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7
Vectors, Matrices, 

and Tensors

For both state space control theory and kinematics, we can take advantage 
of matrix methods.

There is a tendency among mathematicians to regard matrices as arcane 
and mystic entities, with cryptic properties that reward a lifetime of study. 
Engineers can be duped into this point of view if they are not careful.

7.1 MEET THE MATRIX

Matrices are, in fact, just a form of shorthand that can come in very useful 
when a lot of calculating operations are involved. There are strict rules to 
observe, but when used properly matrices, vectors, and tensors are mere tools 
that are the servant of the engineer.

You will probably have fi rst encountered matrices in the solution of simul-
taneous equations. To take a simple example, the equations

5 7 2

2 3 1

x y

x y

+ =

+ =

can be “tidied up” by separating the coeffi cients from the variables in the 
form
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where the variables x and y are now conveniently grouped as a vector. Now 
the multiplication rule has defi ned itself.

We move across the top row of the matrix, multiplying each element by the 
corresponding component as we move down the vector to its right, adding up 
these products as we go. We put the resulting total in the top element, here 
5x + 7y.

Then we do the same for the next row, and so on.

7.2 MORE ON VECTORS

What does a vector actually “mean”? The answer has to be “anything you 
like.” Anything, that is, that cannot be represented by a single number but 
requires a string of numbers to defi ne it. It could even be a shopping list:

5 3 2oranges lemons grapefruit+ +

can be written in matrix format as

orange lemon grapefruit[ ]






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







5

3

2

which we might write in a line of text as (orange, lemon, grapefruit) (5,3,2)′ 
or else place the dot between them that we use for scalar product. The 
numbers on the right have defi ned a “mixture” of the items on the left.

Rather than fruit, we are more likely to apply vectors to coordinate 
systems—but we are still just picking from a list.

We might defi ne i, j, and k to be unit vectors all at right angles, say, east, 
north, and up. We can call them basis vectors.

When we say that point P has coordinates (2,3,4)′, we mean that to get 
there, you start at the origin and go 2 m east, then 3 m north, and 4 m up.

We could write this as

2 3 4i j k+ +

which is a mixture of the basis vectors defi ned by a matrix multiplication—
vectors are just skinny matrices.

Now, when we turn our minds to applications, we can see many uses for 
vector operations. When a force F moves a load a distance x, the work done 
is given by their scalar product F · x.
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As before, we take products of corresponding elements and add them up, 
to get a scalar number.

We usually think in terms of “the matrix multiplies the vector.” But how 
about thinking of the vector multiplying the matrix? What does it do to it? 
Consider the following matrix:

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9
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From one perspective, the top element is equal to the scalar product of the 
top row of the matrix with the vector (x,y,z)′. Similarly, the other elements 
are the scalar products of the vector with the middle and bottom rows of the 
matrix, respectively.

So we have

The product of a matrix and a column vector is a mixture of the vectors 
that make up the columns of the matrix.

Suppose that point P is defi ned in terms of a second set of basis vectors, u, v, 
and w, so that its coordinates (x,y,z)′ mean xu + yv + zw. To fi nd the coordi-
nates in terms of i, j, and k, we simply multiply and add up the contributions 
from u, v, and w.

We can “transform the coordinates” by multiplying (x,y,z)′ by a matrix 
made up of columns representing vectors u, v, and w, to end up with a vector 
for P as a mixture of i, j, and k.

The product of a matrix and a (column) vector is made up of the scalar 
products of the vector with each of the rows of the matrix.

But there is another way of seeing it. The answer is the same as
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So we also have
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7.3 MATRIX MULTIPLICATION

Often we will fi nd a need to multiply one matrix by another. To see this in 
action, let us look at another simple “mixing” example.

In a candy store, “scrunches”, “munches,” and “chews” are on sale.
Also on sale are “Jumbo” bags each containing 2 scrunches, 3 munches, 

and 4 chews, and “Giant” bags containing 5 scrunches, 6 munches and only 
one chew. If I purchase 7 Jumbo bags and 8 Giant bags, how many of each 
sweet have I bought?

The bag contents can be expressed algebraically as

J s m c= + +2 3 4

and

G s m c= + +5 6 1

or in matrix form as
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m

c
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5 6 1

Note that matrices do not have to be square, as long as the terms to be mul-
tiplied correspond in number.

Now my purchase of 7 Jumbo bags and 8 Giant bags can be written as

7 8J G+

or in grander form as the product of a row vector with a column vector:

7 8[ ] 
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

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But I can substitute for the J,G vector to obtain

7 8
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To get numerical counts of scrunches, munches, and chews we have to calcu-
late the product of a numerical row vector with a numerical matrix. As before, 
we march across the row(s) of the one on the left, taking the scalar product 
with the columns on the right.



