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Elastic Strain Relaxation: Thermodynamics and Kinetics
Frank Glas

1.1
Basics of Elastic Strain Relaxation

1.1.1
Introduction

Although frequently used, the phrase elastic strain relaxation is difficult to define. It
usually designates the modification of the strain fields induced in a solid by a
transformation of part or whole of this solid. At variance with plastic relaxation, in
crystals, elastic relaxation proceeds without the formation of extended defects,
thereby preserving lattice coherency in the solid.

Elastic strain relaxation is intimately linked with the notion of instability. Indeed,
the transformation considered is often induced by the change of a control parameter
(temperature, forces applied, flux of matter, etc.). It may imply atomic rearrange-
ments.Usually the realization of the instability is conditioned by kinetic processes (in
particular, diffusion), which themselves depend on the stress state of the system.
Elastic relaxation may also occur during the formation of part of a system, for
instance, by epitaxial growth. The state with respect to which the relaxation is
assessed may then exist not actually, but only virtually, as a term of comparison
(e.g., the intrinsic state of a mismatched epitaxial layer grown on a substrate).
Moreover, it is often only during growth that the kinetic processes are sufficiently
active for the system to reach its optimal configuration.

In the present introductory section, we give a general principle for the calculation
of strain relaxation and briefly discuss some analytical andnumericalmethods. In the
next sections, we examine important cases where elastic strain relaxation plays a
crucial part. Section 1.2 deals with strain relaxation in substitutional alloys with
spatially varying compositions and with the thermodynamics and kinetics of the
instability of such alloys against composition modulations. Section 1.3 introduces a
kinetic process of major importance, namely, diffusion, and summarizes how it is
affected by elastic effects. Section 1.4 treats the case of a homogeneous mismatched
layer of uniform thickness grownon a substrate. Section 1.5 showshowa systemwith
a planar free surface submitted to a nonhydrostatic stress is unstable with respect to
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the development of surface corrugations. Finally, Section 1.6 briefly recalls how the
presence of free surfaces in objects of nanometric lateral dimensions, such as
quantum dots or nanowires (NWs), permits a much more efficient elastic strain
relaxation than in the case of uniformly thick layers.

1.1.2
Principles of Calculation

At given temperature and pressure, any single crystal possesses a reference intrinsic
mechanical state E0 in which the strains and stresses are zero, namely, the state
defined by the crystal lattice (and the unit cell) of this solid under bulk form. If the
crystal experiences a transformation (change of temperature, phase transformation,
change of composition, etc.), this intrinsic mechanical state changes to E1, where
again strains and stresses are zero (Figure 1.1a). The corresponding deformation is
the stress-free strain (or eigenstrain) e*ij with respect to state E0; for instance, for a
change of temperature dT , e*ij ¼ dijadT , wherea is the thermal dilatation coefficient.
If the crystal is mechanically isolated, it simply adopts its new intrinsic state E1; it is
then free of stresses. This is not the case if the transformation affects only part of the
system. We then have two extreme cases. The transformation is incoherent if it does
not preserve any continuity between the crystal lattices of the transformed part and of
its environment. If, on the contrary, lattice continuity is preserved at the interfaces,
the transformation is coherent. This chapter deals with the second case.

Let us call inclusion the volume that is transformed andmatrix the untransformed
part of the system (indexed by exponents I and M). Coherency is obviously
incompatible with the adoption by the inclusion of its stress-free state E1, the matrix
remaining unchanged. The system will thus relax, that is, suffer additional strains,
which in general affect both inclusion and matrix. It is a strain relaxation in the
following sense: if one imagines the inclusion having been transformed (for
instance, heated) but remaining in its original reference mechanical state E0 (which
restores coherency, since the matrix has not been transformed from state E0), it is
subjected to stresses, since forces must be applied at its boundary to bring it from its
new intrinsic state E1 back to E0. With these stresses is associated an elastic energy.
The coherent deformation of the whole system constitutes the elastic relaxation.

Figure 1.1 (a) Stress-free strain relative to the inclusion. (b) The three stages of an Eshelby�s
process.
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This suggests a way to calculate relaxation, Eshelby�s method (Figure 1.1b) [1]:

1) One applies to the transformed inclusion (state E1) the strain�eI*ij , which brings
it back to state E0. This implies exerting on its external surface (whose external

normal n has components nj) the forces�
P3

j¼1 s
I�
ij nj per unit area, where s

I�
ij is

the stress associated1) with the stress-free strain eI�ij .

2) Having thus restored coherency between inclusion andmatrix, onemay reinsert
the former into the latter. The only change that then occurs is the change of the
surface density of forces applied at stage (1) into a body density fi, since the
surface of the inclusion becomes an internal interface.2)

3) The resulting state is not a mechanical equilibrium state, since forces fi must be
applied tomaintain it. One then lets the system relax by suppressing these forces,
that is, by applying forces �fi , while at the same time maintaining coherency
everywhere. One thus has to compute the strain field, in the inclusion (eIrij ) and in
thematrix (eMr

ij ), solution of the elasticity equations for body forces�fi , under the
coherency constraint, which amounts to equal displacements uIr ¼ uMr at the
interface.

We may generalize this approach by not differentiating matrix and inclusion. The
whole system experiences a transformation producing an inhomogeneous stress-
free strain e�ijðrÞ (defined at any point r) with respect to initial uniform state E0 (perfect
crystal). One then applies the body forces producing strain �e�ij, namely,
fi ¼

P3
j¼1 @s

�
ij=@xj, where s�

ijðrÞ is the stress associated with strain e�ij. Finally, one
calculates the relaxation field erij, the solution of the elastic problemwith forces�fiðrÞ
that preserves coherency everywhere (displacements must be continuous). It is
important to specify the reference state with respect to which one defines the final
state of the system. It is often easier to visualize the relaxed state relative to the
uniform state E0; strain is then simply erij. If, on the contrary, the elastic energy W
stored in the system is to be calculated, we must take as a reference state for each
volume element its intrinsic state after transformation (E1), with respect to which the
total strain is etij ¼ erij�e�ij. Hence,W ¼ ð1=2ÞÐV P3

i; j¼1 e
t
ijs

t
ijdV , where st

ij is the strain
associated with etij and where the integral is taken over the whole volume (in the
reference state).

In case of an inclusion (Figure 1.1), one may easily show that

W ¼ � 1
2

ð
I

X3
i; j¼1

eI�ij s
It
ij dv ð1:1Þ

This is a fundamental result obtained by Eshelby [1]. In particular, the total elastic
energy depends only on the stress in the inclusion.

An example of application to an infinite system with a continuously varying
transformation will be given in Section 1.2. Eshelby�s methodmay also be adapted to

1) Via the constitutive relations, for instance, Hooke�s law in linear elasticity.

2) In the present case (single inclusion), this density is nonzero only in the zero-thickness interface
layer, so for a facet x ¼ x0, one has fi ¼ �sI�

ixdðx�x0Þ.
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other problems. In particular, if the interface between matrix and inclusion does not
entirely surround the latter (which happens if the inclusion has a free surface), it is
not necessary to apply strain�eI�ij to the inclusion at stage 1. It suffices to apply a strain
that restores the coherency in the interface, which may make the solution of the
problem simpler. An example is given in Section 1.4.

