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11
Computer 

Implementation

Having devised control algorithms and converted them to software of one 
form or another, our next step is to integrate the system to include a computer 
to run it on. For the experimental work, it has been easiest to exploit a retired 
PC, but for serious product development, some sort of computing engine must 
be integrated into the design as a whole.

There are some features that are common to the PC and to the humblest 
of microcontrollers, which can greatly infl uence your approach to the task.

11.1 ESSENTIALS OF COMPUTING

As the computer has evolved, many ingenious variations have been tried. 
Some have survived, while some have gone the way of the dodo. But some 
underlying principles remain unchanged.

11.1.1 General Fundamentals

The simplest computing engine is the Turing machine. This is really a fi gment 
of the mathematicians’ imagination, used to decide what is “computable” or 
not. It has an input bit and a “state” signifying which “instruction card” is in 
play. From these, the output bit and the next instruction to be used are 
specifi ed.

Essentials of Mechatronics, by John Billingsley
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When we get to a “real” computer, the essentials are memory, program 
counter, and, of course, input and output. There are usually several sorts of 
memory. The most easily accessible are “registers” such as one or more accu-
mulators to hold the value that any calculation has reached so far and RAM 
(random access memory), an array of “pigeonholes” in which numbers can 
be stored.

Any embedded system also has ROM (read-only memory) that contains 
code and data that cannot change. To complicate matters, there is also 
EAROM (electrically alterable ROM) to hold data that must survive the 
system being switched off.

We now have a program that is stored in memory. In Von Neumann 
machines, the great majority, this memory can double for both program and 
data, although some other devices have separate memory formats. To access 
a byte or word of memory, its address is placed on a memory address bus.

Most instructions will manipulate data, performing arithmetic or logic 
operations on values in the memory or registers and going on to execute the 
next instruction. The address of this instruction is held in the program counter. 
Other instructions will infl uence the program fl ow, with branch or jump 
instructions to allow a piece of code to be skipped or executed repeatedly. 
There are also conditional jumps to determine whether to jump according to 
the result of a comparison, so that a loop can be terminated after a number 
of executions or on the result of some input value.

Input–output is, of course, a vital operation without which the computer 
has no real purpose. The “classic” form of input is to transfer 8 or 16 bits, 
represented by logic voltages on an array of input connections, to an accumu-
lator register within the processor. Input–output registers are often memory-
mapped; in other words, they behave as though they are memory at some 
specifi c location, enabling values to be input and output as though reading 
from or writing to memory.

11.1.2 Subroutines

In the evolution of the computer, an important “bright idea” was the condi-
tional jump. Another was the subroutine call. Suppose that we wish to perform 
a special operation on a number, such as evaluating its logarithm. We can 
write a block of code to perform the operation and include it in the software. 
Now suppose that we wish to evaluate the logarithm of another number, 
somewhere else in the program. We could, of course, plant a second copy of 
the logarithm code in the program, but this would waste space.

Instead we can “call” a single copy of the logarithm routine from a number 
of different parts of the program. This is different from a “jump,” since we 
must know where to return afterward. We must also tell the routine the value 
that we wish to convert, and in turn the routine has to convey the answer 
when returning. This could be done by holding values in the registers, but the 
accepted method is to use the “stack.”



Most processors have a stack pointer, holding a value that points to an area 
of memory which is otherwise uncommitted. A PUSH command will save a 
register’s value in the address pointed to by the stack pointer, which will 
automatically increment (or decrement) to point to the next location. A POP 
command will do the opposite, reading from the stack (after decrementing 
or incrementing) and restoring the register. Various processors work in various 
ways, incrementing or decrementing before or afterward, but the programmer 
simply has to ensure that the PUSHes match the POPs.

Now, in a subroutine call, the program counter is pushed onto the stack, 
and its value is retrieved when the code “returns.”

