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10
Further Control Theory

So far, we have followed the trend and concentrated on developing linear 
theory. But in the world of mechatronics, very few systems are linear. We have 
already seen a simulation in Section 6.5 that shows that drive limitation can 
totally change the way that a system performs. Nonlinearity should be a prime 
consideration in designing the controller. We will also fi nd that nonlinear 
elements can be very useful additions to the controller itself.

10.1 CONTROL TOPOLOGY AND NONLINEAR CONTROL

10.1.1 Feedback Topology

We have examined a position control system, a second-order system with a 
single input. It has a characteristic equation determined by two coeffi cients 
that are set by the position and velocity terms in the equation that determined 
the acceleration. Putting it another way, if we decide on the roots that we want 
for that characteristic equation, the feedback coeffi cients are uniquely 
determined.

When there are more inputs than one, if all the state variables can be 
measured, we have some freedom of choice in assigning the feedback coeffi -
cients. If the system is fourth-order and has two inputs, for example, there are 
eight elements in the 2 × 4 feedback matrix. But these determine just four 
coeffi cients in the characteristic polynomial.
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Some arbitrary methods can be used to give up the freedom and make a 
choice, but when the response is important, the matter requires careful 
thought, not just concerning the roots that we might want.

Consider, for example, the pitch channel of an autopilot. There are two 
inputs to this axis: the elevator control surface and the throttle. There are 
several state variables, but the pilot’s concern is with the height and the air-
speed. The obvious strategy is to use the throttle to control the airspeed and 
the “stick” to control the height. But that is not the way a human pilot thinks 
of it.

If the airspeed drops, with the danger of the aircraft stalling, the pilot will 
fi rst push the stick forward. The opening of the throttle is a second measure 
that must rely on the smooth functioning of the engine for success. It makes 
sense to use the throttle for controlling height instead, since opening the 
throttle will increase the fl ow of energy to the system, meaning that if the 
aircraft maintains constant speed, it will gain height.

We have two options for the topology of the controller. There is the “con-
ventional” one of feeding the airspeed back to the throttle and the height 
back to the elevator, or the alternative of feeding airspeed to the elevator and 
height to the throttle. When the system has constraints, the topology can 
become even more important.

Many years ago I encountered a paper-coating process. After coating, the 
paper passed through a drying oven before it could be cropped and stacked. 
A vital factor in the operation is that the paper must not stop. If it does, a 
large quantity of valuable product has to be scrapped and there is a risk of 
fi re.

Somehow the fl ow must be maintained while a new roll is pasted on to the 
tail end of the previous one, and for this the system uses a “magazine,” as 
shown in Figure 10.1.
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Figure 10.1 Paper coating process.
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The magazine contains a hundred feet or more of paper. As the roll comes 
to an end, it is stopped and the tail clamped, while paper continues to fl ow 
out of the magazine. If all is well, the new roll is pasted before the magazine 
is empty and the roll can be brought up to speed. A motor with tacho feedback 
controls the speed at which paper is fed into the magazine, feeding 150% of 
the output speed when the magazine is almost empty and reducing to 90% 
when it is uncomfortably full.

So, where is the problem? The paper roll is driven by an “unwinder motor,” 
which is in turn controlled by the state of a “fl oat roll.” This is a loop in the 
paper that takes up the fl uctuation between the paper roll and the magazine 
feed motor. The entire variation of this loop might be two feet or less, and if 
it hits its stop, the whole process is halted. The restart process after pasting 
on a new roll must be performed with great delicacy.

The unwinder loop is indeed a diffi cult control problem. Although a second-
order equation links motor acceleration to the fl oat-roll position, its coeffi -
cients vary wildly. The moment of inertia of the roll will change by a factor of 
60 between full and empty. Roll speed is an unreliable measure of paper veloc-
ity, so designing a system to have a good response across the range of operation 
is far from easy. Perhaps a change in the feedback topology can help.

As inputs, we have the drives to the magazine feed motor and to the 
unwinder motor; as outputs, we have sensors to tell us the positions of the 
fl oat roll and the state of the magazine, plus the tacho output from the feed 
motor. What should we feed back to where?