1.1.3
Methods of Calculation: A Brief Overview

The problem thus consists in determining the fields relative to stage 3 of the
process. One has to calculate the elastic relaxation of a medium subjected to a given
density �fi of body forces. In addition to numerical methods, for instance, those
based on finite elements, there exist several analytical methods for solving this
problem, in particular, the Green�s functions method [2] and the Fourier synthesis
method.

In elasticity, Green�s function Gijðr; r0Þ is defined as the component along axis i of
displacement at point r caused by a unit body force along j applied at point r0. For a
solid with homogeneous properties, it is a functionGijðr�r0Þ of the vector joining the
two points. One easily shows that for an elastically linear solid (with elastic constants
Cjklm), the displacement field at stage 3 is

uiðrÞ ¼ �
X3

j;k;l;m¼1

Cjklm

ð
e�lmðr0Þ

@Gij

@xk
ðr�r0Þd r0 ð1:2Þ

where the integral extends to all points r0 of the volume. Green�s functions depend on
the elastic characteristics of themedium, but, once determined, any problem relative
to this medium is solved by a simple integration. However, if the Green�s functions
for an infinite and elastically isotropic solid have been known since 1882, only a few
cases have been solved exactly. If themedium is not infinite in three dimensions, the
Green�s functions also depend on its external boundary and on the conditions that are
imposed to it. For epitaxy-related problems, the case of the half-space (semi-infinite
solid with planar surface) is particularly interesting. These functions have been
calculated for the elastically isotropic half-space with a free surface (no external
tractions) [3, 4]. Mura�s book gives further details [2]. The method also applies to the
relaxation of two solids in contact via a planar interface; in this case, this surface is
generally not traction-free and the boundary conditions may be on these tractions or
on its displacements. Pan has given a general solution in the anisotropic case, valid
for all boundary conditions [5].

In the Fourier synthesis method, one decomposes the stress-free strain distribu-
tion into its Fourier components: e�ijðrÞ ¼

Ð
~e�ijðkÞexpðikrÞd k, where k is the running

wave vector. In linear elasticity, the solution is simply the sum, weighted by the
Fourier coefficients ~e�ijðkÞ, of the solutions relative to each periodic wave of wave
vector k, which are themselves periodic with the same wave vector. If the system is
infinite, the elementary solution is easily determined (see Section 1.2.2). The only
nontrivial point is then the integration. This method allows one to treat elegantly the
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stress-free strain discontinuities, as happening at the interface between amatrix and
a misfitting inclusion3) having the same elastic constants.

The number of problems solved by these methods steadily increases. As
for inclusions, let us only mention, in addition to Eshelby�s pioneering work on
the ellipsoidal inclusion [1], the case of parallelepipedic inclusions in an infinite
matrix [6] and in a half-space [7, 8] and that of the truncated pyramidal inclusions in
an infinite matrix [9] and in a half-space [10]. These are important for being the
shapes commonly adopted by semiconducting quantum dots. For a given inclusion,
the elastic relaxationmay be deeplymodified by a free surface, on which the tractions
must vanish (Figure 1.2).

1.2
Elastic Strain Relaxation in Inhomogeneous Substitutional Alloys

As afirst example of strain relaxation, we examine the common case of an alloywhose
stress-free state (for instance, its lattice parameter) depends on its composition. If
composition variations that preserve lattice coherency develop in an initially homo-
geneous alloy, internal strains and stresses appear. In this case, elucidating strain
relaxation amounts to calculating these fields. We shall see that strains may deeply
affect the stability of such an alloy. However, the stability is not determined only by
elastic effects. To provide a term of comparison, we shall first consider alloys where
compositions variations induce no strain (Section 1.2.1), before turning to the
calculation of the elastic fields (Section 1.2.2) and to the way in which they alter
the alloy thermodynamics (Section 1.2.3). Finally, Section 1.2.4 discusses how the
presence of a free surface affects strain relaxation and hence stability.

Figure 1.2 Comparison of the elastic
relaxation of a truncated square-base pyramidal
inclusion in an infinite matrix (a) and in a half-
space (b). Maps in the symmetry plane xz of
strain component exx normalized to the intrinsic
misfit e0 of the inclusion with respect to the

matrix. Analytical calculation by the Fourier
method (see also Ref. [10]). Thick blue lines
mark the inclusion contour and the free
surface, and the intensity scale is the same
for (a) and (b).

3) We call misfitting an inclusion (respectively, a layer) having the same crystal structure as the matrix
(respectively, substrate) but different lattice parameters.
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1.2.1
Spinodal Decomposition with No Elastic Effects

Let us consider a bulk binary AB substitutional alloy with atomic concentrations
ð1�cÞ and c in species A and B.4) With each thermodynamic quantity is associated a
mixing quantity, the difference of this quantity between the alloy and the same
numbers of its atomic constituents taken as pure solids. In the regular solution
model, themixing free enthalpy (per atom) of the disordered alloy at temperatureT is
gm ¼ hm�Tsm ¼ Vcð1�cÞþ kBT ½c ln cþð1�cÞ ln ð1�cÞ�, whereV is an energy, the
interaction parameter (here taken per atom), and kB is the Boltzmann�s constant
(Figure 1.3a). IfV > 0, the alloy tends to decompose, since alloying its constituents
produces an energy hm. However, at high temperatures, entropy may prevent
decomposition. The equilibrium state of the system at given temperature and
pressure is found by minimizing gm at constant numbers of atoms.

Depending on temperature T, gm adopts two different forms, with either a single
or a double minimum (Figure 1.3a).5) At high T (Figure 1.3b), the mixing free
enthalpy gmh of a homogeneous alloy of any composition c1 is less than that of any
mixture of two homogeneous alloys of compositions ca and cb into which it might
decompose (the latter, gmd, is given by the cord construction), so the alloy is stable. On
the contrary, for T � T0

c , with T
0
c ¼ V=ð2kBÞ, the tangent construction gives two stable

equilibrium compositions ca, cb, into which any alloy with intermediate composition
tends to decompose (Figure 1.3c).However, two different behaviors are expected. For
an alloy of composition c1 intermediate between the compositions c1s ðTÞ and c2s ðTÞ
corresponding to the inflexion points of the gm curve (i.e., such that g 00mðc1Þ ¼
ð@2gm=@c2Þc¼c1 < 0), decomposition into two alloys is always energetically favorable,

1
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Figure 1.3 (a) Mixing free enthalpy gm at two
temperatures (full lines), with enthalpic and
entropic contributions (dashed lines). (b) High
temperature case. (c) Low temperature case;
tangent construction, equilibrium

compositions ca, cb and spinodal compositions
cs1, c

s
2 corresponding to inflexion points (circles).

(d) Boundaries of miscibility gap (full line) and
spinodal gap (dashed lines).

4) This also applies to pseudobinary ternary alloys with two sublattices, one homogeneous and the other
mixed, such as alloys of compound semiconductors.

5) In the regular solutionmodel, which we retain in the following calculations, the curve is symmetrical
about c ¼ 0:5. In the figure, we illustrate a slightly more general situation highlighting the salient
feature of the curve, its double-well.
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even if these two alloys differ infinitesimally in composition (curve gm is above its
cord). Conversely, for an alloy composition such as c2, between a stable composition
and an inflexion point (g 00mðc2Þ > 0), it is only decomposition into two compositions
differing by a finite amount that is favored (curve gm is below its cord). The
homogeneous alloy is unstable in the first case and metastable in the second. In
the ðc;TÞ plane (Figure 1.3d), curves caðTÞ, cbðTÞ enclose the miscibility gap, inside
which the spinodal curve, locus of points c1s ðTÞ, c2s ðTÞ, separates the metastable (M)
and unstable (or spinodal, I) domains. The process through which an alloy quenched
below T0

c starts decomposing via composition variations of arbitrary small amplitude
is spinodal decomposition.

