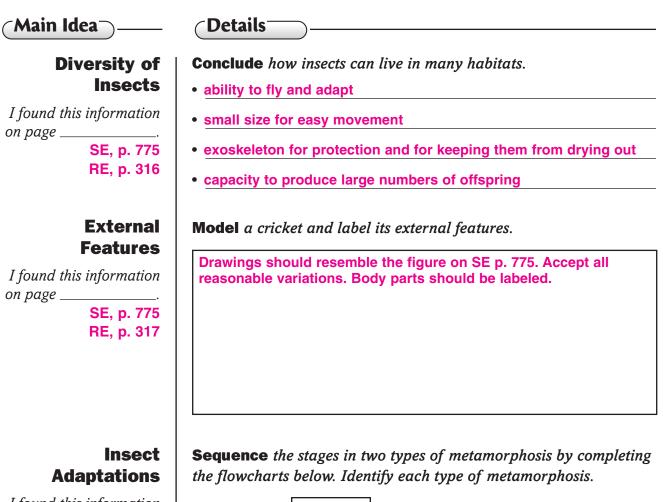
these appendages to dig a burrow into the sand to deposit her eggs.

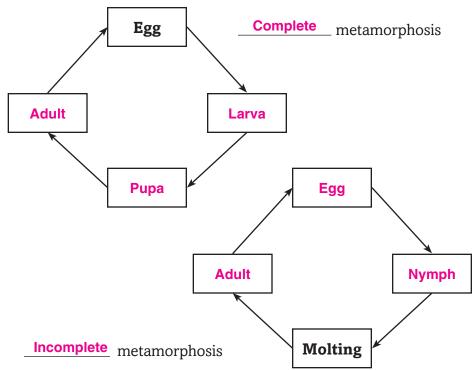
After sperm is added, she uses them again to cover the eggs with

sand.

Create a concept web that you can use to identify arthropods.

Accept all reasonable responses.

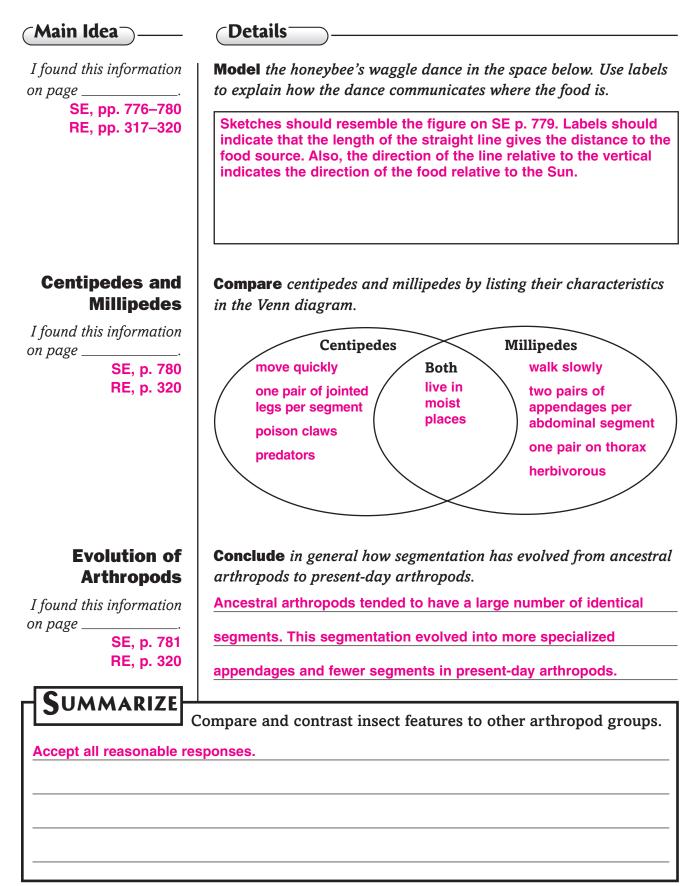

Arthropods


Section 26.3	Insects	and	their	Relatives
--------------	---------	-----	-------	------------------

Main Idea	Details	
	Skim Section 3 of the chapter. Examine each illustration and read the caption. Write three facts that you learn about the structures of insects.	
	1. Accept all reasonable responses.	
	2	
	3	
Review Vocabulary	Use your book or dictionary to define subphylum.	
subphylum	a category in biological classification that is below a phylum and	
	above a class	
New- Vocabulary	Use your book or dictionary to define each term.	
caste	group of individuals within a society that performs specific tasks	
metamorphosis	series of major changes from a larval form to an adult form	
nymph	immature form of an insect that looks like a small adult without fully	
	developed wings	
pupa	nonfeeding stage of metamorphosis in which the animal changes	
	from the larval form into the adult form	

Date ____

Section 26.3 Insects and their Relatives (continued)



I found this information on page _____. SE, pp. 776–780 RE, pp. 317–320

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Section 26.3 Insects and their Relatives (continued)

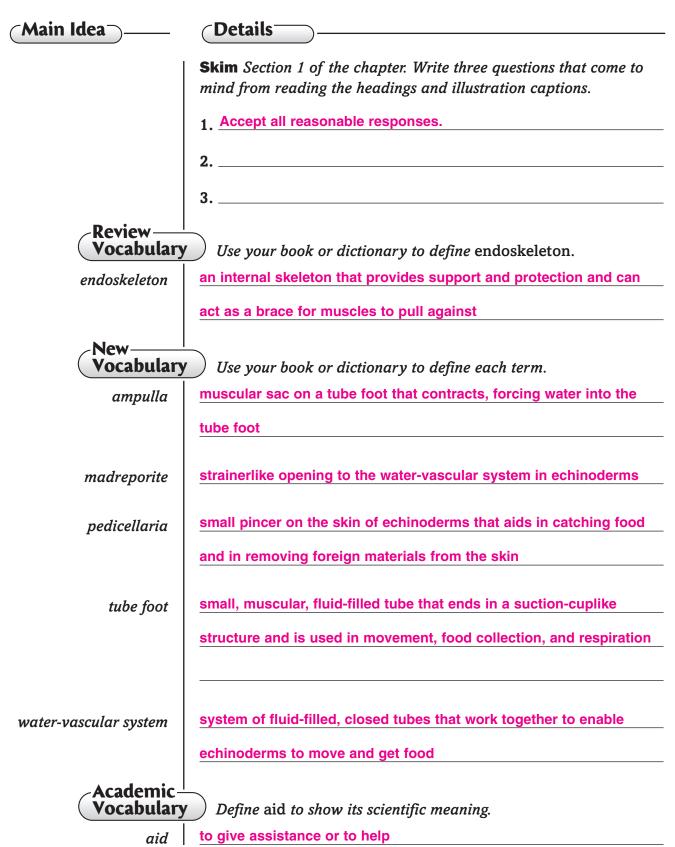
Echinoderms and Invertebrate Chordates

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Echinoderms and Invertebrate Chordates	After You Read
	• A sea star can make its stomach come out of its mouth.	Α
	 Many echinoderms can regrow lost body parts. 	Α
	 A lancelet's body organs are visible through its skin. 	Α
	• A tunicate is called a sea squirt because it is the smallest creature in the sea.	D


Science Journal

Write what you know or stories you have heard about sea stars, sea urchins, and other spiny sea creatures.

Accept all reasonable responses.

Echinoderms and Invertebrate Chordates

Section 27.1 Echinoderm Characteristics

Date

Section 27.1 Echinoderm Characteristics (continued)

⊂Main Idea⊃_

Echinoderms Are Deuterostomes

I found this information on page _____. SE, p. 792 RE, p. 321

Body Structure

I found this information on page _____. SE, pp. 793–796 RE, pp. 321–323 Oetails
 Oetails

Analyze the importance of deuterostome development.

Accept all reasonable responses. The evolutionary tree branches

at deterostomes, marking this development as a major transition in

animal phylogeny. Only echinoderms and the chordates that evolved

after echinoderms have this type of development.

Sequence the steps that occur in the water-vascular system to enable an echinoderm to move. Complete the flowchart by writing the letters of the scrambled steps in the proper boxes.

С
¥
В

F

D

Α
└──── │
E

- **A.** Water is forced into the tube foot.
- **B.** Water moves through the stone canal to the ring canal.
- **C.** Water is drawn into the madreporite.
- **D.** The muscles of the ampulla contract.
- **E.** With hydraulic suction, the tube foot attaches to a surface.
- **F.** Water moves to the radial canals.

The echinoderm moves.

Identify the echinoderm that moves in the described way.

Echinoderm	Movement
sea urchin	burrows into rocky areas using movable spines
brittle star	makes snakelike movements using tube feet and arms
feather star	uses cirri to grasp soft sediments on the seafloor
sea cucumber	crawls using tube feet and body wall muscles

Section 27.1 Echinoderm Characteristics (continued)

(Main Idea)-

(Details

Echinoderm Diversity *I found this information*

on page _____ SE, pp. 797–800 RE, pp. 324–325

Echinoderm Class	Characteristics
Holothuroidea	cucumber shape; leathery covering; tentacles near mouth
Echinoidea	body encased in a test; burrows
Ophiuroidea	often five arms; arms regenerate; no suction cups on tube feet
Asteroidea	often five arms; tube feet used for feeding and movement
Concentricycloidea	no arms; tube feet located around a central disk
Crinoidea	sessile for some part of life

List echinoderm strategies for coping with potential predators.

sea stars: protected by spiny skin

brittle stars: release an arm and regenerate it later

sea urchins: protected by venomous spines and pedicellariae

sea cucumbers: cast out some internal organs and regenerate them

Analyze the effect of echinoderms on other organisms in the following situations.

Activity as bioturbators: make nutrients available to other organisms

by stirring up sediment on ocean floor

Unexplained population explosions of crown-of-thorns sea stars:

consume so many coral polyps that they destroy reefs

CONNECT

Ecology of

SE, p. 801

RE, p. 325

Echinoderms

I found this information

on page _

Give an example of regeneration in humans. Then give an example of regeneration in echinoderms that is beyond the capability of humans.

Accept all reasonable responses. Humans regenerate tissues to replace shed skin cells and

repair broken bones. Humans cannot regenerate whole body parts like echinoderms can.

Echinoderms and Invertebrate Chordates

Section 27.2 Invertebrate Chordates

Main Idea	Details		
	Scan the illustrations and read the captions in Section 2. Write two facts you discovered about invertebrate chordates.		
	1. Accept all reasonable responses.		
	2		
Review Vocabulary	Use your book or dictionary to define deuterostome.		
deuterostome	animal whose mouth develops from cells other than those at the		
	opening of the gastrula		
New Vocabulary	Use your book or dictionary to define each term.		
chordate	animal belonging to phylum Chordata that has four distinctive		
	features—a dorsal tubular nerve cord, a notochord, pharyngeal		
	pouches, and a postanal tail—at some point during development		
dorsal tubular nerve cord	tube-shaped nerve cord located dorsal to the digestive organs		
invertebrate chordate	member of phylum Chordata that has a dorsal tubular nerve cord,		
	a notochord, pharyngeal pouches, a postanal tail, and possibly an		
	ancestral thyroid gland but no backbone		
notochord	flexible, rodlike structure that extends the length of the body and is		
	located just below the dorsal tubular nerve cord		
pharyngeal pouch	structure that occurs in pairs in all chordate embryos; connects the		
	muscular tube that links the mouth cavity and the esophagus		
postanal tail	structure used primarily for locomotion and is located behind the		
	digestive system and anus		

Section 27.2 Invertebrate Chordates (continued)

(Main Idea)-

Invertebrate Chordate Features

I found this information on page _____. SE, pp. 802–804 RE, pp. 326–327

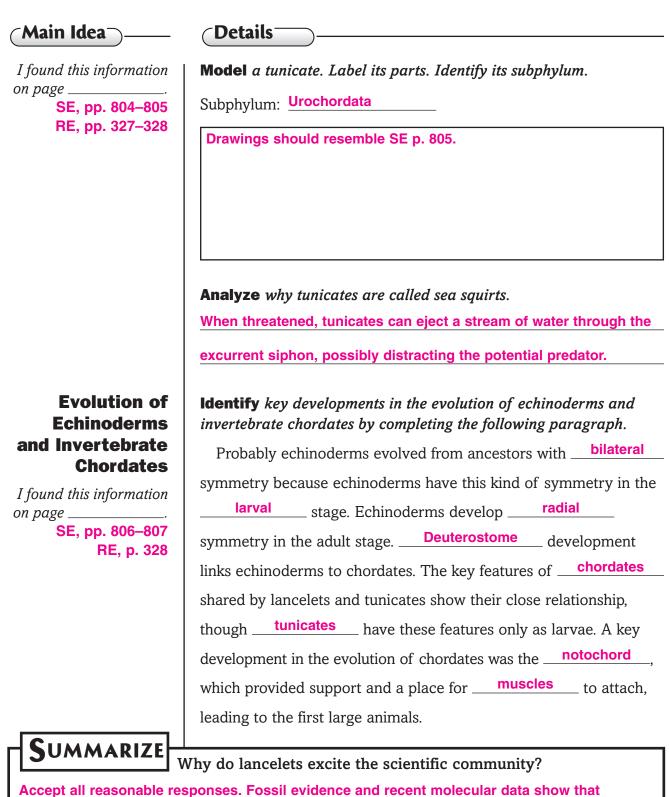
⊂ Details ⁻	

Identify the four distinctive features of chordates and their location on the animal. Describe how each feature benefits the animal.

Feature	Location	Benefits
notochord	just below the dorsal tubular nerve cord and runs the length of the body	enables body to bend, rather than shorten, during contraction of muscle segments; for first time enabled side-to-side, fishlike swimming motion
postanal tail	behind the digestive system and anus	can propel an animal with more powerful movements than the body structure of invertebrates without a postanal tail
dorsal tubular nerve cord	above the digestive organs	during development, anterior end becomes the brain and posterior end becomes the spinal cord
pharyngeal pouches	connect the muscular tube that links the mouth cavity and esophagus	evolved into gills in aquat- ic chordates; develop into structures such as tonsils and thymus gland in terrestrial chordates

Analyze the importance of an endostyle.

An endostyle represents an early form of thyroid gland.


Describe the following features of lancelets.

Phylum: Chordata	Subphylum: Cephalochordata			
Skin: lacks color and scales; body structures visible through skin				
Feeding method: filter feeders; digestion in stomach-like structure				
Movement: segmented muscle blocks enable fishlike swimming				
Sensory structures: light receptors and small sensory tentacles near mouth				
Blood circulation: pumping action of blood vessels; no heart				

Diversity of Invertebrate Chordates

I found this information on page _____. SE, pp. 804–805 RE, pp. 327–328

Section 27.2 Invertebrate Chordates (continued)

lancelets are one of the closest living relatives of vertebrates. Humans are more closely

related to lancelets than to any other invertebrate.

Tie It Together

SYNTHESIZE

You plan to visit a large aquarium. You want to be able to identify specific echinoderms and invertebrate chordates among the many sea creatures on display. Create an identification guide by listing two observable features that distinguish each animal below. Features can be physical or behavioral.

Accept all reasonable responses. Listed features must be observable.

Sea Star:	Brittle Star:
• generally five arms; clings to rocks with	moves by rowing with snakelike
suckers on tube feet	movements of thin, flexible arms
• spiny skin	no suckers on tube feet
Sea Urchin:	Sand Dollar:
body encased in test with spines	body encased in test that reflects five-
	part pattern of arms in sea stars
burrows in rocky crevices	• burrows in sand
Sea Lily:	Feather Star:
• sessile	Iong-branched arms radiating upward
	from central area
 flower-shaped body at top of long stalk 	• sessile
Sea Cucumber:	Lancelet:
shaped like a cucumber	• translucent, scaleless skin—can see
	internal body structures through skin
outer body appears leathery	• eel-like body about 5 cm long
Tunicate:	
• small, saclike body with siphons	
• sessile; might live in masses	

Fishes and Amphibians

Before You Read

Use the "What I Know" column to list the things you know about fishes and amphibians. Then list the questions you have about them in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

Hypothesize what factors might be responsible for amphibian species becoming extinct.

Accept all reasonable responses. Most biologists think amphibians are disappearing because the habitats of amphibians are becoming smaller or unusable; but pollution, temperature variations, and other factors have also been suspected.

Fishes and Amphibians

Section 28.1 Fishes

Main Idea	Details		
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.		
	1. Accept all reasonable responses.		
	2		
Review Vocabulary	<i>Use your book or dictionary to define</i> notochord.		
notochord	a flexible rodlike structure that extends the length of the body		
New- Vocabulary	Write the correct term in the left column for each definition below.		
lateral line system	receptors that enable fishes to detect movement in the water and help keep them upright and balanced		
spawning	external fertilization in which male and female fishes release their gametes near each other in the water		
ventricle	chamber of the heart that pumps blood to the gills		
neural crest	in vertebrates, group of cells that develop from the nerve cord and contribute to the development of other important features		
atrium	chamber of the heart that receives blood from the body		
scale	small, flat, platelike structure near the skin surface of most fishes		
swim bladder	gas-filled space in bony fishes that allows a fish to control its depth		
cartilage	tough, flexible material making up the skeletons or parts of skeletons of vertebrates		
operculum	movable flap that covers the gills and protects them		
nephron	filtering unit within the kidney that helps maintain the salt and water balance of the body and remove cellular waste		
Academic- Vocabulary	Define these terms to show their scientific meaning.		
precision	act of moving forward by means of a force that causes motion		
propulsion	characterized by accurate action		

Section 28.1 Fishes (continued)

(Main Idea⁻

(Details—

vertebrates.

Characteristics of Vertebrates

I found this information on page _____. SE, pp. 820–821

,			
RE,	pp.	329-	-330

	Vertebral Column	Neural Crest
Formation	It replaces the notochord during embryonic development.	As the nerve cord is forming in the embryo, a layer of ectoderm pinches off just before the tube closes.
Functions	It surrounds and protects the dorsal nerve.	Important vertebrate features develop from it, including parts of the brain, skull, sense organs, pharyngeal pouches, nerve fibers and insulation, and glands.

