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3
Gaining Experience

These initial remarks are directed to the lecturer or examiner of a course on 
mechatronics. The experiment instructions that follow can be used as course 
notes for the students.

Practical laboratory experience is an essential ingredient for linking 
together the diverse aspects of mechatronics. But it is necessary to choose 
among a wealth of alternatives when selecting and designing experiments.

Numerous experiments are available on the market, but they are usually 
very costly. Much worse, many of them require very little creativity or under-
standing on the part of the student, consisting instead of a ritual of knob 
turning, measurement, and graph plotting.

In the experiments that follow, the students are required to create software 
from scratch, not just by dragging icons in a Graphic User Interface. They 
add hardware by connecting circuits that they could easily replicate from 
component level—indeed, an able technician should have no diffi culty in 
fabricating these experiments from catalog components.

There is, however, the problem of the choice of computing platform.
When mechatronics ability comes to be applied by the graduated student, 

will it be to use a PC for control and coordination tasks, or will the objective 
be a mechatronic product with an embedded microcomputer? Should the 
software lean toward the latest version of the .NET environment, or should 
it be based on downloading the simplest code to a single chip?

An embeddable chip such as the HC12 certainly has all the input–output 
capability and the computing power to control any of the experiments here. 
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It has numerous ADCs and output pins, with an abundance of program 
memory. But its “user interface” is limited, to say the least. It will need to be 
linked via its RS232 serial capability to a PC (or its equivalent) on which the 
student can write, edit, save and then compile or assemble the software. The 
link will also be needed to upload data for display or plotting.

Instead, a simple PC can in principle perform all the tasks of development 
interface, performance monitor, and real-time controller, with no additional 
circuitry beyond an output driver to power any motors and a simple analog-
to-digital converter for reading sensor signals. The fl y in the ointment is that 
simple PCs and ADCs are becoming increasingly hard to fi nd!

If you do not have a suitable ADC card, you will fi nd the software in 
Chapter 5 for using an MCP3204 four-channel 12-bit ADC chip, costing only 
a few dollars. Apart from a connector for the printer port and a length of 
ribbon cable, no other components are needed for the interface if the signal 
voltages are of low impedance. The chip can even be powered from one of 
the output pins. One more chip such as the TL074 can provide four buffer 
amplifi ers for higher-impedance signals.

Each elaboration of the Windows operating system seems designed to put 
more distance between the user and the actual operation of the hardware. 
Vendors have dropped simple ADC cards from their lists in favor of FIFO-
buffered elaborations that require a monstrous software driver library to use. 
However there are “workarounds” to enable you to use even these, although 
life is much easier if you have a board of traditional design. Also, many prob-
lems can be avoided if you have retained a copy of your old Windows 98.

An alternative is to use the HC12 or a similar microprocessor as a “slave” 
interface. With a simple protocol, it can be asked to reply with the values on 
any of the ADC inputs, to latch output values and apply them to output bits 
or mark–space registers. Using the serial interface of the PC, rather than a 
proprietary plugged-in card, it should be proof for some years from the efforts 
of the operating system writers. The effective conversion time will be greatly 
increased by the serial communication, but when set to a high baud rate, this 
should still be acceptable.

This might at fi rst threaten to present the same dangers as the Labview 
approach, in which the interfacing is regarded as a piece of magic into which 
the student is not supposed to delve. But the student can certainly unravel the 
simple code of the HC12 to see how it ticks. What is more, a second level of 
the experiments can see the students writing HC12 code to achieve the control 
objectives without the intervention of the PC, once the code has been 
downloaded.

A further resource, to be found on the accompanying Website at http://
www.essmech.com/3/vb.htm, is an example of the use of Visual Basic rather 
than QBasic for constructing code for these experiments. The conversion is 
a very simple one.

The fi rst experiment, however, requires no input at all. It uses the printer 
port to drive two stepper motors that will form the essence of a “mobile 
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robot.” There is little theory involved, but it offers the great satisfaction of 
seeing a computer moving a “robot” about with homegrown software. But 
fi rst it is necessary to settle on the software environment to use. The following 
discussion is aimed at both instructors and students.

3.1 COMING TO GRIPS WITH QBasic

The choice of computer language is always a thorny issue. Partisan support 
can be as ardent as that of any football supporter, and any choice is going to 
upset somebody. It could be tempting to select the “newest and the best,” 
perhaps a version of C with the greatest number of pluses after it, but for 
getting started the greatest simplicity will give the greatest advantage.

An early mainstream language was FORTRAN, but it was hidebound with 
conventions designed to fi t in with the use of punchcards! Some time later it 
was followed by Algol, a language that treated line endings with disdain and 
abounded in semicolons.

When “personal” microcomputers began to be sold, the advantage of sim-
plicity had market value. Two varieties of Basic, BasicA, and GWBasic had 
simple syntax and were well within the capabilities of a generation of school-
children. However, they had their roots in “line at a time” program entry 
and editing and depended heavily on line numbers, even more so than 
FORTRAN.

Meanwhile Algol had evolved into Pascal, taking its semicolons with it. 
Algol and Pascal both use labels, rather than numbers, to tag special points 
in their code.

Soon on-screen editing was the only way to go, and line numbers could be 
dropped. Quick Basic borrowed some of the best features of Pascal and com-
bined them with the simplicity of Basic. Version 4.5 included a compiler that 
could effi ciently reduce your code to an .EXE fi le and this was soon followed 
by Visual Basic for DOS.

Quick Basic caught the attention of Microsoft and a stripped-down version, 
QBasic, was included in DOS operating system disks and in installation disks 
for all versions of Windows before XP. Meanwhile, the same syntax was used 
for Visual Basic, both as part of Visual Studio and as a scripting language in 
most, if not all, Microsoft Offi ce applications.

It is probable that any serious real-time programming will be performed 
in some version of C. It is second cousin to assembly language, the lowest 
level at which it is convenient to program a microcomputer, and as such it has 
access to processes at a fundamental level. However, C has quirks of cryptic 
syntax that make reading the software of even the most careful programmer 
an arduous exercise in concentration.

QBasic code can be read like a novel, as I hope that you will soon agree. 
Just as in C, there are ways to perform fundamental operations such as writing 
and reading bytes directly to or from peripheral interfaces.
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3.1.1 A Simple Start

Launch QBasic, and the introductory page will appear. You can take a quick tour 
of the Help fi les or press 〈escape〉 to go straight in. Type in the program line

play “cdeccdecefgn0efg”

As you press 〈return〉 at the end, you will see the word PLAY change into 
uppercase. It means that the syntax has been checked and the keyword 
recognized.

Now run the program—yes, it really is a program. There are two ways. You 
can click on run in the menu bar and then start in the submenu that drops 
down, or else you can press 〈shift–F5〉.

What did it do? You should have heard a simple tune.
If you want to know more about the PLAY routine, put the cursor on the 

word and press 〈F1〉—there’s everything you could ever ask for. Press 〈escape〉 
to clear the Help page.

So, what has this got to do with control?
Here we have a very simple way to measure out time, because the music 

plays the notes at a speed that does not depend on the speed of the processor. 
We can easily control the speed at which it plays—put another line at the start 
of the program, to get

PLAY “L8”
PLAY “cdeccdecefgn0efg”

Run it again. What is the difference? Now change L8 to L16, run again. Try 
L64. Then try “L64T255”.

So, a PLAY statement can measure out an interval of time that is indepen-
dent of the speed of the computer. In order to perform real-time digital fi lter-
ing, we have to have good control of timing.

3.1.2 Using Graphics

Clear your program and start again by selecting new. (To fi nd it, click on 
fi le.) Do not save.

The line

SCREEN 12

will set a graphics mode. A second line

WINDOW (0, -1.1) – (1000, 1.1)

sets the screen coordinates to a range of 0–1000 across and −1.1 to +1.1 from 
bottom to top. Then
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LINE (0, 0) – (1000, 0), 9

It will draw a blue line across the screen. The 9 specifi es “bright blue.” Put 
the cursor on the word LINE and press 〈F1〉 to see all the details.

Put in these three lines and run the program. Well, it’s a start! Now let’s 
draw something. Enter the following lines:

FOR i = 1 TO 1000
  PSET (i, SIN(I / 100)
NEXT

The PSET (point set) routine puts a dot at the coordinates in the brackets.
Run the program, and a sine wave will fl ash onto the screen. So how do 

we slow it down? Put the line

PLAY “L64T255”

at the start of the program and

  PLAY “n0”

just before the NEXT line. (n0 is the code for silence!)
Now you see the sine wave crawl across the screen, taking 12 seconds to 

run.

3.1.3 A Real-Time Model

Let us now try to model a lowpass system—an example of such a system would 
be a resistor–capacitor lag. It is really not diffi cult, although you will fi nd 
much more information on the theory later in the book.

First we need an input signal. Let us make a square wave. A neat way to 
do it is with a logic operation.

In numbers ranging from 128 to 255, from 384 to 511, and two more ranges 
below 1000, the “128-bit” of the binary value is set. So the logic function 
(i AND 128) will cycle from 0 to 128 four times.