The most critical item in the system is the fl oat roll. A relatively small error 
can bring disaster. Which input has the most immediate effect on this roller? 
It is not the unwinder, to which the fl oat roll’s signal was originally applied, 
but the magazine feed motor. Indeed, this motor has a tacho signal that allows 
the fl oat-roll control loop to be tuned to perfection. So what of the unwinder?

The tacho gives a clear measure of the magazine replenishment speed, so 
this can be fed back to the unwinder, mixed with the original nonlinear 
demand function calculated from the magazine state. If there is a large excur-
sion in the startup transient, it is of no importance. The magazine can absorb 
many tens of feet of overshoot with no problem whatsoever. Figure 10.2 shows 
the difference between the two alternative control systems.

10.1.2 Nonlinear Feedback and Nested Loops

The “quality” of a mechatronic control system is measured not only by the 
way it can respond to a change in target or set point but also by the way it 
can withstand disturbances and recover from them.

As we saw in Section 6.5, the presence of drive limitation can completely 
change the rules for setting the feedback coeffi cients. The choice will also 
depend on the maximum size of the disturbance that can be expected. By 
introducing a nonlinearity into the feedback, the response can avoid over-
shoot for any size of initial error or change in demand, but if a disturbing 
force exceeds the full drive of the motor, it will always win the tug-of-war.
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In Section 3.4.5 we experimented with a simple fi rst-order system, the 
relationship between the drive to a motor and its tacho output. We were able 
to add a demand signal to the feedback, so that when

u k v v= −( )demand

with k taking a large value, the motor will accelerate rapidly to reach the 
demanded value, applying full drive for any substantial error.

(In principle, the value of k can be infi nite, switching the drive from one 
extreme to another. When the control is discrete time, however, as in com-
puter control, a requirement for a stable response will put a limit on the 
feedback value that will depend on the sample rate.)

We were then able to give vdemand a value proportional to the position error 
to arrive at a closed-loop position control system. By limiting the value of 
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Figure 10.2 Two control confi gurations.
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vdemand, we were able to obtain a response without overshoot for any size of 
disturbance.

The control appears as two “nested loops” as shown in Figure 10.3.
In Chapter 3, we met the problem of balancing an inverted pendulum. The 

equations are almost identical with those that describe a bicycle that is being 
ridden to follow a line. Although designing a controller for a bicycle might 
not have great practical merit, it makes a very interesting design example.

There are four state variables that concern us. First is the distance from 
the line, which we will measure from the rear wheel and call x. Next is the 
angle of the bicycle to the line in radians, a . An important requirement is to 
remain upright. The angle of lean can be termed q, and its rate of change is 
given the label w . All the variables are positive to the right.

The input to the system is the handlebar angle u. The control task is to 
devise a feedback arrangement that will express u in terms of x, a , q, and w 
and give “good” control.

Let us suppose that the bicycle is proceeding at constant speed V and that 
each angle is small enough that its sine can be approximated to its value in 
radians.

First let us set up the state equations. The component of velocity perpen-
dicular to the line is V sin a , so, making the approximation a = sin a , we 
have

ẋ V= a

A little geometric study will show that the rate of change of a is given in terms 
of V, u, and the length L between the wheels as

ȧ = V
L

u

When we consider the lean of the bicycle, for the fi rst equation we have, of 
course

q̇ w=

but the second is less obvious.

Motor+
Tacho Position

Limiter

Figure 10.3 Nested loops.
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The force exerted by the bicycle on the rider has vertical component mg, 
where m is the mass of the rider. The horizontal component will be mg tan q, 
so the horizontal acceleration of the rider in the direction of x will be g tan q. 
The acceleration of the point where the rear wheel touches the ground is ẍ. 
If we assume that the rider is a point mass a height h from the ground, the 
angular acceleration is related to the difference between these two accelera-
tions as

h g x˙̇ ˙̇q q= −tan

From the fi rst two equations involving x and a , we see that

˙̇ ˙x V
V
L

u= =a
2

so, making the usual approximation concerning angles, we have our fourth 
equation:

ẇ q= −g
h

V
Lh

u
2

In matrix form these four state equations become

�
�
�

�

x V

g h

α
θ
ω



















=









0 0 0

0 0 0 0

0 0 0 1

0 0 0




























+















x

V L

V Lh

α
θ
ω

0

02
2





u

We can substitute our feedback value for u

u ax b c d= + + +a q w

to obtain the matrix for the closed-loop system. Then we can fi nd the char-
acteristic equation as in Section 8.1.2. It might be surprising to fi nd that a, b, 
c, and d must all be positive. To move to the left, we must fi rst turn the handle-
bar to the right.