11.1.3 Interrupts

The next bright idea was the interrupt. Until then, the program execution had 
depended on the program itself, together with any values that are input and 
later used to infl uence conditional jumps. At various places in the software, 
a call might be made to a subroutine to check whether a new byte was ready 
for input. A loop that checks inputs in turn is termed a polling loop.

With an interrupt, the data-ready event grabs the attention of the computer 
and takes it immediately to the routine that will deal with it. The machinery 
pushes the return address onto the stack, together with the status register. 
The interrupt routine then starts to execute. Its fi rst task is to save any register 
that might be changed in the routine, so that afterward the computer can 
pick up the action where it left off, just as though the interruption had not 
happened.

The interrupt can be caused by the arrival of data, by an external device 
being ready for another byte of output, by some sort of timer, or by an input 
event such as the pressing of an emergency button.

Despite their great advantages, interrupts are a nightmare for real-time 
troubleshooting. Except under the most artifi cial of conditions, the program 
will never be executed the same way twice. What is more, interrupts lead to 
a multitude of philosophical problems for the operating system designer. 
What happens if the computer is executing one device’s interrupt routine 
when another interrupt arrives?

This leads to the idea of an interrupt hierarchy. An interrupt is permitted 
only if it is “more important” than any interrupt state existing.

But the philosophy gets deeper. When a data byte arrives on a high-speed 
serial connection, there is an urgent need to read it before the next byte 
arrives. The interrupt routine’s purpose is clear. It must copy the byte to a 
“buffer” in memory, and then computing can resume.

What happens when the last byte is received and the data transfer is 
complete, however? How does the software decide which task should take 
precedence?

But fi rst there is a faster means of dealing with data transfer: direct memory 
access (DMA).
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11.1.4 Direct Memory Access

Some devices are capable of sending a burst of data. It is a wasteful operation 
to execute an interrupt for each byte, with the need to save registers and 
“environmental variables,” then to input the byte and save it in the correct 
location, and then to restore the variables and return. Instead, DMA allows 
an external device to gain access to the memory address lines and plant the 
data in memory with no reference to the processor itself.

A “bus request” is pulled down, and when a “bus grant” is given, the 
transfer can begin. In the case of the PC, the term “external” is a relative 
matter. A DMA controller is built into the hardware and performs all the 
hard work. This is primed with the start address of the memory to be fi lled 
and the number of bytes or words to transfer. It clocks new bytes from the 
peripheral and saves them sequentially in memory. When the last has been 
received, it releases the bus request and, if desired, causes a hardware inter-
rupt so that the data can be dealt with.

Of course, the process can work in reverse with the contents of a memory 
block being output.

11.2 SOFTWARE IMPLICATIONS

The ways of programmers are something of an enigma. On one hand, the 
GOTO statement is deprecated, for very sound reasons, while on the other 
hand fl ow diagrams are encouraged—yet every line in the fl owchart is the 
embodiment of a GOTO statement!

In the early days of programming, overenthusiastic software writers were 
often guilty of “spaghetti code,” with jumps in and out of loops that required 
great patience to trace. Another vice was the use of identifi ers such as a or 
i5, which gave no clue as to their purpose or meaning.

But surely the pendulum has swung too far the other way, when identifi ers 
such as

CoGetInterfaceAndReleaseStream
CoMarshalInterThreadInterfaceInStream
StgGetIFillLockBytesOnILockBytes
CoGetCurrentLogicalThreadId
WdtpInterfacePointer_UserMarshal
WdtpInterfacePointer_UserUnmarshal

are quite typical within a popular operating system.
Software tools allow great slabs of code to be stacked up in a pile that 

defi es the efforts of the programmer to read through and check the funda-
mental details. But when real-time code is to be written for an embedded 
machine, there are great virtues in keeping it lean and mean. It is my opinion 



that wherever possible, identifi ers should be no longer than two syllables, 
whether they are variable names or procedures.

The choice of a computer language is not a simple matter. Language has 
many dimensions. First there is the “speak,” the words and symbols that will 
be used to defi ne the code. A page of Java will look very much like a page of 
C, while the line-by-line text of a Visual Basic program will look very much 
like other forms of Basic—and might even bring back distant memories of 
FORTRAN.