The same results are obtained by linear stability analysis [11]. This general method
consists in studying the instability of a system not against an arbitrary perturbation
but against a Fourier component of the latter. If the problem is linear (a linear
combination of solutions is a solution, the boundary conditions being themselves
linear), global instability is equivalent to the existence of at least one unstable
elementary perturbation. Here, we study the instability of an alloy of average
composition c1 against a sinusoidal composition modulation of amplitude dc along
the direction x: cðxÞ ¼ c1 þ dc sin kx. The mixing free enthalpy of the modulated
alloy, found by averaging gm over a modulation wavelength l ¼ 2p=k, is
l�1 Ð l

0 gm cðxÞ½ �dx ¼ gmðc1Þþ g 00mðc1Þd2c=4 at order 2 in dc. The excess of mixing
enthalpy due to modulation is dgmc ¼ g 00mðc1Þd2c=4. We thus recover the previous
result, namely, an alloy of average composition c1 is unstable (dgmc < 0) at temper-
ature T against a composition modulation of vanishing amplitude if g 00mðc1Þ < 0.6)

The foregoing analysis assumes that fractioning the alloy into two phases or
modulating its composition produces no excess energy.7) It is however not generally
the case, and this can be taken into account by adding to the energy density of the
composition modulation a Landau-type phenomenological gradient term that
opposes abrupt composition variations [12]. This produces a critical decomposition
wavelength, lower wavelengths being energetically unfavorable. The gradient term
may be of purely chemical origin, but, in addition, in alloys with size effects that
decompose coherently, stresses appear between regions having different composi-
tions and generate additional elastic energy. The next section describes themodifica-
tions of the previous results due to these stresses and to the way in which they relax.

1.2.2
Elastic Strain Relaxation in an Alloy with Modulated Composition

Let us assume, for simplicity, that the alloy is of cubic structure or elastically isotropic
and that its intrinsic lattice parameter varies linearly with composition (Vegard�s law)
aðcÞ ¼ a0ð1þgcÞ with a0 ¼ að0Þ and g ¼ að1Þ�að0Þ½ �=að0Þ, the relative lattice
mismatch between the pure constituents A and B. If the alloy composition lies within

6) In the regular solution model, g 00mðc1Þ ¼ �2Vþ kBT= c1ð1�c1Þ½ � and T0
c is obtained for c1 ¼ 0:5.

7) In the first case, this corresponds to an interface energy.
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the metastable domainM, onemay expect the nucleation of finite volumes of phases
with distinct compositions, hence with different lattice parameters, and decomposi-
tion may be coherent or not, depending on the size and composition contrast. In the
unstable domain I, the transformation into the stable phases may however occur via
the amplification of composition modulations starting with zero amplitude
(Section 1.2.1). One then expects the decomposition to be coherent, at least at the
start of the process. This is the case we treat here. Two major questions then arise.
What are the elastic strain fields induced by a given composition distribution? How
does the associated elastic energy modify the stability of the alloy?

To answer these questions, let us consider again a sinusoidal composition
modulation cðxÞ ¼ c1 þ dc sin kx in direction x. From Vegard�s law, this induces a
spatial modulation of intrinsic parameter aðxÞ ¼ a0 1þ gc1 þ ec sin kx½ � with ampli-
tude ec ¼ gdc. As regards elasticity (Section 1.1.2), this corresponds to a stress-free
strain modulation e�ijðxÞ ¼ dijec sin kx with respect to the homogeneous state (c1).

8)

From Section 1.1.2, the elastic relaxation with respect to the latter is obtained by
imposing a density of body forces�fiðxÞ ¼ �P3

j¼1 @s
�
ij=@xj. If the alloy is elastically

isotropic,9)�fiðxÞ ¼ �dix E=ð1�2nÞ½ �eck cos kx. We look for a relaxation displace-
ment field that is continuous (coherency condition) and has the same wavelength
as the perturbation: uri ðxÞ ¼ dixðA cos kxþB sin kxÞ. The relaxation strain is then
erijðxÞ ¼ dixdjxkð�A sin kxþB cos kxÞ10) and the associated stress sr

xx ¼ fEð1�nÞ=
ð1þ nÞð1�2nÞ½ �gerxx; sr

yy ¼ sr
zz ¼ n=ð1�nÞ½ �sr

xx; s
r
ij ¼ 0; if i 6¼ j. From the equilibri-

um between stresses and forces�fi , one getsB ¼ 0 andA ¼ � ð1þ nÞ=ð1�nÞ½ �k�1ec.
The relaxation field is thus a tetragonal strain modulation along x in phase with the
intrinsic modulation but amplified by factor ð1þ nÞ=ð1�nÞ½ � [12]. The relaxed lattice
parameter remains equal to aðc1Þ in the directions normal to x. The elastic energy is
that of the total strain fields (etij ¼ erij�e�ij) (Section 1.1.2). Its density is easily found to

be dw ¼ ð1=2ÞE0e2c=ð1�nÞ, where E0 ¼ E=N is the Young�s modulus E normalized
by Avogadro�s number N in order to obtain a density per atom.

What is the meaning of relaxation here? With respect to the intrinsic (reference)
state of each volume element of themodulated alloy, inwhich elastic energy is zero by
definition, there is an increase of elastic energy due to the coherency between these
elements. On the contrary, the energy is lower than that in the state where all
elements (with different compositions) would adopt the average lattice parameter
(virtual reference state at the end of stage 2; Figure 1.4). If, at least during the early
stages of decomposition, the system prefers continuous composition variations and
coherent relaxation, it is because the formation of finite domains with distinct
compositions, which would all adopt their intrinsic lattice parameter, would induce
interfacial defects whose cost in energy would be even higher (see also Section 1.4).

8) Such a problem, where the stress-free strain is a pure dilatation, is a thermal stress problem.

9) Its elastic behavior is then governed by two parameters, Young�smodulusE andPoisson�s ratio n, and
strains and stresses are linked by relations sij ¼ E=ð1þ nÞ½ � eij þ n=ð1�2nÞ½ �dij

P3
m¼1 emm

n o
and

eij ¼ ð1þ nÞ=E½ � sij� n=ð1þ nÞ½ �dij
P3

m¼1 smm

n o
.

10) The only nonzero element of the strain tensor is exx .
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1.2.3
Strain Stabilization and the Effect of Elastic Anisotropy

The total excess ofmixing free enthalpy dgm due tomodulation is found by adding the
elastic relaxation energy dw to the term dgmc calculated in Section 1.2.1 without
taking stresses into account. One finds dgm ¼ g�2g 00mðc1Þþ 2E0=ð1�nÞ� �

e2c=4. The
condition of instability of alloy with composition c1 againstmodulations of vanishing
amplitude thus changes from g 00mðc1Þ < 0 to

g 00mðc1Þþ 2g2E0=ð1�nÞ < 0 ð1:3Þ

Since n < 1, the extra term is positive; so the condition for instability is more
restrictive in terms of composition. If the mixing enthalpy at low T is a double-well
curve (Figure 1.3c), we see that the domain of unstable compositions is reduced and
the critical temperature lowered, an effect often called stress stabilization. In the
regular solution model, the critical temperature decreases from T0

c ¼ V=ð2kBÞ to
TC
c ¼ f1�g2E0=ðVð1�nÞÞgT0

c . This reductionmay reach several hundreds of kelvins
in some metallic alloys [12]. The elastic contribution may even be large enough to
render negative the calculated TC

c , which means that the instability is then totally
suppressed (no composition satisfies Eq. (1.3)).

