
203

11
Computer

Implementation

Having devised control algorithms and converted them to software of one
form or another, our next step is to integrate the system to include a computer
to run it on. For the experimental work, it has been easiest to exploit a retired
PC, but for serious product development, some sort of computing engine must
be integrated into the design as a whole.

There are some features that are common to the PC and to the humblest
of microcontrollers, which can greatly infl uence your approach to the task.

11.1 ESSENTIALS OF COMPUTING

As the computer has evolved, many ingenious variations have been tried.
Some have survived, while some have gone the way of the dodo. But some
underlying principles remain unchanged.

11.1.1 General Fundamentals

The simplest computing engine is the Turing machine. This is really a fi gment
of the mathematicians’ imagination, used to decide what is “computable” or
not. It has an input bit and a “state” signifying which “instruction card” is in
play. From these, the output bit and the next instruction to be used are
specifi ed.

Essentials of Mechatronics, by John Billingsley
Copyright © 2006 John Wiley & Sons, Inc.

204 COMPUTER IMPLEMENTATION

When we get to a “real” computer, the essentials are memory, program
counter, and, of course, input and output. There are usually several sorts of
memory. The most easily accessible are “registers” such as one or more accu-
mulators to hold the value that any calculation has reached so far and RAM
(random access memory), an array of “pigeonholes” in which numbers can
be stored.

Any embedded system also has ROM (read-only memory) that contains
code and data that cannot change. To complicate matters, there is also
EAROM (electrically alterable ROM) to hold data that must survive the
system being switched off.

We now have a program that is stored in memory. In Von Neumann
machines, the great majority, this memory can double for both program and
data, although some other devices have separate memory formats. To access
a byte or word of memory, its address is placed on a memory address bus.

Most instructions will manipulate data, performing arithmetic or logic
operations on values in the memory or registers and going on to execute the
next instruction. The address of this instruction is held in the program counter.
Other instructions will infl uence the program fl ow, with branch or jump
instructions to allow a piece of code to be skipped or executed repeatedly.
There are also conditional jumps to determine whether to jump according to
the result of a comparison, so that a loop can be terminated after a number
of executions or on the result of some input value.

Input–output is, of course, a vital operation without which the computer
has no real purpose. The “classic” form of input is to transfer 8 or 16 bits,
represented by logic voltages on an array of input connections, to an accumu-
lator register within the processor. Input–output registers are often memory-
mapped; in other words, they behave as though they are memory at some
specifi c location, enabling values to be input and output as though reading
from or writing to memory.

11.1.2 Subroutines

In the evolution of the computer, an important “bright idea” was the condi-
tional jump. Another was the subroutine call. Suppose that we wish to perform
a special operation on a number, such as evaluating its logarithm. We can
write a block of code to perform the operation and include it in the software.
Now suppose that we wish to evaluate the logarithm of another number,
somewhere else in the program. We could, of course, plant a second copy of
the logarithm code in the program, but this would waste space.

Instead we can “call” a single copy of the logarithm routine from a number
of different parts of the program. This is different from a “jump,” since we
must know where to return afterward. We must also tell the routine the value
that we wish to convert, and in turn the routine has to convey the answer
when returning. This could be done by holding values in the registers, but the
accepted method is to use the “stack.”

Most processors have a stack pointer, holding a value that points to an area
of memory which is otherwise uncommitted. A PUSH command will save a
register’s value in the address pointed to by the stack pointer, which will
automatically increment (or decrement) to point to the next location. A POP
command will do the opposite, reading from the stack (after decrementing
or incrementing) and restoring the register. Various processors work in various
ways, incrementing or decrementing before or afterward, but the programmer
simply has to ensure that the PUSHes match the POPs.

Now, in a subroutine call, the program counter is pushed onto the stack,
and its value is retrieved when the code “returns.”