The various strategies can be tried out on a simulation. To give it numerical 
values, set h and L both to 1 m/s and V to 2 m/s.

When we come to consider the practical implementation of a controller, 
we see again that the effect of constraints cannot be ignored. First there must 
be a limit on the handlebar angle, either from considerations of hitting the rider’s 
knees or from the danger of skidding. The limit might be taken as 0.5 radian.

The lean angle is limited in a different way. If it is too great, the bicycle 
will skid and the rider will hit the ground. This is a condition that the control 
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must seek to avoid, rather than the sort of constraint that “stabilizer wheels” 
would impose.

The nested-loop topology can be used to good advantage in devising a 
controller, assuming that we can measure or estimate all the state variables.

The fi rst requirement is to remain upright, so this loop is closed fi rst. But 
a demand signal is added into the loop as well:

u c d= −( ) +q q wdemand

It is clear why c and d must be positive. If the bicycle falls to the right, the 
handlebars must be turned to the right. Their values can be tuned to give a 
rapid and well-damped correction to any disturbance, while taking the han-
dlebar limits into consideration.

The next loop concerns the bicycle’s angle to the line, a . To turn the 
bicycle, we require it to lean, and the lean loop takes care of the handlebars. 
To turn to the left, we lean to the left

θ α αdemand demand= −( )p

and to avoid disaster, we must limit qdemand to, say, 0.25 radian. It is qdemand that 
must be limited in our simulation, not q.

If we are off the line, we demand an angle that will bring us back to it:

αdemand demand= −( )q x x

We need yet another limiter. However far we are off the line, there is a limit 
to the angle at which we wish to approach it.

If the system has been well designed, we can see the limits taking effect in 
turn as we follow a large initial offl ine error to the right.

First we will see the handlebars twitch to the right as the bicycle is required 
to lean into a turn to the left. For a short while the lean angle will be to the 
left at the maximum value allowed, while the handlebars are also turned to 
the left and the bicycle follows an arc of a circle. As the maximum heading 
angle is approached, the bicycle becomes upright and steers in a straight line. 
As the target line is approached, the bicycle leans to the right, turning to settle 
on the target line.

The control loop has a variable structure as each limit comes into play. 
Constant lean control is only a second-order system. Constant heading control 
is third-order and it is only when errors are small that the full four orders 
take effect. Provided the coeffi cients of q and w are well tuned, falling over 
should not be an option. A wrong choice of a and b will see the bicycle swoop-
ing from side to side, but never leaning beyond the value of the demand limit.

I fi rst encountered the nested-loop approach when working on the design 
of the roll channel of an autopilot many decades ago, but the principles are 
still true today.



192     FURTHER CONTROL THEORY

In the roll channel of a rate–rate autopilot, the tightest loop is the feedback 
around the aileron servomotor. The high-gain velocity control loop will cause 
the motor to be driven to subdue any disturbances that wind gusts might cause 
to the aileron control surface. A signal added into this loop will constitute a 
velocity demand signal.

The next loop is based on the signal from a rate gyroscope. This measures 
roll rate, and when fed into the aileron loop as a velocity demand, it causes 
the control surface to move at a rate proportional to the roll rate. The loop 
is closed through the response of the aircraft to the aileron control, so that a 
signal added into the loop becomes a roll rate demand.

Now, a passenger airliner has some serious requirements that limit the 
allowable maneuvers. The passengers would certainly be unhappy if the air-
craft rolled at greater than 3° per second, so it is important that a demand 
signal injected into this loop be limited.

