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Relaxations on the Nanoscale: An Atomistic View
by Numerical Simulations
Christine Mottet

Atomic structure of materials reveals usually significant deviations compared to
perfect periodic bulk crystals. Condensed matter is made of defects, some of them
being essential for physical properties such as doping in semiconductors (extrinsic
defects), other ones such as vacancies, dislocations, or grain boundaries are key
elements for mechanical properties of materials, especially in the plastic domain.
Defects come from the elaboration mode and thermal treatment of the materials.
When the dimensions of the system decrease, the surface and interfaces become
important, and the structure can bemodified in the vicinity of these extended defects.
The cut bonds at the surface or the epitaxial relation at the interface may not only
induce stress and strain in the neighborhood of the defect but also possible
reorganization, both atomically and chemically in case of alloys. Such structural
modifications have a stronger impact when the size of the system is reduced at the
nanoscale, as in clusters or nanoparticles.

Nowadays, experimental improvements make it possible to elaborate and char-
acterize nanomaterials. In parallel, theory and especially atomistic models based on
numerical simulations (semiempirical potentials or ab initiomethods in the density
functional theory, DFT) made significant progress in describing the relaxation
processes leading to energy optimization. As a consequence, we know that such
defects are associated with lattice deformations and reconstructions, or even chem-
ical rearrangementsminimizing the total energy of the system but not necessarily its
stress. In case of pure systems such as surface or clusters, we show that energy
minimization can lead to relatively high-stressed systems as in the case of the (1� 2)
reconstructed metallic surfaces or in the case of small icosahedral clusters with high
compression in their core. In contrast, in alloy surfaces and nanoalloys, we usually
find that the release of the stress coming from the size mismatch between the two
components is a driving force for stabilization of the system.

This chapter will develop different aspects of the atomistic approach by numer-
ical simulations of relaxations at the nanoscale in five sections. After a short
introduction, the theoretical models and basic numerical simulations will be
described in Section 4.2. Then, the relaxations in surfaces and interfaces (surface
reconstructions, alloy surfaces, and heteroepitaxial thin films) will be discussed in
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Section 4.3, before dealing with the relaxations in nanoclusters (unsupported pure
clusters, supported clusters, and nanoalloys) in Section 4.4. The last section will
stand for conclusions.

4.1
Introduction

In linear elasticity theory, the stress and strain relation described under the form of
the Hooke�s law is based on the continuum concept for the matter that has been well
represented using a tensorial notation, as introduced by the French mathematician
Augustin Louis Cauchy (1789–1857). It has been able to describe most of the elastic
deformation both in macroscopic and in microscopic systems. However, going to
smaller and smaller systems sizes up to the nanometer scale, it becomes more
evident that the description at the atomic level is more relevant. In particular, when
the atomic structure is sensiblymodified compared to the bulk periodic structure, we
can expect that in the vicinity of the perturbations, the elastic theory fails. In the
following, we will show, however, that the linear elasticity theory reproduces well
the strain at a certain distance of the stressed region but not necessarily exactly in the
center of the defect. So we find that the two aspects, continuum theory and atomistic
description, are essentially complementary.

The concept of �relaxation� in physics is not exactly the same as in current life. In
the occidental way of life, the relaxation represents a process or state with the aim of
recreation through leisure activities or idling, the opposite of stress or tension. In the
oriental civilization, the relaxation could be associated with meditation as taught by
Zen masters. In physics, the relaxation is a response to external (or internal) stress
(or strain). It implies both the time-dependent process of this mechanical pertur-
bation that we will rather call dynamical relaxation, involving the physical and
atomistic mechanism the system uses to reach its relaxed state, and the final relaxed
state that we will essentially consider here. When a load is applied to a system as in
the traction experiment, the system is strained because of the external stress and the
atomic positions may change. We will not consider the way they will move (the
dynamics) but their final configuration in the final relaxed state, whatever the way
this state has been reached. Even if a system is free of external stress, this does not
mean it is free of strain. Indeed, because of defects such as surfaces, interfaces, grain
boundaries, or dislocations, a system can be strained by itself, without any load
applied. In such cases, the system presents some deviations compared to the bulk
periodic structure. This will be described at the atomic level by numerical simula-
tions. The strain pattern is controlled by the energy minimization. The system
optimizes its energy by moving some of its atoms (optimizing the bond length as a
function of the local environment and in particular the number of near neighbors)
and by exchanging atoms of different species in the case of alloys. For example, some
surfaces are reconstructed in order to compensate their lack of bonds, such as the
famous (7� 7) reconstruction of the Si(111) surface [1] or the Au(111) surface
reconstruction [2].
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4.2
Theoretical Models and Numerical Simulations

Modelization of the energy of the system is the crucial point in order to perform
realistic and reliable simulations. There are different approaches with different
degrees of accuracy corresponding to different levels of description of the electronic
structure from the first-principles methods using the density functional theory to
semiempirical potentials fitted to experimental properties or, eventually, on ab initio
calculations if experimental data do not exist. In parallel to the energetic model, we
will illustrate the basic statistical thermodynamicmethods in numerical simulations,
that is, molecular dynamics and Monte Carlo simulations, to describe the equilib-
rium configuration corresponding to the minimum energy state in the fundamental
state (at OK) or at finite temperature.

