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7.1
Introduction

The desire to gain a fundamental understanding of the physical properties of
nanostructures down to the atomic limit, as well as a host of practical applications,
drives the need for achieving uniform arrays of nanostructures. Since standard
lithography techniques are intrinsically limited in resolution, new physical methods
have to be used. Epitaxial growth has been shown to be an interesting alternative, as
thermodynamic or kinetic processes can be involved to get uniform nanostructures
on surfaces [1]. From a kinetic point of view, the self-assembly of nanoislands by
nucleation on surfaces [2, 3] has proved to be a solution to randomly grow
nanostructures with an adjustable size and density. However, the size distributions
are always broad. To overcome this drawback, the use of prestructured templates has
been proposed that effectively provides an ordered growth regime under adequate
flux and temperature conditions [4, 5]. One of the difficulties of such a technique is
the ability to realize and control a regular surface pattern at nanometer scale.
Fortunately, the presence of surface stress, and the processes that take place to
minimize its contribution to the total energy, can lead to such natural surface
patterning at nanometer length scales, either in homoepitaxial or in heteroepitaxial
systems. Once again, the interest of such surfaces for applications comes from their
ability to serve as templates for the growth of ordered nanostructures. By such a
bottom-up technique, state-of-the-art arrays of monodisperse nanoparticles, as small
as tens of atoms each, have been realized in the past two decades and subsequently
used for the study of their physical properties. In this chapter, we review such
phenomena, restricting ourselves primarily to metallic systems, including alloys.
The study of such self-organized systems is basically divided into two different parts.
In the first one, where surface stress plays a major role, the goal is to understand and
predict the equilibriummorphology of surfaces at the nanometer scale. In the second
one, this nanopatterning is exploited to grow nanostructures; their size, shape, and
density are generally driven by a combination of local thermodynamic and kinetic
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processes. At present, a variety of experimental and theoretical techniques are
available to study such phenomena. However, from an experimental point of view,
the invention of scanning probe microscopies, and more particularly of scanning
tunneling microscopy, has been a crucial step in the systematic study of metallic
crystalline self-organized surfaces and nanostructures. During the 1990s, pioneering
groups discovered periodic patterns such as the herringbone reconstruction of Au
(111) [6] and the CuO stripes on Cu(110) [7] and showed their ability to serve as
templates for subsequent ordered growth [8]. To describe such phenomena theo-
retically, there is a hierarchy of possible approaches. The most accurate approach
would be to perform ab initio density functional theory calculations. Surface stress
can be calculated reliably and efficiently, making use of the Nielsen–Martin stress
theorem [9]. However, the disadvantage of this approach is that one is restricted to
fairly small length scales because of issues of computational cost. At larger length
scales, one can make use of semiempirical potentials such as those obtained using
the embedded atommodel [10], effective medium theory [11], or the gluemodel [12];
these are considerably cheaper than first-principles calculations but not always
reliable. Finally, to extend to large length scales, one can go over to descriptions
using continuum elasticity theory. One very useful classical model, which helps one
understand qualitativelymany of the stress-driven phenomena that occur at surfaces,
is the Frenkel–Kontorova model [13] (and subsequent generalizations of it).
A successful modern approach has been to use this time-tested model, however,
with the parameters in it obtained from ab initio density functional theory calcula-
tions. In many cases, the results thus obtained have been in remarkably good
agreement with experiments.

7.2
Surface Stress as a Driving Force for Patterning at Nanometer Length Scales

7.2.1
Surface Stress

The concepts of surface energy and surface stress date back to the pioneering work of
Gibbs [14], developed further by Shuttleworth [15] and Herring [16]. The surface
stress tensor sab is defined by