Underlying the code is the structure of its execution. What makes Visual 
Basic visual is its use of “forms” on which are placed “controls.” Each control 
has a piece of code to deal with any “event,” such as the click of a mouse, the 
operation of a “button,” or the change in a “slider.” This has every appearance 
of being real time, but in most cases the interrupts are illusory. There is an 
instruction, DoEvents, which really means “go and poll any other tasks that 
might need attention.” A loop that does not include a DoEvents can lock 
up the machine so that user inputs are ignored.

QBasic or Quick Basic, on the other hand, will allow an event to grab 
control at the completion of any instruction. In general, the “lower” the level 
of a language, the more control the programmer will have over the way the 
code will be executed. C is close to assembly language and allows much 
greater control.

The “programming environment” is another important factor. A “user-
friendly” system will check each line as it is entered and signal any syntax 
errors. In Visual Basic, a click on the run icon is all that is needed to test the 
code. When the program crashes, moving the cursor to any variable will cause 
its value to be shown in a tool tip, while the offending line of code is high-
lighted in yellow. The programmer is faced only with the task of entering code 
that is “obviously necessary,” plus the properties of controls, such as their 
background color, and the layout of the forms.

At present there are at least two “fl avors” of C++ language. The Borland 
version leans toward Visual Basic, with controls that can be dropped into 
forms resulting in the automatic generation of the associated code. In the 
Microsoft version, there is much more housekeeping to do. First you must 
decide on what sort of project you require. Is it “bare screen,” or do you wish 
to have forms and controls? Will it result in an exe fi le, a dll library, or a 
DirectX fi lter?

Then, after a “wizard” has set up the empty project fi les for you—although 
they might already look pretty crowded—you have to be concerned with 
both code fi les and “header” fi les that defi ne how your functions are to be 
called.

Before you can run your project, you have to “build” it. Only then do you 
see a list of your errors. The omission of a single } brace can result in a list 
of a dozen or more errors. The “friendly features” are not made very clear in 
the documentation or help fi les, but after much exasperation you fi nd that 
clicking on a line warning you of an error will actually take you to the offend-
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ing line itself. By inserting breakpoints, you can achieve the same display of 
variable values that Visual Basic offered so easily.

So, why endure the hardships of riding bareback? C gives access to the 
“inner workings” of the machine in a way that is protected from VB users. 
Its closeness to machine code allows it to perform tasks that in VB would 
require the writing of special library routines—and these would probably be 
written in C in preference to assembler.

In C, you certainly have more control of the way the code is executed, but 
the promise of more effi cient code than in Basic might be a false one. Con-
sider the artifi cial and useless piece of Basic code:

DEFINT A-Z
DIM a(10),i
i = 5
a(i) = a(i) + i

The array and a variable are defi ned as integers, the value 5 is placed in i, 
and then the ith element of a( ) has i added to it. It looks as though the pointer 
into the array will have to be calculated twice and that a C version could be 
much more effi cient:

void main(){
int a[10], i;
i=5;
a[i]+=i;
}

The cryptic fi nal line of the C version certainly looks more compact. But 
Quick Basic has an optimizing compiler. When the resulting assembler code 
is listed, we see

mov  I%,0005h
mov  si,I%
sal  si,1
mov  ax,I%
add  A%[si],ax

which really could not be more effi cient. In the last line, the value of i is added 
straight into the array, using an index that has been loaded with the correct 
value, then shifted left to make it a word pointer.