4.2.1
Energetic Models

According to thefirst principles, the Schr€odinger equation for a systemofN electrons
moving in the electrostatic field created by M atomic nuclei is written as

HV ¼ EV ð4:1Þ

whereH is the Hamiltonian operator, E is the energy, andVðr1; . . . ; rN ;R1; . . . ;RMÞ
is the wave function, which depends on the electrons� ri and nuclei Ri positions. The
Born–Oppenheimer (adiabatic) approximation consists in separating the movement
of the electrons from those of the nuclei, knowing the electronmass ismuch less than
the nuclei one. Thus, the electrons in their fundamental state follow the nuclei in
such a way that V can be written as

V ¼ WðR1; . . . ;RMÞYðr1; . . . ; rNÞ ð4:2Þ

and the wave function of the electrons comes from the resolution of the Schr€odinger
equation in the field of the nuclei

HeYðrÞ ¼ EeYðrÞ ð4:3Þ
where the electrons� Hamiltonian He is the sum of three contributions

He ¼ T þV þU ð4:4Þ
with the kinetic energy T

T ¼ 1
2

X
rY*ðrÞrYðrÞdr ð4:5Þ

the potential V that represents the interaction of the electrons in the potential of the
nuclei

VðrÞ ¼
X

vðrÞY*ðrÞYðrÞdr ð4:6Þ
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and the Coulomb interaction of the electrons between each other U

U ¼ 1
2

X 1
jr�r 0jY

*ðrÞY*ðr 0ÞYðrÞYðr 0Þdr dr 0 ð4:7Þ

The coupling of N electrons by the Coulomb repulsion and the exchange
interaction coming from the Pauli exclusion lead to a complex system that is
essentially impossible to resolve without approximation. There are two kinds of
approximations: the Hartree–Fock method, where the N electrons� problem is
transformed into N coupled equations with one electron in an effective potential
via a Slater determinant, and the density functional theory from the Hohenberg and
Kohn theorem (1964) [3]. We will briefly describe the second method, the most used
at present.

According to the remarkable theorem of Hohenberg and Kohn [3], the energy of a
free electron gas in interaction in an external potential vðrÞ is a functional F½nðrÞ� of
their density nðrÞ, with the minimal value corresponding to the fundamental state.
The functional F½nðrÞ�, independent of vðrÞ, is defined, according to Kohn and
Sham [4], as

F nðrÞ½ � ¼ Ts nðrÞ½ � þ 1
2

ðð
nðrÞnðr 0Þ
r�r 0

dr dr 0 þExc nðrÞ½ � ð4:8Þ

whereTs½nðrÞ� is the kinetic energy of an electron gaswithout interactionwith density
nðrÞ, the second term is that of Hartree (mean field approximation) to treat the
Coulomb interaction, and the last term is that of exchange and correlation that takes
into account all that has been neglected before. The variational problem of the
Schr€odinger equation can be solved as a system of one electron in an effective
potential

� 1
2
r2 þVeff ðrÞ

� �
yiðrÞ ¼ eiyiðrÞ ð4:9Þ

with the effective potential

Veff ¼ vðrÞþ
ð
nðr 0Þ
jr�r 0j dr

0 þVxcðnðrÞÞ ð11Þ

where VxcðnðrÞÞ is the exchange and correlation contribution to the potential. This
system of Kohn–Sham equations can be solved in an iterative way: starting with a
density nðrÞ using monoelectronic functions yiðrÞ on a given set of wave functions,
we calculate the effective associated potential andwe solve theKohn–Shamequations
by diagonalization of the matrix. The eigenvectors give the new wavefunctions yiðrÞ
and thus the new density nðrÞ. The energy is integrated numerically over all the k
vectors of the Brillouin zone and the self-consistent process is followed up to the
convergence of the energy.

The two principal exchange and correlation functionals, widely used, are the local
density approximation (LDA), which corresponds approximately to a homogeneous
electron gas with a sum of local contributions. It is quite correct when the variations
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in the density are weak. The second one is the generalized gradient approximation
(GGA), which is better in the case where the density can fluctuate as in the vicinity of
defects (surfaces) or open systems (molecules).

