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Machine Vision

The broad subject of machine vision has many levels of complexity. The sim-
plest is the use of a single photosensitive detector to locate the boundary of 
a brightness change, so that, for example, a factory vehicle carrying parts can 
follow the edge of a line painted on the fl oor using “if it’s bright, steer left; if 
it’s dark, steer right.”

At the other end of the scale is a high-resolution color vision system in 
which the computer must recognize some object by its shape or texture, even 
though it might be partially obscured.

Some of the associated mathematical and computational techniques are 
concerned with improving the “quality” of the appearance an image, while 
others relate to extraction of data from the image such as the fi nding of edges 
and other features.

12.1 VISION SENSORS

In Chapter 2, we met a hierarchy of optical sensors that can be ranked in 
order of increasing complexity as follows.

12.1.1 Single-Point, Binary

This is “pair” consisting of a single LED and a single phototransistor:
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• A refl ective opto switch to detect a dark mark on a light background or 
vice versa.

• A slotted opto switch, where the sensors are mounted to face each other 
and indicate when there is an obstruction in the slot.

12.1.2 Single-Point, Analog

A single photocell measuring brightness is a popular sensor for a “Micro-
mouse,” a robot fi nding its way through a maze, where brightness can be used 
as a crude measure of distance from a wall.

A single sensor can be given the attributes of a linescan device by scanning 
it, such as with the use of a spinning mirror.

An optically based sensor that has had wide adoption as a “quick fi x” aid 
to navigation is the Sick sensor. This uses just such a spinning mirror to scan 
with a laser beam. The additional factor is that the beam is pulsed. High-
frequency circuitry measures the time of fl ight of the return journey to and 
from the point of contact. In this way, a map is obtained of the range from 
the sensor as measured in the scanning plane.

There is much to criticize with this sensor, mainly because of its serial 
output format. It was originally designed simply as a safety device to ensure 
that nobody entered the proximity of a dangerous object such as an industrial 
robot, so the output of image data was intended as a diagnostic tool. The basic 
scanning rate is 40 scans per second, with maximum resolution representing 
samples at quarter-degree intervals. Even at 500 kHz baud rate, however, the 
serial output cannot keep up with the highest scan speed at the highest 
resolution.

12.1.3 Linescan Devices

These are a linear array of sensors, giving data for one line of an image. As 
in the fax machine, a two-dimensional image is built up by the object moving 
past the array.

12.1.4 Framescan Devices

A two-dimensional image is captured in one hit. There may be a single frame 
of data, relating to a rectangular array of pixels, or a stream of frames con-
stituting a “movie.”

12.2 ACQUIRING AN IMAGE

For the single-pixel or the linescan sensor, simple bit-level input will be 
similar whether the system is built around a single-chip microcontroller or a 



PC. It is when we wish to acquire a full two-dimensional image that we are 
faced with a confusion of choices.

12.2.1 DirectX and VFW

For minimum effort, it is easy to purchase a low-cost Webcam and plug it into 
a USB port on a PC. The driver software that comes with it will enable you 
to see moving images on the screen, and freeware packages will let you com-
municate face-to-face with your friends.

There are many cards on the market that can tune a television signal or 
receive a “composite video” signal (the yellow socket on the VCR). They 
“stream” the data onto the computer screen, but again we must break into the 
entertainment-directed technology if we are to make serious use of the signal.

We must answer the problem of putting image data where you can attack 
it with analysis software.

Close to the hardware level, the “driver” inputs bytes of data and packs 
them into an array. It then signals software at the next level to indicate that 
a frame of data is ready, while data bytes continue to be packed into a second 
frame. An early standard for using such data is called Video for Windows 
(VFW). An OCX control for Visual Basic can be written to capture data at 
this level. Details of such an OCX, including the source code, can be found 
on the Web at www.essmech.com/12/2/1.htm.

As soon as you place this control in your VB form, you can access its 
properties and methods. One of these is SnaptoArray (I admit that it has more 
than two syllables!), which will copy the next frame of image data that arrives 
into an array that you name. What you do with the image is then up to you.

Vision and other media processes are supported in later versions of 
Windows by a software suite called DirectX. The software developer’s kit can 
be downloaded free from the Microsoft site—although it is several hundred 
megabytes in size. It includes DirectShow, which deals specifi cally with video 
streams.

The package is designed around “drag and drop” concepts, in which 
“fi lters” are linked in a “graph.” A handy tool for building such graphs comes 
with the package. It is called Graphedt.exe.