11.1.3 Interrupts

The next bright idea was the interrupt. Until then, the program execution had
depended on the program itself, together with any values that are input and
later used to infl uence conditional jumps. At various places in the software,
a call might be made to a subroutine to check whether a new byte was ready
for input. A loop that checks inputs in turn is termed a polling loop.

With an interrupt, the data-ready event grabs the attention of the computer
and takes it immediately to the routine that will deal with it. The machinery
pushes the return address onto the stack, together with the status register.
The interrupt routine then starts to execute. Its fi rst task is to save any register
that might be changed in the routine, so that afterward the computer can
pick up the action where it left off, just as though the interruption had not
happened.

The interrupt can be caused by the arrival of data, by an external device
being ready for another byte of output, by some sort of timer, or by an input
event such as the pressing of an emergency button.

Despite their great advantages, interrupts are a nightmare for real-time
troubleshooting. Except under the most artifi cial of conditions, the program
will never be executed the same way twice. What is more, interrupts lead to
a multitude of philosophical problems for the operating system designer.
What happens if the computer is executing one device’s interrupt routine
when another interrupt arrives?

This leads to the idea of an interrupt hierarchy. An interrupt is permitted
only if it is “more important” than any interrupt state existing.

But the philosophy gets deeper. When a data byte arrives on a high-speed
serial connection, there is an urgent need to read it before the next byte
arrives. The interrupt routine’s purpose is clear. It must copy the byte to a
“buffer” in memory, and then computing can resume.

What happens when the last byte is received and the data transfer is
complete, however? How does the software decide which task should take
precedence?

But fi rst there is a faster means of dealing with data transfer: direct memory
access (DMA).

ESSENTIALS OF COMPUTING 205

206 COMPUTER IMPLEMENTATION

11.1.4 Direct Memory Access

Some devices are capable of sending a burst of data. It is a wasteful operation
to execute an interrupt for each byte, with the need to save registers and
“environmental variables,” then to input the byte and save it in the correct
location, and then to restore the variables and return. Instead, DMA allows
an external device to gain access to the memory address lines and plant the
data in memory with no reference to the processor itself.

A “bus request” is pulled down, and when a “bus grant” is given, the
transfer can begin. In the case of the PC, the term “external” is a relative
matter. A DMA controller is built into the hardware and performs all the
hard work. This is primed with the start address of the memory to be fi lled
and the number of bytes or words to transfer. It clocks new bytes from the
peripheral and saves them sequentially in memory. When the last has been
received, it releases the bus request and, if desired, causes a hardware inter-
rupt so that the data can be dealt with.

Of course, the process can work in reverse with the contents of a memory
block being output.

11.2 SOFTWARE IMPLICATIONS

The ways of programmers are something of an enigma. On one hand, the
GOTO statement is deprecated, for very sound reasons, while on the other
hand fl ow diagrams are encouraged—yet every line in the fl owchart is the
embodiment of a GOTO statement!

In the early days of programming, overenthusiastic software writers were
often guilty of “spaghetti code,” with jumps in and out of loops that required
great patience to trace. Another vice was the use of identifi ers such as a or
i5, which gave no clue as to their purpose or meaning.

But surely the pendulum has swung too far the other way, when identifi ers
such as

CoGetInterfaceAndReleaseStream
CoMarshalInterThreadInterfaceInStream
StgGetIFillLockBytesOnILockBytes
CoGetCurrentLogicalThreadId
WdtpInterfacePointer_UserMarshal
WdtpInterfacePointer_UserUnmarshal

are quite typical within a popular operating system.
Software tools allow great slabs of code to be stacked up in a pile that

defi es the efforts of the programmer to read through and check the funda-
mental details. But when real-time code is to be written for an embedded
machine, there are great virtues in keeping it lean and mean. It is my opinion

that wherever possible, identifi ers should be no longer than two syllables,
whether they are variable names or procedures.

The choice of a computer language is not a simple matter. Language has
many dimensions. First there is the “speak,” the words and symbols that will
be used to defi ne the code. A page of Java will look very much like a page of
C, while the line-by-line text of a Visual Basic program will look very much
like other forms of Basic—and might even bring back distant memories of
FORTRAN.