The previous calculations, based on isotropic elasticity, do not specify any favored
direction of modulation. To extend the calculations to cubic crystals [13], it suffices to
replace term g2E0=ð1�nÞ in Eq. (1.3) by a modulus Yk̂ depending on modulation
direction k̂ ¼ k=k. In particular, Y100 < Y110 < Y111 if the elastic constants satisfy to
2C44 þC12�C11 > 0. Modulations then tend to form in the soft directions of type
h100i. These considerations are corroborated by the observation in spinodally
decomposed alloys of a characteristicmicrostructure,manifested in the transmission
electron microscopy images by a modulated contrast in the soft directions [11, 14].
More generally, in elastically anisotropic materials, the shape of inclusions and their
relative disposition tend to be determined by elastic relaxation [11].

1.2.4
Elastic Relaxation in the Presence of a Free Surface

The presence of a free surface may also deeply affect strain relaxation. In the infinite
solid considered so far, the elastic energy of any composition distribution is the sum
of those of its Fourier components, which do not interact since

Ð
Ve

ik � reik
0 � r dr ¼ 0 if

k 6¼ k0. This does not necessary hold in a solid bounded by a surface (see Section 1.5).
However, this is still true for a planar half-space. Moreover, for a modulation with a
wave vector parallel to the surface, the elastic energy may be considerably reduced
with respect to the infinite solid. This reduction stems from the extra stress relaxation
permitted by the free surface. The optimal modulations have an amplitude that is
exponentially attenuated in the direction normal to the surface. Strain stabilization is
thus less pronounced than in the bulk and the critical temperature increases
accordingly [8]. In the regular solution model, one finds a new critical temperature
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T I
c ¼ f1�g2E0=ð2VÞgT0

c , such that TC
c < T I

c < T0
c [15, 16].11) Composition modula-

tions in directions parallel to the substrate have indeed been observed in epitaxial
layers of semiconducting alloys [17, 18].

More generally, the strain relaxation of misfitting inclusions may be strongly
affected if they lie close to a free surface, typically within a distance on the order of
their dimensions (Figure 1.2) [10].

1.3
Diffusion

Many transformations (such as considered in Section 1.1.1) require a redistribution
ofmatter in the system to become effective. Hence, the realization of the instability is
conditioned by kinetic processes, in particular, diffusion. In this sense, the elastic
relaxation that accompanies the transformation is also conditioned by diffusion.
However, one usually considers that the timescale for diffusion is much longer than
that for the mechanical adjustment (relaxation) of the system to the instantaneous
distribution of atoms, so the system is continuously in a state of mechanical
equilibrium (but of course not in global thermodynamic equilibrium) during the
transformation (quasistatic approximation). This is not to say that diffusion and
strain relaxation are independent: we shall see in Section 1.3.2 that diffusion is
affected by the elastic strain and stress fields. Before this, we briefly consider
diffusion without elastic effects.

1.3.1
Diffusion without Elastic Effects

As an example of how diffusion conditions the realization of an instability, consider a
bulk alloy AB subject to decomposition (as in Section 1.2), and first ignore the elastic
effects. If the homogeneous alloy is quenched below its critical temperature T0

c , it
becomes unstable and tends to decompose (Section 1.2.1). The concentration c of,
say, component B becomes nonuniform. According to Fick�s law, this induces a
diffusive flux of B atoms, JdB ¼ �DBrðc=vÞ, whereDB > 0 is the diffusion coefficient
of B [19] and v is the atomic volume in the homogeneous reference state of the
alloy.12) SettingD0

B ¼ DB=v, we have JdB ¼ �D0
Brc. SinceD0

B > 0, this flux tends to
smooth the concentration gradient, which should inhibit the formation of the
composition modulation. It is because the B flux is not limited to Fick�s diffusive
term that the modulation may actually develop.

Indeed, generally, to the diffusive fluxmust be added a transport flux depending on
the force FB exerted on each B atom [19]. If this force derives from a potential
(FB ¼ �rwB), the Nernst–Einstein equation (demonstrated by canceling the total
flux at equilibrium and by using the appropriate statistics) leads to

11) It is obtained for modulations with a z-dependent amplitude, such as will be considered in
Section 1.5.5.

12) This appears here since we use, as in Section 1.2.1, the atomic concentration c rather than the
number of atoms per unit volume.
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JtB ¼ D0
B= kBTð ÞcFB ¼ �D0

B= kBTð ÞcrwB. For instance, in the case of charged
particles in an electric field, the transport flux is directly related to the electrostatic
force exerted on each particle. Now, if the alloy is ideal, the chemical potential of
species B at concentration c is mB ¼ kBT ln c=ceq

� �
, where ceq is the equilibrium

concentration at temperatureT , so the diffusive flux becomes JdB ¼ �D0
B= kBTð ÞcrmB

and the total flux is JB ¼ JdB þ JtB ¼ �D0
B= kBTð Þcr mB þwBð Þ ¼ �D0

B= kBTð Þcr~mB,
where ~mB ¼ mB þwB is a generalized potential, including external forces.

In thecaseof thealloy, asimilarapproachapplies,but thedefinitionof theappropriate
potential and the generalization of Fick�s law require some care. If the alloy is
substitutional, A and B share the same crystal lattice and, in the absence of vacancies,
anyB atom leaving a sitemust be replaced by anA atomso that thefluxes ofA andB are
opposite: JB ¼ �JA. TheBflux thenbecomes JB ¼ �Dr mB�mAð Þ ¼�DrM, whereD
is a phenomenological diffusion mobility, mA and mB are the local and concentration-
dependent values of the chemical potentials of A and B, andM is the diffusion potential
that replaces and generalizes the chemical potential. Since mB�mA is the change of free
enthalpy when an A atom is replaced by a B atom at the point considered, we have
mB�mA ¼ @g=@c, where g is the free enthalpy (per atom) of the alloy at composition c.
Moreover, by definition of the free enthalpy ofmixing gm introduced in Section 1.2, we
have g ¼ cm0B þð1�cÞm0A þ gm, where m0A, m

0
B are the position-independent chemical

potentials of the pure elements. Hence, JB ¼ �DrM ¼ �Dr @gm=@cð Þ ¼
�D @2gm=@c2ð Þrc. Itnowbecomesclear that in thespinodaldomain,which isprecisely
definedby@2gm=@c2 < 0 (Section1.2.1), thediffusionfluxof speciesBdoesnot oppose
the gradient (as follows from the sole consideration of Fick�s diffusiveflux) but actually
tends to amplify it. In other words, as expected in this domain, the alloy is unstable
against composition modulations of vanishing amplitude.