The fi lters are unlike any of the fi lters we have met in the control sections. 
One example of a fi lter is a videocamera! The fi lter appears as a rectangle on 
the chart. In general, it has input and output “pins” that are notional, not 
physical.

A “video capture fi lter” such as a Webcam might have two output pins, 
capture and preview. A right click on one of the pins can show its “proper-
ties,” the format of the data that can be taken from it. A typical value for a 
Webcam is “Major type: video—subtype RGB24.”

A right click inside the rectangle itself will present the choice of fi lter 
properties. In this case, the choice will open a window in which video source 
and video format can be set or changed.
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The other option when the output pin is right-clicked is render pin. A 
second box will appear, with label video renderer, with its input pin con-
nected to the output pin of the Webcam rectangle.

In a control bar above are the green triangle and red square for media run 
and stop. A click on the run icon causes a window to appear with the moving 
Webcam image in it.

Of course, this is just the tip of the iceberg. There are fi lters for compress-
ing video, for rendering audio, for interleaving video and audio streams in an 
“AVI Mux,” and a fi le writer to record your video to disk. These are just a 
few of the hundred or more fi lters that are likely to lurk on your machine.

So, how is video captured for analysis? The analysis can be performed 
without capturing it at all. Instead, the analysis software is written as yet 
another fi lter that can accept the incoming video stream in real time and pass 
on the desired conclusions.

The few simple lines of code that are required to process an image, say, to 
reduce objects to their edges, have to be “topped and tailed” with a mass of 
“include” references and other housekeeping. However, a colleague, Mark 
Dunn, has contributed a template and a “wizard” that have been placed on the 
Website. These will enable you to construct your own image processing fi lters. 
You will also fi nd examples that you can modify for your own purposes.

Provided you do not mind depending on one specifi c commercial operating 
system, you will fi nd this a satisfying and rapid way to arrive at machine vision 
solutions. You may instead prefer to take a “bottom-up” approach.

12.2.2 Video Chips

As USB Webcams have tumbled in price, their cousins have invaded mobile 
telephones. There is a growing market for video subassembly modules for 
embedding in consumer products, for both low-resolution “fun” applications 
and high-resolution cameras.

The computers destined to handle these signals are far removed from the 
PC. They are single-chip microcontrollers, such as the reduced instruction set 
computer (RISC) ARM series. Nevertheless, once the image has been cap-
tured into an array, the analysis procedures they apply are almost identical.

12.3 ANALYZING AN IMAGE

Image data bytes fl ow at an immense rate, even from a low-resolution camera. 
In RGB24 format, one byte is used for each of the red, green, and blue com-
ponents of each pixel. An image of 640 × 480 pixels will require 640 * 480 * 3 
bytes per frame. There will be 30 frames per second (25 in many countries 
outside the United States), so the data rate is 27,648,000 bytes per second. 
Even at a resolution of 320 × 240, the fl ow is nearly 7 megabytes per second.

It is clear that an essential feature of analysis must be data reduction.
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12.3.1 Data Reduction

For many purposes, each pixel can be reduced to a binary decision, light or 
dark. A vision guidance project studied small green seedlings on an earthy 
background, and a decision “soil” or “plant” gave all the image data needed. 
Immediately the data size is reduced by a factor of 24.

Perhaps the largest reduction can be made by looking at just a subset of 
the image bits. One project concerned the visual counting of macadamia nuts. 
They were picked up between the blue-colored bristles of a plastic brush 
roller. The routine needs only to look at every fi fth pixel or so to avoid missing 
a nut. When a nonblue pixel is found, a more intensive search can be made 
to locate the outline of the nut with some accuracy. Thus the initial scan only 
looks at 1 pixel in 25 of the image.

The ultimate data reduction in such projects is to the “answer,” maybe 
statements such as “steer left a little” or “there were 2435 nuts.”

It is important to discriminate between processing methods that extract 
“facts” from the image and processing that will simply change the appear-
ance—or processing that will change the appearance as little as possible, for 
that matter. Image compression such as is used for digital television is a 
subject in itself.

A black-and-white image is likely to contain lumps of black pixels 
and lumps of white ones, rather than a random scattering. An early 
method of data compression was run-length encoding, where each scanline is 
coded in a form that might represent “23 black, 15 white, 75 black  .  .  .  ,” and 
so on.

But the clumping will take place in two dimensions, not just along scan-
lines, so methods such as LZW allow the data to be reduced in size with no 
loss of actual information.