Summarize information about two major characteristics of

Characteristics of Fishes

I found this information on page _____. SE, pp. 821–827 RE, pp. 330–335 **Model** the flow of blood through the body of a fish by writing the following terms in the correct boxes in the flowchart.

• gills • throughout body • ventricle • atrium

Blood enters heart

Summarize the reproduction method of most fishes.

Most fishes use an external fertilization process called spawning.

Male and female fishes release gametes near each other in the water.

Embryos feed on the yolk of the egg.

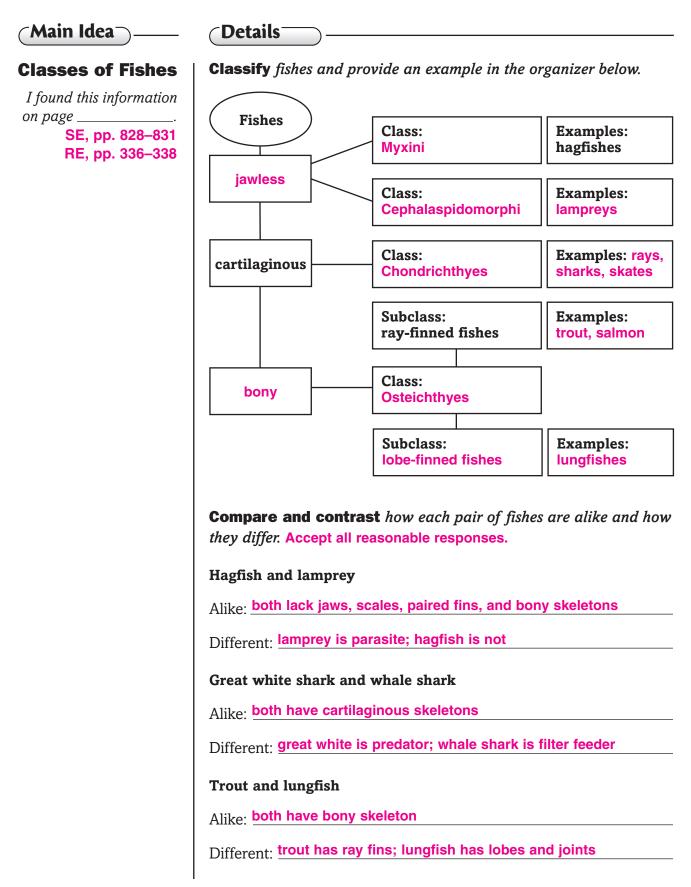
Section 28.1 Fishes (continued)

(Main Idea)
I found this information
on page SE, pp. 821–827
RE, pp. 330–335

(Details

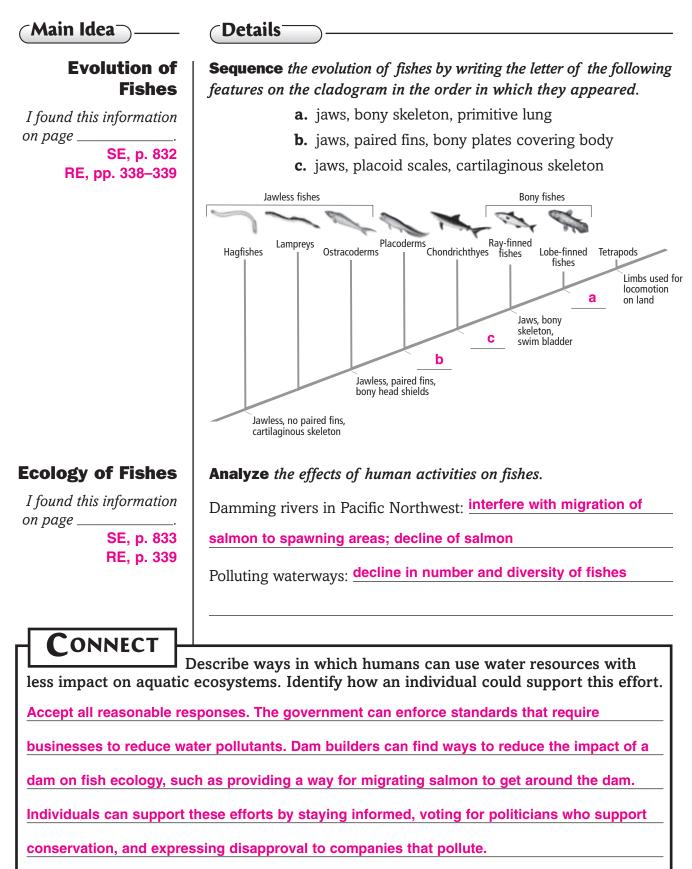
Organize facts about characteristics of fishes. Accept all reasonable responses.

Characteristic	Facts
habitats	most aquatic environments, including the ocean floor and freezing waters of polar regions
adaptive advantages of jaws	enable fishes to prey on a larger range of animals, including fishes that are larger and more active; enable a biting defense
benefits of paired fins	reduce chance of rolling to the side; allow for better steering during swimming
four types of scales and their composition	ctenoid and cycloid: bone; placoid: toothlike materials; ganoid: enamel and bone
functions of gills	take in oxygen from water and give off carbon dioxide
functions of pyloric ceca	secrete enzymes for digestion and absorb nutrients into the bloodstream
functions of nephrons	maintain salt and water balance in body and remove cellular waste from blood
sensory abilities	sense of smell can detect chemicals in the water; color vision; lateral line system to detect movement in the water
process for controlling depth in water	fish sinks when gases diffuse out of swim bladder; fish rises when gases from the blood diffuse into the swim bladder

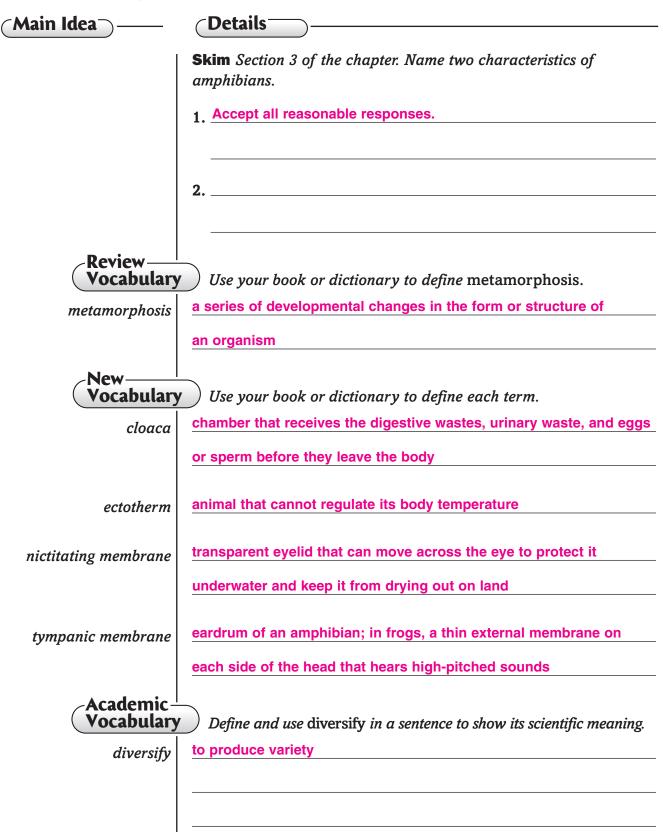

CONNECT

Design a graphic organizer to summarize the adaptations and functions of fish. Accept all reasonable responses.

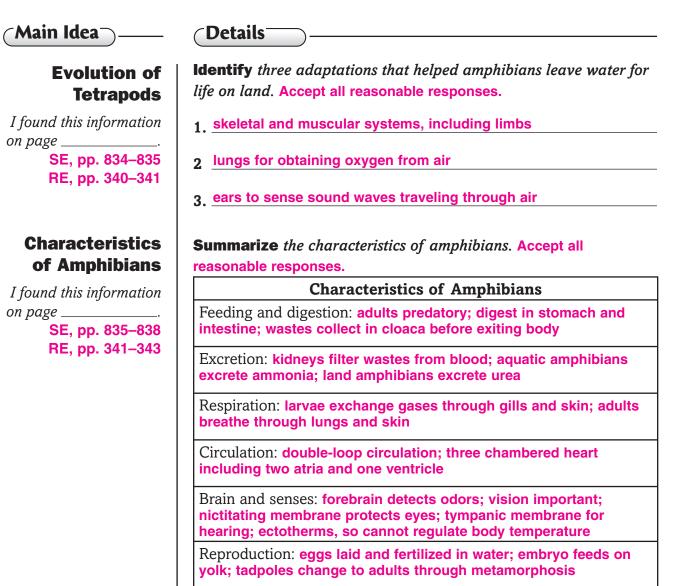
Main Idea	Details
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all headings.
	Read all boldfaced words.
	Read all diagrams.
	Look at all pictures and read the captions.
	Write three facts that you discovered about fishes.
	1. Accept all reasonable responses.
	2
	3
Review- Vocabulary	Use your book or dictionary to define adaptive radiation.
Vocabulary	Use your book or dictionary to define adaptive radiation.
adaptive radiation	Use your book or dictionary to define adaptive radiation. the process of evolution that produces many species from an ancestral species
Vocabulary adaptive radiation	Use your book or dictionary to define adaptive radiation. the process of evolution that produces many species from an ancestral species Use your book or dictionary to define the following term.
adaptive radiation	Use your book or dictionary to define adaptive radiation. the process of evolution that produces many species from an ancestral species


Section 28.2 Diversity of Today's Fishes (continued)

Name


Date

Section 28.2 Diversity of Today's Fishes (continued)



Fishes and Amphibians

Section 28.3 Amphibians

Section 28.3 Amphibians (continued)

Amphibian Diversity

I found this information on page _____. SE, pp. 838–839 RE, p. 343 **Create** a concept map to show characteristics and examples of each order of amphibians. Accept all reasonable responses.

Amphibians			
Order Anura	Order Caudat	ta Order Gymnophiona	
frogs, toads	salamanders,		
lack tails; long legs for jumping; need water for reproduc- tion; toads have poison-secreting gland for protection	long, slim bo with necks ar four legs; sal ders live near water; newts throughout lif	nd tails; laman- r aquatic burrow in soil; feed on worms; skin covers eyes; inter- nal fertilization; lay	

Date _

Section 28.3 Amphibians (continued)

Details

Evolution of Amphibians

I found this information on page _____. SE, p. 840

RE, p. 344

Ecology of Amphibians

I found this information on page _____.

SE, p. 841 RE, p. 344 **Identify** the evolutionary adaptations that make the branching points for each amphibian group.

Amphibian Group	Evolutionary Branching Points
Rhipidistians	lobe-finned, nostril-like structures on top of mouth
Igthyostegans	heavier leg bones, ankle and wrist joints, stronger muscles
Tetrapods	five toes on front and hind limbs
Caecilians	legless
Salamanders	most have four legs
Frogs and toads	four legs, no tail

Describe factors in the worldwide decline of amphibians and explain how each factor affects the ability of amphibians to survive.

Local factors: habitat destruction, such as draining wetlands to build

buildings; introduction of exotic species

Effects: less water available for amphibian reproduction; exotic

species compete with amphibians for food and space or might be

predators of amphibians

Global factors: global climate change, such as changes in

temperature, length of dry season, soil moisture, and rainfall

Effects: can kill amphibians or stress their bodies, making them

more susceptible to disease

SUMMARIZE

Compare amphibians with fishes. List some important evolutionary advances seen in amphibians.

Accept all reasonable responses. Amphibians have a double-loop circulatory system and a

three-chambered heart. Fishes have a single loop and two chambers. Amphibians have lungs

during part of their life cycle; fish breathe by using gills. Most amphibians have limbs.

Reptiles and Birds

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Before You Read Reptiles and Birds	
	• Snakes flick their tongue to smell odors.	Α
	• Some scientists hypothesize that a meteorite crashed to Earth, causing extinction of the dinosaurs.	Α
	All birds have feathers.	Α
	• All birds can fly.	D

Science Journal

Think about the lives of fishes compared to the lives of reptiles and the lives of birds. What adaptations do birds and reptiles have to suit them to life on land and in the air?

Accept all reasonable responses.

Reptiles and Birds Section 29.1 Reptiles

Oetails (Main Idea) **Skim** Section 1 of the chapter. Read the headings and illustration captions. Write three questions that come to mind. 1. Accept all reasonable responses. 2. _____ 3. Review Vocabulary Use your book or dictionary to define embryo. the earliest stage of development of plants and animals after an egg embryo has been fertilized New Vocabulary Use your book or dictionary to define each term. fluid-filled membrane that surrounds a developing embryo inside an amnion amniotic egg egg that is covered with a protective shell and has several internal amniotic egg membranes with fluids contained between the membranes dorsal part of a turtle's shell carapace saclike structure on the roof of a snake's mouth that senses odors Jacobson's organ ventral part of a turtle's shell plastron Academic Vocabulary Define interpretation to show its scientific meaning. a particular adaptation or version of a work, method, or style interpretation

Section 29.1 Reptiles (continued)

(Main Idea)_

(Details-

Characteristics of Reptiles

I found this information on page _____. SE, pp. 852–856 RE, pp. 345–348 **Identify** the adaptations reptiles made to survive on land.

Needed for Life on Land	Adaptation
protect embryo from drying out	amniotic egg
prevent excessive loss of water and minerals from the body	dry, scaly skin; cloaca that reabsorbs water from urine before excretion
exchange gases other than through skin	lungs with larger surface area and ability to inhale and exhale through muscular contraction
crocodile's need for more oxygen delivered to cells to help move its large body	four-chambered heart
snake's need to swallow prey larger than itself	loosely joined bones of the skull and jaw that can spread apart
complex vision and muscle function	larger optic lobes and cerebellum
move faster and bear more body weight	limbs rotated farther under the body; claws on toes

Model a reptilian egg. Label the amnion, embryo, allantois, yolk sac, chorion, and shell.

Diagrams should resemble SE p. 853. Accept all reasonable responses.

Name

Section 29.1 Reptiles (continued)

Diversity of	Contrast characteristics of each of	order in class Reptilia.		
Modern Reptiles	Accept all reasonable responses. Squamata	Crocodilia		
I found this information on page SE, pp. 856–857 RE, pp. 348–349	examples: snakes, lizards key features: lizards: long legs, claws, movable eyelids, and hinge joint on lower jaw, tympanic membranes; snakes: legless, shorter tails, movable lower jaw, lack movable eyelids and tympanic membranes	examples: crocodiles, alligators key features: four-chambered heart, long snout, sharp teeth, pow- erful jaws; alligators: broad snout, upper jaw wider than lower jaw; crocodiles: jaws about same width, teeth visible when mouth closed		
	Testudinata examples: turtles, tortoises key features: shell; vertebrae and ribs fused to inside of carapace; pull in heads and legs for protection; turtles aquatic; tortoises live on land	Sphenodonta examples: tuataras key features: on islands near New Zealand; spiny crest down back; scaly third eye senses sunlight; two rows of teeth in upper jaw, one row in lower jaw		
Evolution of Reptiles I found this information	Identify each animal's ancestors a 	s diapsids, anapsids, or synapsids 		
on page SE, pp. 858–859 RE, p. 349	synapsids→ mammals	<u>anapsids</u> \rightarrow turtle		
Ecology of Reptiles	Analyze how loss of a reptile spece ecosystem.	cies could upset the balance of a		
I found this information	Accept all reasonable responses. Reptiles are both predator and			
on page SE, p. 860 RE, p. 349	prey. Removing a species could cause its prey to increase out of control. Also, predators that feed on the species would decline.			
SUMMARIZE	Evaluate whether a meteorite crasl	ning to Earth could have		
	Discuss the catastrophic effects o	0		
	sponses. The dust cloud caused by t	he crash could have blocked the		
Accept all reasonable re	······································			

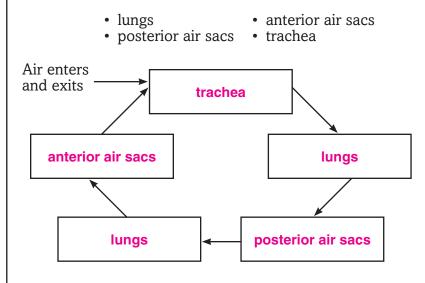
Reptiles and Birds Section 29.2 Birds

Main Idea	Details		
	Skim Section 2 of the chapter. Identify characteristics of birds that make them different from reptiles.		
	Accept all reasonable responses. Present-day birds have feathers,		
	bones with cavities of air, and beaks. Most species can fly. Birds are		
	endotherms with a high metabolic rate. They lay hard-shelled eggs.		
Review Vocabulary	Use your book or dictionary to define terrestrial.		
terrestrial	living on or in land		
New Vocabulary	Use your book or dictionary to define each term.		
air sac	saclike structure located at the anterior and posterior of a bird's		
	respiratory system		
contour feather	type of feather that covers the body, wings, and tail of a bird		
down feather	soft feather located beneath contour feathers		
endotherm	organism that generates its body heat internally by its own		
	metabolism		
feather	specialized outgrowth of the skin of birds that provides insulation		
	and enables flight		
incubate	maintain favorable conditions for hatching		
preen gland	gland located near the base of a bird's tail that secretes oil for		
	waterproofing feathers		
sternum	breastbone		

Section 29.2 Birds (continued)

(Main Idea)

Characteristics of Birds


I found this information on page _____. SE, pp. 861–866 RE, pp. 350–353

			• •		
υ	et	ta	l	S	

Model a contour feather and a down feather. Label the structures. Write brief captions describing the characteristics or functions of each feather. Accept all reasonable responses. For each feather, students should label the shaft and barbs.