Anyway, ab initio methods in general are time consuming and can be used
efficiently only on very small systems (less than hundreds of atoms) or low symmetry,
and using a quite poor statistic or a quite short time of dynamics. For larger-scale
systems, always keeping the atomistic description, we can use semiempirical
potentials and in particular many-body potentials for metallic systems.

We will describe briefly the tight binding second moment approximation
(TB-SMA) model. In this model, the main features of the cohesion of transition
metals are well reproduced by the bandwidth of the density of states [5], which we
approximate by a rectangular shape with the same width [6]. By this way, the band
energy term at site i can be written simply

Eb
i ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

X
j

e�2qðrij=r0�1Þ
s

ð4:11Þ

where j is an effective hopping integral, rij is the distance between the atoms at sites i
and j, r0 is the first-neighbor distance in the metal. The summation goes over all the
neighbors up to the cutoff distance rc. The total energy of a system of N atoms is
written as a sum of the band energy term (attractive part) and a repulsive term of the
Born–Mayer type

Er
i ¼ A

X
j

e�pðrij=r0�1Þ ð4:12Þ

where the parameters (j;A; q; p) are fitted to different experimental values: bulk
cohesive energy (eB), lattice parameter (a), and elastic constants (B, C44, C0) [7] of the
metal. Thismany-body potential is comparable to other well-knownmethods such as
the embedded atom method (EAM) [8] or the corrected effective medium (CEM)
theory [9, 10]. Although not as precise as the ab initiomethods [11, 12], the TB-SMA
approach describes quite correctly, at least qualitatively if not quantitatively, the
relaxation and/or some of the possible reconstructions of the low-index surfaces [13].

4.2.2
Numerical Simulations

The archetypal methods used in numerical atomistic simulations are essentially of
two kinds, the molecular dynamics (MD) and the Monte Carlo (MC) simulations,
which are well described by Frenkel and Smit [14], and Allen and Tildesley [15]. A lot
of othermethods have been developed,mainly to overcome the time limitation of the
MDsimulation to describe real time-dependent processes. The idea of thesemethods
(accelerated dynamics [16], ART [17], NEB [18], or dimermethod [19]) is to accelerate
the dynamics by the study of the whole energy landscape [20] and in particular the
determination of the saddle points in order to cross the energy barriers more
efficiently and in an acceptable simulation timescale. We will not describe all these
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more sophisticated methods but give here only the essential elements to give a first
insight into the basic atomistic simulation methods (MD and MC simulations).
Moreover, in the large majority of the examples given hereafter, we will concentrate
on the final relaxed states, obtained from a local relaxation of the atomic positions
starting from a configuration that is near the final one. This does not require to
perform a full dynamical relaxation process because we are less interested by the
relaxationmechanism than by the description of the final relaxed state. In the case of
the nanoalloys, some of the atomic structures are coming from global optimization
methods [21] that are efficient methods to find the lowest energy structure (global
minimum) in the whole energy landscape [20].

In MD simulations, the Newton equations

FiðtÞ ¼ m
d2riðtÞ
dt2

¼ � dEpot

drij
ð4:13Þ

give, by integration using the Verlet algorithm [22], the atomic positions riðtÞ

riðtþ dtÞ ¼ 2riðtÞ�riðt�dtÞþ FiðtÞ
m

dt2 þ eðdt4Þ ð4:14Þ

and the atomic velocities

viðtÞ ¼ riðtþ dtÞ�riðt�dtÞ
2dt

ð4:15Þ

We can deduce from the velocities, the kinetic energy

Ecin ¼
XN
i¼1

1
2
miviðtÞ2 ð4:16Þ

and the temperature T of the system thanks to the equipartition principle

3
2
NkT ¼

XN
i¼1

1
2
miviðtÞ2 ð4:17Þ

where k is the Boltzmann constant. We can let the system evolve in the micro-
canonical ensemble keeping constant the total energy (kinetic þ potential), the
number of particles, and the volume of the system. Looking for the equilibrium
state, we can perform quenched MD in order to search for the potential energy
minimum: the velocity of an atom i is set to zero each timeFivi < 0. Equilibrium state
at finite temperature can be reached if the MD simulation is sufficiently long in time
in order to explore the phase space according to the ergodicity principle.

TheMC simulations are the other great family of statistical simulationmethods to
determine the equilibrium state of one system in terms of atomic structure and
chemical arrangement. Based on the Metropolis algorithm [23], it makes successive
random trials modifying the atomic configuration of the system following a Markov
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chain. The probability of acceptance of a given configuration is defined by a
Boltzmann canonical distribution

PðCÞ / e�EC=kt ð4:18Þ
and the probability of transition from one initial configuration C to a final one C0 is
defined by

WðC!C0Þ ¼ min 1;
PðC0Þ
PðCÞ

� �
¼ min 1; e�ðEC0 �ECÞ=kT

n o
ð4:19Þ

which means that the new configuration C0 is accepted if its energy is lower than the
energy of the initial configuration. If its energy is higher, the new configuration is
accepted with the probability e�DE=kT. Performing average of the energy over a large
quantity of sampled configurations allows to characterize the equilibrium state of the
system.