The C version is converted by Visual C++ to give

mov WORD PTR _i$[ebp], 5
movsx eax, WORD PTR _i$[ebp]
mov cx, WORD PTR _a$[ebp+eax*2]



add cx, WORD PTR _i$[ebp]
movsx edx, WORD PTR _i$[ebp]
mov WORD PTR _a$[ebp+edx*2], cx

The addition is performed in a register that then has to be saved.
Writing code for a simple embedded processor is likely to have even fewer 

home comforts. It will involve fi rst keying in the code as a text document. 
The assembler (or maybe a C compiler) is then invoked to convert the code 
and produce a binary “object fi le.” This must then be downloaded to the 
processor in yet another operation. This must all be achieved before the code 
can be tested, and additional means must be devised for monitoring what the 
software is actually doing.

11.2.1 Structured Code

We have seen that a subroutine or “procedure” economizes on the space of 
code that might otherwise have to be repeated. It has another important role, 
however. It is a module of code that can be tested exhaustively and can then 
be called with a simple well-named command. A lengthy matrix inversion 
routine could appear in the program fl ow as just

invert a()

When the code is written at the assembler or C level, good structure is even 
more important. It is also essential to document the code with clear com-
ments. The choice of identifi ers can do much to improve readability, using 
verbs for procedures and nouns for variables.

I am greatly in favor of the use of “pseudocode,” a language that exists in 
the mind of the program writer. Consider the task of writing code for a four-
legged walking robot with vacuum grippers on its feet. A pace could involve 
moving each foot forward in turn and might be represented as follows:

Sub Pace()
     For foot = frontleft to hindright
     Lift foot
     Advance foot
     Place foot
     Next foot
End Sub

At this level, before getting bogged down in software details, it will be clear 
that taking a second pace will present the problem that all four feet are 
already in the forward position!

So it is no effort to make a note that when writing the Advance subroutine, 
while “this” foot is being moved forwards the other feet must be moved one-
third of a stride to the rear.
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In fact, this code example could become Visual Basic code as it stands. For 
other implementation, such as in assembly language or C, it could appear as 
the “remarks” that are added to make the code meaningful.

* Sub Pace()
PACE LDAA #FRONTLEFT * For foot = frontleft
 STAA FOOT *    to hindright
PACE1 JSR LIFT * Lift foot
 JSR ADVANCE * Advance foot
 JSR PLACE * Place foot
 INC FOOT * Next foot
 LDAA FOOT
 CMPA #HINDRIGHT
 BLE PACE1
 RTS  * End Sub

In this example, the pseudocode can burrow down a level to defi ne

SUB lift(foot AS INTEGER)
    Unstick foot
    target(foot).z = target(foot).z+100
END SUB

in which we assume that there is an interrupt routine running in the back-
ground that handles position control.

The Unstick routine will output the signal that releases the vacuum, then 
will pause for an instant. The target line could instead output a value to 
an independent microcontroller dedicated to the control of that particular 
leg.

11.3 EMBEDDED PROCESSORS

While the microprocessors at the heart of a personal computer are still evolv-
ing in speed and complexity at an increasing rate, some of their humble 
cousins have remained in fashion for much longer. These are the simple pro-
cessors that are embedded in washing machines, toys, clock radios, auto-
mobiles, and a host of other appliances.

A general electronics catalog has over 50 pages of microprocessors and 
microcontrollers, some of them from families virtually unchanged over 20 
years. Of course, there have been numerous innovations, such as the ability 
to communicate over USB and CAN-bus, but assembly code written years 
ago can often still be adapted with relative ease.

The PC user may grumble at the length of time taken for the system to 
load, but will not consider the “boot” process as a personal worry. For the 
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designer of an embedded system, the entire startup process from the fi rst 
application of power must be part of the design.

11.3.1 Essentials of a Microprocessor

The early 8-bit chips consisted of the processor alone, plus a number of inter-
nal registers. Random access memory (RAM) for calculations and read-only 
memory (ROM) to hold the program had to be wired on to address and data 
buses, usually with extra chips for address decoding plus a crystal to set the 
clock frequency.

Many of today’s chips aim for an “all in one package” approach. They may 
have 256 bytes or more of RAM, suffi cient for many embedded tasks, plus 
several kilobytes of program memory. For laboratory and development work, 
this can conveniently be EAROM, electrically alterable ROM. The contents 
of the EAROM can be changed by the processor itself, although this is often 
much slower than normal RAM operations. The data will remain unchanged 
when the processor is switched off and on again.