The compression of color images presents a different problem. This time, 
image data must inevitably be lost, since only in cartoons will many adjacent 
pixels be identical in color, but the aim is to keep the “essence” of the appear-
ance of the image.

One compression method is to use a “palette” of 256 colors and approxi-
mate each pixel to one of these. The approximation can be brought a little 
closer by the use of “dither,” the alternation of two colors to get that appears 
to the eye as something in between.

More effective for photographs is the JPEG technique. The picture data 
defi nes the parameters of two-dimensional functions, bounded by coarse 
rectangular tiles of the image. These fi t together to give a smooth high-resolu-
tion picture, but detail can be lost and fl at areas such as sky can carry “tide 
marks” of color quantization. The degrees of compression and smoothing can 
be set as a parameter when compressing the image.

Sequences of movie images offer even further possibilities. Many “codecs” 
(compression–decompression fi lters) save only the differences between frames 
to the data stream, so that the background does not need to be repeated. 
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Every few frames, maybe 15 or so, the entire image is saved so that it is neces-
sary to go back only to this “key frame” to reconstruct a particular image, 
rather than to the beginning of the fi lm.

To a large extent, image compression is irrelevant as far as our purposes 
are concerned. Allowing for the problems of data size, we wish to work on 
an image with as much of the original detail left intact as possible.

Now we have captured a frame of image data, either in an array that we 
can access using subscripts in a high-level language or in a block of memory 
into which we construct a pointer to fi nd the pixel we seek.

12.3.2 Smoothing a Binary Image

Whether the image is binary or grayscale, we will want to perform some sort 
of integration or differentiation on it to achieve a fi lter (in the control sense). 
The fi rst operation that we will consider is smoothing, to remove spots and 
ragged edges.

The simplest way to do this is to consider each square block of 9 pixels. 
Take their average, and give that new value to the center pixel. If the image 
is binary, “taking the average” means that if 5 or more of the 9 pixels are 
light, the new pixel is light, otherwise it is dark.

You can see this in action on the Web at www.essmech.com/12/3/2.htm. 
Examples have been written in JavaScript, which has a syntax closely resem-
bling that of C. More details of the implementation are given in Chapter 13.

The code that performs the smoothing is

function smooth() {
 var m, i, j, k, l;
 for(i = 1;i<cols;i++){ //for each point
     for(j = 1;j<rows;j++) { //except the edges
      m = 0; //clear the total
      for (k = i - 1;k<=i + 1;k++) {
         for (l = j - 1;l<= j + 1;l++) {
           m = m + pic1 [k][l];  //add 9 values in 3x3 

//block
        }
      }
      if (m > 4) { //If majority are white
        pic2 [i][j] = 1;  //make pixel of pic2 

//light
      }else{
        pic2 [i][j] = 0;  //otherwise make it 

//dark
      };
     }
 }
}
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In this example, the smoothing is applied several times and the image settles 
down to a shape without ragged edges.

When used on a grayscale image, this averaging technique has the effect 
of blurring the image. We will see another method in action later.

A disadvantage is that some special measures would be needed to pro-
cess the outside boundaries of the image, since they have a row of neighbors 
missing.

12.3.3 Finding Edges

To fi nd the outline of an object in the image, we must think in terms of dif-
ferentiating it.

In the world of discrete samples, or pixels, differentiating becomes “dif-
ferencing,” taking the difference between a value and its neighbor. We can 
easily edit the code of the last example to be

function diffx() {
 var i, j, k, l;
 for(i = 1;i<cols;i++){ //for each point
     for(j = 1;j<rows;j++) { //except the edges
        if ((pic[i+1][j] - pic[i][j]) > 0) {
           //If the pixel to the right is brighter
           pic2 [i][j] = 1; //make pixel of pic2 light
        }else{
           pic2 [i][j] = 0; //otherwise make it dark
        };
     }
 }
}

So, what does it do? We fi nd a sort of negative shadow, where the lefthand 
edge is outlined in bright pixels while the rest are dark. This is certainly dif-
ferentiating the image, but not in a way that is generally useful.

To try it for yourself, open the previous “smoothing” example and copy 
and paste this new function into the code window below the “smooth” func-
tion. Then add

diffx();
pic1=pic2;
showpic1();

below the rest of the code and it is ready to run.
We could embroider the code to replace the “greater than” sign “>” with 

a “not equal” sign “<>” to get shadows on both left and right edges, but we 
would also have to or a test on the vertical difference if we wish to have an 
outline all round the object. But there is a more methodical way to do it.
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We can think in terms of convolution, a process where one array of values 
is applied to fi lter another by multiplying and adding corresponding elements, 
planting a result, and then moving the pointer of the fi rst array to the next 
pixel.