Underlying the code is the structure of its execution. What makes Visual
Basic visual is its use of “forms” on which are placed “controls.” Each control
has a piece of code to deal with any “event,” such as the click of a mouse, the
operation of a “button,” or the change in a “slider.” This has every appearance
of being real time, but in most cases the interrupts are illusory. There is an
instruction, DoEvents, which really means “go and poll any other tasks that
might need attention.” A loop that does not include a DoEvents can lock
up the machine so that user inputs are ignored.

QBasic or Quick Basic, on the other hand, will allow an event to grab
control at the completion of any instruction. In general, the “lower” the level
of a language, the more control the programmer will have over the way the
code will be executed. C is close to assembly language and allows much
greater control.

The “programming environment” is another important factor. A “user-
friendly” system will check each line as it is entered and signal any syntax
errors. In Visual Basic, a click on the run icon is all that is needed to test the
code. When the program crashes, moving the cursor to any variable will cause
its value to be shown in a tool tip, while the offending line of code is high-
lighted in yellow. The programmer is faced only with the task of entering code
that is “obviously necessary,” plus the properties of controls, such as their
background color, and the layout of the forms.

At present there are at least two “fl avors” of C++ language. The Borland
version leans toward Visual Basic, with controls that can be dropped into
forms resulting in the automatic generation of the associated code. In the
Microsoft version, there is much more housekeeping to do. First you must
decide on what sort of project you require. Is it “bare screen,” or do you wish
to have forms and controls? Will it result in an exe fi le, a dll library, or a
DirectX fi lter?

Then, after a “wizard” has set up the empty project fi les for you—although
they might already look pretty crowded—you have to be concerned with
both code fi les and “header” fi les that defi ne how your functions are to be
called.

Before you can run your project, you have to “build” it. Only then do you
see a list of your errors. The omission of a single } brace can result in a list
of a dozen or more errors. The “friendly features” are not made very clear in
the documentation or help fi les, but after much exasperation you fi nd that
clicking on a line warning you of an error will actually take you to the offend-

SOFTWARE IMPLICATIONS 207

208 COMPUTER IMPLEMENTATION

ing line itself. By inserting breakpoints, you can achieve the same display of
variable values that Visual Basic offered so easily.

So, why endure the hardships of riding bareback? C gives access to the
“inner workings” of the machine in a way that is protected from VB users.
Its closeness to machine code allows it to perform tasks that in VB would
require the writing of special library routines—and these would probably be
written in C in preference to assembler.

In C, you certainly have more control of the way the code is executed, but
the promise of more effi cient code than in Basic might be a false one. Con-
sider the artifi cial and useless piece of Basic code:

DEFINT A-Z
DIM a(10),i
i = 5
a(i) = a(i) + i

The array and a variable are defi ned as integers, the value 5 is placed in i,
and then the ith element of a() has i added to it. It looks as though the pointer
into the array will have to be calculated twice and that a C version could be
much more effi cient:

void main(){
int a[10], i;
i=5;
a[i]+=i;
}

The cryptic fi nal line of the C version certainly looks more compact. But
Quick Basic has an optimizing compiler. When the resulting assembler code
is listed, we see

mov I%,0005h
mov si,I%
sal si,1
mov ax,I%
add A%[si],ax

which really could not be more effi cient. In the last line, the value of i is added
straight into the array, using an index that has been loaded with the correct
value, then shifted left to make it a word pointer.

The C version is converted by Visual C++ to give

mov WORD PTR _i$[ebp], 5
movsx eax, WORD PTR _i$[ebp]
mov cx, WORD PTR _a$[ebp+eax*2]

add cx, WORD PTR _i$[ebp]
movsx edx, WORD PTR _i$[ebp]
mov WORD PTR _a$[ebp+edx*2], cx

The addition is performed in a register that then has to be saved.
Writing code for a simple embedded processor is likely to have even fewer

home comforts. It will involve fi rst keying in the code as a text document.
The assembler (or maybe a C compiler) is then invoked to convert the code
and produce a binary “object fi le.” This must then be downloaded to the
processor in yet another operation. This must all be achieved before the code
can be tested, and additional means must be devised for monitoring what the
software is actually doing.