Down feathers	Contour feathers
The caption for the down feather should note that the loose structure can trap air for insulation.	The caption for the contour feather should note that the barbs are joined with hooks, and that preening rejoins separated barbs.

Sequence the respiratory organs of a bird. Place the organs from the list below in the proper sequence. One organ appears more than once.

Analyze how eye position reflects a bird's life habits. Accept all reasonable responses. Predatory birds need to focus both

eyes on distant prey, so their eyes are in the front of their head. The

eyes of grain-feeding birds are on the sides of their head, enabling

them to detect predators in any direction.

Section 29.2 Birds (continued)

(Main Idea)_

Diversity of Modern Birds

I found this information on page _____. SE, pp. 866–867 RE, p. 353

Evolution of Birds

I found this information on page _____. SE, p. 868 RE, p. 354

Ecology of Birds

I found this information on page _____. SE, p. 869

RE, p. 354

(Details-

Identify the order and one member of the order for each distinguishing characteristic listed below.

Characteristic	Order/Member
builds nests in cavities	Piciformes/woodpecker
flipper-like wings; solid bones	Sphenisciformes/penguin
flightless; includes largest living birds	Struthioniformes/ostrich
sing; feet adapted for perching	Passeriformes/blue jay
marine; tube-shaped nostrils	Procellariiformes/albatross
long legs for wading	<i>Ciconiiformes</i> /heron
nocturnal; large eyes; talons	Strigiformes/owl
aquatic; round beak	Anseriformes/duck

Date _

Compare features of dinosaurs found in fossil records that are similar to features of present-day birds.

One species of dinosaur had a coat of downy, featherlike fibers.

Two others had feathers on their front appendages and tails.

Archaeopteryx had asymmetrical feathers and a brain much like

present-day birds. Another species had features for hovering flight.

Analyze how birds are key to the survival of many plants. Birds disperse seeds. Seeds eaten or caught in feathers move with

_____.

birds to new locations, where the seeds are eliminated after digestion or

drop off feathers. Hummingbirds pollinate plants as they feed on nectar.

SUMMARIZE

Compare and contrast ectothermy and endothermy.

Accept all reasonable responses. Endotherms can alter their metabolism to regulate their body

temperature and produce a large amount of ATP to power complex movement. Ectotherms

must regulate body temperature through behavior. Endotherms must eat large amounts of

food to maintain their high metabolic rate. Ectotherms need less food energy.

Г

Tie It Together

	SUMMARIZE
Create a profile of one bird and one reptile common to your area. Identify the animal's order and species. Sketch et characteristics that distinguish it from other birds or reptiles life habits from your research. Point out characteristics on the the animal's life habits.	ach animal and label . Write a brief summary of its
Accept all reasonable responses.	
Reptile species:	
Order:	
Bird species:	
Order:	

Mammals

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- **1.** Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Mammals	After You Read
	• If an animal has hair, it is a mammal.	Α
	 Mammals produce their body heat internally. 	Α
	 A duck-billed platypus is not a true mammal because it lays eggs. 	D
	The first mammals probably evolved from reptiles.	Α

Science Journal

Mammals are one of the most successful groups of animals on Earth. Think about a specific mammal and some of its characteristics. Write about how you think some of these characteristics help the mammal to survive and be successful.

Accept all reasonable responses.

Date _____

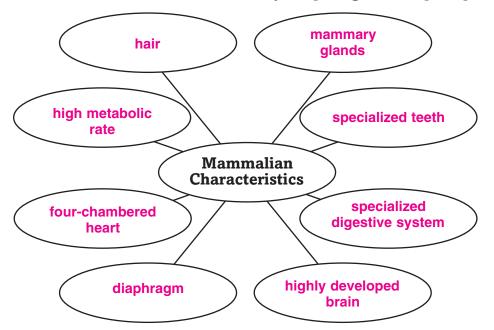
Mammals

Main Idea	Details	
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.	
	1. Accept all reasonable responses.	
	2	
Review Vocabulary	<i>Use your book or dictionary to define</i> metabolic rate.	
metabolic rate	the rate at which all the chemical reactions that occur within an	
	organism take place	
New- Vocabulary	Write the correct vocabulary term in the left column for each definition below.	
mammary gland	produces and secretes milk that nourishes developing young	
diaphragm	sheet of muscle located beneath the lungs that separates the chest cavity from the abdominal cavity; its contraction and relaxation allows air to move into and out of the lungs	
cerebral cortex	highly folded outer layer of the cerebrum; responsible for coordinating conscious activities, memory, and ability to learn	
cerebellum	part of the brain responsible for balance and coordinating movement	
gland	group of cells that secretes fluid to be used elsewhere in the body	
uterus	saclike muscular organ in which embryos develop	
placenta	organ that provides food and oxygen to and removes waste from the developing young	
gestation	amount of time the young stay in the uterus until they are born	
Academic- Vocabulary	Define retain to show its scientific meaning.	
retain	to keep in possession or use	

Section 30.1 Mammalian Characteristics (continued)

(Details

Hair and Mammary Glands


I found this information on page _____. SE, pp. 880–881

RE, pp. 355–356

Analyze the importance of hair by identifying the six functions of hair and giving an example of each function. Accept all reasonable responses.

Functions	Examples
insulation	a fox's fur traps body heat
camouflage	a tiger's stripes help it blend into its habitat
sensory devices	a seal uses its sensitive whiskers to track prey
waterproofing	a sea otter's hair keeps water from reaching the skin
signaling	a white-tailed deer raises its tail to show the white underside for others to follow
defense	a porcupine's quills stab predators that touch it

Organize mammalian characteristics by completing the concept map.

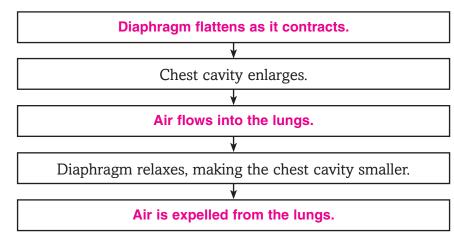
Other Characteristics

I found this information on page _____. SE, pp. 881–888 RE, pp. 356–361

Section 30.1 Mammalian Characteristics (continued)

⊂Main Idea⁻

Name


I found this information on page _____. SE, pp. 881–888 RE, pp. 356–361

Deta	ils—
------	------

Classify each description below as a characteristic of insectivores, herbivores, carnivores, or omnivores.

Classification	Characteristic	
herbivores	have longest digestive tract	
omnivores	feed on both plants and animals	
insectivores	have long, curved incisors to seize prey	
carnivores	have long, sharp canines to pierce prey	

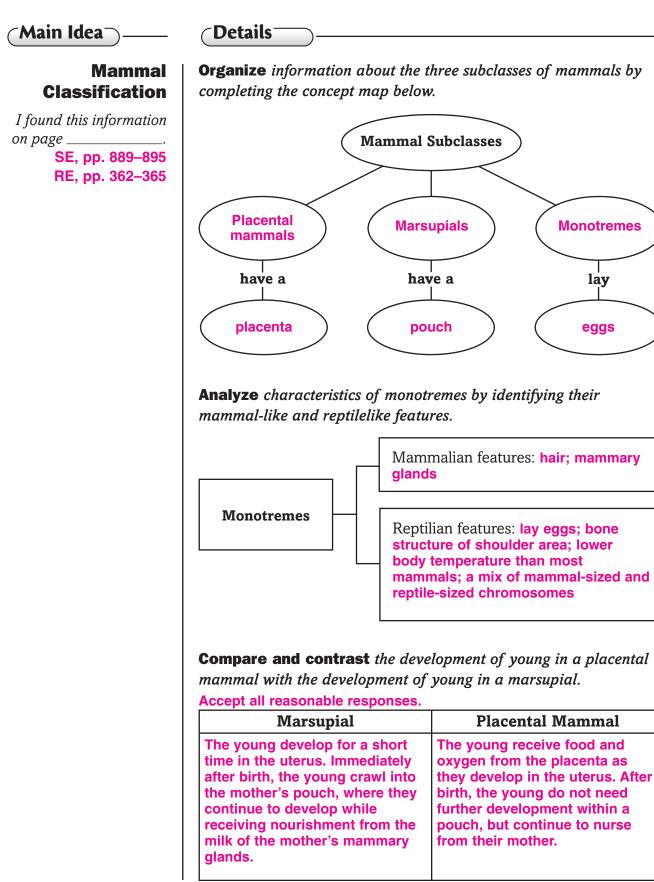
Sequence how the diaphragm works in respiration.

Describe the functions of each type of gland listed below.

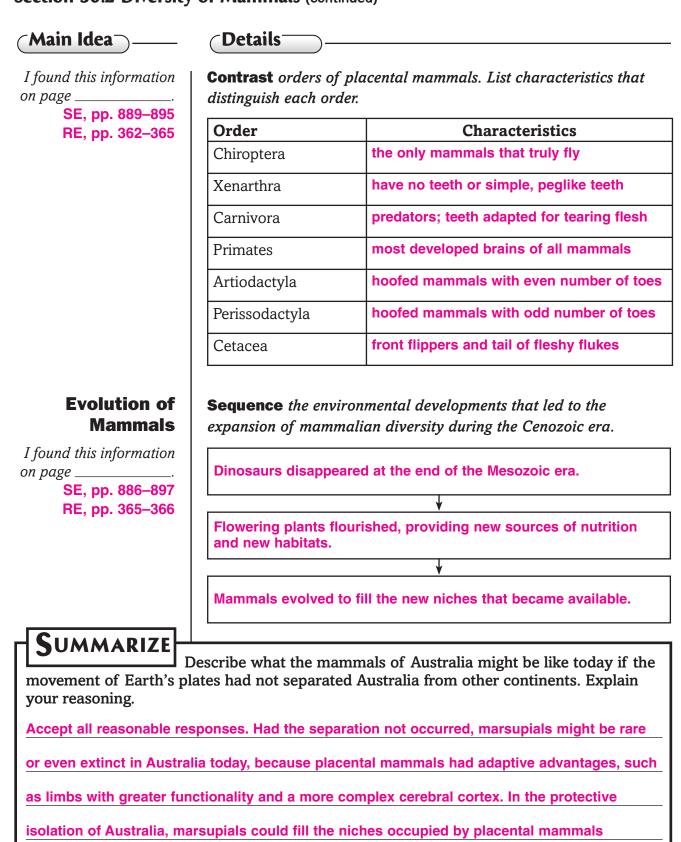
Sweat glands: help maintain body temperature	Scent glands: mark territory and attract a mate
Mammary glands: produce and secrete milk to nourish developing young	Oil glands: maintain quality of hair and skin

SUMMARIZE

Create a graphic organizer showing characteristics of mammals. The organizer should distinguish characteristics common to all mammals from characteristics common to only certain species. Accept all reasonable responses.


Date _____

Mammals


Section 30.2 Diversity of Mammals

Main Idea	Details	
	Scan Section 2 of the chapter. Use the checklist as a guide.	
	Read all section titles.	
	Read all boldfaced words.	
	Read all tables and graphs.	
	Look at all illustrations and read the captions.	
	Think about what you already know about mammals.	
	Write two facts that you discovered about the subgroups of mammals.	
	1. Accept all reasonable responses.	
	2	
Review Vocabulary	Use your book or dictionary to define chromosome.	
chromosome	cell structure that carries genetic material that is copied and passed	
	from generation to generation of cells	
New Vocabulary	Use your book or dictionary to define the following terms.	
marsupial	pouched mammal that has a short period of development in the	
	uterus	
monotreme	mammal that reproduces by laying eggs	
placental mammal	mammal that has a placenta and gives birth to young that do not	
	need further development within a pouch	
therapsid	extinct vertebrate with both mammalian and reptilian features, from which the first mammals probably arose	

Section 30.2 Diversity of Mammals (continued)

Section 30.2 Diversity of Mammals (continued)

SYNTHESIZE

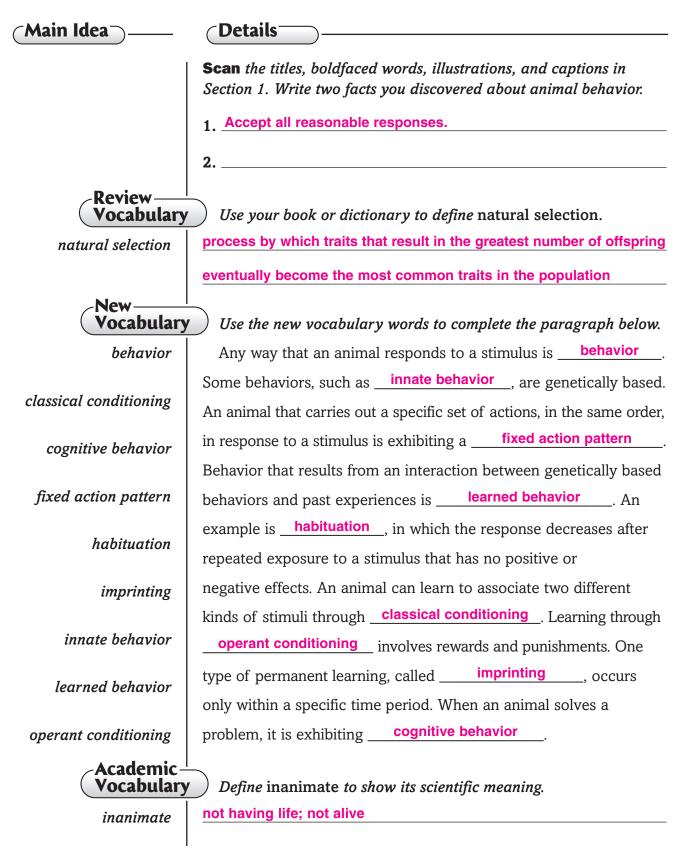
Tie It Together

Describe the ideal adaptations that would be needed by

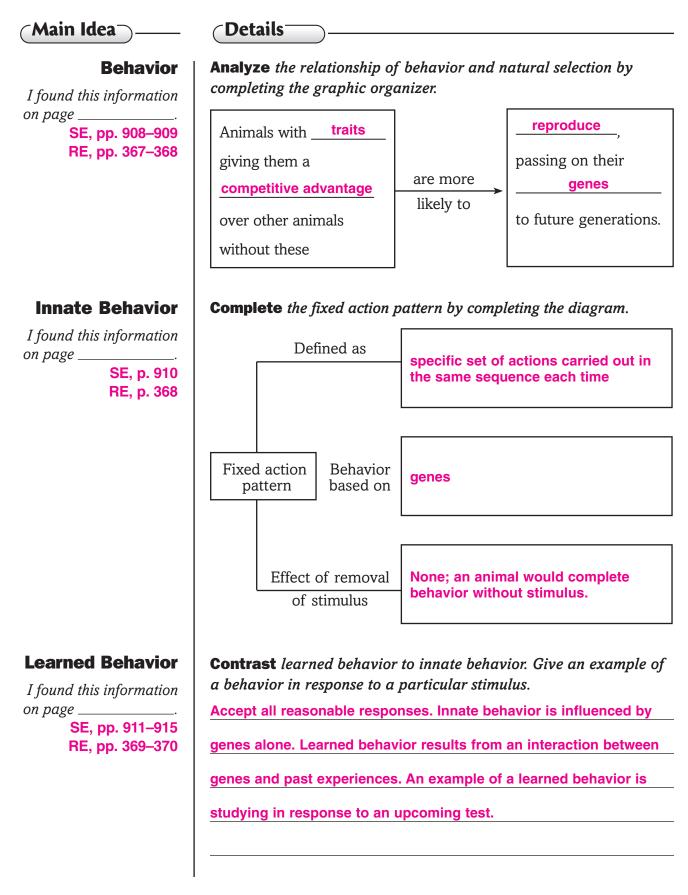
a mammal who lived in a high desert with broad temperature ranges, limited food and water, and predatory birds and reptiles. Identify the likely distinguishing characteristics in the areas of hair functions, teeth, senses, limb types, movement, and metabolic rate. Accept all reasonable responses.

Animal Behavior

Before You Read


Use the "What I Know" column to list the things you know about animal behavior. Then list the questions you have about animal behavior in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned


Science Journal	
Describe two behavior patterns in humans.	
Accept all reasonable responses.	

Animal Behavior

Section 31.1 Basic Behaviors

Section 31.1 Basic Behaviors (continued)

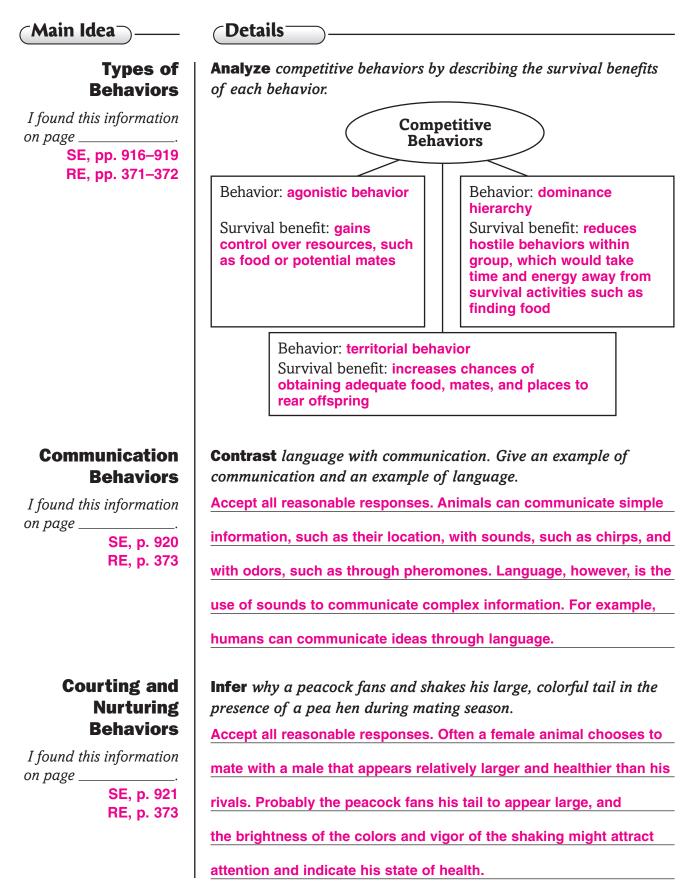
Section 31.1 Basic Behaviors (continued)

(Main Idea)

I found this information on page _____. SE, pp. 911–915 RE, pp. 369–370

(Details

Organize information about the different kinds of learned behavior in the chart. Accept all reasonable responses.