A position gyro that measures roll angle is the sensor for the next loop. 
There are a few complications associated with creating the roll rate demand 
from the roll angle error, but this loop now has an input that is the roll angle 
demand. And, of course, since to roll to an angle greater than 30° would make 
the passengers decidedly uncomfortable, there has to be a limiter on the 
demand.

When an aircraft banks (rolls), it fl ies in a circle. It changes its heading at 
a rate proportional to the roll angle, so when the pilot wishes the aircraft to 
fl y on a compass heading, the error is fed into the roll demand.

When making the approach for a landing, a radio “localizer” beam results 
in a signal representing the distance off the centerline of the runway. This 
signal is added into the heading loop to perform the control. But when the 
aircraft is “acquiring” the beam, the error is large, so we wish to limit the 
heading change that it will cause. There is our fi nal limiter. The resulting 
scheme, somewhat simplifi ed, is shown in Figure 10.4.

On my last day with the fi rm before leaving for doctoral studies, I experi-
enced a test fl ight with the autopilot. It worked.

10.2 PHASE PLANE METHODS

We have seen how easy it is to set up a computer simulation of a system and 
include constraints with a simple “IF” statement. Even so, it is useful to have 
non-computer-based methods for “back of an envelope” scheming.

10.2.1 Meet the Phase Plane

Many of the problems we encounter will be second-order. If we have just two 
state variables, such as position and velocity, we can plot the state as a point 
on graph. As time goes on, the state variables will change smoothly and the 



point will move along a curve, a trajectory representing the response of the 
system.

If all such trajectories lead to the origin of the error–velocity plane and 
stay there, the system will be asymptotically stable. If any trajectory heads off 
toward infi nity, we have an instability problem. But there is a third possibility. 
A trajectory can form a closed loop, cycling in a limit cycle oscillation. This 
can be annoying, but might not be fatal to the system meeting the design 
requirements. If there is a region of the plane into which all trajectories lead 
and from which no trajectory leaves, we have bounded stability.

How do we construct these trajectories? We start at some point (x,x
.
) and 

begin to draw the trajectory—but in which direction?
We need to know its slope. We need to know dx

.
/dx, the rate of change of 

the velocity with respect to the position, not to time. But maybe there is a 
relationship between this derivative and the time derivative.

It can be shown that if f and x are both functions of time, then

df
dx

df
dt

dt
dx

=

so this is also true of x
.
, and we can write

Motor
+

Tacho

Aileron

Roll rate

Bank angle

Heading

Radio beam

+

+

+

Figure 10.4 A nested autopilot.
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dx
dx

dx
dt

dt
dx

x
x

x
x

˙ ˙
˙̇

˙
˙̇
˙

= = =1

The slope of the trajectory is equal to the acceleration divided by the 
velocity.

The differential equation will give us an expression for the acceleration at 
any value of position and velocity, so by dividing this by the velocity, we will 
have an expression for the slope of the trajectory through any point in the 
plane.

Let us try it out on a second-order system that we have met before:

˙̇ ˙x x x+ + =5 6 0

Now

˙̇ ˙x x x= − −6 5

so

˙̇
˙ ˙
x
x

x
x

= − −6 5

Tracing a trajectory by working out its slope at the starting point, drawing a 
small segment, working out its slope at the next point and so on threatens to 
be a tedious task—but fortunately there is a shortcut.

At the point (0,1) the slope will be −5. At the point (0,2) the slope will be 
−5. In fact, anywhere on the line x = 0 the slope will be −5. The line x = 0 is 
an isocline, a place where the slopes are all the same.

We can easily spot any number of isoclines—in this case any line on which 
x/x

.
 is constant, in other words, any line through the origin.
We can start straight in with the two axes. On the x axis, the slope will be 

infi nity—the trajectories cross it at right angles. On the line x = x
.
 the slope is 

−11, while on x = −x
.
 the slope is 1.

We can draw these lines and mark them with small ticks in the direction 
of the trajectories, a sort of unfi nished spider’s web (see Fig. 10.5). Then we 
can draw the trajectory from some starting point, bending it to obey the slope 
as it crosses each isocline.