11.2.1 Structured Code

We have seen that a subroutine or “procedure” economizes on the space of
code that might otherwise have to be repeated. It has another important role,
however. It is a module of code that can be tested exhaustively and can then
be called with a simple well-named command. A lengthy matrix inversion
routine could appear in the program fl ow as just

invert a()

When the code is written at the assembler or C level, good structure is even
more important. It is also essential to document the code with clear com-
ments. The choice of identifi ers can do much to improve readability, using
verbs for procedures and nouns for variables.

I am greatly in favor of the use of “pseudocode,” a language that exists in
the mind of the program writer. Consider the task of writing code for a four-
legged walking robot with vacuum grippers on its feet. A pace could involve
moving each foot forward in turn and might be represented as follows:

Sub Pace()
 For foot = frontleft to hindright
 Lift foot
 Advance foot
 Place foot
 Next foot
End Sub

At this level, before getting bogged down in software details, it will be clear
that taking a second pace will present the problem that all four feet are
already in the forward position!

So it is no effort to make a note that when writing the Advance subroutine,
while “this” foot is being moved forwards the other feet must be moved one-
third of a stride to the rear.

SOFTWARE IMPLICATIONS 209

210 COMPUTER IMPLEMENTATION

In fact, this code example could become Visual Basic code as it stands. For
other implementation, such as in assembly language or C, it could appear as
the “remarks” that are added to make the code meaningful.

* Sub Pace()
PACE LDAA #FRONTLEFT * For foot = frontleft
 STAA FOOT * to hindright
PACE1 JSR LIFT * Lift foot
 JSR ADVANCE * Advance foot
 JSR PLACE * Place foot
 INC FOOT * Next foot
 LDAA FOOT
 CMPA #HINDRIGHT
 BLE PACE1
 RTS * End Sub

In this example, the pseudocode can burrow down a level to defi ne

SUB lift(foot AS INTEGER)
 Unstick foot
 target(foot).z = target(foot).z+100
END SUB

in which we assume that there is an interrupt routine running in the back-
ground that handles position control.

The Unstick routine will output the signal that releases the vacuum, then
will pause for an instant. The target line could instead output a value to
an independent microcontroller dedicated to the control of that particular
leg.

11.3 EMBEDDED PROCESSORS

While the microprocessors at the heart of a personal computer are still evolv-
ing in speed and complexity at an increasing rate, some of their humble
cousins have remained in fashion for much longer. These are the simple pro-
cessors that are embedded in washing machines, toys, clock radios, auto-
mobiles, and a host of other appliances.

A general electronics catalog has over 50 pages of microprocessors and
microcontrollers, some of them from families virtually unchanged over 20
years. Of course, there have been numerous innovations, such as the ability
to communicate over USB and CAN-bus, but assembly code written years
ago can often still be adapted with relative ease.

The PC user may grumble at the length of time taken for the system to
load, but will not consider the “boot” process as a personal worry. For the

EMBEDDED PROCESSORS 211

designer of an embedded system, the entire startup process from the fi rst
application of power must be part of the design.

11.3.1 Essentials of a Microprocessor

The early 8-bit chips consisted of the processor alone, plus a number of inter-
nal registers. Random access memory (RAM) for calculations and read-only
memory (ROM) to hold the program had to be wired on to address and data
buses, usually with extra chips for address decoding plus a crystal to set the
clock frequency.

Many of today’s chips aim for an “all in one package” approach. They may
have 256 bytes or more of RAM, suffi cient for many embedded tasks, plus
several kilobytes of program memory. For laboratory and development work,
this can conveniently be EAROM, electrically alterable ROM. The contents
of the EAROM can be changed by the processor itself, although this is often
much slower than normal RAM operations. The data will remain unchanged
when the processor is switched off and on again.