In this differencing case, the array of the fi lter is just [−1,1], or perhaps we 
should write it as [0,−1,1] since it is then clear that the “result” must be written 
to the central pixel position.

So, if we start with a row of pixels

0 0 0 0 1 0 1 1 1 1 1 0 0 0

and apply the fi lter

[ 0 -1 1]

we will fi rst get the calculation

0 0 0 1 -1 1 0 0 0 0 -1 0 0 

which results in a new string of pixels

0 0 0 1 0 1 0 0 0 0 0 0 0 

when we set anything less than 1 to be a zero pixel.
Each row of pixels will be processed independently to give the full image.
If we want to detect both sides of the object, however, we should instead 

be looking at the second derivative, or the second difference. Now, convolving 
the fi lter with itself, we get

[-1 2 -1]

meaning “twice this pixel, minus the left and right neighbors.”
When we apply it to

0 0 0 0 1 0 1 1 1 1 1 0 0 0

we get numbers

0 0 0 -1 2 -2 1 0 0 0 1 -1 0 0

which become pixels

0 0 0 0 1 0 1 0 0 0 1 0 0 0

We have succeeded in fi nding the edges, plus the isolated pixel “speckle.” The 
new image is not shifted to the right or left, as it would be if using the previ-
ous fi lter.
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So, can this convolution method help us to process the image in two 
dimensions?

12.3.4 Convolution and Array Filters

Consider the fi lter

 0 -1  0
-1  4 -1
 0 -1  0

This is the sum of the previous fi lter, padded out with a row of zeros top and 
bottom, added to its vertical counterpart. We can look at it pragmatically to 
deduce that the new pixel will be light only if the present pixel is light and 
not surrounded top and bottom, left and right by other bright pixels.

We must defi ne our coeffi cients to be an array

fi lt=new Array(3);
fi lt[0]=new Array( 0,-1, 0);
fi lt[1]=new Array(-1, 4,-1);
fi lt[2]=new Array( 0,-1,-0);

and these coeffi cients can then be used in the routine

function fi lter() {
var m, i, j, k, l
     for(i = 1;i<cols;i++){ //for each point
    for(j = 1;j<rows;j++) { //except edge
         m = 0;
         for (k = 0;k<=2;k++) {
        for (l = 0;l<= 2;l++) {
             m = m + pic1 [i+k-1][j+l-1]*fi lt[k][l]; 
        }
         }
         if (m >=1) { //If total is positive
        pic2 [i][j] = 1; //set pixel of pic2 to red
         }else{
        pic2 [i][j] = 0; //set pixel of pic2 to black
         };
    Label(m,i,j);
    }
     }
}

See it in action at www.essmech.com/12/3/4.htm.
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A host of fi lters are based on the use of such a 3 × 3 array of coeffi cients. 
We could have used this technique for the fi rst smoothing example by defi ning 
the array to be

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2

Only if 5 pixels in the array of 9 are bright will the total reach the value that 
we have set for the threshold. We could indeed try other values than 0.2. The 
value 0.25 would let us set the criterion at 4 bright pixels.

But returning to edge fi nders, our criterion could be that a bright pixel 
would survive as an edge unless surrounded completely by other bright pixels. 
The fi lter would be

-1 -1 -1
-1  8 -1
-1 -1 -1

Perhaps we want the edge to be marked in the “sea” that surrounds the 
“island”:

1  1 1
1 -8 1
1  1 1

The choices are endless. You can try out any you think of on the Web.
I must repeat that these operations will change the appearance of an image, 

reducing it to spots with the appearance of lines at the edges of any “blobs,” 
but a lot more has to be done before a line can considered as a “path” around 
the object.

12.3.5 Smoothing Grayscale Images

To see an array fi lter in action on a grayscale image, see the fi rst Web example 
at www.essmech.com/12/3/5.htm.

The fi lter in this case is

 1, -2,  1
-2,  4, -2
 1, -2,  1

giving the result that would be obtained if fi rst the horizontal “second 
difference” operator [−1, 2, −1] were applied, followed by its vertical 
counterpart.
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It is clear that by taking a second difference, it has eliminated the “graded” 
background that would give problems if a single threshold had to be set.

