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6
Essential Control Theory

Control theory is traditionally taught from the point of view of the frequency 
response, with great emphasis on the manipulation of transfer functions. 
Instead we will start with the state space approach, based on differential equa-
tions that you can identify from the “real” system.

6.1 STATE VARIABLES

The relationship between state variables and initial conditions has already 
been mentioned, but let us try to make the concept as clear as possible.

A cup of coffee has just been prepared. It is rather too hot at the moment, 
at 80°C. If left for some hours, it would cool down to room temperature at 
20°C, but just how fast would it cool, and when would it be at 60°C?

The cup remains full for now, so just one variable interests us: T, the tem-
perature of the coffee. It is a reasonable assumption that the rate of fall in 
temperature is proportional to the temperature above ambient. So we see that

dT
dt

k T T= − −( )ambient

If we can determine the value of the constant k, perhaps by a simple ex-
periment, then the equation can be solved for any particular initial 
temperature—although we’ll look at the form of the solution later.
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The concept of state variables is so simple, yet it is essential for gaining 
insight into dynamic systems. As an exercise, consider the following systems, 
select state variables, and derive state equations for them:

1. The money in a bank account that carries compound interest.
2. The voltage on a capacitor that has a resistor connected across it—

assuming that it is originally charged.
3. The distance of the back wheel of a bicycle from a straight line when 

the front wheel is wheeled along the line—assume that it starts away 
from the line.

4. The speed of a motor when driven from voltage V.

Think up your own answers before reading on:

1. The state variable in this case is just your credit balance. To fi nd its rate 
of change, multiply the credit balance at this very instant by the interest 
rate. If we call the credit c and the interest rate R, then the equation is 
just

dc
dt

Rc=

where, of course, time is measured in years.
2. This time the state variable is the voltage on the capacitor, v. The current 

that will fl ow through the resistor is v/R. The equation linking voltage and 
infl owing current i for a capacitor is

i C
dv
dt

=

Since the current in the resistor is fl owing out of the capacitor, we have

i
v
R

= −

so

C
dv
dt

v
R

= −

or

dv
dt

v
RC

= −
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3. First let us assume that the bicycle’s angle is small, so that its sine can be 
assumed to be equal to the value of the angle in radians. Now the state 
variable can be defi ned as the distance of the back wheel from the line 
along which the bicycle is being wheeled. If this distance is x and the length 
between the wheels is L, then a bit of trigonometry shows that for a small 
angle the component of the velocity of the back wheel perpendicular to 
the line is Vx/L toward it, where V is the forward speed. We end up 
with

dx
dt

V
x
L

= −

4. As the motor speeds up, a backward electromotive force (back-emf) is 
generated that opposes the applied voltage V. If the angular velocity is w , 
the motor current will be proportional to

V k− w

So, we have

d
dt

aV b
ω ω= −

 where b = ak. When the motor reaches its top speed, the acceleration will 
be zero, so

wmax = aV b

Equations of this sort apply to a vast range of situations. A rainwater barrel 
has a small leak at the bottom. The rate of leakage is proportional to the 
depth, H, and so

dH
dt

kH= −

The water will leak out until eventually the barrel is empty. But suppose now 
that there is a steady fl ow into the barrel, suffi cient to raise the level (without 
leak) at a speed u. Then the equation becomes

dH
dt

kH u= − +

What will the level of the water settle down at now? When it has reached a 
steady level, however long that takes, the rate of change of depth will have 
fallen to zero, so
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dH
dt

= 0

It is not hard to see that −kH + u must also be zero, and so

H u k=

Now, if we really want to know the depth as a function of time, a mathemati-
cal formula can be found for the solution. But let us try another approach 
fi rst: simulation. See http://www.EssMech.com/6/2.