This is a comfortable size of program to handle in assembly language, but
much larger memories are common. A “thumb drive” or MP3 player with less
than 64 Mbyte of memory would be regarded as tiny.

Just as programming languages have their faithful adherants, enthusiasts
will concentrate on a particular microcomputer system. My colleague, Mark
Phythian, is especially supportive of the PIC computer. He has designed the
simple application described below, in which it serves as an analog-to-digital
converter, encoding and transmitting the results over a serial interface to the
host PC.

By using this interface, many of the problems of the Windows operating
system are bypassed. A Visual Basic program is outlined below that includes
an MSComms component to handle the serial communications. The values
of four channels are displayed on a form as a sort of “oscilloscope trace”.
From here it is a small step to using the chip for online control.

The chip is a PIC16F88 from Microchip. It has four 10-bit analog input
channels, 4 bits of logic input, and 4 output bits. It also has two interrupt lines
and a bidirectional serial interface. Two transistors with four resistors and a
diode are needed to convert the serial logic levels to something compatible
with the PC’s RS232 interface, but with those the circuit is complete.

The circuit diagram in Figure 11.1 shows a potentiometer and pushbuttons
that can be used to test the circuit’s operation, but these are not part of the
basic design.

When writing code from fi rst principles, you can make up the command
rules as you go along. But it is important that they be strictly structured in a
well-defi ned protocol.

This particular software operates as follows. The PC sends a command as
a single byte. The PIC responds with the same byte, followed by any data
bytes that are requested.

212 COMPUTER IMPLEMENTATION

Hex $30 returns 8 bytes, representing four channels of 10-bit ADC
readings.

Hex $40 returns 4 bytes, representing four channels of 8-bit ADC
readings.

Hex $50 returns 1 byte, with the lower 4 bits representing the input bits.
Hex $60 to $6F will cause the lower 4 bits to be sent to the output pins.

For the two interrupt pins on the PIC (active low):

INT1 sends 1 byte hex $21 character.
INT2 sends 1 byte hex $22 character.

Even with such a simple chip, it is not necessary to revert to assembly lan-
guage. A Basic cross-compiler can be purchased for about thirty Australian
dollars from http://www.oshonsoft.com/, and it is for this system that Mark
has written his code.

Even so, it is necessary to attend to every detail of setting up the chip’s
state, defi ning variables and enabling the necessary interrupts to handle
communications:

‘ PIC_IO_BAS.bas PIC serial IO interface by Mark Phythian
‘ Uses Microchip PIC16F88 processor running at 8MHz
internal RC Osc.

‘ defi ne variables

VCC
+3 to 5V 0V

PIC_IO using
PIC16F88

OUT0
OUT1

RX
OUT2 OUT3

TX
INT1
INT2

IN2
IN3
AN0
AN1 AN2

AN3
IN0
IN1

ANx = ANALOG INPUTS 0 to VCC variable

INx = DIGITAL INPUTS 0 or VCC

OUTx = DIGITAL OUTPUTS 0 or VCC

INTx = DIGITAL TRIGGER INPUTS 0 or VCC

TX & RX from PC serial interface

VCC
VCC

OV

OV

1K

1K

BC338

BC338
TO PC
COMM
PORT

FROM
PC
COMM
PORT

10K 10K

VCC

OV

VCC

0V

VCC

10K

10K

10K

IN914

Figure 11.1 Mark Phythian’s circuit of single-chip microcomputer ADC.