IF (i AND 128)>0 THEN
  u = 1
ELSE
  u = -1
END IF

Put these lines just before the PSET line and change the PSET to

PSET(i, u)
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This time you should see four cycles of square-wave—lines of dots at the top 
and the bottom of the screen.

So, how do we make the lowpass fi lter? Try adding the lines

x = x + (u - x) / 20
PSET (i, x), 14

after the END IF line. There in yellow is the waveform that you would expect 
from an RC circuit driven by a square wave.

So, how does it work? The differential equation corresponding to a lowpass 
fi lter with time constant T and input u is

T dx dt u x= −

So to a fi rst (and pretty good) approximation, the change in x over a small 
time dt is

u x dt T−( )

or in code terms

x = x + (u - x) * dt / T

Instead of dt/T, we have used the numeric value 1/20 in the code above—
in other words, T has the value 20 dt. Now in our real-time plot, we have 
dt = 12 ms, so the time constant T is 240 ms or around a quarter of a 
second.

Later we will see how this sort of fi lter can be useful.
You might like to save this as SIM1.BAS before you choose new.

3.1.4 SUBs and FUNCTIONs

Clear the decks again with new (fi rst click on fi le).
By defi ning a function, a single word can be put in your program to repre-

sent a whole operation such as reading an input device. Type the line

function twice(n)

On pressing 〈return〉 on your keyboard, you will see this change to

FUNCTION twice(n)
END FUNCTION

and now you can type in your function between these lines. Put in the line
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twice = 2 * n

Now we are on a special page just devoted to this function. To get up to the 
main program, press 〈F2〉—where you will see the top line with untitled and 
a second line with twice. Click on untitled. You will see a blank page. Now 
enter the line

PRINT twice(7)

and run the program. You should not be too surprised to see the number 14 
appear.

Functions can be called recursively. Try changing the line to

PRINT twice(twice(7))

and run the program.
SUBs are similar, except that they do not return a value. Clear the decks 

again and type

SUB treble(n)
n = 3 * n

(The computer will have added an END SUB.)
Press 〈F2〉 to go to the main program page (untitled). Now enter the 

lines

CLS   ‘Clear the screen
x = 5
treble x
PRINT “The answer is “; x

There are a few points to notice. In the SUB, n is a “dummy variable.” The 
SUB does its task on whatever variables are passed to it, in this case the vari-
able x. The value of x is changed inside the routine. (For C buffs, the default 
is that x is passed as a pointer)

The single quote after CLS means that the rest of the line is a “remark” 
and is not treated as code.

3.2 THE SIMPLEST MOBILE ROBOT

The “turtle” was popular in the mid-1980s for teaching children the rudi-
ments of programming. It accepted combinations of commands telling it to 
turn or advance, then it trundled across the fl oor.
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In essence, it consisted of two stepper motors, one driving the left wheel and 
the other, the right. It steered like a wheelchair, by turning the driving wheels 
by differing amounts, while skids in front and behind stopped it toppling.

3.2.1 Driving a single Stepper

A starting point for this project is to drive just a single stepper motor. Raid 
the junk heap for a discarded 51–4 -in. fl oppy disk drive. In addition to the elec-
tronics and a very interesting motor that rotates the disk, it has a square, 
chunky stepper motor that drives the head in and out.

This stepper has the advantage that it will operate on a small current, and 
if you are prepared to take the risk (use a “thirdhand” computer), you can 
drive it directly from the printer port. It has the disadvantage that when oper-
ated in this way it has very low torque, and serves merely to demonstrate how 
a stepper steps. Its two windings have no center tap, so to use it in the “turtle,” 
you would have to use an H-bridge driver rather than the simpler Darlington 
driver. But more of that later. 

Use a test meter to determine how the four leads are connected to the two 
windings—pair those leads between which you fi nd some conduction as NS 
and EW.

To use the printer port, you will need a printer cable. Crimp a pair of 
25-way connectors onto a ribbon cable, so that you have plugs of opposite 
“genders” at the ends, wired pin to corresponding pin. This will act as a 
printer port extender cable. When connected, the “pins” at the free end will 
take the form of hollow sockets.

For this elementary test, you can push wires into the connector sockets 
to attach the motor—connect N, S, E, and W to sockets 2, 3, 4, and 5, 
respectively.

You will need to know the address of the printer port—it is probably at 
&H378 as listed in the software below, but might instead be at &H278. The &H 
means that the rest of the number is in the hexadecimal scale of 16. So &H10 
is the decimal value 16, &H100 = 256, and &HFF = 255.

You can use Windows to fi nd the address of the port. Follow the trail start, 
settings, control panel, system, device manager, ports, lpt1, properties, 
and resources—and there at long last you will see the address range of the 
port. The fi rst address is the one you want. Substitute your correct address in 
all the statements below.

Launch QBasic. Then twiddle the motor shaft with your fi nger and thumb. 
It should turn freely. 

Enter the following line of code, and then run it:

OUT &H378, 1

Feel the motor again—it should feel lumpy when you turn it.
You have just applied 5 V (or a little less) across the NS winding. Try
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OUT &H378, 5

and run it. The lumpiness should be somewhat greater—you have applied 5 V 
across both the NS and EW windings.

For neatness, run

OUT &H378, 0

to ease the load on the printer port.
Stick and fold a label over the motor shaft, to form a pointer so that you 

can see any movement more clearly.
Now is a good time to start to give some structure to the code. Let us fi rst 

defi ne the port address as a constant, in the form

CONST port = &H378

Now we can arrange the main part of the program as a loop, as follows:

FOR i = 1 TO 50
  stepto 5
  stepto 6
  stepto 10
  stepto 9
NEXT

So, what does stepto do? It does nothing until we write it!

SUB stepto(n)
  OUT port, n
  PLAY n0
END SUB

There’s another use for the PLAY routine for timing.
Run the program, and you should see the pointer stepping sedately round, 

making one complete revolution if the motor has 200 steps per revolution. 
Feel the torque that is required to stop it.

Now speed things up by adding the line

PLAY “L64T255”

at the top of the program.
Rotation should now be much more brisk. But what has happened to the 

torque, when you grasp the shaft?
The signifi cance of the numbers 5, 6, 10, and 9 is that they represent the 

binary numbers
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0101
0110
1010
1001

The 4-bit code can be regarded as representing WENS (the most signifi cant 
bit comes fi rst, so N = 1, S = 2, E = 4, and W = 8) and these codes will give 
us NE, SE, SW and NW.

For more precise control, you can employ half-step mode using N, NE, E, 
SE, S, SW, W, and NW, taking eight half-steps for each electrical cycle. The 
corresponding numbers are 1, 5, 4, 6, 2, 10, 8, 9.

Try it!

3.2.2 Driving More Powerful Stepper Motors

Now we are ready to move on to the stepper motors that you will use for the 
trolley. These should have six wires, so that in addition to the N, S, E, and W 
connections, there are center taps to the two coils. Now these center taps can 
be connected to +12 V, and the drive circuit will pull one or two of the NSEW 
connections to ground.

A drive circuit that can do the job is a single-chip “octal Darlington driver” 
such as the ULN2803A, which can be connected directly to the output pins 
of the printer port. It has eight outputs that can be connected to the NSEW 
pins of two stepper motors. It even contains diodes to suppress the “spikes” 
when the inductive loads are turned off.

Connect the circuit as shown in Figure 3.1. Switch on and run the same 
software again, to make sure that the connections are in order. (When trou-
bleshooting mechatronics, try to make only one change at a time, inching your 
way from one working system to the next.)

It is now time to test the second motor. Change a line of your stepto 
routine to

   OUT port, n * 16

which will control the most signifi cant 4 bits of the port.
The new motor should move in the same way as the other. Try

   OUT port, n * 17

and both motors should move together.

3.2.3 The Mobile Robot

Mount the motors and wheels as shown in Figure 3.2, and you have the rudi-
ments of a mobile robot. Now, however, we must write some much better 
structured software.
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Figure 3.1 Printer port connections and driver chip.

Figure 3.2 Sketch of a mobile robot.
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Let us defi ne variables Rpos and Lpos for the number of steps that the 
right and left wheels will have made.

Let us also fi ll two tables with codes for the right and left wheels, 
respectively:

CONST port = &H378
DIM SHARED Rpos, Lpos
DIM SHARED Rtable(7) AS INTEGER, Ltable(7) AS INTEGER
PLAY “T255L16”
FOR i = 0 to 7
  READ j
  Rtable = j
  Ltable = 16 * j
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9

This might need some explanation. The SHARED means that the variables 
defi ned in the DIM statement will exist in all subroutines—otherwise subrou-
tines can have their own private variables of the same name. READ picks up 
values one by one from a DATA statement.