This calculation of the diffusion flux is actually much richer than simply con-
firming the static analysis carried out in Section 1.2.1. It opens the way to a study of
the kinetics of decomposition (provided D is known), since the evolution of the
composition profile with time t obeys the usual conservation equation
div JB þ @c=@t ¼ 0. The interested reader is referred to, for example, Cahn�s pub-
lications [14]. This general approach also permits to take into account any effect that
modifies the energy of the system (e.g., electric or magnetic fields) by simply adding
its contribution to the free enthalpy g. In the next section, we show how the effect of
elastic strain fields on diffusion can be calculated in this way.

1.3.2
Diffusion under Stress in an Alloy

The elastic contribution to the free enthalpy per atom is simply ½1=2�vetijst
ij, where

etij ¼ eij�e�ij is the strain corresponding to the transformation of a given volume
element from its intrinsic state to its final relaxed state (Figure 1.1b and 1.4) and st

ij is
the associated stress (see Section 1.1.2). Sincest

ij is defined only formally (etij being the
strain between the independent stress-free volume elements and the final relaxed
coherent state), it is preferable to express the density of elastic energy as a function of
the elastic fields describing the transformation of the homogeneous alloy with com-
position c1 into the modulated and relaxed alloy (the extreme stages of Figure 1.4),
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namely, ½1=2�v eij�e�ij
� �

sij. Elasticity introduces a complication, namely, nonlocal
effects, since the stress and strain at a given point depend not only on local
composition (as was the case with the chemical potentials) but also on the whole
concentration distribution. Nevertheless, it is possible to express the effect of
elasticity as an additional term in the diffusion potentialM [20], so that the diffusion
equation becomes JB ¼ �DrM0, with

M0 ¼ @gm
@c

�v
X
i; j

@e*ij
@c

sij�v
X
i; j;k;l

@Sijkl
@c

sijskl ð1:4Þ

where Sijkl are the elastic compliances. If the latter do not depend on composition, the
third term of Eq. (1.4) disappears. If this is the case and if the material is cubic
or elastically isotropic, then e*ij ¼ g c�c1ð Þdij, where g is the relative lattice mismatch
between the pure constituents introduced in Section 1.2.2; so M0 ¼
@gm=@c�vg

P
kskk, where

P
kskk is simply the local dilatation. Note that only

nonhomogeneous stresses affect diffusion in this way, although, in addition, stress
may affect the elastic constants and the diffusion coefficients. For more details on
diffusion under stress, including surface diffusion, see Refs [21–23].

Spinodal decomposition may be studied in this way, considering a possible
gradient energy of chemical origin (Section 1.2.1) plus the elastic energy. This leads
to different growth rates for perturbations of different wavelengths, with a rather
narrow peak centered around a fastest developing wavelength. Experimentally,
spinodally decomposed alloys indeed tend to exhibit a microstructure with a fairly
well-defined decomposition periodicity [14].

1.4
Strain Relaxation in Homogeneous Mismatched Epitaxial Layers

1.4.1
Introduction

Knowing which amount of a given material can be deposited coherently on a
mismatched substrate is of great importance in the field of epitaxy. For semicon-
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Figure 1.4 Eshelby process for a bulk alloy with modulated composition.
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ductingmaterials in particular, the extended defects that formwhen plastic relaxation
occurs often affect deleteriously the electrical and optical properties of heterostruc-
ture-based devices, and great care is usually taken to remain in the coherency domain
during growth. In a simple equilibrium picture, the transition between elastic and
plastic relaxation is governed by the total energy of the system. It is thus important to
analyze elastic strain relaxation in the coherent case. In the present section, we
consider the standard case of a layer of uniform thickness, before turning to possible
thickness variations in Section 1.5.

We consider mismatched heterostructures formed by depositing a homogeneous
layer L of uniform thickness t (0 < z < t) onto a semi-infinite planar substrate S (z < 0),
both being single crystals. In the spirit of Section 1.1.2, one may consider that in its
intrinsic stress-free state, L results from an elastic distortion of S, described by the
stress-free strain that transforms the intrinsic lattice of S into that of L [8, 24].
The methods of Section 1.1 may then be applied. We further assume that S and L
have the same structure and differ only by the magnitude of their lattice parameters,
so the stress-free strain e�ij is a pure isotropic dilatation, equal to the relative difference
between the lattice parameters aL of the layer and aS of the substrate (or lattice
mismatch), e0 ¼ aL�aSð Þ=aS (which is positive if the layer is compressed by
the substrate).13)

If the deposit L extends infinitely parallel to theplanar interface (planexy), the lattice
mismatch makes it impossible for S and L to retain their intrinsic bulk stress-free
states if the interface is coherent, simply because the spacings of the lattice planes that
cross the interface are different for S and L. Hence the necessity of an accommodation
of the lattice mismatch, which can take two extreme forms. If the coherency at the
interface is preserved, thanks to a deformation of one or both materials, the
accommodation is purely elastic. Conversely, accommodation may be realized plas-
tically, via the formation of a network of misfit dislocations at the interface, which
thereby becomes incoherent (section 1.1.1). Leaving aside plastic relaxation, the
detailed discussion of which falls outside the scope of the present chapter, we shall
briefly show how the methods of Section 1.1 give the solution of the elastic problem.

1.4.2
Elastic Strain Relaxation

If the deposit is much thinner than the substrate, one can safely consider (ignoring
possible curvature effects) that only the former is strained while the latter retains its
bulk lattice. Moreover, the layer has a free surface z ¼ h, so the substrate/layer
interface z ¼ 0 does not entirely surround the layer. Asmentioned in Section 1.1.2, it
is then not necessary to apply strain �e�ij ¼ �e0 at stage 1 of the Eshelby process. It
suffices to apply a strain that restores lattice continuity across the S/L interface, that is,
such that eð1Þxx ¼ eð1Þyy ¼ �e0. This may be achieved by applying forces along x and y on
the elementary cubes that compose the layer, but not along z, so at this (modified)

13) The problem is then equivalent to heating or cooling a layer of thickness h of a stress-free half-space
of material S.
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stage 1, sð1Þ
zz ¼ 0 (Figure 1.5a). Considering, to simplify, an elastically isotropic

medium, the equations of elasticity (see footnote 9) indicate that one then has
s
ð1Þ
xx ¼ s

ð1Þ
yy ¼ �Ee0=ð1�nÞ ¼ s0 and eð1Þzz ¼ 2ne0=ð1�nÞ (all nondiagonal strains and

stresses are zero). Because the forces corresponding to s
ð1Þ
xx , s

ð1Þ
yy are uniform, they

cancel mutually when the layer elements are reassembled at stage 2, so the
corresponding density of body forces is zero. Moreover, since there are no forces
along z, the layer is entirely free of applied forces at the end of stage (2), so that
considering stage (3) becomes irrelevant. This adaptation of Eshelby�s method thus
offers a particularly simple solution of the problem.

To summarize, elastic relaxation affects only the thin layer, which adapts its
parameter to that of the substrate in the interface plane and strains tetragonally
(extending or contracting, depending on the sign of e0) in the normal (z) direction,
with an amplification factor ð1þ nÞ=ð1�nÞwith respect to intrinsic strain e0, since the
dilatation along z with respect to the substrate is eð1Þzz þ e0 ¼ ð1þ nÞ=ð1�nÞ½ �e0. The
corresponding elastic energy per unit volume of layer is readily found to be
ðE=ð1�nÞÞe20.