This is a comfortable size of program to handle in assembly language, but 
much larger memories are common. A “thumb drive” or MP3 player with less 
than 64 Mbyte of memory would be regarded as tiny.

Just as programming languages have their faithful adherants, enthusiasts 
will concentrate on a particular microcomputer system. My colleague, Mark 
Phythian, is especially supportive of the PIC computer. He has designed the 
simple application described below, in which it serves as an analog-to-digital 
converter, encoding and transmitting the results over a serial interface to the 
host PC.

By using this interface, many of the problems of the Windows operating 
system are bypassed. A Visual Basic program is outlined below that includes 
an MSComms component to handle the serial communications. The values 
of four channels are displayed on a form as a sort of “oscilloscope trace”. 
From here it is a small step to using the chip for online control.

The chip is a PIC16F88 from Microchip. It has four 10-bit analog input 
channels, 4 bits of logic input, and 4 output bits. It also has two interrupt lines 
and a bidirectional serial interface. Two transistors with four resistors and a 
diode are needed to convert the serial logic levels to something compatible 
with the PC’s RS232 interface, but with those the circuit is complete.

The circuit diagram in Figure 11.1 shows a potentiometer and pushbuttons 
that can be used to test the circuit’s operation, but these are not part of the 
basic design.

When writing code from fi rst principles, you can make up the command 
rules as you go along. But it is important that they be strictly structured in a 
well-defi ned protocol.

This particular software operates as follows. The PC sends a command as 
a single byte. The PIC responds with the same byte, followed by any data 
bytes that are requested.
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Hex $30 returns 8 bytes, representing four channels of 10-bit ADC 
readings.

Hex $40 returns 4 bytes, representing four channels of 8-bit ADC 
readings.

Hex $50 returns 1 byte, with the lower 4 bits representing the input bits.
Hex $60 to $6F will cause the lower 4 bits to be sent to the output pins.

For the two interrupt pins on the PIC (active low):

INT1 sends 1 byte hex $21 character.
INT2 sends 1 byte hex $22 character.

Even with such a simple chip, it is not necessary to revert to assembly lan-
guage. A Basic cross-compiler can be purchased for about thirty Australian 
dollars from http://www.oshonsoft.com/, and it is for this system that Mark 
has written his code.

Even so, it is necessary to attend to every detail of setting up the chip’s 
state, defi ning variables and enabling the necessary interrupts to handle 
communications:

‘ PIC_IO_BAS.bas PIC serial IO interface by Mark Phythian
‘ Uses Microchip PIC16F88 processor running at 8MHz 
internal RC Osc.

‘ defi ne variables

VCC 
+3 to 5V 0V 

PIC_IO using 
PIC16F88 

OUT0 
OUT1 

RX 
OUT2 OUT3 

TX 
INT1 
INT2 

IN2 
IN3 
AN0 
AN1 AN2 

AN3 
IN0 
IN1 

ANx = ANALOG INPUTS 0 to  VCC variable 

INx = DIGITAL INPUTS 0 or VCC 

OUTx = DIGITAL OUTPUTS 0 or VCC 

INTx = DIGITAL TRIGGER INPUTS 0 or VCC 

TX & RX from PC serial interface 

VCC 
VCC 

OV 

OV 

1K 

1K 

BC338 

BC338 
TO PC 
COMM 
PORT 

FROM 
PC 
COMM 
PORT 

10K 10K 

VCC 

OV 

VCC 

0V 

VCC 

10K 

10K 

10K 

IN914 

Figure 11.1 Mark Phythian’s circuit of single-chip microcomputer ADC.
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Dim adtable(4) As Word ‘ table to hold adc results
Dim chan As Byte ‘ channel number
Dim val As Word ‘ word size adc result variable
Dim oldb As Byte ‘ last portb value
Dim char As Byte ‘ single character command
Dim command As Byte ‘ upper 4 bits of command
Dim n As Byte ‘ lower 4 bits of command
Dim m As Byte ‘ byte size temporary variable
Dim wrd As Word ‘ word size temporary variable