Now we need a “user interface” to provide manual control of the robot. 
There is a function INKEY$ that grabs a value from the keyboard. If no key 
is pressed it is the “null string.” Let us start simply by defi ning fi ve keys, f 
and b to run forward or backward, l and r to spin left or right and the space 
bar to stop. We will use variables dl and dr to hold the value by which to 
change Lpos and Rpos at each timestep:

DO 
      a$ = INKEY$
      SELECT CASE a$
           CASE “f”
        dr = 1
        dl = -1
           CASE “b
        dr = -1
        dl = 1
           CASE “l”
        dr = 1
        dl = 1
           CASE “r”
        dr = -1
        dl = -1
           CASE “ “
        dr = 0
        dl = -0
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      END SELECT
      Rpos = Rpos + dr
      Lpos = Lpos + dl
      DoMotors
LOOP UNTIL a$ = “q”
OUT port, 0
END

Note that when both wheels run forward, one motor must turn clockwise and 
the other one anticlockwise!

Now we need the DoMotors SUB. We can use the MOD operator to fi nd 
Rpos modulo 8. That means that as Rpos increases, Rpos MOD 8 cycles 
repeatedly through the numbers 0 to 7, just the thing we need to look up the 
drive value in the table:

SUB DoMotors
OUT port, Rtable(Rpos MOD 8)+Ltable(Lpos MOD 8)
PLAY “n0”
END SUB

Enter and run the program—do not forget to save it fi rst. The trolley should 
obediently respond as you tap keys, stopping when you press the spacebar 
and the program ending when you press 〈q〉.

But that is just the start. From Lpos and Rpos you can calculate how far 
you have gone (you will have to include a variable representing the circumfer-
ence of the wheels), and you can calculate your heading (you will have to 
include another variable to represent the separation of the wheels). Indeed, 
you can keep an estimate of your current position and change your program 
to accept target coordinates.

You can even add simple sensors. The printer port has input bits for 
“online,” “out-of-paper,” and several other conditions. You can read these bits 
with

inp(port+2)

You can include the following defi nition in your software:

pin15 = 8 ‘True if high, used for error
pin13 = &H10 ‘True if high, printer present
pin12 = &H20 ‘True if high, out of paper
pin10 = &H40 ‘True if high, -ack
pin11 = &H80 ‘True if low, -busy

If you now add a contact that connects pin 12 to ground if the robot touches 
a wall, then
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inp(port+2) AND pin12

will have the value zero if the wall is touched and 32 otherwise.
There are even some additional output bits at address port+1. These are 

not buffered and cannot drive a load, however. Be careful. Other bits on this 
port control the mode of the printer port, determining whether it is buffered 
or can act also as eight input bits.

pin1 = 1 ‘True gives low, Strobe
pin14 = 2 ‘True gives low, Auto linefeed
pin16 = 4 ‘True gives high, initialise
pin17 = 8 ‘True gives low, select

3.3 BALL AND BEAM

In the mid-1960s the focus of my research was “Fast model predictive control 
for higher order systems.” I needed a “higher-order system” on which to 
demonstrate its effectiveness and devised the ball-and-beam experiment, 
based on a childhood memory of a game in a seaside amusement arcade.

One outcome was that I discovered that it could be controlled just as effi -
ciently by much simpler pragmatic methods. My research was a success, but 
my belief in the usefulness of “interesting” academic solutions was seriously 
undermined. 

You might like to see an article linked at http://www.essmech.com/3/3.

3.3.1 Construction

A ball rolls in a grooved plank that is hinged at a central pivot. The motor is 
driven to tilt the plank, and the task is to control the position at which the 
ball comes to rest. In this stepper motor version, the ball will oscillate gently 
close to the target.

When manual control is provided as an alternative, it can be seen that the 
computer performs much better than a human being. The mechanical con-
struction is clear from Figure 3.3.

There remains the problem of sensing the ball position. One variation is 
to mount a Webcam above the track and deduce the ball position from the 
“white blob” in the image. However, we will try a solution that uses much 
simpler technology.

The method of making the original sensor, and one that is still acceptable, 
is to stretch a resistance wire along the track. The steel ball makes contact 
between the wire and another wire on the opposite face of the “V,” thereby 
forming a potentiometer.

The resistance of the wire is likely to be rather small, so a series resistor 
will have to be added to limit the current and avoid overheating. This means 
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that the voltages will also be small and there may be a need to add an 
amplifi er.

As the ball rolls, the contact will almost certainly break at times. This 
would cause the output voltage to suffer from steps to zero and would intro-
duce a large noise signal. With the addition of a capacitor, maybe 0.1 µF 
(e.g., see Fig. 3.4), the output voltage stays constant when the circuit is broken 
and the noise consists simply of the step to the new value when contact is 
resumed.

3.3.2 A Control Strategy

Now we have several new points to establish before the task is complete:

• We must be able to read the ball position into the computer, by writing 
a routine to drive the ADC.

• We must be able to estimate the ball velocity.

Figure 3.3 Mechanics of ball-and-beam experiment.

to ADC
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Figure 3.4 ADC input circuitry, including operational amplifi er.
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• We must be able to control the plank tilt in response to the ball position 
and velocity.

The control strategy is of a simple “nested loops” format:

For each value of position error, we will defi ne a demanded velocity. This 
function will be nonlinear, in that there is a top demanded speed above 
which we do not wish to go. The difference between the demanded 
velocity and the estimated velocity is the velocity error.

For each value of velocity error, we will demand a tilt angle. This function 
will be nonlinear, in that there is a maximum tilt beyond which we do 
not wish to go.

The stepper motor will be driven in the direction that reduces the tilt error 
at the maximum stepping rate.

3.3.3 Software

We will start with the version of software that gives manual control, with code 
very similar to that for the mobile trolley’s stepper motor:

CONST port = &H378
DIM SHARED Tilt, Demand
DIM SHARED Table(7) AS INTEGER
PLAY “T255L64”
FOR i = 0 to 7
    READ Table(i)
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9

DO
     a$ = INKEY$
     IF VAL(a$)>0 then
        Demand = (VAL(a$) - 5)/4  ‘a fraction -1 to 1
     END IF
     DoTilt
LOOP UNTIL a$ = “q”
OUT port, 0
END

SUB DoTilt
Tilt = Tilt + Demand
OUT port, Table(Tilt MOD 8)
PLAY “n0”
END SUB
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You will need to use 〈F1〉 to discover what the function VAL does.
The number key that you hit will set the speed of the tilt motor, 〈1〉 tilting 

one way, 〈9〉 tilting the other way, and 〈5〉 causing it to stop.

3.3.4 The ADC Routine

This is a good time to add the ADC routine. It will differ for each interface 
technique, but the rest of the code can remain the same.

In Section 5.3.5, the code is given for interfacing a chip, the MCP3204, 
directly to the printer port. This is certainly the most economical and “future-
proof” way to go if you do not already have an ADC card.

For most ADC cards, the principles are the same. The card has a base 
address, just as the printer port has address &H378. It will in fact use a 
range of 8 or maybe 16 addresses from the base upward. Writing to one of 
these addresses will set the channel number. Another will start the 
conversion.

Reading from one of the addresses will give access to a “busy” or “data 
ready” bit. The simplest code will enter a loop, repeatedly reading this bit 
until the answer is ready. It wastes a few microseconds, but is less prone to 
error than relying on interrupts.

If the converter is a 12-bit one, the lower 4 bits of the byte that contains 
the data-ready bit will contain the most signifi cant 4 bits of the result. Yet 
another register will contain the lower 8 bits of the result, so we need only 
combine these and return to the program.

A little extra fi nesse is added if we scale the answer to lie in the range −1 
to +1, so that the rest of the code is not changed if our precision is different. 
Here is an example. It is for a Contec Series 100 ADC12-16M board, so 
ancient that it will no longer fi t into the PCI slot that is provided on current 
PCs:

CONST b = &H220 ‘board base address
CONST ADlo = b + 4
CONST ADhi = b + 5
CONST chan = b + 10 ‘multiplexer channel
CONST start = b + 12
CONST busy = 16 ‘busy bit in ADhi value

FUNCTION adc (c%)
DIM v%
OUT chan, c% ‘set channel number
OUT start, 255 ‘tell ADC to start conversion
DO ‘wait until ready
     v% = INP(ADhi)
LOOP UNTIL (v% AND busy) = 0
v% = (v% AND 15) * 256 + INP(ADlo)
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 ‘combine high nibble
 ‘with low byte
adc = (v% - 2048) / 4096 ‘change range to +/- 1
END FUNCTION

Here is the code for a different brand of board, an Advantech PCL-818L, also 
made to fi t the older card slots:

CONST adstart = &H2A6 
CONST adhi = &H2A7 
CONST adlo = &H2A6 
CONST readybit = &H40 

FUNCTION adc(chan%) 
DIM hibyte AS INTEGER 
OUT adstart, &H80+chan% 
DO 
     hibyte = INP(adhi) 
LOOP UNTIL hibyte AND readybit 
adc = (INP(adlo) + 256*(hibyte AND 15) - 2048)/2048 
END FUNCTION 

A more recent Advantech card that does fi t the newer slots is the PCI-1710. It 
provides the data in a 16-bit word, and to use it, it is necessary to extend QBasic 
with a library function that uses the INW function of the PC’s micro. To add 
this library when you run, simply launch QBasic with the line qbasic /linw, 
either by launching it from the run control in the start bar or by making a 
shortcut on the desktop. You can edit the shortcut to add the extra /linw.