1.4.3
Critical Thickness

One of the major issues regarding strain accommodation in heterostructures is to
find out which factors determine the mode of relaxation (elastic or plastic). It is
usually observed that dislocations do not form until the growing layer reaches some
critical thickness hc. Basically, such a critical thickness exists because the energies
stored in the system per unit area scale differently with layer thickness h. In the
coherent state (elastic relaxation), we have just seen that the energy is uniformly
distributed in the layer, so the energy per unit area scales with h. On the contrary, in
the plastically relaxed state, the density of dislocations of a given type that accom-
modates a given mismatch (ensuring that the material passes from the stress-free
lattice parameter of the substrate to that of the layer across their interface) isfixed and
inversely proportional to the relative mismatch [25]. In this case, as a first approx-
imation, the layer is strained in the vicinity of the interface (because of the
nonuniform strain fields of the dislocations) but quickly recover its stress-free
parameter away from it, so the elastic energy per unit area does not depend on h.

Figure 1.5 (a) Tetragonal strain of a unit cell of
parameter a subjected to biaxial stress s0 (here
takennegative, corresponding to compression);
e0 ¼ �ð1�nÞs0=E. (b) Planar (dashed line) and

corrugated (full line) surfaces. (c) Schematics of
strain at crests (c) and valleys (v) with respect to
intrinsic (i) and tetragonally strained (q) unit
cells.
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Actually, since the dislocations have a long-range strain field, the elastic energy
increases with h, but only logarithmically, much more slowly than in the elastic case
(it even saturateswhen the layer thickness becomes larger the dislocation spacing). In
addition, the dislocation cores contribute a constant term to the energy. Hence, the
energy stored is larger in the plastic case at low layer thicknesses and in the elastic
case at high thicknesses.

These considerations are at the origin of the most widely used criterion for
calculating hc for a given couple of materials, which consists in comparing the total
energies of a given heterostructure in the coherent and plastically relaxed states as a
function of thickness and in defining hc as that thickness at which the energy in the
former becomes larger than in the latter. This is an equilibrium criterion, equivalent to
finding the thickness at which the misfit-induced force acting on a preexisting
dislocation tends to pull and extend it into the S/L interface [26–28]. Other criteria are
of a kinetic nature and deal with the nucleation of themisfit dislocations or with their
motion toward the interface. The critical thickness decreases rapidly when the S/L
mismatch increases [26]. In practice, for typical semiconductor materials,
hc � 10 nm for e0 ¼ 1% and hc � 1 nm for e0 ¼ 4%.

1.5
Morphological Relaxation of a Solid under Nonhydrostatic Stress

1.5.1
Introduction

Consider a homogeneous half-space z � 0, subjected to a uniform biaxial stress
(exponent q) sq

xx ¼ s
q
yy ¼ s0 in plane xy and with a planar traction-free surface

z ¼ 0 (sq
iz ¼ 0; i ¼ x; y; z). Assuming, for the sake of simplicity, that the medium is

elastically isotropic, its response (relaxation) to this stress has been calculated in
another context in Section 1.4.2:14) it is a uniform tetragonal strain eqxx ¼ eqyy ¼
�e0; e

q
zz ¼ 2ne0=ð1�nÞ, with e0 ¼ �ð1�nÞs0=E; the nondiagonal terms are zero

(Figure 1.5a).
It has been known for a few decades that if one abandons the arbitrary constraint

that the free surface be planar (Figure 1.5b), the systemcan relax evenmore and adopt
a different state, with lower elastic energy [29–31].15),16) Why such a morphological
(planar ! nonplanar) transformation might reduce the elastic energy is easily
understood: at the crests of the surface, the systemmay deform not only in direction
z but also laterally Figure 1.5c), since there is no matter to prevent it from doing
so [31]. To confirm the decrease of the total energy, wemust however also examine the

14) Whether the stress is applied by a rigid substrate or externally is irrelevant.

15) In Section 1.5.1, we assume that the system remains chemically homogeneous. The coupling
between morphological and compositional instabilities is treated in Section 1.5.5.

16) Note that we consider here a true redistribution of matter along the surface with respect to the planar
state and not a simple elastic deformation of the planar surface.
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strain in the valleys and allow for the fact that the area of the corrugated surface is
larger than that of the planar one.

1.5.2
Calculation of the Elastic Relaxation Fields

In the present case, elastic relaxation stands for the modification of the strain fields
accompanying the planar ! nonplanar transformation. Since the latter implies an
actual change of shape following a redistribution ofmatter, Eshelby�smethod (which
deals with the change of intrinsic state of a given volume) is not adapted. Instead, we
directly solve the elastic problem, the boundary condition being that the corrugated
surface remains traction-free. Since this problem has no exact solution for an
arbitrary surface profile, we study the elastic response of the system to an elementary
perturbation (in the spirit of the linear stability analysis, Section 1.2.1), namely, a
sinusoidal modulation (hereafter, undulation) along x of the position h of the surface
along z, hðxÞ ¼ D sin kx, measured with respect to the planar state h ¼ 0
(Figure 1.5b).17),18) Let us look for the fields esij, s

s
ij that have to be added to the �q�

fields to obtain the total (equilibrium) field. Given the symmetry of the problem, no
quantity depends on y; hence esiy ¼ ð1=2Þ@usy=@xi. For the same reason, usy ¼ 0, so
esiy ¼ 0 for i ¼ x; y; z. The solution of such a plane strain problem is known to derive
from an Airy function xðx; zÞ, solution of differential equation @4x=@x4 þ
2@4x=@x2@z2 þ @4x=@z4 ¼ 0, via relations ss

xx ¼ @2x=@z2, ss
xz ¼ �@2x=@x@z, and

ss
zz ¼ @2x=@x2 [33]. Setting xðx; zÞ ¼ jðzÞ sin kx, one finds that j must satisfy

differential equation d4j=dz4�2k2d2j=dz2 þ k4j ¼ 0, the general solution of which
isjðzÞ ¼ ðAþBzÞekz þðCþDzÞe�kz, withA,B,C, andD constants. Since the fields
must remain finite for z!�1, one has C ¼ D ¼ 0. Finally,

ss
xx ¼ kð2BþkAþkBzÞekz sin kx; ss

zz ¼�k2ðAþBzÞekz sin kx
ss
xz ¼�kðBþkAþkBzÞekz coskx; ss

yy ¼ 2knBekz sin kx
ð1:5Þ

since esyy ¼ 0 and hence ss
yy ¼ n ss

xxþss
zz

� �
. A shear strain thus appears in plane xz.

The undulated surface with normal ðnx;0;nzÞ remains traction-free under total field
sij ¼ s

q
ijþss

ij. Hence,

ss
xx�

E
1�n

e0

� 	
nxþss

xznz ¼ 0; ss
xznxþss

zznz ¼ 0 ð1:6Þ

the stress being calculated in z¼ 0. We now assume that the amplitude D of the
undulation is small compared to its wavelength 2p=k (i.e., kD� 1), and compute the
fields at first order in kD (even in the case of a sinusoidal perturbation, there is no
exact solution at finite amplitude). Then, nx ¼�kD cos kx, nz ¼ 1. From Eqs (1.6)

17) Even in this case, the problem is not linear, due to the boundary conditions. Indeed, the cancellation
of the tractions applies to a different surface for each (D, k) couple. The solution for an arbitrary h
profile is not found by summing the solutions for each Fourier component of h.