Learned Behavior	Description	Example
Habituation	lack of response after repeated exposure to a stimulus with no positive or negative effects	a horse ignoring noisy cars that pass by its pasture
Classical conditioning	learning to associate two different kinds of stimuli	a cat rushing to its food bowl at the sound of a can opener because its food is opened with a can opener
Operant conditioning	learning to associate a response to a stimulus with a reward or punishment	learning to follow the rules when playing a sport to avoid a penalty
Imprinting	learning that can occur only within a specific time period in an animal's life and is permanent	a duck following its mother because the mother was the first thing the duck saw after birth
Cognitive behavior	thinking, reasoning, and processing information to understand complex concepts and solve problems	a chimpanzee using a stone to crack open nuts

SUMMARIZE

Animals respond to both internal and external stimuli. Give an example of a response to an internal stimulus and a response to an external stimulus. Accept all reasonable responses. Students might note that feelings of hunger are an internal stimulus that prompts them to go to the refrigerator to find something to eat. They might suggest that the external stimulus of a parent who promises a reward might motivate them to clean up their room.

Animal Behavior Section 31.2 Ecological Behaviors ⊂Main Idea¬ **Oetails Skim** Section 2 of the chapter. Write three questions that come to mind from reading the headings and illustration captions. 1 Accept all reasonable responses. 2. _____ 3. **Review**-Vocabulary Use your book or dictionary to define colony. group of unicellular or multicellular organisms that live together in colony close association New Vocabulary Write the correct vocabulary term in the left column for each definition below. agonistic behavior threatening or combative interaction between two individuals of the same species dominance hierarchy ranking within a group, in which a top-ranked animal gets access to resources without conflict from others in the group territorial behavior attempt to adopt and control a physical area over other animals of the same species foraging behavior finding and eating food migratory behavior moving long distances seasonally to new locations circadian rhythm cycle that occurs daily language auditory communication in which animals use vocal organs to produce groups of sounds that have shared meanings courting behavior behavior designed to attract a mate nurturing behavior parental care of offspring in early stages of development altruistic behavior action that benefits another individual at a cost to the actor

Section 31.2 Ecological Behaviors (continued)

Section 31.2 Ecological Behaviors (continued)

Oetails

← Main Idea → _

Cooperative Behaviors

I found this information on page _____. SE, p. 922 RE, p. 374 **Analyze** why an animal might engage in altruistic behavior, even though the behavior does not promote its own reproductive success.

Accept all reasonable responses. The theory of kin selection holds

that altruistic behavior evolves because it increases the number of

copies of a gene that is common to a population. As nonreproductive

members work to feed and protect the reproductive members of the

colony, they ensure that genes similar to their own will pass to

future generations.

Advantages and Disadvantages

I found this information on page _____.

SE, p. 923 RE, p. 374 **Organize** the costs and benefits for survival and reproductive success of the behaviors listed below. Accept all reasonable responses.

Behavior	Benefit	Cost
Geese fly south before winter in North America.	increases chances for survival by moving to an area where food and climate conditions are favorable	moving long distances consumes energy and increases chances of predation
Male lions fight to establish a territory.	promotes survival and reproductive success by controlling an area containing resources, such as food and mates	fights to gain and defend a territory cost energy and can result in injury
Hawk parents fly many kilometers daily to find food for their young.	offspring have increased chance of survival, ensuring the continuation of the parents' genes	energy spent in caring for offspring can endanger the parents' health and safety

You have dominance hierarchies in your life similar to some animals. Although they function differently, some of the benefits are the same. Describe one of these hierarchies and its advantages.

Accept all reasonable responses. There is a dominance hierarchy in my classroom. My

teacher is dominant. He or she makes the classroom rules and leads the class in discussions.

This makes the class flow more smoothly and be more organized so we can learn more.

Tie It Together

Observe animal behaviors and take notes. Select two

FURTHER INQUIRY

behaviors you observe, and analyze them, using the forms below. Conduct further research, as needed, to complete your behavior report thoroughly. Accept all reasonable responses.

Animal:

Description of behavior:

Innate or learned?

Type of behavior:

Description of stimulus:

Internal or external?

Advantages of behavior for survival or reproductive success:

Costs of behavior in terms of survival or reproductive success:

Animal:

Description of behavior:

Innate or learned?

Type of behavior:

Description of stimulus:

Internal or external?

Advantages of behavior for survival or reproductive success:

Costs of behavior in terms of survival or reproductive success:

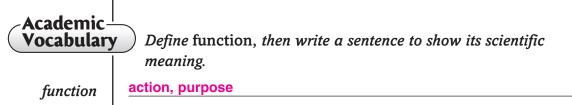
Integumentary, Skeletal, and Muscular Systems

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Before You Read	Integumentary, Skeletal, and Muscular Systems	After You Read
	• Skin is an organ.	Α
	 Use of a tanning bed will not put you at risk for skin cancer. 	D
	• All joints of the skeleton allow the bones to move.	D
	 Some muscles in your body are not under your conscious control. 	Α


Science Journal

Think about a sport you or someone you know plays. Describe how your skin, skeleton, and muscles help you play that sport.

Accept all reasonable responses.

Integumentary, Skeletal, and Muscular Systems

Section 32.1 The Integumentary System ⊂Main Idea⁻ Details **Scan** Use the checklist below to preview Section 1 of the chapter. Read all section titles. Read all boldfaced words. Look at all pictures and read the captions. Think about what you already know about skin. Write two facts you discovered about skin as you scanned the section. 1 Accept all reasonable responses. 2. Review /ocabularv Use your book or dictionary to define integument. an enveloping layer of an organism integument New-Vocabularv Write the correct vocabulary term in the left column for each definition below. melanin a pigment manufactured by cells in the inner layer of epidermis that protects from ultraviolet radiation sebaceous gland structure that produces oil that lubricates skin and hair keratin protein found in the outer layers of epidermal cells that waterproofs and protects the cells and tissues underneath hair follicle narrow cavity in the dermis from which hair cells grow epidermis the outer superficial layer of skin dermis the inner, thicker layer of skin

on page _

Date

Section 32.1 The Integumentary System (continued)

(Main Idea)—

The Structure

SE, pp. 936–938

RE, pp. 375–376

I found this information

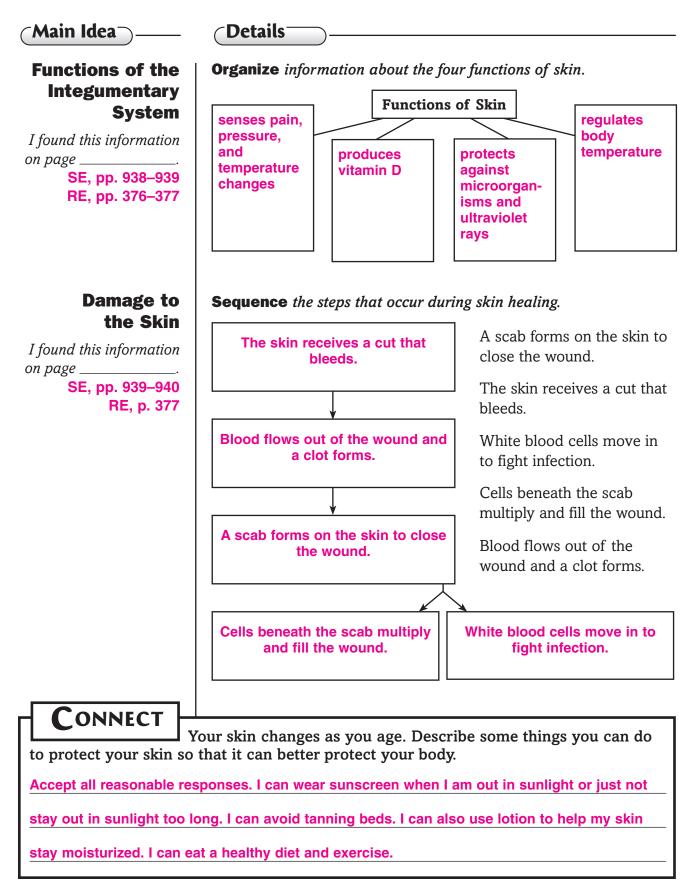
of Skin

Oetails

Analyze the four types of body tissues in the integumentary system, and give the function of each one.

- 1. epithelial tissue; covers surfaces of the body
- 2. connective tissue; provides support and protection
- 3. muscle tissue; involved in body movement
- 4. nerve tissue; body's communication network

Classify each phrase as describing the dermis or epidermis. Write each phrase under the correct skin layer.


- consists of connective tissue
- has inner and outer portions
- contains dead cells that shed
- contains keratin
- contains melanin

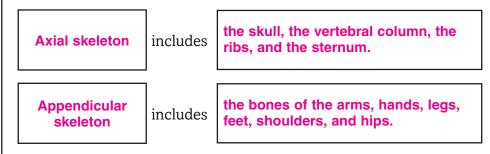
- contains muscle fibers, nerve cells, sweat glands, and oil glands
- outer layer of skin
- inner, thicker portion of skin

Main Layers of Skin		
Dermis Epidermis		
consists of connective tissue; contains muscle fibers, nerve cells, sweat glands, and oil glands; inner, thicker portion of skin	has inner and outer portions; contains dead cells that shed; contains keratin; contains melanin; outer layer of skin	

Summarize *the diagram of the integumentary system in your book.* Accept all reasonable responses. Encourage students to describe how each part looks and the arrangement of the parts around each other.

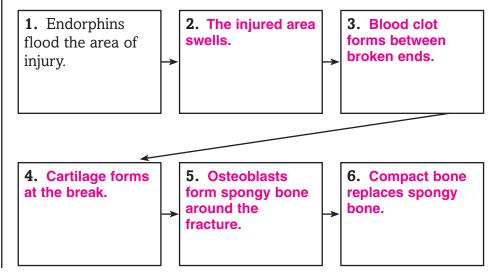
Section 32.1 The Integumentary System (continued)

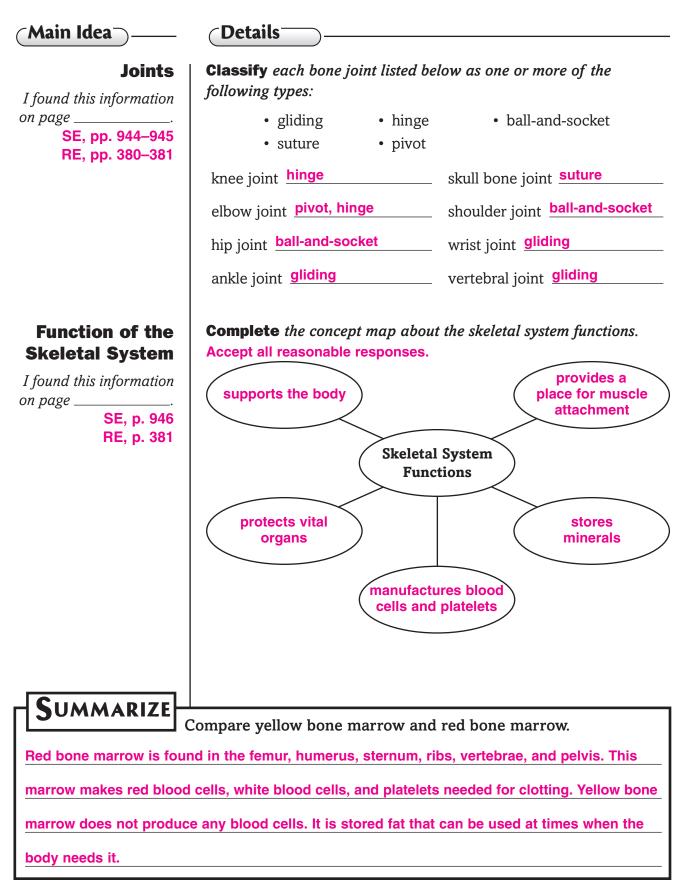
Integumentary, Skeletal, and Muscular Systems Section 32.2 The Skeletal System **Oetails** (Main Idea) **Skim** Section 2 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions. 1 Accept all reasonable responses. 2. _____ **Review**-Vocabularv Use your book or dictionary to define cartilage. tough, flexible connective tissue that forms the skeleton of embryos cartilage and later covers the surface of bones that move against each other in joints New Vocabulary Use your book or dictionary to define each term. dense and strong outer layer of all bones compact bone living bone cell osteocyte less dense bone with cavities containing bone marrow spongy bone substance in bone that produces red and white blood cells and red bone marrow platelets substance in bone that consists of stored fat yellow bone marrow bone-forming cell osteoblast formation of bone from osteoblasts ossification cell that breaks down bone cells osteoclast tough band of connective tissue that attaches one bone to another ligament


Section 32.2 The Skeletal System (continued)

Structure of the Skeletal System

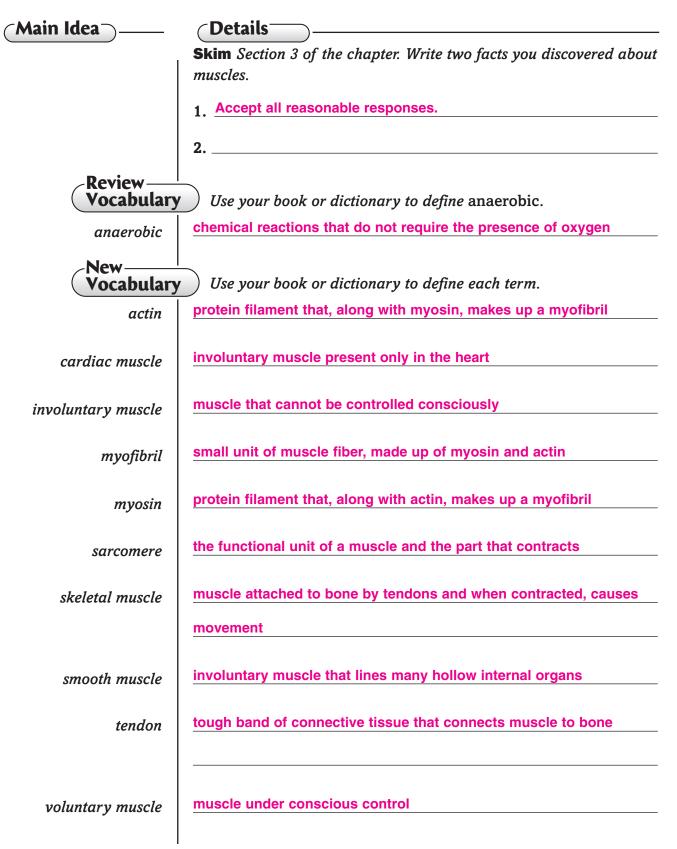
I found this information on page _____. SE, pp. 941–943 RE, pp. 378–380 (Details


Identify the two main divisions of the human skeleton and the bones each includes.


Create a sketch of a bone. Show and label compact bone, spongy bone, and the location of osteons. Use the figure in your book to help you.

Students should sketch a simple bone showing compact bone, spongy bone, and osteons in the area along the length of compact bone. Sketches may resemble those in the book. Accept all reasonable responses.

Sequence the steps in the repair of fractured bone. The first step has been completed for you. Accept all reasonable responses.



Section 32.2 The Skeletal System (continued)

Integumentary, Skeletal, and Muscular Systems

Section 32.3 The Muscular System

Date _

Section 32.3 The Muscular System (continued)

(Main Idea)

(Details

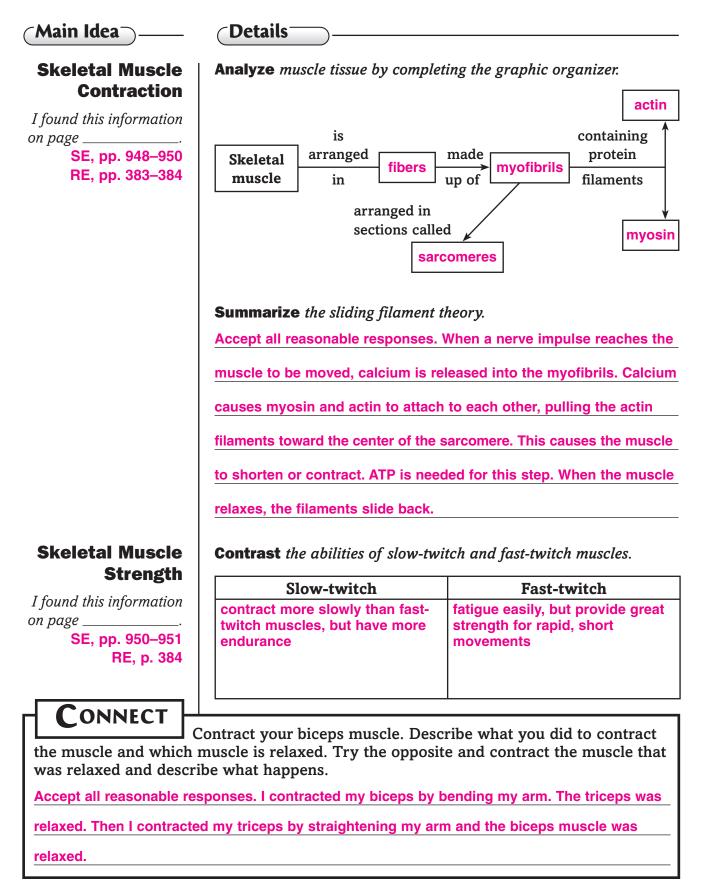
Three Types of Muscle

I found this information on page _____. SE, pp. 947–948 RE, pp. 382–383 **Identify** the three types of muscles. Classify each as voluntary or involuntary.