4.2.3
Definitions of Physical Quantities

The pertinent physical quantities used in order to describe the state of the system are
essentially the defect energies extended to surfaces, interfaces, adatoms, vacancies or
impurities, the surface stress, and the local pressure or stress on an atomic site.

The defect energy (surface, interface, and adsorption) is defined by the cost in energy of
the system with the defect in the final state compared to the equivalent system
without defect in the initial state, normalized by the number of atoms concernedwith
this kind of defect (Nnorm). The initial andfinal states are represented schematically in
Figure 4.1. The defect energy is written as

Edefect ¼ Efinal�Einitial

Nnorm
ð4:20Þ

The term �equivalent� means notably that we keep the same number of atoms and
the same nature of atoms in the final and the initial state.

In that way, the surface energy is defined by the cost in energy to separate a bulk in
two pieces creating a surface on each side. It is given by

c ¼ Eslab�NEcoh

2Nsurf
ð4:21Þ

where Eslab is the energy of a system of N atoms with periodic conditions in two
directions and no periodic condition in the third direction (see Figure 4.2). The slab is
constituted of p layers of Nsurf atoms on each, which leads to two surfaces of Nsurf

atoms. Ecoh is the cohesion energy.
The interface energy writes

b ¼ Eslab�NAEA
coh�NBEB

coh

NA
surf þNB

surf

ð4:22Þ
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where EA
coh and E

B
coh are the cohesion energies of the twomaterials andNA (NA

surf ) and
NB (NB

surf ) are the number of A or B atoms in total (or at the surface).
The adhesion energy is slightly different from the interface energy as the initial state

is composed of two slabs of A and B with their respective surfaces. Then, it is written
as

W ¼ Eslab�EA
slab�EB

slab

NA
surf þNB

surf

ð4:23Þ

The adsorption energy of Nads adatoms, for a coverage y ¼ Nads=Nsurf , is written as

Eads ¼
Ey
slab�Ey¼0

slab

Nads
�mNads ð4:24Þ

where m is the atomic potential (energy in the gas phase).

z

x
y

Figure 4.2 Schematic view of a slab used in numerical simulation to represent a surface (in fact,
two surfaces).

Figure 4.1 Schematic representation of the creation of surfaces, interface, and adatoms
adsorption on a surface in final state compared to an equivalent system in initial state.Nnorm gives
the relevant number of atoms to normalize the defect energy.
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Then, we can also determine the vacancy energy in a system of N atoms:

Ev ¼ EðN�1Þ
slab �ðN�1Þ

N
EðNÞ
slab ð4:25Þ

And finally the solution energy of an atom B in a matrix of A is written as

EAðBÞ
sol ¼ EAðBÞ

slab þ mA�EA
slab�mB ð4:26Þ

where the initial state is a slab of A and one atomof B and thefinal state, the same slab
where one A atom has been replaced by a B atom and the A atom in gas phase.

The surface stress is a quantity related to the stress tensor in bulk butwhich concerns
the surface. A thermodynamic definition is given byM€uller and Sa�ul [24] on the basis
of an interfacial excess quantity. Choosing the z-axis as the normal of the surface, the
surface stress tensor is symmetric and comprises only two nonzero components: sxx

and syy.
The Shuttleworth�s equation links the surface stress component ssurf

ij with the
surface energy c

ssurf
ij ¼ 1

A
@ðcAÞ
@eij

¼ c0@ij þ
@c

@eij
ð4:27Þ

whereA is the surface area and c0 the surface energy of the initial surface (before the
deformation).

The local pressure, in an atomistic model, represents the pressure localized on each
atomic site. It corresponds to the trace of the stress tensor

P ¼ � 1
3

X
i

sij ð4:28Þ

It derives from the energy of the system using the definition of the hydrostatic
pressure as given by Kelires and Tersoff [25]:

Pi ¼ � dEi

d ln Vi
¼ � rij

3
dEi

drij
ð4:29Þ

where Ei is the energy of the system at site i, Vi is the atomic volume, and rij is the
distance between the atom at site i and their neighbors j.

4.3
Relaxations in Surfaces and Interfaces

Surfaces and interfaces are the place of atomic relaxations because of the modifi-
cation in the local environment of the atoms located at the surface (broken bonds) or
at an interface (change in the nature and the distances of near neighbors). As a
consequence, the surfaces and interfaces can reorganize their structure in order to
minimize their energy, leading to surface reconstruction or interfacial dislocations.
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We will consider in the following examples of surface reconstruction, surface with
foreign adsorption (alloy surfaces), and heteroepitaxial thin films.