The ADC code and the library function have been supplied by Rodney 
Elliott of the University of Canterbury, New Zealand. You can fi nd both at 
http://www.essmech.com/3/3/4.htm.

Two other alternatives are to use a “satellite” microcontroller attached to 
the serial port to perform the ADC conversion, or to construct the simple 
ramp-based converter described in Section 5.3.5.

So, having added the appropriate constants and ADC routine to our code, 
we can add some graphical output.

3.3.5 Graphics

After the constants have been defi ned, add

CONST Tmax = 4, dt=.012
SCREEN 12
WINDOW(-.1, -1.1)-(Tmax, 1.1)
LINE (0,0)-(Tmax,0),9



BALL AND BEAM     61

Now we plot the ball position by adding

t=t+dt
if t>Tmax then t=0
Ball = Adc(0)
PSET (t, Ball)

immediately after the DoTilt line.
This will give us a dot that crosses the screen in 4 seconds, since the note 

length that we have set is equivalent to 0.012 s.
You might need to make adjustments to the amplifi er, if you use one, to 

get the value of the ball position to change over the range of −1 to 1. However, 
provided you have a reasonable range of change, you can replace the 
Ball = line with

Ball =  2 * (Adc(0) - Ballmin)/(Ballmax - Ballmin) -1

where Ballmin and Ballmax are the ADC values you have read at the two 
extremes of the plank. That will check out the hardware, but we still need to 
estimate the ball velocity.

Do you still remember the simulation of the lowpass fi lter in Section 3.1.3? 
It is no harder to simulate a highpass fi lter to make an estimate of the ball’s 
speed. The whole thing reduces to two lines of code:

Ballvel = (Ball - Ballslow) * 10
Ballslow = Ballslow + Ballvel*dt

The argument is the same as before. Ballslow is a lowpass-fi ltered version 
of Ball, just as x was a low-pass-fi ltered version of u in Section 3.1.3. In 
this case, the time-constant smoothing the differentiation will be  1–10 s. Do not 
worry. There will be ample theory on this later in the book.

Add these lines, together with

PSET (t, Ballvel),14

after the existing PSET line in your code, and you should be able to see the 
movement of the ball and its velocity on your screen, as you command the 
plank to tilt.

3.3.6 The Strategy in Software

Now we just need to automate the process. But let us do it in stages.
First, let us make the demand input control the tilt target, rather than the 

tilt rate. Add a line at the top
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DIM SHARED TiltDemand

and change the fi rst line of code in DoTilt to

Tilt = Tilt + SGN(TiltDemand - Tilt)

(Use the 〈F1〉 key to see what SGN does.) Then add the line

TiltDemand = 20 * Demand

just before the DoTilt line in the main program, and you should fi nd that 
the ball is a little easier to control. You might fi nd that you need to change 
the number 20 to some other value that gives a useful range of tilt angles.

Of course, the computer does not “know” when the plank is level, so you 
must hold it level when you start to run the program.

For the next stage, let us make Demand control the velocity of the ball. 
Now we need something like

TiltDemand = kt * (0.2 * Demand - BallVel)

where kt is a gain constant that we would like to be large, to correct velocity 
errors quickly.

We do not want the tilt to be too great, because it takes time to drive the 
plank back to a level position. Let us defi ne SUB Limit.

SUB Limit(x, lim)

IF x > lim THEN
      x = lim
ELSEIF x < -lim THEN
      x = -lim
ENDIF

Now the line

Limit TiltDemand, 20

after TiltDemand is calculated, will limit the tilt to 20 steps either way.
Make the necessary changes to your code, and experiment with values of 

the tilt gain, kt. Maybe you need to reduce the value of the tilt limit.
For the fi nal step, make Demand set the target position of the ball. 
In the fi nal program, we will have the following constants and defi nitions at 

the top, to which must be added the constants needed for the ADC routine

CONST port = &H378
DIM SHARED Tilt, TiltDemand
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DIM SHARED Table(7) AS INTEGER
PLAY “T255L64”
FOR i = 0 to 7
     READ Table(i)
NEXT

DATA 1, 5, 4, 6, 2, 10, 8, 9
CONST Tmax = 4, dt=.012
SCREEN 12
WINDOW(-.1, -1.1)-(Tmax, 1.1)
LINE (0,0)-(Tmax,0),9

while the main loop of our code will become

DO
     a$ = INKEY$
     IF VAL(a$)>0 then
          Demand = (VAL(a$) - 5)/4
     END IF
     Ball =  2 * (Adc(0) - Ballmin)/(Ballmax - Ballmin) -1
     BallVel= (Ball - Ballslow) * 10
     Ballslow = Ballslow + BallVel * dt
     t = t + dt
     IF t > Tmax then t = 0
     PSET (t, Ball)
     PSET (t, BallVel), 14
     VelDemand = kv * (Demand - Ball)
     Limit VelDemand, Velmax
     TiltDemand = kt * (VelDemand - BallVel)
     Limit TiltDemand, TiltMax
     DoTilt
LOOP UNTIL a$ = “q”
OUT port, 0
END

You will have to add lines at the top to set the values that you choose for kt, 
kv, VelMax and TiltMax. You might also wish to change the differentiator 
time constant, which is at present set to 10.

As well as the code above, you will have an appropriate ADC routine 
and

SUB DoTilt
Tilt = Tilt + SGN(TiltDemand - Tilt)
OUT port, Table(Tilt MOD 8)
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PLAY “n0”
END SUB

SUB Limit(x, lim)
IF x > lim THEN
      x = lim
ELSEIF x < -lim THEN
      x = -lim
ENDIF

You still have to hold the plank level when the program starts to run.

3.3.7 The Next Step

Now that your system has sensor inputs, the system can discover many of its 
own parameters. The demonstration version can include switching between 
control modes and can perform its own calibration at startup. This procedure 
is as follows:

1. Tilt the plank left 100 steps. This will ensure that the plank hits its limit 
stop, after which the motor will just “shudder” as more steps are 
commanded.

2. Wait 3 s for the ball to run down the plank. Measure the value of Adc(0) 
and store it as BallMin.

3. Tilt the plank slowly to the right, until the value of Adc(0) starts to 
change. Here the plank will be level, so we would like to set Tilt to 
zero. However, we want to output that particular NSEW combination 
to the stepper motor to level the plank. So fi rst we set a variable Tilt0 
to (Tilt MOD 8), then set Tilt to zero and afterward use ((Tilt0 
+ Tilt) MOD 8) for looking up values from the table.

4. Tilt the plank to Tilt=20 and wait 3 s, or until the ball stops moving.
5. Measure the value of Adc(0) and save it as BallMax.

Now you can enter the loop for ball position control.

3.4 “PROFESSIONAL” POSITION CONTROL

An axis of an industrial robot is a far cry from the usual laboratory position 
control experiment. Most students will be content to derive a response curve 
that matches the classical “damped second-order response” found in books 
on linear systems. The professional designer of a motion controller will reject 
this out of hand. He or she will expect the system to stop at the target position 
as though hitting a brick wall and to resist all defl ecting forces with only the 
slightest perturbation.
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Far too many laboratory experiments are protected by a transparent cover. 
This prevents the student from feeling the stiffness of the output. The present 
experiment is meant to be poked and prodded unmercifully.

The hardware (see, e.g., layout in Fig. 3.5) forms three-quarters of an 
inverted-pendulum experiment that follows, although the control strategy is 
quite different.

There are many ways to construct this experiment. The machine in our 
mechatronics laboratory has survived several generations of students, although 
the new version illustrated here has just been completed. The original motor 
was marketed as a component for a battery lawnmower, but many suitable 
motors are now sold for adding electric drive to bicycles.

The 100 W DC motor drives a pulley at one end of a toothed belt. The belt 
pulls a trolley weighing half a kilogram along a track, constrained on one side 
by a linear bearing and on the other by a ball race running on a fl at track 
formed by a length of angle.

The belt is joined to the trolley on one side, passes around the motor pulley, 
back under the trolley, around a second pulley at the other end of the track, 
and back to the other side of the trolley. The second pulley turns a 10-turn 
potentiometer. Also connected to the motor shaft is a small motor that acts 
as the tachometer.

Care must be taken to avoid the rotating parts binding, when bearings are 
aligned. The potentiometer and the tacho are mounted in sprung clips, so that 
they can fl oat to accommodate any misalignment.

Two separate power supplies should be used. The sensors and ADC cir-
cuitry will use one supply while a second power supply drives the motor. If 
sensors and motor were to share the same supply, there would be a risk of 
high-frequency oscillation as the motor drive affected the sensor supply 
voltage. Another advantage of separating them is that the motor supply can 
be kept at zero when the program starts, increasing toward 12 V only as the 
student’s full attention is on any oscillations or excursions of the system.