- 1. smooth muscle—involuntary
- 2. cardiac muscle—involuntary
- 3. skeletal muscle—voluntary

Distinguish *between voluntary muscles and involuntary muscles.* Voluntary muscles are muscles you have to think about moving.

They contract under conscious control. Involuntary muscles are


muscles that contract by themselves. You do not consciously

control involuntary muscles.

Model the structure and appearance of each type of muscle. Label the nucleus and striation if the muscle is striated. Next to each muscle, describe its function.

Muscle Model	Muscle Function
Smooth Muscle	for example,
Sketches might resemble Figure 32.11 on page	moves food
948 of the SE. The muscle fiber and nucleus	through the
should be labeled.	digestive tract
Cardiac Muscle	allows heart to
The muscle fiber, nucleus, and striation should	contract efficiently
be labeled.	and rhythmically
Skeletal Muscle The muscle fiber, nucleus, and striation should be labeled.	contraction causes movement

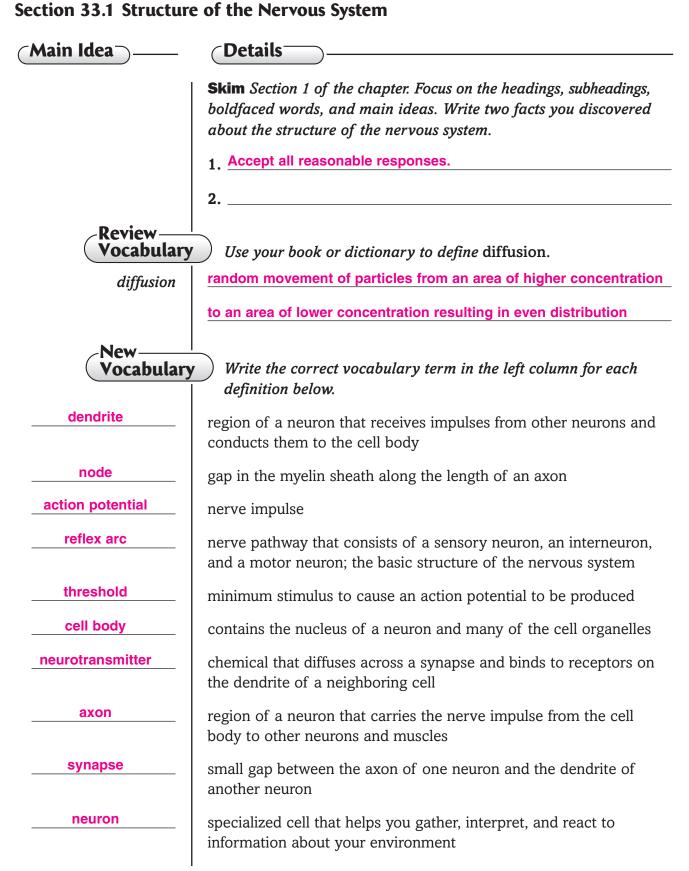
Section 32.3 The Muscular System (continued)

Nervous System

Before You Read

Use the "What I Know" column to list the things you know about the nervous system. Then list the questions you have about this system in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned


Science Journal

Think about a time you have been frightened. Describe how you felt and how your body responded.

Accept all reasonable responses.

Date

Nervous System

Section 33.1 Structure of the Nervous System (continued)

(Main Idea)-

on page _____

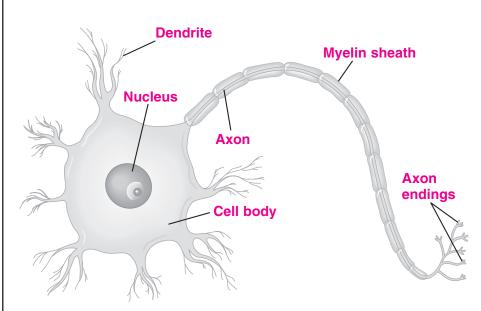
Neurons

I found this information

A Nerve Impulse

I found this information

SE, pp. 963–967


RE, pp. 386–388

on page ___

SE, pp. 962–963 RE, pp. 385–386

Details—

Label the neuron. Include the axon, axon endings, cell body, dendrites, nucleus, and myelin sheath. Draw arrows to show the direction that impulses move through the neuron.

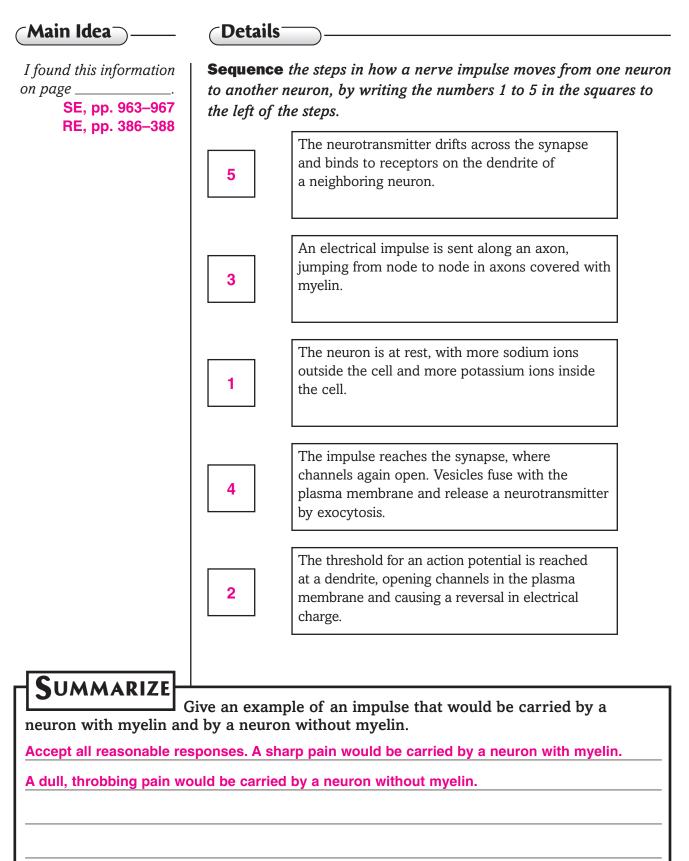
Arrows should point from the dendrite to the cell body and away from the cell body through the axon.

Analyze how the myelin sheath increases the speed at which impulses move.

The myelin sheath keeps the ions from diffusing across the plasma

membrane of the axon. This makes the ions move quickly down the

axon until they find a gap in the sheath through which they can pass.


This makes the impulses jump from gap to gap so they move faster.

Evaluate how neurotransmitters move across synapses. Write one question and answer about the diagram above.

Question: Accept all reasonable responses.

Answer: _____

Section 33.1 Structure of the Nervous System (continued)

Nervous System Section 33.2 Organization of the Nervous System Main Idea **Oetails Skim** Section 2 of the chapter, taking note of headings, illustrations, photos, and captions. Then identify two facts that drew your interest. Fact 1: Accept all reasonable responses. Fact 2: _____ Review Vocabulary Use your book or dictionary to define sensory. conveying nerve impulses from the sense organs to the nerve centers sensory New-Vocabularv Classify each term in the left column as being part of the nervous system or part of the brain. Write a brief definition of each term. Part of Nervous System Part of Brain (4 terms) (4 terms) autonomic nervous autonomic nervous system: cerebrum: largest part of the brain, responsible for thought part of the peripheral nervous system system that carries impulses processes involved with from the central nervous system learning, memory, language, to the heart and other organs; speech, voluntary body cerebrum involuntary movement, and sensory perception hypothalamus parasympathetic nervous system: branch of the autonomic hypothalamus: brain structure that regulates body temperature, nervous system most active when medulla oblongata thirst, appetite, water balance, the body is relaxed blood pressure, sleep, aggression, fear, and sexual somatic nervous system: part behavior parasympathetic of the peripheral nervous nervous system system that relays information from sensory receptors to the medulla oblongata: part of the central nervous system and brain stem that helps control pons from the central nervous system breathing rate, heart rate, and to the skeletal muscles blood pressure somatic nervous system sympathetic nervous system: pons: part of the brain stem that helps control breathing rate branch of the autonomic nervous system most active in sympathetic nervous times of emergency and stress system

Section 33.2 Organization of the Nervous System (continued)

(Main Idea)__

The Central Nervous System

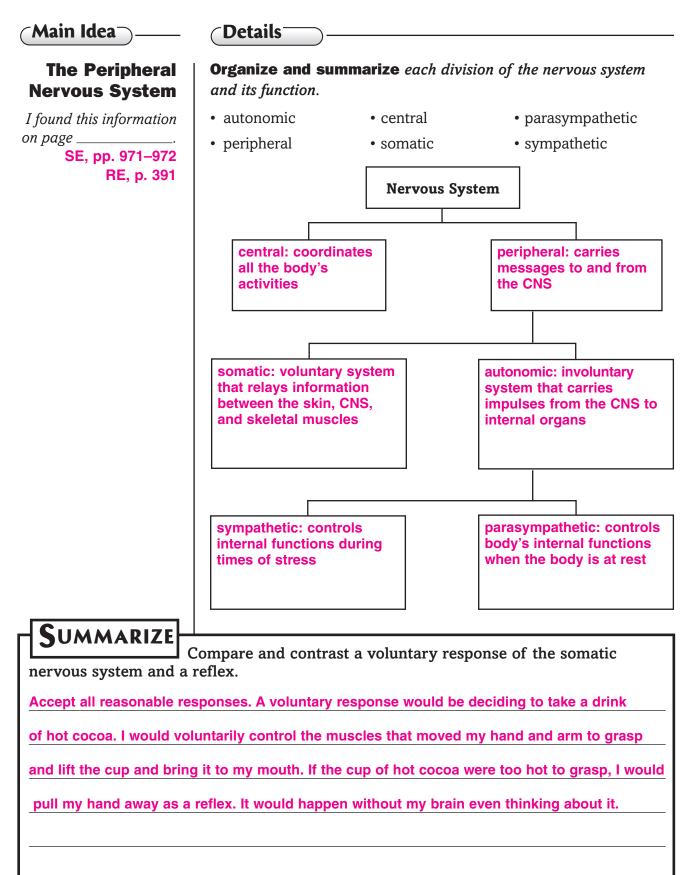
I found this information on page _____. SE, pp. 968–970 RE, pp. 389–391 (Details —

Identify two body parts that make up the central nervous system.

1. brain 2. spinal cord

Compare and contrast the central nervous system and the peripheral nervous system.

The central nervous system coordinates all of the body's activities.

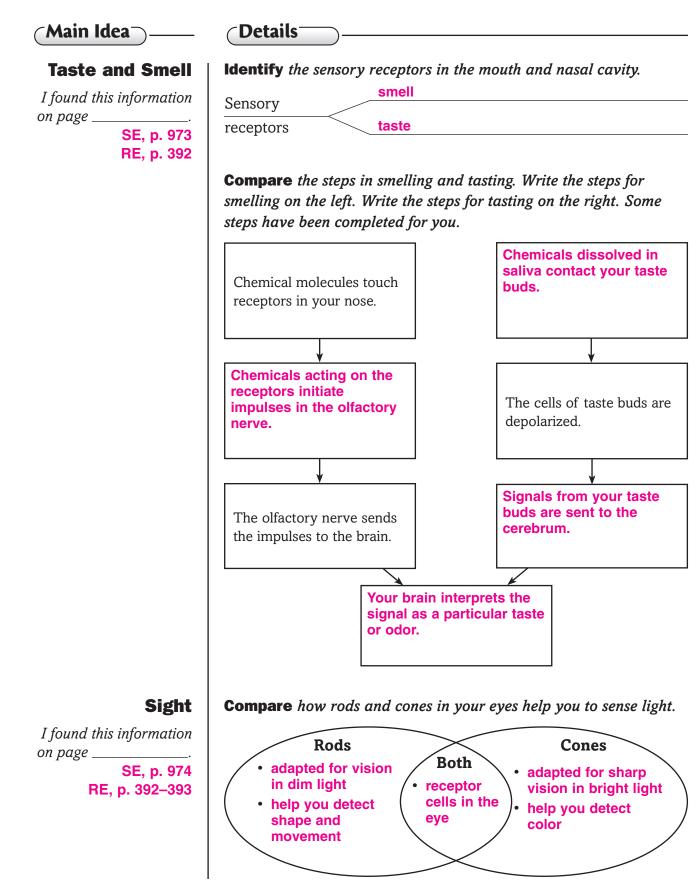

The peripheral nervous system carries messages to and from the

central nervous system.

Organize the information about three main sections of the brain in the table below.

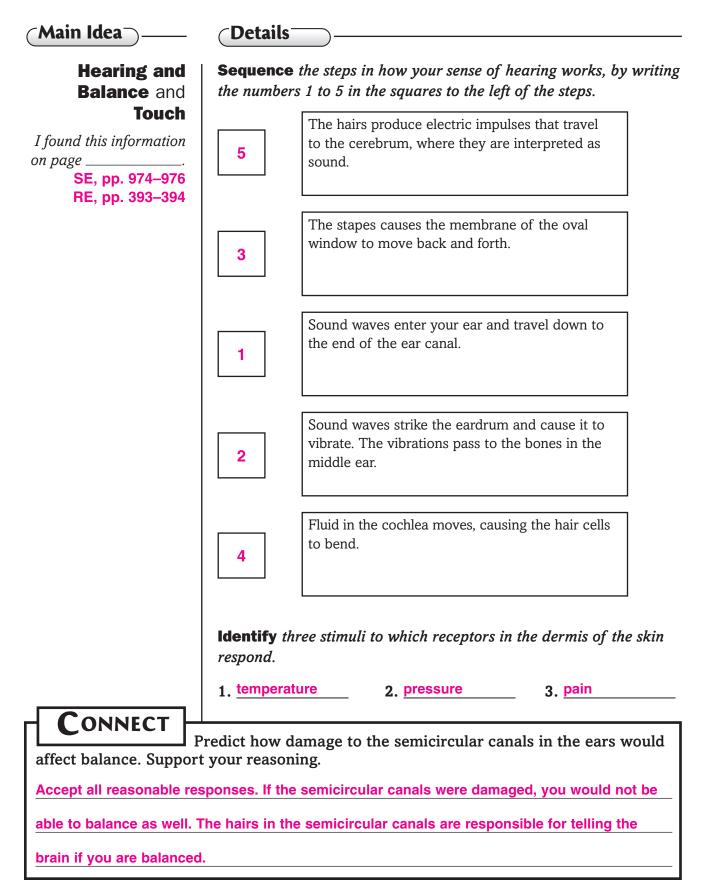
	Cerebrum	Cerebellum	Medulla Oblongata
Description	divided into two halves that are connected by bundles of nerves; halves are called hemispheres	located at the back of the brain	part of the brain stem
Function	controls all conscious activity, intelligence, memory, language, skeletal muscle, and senses	controls balance, posture, and coordination	controls involuntary activities such as breathing and heart rate

Section 33.2 Organization of the Nervous System (continued)

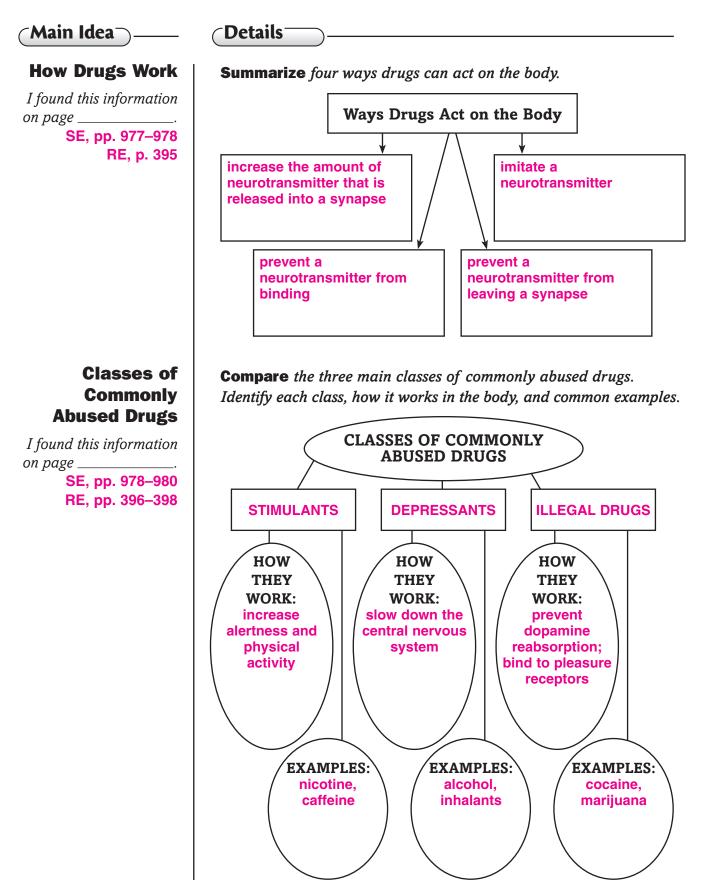


Nervous System Section 33.3 The Senses

Main Idea	(Details)
	Skim Section 3 of the chapter. Write two questions that come to mind from reading the headings and illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	<i>Use your book or dictionary to define</i> stimulus.
stimulus	anything in the internal or external environment that causes an
	organism to react
New- Vocabulary	
cochlea	snail-shaped structure in the inner ear containing fluid and hairs;
	produces electrical impulses that the brain interprets as sound
lens	structure of the eye that inverts an image, focuses it, and projects it onto the retina
retina	thin layer of tissue found at the back of the eye made up of light
	receptors and sensory neurons
rod	receptor cell in the retina that is adapted for vision in dim light;
	also helps detect shape and movement
semicircular canal	structure in the inner ear containing fluid and hairs that help the
	body maintain balance
taste bud	sensory receptor located on the tongue; involved in taste perception
Academic- Vocabulary	Define interpret to show its scientific meaning.
interpret	to explain or tell the meaning of


Date __

Section 33.3 The Senses (continued)


Nervous System 339

Section 33.3 The Senses (continued)

Nervous System Section 33.4 Effects of Drugs ⊂Main Idea-**Oetails** Scan Section 3 of the chapter and identify two legal and two illegal drugs. Accept all reasonable responses. Legal Drugs **Illegal Drugs** 1. 1. 2. 2. Review Vocabulary Use your book or dictionary to define threshold. the certain strength of a stimulus that causes an action potential to be threshold generated New Vocabulary Use your book or dictionary to define the following terms. psychological and/or physiological drug dependence addiction type of drug that lowers or depresses the activity of the nervous depressant system neurotransmitter found in the brain that is involved with the control dopamine of body movement and feelings of pleasure or reward chemical substance that affects body function drug drug that increases the activity of the central and sympathetic stimulant nervous systems the body becomes less responsive to a drug and an individual needs tolerance larger or more frequent doses of the drug to achieve the same effect

Section 33.4 Effects of Drugs (continued)

Date _____

Section 33.4 Effects of Drugs (continued)

Main Idea	Details	
I found this information on page SE, pp. 978–980 RE, pp. 396–398	marijuana. 80	
	Long-term risks: lung cance	r, emphysema
Tolerance and Addiction	Identify the following scena dependence, or psychologica	rios as tolerance, physiological l dependence.
I found this information on page SE, p. 981 RE, p. 398	psychological dependence	— "I just can't go to that party without having some alcohol. I need it to feel like I fit in."
	tolerance	"I used to take two painkillers a day, but lately I have to take three or four pills to get the same effect as before."
	physiological dependence	— "When I try to go for a day without my caffeine, I get a terrible headache and nausea."
	naluza urbu somo stimulanta	are illegal and others are not
		are illegal and others are not. tamines have a much greater effect on
the nervous system than	stimulants like caffeine. For example	ample, amphetamines cause irregular
heartbeat, chest pain, an	d paranoia. Caffeine causes inc	reased alertness and mood swings. Its
adverse effects are much	less severe than amphetamine	s

Tie It Together

You have read about the structures and functions of the human nervous system, as well as the effects of drugs on it. Create a mini poster that informs readers of the importance of the nervous system to the body's health.