EMBEDDED PROCESSORS 213

Dim adtable(4) As Word ‘ table to hold adc results
Dim chan As Byte ‘ channel number
Dim val As Word ‘ word size adc result variable
Dim oldb As Byte ‘ last portb value
Dim char As Byte ‘ single character command
Dim command As Byte ‘ upper 4 bits of command
Dim n As Byte ‘ lower 4 bits of command
Dim m As Byte ‘ byte size temporary variable
Dim wrd As Word ‘ word size temporary variable

‘ setup PIC
OSCCON = 0x72 ‘ set internal RC select to 8MHz
TRISB = %11000000 ‘ set PORTB 0-5 pins as outputs,

‘6 & 7 inputs
Gosub initad ‘ initialise adc
PIE1.RCIE = 1 ‘ enable UART RX interrupt
OPTION_REG = 0x7f ‘ enable PORTB weak pullups for
 inputs 6 & 7
Hseropen 57600 ‘ set UART BAUD rate
INTCON = 0xc8 ‘ enable GIE, PEIE and RBIE

‘ initialise variables
PORTB = 0x00
oldb = PORTB And 0xc0 ‘ last value of PORTB bits 6 &

‘7 for change of state
WaitMs 1000
Hserout “OK” ‘ startup ok
WaitMs 100

‘ endless loop converting as fast as possible
main:

ADCON0 = 0xc1 ‘ select channel 0 in bits
 ‘5,4,3 of ADCON0

For chan = 0 To 3
 Gosub adconv ‘ go to conversion routine
 val.HB = ADRESH ‘ save high byte (upper 2 bits

‘only)
 val.LB = ADRESL ‘ save low byte
 adtable(chan) = val
 ADCON0 = ADCON0 + 0x08 ‘ increment selected channel
Next chan
Goto main ‘repeat forever
End

214 COMPUTER IMPLEMENTATION

‘ Initialise ADC
initad:
TRISA = %11111111 ‘ set portA as input
ANSEL = %00001111 ‘ set PORTA pins 0-3 as analog

‘inputs
ADCON1 = 0x80 ‘ set 10 bit A/D result format
 ‘ right justify ADRESH/L
ADCON0 = 0xc1 ‘ set A/D conversion clock to
 ‘internal source,
 ‘ turn on adc
Return

‘ Adc conversion routine
adconv:
High ADCON0.GO_DONE ‘ start the conversion
While ADCON0.GO_DONE ‘ wait until conversion is
 ‘completed
Wend
Return

On Interrupt
Save System
‘ check for PORTB change of state on bits 6 & 7
If INTCON.RBIF = 1 Then ‘ test if portb change fl ag is on
 n = PORTB And 0xc0
 INTCON.RBIF = 0 ‘ reset RBI fl ag
 n = oldb Xor n
 If n.7 = 1 Then ‘ if bit 7 changed
 If oldb.7 = 1 Then ‘ if bit 7 changed to 0
 Hserout 0x22 ‘ send a “ for INT2 input trigger
 Endif
 Else
 If n.6 = 1 Then ‘ if bit 6 changed
 If oldb.6 = 1 Then ‘ if bit 6 7 changed to 0
 Hserout 0x21 ‘ send a ! for INT1 input trigger
 Endif
 Endif
 Endif
 oldb = PORTB And 0xc0 ‘ set oldb to new PORTB value
Else

‘ test for serial command received
 If PIR1.RCIF = 1 Then ‘ test if RXer fl ag is on
 PIR1.RCIF = 0 ‘ reset RCI fl ag
 Hserget char ‘ get the received character

EMBEDDED PROCESSORS 215

 command = char And 0xf0 ‘ command is upper 4 bits
 n = char And 0x0f ‘ number is lower 4 bits

‘ fetch 10 bit adc values, returns 2 bytes each,
‘ command letter 0 (zero)
 If command = 0x30 Then
 Hserout char ‘ echo command
 For n = 0 To 3
 Hserout adtable(n) ‘ send 10 bit value in 2

‘bytes
 Next n
 Else

‘ fetch 8 bit adc values, returns 1 byte each, command
letter @
 If command = 0x40 Then
 Hserout char ‘ echo command
 For n = 0 To 3 ‘ D command requests all 4
 wrd = adtable(n)
 m = ShiftRight(wrd, 2)
 Hserout m ‘ send 8 bit value as 1 byte
 Next n
 Else