4.3.1
Surface Reconstructions

Because of the broken bonds at the surface, the interatomic distances of the surface
atoms aremodified as compared to the ones in the bulk. For example, it is well known
that the metallic surfaces undergo an inward relaxation that is well reproduced by
many-body potentials [26] at the difference of the pair potentials that give essentially
an outward relaxation. Sometimes, the surface atoms can even reorganize their
structure in order to minimize the surface energy. It is the case for the well-known
gold(111) herringbone reconstruction [27, 28] as displayed by scanning tunneling
microscopy (STM) pictures in Figure 4.3. Such reconstruction iswell explained using
a 2D Frenkel–Kontorova model by a spontaneous formation of stress domains
including long-range elastic interactions [28].

We will concentrate here on another surface reconstruction, the (1� 2) missing
row reconstruction that concerns the (110) surface of the 5d transitionmetals. In the
S. Olivier�s thesis, directed by A. Saùl in Marseille [29], the author studied theoret-
ically the influence of the stress on metallic surface reconstruction. The author first
calculated in ab initio the surface energy gain to reconstruct the (1� 2) (110) surface
into the missing row (1� 2) structure. The author found as illustrated in Figure 4.4
that only the 5 d Ir, Pt, and Au metals reconstruct (Dc < 0) in good agreement with
the experiments. Then, the author wanted to determine a criterion, beyond the
energetic one that supposes to know the final reconstructed structure, in order to
predict if the surface is susceptible or not to undergo the reconstruction. The author
performed a detailed description of the surface stress tensor of the unreconstructed
surface as compared to the reconstructed one. As mentioned before, the z

Figure 4.3 Figures reproduced from Barth et al. [27].
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components are necessarily vanished by definition at the surface and there are only
thesxx and syy that are nonzero. Looking for a general criterion to separate the 3d and
4d metals (which do not reconstruct) from the 5d metals (which do reconstruct), the
author first considered general tendencies as observed on other types of surfaces. For
example, the Au(111) surface has the tendency to densify in the herringbone
reconstruction, in order to compensate the lack of bonds. But this is clearly not the
case here as the surface suppresses itself some rows leading to an even more open
surface. Then, the author researched if the reconstruction was a way to release the
surface stress as compared to the unreconstructed surface. The results show no clear
difference in behavior between the 5dmetals and the others, and even some possible
increase in some surface stress components on the reconstructed surface. So, such
criterion, which is not necessarily sufficient, but can be sufficient in some cases as we
will see hereafter, is not a good criterion in that case. The best criterion the author
obtained comes from the derivation of the surface energy as a function of the strain;
in other words, the Shuttleworth equation as expressed before. In the graph of
Figure 4.5, we see how the 5dmetals are well separated from other transitionmetals,
in order to discriminate the metals with tendency to reconstruct the (110) surface.
Finally, it has also been checked that the driving force for this reconstruction comes
from the electronic structure and in particular the relativistic effects inwhat concerns
the 5d transition metals.
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–100

–150
Pt Au
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m
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Ir Pd Ag Cu Rh Ni
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Δγ(1x2 – 1x1)

Figure 4.4 Surface energy difference between
the (1� 2) (110) reconstructed surface and the
(1� 1) (110) surface for the late-transition
metals calculated using the density functional
theory and the PWSCF (Plane-Wave

Self-Consistent Field) code [30] with a slab of 12
atomic planes (diamonds) or a slab of 18 atomic
planes (circles and continuous line).
Reproduced from Ref. [29].
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4.3.2
Surface Alloys: a Simple Case of Heteroatomic Adsorption

The adsorption of Ag atoms on a surface of Cu(111) leads to interesting super-
structures because of the strong size mismatch. The first modelization of an Ag
monolayer deposited on Cu(111) substrate by quenched molecular dynamics sim-
ulation in the TB-SMA potential (as described in Section 1.1.2) showed that the
system adopts a p(10� 10) superstructure in good agreement with low-energy
electron diffraction (LEED) experiments [31]. The atomistic simulations show
beyond the periodicity an original motif with a strong corrugation of the surface
layer extended in the substrate on the first 10 surface layers [32]. This corrugation is
well illustrated by the local pressure map as depicted in Figure 4.6a and b, where the
gray scale represents the pressure scale from tensile zones (in white) to black zones
(in black). Such picture is directly comparable to the atomic elevation map of the Ag
surface atoms (see Figure 4.7a) and the STM image [33] (Figure 4.7b). However, the
STM images suggest other possible structures because of the bright atoms inside the
dark triangles. Such STMpicture is better represented with a structure where four or
five atoms have been removed in the Cu layer in order to release the local pressure in
compression to the Cu layer (Figure 4.6b without Cu vacancies: we observe black
zones in compression that disappear with the introduction of Cu vacancies in
Figure 4.6d).