In the original experiment, the potentiometer is supplied by +15 and 
−15 V supply lines, so that zero volts will represent the center of the track. In 
the new version, using the single-chip converter, it is supplied from 0 and 5 V, 

Motor

Tacho

10-turn potentiometer

Linear bearing

Angle as flat track

Figure 3.5 Position control hardware.
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with the ADC software arranged so that zero is read in the middle of the 
range. In this case the tacho “ground” should be connected to the midpoint 
of two 1 kΩ resistors connected across the 5-V supply.

There are a number of steps that we need to accomplish on the way. First 
we must control a motor of up to 100 W, driving it bidirectionally. We must 
also consider the use of mark–space control, so that the motor is not continu-
ously under full power.

We also look at the effect of “tacho feedback” for reducing the effect of 
disturbances.

3.4.1 Simple Motor Control

The experiment can start with a variable DC power supply, a small DC motor, 
and an N-channel power fi eld effect transistor (see Fig. 3.6):

1. Connect the motor to the power supply. Increase the voltage—probably 
to around 10 V—so that the motor starts readily and runs at a reasonable 
speed.

2. Switch off and disconnect the negative connection. Connect the fi eld 
effect transistor in series with the motor. The source is connected to the 
negative lead of the power supply, while the motor is connected to the 
drain. The gate is left unconnected.

3. Switch on again. Hold the negative power supply contact and touch 
the gate with your fi nger. The motor will not run. Hold the positive lead 
instead and touch the gate. The motor should run as it did before con-
necting the transistor.

A suitable power transistor for this part is a BUK553 N-channel FET. It is 
designed to be controlled by TTL (transistor–transistor logic) voltages, so you 
can connect a computer output line directly to the gate.

This next part of the experiment again uses the parallel printer port of the 
computer. The pins of interest are 2 to 9 for the output bits and pin 25 to serve 
as a ground pin. As before, the port address will either be &H278 or &H378.

+

–
gs

d

Figure 3.6 Sketch of motor, FET, supply.
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Run QBASIC.EXE, then press the function key 〈F6〉 to select the immedi-
ate window. This allows you to run code at once, rather than saving it in a 
program. Enter the line

OUT &H378, 255

followed by return. You should use a meter or an oscilloscope to check the 
voltage of pin 2—it should be at 5 V. In fact, this command should have set 
all eight lines from pin 2 to pin 9 to 5 V.

Now enter

OUT &H378,0

followed by return. The voltage should fall to zero.
If these actions do not work, repeat them using &H278 instead. In that case 

also use 278 instead of 378 in the program below. Enter the following program 
to make changing the outputs neater and more convenient:

port = &H378

DO
     a$=INKEY$
     IF a$<>”” THEN
          OUT port, VAL(a$)
     END IF
LOOP UNTIL a$=”q”

OUT port, 0

If you press the 〈1〉 key, pin 2 should be at 5 V and pin 3 at zero. Press the 〈2〉 
key, and pin 3 should be at 5 V and pin 2 at zero. Press the 〈0〉 key, and both 
should become zero. Press 〈q〉 and the program should end, tidying up by 
setting the port to zero. Save it as P2.BAS.

Now switch off the motor power supply. Connect the computer ground (pin 
25) to the negative line and pin 2 to the gate of the transistor. Switch on again. 
By tapping the 〈1〉 and the 〈0〉 keys, you should be able to start and stop the 
motor at will.

Of course, the motor will also run if you tap 〈3〉, 〈5〉, 〈7〉 or 〈9〉 and stop if 
you choose an even number.

3.4.2 Unidirectional Speed Control

The “safe” version of hardware for this part of the experiment uses two min-
iature DC motors (see Fig. 3.7) that require only a few watts to drive them. 
Later the much larger motor of the position control experiment can be used, 
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with the belt disconnected, so that the trolley does not move. This motor uses 
much greater power, and care must be taken to avoid overheating the fi eld 
effect transistors used in the experiment.

You should fi rst run through these experiments with the miniature motors, 
then repeat them with the larger motor. In each case the driven motor is con-
nected mechanically to a second DC motor. Both turn together. When they 
run, a voltage is generated on the second motor that is proportional to the 
speed. By connecting this voltage to an analog input of the computer, you can 
use the speed as a feedback signal. This second motor is being used as a 
tachometer.

As in previous experiments, the ADC routine will fi rst read in an integer 
and then scale it to a fl oating-point value in the range −1 to 1. You need to 
fi nd the code that is appropriate for your ADC and enter both the FUNC-
TION and the constants that defi ne the interface.

With this ADC routine and with the velocity voltage connected to channel 
0, the start of a program to view the tacho signal can be as follows:

CONST tmax=4
SCREEN 12

WINDOW(0,-1)-(tmax,1)

dt = .01

DO

     a$ = INKEY$
     v = ADC(0)
     t = t + dt
     IF t > tmax THEN t = 0
     PSET (t, v)
LOOP UNTIL a$ = “q”

This will read the voltage and display it on the screen as a sort of oscilloscope 
display. Spin the motors by hand, then run the driven motor by “dabbing” a 
wire across source and drain of the control transistor.

+
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Tacho

Figure 3.7 Two small motors with FET.
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One of the most important tasks in feedback control is to ensure that the 
signals are of the correct polarity. If they are not, negative feedback can 
become positive feedback with disastrous results.

When you run the motor, make sure that the resulting velocity is shown on 
the screen as positive. If it is not, reverse the connections of the tacho.

Pressing the 〈q〉 key will end the program.
When you are sure that this part of the program is working correctly, you 

can expand it to obtain closed-loop control. You need to include a command 
for turning the motor on and off and another for comparing the speed with 
some demanded value. In turn, something is needed for changing the demand 
value at the press of a key:

CONST port= &H378
CONST tmax=4

SCREEN 12
WINDOW (0,-1) - (tmax,1)

dt = .01

vdemand = 0

DO
     a$ = INKEY$
     if a$ = “>” THEN vdemand = vdemand + 0.1
     if a$ = “<” THEN vdemand = vdemand - 0.1
     v = ADC(0)
     IF vdemand > v THEN OUT port, 1
     IF vdemand < v THEN OUT port, 0
     t = t + dt
     IF t > tmax THEN t = 0

     PSET (t, v)
     PSET (t, vdemand), 12 ‘red

LOOP UNTIL a$ = “q”

OUT port, 0

Run the program. The motor should remain still. Now tap the “>” key once 
or twice (remember to press 〈shift〉), and the motor should turn. Hold the 
motor shaft loosely to try to slow it down. You should see the motor current 
increase as indicated on the power supply meter, with very little drop in 
speed.

In practice it is preferable to use “.” in place of “>” and “,” in place of “<” 
so that there is no need to press the 〈shift〉 key.
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3.4.3 Bidirectional Speed Control

When the motor turns in just one direction, the speed can be controlled 
simply by turning the motor on and off. If the motor is to be capable of turning 
both ways, we must have some means of driving it with either a positive or 
negative voltage. We could use two power supplies to give positive and nega-
tive voltages, or we can use a single power supply with an H-bridge (see 
Fig. 3.8).

As we have seen, this enables each wire of the motor to be connected either 
to the positive supply or to ground. The schematic has the appearance of the 
letter “H,” giving it its name. The circuitry must at all costs prevent one side 
being connected to both positive and ground at the same time!

The circuit uses two bits of the parallel printer port, bit 0 and bit 1 on pins 
2 and 3. When the output value is 1, the motor runs in one direction; when it 
is 2, it runs in the opposite direction; and if it is zero, the motor free-wheels 
until it stops. (Remember that the binary value of bit 0 is 1; of bit 1, is 2; of 
bit 2, is 4; and so on.)

Start off by using the program of the last section. You will have changed 
the connections to the motor in order to replace the single transistor by a full 
H-bridge drive. In the process, the sense of the motor drive could have 
changed.

When you tap the “>” key, the motor should start to run. If the velocity 
trace on the screen is positive, all is well. If not, you must reverse the motor 
leads or the tacho leads. But which?

If you are using the position control rig with the belt removed, check that 
the motor runs in a sense that would carry the trolley to the right. If not, 
reverse it. Now check the tacho voltage and if necessary reverse the tacho 
connections to ensure that the trace is positive.

You should now get the same velocity control as before—simply running 
in the positive direction. Now is the time to change the software to take 
advantage of the two-way drive.

BUZ271BUZ271

BUK553BUK553

22K

22K22K

22K

4.7K4.7K

4.7K4.7K

Motor

2N3704 2N3704

Figure 3.8 H-bridge schematic.
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The previous program needs only slight modifi cation to give “bang-bang” 
control. If the velocity error (v − vdemand) is positive, full negative drive is 
applied. If the error is negative, the drive is positive.

CONST port= &H378
CONST tmax=4

SCREEN 12

WINDOW (0,-1) - (tmax,1)
dt = .01

vdemand = 0

DO
     a$ = INKEY$
     IF a$ = “.” THEN vdemand = vdemand + 0.1
     IF a$ = “,” THEN vdemand = vdemand - 0.1
     v = ADC(0)
     olddrive=drive
     IF vdemand > v THEN
          drive = 1
     ELSEIF vdemand < v THEN
          drive = 2
     ELSE
          drive = 0
     END IF
     IF drive = olddrive THEN
          OUT port, drive
     ELSE
          OUT port, 0
     END IF
     t = t + dt
     IF t > tmax THEN t = 0
     PSET (t, v)
     PSET (t, vdemand), 12 ‘red
LOOP UNTIL a$ = “q”
OUT port, 0

So, why is the code complicated with drive and olddrive? If we switch 
repeatedly from forward to reverse drives, there is a tendency for the H-bridge 
transistors to overheat. Here a zero is output between changes of sign.