We need some more isoclines to get an accurate plot, especially three 
particular isoclines in this case. 

The line

5 6 0ẋ x+ =

is special because the acceleration there is zero. The trajectories cross it with 
zero slope, parallel to the x axis.

But what about the line x
.
 + 2x = 0? The slope on this line is −5 − (−6/2), 

which gives a result of −2.



In other words, on the line with slope −2, the trajectories also have slope 
−2. Any trajectory reaching or starting on this line will be “glued” to it.

We fi nd that the same is true for the line

�x x+ =3 0

After drawing these onto the diagram, a good sketch of the phase plane can 
be created (see Fig. 10.6).

Let us take another look at these “special” isoclines. If the trajectory 
follows

ẋ x+ =2 0

this is not just the equation of a line; it is a differential equation. It tells us 
that

x x t= ( )0 e-2

which should not be surprising, since we have already found the general solu-
tion of this differential equation to be

x A Bt t= +− −e e2 3

The two special isoclines are the special cases where A or B is zero. But we 
can learn a little more. As time advances, the e−3t term will decay faster than 
the other term, so the trajectories will become asymptotic to the line

Figure 10.5 Axes and diagonals with ticks.
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ẋ x+ =2 0

On the other hand, if we trace the trajectories backward into the past, the e−3t 
term will become dominant, so the slopes will become asymptotic to −3.

As an exercise, sketch the phase plane for the system

˙̇ ˙x x x+ + =3 6 0

When you solve the characteristic equation to fi nd the “special” isoclines that 
are asymptotes, you will fi nd that the roots are complex. These isoclines do 
not exist. The system is underdamped and the trajectories perform spirals 
around the origin as the system “rings.”

10.2.2 Dealing with Constraints

We seem to have devoted considerable effort to deal with a system that we 
had already analyzed analytically. But the analytic method is tailored only 
for linear systems. The phase plane comes into its own when there are con-
straints and other nonlinearities.

Let us again consider the system

˙̇x u=

where

u x x= − −5 6˙

Figure 10.6 Phase plane sketch.



But this time we have a limit on u, namely, |u| ≤ 4.
Close to the origin the drive is not saturated and the phase plane is just as 

we have drawn it, but outside the linear region the system equation is

˙̇x = 4

or

˙̇x = −4

The boundary of the linear region will be the two lines

− − = ±5 6 4ẋ x

These are parallel to the line on which the drive is zero, so the linear region 
appears as shown in Figure 10.7.

In the two other regions, the slope is given by

dx
dx x

�
�

= 4

and

dx
dx x

�
�

= − 4

The isoclines in both cases will be lines of constant x
.
, parallel to the x axis.

The trajectories will be parabolas, and the complete phase plane will 
resemble Figure 10.8.

Figure 10.7 Linear region of phase plane.
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The phase plane can deal with a wealth of nonlinearities, including friction 
and deadband and, with a little ingenuity, backlash. It can also be used to try 
out a variety of nonlinear feedback strategies. 

One approach that has been fashionable is termed “fuzzy logic.” Instead 
of a precise measurement of position and velocity, their values are simply 
reported in terms such as “near zero,” “positive small,” “positive large,” and 
so on. These divisions will divide the phase plane into a tartan pattern of 
combinations of position and velocity ranges similar to that shown in 
Figure 10.9. In each rectangle, the control designer can put any available 
value of drive. On one hand this will overcome the weakness of linear feed-

Figure 10.8 Composite phase plane.
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Figure 10.9 Fuzzy logic phase plane.



back strategies, but on the other hand there are some serious limitations on 
performance.

The system can come to rest anywhere in the near-zero range of x with no 
further attempt at correction, leaving a standing error. To avoid this, the near-
zero range can be omitted, leaving the zone boundary as the axis. But now 
we can be left with a limit cycle or at best multiple overshoots as the drive 
switches to and fro.

If the velocity is added to the position as continuous signals before the 
values are cropped into ranges, we can, of course, have a crisp nonovershoot-
ing response. But this is not how the game is usually played.