sab ¼ cdab þ @c

@eab
ð7:1Þ

where eab is the strain tensor, dab is the Kronecker delta, and c is the surface free
energy per unit area. For amore detailed discussion of the surface stress, we refer the
reader to Chapter 2. Even for a situation where the surface energy is minimized,
the surface stress is in general not zero andmay be tensile or compressive, indicating
that the surface atomswould like to increase or decrease their density [17]. In general,
the stress at a bulk-truncatedmetallic surface is tensile; this is because surface atoms
have lost their neighbors in the layers above andwould therefore like to come closer to
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their neighbors in the surface layer so as to be embedded in an optimal ambient
electronic density. For heteroepitaxial metallic systems, the surface stress may be
compressive or tensile, depending on the size mismatch between overlayer and
substrate atoms. If the size of overlayer atoms is smaller or larger than that of the
substrate, then one would expect the surface stress to be tensile or compressive,
respectively. However, one should note that the �size� of an atom is not necessarily a
simple concept; in particular, the effective size of an atom at the surface may differ
considerably from that of a bulk atom. If themagnitude of the surface stress is large, it
can serve as a driving force for reconstruction or alloying. In the former case, the
density of atoms in the surface layer changes, thereby reducing the surface stress. In
the latter case, atoms in the overlayermix with those of the substrate, or two overlayer
species mix on the substrate (even, in some cases, if they are bulk immiscible), thus
reducing themagnitude of the surface stress. All these phenomena lead to patterning
at nanometer length scales, as we will describe later.

7.2.2
Surface Reconstruction and Misfit Dislocations

7.2.2.1 Homoepitaxial Surfaces
For simplicity of discussion, let us first consider a homoepitaxial system and assume
that the surface stress is tensile, as is generally the case for metallic systems. As
discussed previously, as a result of this tensile stress, surface atoms would like to
increase their density. However, this tendency is opposed by the presence of the
substrate. These two opposing factors are accounted for by the twomain terms in the
Frenkel–Kontorova model. In its original form, this model consists of a linear chain
of atoms (the surface layer) connected by harmonic springs, sitting in a sinusoidal
potential that represents the effect of the substrate (Figure 7.1). There are two
competing periodicities in the system: the preferred length of the springs (the favored
nearest-neighbor spacing of the surface layer alone) is less than the distance between
neighboring minima of the substrate potential (which corresponds to the lattice
spacing of the substrate). The advantage of the original formof theFrenkel–Kontorova
model is that it can be solved analytically; however, it is simple to generalize it to two
dimensions and other forms of potentials, in which case the model can be solved

Figure 7.1 Schematic diagramof the Frenkel–Kontorovamodel. The sine potential of depthW and
period a (bulk lattice spacing) represents the substrate atoms. The surface atoms are connected by
springs of natural length b (surface lattice spacing) and spring constant m.
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numerically so as to obtain the ground state configuration. In cases where the springs
are sufficiently stiff to overcome the effects of the substrate potential, the surface layer
reconstructs typically in a pattern such that regionswhere the surface layer remains in
registry with the substrate are separated by misfit dislocations where the density is
locally increased. Other possibilities are Moir�e patterns where the surface grid has a
more or less uniformly increased density relative to that of the substrate; it may also
happen that the symmetry of the overlayer grid may be different from that of the
substrate—for example, the substrate may have square symmetry while the overlayer
may have hexagonal symmetry. The best-known example of a system that displays
such a reconstruction, driven by stress relief, is the Au(111) surface. There have been
several calculations of the stress on the unreconstructed Au(111) surface [18].
Although there is some variation in the numbers obtained, all the calculations agree
that there is a considerable tensile stress on this surface. As an example, in a recent
calculation, we obtained a value of 3.6N/m (we note that ab initio calculations of
surface stress are notoriously difficult to converge, both with respect to basis size and
with respect to the number of layers used in simulating a surface slab, explaining a
relative dispersion of values obtained in different calculations) [19]. There are two low-
energy stacking sites for Au atoms in the topmost layer: face-centered cubic (fcc) and
hexagonal close packed (hcp). Domains of the two types of stacking are separated by
misfit dislocationswhere surface atomsoccupy the bridge sites that lie between the fcc
and hcp sites [20–22]; these show up clearly as light stripes in scanning tunneling
microscopy images. As a result of alternating between occupying the two types of
stacking sites, the surface layer densifies by 4%, thereby reducing the tensile stress.
The resulting pattern has a repeat distance of 22 nearest-neighbor spacings, which is
about 63A