6.2 SIMULATION

With very little effort, we can construct a computer program that will imitate 
the behavior of the barrel. The depth right now is H, and we have already 
described the rate of change of depth dH/dt as (−kH + u). In a short time dt, 
the depth will have changed by

− +( )kH u dt

so that in program terms we have

H = H + (-k*H + u)*dt

This will work as it stands in most computer languages, although some might 
insist on it ending with a semicolon. Even when wrapped up in input and 
output statements to make a complete program, the simulation is very simple. 
In QBasic it is

PRINT “Plot of Leaky Barrel
INPUT “Initial level - 0 to 40 (try 0 fi rst) “; h
INPUT “Input U, 0 to 20    (try 20 fi rst) “; u

k = 0.5
dt = 0.01 ‘Edit to try various values of steplength dt

Screen 12
WINDOW (-.5, 0)-(5.5, 40)
PSET(t, h)     ‘starting point
DO
     h = h + (-k * h + u) * dt  ‘This is the simulation
     t = t + dt
     LINE - (t, h)  ‘This joins the points with lines
LOOP UNTIL t > 5



Take care! This simulation will not be exact. The change in H over time 
dt will be accurate only if dt is very small. For longer timesteps, dH/dt 
will change during the interval and the simulated change in H will be in 
error.

Try values such as dt = 1 to see the error. See also that for small values, 
reducing dt makes no perceptible change.

6.3 SOLVING THE FIRST-ORDER EQUATION

At last we must consider the formal solution of the simple fi rst-order example, 
where we assume that the system is linear. The treatment here may seem 
overelaborate, but later on we will apply the same methods to more demand-
ing systems.

By using the variable x instead of H or Tcoffee or such, we can put all these 
examples into the same form

 
dx
dt

ax bu= +
 

(6.1)

where a and b are constants that describe the system. u is an input, which can 
simply be a constant such as Tambient in the fi rst example or else be a signal 
that we can vary as a control.

Rearranging, we see that

dx
dt

ax bu− =

Since we have a mixture of x and dx/dt in this expression, we cannot simply 
integrate it. We must somehow fi nd a function of x and of time that will fi t in 
with both terms on the left of the equation.

If we multiply both sides by a mystery function f(t), we get

 
dx
dt

f t axf t buf t( ) − ( ) = − ( )  
(6.2)

Now consider

d
dt

xf t( )( )

When we differentiate by parts, we see that

d
dt

xf t
dx
dt

f t xf t( )( ) = ( ) + ′( )
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where f ′(t) is the derivative of f(t).
If we can choose f(t) so that

′( ) = − ( )f t af t

then this will fi t the lefthand side of Equation (6.2) to give

 
d
dt

xf t buf t( )( ) = ( )
 

(6.3)

and we can simply integrate both sides to get the solution.
The function that satisfi es

′ ( ) = − ( )f t af t

is

f t e at( ) = −

Now we can integrate both sides of Equation (6.3) to obtain

xe bue dtat t at
t

− −[ ] = ∫0
0

that is

x t e x bue dtat at
t

( ) − ( ) =− −∫0
0

so

x t x e e bue dtat at at
t

( ) = ( ) + −∫0
0

Now, if a is positive, the fi rst term will represent a value that will run off to 
infi nity as time increases. If our system is to be stable, a has to be negative. 
So the coffee cup, the water barrel and the bicycle are stable, but the bank 
account is not.

If u remains constant throughout the interval 0 to t, we can simplify this 
still further:

 x t x e ub e aat at( ) = ( ) + −( )0 1  (6.4)

We will come back to this equation when we look at sampled data control.