In control terms, the convolution that we are performing is termed a fi nite 
impulse response fi lter. The distance of the infl uence of any sample is limited, 
in this case to its neighbor. Broader fi lters could be set up, 5 × 5 or maybe 
7 × 7, but the computational effort increases with the square of their size. 
Alternatively smaller fi lters could be used repetitively, so that the infl uence 
will “spread out” one pixel at a time.

There is another approach. In control theory, we saw that a lowpass fi lter 
( see, e.g., Fig. 12.1) would smooth a time series. Such a fi lter might take the 
form

for i = 0 to n
    xslow = xslow + (x(i) -xslow) / k
    x(i) = xslow
next i

where k determines the time constant.
But this “smears” the waveform to the right and would similarly smear an 

image. In real time, we can process a time series in only one direction, but 
here we have a captive image. We can follow up the left-to-right smoothing 
with another smoothing right-to-left that will exactly cancel out the smearing, 
while leaving the blurring in place. This approach, using a two-way fi lter, is 
shown in Figure 12.2.

Step input

Low pass

Figure 12.1 Lowpass fi lter applied to a step.

Step input

Two-way filter

Figure 12.2 Two-way fi lter applied to a step.
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Having blurred the image horizontally, we get the fi nal effect by applying 
a similar vertical fi lter. See the result in the second Web example at 
www.essmech.com/12/3/5.htm.

12.3.6 Sharpening a Grayscale Image

In control theory, we used a highpass fi lter to approximate to differentiating 
a signal. We saw that we could construct such a fi lter by fi rst making a lowpass 
fi lter, then subtracting the smoothed version from the original signal. The 
same principle applies to sharpening an image.

We have just seen how to use an infi nite impulse response fi lter, our simple 
lowpass fi lter, for smoothing an image. We apply it left-to-right, right-to-left, 
top-to-bottom, and fi nally bottom-to-top.

When we subtract the smoothed version from the original image, we have 
a sharpened image in which the edges are enhanced. If this difference image 
requires more contrast, we can multiply the values to enhance it.

See the images shown in Figure 12.3 in action on the Web page at 
www.essmech.com/12/3/6.htm.

12.3.7 Edge Tracing

In the mid-1980s, we had attached a primitive stepper motor robot to a com-
puter. A lens and a simple photocell were then added to the gripper of the 
robot to give a single point of vision. The robot could be moved to scan the 
photocell over the view, thus building up an image. It was somewhat slow and 
unwieldy, but it made a student project.

Could the image be scanned some swifter way? If the vision point could 
be driven to follow an edge in the scene, we might be able to trace out the 
boundaries of objects, inspecting a very few pixels within the whole scene. 
Today the image is captured in a fl ash, but analyzing the image in a logical 
and economic way still has the same virtues of speed.

First, the spot must be driven across the scene to detect the fi rst change in 
brightness. When it has found an edge, it can start to track it. A comparison 
of brightness against a threshold gives a binary decision for each spot, black 
or white.

The spot has eight notional directions of travel, defi ned by eight points of 
the compass. Suppose that the present direction is west and the present spot 
is white. The spot moves one step north. If the new spot is black, the edge has 
been crossed, so the spot moves back southwest. If the new spot is white again, 
the boundary has been followed one step west. The cycle can repeat for as 
long as the boundary leads west and the spot continues to “stitch” along it.

Suppose, however, then another black spot is found on the “back step”. 
Then the boundary might have curved to the south. The direction of travel is 
turned 45° anticlockwise and another backward step is taken, now due south. 
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If there is a change to white, the stitching can continue, now in the new direc-
tion; otherwise yet another anticlockwise turn and backward step are taken. 
Eventually the movement must fi nd an edge again, even if it has to complete 
the semicircle back to a previous point.

Similarly, if a forward step fails to fi nd a change, the turn is clockwise and 
another step is taken.

Each time a change is detected, the coordinates are noted, giving a sequence 
of points that track in order around the boundary. In this case, the path will 
track anticlockwise around a white object, or clockwise around a black one.