In that case, the stress release by the introduction of Cu vacancies consisting in the
formation of partial dislocation loops is a way not only to reduce the local pressure but
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Figure 4.5 Same as Figure 4.4 for a slab of 18 atomic planes but plotted as a function of the
derivative of the surface energy as a function of the deformation in the x-direction, in the
unreconstructed (1� 1) structure. Reproduced from Ref. [29].
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Figure 4.6 Local pressure maps in the Ag
(a) and (c) and Cu (b) and (d), layers for the
(10� 10) superstructure of Ag/Cu(111),
without (a) and (b) and with five Cu vacancies
(c) and (d). The gray scale is chosen such that
the white/black atoms are the most tensile/

compressed ones with the following
extreme values: In the Ag layer, Pmin¼� 88 kbar
and Pmax¼ 19 kbar; and in the Cu layer
Pmin¼�77 kbar and Pmax¼ 84 kbar.
Adapted from Ref. [32].

Figure 4.7 Height elevation maps in the Ag
layer of the Ag/Cu(111) (10� 10)
superstructure (a) and with five vacancies (c).
Black and white colors are associated with the

deepest and highest elevations with the typical
extreme values: Hmin¼�0.033 nm, and
Mmax¼ 0.075 nm; adapted from Ref. [32] In (b)
we recall the STM image from Ref. [33].
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also to minimize the surface energy leading to the stabilization of a new super-
structure in perfect agreement with STM observations.

4.3.3
Heteroepitaxial Thin Films

The last example of extended surface and interface is taken from a thin metallic film
epitaxially grown on aMgO(100) substrate. Obviously, we do not consider the growth
mode but only the structure of the film in a state we will consider as an equilibrium
state. Such systemhasbeenboth experimentally [34, 35] and theoretically studied [36],
and here again the confrontation of the two approaches is stimulating. In that case,
we also compared the atomistic approach with the continuous elastic theory to see to
which extent the analytical elastic theory can be used.

In that system, as previously, the size mismatch leads to a deformation of the
deposit that prefers to rearrange by introducing interfacial dislocations in order to
release the elastic deformation. The difference with the preceding case is that the
MgO(100) substrate is rigid (an approximation of our model), which prevents any
deformation (or even vacancy formation) in the substrate. However, because of the
different nature of the two materials (a metal and an oxide), such hypothesis is
legitimate in afirst approximation, butwe should gobeyond in further studies using a
new energetic model for the oxide and the metal–oxide interaction.

Themetal is modeled within the TB-SMA as in the preceding case and the oxide is
kept rigid, as mentioned above. The metal–oxide interaction is modeled via a
potential energy surface approach fitted on ab initio calculations [37].

When considering a thin film of Ag on epitaxy on the MgO(100) substrate, the
minimum energy structure corresponds to a partially relaxed film with interfacial
dislocations, whose periodicity depends slightly on the film thickness. Figure 4.8
illustrates the propagation of the stress across a 20monolayer (ML)film starting from
the interface with the MgO(100) substrate where are located the core of the
dislocations, up to the surface that we can see with a top view. We can distinguish
the compressive zones in red and tensile zones in blue. Such motif at the surface is
susceptible to change as a function of the film thickness, as shown in Figure 4.9,
where thinner films display smaller motifs. In this figure, we also compare the stress
profile using an elastic model and the atomistic model. In conclusion, we notice that
the two models reach their best agreement for the thicker film (20 ML), where the
elastic model is almost as precise as the atomistic model. For 7 and 5 ML, the
agreement is still good, far from the dislocation core, but we clearly see that the elastic
model fails to describe the stress on top of the dislocation core, which is not so
surprising taking into account the approximations of the model.

Finally, let us mention the experimental study by grazing incidence small-angle
X-ray scattering [34] that shows the self-organization of Co nanoparticles on a silver
surface patterned by a buried dislocation network, which is a nice confirmation of
what we have obtained in theory. Moreover, by calculating the adsorption energy of
one Co atom on top of different sites on the nanostructured Ag surface, we show a
clear correlation between the stress corrugation and the amplitude of the adsorption
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Figure 4.8 Top view and side view in the (010)
plane of the atomic stress map of the Ag
nanostructured film. Color code from red (dark)
to blue (light) corresponds to compressive to

tensile atomic sites. Because of its exponential
decay, the stress field at the top surface is barely
visible and, hence, a different color scale has
been used. Adapted from Ref. [34].

Figure 4.9 Top panel represents the map of
the surface atomic stress (same color code as
Figure 4.8) for different film thicknesses.
Bottom panel gives the corresponding stress

graph along the [100] direction (x¼ y). Circles
for the atomistic calculations and full lines for
the elastic theory calculations. Adapted from
Ref. [36].
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energy (Figure 4.10), which is a good indication of the probable nucleation and
growth of Co nanoparticles on it.