6.4 SECOND-ORDER PROBLEMS

I hope that you had no diffi culty coming to grips with fi rst-order systems, ones 
that had a single state variable. The following are second-order systems. You 
should be able to spot two state variables for each of them. You should also 
be able to write two differential equations for each example:

1. A mass hanging on a spring, bouncing vertically
2. A pendulum swinging in a plane
3. The distance between the back wheel of a bicycle and a straight line 

when the handlebar angle is varied (small movements away from the 
line)

4. The voltage on a capacitor when it, a resistor and an inductance are all 
connected in parallel

5. The position of a servomechanism where acceleration is the input

Once again, give it a try before reading on. Answers are as follows:

1. For the mass, bouncing vertically on a spring, there are two state variables. 
The fi rst is the height x of the mass above the rest position, and the second 
is its upward velocity v. The fi rst differential equation can be seen as subtle 
or obvious, depending on how you look at it

dx
dt

v=

 since the rate of change of position is simply the velocity. The second equa-
tion is not quite as easy. The rate of change of velocity is the acceleration. 
Now the acceleration is proportional to the defl ection, the displacement 
away from the rest position, where the constant is the stiffness of the spring 
divided by the mass. The second equation is therefore

dv
dt

Sx
M

= −

 If we add an input to the system, by allowing the top of the spring to be 
moved up or down a distance u, we have

dv
dt

S u x
M

=
−( )

2. This is almost exactly the same as the previous example. This time the 
state variables can be taken as the angle of the pendulum and the angle’s 
rate of change. Instead of the constant S/M, however, the constant for the 
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second equation is now g/L, the acceleration due to gravity divided by the 
length of the pendulum.

3. Unlike the previous bicycle example, this time both front and back wheels 
can move away from the straight line. We could take these two distances 
as the state variables. If we call them x for the rear wheel and w for the 
front wheel, then we see that the bicycle is pointing at an angle (w − x)/L 
to the line. The rate of change of the rear-wheel distance will be this angle 
times the forward speed:

dx
dt

w x
V
L

= −( )

 The direction in which the front wheel is pointing will be (w − x)/L + u, 
where u is the handlebar angle, so

dw
dt

w x
V
L

Vu= − −( ) +

 This looks rather different from the other examples. But the choice of state 
variables is not unique. Instead of the defl ection of the front wheel, we 
could instead have taken the angle the bicycle is pointing as our second 
state variable. If we call this angle a, we have

dx
dt

Va=

 For the second equation, since a = (w − x)/L, we have

da
dt

dw
dt

dx
dt

L= −





 that is

da
dt

u
V
L

=

4. The two things that cannot change instantaneously are the voltage v on 
the capacitor and the current i through the inductor. For the inductor, we 
have

L
di
dt

v=

 and for the capacitor we have



C
dv
dt

i
v
R

=

= − −

current into the capacitor

 where R is the resistance. Rearrange these slightly, and you arrive at equa-
tions for di/dt and dv/dt.

5. This is almost too easy! State variables are now position x and velocity v, 
so we have

dx
dt

v=

 and

dv
dt

bu=

 where u is the drive applied to the servomotor and b is a constant.

6.5 MODELING POSITION CONTROL

A servomotor drives a robot axis to position x. The speed of the axis is v. The 
acceleration is proportional to the drive current u; for now there is no 
damping.

Can we model the system to deduce its performance?
We have just found equations for the rate of change of x and v:

dx
dt

v

dv
dt

bu

=

=

We can carry their values forward over an interval dt by adding dt times these 
rates of change to their values, just as we did for the water barrel.

With a fi xed input, the response will not be very interesting. The real use 
for such a simulation will be to try out various values of feedback. We can 
start with a position error of 1, say, and ask the user to input values for f, the 
position feedback, and d, the damping or velocity feedback.

Application of feedback means, “Giving u a value depending on the state.” 
So, before we update the variables, we must make

u = -f * x - d * v
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The following code will perform the simulation; if we defi ne input u in terms 
of acceleration, rather than motor drive, we can make b = 1:

SCREEN 12
WINDOW (-.05, -1.1)-(2.05, 1.1)
INPUT “Feedback, damping (suggest 2,2 to start) “; f, d
LINE (0, 0)-(2, 0), 9  ‘Axis, blue
dt = .0001    ‘Make dt smaller to slow display
x = 1      ‘Initial values
v = 0
t = 0
PSET (0, x)    ‘move to the fi rst point
DO
     u = - f * x - d * v ‘u is determined by feedback
     x = x + v * dt ‘This is the simulation
     v = v + u * dt
     t = t + dt

     LINE -(t, x) ‘This displays the result
LOOP UNTIL t > 2

Start with f, d values of 2, 2.
Next try 10, 5. What do you notice?
How about 1000, 50?
Now try 10000, 200.