Nevertheless, there is the disadvantage that for most of the time maximum 
drive is applied. Is there a way to reduce the drive when full drive is not 
needed?
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3.4.4 The Proportional Band

The previous strategy resulted in the motor being connected to the power 
supply at all times, resulting in a substantial power drain even when there is 
no disturbing torque and the demanded speed is zero.

The current drain could be reduced if the motor were switched off when 
“near” the target. There would, in effect, be a “gap” where there is zero 
drive.

Add a line to the program above:

CONST gap = .05

Then change the “middle” lines to

IF vdemand > v + gap THEN
      drive = 1
ELSEIF vdemand < v - gap THEN
      drive = 2
ELSE
      drive = 0
END IF

This will reduce the current drain—indeed, it will be zero when zero speed 
is demanded—but the velocity can be in error by an amount “gap” with no 
corrective action. With an on off controller, how can we get proportional 
action to fi ll in the gap? Many commercial power amplifi ers provide a pro-
portional mark-space output—at great expense. We can construct a mark–
space controller in software.

We set up a variable g that will shuttle to and fro across the gap in a 
triangular wave, as follows:

g = g + dg
IF g > gap THEN dg = -.1 * gap
if g <= 0 THEN dg = .1 * gap

Now we change the “engine room” lines again, to

IF vdemand > v + g THEN
      drive = 1
ELSEIF vdemand < v + g - gap THEN
      drive = 2
ELSE
      drive = 0
END IF
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dg must be set to 0.1 * gap at the top of the program, after gap is defi ned. 
After 20 times round the loop, g cycles through its range of values. If the 
velocity error is exactly zero, the drive will be set to zero all the time. If 
vdemand - v = gap/2, the drive will be positive for half the time. If it 
is greater than gap, the drive will be positive all the time.

We have a mark–space ratio that can increase the drive in steps of 10%, 
which is dg’s proportion of gap. If dg is made much smaller, the cycle time is 
longer and the motor buzzes accordingly.

3.4.5 Position Control

By now you will have applied velocity control to the motor and tacho of the 
position control experiment, having carefully removed the belt from contact 
with the motor pulley.

Instead of using the keyboard to set the velocity demand, we can use the 
10-turn potentiometer mounted on the second pulley.

Connect the potentiometer output to the input of ADC channel 1. The 
software function should now return a value that varies from −1 to 1 as 
the potentiometer is turned from end to end:

CONST port= &H378
CONST tmax=4
CONST gap=.05

dg = .1 * gap
k = 1

SCREEN 12
WINDOW (0,-1) - (tmax,1)

dt = .001 ‘or a smaller value to suit the display rate
DO
      a$ = INKEY$
      v = 5 * ADC(0) ‘The tacho voltage is rather small
      x = ADC(1)
      vdemand = -k * x
      g = g + dg
      IF g > gap THEN dg = -.1 * gap
      IF g <=0 THEN dg = .1 * gap
      verror = vdemand - v ‘more about this later
      IF verror > g THEN
           OUT port, 1
      ELSEIF verror < g -gap THEN
           OUT port, 2
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      ELSE
           OUT port, 0
      END IF
      t = t + dt
      IF t > tmax THEN t = 0
      PSET (t, v)
      PSET (t, x), 14 ‘yellow
LOOP UNTIL a$ = “q”
OUT port, 0

As a consequence of the way we have used g and gap, we should always have 
one or more periods of zero drive before a drive reversal, so we can dispense 
with drive and olddrive.

Run the program. The potentiometer will control the speed. If the polari-
ties are correct, the motor should spin in the opposite sense to the way you 
turn the potentiometer shaft. If this is not the case, reverse the supply con-
nections to the potentiometer.

Now switch off the power and reconnect the drive belt. Beforehand, be 
sure that the speed control is “good”.

Cautiously increase the voltage of the power supply that runs the motor. 
As the motor starts to move, it backs off the potentiometer shaft to zero—you 
have achieved position control.

The next step is to put back a demand signal, this time a position 
demand:

if a$ = “.” THEN demand = demand + 0.1
if a$ = “,” THEN demand = demand - 0.1
if a$ = “0” THEN demand = 0

The vdemand line is now

vdemand = k * (demand - x)

Tapping a key will step the demand along the potentiometer travel. Pressing 
the 〈0〉 key will return the demand to zero, so that a larger step response can 
be seen.

Experiment with various values of k and also gap, trying to get a fast 
response without overshoot.

Now put the control system to its real test. How far can the trolley’s posi-
tion be pushed away from the target before full corrective drive is applied? 
With linear feedback tuned to avoid overshoot, the control might be 
rather “soggy.” With a nonlinear strategy, something much “crisper” can be 
achieved.

Try setting gap to zero—but make the test very brief, since the power 
transistors will be getting hot. This reverts to bang-bang control, and the 
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system will be very stiff indeed, although the motor will buzz and the current 
will be high. Increasing gap will make the performance “quieter” at the 
expense of a softer response to disturbances.

3.4.6 Nonlinear Correction

An overshoot occurs if the motor approaches the target “too fast to stop.” 
Drive saturation plays an important part in the performance. Even when the 
linear parameters have been tuned for a heavily damped response for small 
defl ections, a larger disturbance can cause it to overshoot badly.

An easy answer is to put a limit on the demanded velocity. Now the system 
will approach the target at constant speed, however large the defl ection. By 
setting this speed limit lower, the time constant of the fi nal settling response 
can be made faster while still avoiding an overshoot. There is always a com-
promise to be made.

Add the line at the top of the program

vmax = 0.1

and after vdemand is defi ned, add the lines

IF vdemand > vmax THEN vdemand = vmax
IF vdemand < - vmax THEN vdemand = -vmax

Now experiment by varying the values of k, vmax, and gap.

3.4.7 Estimating Velocity

Suppose that we have no tacho signal. How can we stabilize the system?
In the ball-and-beam experiment, you produced an estimate of the ball’s 

velocity in real time. The play routine was used to control a precise time 
increment, a necessary part of the process.

We used the property that a highpass fi lter can be expressed as the difference 
between the original signal and the output of a lowpass fi lter as follows:

Ts Ts Ts1 1 1 1+( ) = − +( )

In other words, to estimate the velocity, we construct a “lagged” version of 
the position and subtract it from the position. We can set up a “chicken and 
egg” situation where we use vest to update the lagged version and in turn 
calculate vest from the lagged version

vest = (x - xslow) * kt

while the lagged position is updated by
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xslow = xslow + vest * dt

If the variables are updated at intervals dt, the time constant of the lag will 
be 1/kt seconds, so if kt = 20, it is 50 ms.

Add a line at the top of the program:

CONST kt = 20

Now the scale factor of vest is unity, so that a value of 1 indicates that x is 
changing at 1 unit per second. In contrast, v was scaled by an arbitrary factor 
determined by the tacho.

The gain and the value of vmax you must use with vest will differ consider-
ably from the values you chose when using v. You will fi nd that vest would go 
off screen if displayed at the same scale as v; so display vest/20 instead.

Our previous way of getting a timed response was by inserting a PLAY 
command into the program loop, slowing down the whole process. We would 
instead like to run the mark–space calculation as fast a possible. QBasic 
allows us to set up an “interrupt” so that vest will be updated in time 
“stolen” from the main loop every 10 msec.

Since the earliest days of computers, interrupts have been a fundamental 
part of the system. When your output device was a teletype, tapping away at 
10 characters per second, you did not want to waste time waiting for it and 
instead preferred to get some more computing done between taps.

So, every time the interface is ready for another character, it interrupts the 
computer. The values in the registers used for the task in hand are tucked away 
safely, then the machine attends to loading the code of the next character to be 
printed and outputting it. Then it must retrieve and restore the values of the 
registers and perform an “interrupt return.” Modern peripherals may be much 
faster, but they still operate at a snail’s pace compared with computing speeds.

In just the same way, QBasic allows us to play music in the background, 
interrupting us for some more notes when the tune is coming to an end. If we 
set the play rate to the highest speed and supply just one note at a time, we 
will receive interrupts at intervals of 0.012 s.

Near the top of the program, the command

PLAY “mbl64t255”

sets the fastest playing speed and also tells the music to play in “background 
mode.”

Add some further instructions just before the loop begins:

ON PLAY(1) GOSUB rates
PLAY ON

PLAY “cde”
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These tell the software that when the number of notes queued for playing 
falls to 1, there should be an interrupt causing a subroutine call to the label 
rates. The third line “sets the alarm clock” with three notes to play.