‘ setup PIC
OSCCON = 0x72 ‘ set internal RC select to 8MHz
TRISB = %11000000  ‘ set PORTB 0-5 pins as outputs, 

‘6 & 7 inputs
Gosub initad ‘ initialise adc
PIE1.RCIE = 1 ‘ enable UART RX interrupt
OPTION_REG = 0x7f ‘ enable PORTB weak pullups for 
 inputs 6 & 7
Hseropen 57600 ‘ set UART BAUD rate
INTCON = 0xc8 ‘ enable GIE, PEIE and RBIE

‘ initialise variables
PORTB = 0x00
oldb = PORTB And 0xc0  ‘ last value of PORTB bits 6 & 

‘7 for change of state
WaitMs 1000
Hserout “OK” ‘ startup ok
WaitMs 100

‘ endless loop converting as fast as possible
main:

ADCON0 = 0xc1 ‘ select channel 0 in bits 
 ‘5,4,3 of ADCON0

For chan = 0 To 3
    Gosub adconv ‘ go to conversion routine
    val.HB = ADRESH  ‘ save high byte (upper 2 bits 

‘only)
    val.LB = ADRESL ‘ save low byte
    adtable(chan) = val
    ADCON0 = ADCON0 + 0x08 ‘ increment selected channel
Next chan
Goto main ‘repeat forever
End
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‘ Initialise ADC
initad:
TRISA = %11111111 ‘ set portA as input
ANSEL = %00001111  ‘ set PORTA pins 0-3 as analog 

‘inputs
ADCON1 = 0x80 ‘ set 10 bit A/D result format
 ‘ right justify ADRESH/L
ADCON0 = 0xc1 ‘ set A/D conversion clock to 
 ‘internal source,
 ‘ turn on adc
Return

‘ Adc conversion routine
adconv:
High ADCON0.GO_DONE ‘ start the conversion
While ADCON0.GO_DONE ‘ wait until conversion is 
 ‘completed
Wend
Return

On Interrupt
Save System
‘ check for PORTB change of state on bits 6 & 7
If INTCON.RBIF = 1 Then ‘ test if portb change fl ag is on
    n = PORTB And 0xc0
    INTCON.RBIF = 0        ‘ reset RBI fl ag
    n = oldb Xor n
    If n.7 = 1 Then ‘ if bit 7 changed
   If oldb.7 = 1 Then ‘ if bit 7 changed to 0
       Hserout 0x22        ‘ send a “ for INT2 input trigger
   Endif
    Else
   If n.6 = 1 Then   ‘ if bit 6 changed
       If oldb.6 = 1 Then ‘ if bit 6 7 changed to 0
       Hserout 0x21  ‘ send a ! for INT1 input trigger
       Endif
   Endif
    Endif
    oldb = PORTB And 0xc0 ‘ set oldb to new PORTB value
Else

‘ test for serial command received
    If PIR1.RCIF = 1 Then ‘ test if RXer fl ag is on
   PIR1.RCIF = 0 ‘ reset RCI fl ag
   Hserget char ‘ get the received character
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   command = char And 0xf0 ‘ command is upper 4 bits
   n = char And 0x0f  ‘ number is lower 4 bits

‘ fetch 10 bit adc values, returns 2 bytes each,
‘ command letter 0 (zero)
     If command = 0x30 Then
     Hserout char    ‘ echo command
     For n = 0 To 3
        Hserout adtable(n)  ‘ send 10 bit value in 2 

‘bytes
     Next n
     Else

‘ fetch 8 bit adc values, returns 1 byte each, command 
letter @
     If command = 0x40 Then
        Hserout char ‘ echo command
        For n = 0 To 3 ‘ D command requests all 4
        wrd = adtable(n)
        m = ShiftRight(wrd, 2)
        Hserout m ‘ send 8 bit value as 1 byte
        Next n
     Else