It seems that we can speed up the response indefi nitely by giving bigger and 
bigger values of feedback. Is control really so simple?

Of course, the answer is “No.” Our simulation has assumed that the system 
is linear, that doubling the input doubles everything else. But if we have a real 
motor, there is a limit at which it can accelerate. Let us suppose that the units 
in our simulation are meters and that it runs for 2 s.

Let us also make the maximum acceleration 10 meters per second. After 
the u  = line, insert two lines

IF u > 10 THEN u = 10
IF u < -10 THEN u = -10

to impose a limit on u. Now run the program and try all the pairs of values 
again.

Values 2, 2 and 10, 5 give the same sluggish responses as before. But 1000, 50 
overshoots wildly, and 10000, 200 is even worse. The limit on the motor drive 
has had a dramatic effect on performance.



But now try 10000, 1600. There is no overshoot and the response has settled 
in considerably less than one second. It seems that if we know how, we can 
design good controllers for nonlinear systems. There will be more on that in 
Chapter 10.

You can borrow a couple of lines from the code in Chapter 3 to construct 
a real-time “target,” changing as you tap the keys, then feed back (target 
- x) in the equation for u.

Now you can look at some examples on the book’s Website, at http://www.
essmech.com/6/5/, to see similar simulations written in JavaScript. Do not 
just run them; experiment with them and modify their code.

6.6 MATRIX STATE EQUATIONS

We have succeeded in fi nding a way to simulate the second-order problem, 
and there seems no reason why the same approach should not work for third, 
fourth, and more. How can the approach be formalized?

First we must fi nd a set of variables that describe the present state of the 
system—in this case x and v.

They must all have derivatives that can be expressed as combinations of 
just the state variables themselves and the inputs, together with constant 
parameters that are properties of the system.

We have a set of equations that express the change of each variable from 
instant to instant. If there should happen to be some unknown term, then we 
have clearly left out one of the state variables; we must hunt for its derivative 
to work it in as an extra equation. 

In the present position control example, the equations can be laid out as 
follows:

dx
dt

v

dv
dt

bu

=

=

As soon as a mathematician sees a pair of equations, there is an irresistible 
urge to put them in the form of a single matrix equation

d
dt

x

v

x

v b
u





= 










+ 





0 1

0 0

0

and then to push the shorthand even further. The vector, for that is what x 
and v have become, is represented by a single symbol x. The 2 × 2 matrix is 
given the symbol A, and the matrix that multiplies u is given the symbol B. 
Just in case u might “fatten up” and have two components, it is also made a 
vector, u. So we have

MATRIX STATE EQUATIONS     127



128     ESSENTIAL CONTROL THEORY

d
dt

A B
x

x u= +

Well, it does look a lot neater. There is one more change. There is a conven-
tion to represent the time derivative by a dot over the variable, so we end up 
with

 ẋ x u= +A B  (6.5)

which looks very much like the form we used for the fi rst-order systems.
But this still describes the open-loop system, the one that we would like to 

change with some feedback. How can we deal with feedback in matrix terms? 
The secret is in the u  = line. The mixture of variables that we feed back can 
be expressed in matrix terms as

u x d= +F G

where d is some external demand such as the target value for position. Now 
we can substitute into the state equation to get

ẋ x x d= + +( )A B F G

which simplifi es to

ẋ x d= +( ) +A BF BG

Apart from A having become A + BF and B having become BG, this has 
exactly the same form as Equation (6.5). The effect of our feedback has been 
to change the A and B matrices to values that we like better. But how can we 
decide what we will like?