10.3 OPTIMIZATION

If the requirement is simply one of stability, there are untold possible varia-
tions in the feedback parameters. The “by the book” control system designer 
would like to fi nd a unique solution that is somehow “the best.” This is 
optimal control.

10.3.1 Least Squares

If we are seeking the best, we must have a measure of the quality that we are 
trying to optimize. The problem is described in the form of a cost function, 
and the design task becomes one of minimizing that cost function. The cost 
function could be something explicit, such as settling time or fuel consump-
tion, but a textbook favorite is least squares.

For the second-order system

˙̇x u=

we might choose a cost function

C ax bx cu= + +2 2 2˙

After some mathematical manipulation, we discover that the controller that 
minimizes the integral of C is based on proportional feedback. Indeed, if 
b = 0, so that the cost involves only the position and the input, the solution 
has a damping factor of 0.707.

Examples can be found in process control, where “gentle” adjustment is in 
order. The controller acts as a “regulator,” keeping the process at an optimal 
setpoint while countering any disturbances.

However, we have already seen that if the input is limited, as in a servomo-
tor, the design should depend heavily on that limit. Selecting a quadratic cost 
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function as the basis from which to design the controller loses any logical 
reason when the coeffi cients of the cost function have to be “fi ddled” to give 
an acceptable response.

10.3.2 Time-Optimal Control

When we have a “real” cost function, such as the time to reach zero error 
with all derivatives at zero, the solution is usually bang-bang control. The 
input is at all times at one or the other limit until the target is reached. Tech-
niques such as dynamic programming and the maximum principle can defi ne 
the nature of the switching function, but it takes more ingenuity to fi nd the 
actual switching times that will bring all the errors simultaneously to zero.

For our simple example of acceleration control, the maximum principle 
deduces that just one change of sign is required to bring the system to the 
target. But when? Imagine that you are driving from one traffi c light to the 
next in minimum time, in a vehicle with just one gear and insuffi cient power 
to “burn rubber.” As the light turns green, you must put the pedal to the fl oor. 
At some point before hitting the next red light, you must apply full brakes. 
When?

For minimum time, you must hit the brakes at the last possible moment 
from which you can actually stop before the light. Your time-optimal trajec-
tory consists of a period of maximum acceleration switching to a period of 
maximum deceleration, coming to rest at the target when zero drive is applied. 
The “quality” of your control depends on your ability to model the braking 
process accurately with some sort of switching curve. If your estimate of your 
braking power is overoptimistic, or if there is any disturbance that pushes the 
car on its way, then an overshoot is unavoidable.

If, on the other hand, the braking deceleration is underestimated, the set-
tling time will be slightly increased but there will be leeway to account for 
mishaps. The nature of the control will be sliding. Brakes will be applied as 
the switching line is crossed, but the greater-than-predicted deceleration will 
take the state across the line again and acceleration will be applied. The drive 
will switch rapidly to and fro, causing the state to follow the switching line. 
There is a simulation example at www.essmech.com/10/3/2.htm.

Time optimization has much in common with the task of fuel optimization 
in a lunar lander. Many years ago, our Cambridge group received a visitor 
from Moscow. He told of the computational task of calculating the control 
to bring the fi rst unmanned lunar probe to rest with minimum fuel 
consumption.

The nature of the solution was the same as that for time-optimal control. 
The probe is allowed to fall freely until the last moment, when continuous 
full drive will just bring it to rest as it touches the surface. Unfortunately, at 
that time the fi rst two or three probes had landed far from softly.

At the time that the fi nal burn is initiated, the probe might be falling at a 
mile per second. A one-second error will leave the probe irrevocably heading 



on a trajectory that would end a mile beneath the surface, if an impact did 
not intervene!

My suggestion, that a deliberate underestimate of the thrust would cause 
a minimal increase in the fuel actually consumed, was passed on very tactfully 
by our professor. The next probe landed successfully.

Optimization might serve the purpose of giving a unique solution that can 
be claimed to be “right,” but it is seldom the best in practice. The function 
that needed to be optimized in this particular case was the probability of a 
“successful” landing. Any fuel that remained after the landing was of no value 
whatsoever.
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