18) One may also consider localized wavelet surface perturbations [32].
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and (1.5), one getsA¼ 0; B¼ Eð1�nÞe0D. By usingEq. (1.5), one obtains the stresses,
fromwhich the relaxation strains derive via the appropriate relations (see footnote 9).
The nonzero components of this strain field are as the following:

esxx ¼
1þn

E
kB 2ð1�nÞþkz½ �ekz sin kx ð1:7Þ

eszz ¼�1þn

E
kB 2nþkz½ �ekz sin kx ð1:8Þ

esxz ¼�1þn

E
kB 1þkz½ �ekz coskx ð1:9Þ

1.5.3
ATG Instability

The elastic energy W of the solid with undulated surface, per unit area of planar
surface (reference state), is easily calculated from the total fields: W ¼ ð1=2Þl�1Ð l
0 dx

Ð hðxÞ
�1 s

q
ij þ ss

ij

� �
eqij þ esij

� �
d z. It follows that the variation of elastic energy per

unit area when the system transforms from planar to undulated state is

dW ¼ 1
2l

ðl
0
dx

ðhðxÞ
�1

s
q
ije

s
ij þ ss

ije
q
ij þ ss

ije
s
ij

� �
d z

	 1
2l

ðl
0
dx

ð0
�1

ss
ije

s
ijd zþ

ðl
0
d x

ðhðxÞ
0

s
q
ije

s
ij þ ss

ije
q
ij

� �
d z

( ) ð1:10Þ

the second equality being valid at lowest (second) order in kD. Replacing in Eq. (1.10)
the �s� fields by their expressions calculated from Eqs (1.7)–(1.9) via the linear
elasticity formulas, we get

dW ¼ � 1
2
1þ n

1�n

1
k
Ee20ðkDÞ2 ð1:11Þ

Since dW < 0, any surface undulation reduces the elastic energy of the system.19) This
fundamental result specifies the driving force for the instability.

However, an undulation also increases the effective area of the free surface and
induces a surface strain. Here, we only consider the first effect, which translates into
an excess energy per unit reference area, equal to cdA=A, where c is the surface free
energy (assumed to be independent of the slight orientation changes of the surface)

and dA=A is the relative variation of area. The latter equals l�1
Ð l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðdh=dxÞ2

p
dx,

19) This is not obvious. If indeed, with respect to the planar state, the elastic energy is reduced at the
crests, it increases in the valleys (Figure 1.5c). It is only because the former contributemore than the
latter that the global balance is favorable.
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that is, k2D2=4 at order 2 in kD. The total energy variation per unit area due to the
undulation is thus

dW 0 ¼ c

4
� 1þ n

1�n

E
2
1
k
e20

� �
ðkDÞ2 ð1:12Þ

The planar surface is unstable with respect to an undulation if dW 0 < 0. This is
equivalent to the undulation wavenumber k ¼ jkj being less than the critical value
kc ¼ 2ð1þ nÞð1�nÞs2

0=ðEcÞ. In other words, there exists a critical wavelength
lc ¼ 2p=kc, such that the planar free surface of the biaxially stressed half-space is
unstable with respect to any undulation with wavelength larger than lc, with

lc ¼ p
1

1�n2
cE
s2
0

ð1:13Þ

The existence of a critical wavelength is due to the fact that the undulation-induced
fields (which reduce elastic energy) penetrate the solid over a depth of the order of l
(Eqs (1.5) and (1.7)–(1.9)), whereas the excess energy due to the increased area is
independent of l. Equation (1.12) indicates that an undulation with a given wave-
length is all the more easy to create that s0 is high and all the more difficult that
surface energy is high.

This analysis can be generalized. The point is that the stress must be nonhydro-
static. The instability of a solid subjected to such stresses with respect to morpho-
logical perturbations of its surface is often called ATG (Asaro–Tiller–Grinfel�d)
[29, 30]. It has been observed (with millimetric wavelengths) at the surface of 4He
crystals under uniaxial stress [34]. However, the ATG instability is particularly
important for epitaxy. One indeed attributes to it the often-observed formation of
undulations at the surface or at the interfaces of semiconducting layers
mismatched with respect to their substrates [35, 36]. Indeed, as seen in Section 1.4,
if the mismatch is e0, the semi-infinite substrate exerts biaxial strain
s0 ¼ � E=ð1�nÞ½ �e0.20) Hence, the free surface of the layer is unstable against
surface undulations with wavelengths larger than the critical value given by
Eq. (1.13). For typical strains on the order of a percent, this wavelength is only
on the order of a few tens to a few hundreds of nanometers. This is a mode of strain
relaxation that differs from the usual tetragonal distortion of uniformly thick layers
(Section 1.4) by its morphology and its elastic fields and also from their plastic
relaxation, since relaxation remains elastic (no extended defect appears). However, at
the atomic scale, the surface undulation of a low-index surface corresponds to the
modulation of the spacing of preexisting or newly created surface steps. One may
indeed recover the instability by considering, for instance, a vicinal surface, slightly
misoriented with respect to a high-symmetry orientation, and hence composed of
facets separated by steps. It has been shown that under nonhydrostatic stress, the
steps interact attractively and thus tend to accumulate in bunches [37].

20) In the half-space case, the relaxation fields are attenuated over a distance of the order of l
perpendicularly to the interface. Hence, the two problems become similar if h >� l, so that the top
surface and the interface are elastically decoupled.
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1.5.4
Kinetics of the ATG Instability

Here also kineticsmatter, since they condition the actual formation of the undulation.
Srolovitz has treated in a simple fashion two mechanisms whereby a planar surface
may undulate, namely, surface diffusion and evaporation/condensation [31]. In both
cases, one obtains a mode that develops more rapidly than the others, with a
wavelength on the order of lc (as in the case of spinodal decomposition; see
Section 1.3.2). This explains simply why if Eq. (1.12) leads to a semi-infinite band
½lc; þ1� of unstable wavelengths, the experiments show a rather well-defined
wavelength. In the case of epitaxy, one must also take into account the influx of
matter from the fluid phase (molecular beams, gas or liquid) in addition to the
transport ofmatter along the surface. This has been done by Spencer et al. [38] who, in
addition to substrate rigidity, identify two kinetic factors that tend to inhibit the
formation of the undulation, namely, a low temperature (which reduces surface
diffusion) and a high growth rate (which buries the undulations before they can
develop).