You will have to wait until Chapter 8, when you will become skilled in the 
art of eigenvalues.

6.7 ANALOG SIMULATION

It should be obvious by now that our state equations tell us which inputs to 
apply to integrators that will have outputs corresponding to the state vari-
ables’ values.

It is ironic that analog simulation “went out of fashion” just as the solid-
state operational amplifi er was perfected. Previously the integrators had 
involved a variety of mechanical, hydraulic, and pneumatic contraptions, fol-
lowed by an assortment of electronics based on magnetic amplifi ers or therm-
ionic valves. Valve amplifi ers were common even in the late 1960s, and 



required elaborate stabilization to overcome their drift. Power consumption 
was high and air-conditioning essential.

Soon an operational amplifi er was available on a single chip, then four to 
a chip at a price of a few cents. But by then it was deemed easier and more 
accurate to simulate a system on a digital computer. The costly part of analog 
computing had become that of achieving tolerances of 0.01% for resistors and 
capacitors, and of constructing and maintaining the large precision patch-
boards on which each problem was set up.

In the laboratory, the analog computer still has its uses. Leave out the 
patchboard, and solder up a simple problem directly. Forget the 0.1% com-
ponents—the parameters of the system being modeled are probably not 
known to better than a percent or two, anyway. Add a potentiometer or two 
to set up feedback gains, and a lot of valuable experience can be acquired. 
Take the problem of the previous section, for example.

We have seen in Chapter 5 that an analog integrator can be made from an 
operational amplifi er, but that the signal integrates in the negative sense when 
a positive signal is applied.

To produce an output that will change in the positive sense, we must follow 
this integrator with an inverter. That will mean, too, that with both signs of 
the signal available, we can attach a potentiometer between them to try both 
negative and positive feedback.

The circuit shown in Figure 6.1 can give some sort of simulation of the 
position control problem, although as it stands, the range of gains you can try 
will be very limited.

One feature it does represent is limits. The amplifi ers cannot give voltages 
outside their supply rails of +12 and −12 V. You will see that the feedback 
signals have been mixed in an inverter, connected to the fi rst integrator with 
a 10 kΩ resistor. This gives an effective gain of 10, and the effect on the ampli-
fi er limit is equivalent to saying that the motor is capable of accelerating at a 
rate of 10 m/s. This gain of 10 will apply to the feedback coeffi cients, but they 
will still be much smaller than the values you used in the “professional” posi-
tion control experiment.

10mF

10mF 100K/d

10K

All resistors are 100K except those marked

Position
demand

u

v
–x x

v–v

u

Figure 6.1 Simulation circuit, gain of 10 from mixer.
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6.8 MORE FORMAL COMPUTER SIMULATION

The simulations we have seen so far are “run up on the spot” as simply and 
concisely as possible. For more general use, however, we need a more formal 
methodology.

Software can be written in a host of languages, including QBasic, Visual 
Basic, JavaScript, or even a package such as Matlab, but the simulation will 
have a common structure:

1. Defi ne constants and variables.
2. Set variables to their initial conditions, and defi ne the timestep.
3. Begin the loop.
4. Calculate the drive input(s)
5. Calculate the rates of change of the state variables, using the state 

equations.
6. Update the state variables, by adding rate of change *dt.
7. Update the current time, by adding dt to it.
8. Plot the variables, or capture them for plotting later
9. Repeat the loop until the end of the simulation.

The state equations do not have to be linear. They can include limits or geo-
metric functions as necessary, depending on the detail that we are trying to 
achieve. We can simulate continuous control, with timesteps that are small in 
order to preserve accuracy. We can simulate discrete-time control where the 
drive is allowed to change only at intervals of many steps of the continuous 
system’s update.

The essential requirement is that the state equations used must be an 
accurate representation of the system.