Accept all reasonable responses.

Circulatory, Respiratory, and Excretory Systems

Before You Read

Before you read the chapter, respond to these statements. Accept all reasonable responses.

- 1. Write an **A** if you agree with the statement.
- **2.** Write a **D** if you disagree with the statement.

Before You Read	Circulatory, Respiratory, and Excretory Systems	After You Read
	• Your pulse rate is the number of times your heart beats each minute.	Α
	• If you need a blood transfusion, the donated blood must be the same type as yours.	D
	Breathing and respiration are two names for the same process.	D
	• The components of the excretory system are the lungs, skin, and kidneys.	Α

Science Journal

When you breathe in, oxygen enters your lungs. Describe what you understand about how oxygen from the air reaches the cells in your body.

Accept all reasonable responses.

Circulatory, Respiratory, and Excretory Systems

Section 34.1 Circulatory System

Main Idea	Details	
	Scan Section 1 of the chapter. Identify and list the functions of blood. Accept all reasonable responses. . carrying oxygen and nutrients to cells	
	• removing cellular wastes	
	 carrying disease-fighting materials 	
	transporting chemical messengers	
	. forming clots	
	 regulating body temperature 	
Derier		
Review Vocabulary	Use your book or dictionary to define muscle contraction.	
muscle contraction	muscle cells or fibers shorten in response to stimuli	
New Vocabulary	Use the new vocabulary terms to complete the paragraph below.	
arteries	Large blood vessels called <u>arteries</u> carry oxygenated blood	
atherosclerosis	away from the heart. The blood flows into microscopic <u>capillaries</u> ,	
capillaries	where the blood exchanges oxygen and wastes with body cells. Then <u>veins</u> carry deoxygenated blood back to the heart. In	
heart	these large vessels, flaps of tissue called <u>valves</u> prevent blood	
pacemaker	from flowing backward. The hollow, muscular <u>heart</u> pumps	
*	blood throughout the body. A <u>pacemaker</u> in the right atrium sends	
plasma	out signals that tell the heart muscle to contract. Over half of blood	
platelets	is made up of a clear, yellowish fluid called <u>plasma</u> . The function	
red blood cells	of <u>red blood cells</u> is to carry oxygen to all body cells. The	
valves	white blood cells are the body's disease fighters. Cell fragments called platelets help to form blood clots at a wound site. Blood	
veins	clots, fat deposits, or other materials can block the flow of blood	
white blood cells	through the arteries, resulting in a condition called <u>atherosclerosis</u> .	

Date ____

Section 34.1 Circulatory System (continued)

(Main Idea)-

Functions of the Circulatory System

I found this information on page _____. SE, p. 992

RE, p. 399

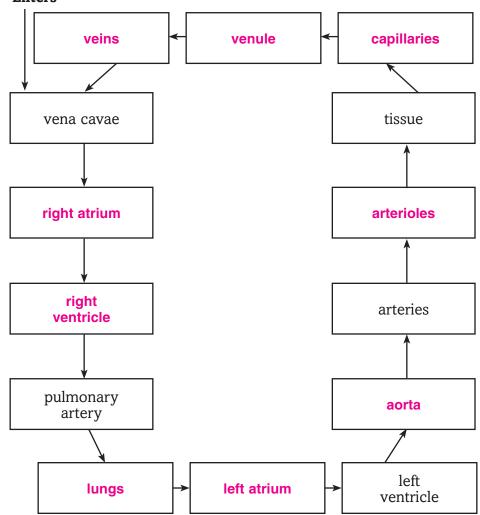
(Details

Analyze how the circulatory system functions as the body's transport system.

Accept all reasonable responses. The main job of the circulatory

system is to carry oxygen and nutrients to the cells and remove

waste products from the cells. In addition, the circulatory system


transports disease-fighting materials and blood-clotting fragments

and distributes heat through the body.

Blood Vessels and The Heart

I found this information on page _____. SE, pp. 993–996 RE, pp. 399–403 **Sequence** the path blood takes through the human body by completing the flowchart below.

Enters

Section 34.1 Circulatory System (continued)

Blood

(Main Idea)_

Details

Identify the components of blood, and list the characteristics of each.

Components
I found this information
on page
SE, pp. 997–998
RE, p. 403

Blood Component	Characteristics
White blood cells	surround and kill invaders
Red blood cells	mostly made up of the protein hemoglobin; resemble pinched-in discs with no nuclei
Plasma	carries most of the carbon dioxide waste; transports glucose, fats, and chemical messengers
Platelets	releases chemicals that produce the protein fibrin

Blood Types

Circulatory

SE, p. 999 RE, p. 404

System Disorders

I found this information

on page _

I found this information on page _____. SE, pp. 998–999 RE, p. 404 **Distinguish** between blood type, by putting checks in the boxes to show which marker molecules and antibodies it contains.

Blood Type	Marker A	Marker B	Anti-A Antibody	Anti-B Antibody
А	\checkmark			\checkmark
В		\checkmark	\checkmark	
AB	\checkmark	\checkmark		
0			\checkmark	\checkmark

Compare heart attacks to strokes.

	Heart Attack	Stroke
Causes	blood does not reach heart muscle	blood clots in vessels supplying oxygen to brain
Effects	damage to heart or death	ruptured blood vessels; internal bleeding; parts of brain die

SUMMARIZE

Create an analogy that explains the one way flow of blood through the circulatory system.

Accept all reasonable responses. Students might suggest a racetrack analogy with the heart

and lungs functioning as pitstops.

Circulatory, Respiratory, and Excretory Systems

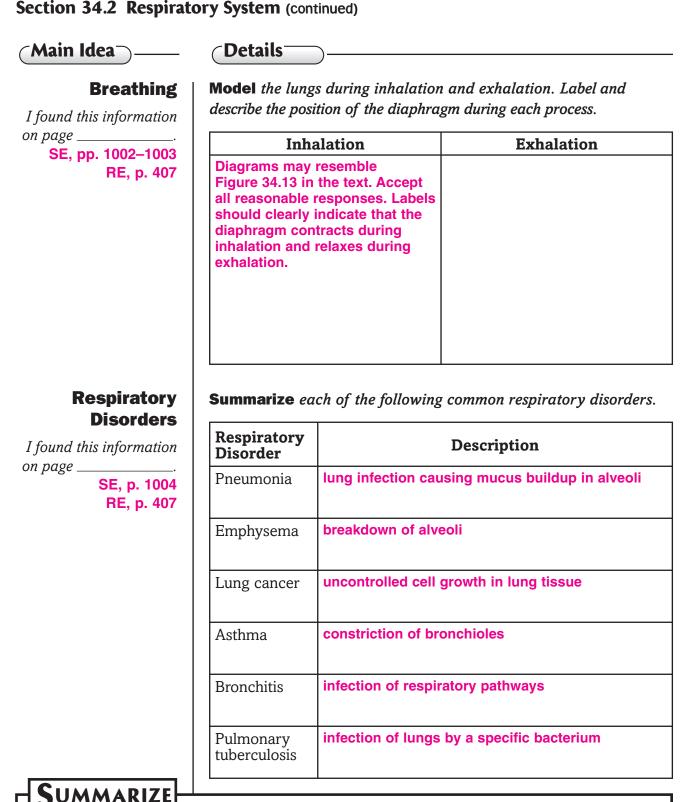
Section 34.2 Respiratory System

Main Idea	Details
	Skim Section 2 of the chapter. Read the headings and illustration captions. Write three questions that come to mind.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define ATP.
ATP	biological molecule that provides the body's cells with chemical energy
New Vocabulary	Use your book or dictionary to define each term.
alveolus	individual air sac at the end of a bronchiole where oxygen and
	carbon dioxide exchange occurs
breathing	mechanical movement of air in and out of the lungs
bronchus	large tube that branches from the trachea and leads to the lungs
external respiration	exchange of gases between the atmosphere and the blood
internal respiration	exchange of gases between the blood and the body's cells
lung	largest organ in the respiratory system and the location of gas exchange
trachea	long tube in the chest cavity; also called the windpipe

diffusing into the <u>alveoli</u>.

Section 34.2 Respiratory System (continued)

Main Idea	(Details)				
The Importance	Contrast breathing and respiration.				
of Respiration	Accept all reasonable responses. Breathing is a mechanical process				
I found this information on page	of moving air in and out of the lungs and helps external respiration				
SE, p. 1000 RE, p. 405	to occur. Respiration is an exchange of gases, which occurs with				
	both external respiration and internal respiration.				
The Path of Air I found this information on page	Identify three structures that filter air as it enters through the nose on its way to the lungs. 1. hairs in the nose				
SE, p. 1001 RE, p. 406	 cilia that line the nasal passages and other respiratory tubes 				
,	3 mucous membranes beneath the cilia in the nasal passages				
	Sequence the process of gas exchange by completing the sentences in the flow chart below. Air enters the lungs from the atmosphere through				
	the process of <u>breathing</u> . The blood transports the				
	carbon dioxide waste to				
	Image: Note of the sector o				
	capillaries through the				
	alveoli and then into				
	red blood cells. Meanwhile, <u>carbon dioxide</u>				
	moves in the opposite direction,				
	The blood carries crossing <u>capillary</u> walls and				


the **oxygen** for

release to the body's

tissue cells

Section 34.2 Respiratory System (continued)

Discuss the importance of respiration to the body.

Accept all reasonable responses. Respiration allows the body's cells to receive oxygen and

get rid of carbon dioxide.

Circulatory, Respiratory, and Excretory Systems

Section 34.3 Excretory System

Main Idea	Details
	Scan Section 3 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables, figures, and graphs.
	Look at all pictures and read the captions.
	Think about what you already know about the excretory system.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
. .	5
Review Vocabulary	Use your book or dictionary to define pH.
pH	measure of acidity and alkalinity of a solution
~New	
Vocabulary	Use your book or dictionary to define each term.
kidney	bean-shaped organ that filters out wastes, water, and salts from the
	blood
urea	nitrogenous waste product that is a component of urine
Academic- Vocabulary	Define inhibit to show its scientific meaning.
inhibit	to hold back, restrain, or block the action or function of something

Date __

Section 34.3 Excretory System (continued) **Oetails** Parts of the **Describe** three functions of the excretory system that help maintain homeostasis of the body. **Excretorv** System 1 removes metabolic wastes from the body I found this information 2. regulates the amount of fluid and salts in the body on page _ SE, p. 1005 3 maintains the pH of the blood RE, p. 408 **Identify** the main waste products secreted by the following components of the excretory system. lungs: carbon dioxide skin: water and salts **The Kidneys Model** the structure of a kidney, including a diagram of a nephron. Label each major component. I found this information on page _____ Drawings should resemble the figure on SE p. 1006. Accept all SE, pp. 1006–1007 reasonable responses. Labels should include the glomerulus, RE, pp. 408-409 Bowman's capule, renal vein, renal artery, and collecting tubule.

Section 34.3 Excretory System (continued)

Kidnev

(Main Idea)

(Details

Summarize information about kidney disorders in the table below.

Disorders I found this information on page _____. SE, p. 1008 RE, p. 410

Disorder	Symptoms	Common Causes	Treatments
Kidney infection	fever, chills, and mid- to low-back pain	bladder infection that spreads; obstructions in kidney	antibiotics
Nephritis	blood in urine; swelling of body tissues; protein in urine	large particles in bloodstream lodge in glomeruli, causing inflammation	special diet; prescription drugs
Kidney stones	pain	crystallized solids, such as calcium, form in kidney	ultrasonic sound waves; surgery

Kidney Treatments

I found this information on page ______.

SE, p. 1009 RE, p. 410 **Contrast** the two types of dialysis by explaining how they differ in the following areas.

Filtering device: One method uses a machine to filter, and the other

uses the membrane lining of the patient's abdomen.

Frequency and duration of treatment: The machine method requires

three sessions of three to four hours each week. The other method

requires 30 to 40 minutes daily.

SUMMARIZE

Analyze the path wastes take from the kidney out of the body by making a list of the order of the structures through which wastes flow.

1. kidneys	5. renal tubule
2. renal artery	6. urethra
3. glomerulus	7. urinary bladder
4. Bowman's capsule	8. ureter

Digestive and Endocrine Systems

Before You Read

Use the "What I Know" column to list the things you know about the digestive and endocrine systems. Then list the questions you have about these systems in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

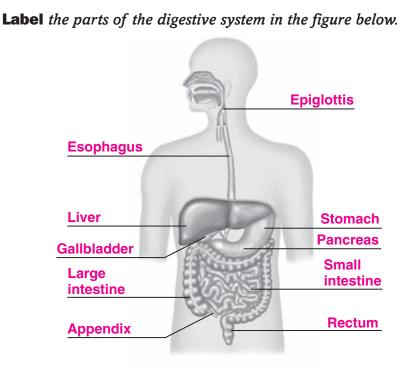
What can go wrong with your digestive and endocrine systems? Describe your own experience, that of someone you know, or items you have heard about in the media.

Accept all reasonable responses.

Digestive and Endocrine Systems

Section 35.1 The Digestive System

Main Idea	Details
	Skim Section 1 of the chapter. Write two questions that come to mind from reading the headings and the illustration captions.
	1. Accept all reasonable responses.
	2
Review Vocabulary	Use your book or dictionary to define nutrients.
nutrients	vital components of foods that provide energy and materials for
	growth and for body functions
New Vocabulary	Write the correct vocabulary term in the left column for each definition below.
mechanical digestion	process that breaks food into smaller pieces by chewing and by the churning action of smooth muscles in the stomach and small intestine
small intestine	longest part of the digestive tract, which connects the stomach and the large intestine and where digestion is completed
esophagus	muscular tube that connects the pharynx to the stomach
amylase	enzyme found in saliva that begins chemical digestion by breaking down starches into sugars
villi	fingerlike structures in the small intestine through which chemical digestion is completed and most nutrients from food are absorbed
pepsin	enzyme in the stomach that helps digest proteins
liver	largest internal organ of the body; produces bile, which helps to break down fats
chemical digestion	action of digestive enzymes in breaking down large molecules of food into smaller molecules that can be absorbed by cells
peristalsis	rhythmic contraction of smooth muscles that moves food through the digestive tract
large intestine	end portion of the digestive tract, which includes the colon, rectum, and appendix

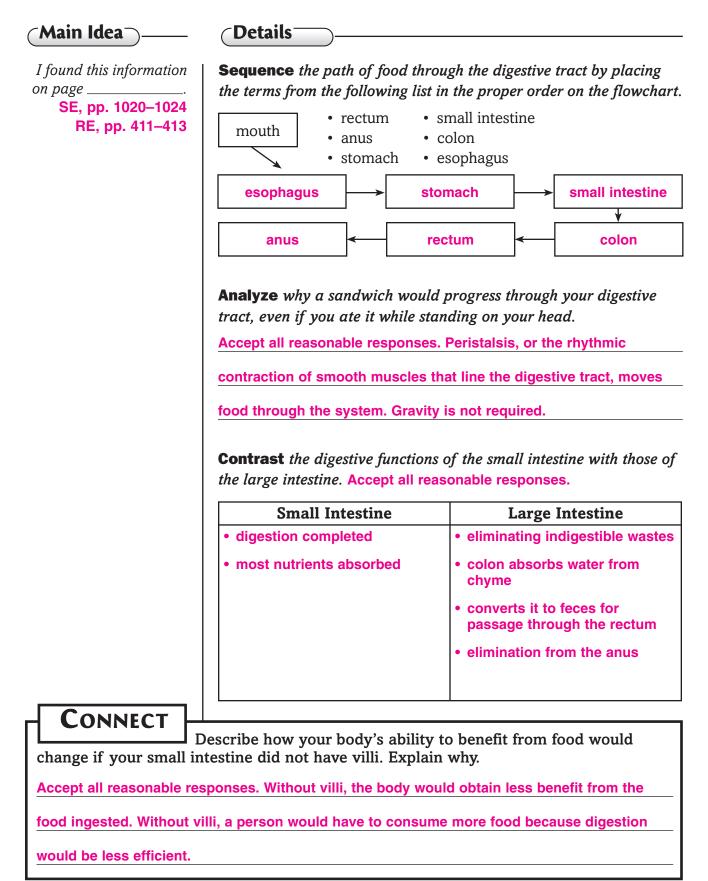

Section 35.1 The Digestive System (continued)

⊂Main Idea –

(Details

Functions of the Digestive System

I found this information on page _____. SE, pp. 1020–1024 RE, pp. 411–413



Summarize how each organ below mechanically and chemically digests food.