Now at the end of the program, add a line

END

so that program execution cannot “fall through” to the subroutine.
Now for the subroutine itself. This is added after the END:

rates:
vest = (x - xslow) * kt
xslow = xslow + vest * dt
PLAY “n0”
RETURN

Add one last line in the heart of the control loop to display the estimated 
velocity in red, among the other PSET lines:

PSET (t, vest / 20), 12

Now run the program again. Remember that the actual control program is 
exactly as before—we are using “real” velocity and not vest.

As you demand steps of movement, the tacho velocity is shown in white. 
The estimated velocity is shown in red. If you have “got it right,” the values 
in the constant speed section will be the same size. Try values other than 20 
to scale vest to match the traces.

When you are at last satisfi ed with your estimate of the velocity, you can 
try it in the control loop. In the verror = line, replace v with vest/20 (or 
the value you found for the best match). Now your control depends on esti-
mated velocity, not on the tacho.

Control will be a bit more wobbly, overshoots will be harder to avoid, and 
the control may have to be softer. Once more, experiment with k, vmax, and 
kt to see what you can achieve.

3.4.8 Discrete-Time Control

There is just one more step to try. We will move the entire control loop into 
the interrupt routine. Now the top-level program merely “twiddles its thumbs” 
in a loop. Every 10 ms, it is interrupted to allow the ADCs to be measured, 
the feedback to be calculated, and the drive to be output.

The mark–space drive behavior given by gap would become a nuisance if 
g were changed only every 10 ms. Its cycle through 20 steps would take 200 ms. 
The system would vibrate at fi ve cycles per second.

We can instead calculate a drive signal u
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u = (vdemand - v) * kv

inside the interrupt routine, but let the mark–space gap part of the routine 
run much faster in what is left of the main program. With a value of 1.0 for 
gap, the drive will be positive all the time if u is greater than 1, will be nega-
tive all the time if u is less than −1, and will give a proportional mark–space 
ratio in between. The result is like this:

‘CONSTants required for the ADC routine go here

CONST port= &H378 ‘(might be &H278)
CONST tmax= 4
CONST gap= 1
dg = .1 * gap
CONST vmax = 0.1

k = 1
kv = 10
kt = 10

SCREEN 12
WINDOW (0,-1) - (tmax,1)

PLAY “mbl64t255”
dt = .01 ‘Interval for this playing rate

ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”

DO
     a$ = INKEY$
     if a$ = “.” THEN xdemand = xdemand + 0.1
     if a$ = “,” THEN xdemand = xdemand - 0.1
     if a$ = “0” THEN xdemand = 0
     g = g + dg
     IF g > gap THEN dg = -gap/10
     if g < 0 THEN dg = gap/10
     IF u > g THEN
          OUT port, 1
     ELSEIF u < g - gap THEN
          OUT port, 2
     ELSE
          OUT port, 0
     END IF
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LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
v = ADC(0)
x = ADC(1)
vest = (x - xlsow) * kt
xslow = xslow + vest * dt
vdemand = k * (xdemand - x)
IF vdemand > vmax THEN vdemand = vmax
IF vdemand < - vmax THEN vdemand = -vmax
u = (vdemand - v) * kv ‘(or later try vest)
t = t + dt
IF t > tmax THEN t = 0
PSET (t, v)
PSET (t, x), 14        ‘yellow
PSET (t, vest / 20), 12 ‘red

PLAY “n0”
RETURN

FUNCTION adc(chan%)

‘ The code for the ADC routine goes here

END FUNCTION

Experiment with various values of k, kv, and vmax.
Now try using vest instead of v for the control by changing the line 

suggested.

3.4.9 Summary

Now you have seen how a motor can be switched by one computer output line 
if it runs in just one direction, or by two lines with the aid of an H-bridge if 
it is to be bidirectional.

You have seen that a tacho velocity sensor enables the position control to 
be very stiff, as would be required by a machine tool positioner. You have 
seen that without such a tacho, a softer control is achievable with the use of 
a digital fi lter to estimate the velocity.

You have seen that the gain can be expressed in terms of a proportional 
band and that this proportional drive can be achieved as mark–space modula-
tion by means of further software.
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In short, you have seen that a motor, an amplifi er, and two transducers can 
be turned into an industrial-grade position control system with a few simple 
lines of software.

3.5 AN INVERTED PENDULUM

In the previous experiment, a position control loop has been closed after some 
cautious tests. A variety of nonlinear strategies have been investigated to 
obtain the performance expected of an actuator such as a robot axis.

Most of the feedback decisions were made empirically, experimenting to 
fi nd values that would give a swift response with no overshoot. For the control 
of an inverted pendulum, we can also follow an empirical approach. However, 
we must avoid the mistake of thinking that we can add the pendulum control 
on top of the algorithm that we have found for position control. You may fi nd 
some of the feedback coeffi cients surprising.

3.5.1 Skeleton Software

We can strip out the control algorithm from the position control software, to 
leave the following skeleton:

‘Constants required for the ADC routine go here

CONST port= &H378      ‘(might be 278)
CONST tmax= 4
CONST gap= 1
dg = .1 * gap
CONST vmax = 0.1

k = 1
kv = 10
kt = 10
SCREEN 12
WINDOW (0,-1) - (tmax,1)

PLAY “mbl64t255”
dt = .01        ‘Interval for this playing rate

ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”

DO
     a$ = INKEY$
     if a$ = “.” THEN xdemand = xdemand + 0.1



     if a$ = “,” THEN xdemand = xdemand - 0.1
     if a$ = “0” THEN xdemand = 0
     g = g + dg
     IF g > gap THEN dg = -gap/10
     if g < 0 THEN dg = gap/10
     IF u > g THEN
          OUT port, 1
     ELSEIF u < g - gap THEN
          OUT port, 2
     ELSE
          OUT port, 0
     END IF
LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
v = ADC(0)
x = ADC(1)
vest = (x - xlsow) * kt
xslow = xslow + vest * dt
‘The control goes here, with a line u =  .  .  .  

t = t + dt
IF t > tmax THEN t = 0
PSET (t, v) ‘white
PSET (t, x), 14 ‘position in yellow

PLAY “n0”
RETURN

FUNCTION adc(chan%)

‘ The code for the ADC routine goes here

END FUNCTION

3.5.2 The Pendulum and Tilt Sensor

You might have noticed the tubular rod projecting from the front of the new 
position control experiment. This is a tube in which a pair of crossed Hall 
effect sensors are mounted, forming the pivot for the pendulum. Simple 
rubber O-rings restrain the pendulum mounting and prevent it dropping 
off.
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The pivot of the pendulum takes the form of a mounting for a pair of 
magnets, as shown in Figure 3.9. This slides onto the sensor tube. Into it can 
be screwed a variety of lengths of lightweight aluminum tubing.

The sensors are linear Hall effect sensors, chips the size of a small transis-
tor with three connections. The UGN3504 is now obsolete, but equivalents 
such as the A1302 are available from Allegro. Supply lines of 5 and 0 V are 
connected to two of these, while the third delivers an output voltage that 
varies either side of 2.5 V in proportion to the normal component of the mag-
netic fi eld.

With two sensors, both sine and cosine signals are available. For calcula-
tion and simple control, we can take the sine to be the same as the angle in 
radians over the small relevant range. However, we also have the information 
we need it we wish to swing the pendulum from hanging down to standing up.

The new version of the experiment uses the single-chip ADC described in 
detail in Section 5.3.4. Both input and output are handled by the printer port 
connection, while the signals from the Hall effect sensors are connected to 
inputs ADC2 and ADC3, pins 3 and 4 of the MCP3204 chip (see schematic 
in Fig. 3.10).

Add the following lines in the skeleton program above, in the subroutine 
rates:

N S

N S

Figure 3.9 Pivot and magnets.



tilt = ADC(2)
PSET (t, tilt), 10 ‘Plot tilt in green

Make sure that the motor drive supply is switched off, and run the program. 
Rotate the sensor—swing the pendulum about—and note that the sensor 
voltage (shown in green) varies over a reasonable range. You may need to 
swap the sensor connections, so that ADC(2) represents the sensor that gives 
a value near zero when the pendulum is upright. The signal should move 
positive as the pendulum is tilted to the right. If it does not, slide the mount-
ing off the pivot, reverse it front to back and replace it.

To centralize the tilt reading, we have to subtract the value given when the 
pendulum is straight up. Change the tilt= line to

tilt = (ADC(2) - tilt0)

But how do we get the value of tilt0? After the dt=.01 line at the top of 
the code, add

tilt0 = adc(2)

and make sure that you balance the pendulum before running the program.
Rotate the pendulum and check that the value swings equally positive and 

negative.