4.4
Relaxations in Nanoclusters

Because of their surface, nanoparticles undergo a surface stress in tension that is
compensated by a core stress in compression leading to a total pressure equal to zero,
as long as the nanoparticles are free from interaction with the exterior (under
ultravacuum conditions). Their equilibrium shape respects the Wulff theorem up
to quite small sizes if we include the edges and the corner energies in the Wulff
description, as we have checked by comparing the results given by atomistic
calculations and the thermodynamic approach [38]. As a function of their size, when
the size becomes sufficiently small, they can change in structure in order tominimize
the surface energy when the internal core pressure is not so high compared to the
surface energy gain. Themain result of the comparative study using thermodynamic
and atomistic approach [38] is that not only edge effects but alsomainly surface stress
effects leading to a Laplace overpressure inside the particle have to be taken into
account in order to validate the Wulff theorem for sizes smaller than 10 nm.
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Figure 4.10 Surface atomic stress (top graph) and adsorption energy of a Co atom for different film
thicknesses: 10ML (circles) and 20ML (squares) along the [100] direction (x¼ y).L is the length of
the nanostructure.

98j 4 Relaxations on the Nanoscale: An Atomistic View by Numerical Simulations



In the following, wewill see the example of Pd-free nanoclusters and the possibility
of stress release by vacancy introduction. As most of the nanoparticles are deposited
on a support or included in a matrix, we will study the effect of the cluster
environment on the structure and morphology of nanoparticles. We concentrate
here on the case of metallic nanoparticles supported on a MgO(100) substrate.
Finally, we will consider the alloy effect on bimetallic nanoclusters (called
�nanoalloys�) where the misfit between the two elements is at the origin of the
stabilization of new structures that does not exist in pure systems.

4.4.1
Free Nanoclusters

It is well known that nanoparticles, and especially metallic nanoparticles, undertake
new structures andnotably thefivefold symmetry as their size decreases [39, 40]. This
change in structure at small size results from an optimization of their surface by
minimization of the surface energy forming only pseudo (111) facets in the
icosahedral structure, whereas the fcc truncated octahedron, which is the optimized
morphology taking into account the Wulff theorem, displays necessarily both (100)
and (111) facets (see Figure 4.11). As the (111) facet is more dense, its surface energy
is lower than more open (100) facet. However, the structural transformation from
face-centered cubic (FCC) structure tofivefold symmetry structure is accompanied by
an internal strain as illustrated in Figure 4.11. In this figure, the three morphologies
are displayedwith the twoFCCones and the icosahedron one. Thefirst FCC structure
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is the cuboctahedron that has the same number of atoms as the icosahedron, each
(100) facet is transformed in two (111) facets leading to 20 pseudo (111) facets in the
icosahedral structure. This structure has six fivefold symmetry axis crossing two
vertices. The second FCC structure is called the Wulff polyhedron because it
optimizes the extension of the facets according to the Wulff construction that links
the surface energy to the distance of the facet to the center of the particle. The
extension of the (111) facets and the reduction of the (100) ones in the Wulff
polyhedron compared to the cuboctahedronmakes theWulff polyhedronmuchmore
stable. The energy per cluster is reported in Figure 4.11 and we notice that the
icosahedron is stable only at very small size. The critical size of transition from
one structure to another is very sensitive to the metal itself and the icosahedron is
stable on a larger range of size in Cu [40].

Looking at the local pressure on each concentric layer of the icosahedron as
compared to the cuboctahedron (Figure 4.11), we clearly see that the icosahedron is
highly compressed in its core whereas the equivalent cuboctahedron undergoes only
a slight tension/compression at the vicinity of the surface, with an oscillating profile
in order to cancel the total pressure. In order to attenuate the very high stress on the
central site of the icosahedron, it is possible to remove the atom on the central
site [41]. This leads to the next graph in Figure 4.11 where we see that the vacancy
formation energy on the central site of the icosahedra can be negative for a size larger
than 100 atoms, whereas with no surprise it is positive and equal to the bulk vacancy
formation energy in the case of cuboctahedra.