Organ	Mechanical Digestion	Chemical Digestion
Mouth	chewing breaks food into smaller pieces	amylase breaks down starches into sugars
Stomach	churning of the smooth muscles breaks food into smaller pieces	gastric glands secrete acid that aids the action of pepsin, which breaks down proteins
Small intestine	smooth muscle contractions continue to break food into smaller pieces	concludes chemical digestion with help of pancreas, liver, and gallbladder
Pancreas	does not apply	produces enzymes that digest carbohydrates, proteins, and fats; secretes alkaline fluid that aids enzyme action
Liver	does not apply	produces bile, which helps break down fats

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Section 35.1 The Digestive System (continued)

Digestive and Endocrine Systems Section 35.2 Nutrition

Main Idea	Details
	Scan Section 2 of the chapter. Use the checklist as a guide.
	Read all section titles.
	Read all boldfaced words.
	Read all tables, figures, and graphs.
	Look at all pictures and read the captions.
	Think about what you already know about nutrition.
	Write three facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
	3
Review Vocabulary	Use your book or dictionary to define amino acids.
amino acids	basic building blocks of proteins
New- Vocabulary	Use your book or dictionary to define each term.
Calorie	unit used to measure the energy content of foods
mineral	inorganic compound that is used by the body as building material
	and is involved with metabolic functions
nutrition	process by which a person takes in and uses food
vitamin	organic compound that is needed in small amounts for metabolic
	activities
	1

Date _

Section 35.2 Nutrition (continued)

Calories

Main Idea

I found this information on page _____. SE, p. 1025 RE, p. 414

Carbohydrates

I found this information

SE, pp. 1026–1027

on page _

and Fats and

Proteins

RE, p. 415

(Details

Evaluate Assume that playing soccer requires 540 Calories per hour. On a particular day, you ate 2,000 Calories in food. You played soccer for 2.5 hours. Your body used 800 Calories in other activities. Did you use more energy than you consumed on this day? Show your work.

Yes; you used 800 + (540 X 2.5 hours) = 2,150 Calories. You took in

2,000 Calories. You took in 150 fewer Calories than you used.

Summarize information about carbohydrates, fats, and proteins by completing the table below.

	Break Down Into	Importance to the Body
Carbohydrates	simple sugars	provide energy for cells; cellulose helps food move through digestive tract
Fats	fatty acids and glycerol	provide energy; building blocks for body; protect some internal organs; store and transport some vitamins
Proteins	amino acids	cells assemble amino acids into proteins needed for body structures and functions

Food Pyramid

I found this information on page ______.

SE, p. 1027 RE, p. 416 **Classify** all the foods you ate yesterday in the appropriate food groups. Accept all reasonable responses.

Grains	Fruits	Milk
Vegetables	Oils	Meat and Beans

Name

Date ____

Section 35.2 Nutrition (continued)

Main Idea	(Details-	\supset			
Vitamins and Minerals and Nutrition Labels			d label below, and the contents of the	-	
I found this information on page SE, pp. 1028–1030	NUTRITION FACTS Serving Size: 1 cup (237 g) Servings Per Container: 2				
RE, p. 416			nount Per Serving llories 100	Calories from Fat	20
		Ch So To I	tal Fat 2 g Saturated Fat 0.5 g tolesterol 20 mg dium 960 mg tal Carbohydrate 13 Dietary Fiber 1 g Sugars 1 g otein 9 g	% Daily Va 3% 3% 7% 40% 3 g 4% 5%	lue
			tamin A 30% Ilcium 2%	Vitamin C 0 Iron 4%	%
	Calories Consumed		Grams of Saturated Fat	Grams of Protein	Percent of Daily Value of Calcium
	200		1 g	18 g	4%

SUMMARIZE

Typically men need more Calories per day than women, and teenagers need more Calories than adults. Analyze why Calorie needs differ between these groups.

Accept all reasonable responses. Usually men are larger and have higher metabolic rates than

women and would need more Calories to support their body mass and higher metabolic rate.

Teenagers are still growing and need more Calories to support their growth. Also, teenagers

tend to be more physically active than adults, and physical activity uses Calories.

Digestive and Endocrine Systems Section 35.3 The Endocrine System

Main Idea	Details
	Scan the titles, boldfaced words, figures, and captions in Section 3. Write two facts you discovered as you scanned the section.
	1. Accept all reasonable responses.
	2
Review Vocabulary	<i>Use your book or dictionary to define</i> homeostasis.
homeostasis	regulation of an organism's internal environment to maintain life
New- Vocabulary	Write the correct term in the left column for each definition below.
hormone	acts on target cells and tissues to produce a specific response
thyroxine	hormone that causes cells to have a higher rate of metabolism
endocrine gland	any gland that produces hormones, which are released into the bloodstream and distributed to body cells
calcitonin	thyroid hormone that is partly responsible for the regulation of calcium, blood clotting, nerve function, and muscle contraction
parathyroid hormone	increases blood calcium by stimulating the bones to release calcium
aldosterone	steroid hormone secreted by the adrenal glands that primarily affects the kidneys and is important for reabsorbing sodium
cortisol	steroid hormone secreted by the adrenal glands that raises blood glucose levels and also reduces inflammation
pituitary gland	secretes hormones that regulate many body functions as well as other endocrine glands
glucagon	pancreatic hormone that signals liver cells to convert glycogen to glucose and release the glucose into the blood
insulin	pancreatic hormone that signals liver and muscle cells to accelerate the conversion of glucose to glycogen, which is stored in the liver
antidiuretic hormone	hormone produced by the hypothalamus, regulates water balance

Section 35.3 The Endocrine System (continued)

Action of Hormones	5	id hormones and amino acid hormon			
information	Steroid Hormones	Accept all reasonable responses. Steroid Hormones Amino Acid Hormones			
31–1032 5, p. 417	cause target cells to initiate protein synthesis; soluble in lipids so can diffuse through plasma membrane of target cell; bind with receptors in cytoplasm; move together in nucleus; bind with DNA, activating specific genes	cannot diffuse through plasma membrane, so bind with receptors on membrane of targ cell; receptors activate enzyme inside, which initiates a			
Negative Feedback					
E, p. 1032	Blood calcium drops too low.	Kidneys excrete less calcium.			
RE, p. 418		Parathyroid glands detect calcium deficiency.			
	Parathyroid glands detect calcium	Bones release more calcium.			
	deficiency.	Blood calcium drops too			
	Parathyroid glands release more	low. Parathyroid glands release more parathyroid			
	Parathyroid glands	low. Parathyroid glands			
	Parathyroid glands release more	low. Parathyroid glands release more parathyroid			
	Parathyroid glands release more parathyroid hormone.	low. Parathyroid glands release more parathyroid hormone. Kidneys excrete less			
d Their	Parathyroid glands release more parathyroid hormone. Bones release more calcium.	low. Parathyroid glands release more parathyroid hormone. Kidneys excrete less calcium.			
nd Their ormones	Parathyroid glands release more parathyroid hormone. Bones release more calcium. Explain how the endocrine s	low. Parathyroid glands release more parathyroid hormone. Kidneys excrete less			
ndocrine nd Their prmones	Parathyroid glands release more parathyroid hormone. Bones release more calcium. Explain how the endocrine s system.	low. Parathyroid glands release more parathyroid hormone. Kidneys excrete less calcium. ystem functions as a communication			

Section 35.3 The Endocrine System (continued)

```
(Main Idea)_
```

Links to the

(Details⁻

Compare the hormone functions of the glands listed below.

Endocrine/ ervous System	Gland/ Location	Hormones Produced	Body Functions Regulated
d this information e SE, p. 1037 RE, p. 420	Pituitary Location: base of brain	human growth hormone (hGH), among others	hGH regulates physical growth; others regulate many body functions and other endocrine glands
_,	Thyroid Location: throat	thyroxine	causes cells to have a higher metabolic rate
		calcitonin	calcium levels in blood, blood clotting, nerve function, muscle contraction
	Parathyroid Location: throat	parathyroid hormone	calcium levels
	Pancreas Location:	insulin	lowers blood glucose levels
	below stomach	glucagon	raises blood glucose levels
	Adrenal Location:	aldosterone	reabsorption of sodium
	just above kidneys	cortisol	raises blood glucose and reduces inflammation
	Identify the key Nervous System	y link in the diagram	Endocrine
	of their cooperat	nap showing two g tion on homeostasi	pairs of hormones that work is.
oid Ne	calcitonin		blood glucose balance

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

glucagon

hormone balance blood calcium balance

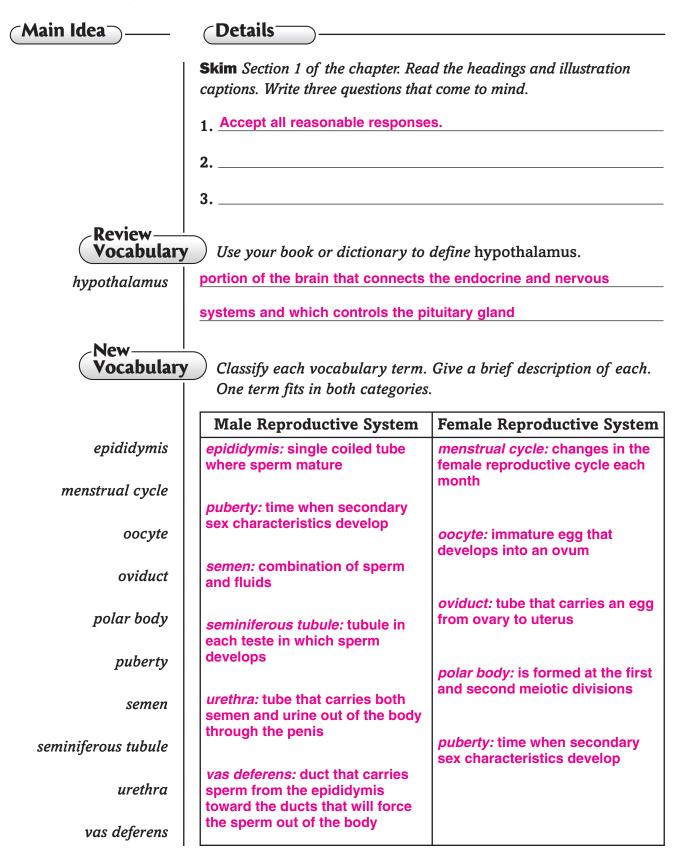
364 Digestive and Endocrine Systems

Human Reproduction and Development

Before You Read

Use the "What I Know" column to list the things you know about reproduction and development. Then list the questions you have about these topics in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned


Science Journal

As you have grown and developed since birth, you have gone through many changes. Write about some of the physical changes you have experienced since you were born.

Accept all reasonable responses.

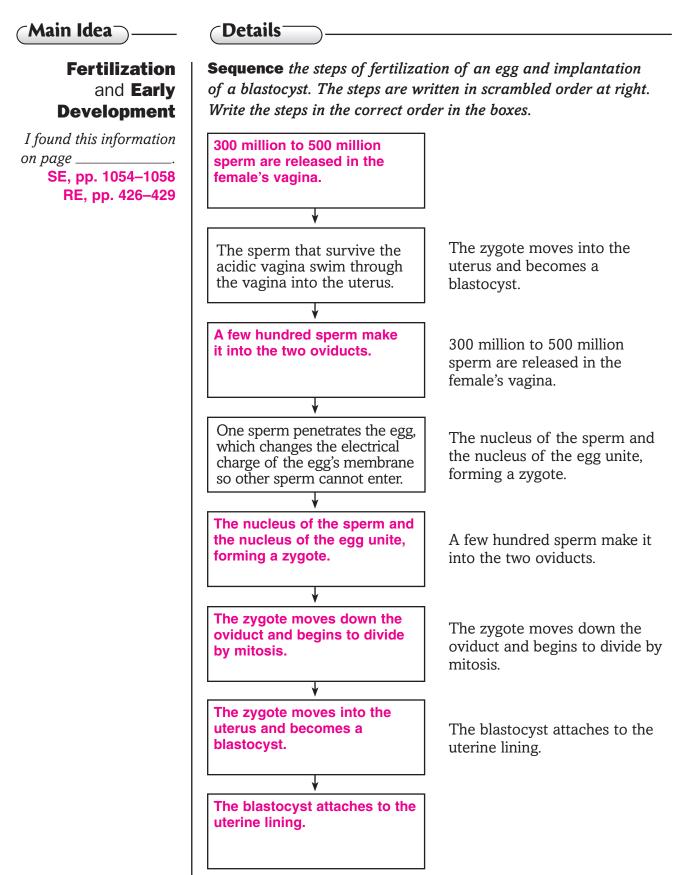
Human Reproduction and Development

Section 36.1 Reproductive Systems

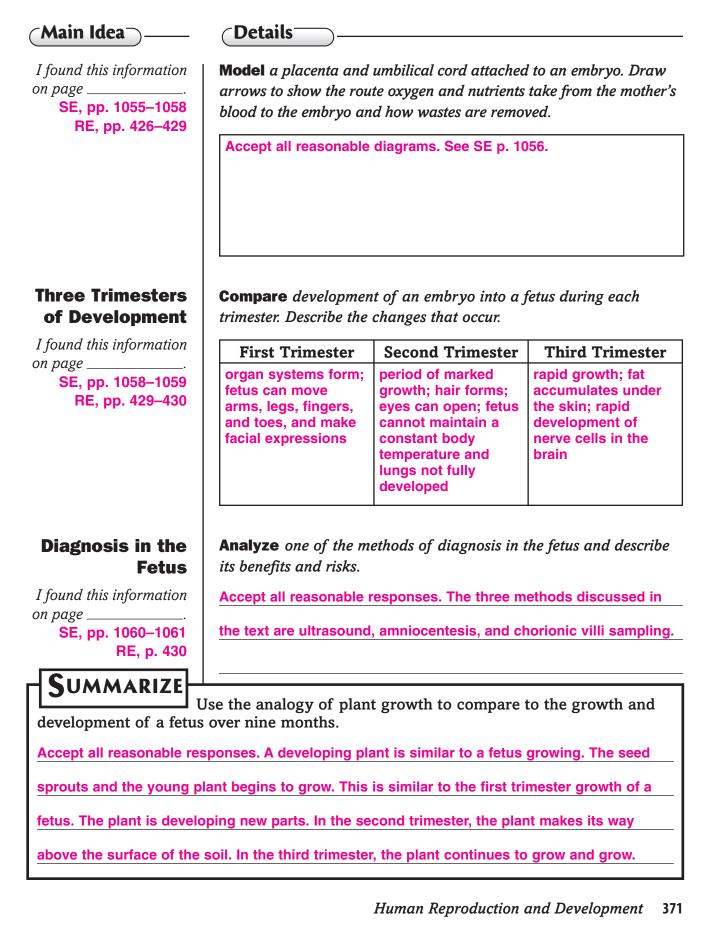
Main Idea	Details
Human Male Reproductive System	Model the structures of the male reproductive system below. Label the testes, epididymus, vas deferens, and urethra. Describe the function of each.
I found this information on page SE, pp. 1048–1049 RE, pp. 421–422	Sketches should resemble SE p. 1048 testes—where sperm are produced; epididymus—tube where sperm mature; vas deferens—duct that carries sperm toward the ducts that will push them out of the body; urethra—carries sperm out of body
	Create a diagram to show how the negative feedback system work to control FSH and LH in the male body. Accept all reasonable diagrams that show that as the levels of testosterone in the blood increase, the body decreases the production of FSH and LH. Increased sperm production also decreases the production of these. When the levels of testosterone drop, the body increases production of FSH and LH.
uman Female Reproductive	Identify the three main functions of the female reproductive system.
System	to produce eggs, to receive sperm, and to provide an environment
his information	in which a fertilized egg can develop
SE, p. 1050 RE, p. 423	Model the structures of the human female reproductive system below. Label the oviduct, cervix, ovary, and uterus. Describe the function of each.
	Sketches should resemble SE p. 1050. ovary—produces eggs; oviduct—moves eggs to the uterus; uterus—where a fetus develops; cervix—lower end of the uterus that leads to the vagina; vagina—leads to outside the female body

Section 36.1 Reproductive Systems (continued)

Production und this information	of eggs. First Meiotic Division Second Meiotic Division			
	a polar body, which ev			a Meiotic Division d only if the egg is
E, p. 1051 ₹E, p. 424	disintegrates, and a contains most of the contains most of the containd eventually becom	ell that sytoplasm	fertilized;	polar body, which tes, and the zygote
enstrual Cycle	Sequence the steps in hormones, the uterus,			0
information	1. The Flow Phase	•		
051–1053 . 424–425	Hormone Changes Level of FSH in blood begins to rise.	Uterine Cl Endometrium uterine mus contracts to endometrium	m is shed; cle help expel	Ovary Changes A follicle in one ovary begins to mature; meiosis of the prophase cells goes on.
	2. The Follicular Phas	1		1
	Hormone Changes Estrogen stimulates the repair of the endometrial lining; production of FSH and LH slows. Estrogen peaks causing sharp increase in release of LH.	Uterine Cl Endometrial undergo mit uterine linin	cells cosis and	Ovary Changes Follicle ruptures and e is released into oviduo
	3. The Luteal Phase	1		1
	Hormone Changes Progesterone and estrogen are produced. If egg not fertilized, release of FSH and LH blocked, hormone levels drop.	Uterine Cl If egg is not lining sheds fertilized, en secretes flui nutrients.	fertilized, a. If egg is dometrium	Ovary Changes Corpus luteum develop from ruptured follicle. If egg is not fertilized, corpus luteum breaks up.
MARIZE		•		luction in males a


Human Reproduction and Development Section 36.2 Human Development Before Birth ⊂Main Idea⊃ **Oetails Skim** Section 2 of the chapter. Write two questions that come to mind from reading the heading and illustration captions. 1 Accept all reasonable responses. 2. _____ **Review**-Vocabulary Use your book or dictionary to define lysosome. organelle that contains digestive enzymes lysosome New-Vocabulary Use your book or dictionary to define each term. Then make a sketch of each to help you remember. liquid that protects, cushions, amniotic fluid and insulates the embryo hollow ball of cells formed by blastocyst the fifth day of pregnancy; attaches to the endometrium morula solid ball of cells at the point at which the zygote leaves the oviduct and enters the uterus Academic Vocabularv Define enable to show its scientific meaning. Write a sentence

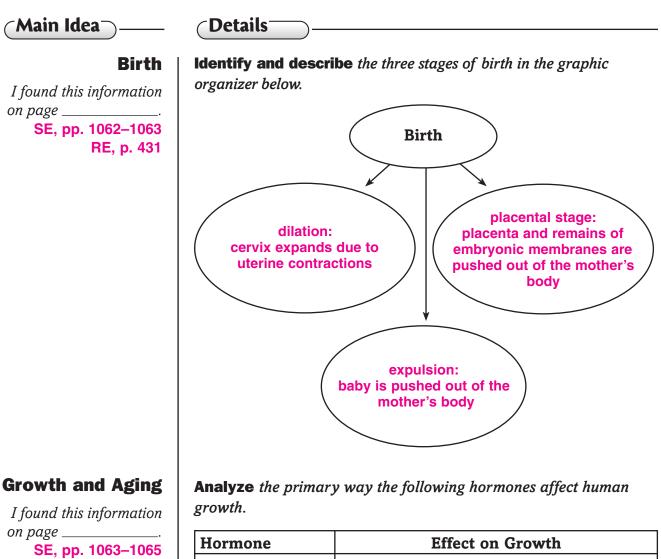
enable


to make able or feasible

using the term.