The answer is what common sense would give. 

From 7 Jumbo bags, with scrunches at 2 to a bag, we fi nd 7 times 2 
scrunches. 
From 8 Giant bags, we fi nd 8 times 5 more, giving a grand total of 54.

The fi nal answer is

54 69 36[ ]

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that is 54 scrunches, 69 munches, and 36 chews.
Now the shop is selling an Easter bundle of 3 Jumbo bags and a Giant bag, 

and still has in stock Christmas bundles of 2 Jumbo bags and 4 Giant bags. 
If I buy fi ve Easter packs and one Christmas pack, how many scrunches, 
munches, and chews will I have?

As an exercise, write down the matrices involved and multiply them out 
by the rules that we have found. (Your answer should be 89 scrunches + 105 
munches + 77 chews.)

The mathematician will still worry about the order in which the matrix 
multiplication is carried out. We must not alter the order of the matrices, but 
we can group the pairs for calculation in either of two ways.

The Christmas and Easter bags can fi rst be opened to reveal a total of 
Jumbo and Giant bags, then these can be expanded into individual sweets. 
Alternatively, work out the total of each sweet for a Christmas bag and for 
an Easter bag fi rst. The result must be the same. (Check it.)

Mathematicians would say that “multiplication of matrices is 
associative:”

ABC AB C A BC= ( ) = ( )

7.4 TRANSPOSITION OF MATRICES

Our mixed fruit multiplication can be written as

orange lemon grapefruit[ ]
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or equally well as
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5

orange

lemon

grapefruit
[ ]

















3 2

giving 5 oranges + 3 lemons + 2 grapefruit in both cases—this result is in the 
form of a scalar. But note that in reversing the order in which we multiply the 
vectors, we have had to transpose them.

Transposing a scalar is not very spectacular—but when two matrices are 
multiplied together to give another matrix, C = AB, then, if we wish to fi nd 
out the transpose of C, we must both transpose A and B and reverse the order 
in which we multiply them:

′ = ′ ′C B A

7.5 THE UNIT MATRIX

One last point to note before moving on is that
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The matrix with 1 s down its diagonal and 0 s elsewhere has the special prop-
erty that its product with any vector or matrix leaves that vector or matrix 
unchanged. Of course, there is not just one unit matrix; they come in all sizes 
to fi t the rows of the matrix that they have to multiply. This one is the 3 × 3 
version.

7.6 COORDINATE TRANSFORMATIONS

It has been mentioned that vector geometry is usually introduced with the aid 
of three orthogonal unit vectors: i, j, and k.

For now, let us keep to two dimensions and consider just (x,y)′, meaning 
xi + yj.

Now suppose that there are two sets of axes in action. With respect to our 
fi rst set the point is (x,y)′ but with respect to a second set it is (u,v)′. Just how 
can these two vectors be related?

What we have in effect is one pair of unit vectors i, j, and another pair, 
l, m, say. Since both sets of coordinates represent the same vector, we 
have



x y u vi j l m+ = +

Now each of the vectors l and m must be expressible in terms of i and j. 
Suppose that

l i j

m i j

= +

= +

a b

c d

or in matrix form

l m i j[ ] = [ ] 





a c

b d

We want the relationship in this slightly twisted form, because we want to 
substitute into

l m[ ]
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


u

v

to eliminate vectors l and m to get
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Now the ingredients must match:
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Although this exercise is now graced with the name “vector geometry,” we 
are merely adding up mixtures in just the same form as the antics in the candy 
store.

To convert our (u,v)′ coordinates into the (x,y)′ frame, we simply multiply 
the coordinates by an appropriate matrix that defi nes the mixture.

Suppose, however, that we are presented with the values of x and y and are 
asked to fi nd (u,v)′. We are left trying to solve two simultaneous equations:

x au cv

y bu dv

= +

= +

In traditional style, we multiply the top equation by d and subtract c times 
the second equation to obtain
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dx cy ad bc u− = −( )

and in a similar way, we fi nd

− + = −( )bx ay ad bc v

which we can rearrange as
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d c
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1

where the constant 1/(ad − bc) multiplies each of the coeffi cients inside the 
matrix.

If the original relationship between (x,y)′ and (u,v)′ was

x

y
T

u

v

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then we have found an “inverse matrix” such that

u

v
T

x

y
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The value of (ad − bc) obviously has special importance—we will have great 
trouble in fi nding an inverse if (ad − bc) = 0. Its value is the “determinant” 
of the matrix T.