‘ read inputs bits PA4-7, returns 1 byte, command
‘letter P
 If command = 0x50 Then
 Hserout char ‘ echo command
 n = PORTA And 0xf0
 n = ShiftRight(n, 4)
 Hserout n ‘ send 4 bits in low part

‘of byte
 Else

‘ set outputs, command letters (from $60-$6F)
‘,a,b,c,d . . . o
 If command = 0x60 Then
 Hserout char ‘ echo command
 m = n And 0x03 ‘ arrange bits to Port B

bits 4,3,1,0
 n = n And 0x0c
 n = ShiftLeft(n, 1)
 PORTB = m Or n ‘ set output bits from

number n
 Endif

216 COMPUTER IMPLEMENTATION

 Endif
 Endif
 Endif
 Endif
Endif
exit:
Resume

This code and the code for the Visual Basic test program can be found at
www.essmech.com/11/3/1.htm.

The Visual Basic form has an MSComms control named Serial and a
button with the name and caption Quit. Its code is as follows:

Dim bits10 As Byte ‘For holding command
 defi nitions
Dim bits8 As Byte
Dim getpins As Byte
Dim setpins As Byte
Dim bytes_in() As Byte
Dim Adc(3) As Single ‘To hold ADC values between

‘-1 and 1
Dim stopped As Boolean

Private Sub Form_Load() ‘Execution starts here
Dim i As Integer
Show
Serial.Settings = “57600,n,8,1” ‘make sure same

‘baud as PIC
Serial.CommPort = 1
Serial.Handshaking = comNone ‘no handshake
Serial.InputMode = comInputModeBinary ‘not ASCII text
Serial.NullDiscard = False ‘treat nulls as
 ‘valid characters
Serial.PortOpen = True ‘open port

bits10 = &H30 ‘encode 4 channels, return 8 bytes of
‘10-bit data

bits8 = &H40 ‘encode 4 channels, return 4 bytes of
‘8-bit data

getpins = &H50 ‘read input pins, return in lower four
‘bits

setpins = &H60 ‘add required bit values to the lower 4
‘bits

Print “Cannot fi nd PIC” ‘Write warning message
Command setpins ‘This will hang if PIC is not

 present

EMBEDDED PROCESSORS 217

Scale (0, 1)-(1000, -1)
Cls ‘Erase the message if all OK
stopped = False
Do Until stopped
 For i = 1 To 1000
 Adc10 ‘contains DoEvents
 PSet (i, Adc(0)), vbBlack ‘Plot the ADC values
 PSet (i, Adc(1)), vbRed
 PSet (i, Adc(2)), vbBlue
 PSet (i, Adc(3)), vbGreen
 Next
 Cls ‘Clear at end of trace
Loop
End ‘End if the loop exits
End Sub

Sub Command(a As Byte) ‘will fl ush buffer if necessary,
‘hang if no PIC

Dim b(0) As Byte
b(0) = a
send b()
Do ‘Wait for the echo byte
 get_bytes 1
Loop Until bytes_in(0) = a
End Sub

Private Sub Quit_Click()
stopped = True
End Sub

Sub Adc10() ‘Get four ten-bit values
Dim i As Integer
Command bits10
For i = 0 To 3
 get_bytes 2 ‘next line scales to range

‘-1 to 1
 Adc(i) = (256! * (bytes_in(1) And 3) + bytes_in(0)) /

512! - 1
Next
End Sub

Sub Adc8() ‘Get four eight bit
‘values

Dim i As Integer
Command bits8
For i = 0 To 3
 get_bytes 1

218 COMPUTER IMPLEMENTATION

 Adc(i) = bytes_in(0) / 128! - 1 ‘scale
Next
End Sub

Sub get_bytes(n As Integer) ‘Read from serial port to
‘bytes_in()

 buf n ‘wait until n bytes
‘received

 Serial.InputLen = n
 bytes_in() = Serial.Input
End Sub

Sub buf(i As Integer) ‘waits for buffer to hold
‘i bytes

 Dim j As Integer
 Do
 DoEvents
 j = Serial.InBufferCount
 Loop Until j >= i
End Sub