4.4.2
Supported Nanoclusters

When the nanoclusters are in contact with a support, their structure is susceptible to
bemodified by their interactionwith the substrate. This is the case ofmetallic clusters
deposited on the MgO(100) surface. We first checked that the Wulff–Kaishew
theorem that is an extension of the Wulff theorem but on supported systems
(analogous to the Young–Dupr�e relation for a liquid droplet on a solid substrate)
also works for nanoparticles. As for free clusters, this macroscopic thermodynamic
approach can be extended to small sizes at the conditionwe integrate the variations in
the adhesion energy with cluster size [42]. Indeed, the adhesion energy is one of the
energetic ingredients in the Wulff–Kaishew equation where the ratio

ci
hi

¼ 2cA�W
H

ð4:30Þ

is a constant.ci andcA are the facet energy of facets i andA,Abeing the top facet;W is
the adhesion energy; andH is the height of the particle. In the epitaxial relation with
the MgO(100) substrate, due to the lattice mismatch of 8% between the Pd deposit
and the MgO(100) surface, the Pd deposit is strained in order to accommodate the
lattice of the substrate. The metal atoms have a preferential adsorption site on top of
the oxygen atoms so that adhesion energy is optimal when themaximumof Pd atoms
are adsorbed on top of oxygen atoms (as illustrated in Figure 4.12). As a consequence,
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the nanoparticle is highly stressed, as shown in Figure 4.12 where we can follow the
total stress per atom and per particle as a function of the cluster size. This stress is
fully relaxed by the introduction of thefirst interfacial dislocation, which corresponds
to a Vernier rule between the relaxed nanoparticle and the substrate. Before the
introduction of the second dislocation, the cluster is partially relaxed.

Such interfacial dislocations have been evidenced in Ni nanoparticles on MgO
(100) surface by high-resolution electron microscopy [44].

4.4.3
Nanoalloys

Nanoalloys are typically systems referring to bulk alloys but with a finite size on the
order of one to a few nanometers scale. As in the surface alloys mentioned in the
previous section, themisfit between the two elements induces some strain and stress
that are interesting to analyze in order to understand the kind of structure adopted by
the system. In very small nanoalloys, we found a strong relation between the structure
and the misfit that leads to the formation of what we have called �new magic
polyicosahedral core–shell clusters� [45]. The term �magic� is generally attributed to
highly stable structures. It is concerned first with the simple metal clusters with
magic number of atoms corresponding to the completion of electronic shells.
Then, more generally, it is concerned with the geometrical completion of atomic
layers at the surface. Here, we propose a new criterion related to the composition of
the bimetallic cluster. Indeed, in the particular cases of fivefold symmetry structures
that are stabilized at small sizes, it is possible to release partially the internal stress by
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replacing the core atoms by smaller atoms. They form core–shell structures with
polyicosahedral symmetry (see Figure 4.13). These nanoalloys present a particularly
high stability, related not only to their low energy compared to others but also to their
high melting point compared to pure clusters of equivalent sizes [45]. Beside the
stress relaxation, the driving forces responsible of such structures are the same as the
ones leading to surface segregation and core/shell structures in nanoparticles that are
the surface segregation of one of the elements (Ag in case of Ag–Cu and Ag–Ni) and
the tendency to phase separation in bulk alloys.

Stress relief can have also surprising effects on themelting behavior of nanoalloys.
It is illustrated by the single impurity effect on the melting of nanoclusters [46]. The
lattice mismatch between the impurity and its matrix seems to play a decisive role in
the melting property of a 55-atom icosahedron of Ag as illustrated below. When the
lattice parameter of the impurity is the same as theAg one, themelting behavior is the
same as the pure Ag cluster. The melting temperature is shifted toward higher
temperature when the lattice parameter of the impurity is smaller than the one of Ag,
and the amplitudeof the shift iswell correlatedwith the latticemisfit (seeFigure 4.14).
Even if the relation between the stress and the thermodynamic stability is not trivial to

Figure 4.13 Different views of magic core–shell polyicosahedra with Cu or Ni atoms in the core
(yellow color) and Ag atoms on the shell (gray color) with different sizes and compositions. Adapted
from Ref. [45].
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characterize, this is an evidence of the implication of the stress release in the higher
stability of nanoclusters.

4.5
Conclusions

The potentiality of the atomistic simulations in the description and analysis of the
strain and stress of a nanoscale system is promising, in particular the analysis of their
possible relaxations at the atomic scale in unsolicited systems. Such systems that are
free of external stress present nevertheless local or extended defects compared to the
bulk solid giving rise to quite complex atomic structures, as we have seen in the
different examples presented here. This opens up a wide domain of research in what
concerns systems under external stress. Many questions arise when considering
mechanical properties at the nanoscale because the points of the contact are already a
vast domain to be investigated.We can think about the experiments performed using
an STM tip touching the surface and, by a slow backward movement, being able to
form a quasiatomic metallic wire of gold or platinum. Possessing interesting
transport properties with the quantization of the current, the mechanical properties
of thesemetallic nanowires should also be interesting, as an extreme case of the well-
known nanopillars. However, the difference in size, from one nanometer or less in
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one case to some tens or hundreds of nanometers in the other case makes the
atomistic description not always appropriate in all the situations. This is why it is
necessary to have a constant feedback to themacroscopic thermodynamic description
(notably in terms of the elastic theory) in order to validate or extrapolate if possible the
results of the atomistic modelization.
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