1.5.5
Coupling between the Morphological and Compositional Instabilities

Let us consider a half-space z � 0 of a regular solution alloy (A, B) with V > 0
(Section 1.2.1). We know that if its free surface remains planar, it is unstable for
T � T I

c against composition modulations with arbitrary wavelengths, if gradient
energy is ignored (Section 1.2.4). We also know that if it remains homogeneous, its
planar surface is unstable against undulations with wave vectors k � kc, at any T
(Section 1.5.3). In both cases, elastic relaxation is of primary importance: it deter-
minesT I

c and it is the driving force for undulation. In this section, we consider briefly
how a possible coupling between the two instabilities affects their respective domains
of existence.21) To answer this question, we calculate the elastic relaxation of a layer
z � 0 of average mismatch e0 with a composition modulation along a direction
parallel to the substrate/layer interface, but allowing a z-dependent amplitude;
without loss of generality, we then write the modulation g�1ecyðkzÞekz with
yð0Þ ¼ 1, so that its stress free strain with respect to the substrate is
e�ijðx; zÞ ¼ dij e0 þ ecyðkzÞekz sin kx

� �
. Assume that its free surface is undulated:

z ¼ D sin kx. As in the case of the purelymorphological perturbation (Section 1.5.2),
the elastic relaxation fields cannot be computed exactly; we limit ourselves to the first
order in both kD at ec [24]. The excess of elastic energy (per unit area) of the
undulated/modulated state with respect to the planar/homogeneous state is then
quadratic in these two variables:

dW ¼ 1þ n

1�n

E
2
1
k

�e20ðkDÞ2�2J1e0ðkDÞec þ J2
1þ n

�J21

� �
e2c

� 	
ð1:14Þ

21) Such a coupling has been observed in mismatched epitaxial alloy layers.

1.5 Morphological Relaxation of a Solid under Nonhydrostatic Stress j21



where Jn ¼
Ð 0
�1 yðuÞ½ �ne2udu. In Eq. (1.14), the terms in ðkDÞ2 and e2c correspond

respectively to a pure undulation (Eq. (1.12)) and to a composition modulation in a
planar half-space [24]. Whatever the sign of product J1e0, the cross-product becomes
negativewith an appropriate choice of the sign ofD (the phase of themodulation).The
elastic energy of the mixed perturbation is then less than the sum of the two perturbations
taken separately. If we assume that yðkzÞ > 0 and that e0 and ec have the same sign,
then for x 
 l=4ðmod lÞ, the layer is more mismatched than on average, and it is
interesting to have a larger relaxation there, hence also a crest (D > 0). The coupling
vanishes if the layer is on average lattice matched to its substrate [15]. To obtain the
total excess of free energy, we add to dW the excess free enthalpy of mixing and
the excess surface energy, as done respectively in Sections 1.2.3 and 1.5.3 [24]. The
conclusion is that not only the instability domains but also the very nature of
the instability are modified. We must consider together the two parameters that in
the case of uncoupled disturbances ðFigure 1.6a) have critical values separating stable
and unstable domains, namely, Tand k for the compositional (C) and morphological
(M) instabilities, respectively. With coupling (Figure 1.6b), one finds in the ðk;TÞ
plane an extended domain of morphocompositional (MC) instability. To each wave-
number k corresponds a critical temperature

~T cðkÞ ¼ TC
c þ 1

4
1þ n

1�n

E0

kB
g2

k
k�kc

ð1:15Þ

where TC
c is the bulk critical temperature (Section 1.2.3).

As usual, this thermodynamical analysis must be completed by a kinetic analysis
that will decide if the instability will actually develop, depending on the matter
transport mechanisms available [39–41].

1.6
Elastic Relaxation of 0D and 1D Epitaxial Nanostructures

We have seen in Section 1.4 that one way to prevent the formation of dislocations
during the growth of a mismatched epitaxial layer on a substrate is to keep the

Figure 1.6 Half-space under biaxial stress. (a) Instability domains with respect to separate lateral
composition modulation (C) or surface undulation (M), in plane (wave vector, temperature)
(S: stability). (b) Domain of joint morphocompositional instability (MC).
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layer thickness below its critical value for plastic relaxation. This becomes
impractical at high lattice mismatch e0, since the critical thickness decreases
rapidly when e0 increases (Section 1.4.3). In such cases, one may play on the
dimensionality and dimensions of the deposit (and sometimes of the substrate) to
prevent or hinder dislocation formation. Indeed, when the constraint of infinite
lateral extension is lifted, the deposit may recover its intrinsic (stress-free) state
even if the interface remains coherent. The lattice planes may then deform
continuously from the spacing of the substrate toward the intrinsic spacing of
the deposit over some distance from the interface. This is realized in quantum
dots and nanowires.

1.6.1
Quantum Dots

Section 1.5 indicates that a mismatched epitaxial layer may reduce its total energy by
developing a surface undulation. The same driving force leads to the nucleation of
coherent islands (instead of a uniformly thick 2D layer) of a strongly mismatched
epitaxial deposit in the Volmer–Weber (VW) or Stranski–Krastanov (SK) growth
modes.22) Observed for more than 25 years [42], the SK growth of semiconductors
spurred the spectacular development of quantum dot nanostructures.23) Although
their origin is the same, the descriptions of the ATG and SK (or VW) instabilities
differ in that the ATG instability refers to the development of a smoothly varying
surface corrugation (typically realized by step bunching on a singular surface),
whereas islands are bound by facets with orientations different from that of the
substrate [43]. It is precisely these additional lateral free surfaces that allow an
efficient strain relaxation. A similar but weaker effect occurs for quantum wires (1D
nanostructures) parallel to the substrate.

Elastic relaxation, which affects both island and substrate, may be calculated by
the general methods introduced in Section 1.1, the transformed part of the system
being the island. If analytical solutions exist for the island buried in a half-space
(which is indeed relevant since, in practice, most quantum dots are capped after
growth) (see Section 1.1.3 and Figure 1.2), this is not the case for uncapped islands.
One then has to resort to numerical methods, such as the finite elements
method [44, 45] or the atomistic valence force field method [46]. In addition,
approximate analytical solutions have been proposed for the strains or the
energy [43, 47–51]. Elastic relaxation of the substrate is also important. Indeed,
for an island under compression, the substrate is dilated under the island and
compressed in its vicinity. Hence, when a first island has nucleated, it is unfavor-
able to nucleate another one close to it. This is at the origin of the tendency of the
islands to self-organize.

22) These modes differ by the absence (VW) or presence (SK) of a thin wetting layer on the substrate.

23) All dimensions of the islands are nanometric, hence the often-used name 0D nanostructures.
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1.6.2
Nanowires

The same kind of effect occurs in nanowires. Epitaxial NWs growing in a direction
perpendicular to their substrate are nowadays fabricated from a large range of
elemental and compound semiconductor materials [52]. Similarly to quantum dots,
NWs have lateral dimensions ranging from a few nanometers to a few tens of
nanometers. At variance with quantum dots, which have inclined facets and nano-
metric heights, freestanding NWsmay extend perpendicularly to the substrate with a
uniform diameter and over potentially unlimited lengths (in practice, several
microns are easily reached). These 1D nanostructures have remarkable physical
properties and many potential applications. For a misfitting layer at the top of a NW,
lateral relaxation should be even easier than for a quantum dot, since the effective
substrate has the same finite diameter instead of being laterally infinite. The strain
relaxation for such relaxation has indeed been calculated [53]. As expected, it is very
efficient. For instance, for the same misfitting S/L couple, in the NW, the elastic
energy is already only a quarter of its 2D value (for the same volumeof layer) when the
layer thickness is only 10% of the NWdiameter. As a consequence, the critical layer
thickness, which is now radius dependent,may bemuchhigher than the 2D value for
small, but accessible, NW diameters. Moreover, there exists a critical NW radius
under which the critical thickness becomes infinite. Both quantities have been
calculated [53]. Finally, a similar effect, albeit somewhat less efficient, operates when
aNWis grownon amismatched substrate.Hence,NWsarenanostructures that allow
one to associate with strongly mismatched materials in a way that would not be
feasible in the 2D (or even the 0D) geometry.
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