Sub send(a() As Byte)
 Serial.Output = a()
End Sub

The alternative to using a language such as Basic or C for the PIC code is to
use assembly language. Mark Phythian has provided a sample of the equiva-
lent code for this example, with just a small portion of the code involved:

; defi ne variables
adtable EQU 0x39 ; adc result table 8 bytes
chan EQU 0x41 ; channel no
val EQU 0x42 ; word size adc result variable
oldb EQU 0x44 ; last portb value
char EQU 0x45 ; single character command
command EQU 0x46 ; upper 4 bits of command
n EQU 0x47 ; lower 4 bits of command
m EQU 0x48 ; byte size temporary variable
wrd EQU 0x49 ; word size temporary variable

; Code executes here at start up
 ORG 0x0000 ;Location to put the code
 BCF PCLATH,3
 BCF PCLATH,4
 GOTO start

EMBEDDED PROCESSORS 219

 ORG 0x0004 ;Place interrupt code here at
address 0004

 MOVWF W_TEMP ; save registers
 SWAPF STATUS,W
 CLRF STATUS
 MOVWF STATUS_TEMP
 CALL ISR ; call interrupt service

routine
 SWAPF STATUS_TEMP,W
 MOVWF STATUS
 SWAPF W_TEMP,F
 SWAPF W_TEMP,W ; restore registers
 RETFIE ;return from interrupt

start:
; setup PIC
 BSF STATUS,RP0 ; select page 1
 MOVLW 0x72
 MOVWF 0x0F ; set internal RC select to 8MHz
 MOVLW 0xC0
 MOVWF 0x06 ; set PORTB 0-5 pins as outputs,

;6 & 7 inputs

; initialise adc
 MOVLW 0xFF
 MOVWF 0x05 ; set portA as input
 MOVLW 0x0F
 MOVWF 0x1B ; set PORTA pins 0-3 as analog

;inputs
 MOVLW 0x80
 MOVWF 0x1F ; set 10 bit A/D result format

;right justify ADRESH/L
 BCF STATUS,RP0 ; select page 0
 MOVLW 0xC1
 MOVWF 0x1F ; set A/D conversion clock to

;internal source,
 ; turn on adc
 BSF STATUS,RP0 ; select page 1
 MOVLW 0x7F
 MOVWF 0x01 ; enable PORTB weak pullups for

;inputs 6 & 7

; setup UART
 BSF STATUS,RP0 ; select page 1
 BSF 0x0C,5 ; enable UART RX interrupt

220 COMPUTER IMPLEMENTATION

 MOVLW 0x08
 MOVWF SPBRG ; set UART BAUD rate 57600
 BSF TRISB,2
 BSF TRISB,5 ; set PORTB bits 2 and 5 as

;outputs for UART
 MOVLW 0x24
 MOVWF TXSTA ; enable Transmitter
 ; set High BAUD rate select bit
 BCF STATUS,RP0
 MOVLW 0x90
 MOVWF RCSTA ; enable Serial port,
 ; continuous enable receiver
 MOVLW 0xC8
 MOVWF 0x0B ; enable GIE, PEIE and RBIE for

;UART

; initialise variables
 BCF STATUS,RP0 ; select page 0
 CLRF 0x06 ; clear PORTB
 MOVLW 0xC0
 ANDWF 0x06,W
 MOVWF oldb ; last value of PORTB bits 6 & 7

;for change of state
; Send “OK” ; start up ok
 MOVLW “O”
 CALL TXD
 MOVLW “K”
 CALL TXD

This does not yet include the receipt and execution of commands. It is clear
that the use of the Basic compiler saves a large amount of effort.