3.5.3 Finding the Tilt Rate

Now we use the interrupt routine again to estimate the tilt rate from the tilt 
signal. Since we are using a substantial gain already, this estimate might be 
rather noisy:

M
C

P3204

1ADC0

ADC1

ADC2

ADC3 Pin 1

Pin 14

Pin 13

Pin 16Pin 25

0v

0v
0v

5v

5v

Printer

port pins

CLK

Dout

Vref

VDD

Din

SHDN

AGND

Tacho

10K

10K

Hall effect 1

Hall effect 2

10-turn
potentiometer

Figure 3.10 Circuit and printer port connections.
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tiltrate = (tilt - slowtilt) * 20
slowtilt = slowtilt + tiltrate * dt

Once again the constant 20 defi nes a time constant of 50 ms.
Add these lines to the rates routine, and also add

PSET (t, tiltrate), 12 ‘red

among the other PSETs to display it.
Now we have enough variables to hand to try to control the system.

3.5.4 Building a Strategy

Start with the skeleton program with the modifi cations of the last section. 
Before going any further, we should make sure that the polarities are correct. 
Run the program, but be sure to keep the motor power supply turned off.

Move the trolley to the right by hand, and make sure that the yellow trace 
rises on the screen. Move it swiftly a little way to the right and make sure that 
the white velocity trace also rises. Lean the pendulum to the right—the green 
trace should rise. Hold the pendulum straight up, and the green trace should 
be central. Wave the pendulum to the right, and the red tiltrate trace 
should be positive for a short burst.

If all is well, we are ready to begin.
The whole feedback exercise comes down to fi nding a suitable expression 

for the u = line. We can start with

u = 10 * tilt

If the pendulum tilts to the right, the trolley moves to the right. This implies 
that the trolley will move to try to hold the pendulum upright.

Hold the pendulum high up, with the trolley in the center of the track. 
Being careful to keep your hands clear of the trolley, turn the motor power 
supply voltage setting down to zero, switch on, and increase the volts steadily 
to 10 or so.

You will see that this feedback arrangement acts as a sort of position 
control. As you move the top of the pendulum to the left, the trolley moves 
to follow it. There is no damping, however, so the response will be fairly oscil-
latory. We should add some damping. Do this by changing the vital line to

u = 10 * tilt + 10 * tiltrate

By adjusting the two coeffi cients, you can obtain a swift and agile response. 
Try releasing the pendulum briefl y—it should remain upright, but the trolley 
will drift to the left or right until the pendulum hits the stops.



It is time to add feedback to keep the trolley in the center of the track. But 
should we add positive or negative position feedback? Change the line again 
to

u = a * tilt + b * tiltrate + 10 * x

where a and b are the numbers you have chosen by trial and error.
Hold the pendulum again and power up. Now you will see that as you move 

the pendulum left and right, the trolley follows as before—but with a differ-
ence. It moves rather more than you move the pendulum, so that the pendu-
lum leans inward—or at least it should if you have the coeffi cients right. 
Adjust the coeffi cient of x so that the pendulum rotates about a point roughly 
twice as high as the length of the pendulum.

Now give the pendulum another solo run, starting near the center. The 
trolley will “swing” to and fro with increasing amplitude. Catch it before it 
hits the ends.

Now add yet another term, some constant times v. When you have the right 
coeffi cient, the “swing” will be damped and the pendulum will “rest” near 
the centre. “Rest” might not really be the right word, since the trolley will 
jitter to and fro.

You can instead use a multiple of vest. It will actually give a smoother 
response. So now the only sensors used are the potentiometer measuring x 
and the sensor measuring tilt. The other variables are deduced from 
these.

We can go a little further by replacing x in the u= line with (x − xdemand). 
As the keys are tapped, the trolley will obediently wobble to the left or right 
as commanded.

You have followed a systematic but empirical process to arrive at feedback 
coeffi cients that will stabilize the pendulum. It might have been surprising at 
fi rst that positive, rather than negative feedback had to be used for the trolley 
position. In a later chapter, the equations of the systems will be analyzed and 
your results will be explained.

Another exercise will involve simulating the system. At present we know 
very few of its parameters, so you should take the opportunity now to measure 
some.

3.5.5 Measuring the System Parameters

To make an accurate mathematical model of the system, we need to measure 
a number of parameters. By modifying some of the earlier programs, we can 
let the computer do most of the hard work for us.

The key parameter is the acceleration of the trolley under full drive. 
Another is the effect of the velocity on the acceleration.

Which units should we use to measure the position with? The most conve-
nient measure is in terms of the potentiometer voltage. Since we have scaled 
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the ADC output to the range −1 to 1, we will take this range to be two units 
of position.

Next we need to have some absolute scale of time. We must use the inter-
rupt method in preference to one that relies on the speed of a program loop. 
The following program will calibrate the interrupt process to give the correct 
value to use for dt:

CLS
PRINT “Calibrating dt - please wait fi ve seconds”

PLAY “mbl64t255”
ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”
t = TIMER
n=0
DO
LOOP UNTIL n>=500
PLAY OFF
PRINT “Use dt =”;(TIMER - t)/n
END
rates:
n = n + 1
PLAY “n0”
RETURN

It simply uses the TIMER function (press 〈F1〉 to check it out) to measure the 
duration of 500 interrupts, which we know to be in the region of fi ve seconds.

Now we need a program to measure acceleration. To test the acceleration, 
we fi rst ask for the trolley to be moved by hand to the left hand end of the 
track. When we press 〈space〉 for “go”, the trolley accelerates under full drive. 
When it reaches the center, the drive is removed and friction brings the trolley 
to a halt.

Load in the skeleton you used in Section 3.5.1 and delete even more, then 
enter the new code. Edit the program that follows to use the dt value that 
you have just found:

‘CONSTants required for the ADC routine go here

CONST port= &H378      ‘(might be 278)
CONST tmax= 1 ‘Note the change of value
SCREEN 12
WINDOW (0,-1) - (tmax,1)
PLAY “mbl64t255”
dt = .01       ‘Change this to the value you have found



ON PLAY(1) GOSUB rates
PLAY ON
PLAY “cde”
‘------New code from here on
OUT port, 0
PRINT “Move the carriage to the left end and press 
<space>”
DO
LOOP UNTIL INKEY$ = “ “ ‘Wait for key
x0 = ADC(1)
t=0
OUT port, 1 ‘Off we go
DO
     PSET (t, x), 14
LOOP UNTIL x>=0 ‘When we get to the middle
t1 = t ‘make a note of the time
x1 = x ‘and check the position
OUT port, 0  ‘switch off and coast to a halt
t=0
DO
     PSET (t, x), 14
LOOP UNTIL t >.9 ‘Should stop before 0.9 seconds
x2 = x         ‘How far did it coast?
a = 2 * (x1 - x0) / (t1̂ 2) ‘using s=1/2 a t^2
b = a * (x1 - x0) / (x2 - x1) ‘v^2 = 2 a s1 = 2 b s2
PRINT “Acceleration = “; a
PRINT “Deceleration = “; b
‘----End of new code
DO          ‘Leave the information on the screen
     a$ = INKEY$
LOOP UNTIL a$ = “q”
PLAY OFF
OUT port, 0
END

rates:
x = ADC(1)
t = t + dt
‘Point A
PLAY “n0”
RETURN

FUNCTION adc(chan%)
‘ The code for the ADC routine goes here
END FUNCTION
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So, that gives us some numbers. What do they mean?
The fact that the stopping distance is of the same order as the run up sug-

gests that the major slowing effect is not viscous drag but friction. On this 
assumption we can model the trolley with two equations:

dx dt v

dv dt cu

=

= − friction

where u is +1, −1 or zero according to the drive setting. Friction will be of 
constant magnitude, multiplied by the sign (±1) of the velocity. Its magnitude 
will be given by the deceleration that we have just found.

Since the drive has to act on top of the friction, the constant c will be the 
sum of the acceleration and the deceleration. We are now in a position to 
make a mathematical model for the trolley movement.

At the point marked A in the rates subroutine, add

vm = vm + (c * u - friction *SGN(vm)) * dt
xm = xm + vm * dt

substituting the values you have found for c and friction.
Now we have to introduce u and set the model initial conditions.
At the command OUT port, 1, insert

u = 1
xm = x

and at the OUT port, 0 command, insert

u = 0
xm = x

Finally, we must display the model position by adding

PSET (t, xm), 12

next to the existing PSET command. As a result, the new program will show 
the actual and modeled positions superimposed.

For a more complete model, we need to know more about the pendulum. 
We can measure the vital parameter with minimal technology. Hang the pen-
dulum upside-down. Give it a swing and measure the period of oscillation.

3.5.6 Final Touches

The program can be polished up for demonstration purposes. The datum 
value can be written to a fi le on disk, so that the pole does not have to be 
balanced at the start.



The original version of the experiment has brackets at the end, forming 
stops near the midheight of the pendulum, while there are limit stops on the 
angle to which it can topple. The program can start by applying velocity 
control to run the trolley gently toward the end. As the pendulum is pushed 
past the upright position by the stop, the mode switches to balance control 
and the pendulum is balanced. You can see this in action in a video fi le to be 
found at http://www.essmech.com/3/5/6.htm.

A simple test on the tilt angle will detect whether the pendulum has 
toppled and enable the routine to erect it and start again.

On the new version that is just being commissioned (in 2005), the pendu-
lum can swing freely in a complete circle. The trick now is to erect it from a 
hanging position by building up oscillations until it can be “caught” at the 
top.
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