�
. It is worth noting that the Au(100) surface also displays a surface

reconstruction with a large unit cell. In this case, the substrate has square symmetry,
whereas the overlayer has triangular symmetry, resulting in a (26� 48) unit cell [20].
Another homoepitaxial system that displays a reconstruction driven by stress relief is
Pt(111). While this is similar to Au(111) in that Pt and Au are both fcc metals, the
reconstruction differs in two ways: (i) the Au(111) surface nearly always displays a
reconstruction, but Pt(111) displays a reconstruction only at high temperatures [23] or
in the presence of a supersaturated Pt vapor [24]; (ii) in the case of Au(111), the
densification takes place along only one direction in the surface plane, whereas in
the case of Pt(111), there is an increase in density along three equivalent directions
in the surface plane. In Figure 7.2, we have shown simulated STM images that show
how the repeat distance and the pattern change on increasing the densification in the
top layer relative to the substrate; it is possible to control this parameter by tuning the
temperature or the chemical potential [25].Mansfield andNeedsmapped real surfaces
onto the exactly solvable one-dimensional Frenkel–Kontorova model in a simple way
and showed that a dimensionless parameter that involved combinations of the surface
stress, surface energy, surface lattice constant, stacking fault energy, and stiffness of
nearest-neighbor bonds (these parameters can all be estimated from ab initio density
functional theory calculations) could be used to predict whether ametallic surface will
reconstruct [26]. Subsequent authors have shown that this simple model works
surprisingly well for the (111) surfaces of fcc metals [25, 27].
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7.2.2.2 Heteroepitaxial Systems
Heteroepitaxial systems display reconstruction phenomena similar to those
observed on homoepitaxial systems, with the difference that the stress can be
tensile or compressive, and therefore the reconstruction can be compressive or
expansive, respectively. The stress builds up with the number of overlayers
deposited. Typically, with the deposition of the first monolayer, the stress is not
sufficient to trigger a reconstruction, and the system remains pseudomorphic
(i.e., the overlayer remains in registry with the substrate). Progressively more
�drastic� reconstructions are observed as further layers are deposited, for example,
if one considers Cu/Ru(0001): here, the lattice spacing of the overlayer, Cu, is
5.5% smaller than that of the substrate, Ru. The first monolayer goes down
pseudomorphically, the bilayer shows a striped reconstruction similar to that
observedonAu(111), the trilayershowsa triangularpattern (similar toFigure7.2dore),

Figure 7.2 Simulated STM images of a
reconstructed Pt(111) surface. Between (a), (b),
and (e), the enhanced density in the surface
layer, relative to the substrate, is progressively
increased from2.9% to 21%. In (a), a rotation of

the surface layer relative to the substrate is not
permitted, and in all other cases, it is permitted.
The white/black line in each image represents a
length of 50A

�
, and note that the patterns have

nanometer spacing.
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while for four or more Cu layers, a Moir�e pattern (similar to Figure 7.2f) is
observed) [28]. A similar sequence of patterns has also been observed in theoretical
modeling of this system [29]. The Ag/Ru(0001) system differs in that the
lattice constant of Ag is larger than that of Ru, and the unreconstructed surface
therefore exhibits a compressive stress.This systemalso relaxes through the formation
ofmisfit dislocations, similar to those observed onAu(111), with the difference that in
this case these misfit dislocations correspond to regions of rarefaction rather than
densification [30]. Another compressively stressed system that shows stress-driven
reconstruction is Ag/Pt(111). Once again, the first monolayer remains pseudomor-
phic, while the second monolayer displays a reconstruction. At first, there is a
metastable striped reconstruction, similar to that observed on Au(111) (except, of
course, that it corresponds to rarefaction rather than densification); upon annealing, it
is transformed into a trigonal network of domain walls [31].