7.7 MATRICES, NOTATION, AND COMPUTING

In a computer program, rather than using separate variables x, y, u, v, and so 
on, it is more convenient mathematically to use “subscripted variables” as the 
elements of a vector.

The entire vector is then represented by the single symbol x, which is made 
up of several elements x1, x2, and so on.

Matrices are now made up of elements with two suffi ces:

A

a a a

a a a

a a a

=
















11 12 13

21 22 23

31 32 33

In a computer program, the subscripts appear in brackets, so that a vector 
could be represented by the elements X(1), X(2), and X(3), while the ele-
ments of the matrix are A(1,1), A(1,2), and so on.



It is in matrix operations that this notation really earns its keep. Suppose 
that we have a relationship

x u= T

where the vectors have three elements and the matrix is 3 × 3. Instead of a 
massive block of arithmetic, the entire product is expressed in just fi ve lines 
of Basic program:

FOR I=1 TO 3 
    X(I)=0 
    FOR J=1 TO 3 
        X(I)=X(I)+T(I, J)*U(J) 
    NEXT J
NEXT I 

For the matrix product C = AB, the program is hardly any more complex:

FOR I=1 TO 3 
    FOR J=1 TO 3 
        C(I,J)=0 
        FOR K=1 TO 3 
            C(I,J)=C(I,J)+A(I,K)*B(K,J) 
        NEXT K
    NEXT J
NEXT I 

Or in Java or C it becomes

for(i = 1; i<=3; i++){  
     for(j = 1; j<=3; j++) { 
           c[i][j] = 0;
           for(k = 1; k<=3;k++) {
                   c[i][j] += a[i][k]*b[k][j];
           }
     }
}

These examples would look almost identical in a variety of languages and 
would show the same economy of programming effort.

In Matlab the shorthand of matrix operations goes even farther—but there 
is a danger that the engineroom will be lost to view behind the paintwork.

Clearly, if we are to try to analyze any except the simplest of systems by 
computer, we should fi rst represent the problem in a matrix form.
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But beware!!

If you have no computer to hand, it will almost certainly be quicker, easier, 
and less prone to errors to use non-matrix methods to solve the problem.

7.8 EIGENVECTORS

If we multiply a vector and a matrix, what do we get?
We get another vector. For example
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=
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From the vector (1,0)′, we get (1,−1)′. This new vector is not only a different 
“size”; it represents a different direction. Another example is:

1 2

1 4

0

1

2
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So, from the vector (0,1)′, we get (2,4)′—again in a new direction.
Are there any vectors that can be multiplied by the matrix

1 2

1 4−






to give another vector in the same direction?
If we start with (x,y)′, another vector in the same direction will be (lx,ly)′—

where l is some constant.
We are looking for a vector x for which

Ax x= l

or

A Ix x= l

where I is the unit matrix. We can move both terms to the lefthand side 
to get

A Ix x− =λ 0



or

A I−( ) =λ x 0

where the 0 is a vector with all components zero.
You will recall that we could consider the matrix–vector product as a 

mixture of the columns of the matrix.
So here, if the vector x is not 0, we have a combination of the columns of 

(A − lI) that will give (0,0)′.
Remember also that to evaluate a determinant of a matrix, you can fi rst 

add multiples of columns to other columns of the matrix without changing 
the determinant’s value.

Thus we have a way to reduce a column of (A − lI) to all zeros, and so its 
determinant must be zero.

Now, when we construct A − lI and take its determinant, we get

det
1 2

1 4
0

−
− −

=
λ

λ

which we can expand as

1 4 1 2 0−( ) −( ) − −( ) =l l

or

l l2 5 6 0− + =

So, we have not just one value for l , but two: 2 and 3.
If we substitute the value 2, we get
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which is satisfi ed if x = (2,1)′.
Let us try it out:
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So Ax = 2x, just as we hoped to fi nd, and x is an eigenvector of A. The value 
of l is called an eigenvalue.

As an exercise, fi nd the other eigenvector, corresponding to eigenvalue 
l = 3. 

If the matrix A is n × n, the equation for l will be nth order and there will 
be n roots. But the method is just the same:
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1. Write down (A − lI) and take its determinant.
2. Equate the determinant to 0, giving a polynomial for l .
3. Solve this, to get a set of n eigenvalues.
4. For each eigenvalue, substitute that value back into (A − lI)x = 0, getting 

a set of simultaneous equations for the elements of x.
5. Solve these equations, and you have each corresponding eigenvector.