An image created by edge stitching is shown in Figure 12.4.
The outline of the algorithm in QBasic is as follows:

Figure 12.3 Screen grab of edge enhancement.
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DO ‘This is the search algorithm
 IF here = white THEN ‘if fi rst point is white
      here = look(d)  ‘look at a second point in 

direction d
      IF here = white THEN  ‘if it’s the same, white, then
       turn 1 ‘turn clockwise for next move
      ELSE  ‘otherwise you’ve crossed a 

‘threshold
       notepoint ‘so mark it
      END IF
 ELSE ‘if fi rst point was black,
      here = look(d - 3)  ‘look at a second point in 

‘direction d-3
      IF here = black THEN  ‘if it’s the same, black, then
     turn -1 ‘turn anticlockwise
      ELSE  ‘otherwise you’ve crossed a 

‘threshold
     notepoint ‘so mark it
      END IF
 END IF
LOOP UNTIL beenthere > 0  ‘keep going until you hit an 

‘old marked point

From this fundamental principle, a number of additions are needed to make 
the routine work.

If the starting point is not near an edge, the routine will just go round in 
small circles forever. The fi rst modifi cation is to count the number of steps 

Figure 12.4 Illustration of edge stitching.
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since the last boundary crossing. If this exceeds four, the direction is not 
allowed to change until after two steps, then three, and so on. The length of 
a “straight” increases by one every eight steps. Now, after the fi rst semicircle, 
the search expands in a spiral.

The second modifi cation enables the program to adapt the threshold to 
fi nd subtle shades. Two variables hold the lightest and the darkest values 
found so far. The threshold level is set midway between these levels.

To adapt to local changes, the “lightest” value is reduced by a small amount 
at each step while the “darkest” is increased. They will ramp until they hit 
the values being found locally, while variations in the level will keep them 
apart. If the “gap” becomes too small, boundary crossings are ignored, so that 
the search spirals out to fi nd a more prominent edge. If the search arrives at 
a point already tagged, then it is ended.

That describes the details of the technique, but what does it achieve?
The boundary is revealed as an ordered sequence of points, forming a 

Freeman chain.

12.3.8 Analyzing Boundaries

The sequence of points found by the “stitching” method can equally be 
regarded as a chain of vectors joining one point to the next. Each vector has 
a length and a direction. If the vectors are added in pairs or more, the 
“ragged” nature of an oblique edge will be smoothed.

We can take the sum of the lengths of the vectors from the starting point 
to obtain the distance s moved around the perimeter, and against this we can 
plot the angle y of the vector, the direction of the perimeter at that point, to 
get an s–y (s-psi) curve.

With this curve the shape data can be reduced to a few hundred bytes of 
data, say, 256 or 512, representing the tangent directions at equal intervals 
around the perimeter. By comparing this shape data against templates of the 
same length, we can recognize the shape.

Object recognition might at fi rst seem a daunting task. Even if the size of 
the object is known, it can be rotated to any angle and be located anywhere 
in the picture. If you are searching in 0.5 mbyte of data by a correlation 
method, the number of computing operations is huge. Given an s–y plot, most 
of the task is already done.

From start to fi nish the angle will change by 2π. This plot will be the same, 
wherever the object is in the picture. However, the object could be lying at a 
different angle. In this case the plot will still be the same, if regarded as a 
cyclic function, but will have a constant added to the angle value. If the object 
is “fl ipped,” the function will be reversed.

In each case, the task of matching the unknown object against a template 
is a simple case of examining a few hundred data points. We still have to 
consider the match as a correlation, shifting the starting point around the 
template, unless we can fi nd a strategy for determining a starting point. Even 
so, the computing load is relatively modest.
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Since y is plotted against the proportion of the distance traveled around 
the perimeter, size does not matter. Objects of the same shape will have the 
same data, however big they are.

An example on the Website shows a shape being traced. The s–y curve is 
then generated, smoothed, and reduced to a fi xed length. At each stage, the 
shape is reconstructed so that it can be seen how far the smoothing might 
distort the shape.

See http://www.EssMech.com/12/3/8.htm and Figure 12.5.
Of course, clues other than shape can be used for a comparison, once the 

binary decision has been made to discriminate between the pixels of the 
object and the background:

• The area of the object can be found by counting pixels.
• By searching for boundaries within the object, any “holes” can be 

counted.
• By testing the “width” of the object as it is rotated, the ratio between 

maximum and minimum can be found.

This is not the only format for shape data. By taking moments, the center of 
gravity can be found. Now, by tracing out along radii from the center of 
gravity, radius length can be found as a function of radius angle. However, a 
curve may have a reentrant “hook” so that a radius can cut it in more than 
one place. The plot of radius versus angle is then no longer single-valued and 
is therefore diffi cult to list as a computer function.

This is just a glimpse of the vast range of possibilities that are opening up 
in vision sensing. Any more would go beyond the essentials.

Figure 12.5 Boundary tracing and s–y curve.