Section 36.2 Human Development Before Birth (continued)

Section 36.2 Human Development Before Birth (continued)



Human Reproduction and Development

Section 36.3 Birth, Growth, and Aging

Main Idea	Details
	 Scan the illustrations and read the captions in Section 3 of the chapter. Predict two things you will read about birth and growth. 1. Accept all reasonable responses. 2
Review Vocabulary	
growth	increase in the amount of living material and formation of new
	structures in an organism
New Vocabulary adolescence	Use your book or dictionary to define the following terms. major phase of development that begins with puberty and ends at adulthood
adulthood	phase of development that begins when physical development is complete
dilation	opening of the cervix prior to giving birth
expulsion stage	phase of labor in which strong uterine contractions push the fetus out through the vagina
infancy	first two years of life
labor	birthing process
placental stage	phase of labor after birth, during which the placenta detaches from the uterus and leaves the mother's body through the vagina

Section 36.3 Birth, Growth, and Aging (continued)

Hormone	Effect on Growth
Human growth hormone	increases the rates of protein synthesis and breakdown of fats
Thyroxine	increases the overall metabolic rate
Steroids	activate certain genes that promote the formation of proteins, causing cell sizes to increase

RE, p. 432

Section 36.3 Birth, Growth, and Aging (continued)

Main Idea	Details
I found this information on page SE, pp. 1063–1065 RE, p. 432	Describe the changes that occur at each stage of growth and development.
	1. Infancy Infancy describes the first two years of life. The child grows tremendously, increasing physical coordination and mental development. The infant's birth weight triples in the first year. Infants learn to control their legs and arms, roll over, sit, crawl, and walk. The child may begin to talk toward the end of this stage.
	2. Childhood Childhood lasts from the end of infancy to adolescence. The child develops ability to reason and solve problems.
	3. Adolescence Adolescence follows childhood and begins at puberty. Teenagers have growth spurts that can be surprisingly large. Adolescents gain their maximum height. By the time adulthood is reached, physical growth is complete.
	4. Adulthood During adulthood, metabolism slows down, the skin begins to lose its elasticity, wrinkles appear, and hair begins to turn white. Disks between vertebrae compress, so people become shorter. Vision and hearing might diminish.
newborn to adulthood.	Create a flowchart of the stages of human development from . Write the approximate age when an individual moves from one ept all reasonable responses.

The Immune System

Before You Read

Use the "What I Know" column to list the things you know about disease and immunity. Then list the questions you have about disease and immunity in the "What I Want to Find Out" column. Accept all reasonable responses.

K What I Know	W What I Want to Find Out	L What I Learned

Science Journal

When you get a cold, your immune system fights it and you eventually feel better. Hypothesize how people with weakened immune systems might need to live their lives differently to stay healthy.

Accept all reasonable responses.

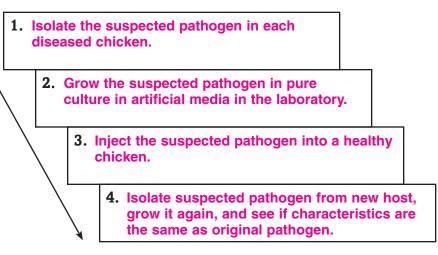
The Immune System Section 37.1 Infectious Diseases

(Main Idea)	(Details)
	Skim Section 1 of the chapter and list three ways that diseases spread from person to person.
	1. Accept all reasonable responses.
	2
	3
~Review	
Vocabulary	Use your book or dictionary to define protozoan.
protozoan	unicellular, heterotrophic, animal-like protist
New Vocabulary	Use your book or dictionary to define each term.
antibiotic	prescription drug containing a substance that can kill or inhibit the
	growth of other microorganisms
endemic disease	disease continually found in small amounts within the population
epidemic	large outbreak in an area that afflicts many people with the same
	disease
infectious disease	disease that is caused when a pathogen is passed from one
	organism to another, disrupting homeostasis in the organism's body
Koch's postulates	rules for demonstrating that an organism causes a disease
pandemic	epidemic that is widespread throughout a large region, such as a
	country, continent, or the entire globe
pathogen	cause of infectious disease
reservoir	for diseases, a source of the pathogen in the environment

Section 37.1 Infectious Diseases (continued)

I found this information on page _____. SE, p. 1076 RE, p. 433

Germ Theory and Koch's Experiments


I found this information on page ______. **SE, pp. 1076–1077 RE, pp. 433–434**

Spread of Disease

I found this information on page _____. SE, pp. 1078–1080 RE, pp. 435–436 **Identify** facts about harmful and helpful microorganisms.

Five types of pathogens:	Four places that helpful micro- organisms live in your body:
1. bacteria	1. intestinal tract
2. viruses	2. reproductive tract
3. protozoans	3. skin
4. fungi	4. hair follicles
5. parasites	

Design the experimental steps you would use to identify the virus that caused bird flu in a flock of chickens using Koch's postulates.

Analyze how diseases spread.

Three disease reservoirs:	Four main ways diseases are transmitted to humans:
1. animals	1. direct contact
2. people	2. indirectly through the air
3. inanimate objects, such as contaminated soil, water, or	3. through vectors
food	4. indirectly through touching contaminated object

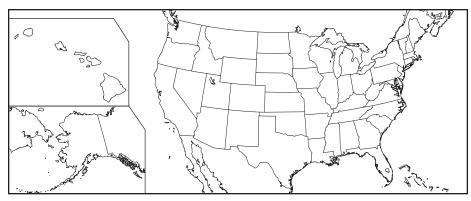
Section 37.1 Infectious Diseases (continued)

(Main Idea⁻

Symptoms of Disease

I found this information on page _____. SE, pp. 1080–1081 RE, p. 436

Disease Patterns


I found this information on page _____. SE, p. 1081 RE, p. 437

Oetails

Contrast how viruses and bacteria cause symptoms of disease.

Viruses: multiply in cells; damage or kill the cells when they leave by exocytosis or by bursting the cells **Bacteria:** produce toxins that can be carried throughout the body in the bloodstream, damaging various parts of the body

Compare endemic, epidemic, and pandemic disease by using different colors or patterns to represent each disease pattern. Add a key to explain your map. Accept all reasonable responses.

Treating and Fighting Diseases

I found this information on page _____. SE, pp. 1082–1083 RE, p. 437 **Analyze** the relationship between natural selection and the increase in antibiotic-resistant bacteria.

Accept all reasonable responses. Natural selection occurs when

organisms with favorable variations survive, reproduce, and pass

their variations to the next generation. Bacteria with a trait that

enables them to survive a particular antibiotic will pass on this

favorable trait. Bacteria reproduce quickly, resulting in increased

numbers with resistance.

SUMMARIZE Critique what people can do to help keep antibiotics effective in disease fighting.

Accept all reasonable responses. People should use antibiotics only when necessary.

This will keep them from being overused, which can lead to bacteria becoming resistant.

The Immune System Section 37.2 The Immune System Main Idea Details **Skim** Section 2 of the chapter. Identify the system responsible for the body's specific immunity. the lymphatic system Review Vocabulary Use your book or dictionary to define white blood cells. large, nucleated blood cells that play a major role in protecting the white blood cells body from foreign substances and microorganisms New Vocabularv Write the correct vocabulary term in the left column for each definition below. cytotoxic T cell lymphocyte that destroys pathogens and releases cytokines memory cell long-living cell that is exposed to an antigen during the primary immune response and will respond rapidly if the body encounters the same pathogen later antibody protein produced by B lymphocytes that specifically reacts to a foreign pathogen immunization deliberate exposure of the body to an antigen so that a primary response and immune memory will develop interferon protein secreted by virus-infected cells that binds to neighboring cells and stimulates these cells to produce antiviral proteins complement protein protein that enhances phagocytosis by helping the phagocytic cells bind better to pathogens, activating the phagocytes, and enhancing the destruction of the pathogen's membrane helper T cell lymphocyte that activates antibody secretion in B cells and another type of T cell that aids in killing microorganisms lymphocyte type of white blood cell that is produced in red bone marrow and plays a role in specific immunity B cell antibody-producing cell that is present in all lymphatic tissues

Section 37.2 The Immune System (continued)

(Main Idea)-

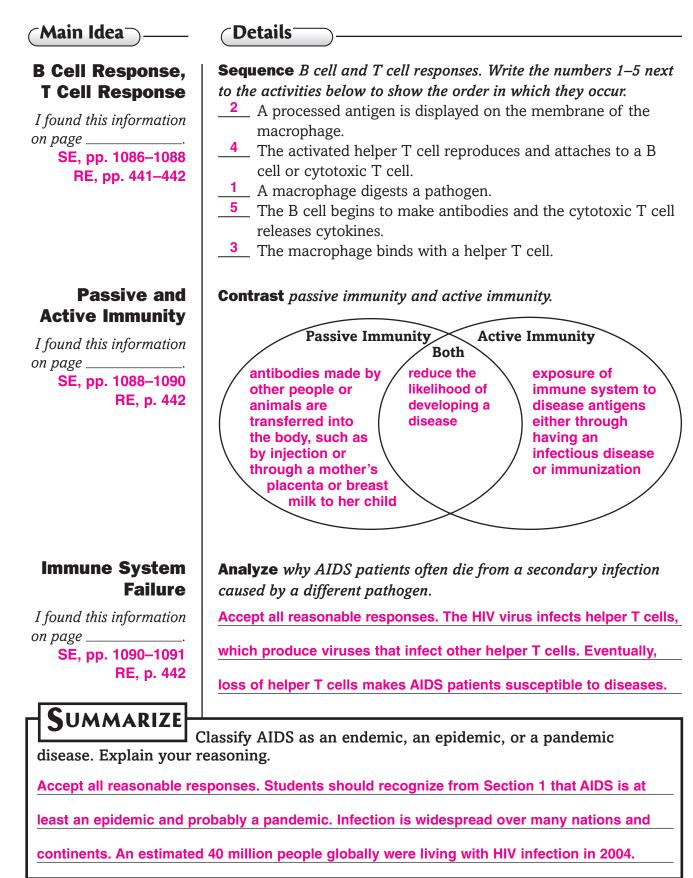
(Details

Immunity I found this information on page _____. SE, pp. 1084–1085

Nonspecific

RE, p. 438–439

Defense	How it Works	
Skin	layer of dead skin cells forms barrier against invasion; bacteria living symbiotically on the skin produce acids that inhibit pathogens	
Saliva, tears, and nasal secretions	contain enzyme lysozyme that breaks down bacterial cell walls, killing these pathogens	
Mucus	blocks bacteria from sticking to inner epithelial cells; inner surfaces secrete extra mucus when infected, triggering coughing that helps move infected mucus out of the body	
Stomach acid	hydrochloric acid in the stomach kills many microorganisms found in food	
Phagocytosis	phagocytes surround and internalize foreign microorganisms, and then release digestive enzymes that destroy the microorganisms	
Interferon	virus-infected cells secrete interferon, which binds to neighboring cells and stimulates these cells to produce antiviral proteins	
Inflammatory response	chemicals released by invaders and body cells attract phagocytes, increase blood flow to area, and make blood vessels more permeable to allow white blood cells to escape; result is more white blood cells in the area	


Summarize nonspecific immune defenses by completing the table.

Specific Immunity

I found this information on page ______. SE, p. 1086 RE, pp. 439–440 **Compare** the functions of these organs of the lymphatic system.

Lymph Nodes	Tonsils	Spleen	Thymus Gland
filter the lymph and remove foreign materials from the lymph	form protective ring between nasal and oral cavities, protecting against pathogens in nose and mouth	stores blood and destroys damaged red blood cells; contains lymphatic tissue that responds to foreign substances in blood	helps activate T cells, which are produced in bone marrow but mature in the thymus gland

Section 37.2 The Immune System (continued)

The Immune System Section 37.3 Noninfectious Disorders

Main Idea	Details				
	Scan Section 3 of the chapter. Use the checklist as a guide.				
	Read all section titles.				
	Read all boldfaced words.				
	Read all tables, figures, and graphs.				
	Look at all pictures and read the captions.				
	 Think about what you already know about noninfectious disorders. Write three facts you discovered as you scanned the section. 				
	1. Accept all reasonable responses.				
	2				
	3				
Review Vocabulary	Use your book or dictionary to define cancer.				
cancer	uncontrolled cell division that might be caused by environmental				
	factors and/or changes in enzyme production in the cell cycle				
New- Vocabulary	Write the correct vocabulary term in the left column for each definition below.				
anaphylactic shock	severe allergic reaction to particular allergens, which causes a massive release of histamine; smooth muscles in the bronchioles contract, restricting air flow into and out of the lungs				
metabolic disease	disease that results from an error in a biochemical pathway				
degenerative diseases	diseases that result when a part of the body wears out				
allergy	a response to environmental antigens				

Section 37.3 Noninfectious Disorders (continued)

(Main Idea⊃—

Genetic

Disorders.

Diseases,

Metabolic

Degenerative

Diseases, Cancer

I found this information on page _____.

SE, pp. 1092–1093 RE, p. 443–444 (Details

Classify each noninfectious disorder according to whether it is caused strictly by a person's genes, or by genes combined with environmental factors.

- arteriosclerosis
- Down syndrome
- coronary artery disease
- hemophilia

- sickle cell anemia
- Type 1 diabetes
- leukemia
- albinism

Causes of Noninfectious Disorders

Genes Only	Genes and Environmental Factors
Down syndrome	arteriosclerosis
hemophilia	coronary artery disease
sickle cell anemia	Type 1 diabetes
albinism	

Evaluate ways that an individual can increase his or her chance of surviving one of the noninfectious diseases that are partly caused by environmental factors.

Accept all reasonable responses.

Identify the causes of noninfectious disorders.

Noninfectious Disorders	Causes		
genetic disorders	inheritance of genes that do not function properly; also abnormal number of chromosomes		
degenerative diseases	a part of the body wears out, sometimes due to aging and sometimes sooner than expected in a lifetime		
metabolic diseases	error in a biochemical pathway		
cancer	abnormal cell growth due to loss of the body's normal control over cell division		

Section 37.3 Noninfectious Disorders (continued)

(Main Idea)	(Details)				
Inflammatory Diseases	Compare and contrast the pairs of disorders in the table below. Accept all reasonable responses.				
I found this information on page SE, pp. 1094–1095 RE, p. 444	Inflammatory response to infectious disease and inflammatory disease: Inflammatory response to infectious disease enhances the overall immune response to infection. In inflammatory disease, the body produces an inflammatory response to a common substance. This response is not helpful to the body.				
	Simple allergic reaction and anaphylactic shock: Both react to particular allergens by releasing histamine from white blood cells. In anaphylactic shock, however, the release is massive and the result is life threatening. Smooth muscles in the bronchioles contract, restricting air flow. In a simple allergic reaction, symptoms are less severe.				
	Degenerative arthritis and rheumatoid arthritis: Rheumatoid arthritis is an autoimmune disorder. The body makes antibodies that attack its own proteins. Degenerative arthritis results from part of the body wearing out rather than from autoimmunity.				
	Identify the parts of the body attacked by antibodies in each of the following autoimmune disorders.				
	Rheumatic fever	Lupus	Rheumatoid arthritis		
	valves of the heart	cell nuclei	joints		

SUMMARIZE

Make a table of the types of noninfectous disorders, listing one cause and one example of each disorder.