7.2.3
Stress Domains

It is important to keep in mind that the surface stress is a tensor and not a scalar.
When the surface reconstructs by densifying or rarefying along only one direction in
the surface plane (as is the case for the various striped reconstructions described
above, such as that of Au(111)), stress is relieved (partially) along only that direction,
resulting in an anisotropic surface stress tensor. Note that in the case of Au(111), the
surface plane has threefold symmetry, and therefore this densification could have
occurred along any one of three equivalent directions. When there is an anisotropic
surface stress tensor, and a degeneracy of directions along which it can be oriented, it
has been shown by the theory of �stress domains� of Marchenko [32] and Alerhand
et al. [33] that the lowest energy situation will always correspond to a regular
alternation between domains of different orientations; it is possible to estimate the
domain width from continuum elasticity theory. Indeed, this is what appears to
happen in the case of Au(111): the striped pattern alternates periodically between two
out of the possible three orientations, resulting in the famous �herringbone� or
�chevron� reconstruction (Figure 7.3a) [6, 34, 35]. At alternating �elbows,� where
there are bends in the soliton walls that follow the lines of the misfit dislocations,
there are point dislocations, where the atoms have five to seven coordination instead
of the sixfold coordination characteristic of the fcc(111) surface. These serve as
nucleation sites for the growth of overlayers and constitute a regularly spaced two-
dimensional grid, since the herringbone pattern is periodic. Thus, the herringbone
pattern constitutes a convenient template for the growth of self-organized nanos-
tructures and has frequently been used as such. The same �stress domains� physics
can appear in the case of adsorbates on surfaces. Amongmany examples, Figure 7.3b
shows the self-organization of a partially oxygen covered Cu(110) surface [7]. Such a
system is simply realized by a controlled adsorption of O2 onto the surface and a
subsequent annealing. The natural anisotropy of the (110) surface leads here to a one-
dimensional pattern with a nanometer-scale period. On a more isotropic surface,
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such as the Cu(100) surface, two-dimensional self-organization can be observed, as
shown in Figure 7.3c with the checkerboard arrangement of 5 nm CuN islands [36].

7.2.4
Vicinal Surfaces

It has been shown previously that some flat surfaces of homoepitaxial or hetero-
epitaxial metallic systems can display strained-relief patterned substrates such as
dislocation networks that can be subsequently used for the growth of uniform
nanoparticles.However, intrinsic defects such as step edges prevent the achievement
of long-range ordered arrays of nanostructures since the presence of atomic steps
generally limits the coherence of the surface dislocation networks. Steps can also act
as nucleation sites for the growth of uncontrolled elongated clusters. Since macro-
scopic averagingmethods are still commonly used formeasuring physical properties
of nanostructures, these defects are major drawbacks of such bottom-up techniques.
To overcome these difficulties, a novel approachhas been investigated using strained-
relief vicinal patterned substrates to achieve a high degree of both local and long-
range order for the growth of nanostructures. Vicinal surfaces, also called stepped
surfaces, display a one-dimensional network of atomic steps separating terraces. The
choice of the miscut angle of such a surface compared to a flat surface allows one to
control the mean width of terraces. The narrowness of the terrace width distribution
is mainly driven by the elastic step–step interaction strongly related to the value of

Figure 7.3 STM images of self-organized
surfaceswith periodic nanometer-scale patterns.
(a) Herringbone reconstruction of the Au(111)
surface. The typical periodicity is 30nm. (b) CuO
stripes on a Cu(110) surface. Courtesy of Peter
Zeppenfeld. The periodicity is around 6 nm. (c)
CuN islands on a Cu(100) surface. The
periodicity is around 5nm. (d) Reconstruction of