‘ read inputs bits PA4-7, returns 1 byte, command 
‘letter P
            If command = 0x50 Then
            Hserout char ‘ echo command
            n = PORTA And 0xf0
            n = ShiftRight(n, 4)
            Hserout n  ‘ send 4 bits in low part 

‘of byte
            Else

‘ set outputs, command letters (from $60-$6F) 
‘,a,b,c,d  .  .  .  o
            If command = 0x60 Then
            Hserout char ‘ echo command
             m = n And 0x03 ‘ arrange bits to Port B 

bits 4,3,1,0
            n = n And 0x0c
            n = ShiftLeft(n, 1)
             PORTB = m Or n ‘ set output bits from 

number n
            Endif



216     COMPUTER IMPLEMENTATION

            Endif
     Endif
     Endif
      Endif
Endif
exit:
Resume

This code and the code for the Visual Basic test program can be found at 
www.essmech.com/11/3/1.htm.

The Visual Basic form has an MSComms control named Serial and a 
button with the name and caption Quit. Its code is as follows:

Dim bits10 As Byte  ‘For holding command 
  defi nitions
Dim bits8 As Byte
Dim getpins As Byte
Dim setpins As Byte
Dim bytes_in() As Byte
Dim Adc(3) As Single   ‘To hold ADC values between 

‘-1 and 1
Dim stopped As Boolean

Private Sub Form_Load()   ‘Execution starts here
Dim i As Integer
Show
Serial.Settings = “57600,n,8,1”  ‘make sure same 

‘baud as PIC
Serial.CommPort = 1
Serial.Handshaking = comNone ‘no handshake
Serial.InputMode = comInputModeBinary ‘not ASCII text
Serial.NullDiscard = False  ‘treat nulls as 
   ‘valid characters
Serial.PortOpen = True   ‘open port

bits10 = &H30  ‘encode 4 channels, return 8 bytes of 
‘10-bit data

bits8 = &H40  ‘encode 4 channels, return 4 bytes of 
‘8-bit data

getpins = &H50  ‘read input pins, return in lower four 
‘bits

setpins = &H60  ‘add required bit values to the lower 4 
‘bits

Print “Cannot fi nd PIC” ‘Write warning message
Command setpins  ‘This will hang if PIC is not 

 present
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Scale (0, 1)-(1000, -1)
Cls ‘Erase the message if all OK
stopped = False
Do Until stopped
     For i = 1 To 1000
          Adc10       ‘contains DoEvents
          PSet (i, Adc(0)), vbBlack ‘Plot the ADC values
          PSet (i, Adc(1)), vbRed
          PSet (i, Adc(2)), vbBlue
          PSet (i, Adc(3)), vbGreen
     Next
     Cls   ‘Clear at end of trace
Loop
End   ‘End if the loop exits
End Sub

Sub Command(a As Byte)  ‘will fl ush buffer if necessary, 
‘hang if no PIC

Dim b(0) As Byte
b(0) = a
send b()
Do   ‘Wait for the echo byte
     get_bytes 1
Loop Until bytes_in(0) = a
End Sub

Private Sub Quit_Click()
stopped = True
End Sub

Sub Adc10()   ‘Get four ten-bit values
Dim i As Integer
Command bits10
For i = 0 To 3
    get_bytes 2   ‘next line scales to range 

‘-1 to 1
     Adc(i) = (256! * (bytes_in(1) And 3) + bytes_in(0)) / 

512! - 1
Next
End Sub

Sub Adc8()    ‘Get four eight bit 
‘values

Dim i As Integer
Command bits8
For i = 0 To 3
    get_bytes 1
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    Adc(i) = bytes_in(0) / 128! - 1 ‘scale
Next
End Sub

Sub get_bytes(n As Integer)   ‘Read from serial port to 
‘bytes_in()

      buf n    ‘wait until n bytes 
‘received

      Serial.InputLen = n
      bytes_in() = Serial.Input
End Sub

Sub buf(i As Integer)    ‘waits for buffer to hold 
‘i bytes

      Dim j As Integer
      Do
      DoEvents
      j = Serial.InBufferCount
      Loop Until j >= i
End Sub

Sub send(a() As Byte)
      Serial.Output = a()
End Sub

The alternative to using a language such as Basic or C for the PIC code is to 
use assembly language. Mark Phythian has provided a sample of the equiva-
lent code for this example, with just a small portion of the code involved:

; defi ne variables
adtable EQU 0x39  ; adc result table 8 bytes
chan    EQU 0x41  ; channel no
val  EQU 0x42  ; word size adc result variable
oldb  EQU 0x44  ; last portb value
char  EQU 0x45  ; single character command
command EQU 0x46  ; upper 4 bits of command
n  EQU 0x47  ; lower 4 bits of command
m  EQU 0x48  ; byte size temporary variable
wrd  EQU 0x49  ; word size temporary variable

; Code executes here at start up
 ORG 0x0000 ;Location to put the code
 BCF PCLATH,3
 BCF PCLATH,4
 GOTO start
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  ORG 0x0004 ;Place interrupt code here at 
address 0004

 MOVWF W_TEMP  ; save registers
 SWAPF STATUS,W
 CLRF STATUS
 MOVWF STATUS_TEMP
 CALL ISR  ;  call interrupt service 

routine
 SWAPF STATUS_TEMP,W
 MOVWF STATUS
 SWAPF W_TEMP,F
 SWAPF W_TEMP,W  ; restore registers
 RETFIE  ;return from interrupt

start:
; setup PIC
 BSF STATUS,RP0  ; select page 1
 MOVLW 0x72
 MOVWF 0x0F   ; set internal RC select to 8MHz
 MOVLW 0xC0
 MOVWF 0x06   ; set PORTB 0-5 pins as outputs, 

;6 & 7 inputs

; initialise adc
 MOVLW 0xFF
 MOVWF 0x05  ; set portA as input
 MOVLW 0x0F
 MOVWF 0x1B   ; set PORTA pins 0-3 as analog 

;inputs
 MOVLW 0x80
 MOVWF 0x1F   ; set 10 bit A/D result format 

;right justify ADRESH/L
 BCF STATUS,RP0  ; select page 0
 MOVLW 0xC1
 MOVWF 0x1F   ; set A/D conversion clock to 

;internal source,
  ; turn on adc
 BSF STATUS,RP0 ; select page 1
 MOVLW 0x7F
 MOVWF 0x01   ; enable PORTB weak pullups for 

;inputs 6 & 7

; setup UART
 BSF STATUS,RP0 ; select page 1
 BSF 0x0C,5  ; enable UART RX interrupt
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 MOVLW 0x08
 MOVWF SPBRG  ; set UART BAUD rate 57600
 BSF TRISB,2
 BSF TRISB,5   ; set PORTB bits 2 and 5 as 

;outputs for UART
 MOVLW 0x24
 MOVWF TXSTA  ; enable Transmitter
  ;  set High BAUD rate select bit
 BCF STATUS,RP0
 MOVLW 0x90
 MOVWF RCSTA  ; enable Serial port,
  ; continuous enable receiver
 MOVLW 0xC8
 MOVWF 0x0B   ; enable GIE, PEIE and RBIE for 

;UART

; initialise variables
 BCF STATUS,RP0  ; select page 0
 CLRF 0x06  ; clear PORTB
 MOVLW 0xC0
 ANDWF 0x06,W
 MOVWF oldb   ; last value of PORTB bits 6 & 7 

;for change of state
; Send “OK” ; start up ok
 MOVLW “O”
 CALL TXD
 MOVLW “K”
 CALL TXD

This does not yet include the receipt and execution of commands. It is clear 
that the use of the Basic compiler saves a large amount of effort.