the Au(788) vicinal surface that defines a two-
dimensional pattern with step edges of
dimensions 7.2� 3.8 nm2. (e) Reconstruction of
aAuvicinal surfaceswith8 nmwide terraces. The
interplay between step edges and the strain-relief
pattern induces a complex morphology. (f)
Faceted Au(455) vicinal surface. The typical
periodicity is around 200nm.
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surface stress, as demonstrated both theoretically and experimentally on various
systems [19] (for a detailed description of this interaction, refer to Chapter 13).
Generally, vicinal surfaces offer a one-dimensional pattern that can serve as a
template for the growth of one-dimensional nanostructures down to atomic
wires [37]. However, the combination of the atomic step network and strain-relief
patterns such as dislocation networks can lead to highly uniform two-dimensional
template surfaces. Well-studied examples of such systems are the Au(111) vicinal
surfaces. As discussed previously, the Au(111) surface is one of the famous examples
of natural strain-relief patterns with its herringbone reconstruction. Its vicinal
surfaces also show a variety of surface reconstructions with the particular features
of very good long-range order and an extremely lowdensity of defects. Figure 7.3d and
e showSTM images of two of these surfaces that have been shown to be useful for the
growth of regular nanostructures. Among them, the Au(788) surface has been the
most studied, with the demonstration of the growth of regular nanoparticles of Co,
Fe, Ag, andC60 [41, 49–51]. The shapes of strain-relief patterns on vicinal surfaces are
generally complex to simulate, due to an interplay between step edge and surface
energies. In the case of Au(111) vicinal surfaces, basic arguments have been put
forward to explain the shape of certain surface reconstructions and their influence on
the stability of such surfaces [38, 39]. An example of an unstable vicinal surface is
shown in Figure 7.3f. This faceted Au(455) surface constitutes once again an example
of a self-organized system with a 200 nm period driven by the difference of surface
stress between the two facets.

7.3
Nanopatterned Surfaces as Templates for the Ordered Growth
of Functionalized Nanostructures

7.3.1
Metallic Ordered Growth on Nanopatterned Surface

7.3.1.1 Introduction
Nowadays, naturally patterned surfaces are successfully used as templates to grow
ordered nanostructures from metallic nanodots [40] to molecular assemblies [41]
with controlled size and density. As shown previously, a broad range of materials can
display mesoscopic periodic surface patterns and can therefore be suitable for
ordered growth. Most of the early studies have focused on metallic surfaces [40]
with the well-known Au(111) reconstructed surface [8], but spectacular results have
also been demonstrated on semiconductors [42, 43], on insulating layers [44], and
more recently on supported graphene layers [45, 46]. This last system can display a
single domain Moir�e pattern over at least several micrometers scale, irrespective of
surface defects such as step edges [47]. This improves the long-range order and the
uniformity of nanostructures, which is necessary to study their physical properties
measured by averaging techniques [48] and to predict possible technological applica-
tions. As explained previously, the use of reconstructed vicinal surfaces has also been
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shown to increase the long-range order of these arrays of nanostructures over
macroscopic scale [49]. For example, the Au(788) surface has been used for the
growth of two-dimensional lattices of Co [49], C60 [41], Ag and Cu [50], Fe [51], and so
on. The atomistic mechanisms responsible for ordered growth have been studied in
detail in specific cases [40, 52] and the temperature dependence of the growth on
patterned substrates has been analyzed [53]. In the following, we explain the basic
concepts leading to ordered growth and our actual understanding of such phenom-
ena. It isworthnoting that an important condition to obtain ordered growth is that the
surface patterns should remain unaffected by the growth process. Considering the
complexity of surface science phenomena, this latter point is not trivial and generally
difficult to predict. This hypothesis will be assumed to be true in the following.
However, a few examples of self-organized surfaces modified during the growth of
nanostructures have been reported [54, 55].

7.3.1.2 Nucleation and Growth Concepts
Nucleation and growth of islands on surfaces has been extensively studied for many
years and has been reviewed in several articles and books [40, 56]. Atoms are
deposited from a vapor pressure onto a surface, such as in the common case of
solid on solid model. In the case of adatoms moving on a homogeneous substrate
(which is called homogeneous growth), the process is well described by mean field
theory and is essentially determined by atomistic parameters for surface diffusion
and binding energies of adatoms to clusters. Values for these parameters may be
determined by comparing scaling predictions with suitable experimental measure-
ments [57]. One usually distinguishes three regimes versus the coverage of deposited
atoms: the nucleation regime where the density of stable islands is increased, the
growth regime where the density is almost constant but the size of islands increases,
and the coalescence regimewhere the density of islands decreases since neighboring
islands start to coalesce. Themaximumcluster density versus the temperature can be
determined from variable temperature STM experiments. In the regime of complete
condensation generally relevant for metal on metal growth, re-evaporation of
adatoms from the substrate into the vapor is negligible. The maximum cluster
density nc is given by

nc ¼ gðD0=FÞ�1=3expðEdiff =3kBTÞ ð7:2Þ

where g is a prefactor related to capture numbers, F is the deposition rate (flux),D0 is
the diffusion prefactor, andEdiff is the diffusion energy. This expression is valid in the
case of stable dimers on the surface, that is, critical cluster size i ¼ 1 (i is defined as
the size of the biggest unstable cluster). In the case of i > 1, Eq. (7.2) should be
modified and involves the binding energy of the critical cluster. In the simple i ¼ 1
regime, it is worth noticing that the slope of nc versus T in an Arrhenius plot gives
Ediff . At higher temperature, the critical nucleus size increases and this leads to a
higher slope. Such behavior is also found by using kinetic Monte Carlo (KMC)
simulations. The advantage of a KMC simulation is that it goes beyond themeanfield
approximation that is known, for example, to overestimate the island density.
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7.3.1.3 Heterogeneous Growth
What happens now when all atomic sites onto the substrate are not equivalent, such
as on the self-organized surfaces described in Section 7.2? Some sites can act as
preferential nucleation sites, such as, for example, the point dislocations located at
the elbows of the Au(111) herringbone reconstruction. These sites can be described
in a mean field model as traps for adatoms [58, 59]. Such a model had some success
in the past by reproducing the nucleation and growth on surfaces with point
defects [60, 61]. We show here how it can be applied nicely to growth on self-
organized surfaces [52]. A typical theoretical curve of the critical cluster density
versus the temperature is shown in Figure 7.4b [53, 56]. For the lowest temperature,
no variation is found: the cluster density is constant with temperature. This
corresponds to a low diffusion regime called �postnucleation� [40] when adatoms
hardly diffuse on the surface and are stable. Between 45 and 80K, a linear decrease
in the cluster density with temperature in an Arrhenius plot is found. At such low
temperatures, the mean free path of adatoms on the surface is lower than the mean

Figure 7.4 (a) STM image of an ordered
growth of Co nanodots on a Au(788) surface.
(b) Arrhenius plot of the island density (in
islands/atomic sites) versus temperature
calculated by numerical integration of rate
equations in a point defectmodel. The analytical
asymptotic regimes are alsoplotted (cf. text). (c)
Size distributions calculated by KMC for growth
on a homogeneous substrate at 90 and 120 K

(y ¼ 0:1 ML). The solid line shows the Amar
and Family model. (d) Size distributions
calculated by KMC for the growth on a
heterogeneous substrate with a periodic array of
atomic traps at 90 and 120 K (y ¼ 0:1 ML).
The solid line shows the binomial distribution
associated with the Vorono€ı area of the trap
lattice.
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distance between traps. This regime is identical to the homogeneous growth, and
the slope of the Arrhenius plot is Ediff . Above the temperature threshold T0, the
system displays the ordered growth regime. The maximum cluster density is
constant, equal to the density of traps. T0 is the temperature at which the adatoms�
mean free path determined by Eq. (7.2) is equal to the distance between traps. As a
consequence, the parameters that determine T0 are Ediff and the trap density nt.
Ordered growth occurs as long as the typical energies of the trapping mechanisms
are sufficient to stabilize adatoms in the traps. We call Te the highest temperature
for which an ordered growth is observed. The crucial parameter, which determines
Te, is the trap energy Et. Above Te, the critical island density decreases dramatically
with temperature. The slope is higher than a simple homogeneous growth regime.
Such a high value is mainly due to the long time spent by adatoms in traps. The
effect of traps is then to reduce the effective diffusion of adatoms [53]. Eventually,
the mean field calculations including traps give a qualitative understanding of the
ordered growth. Rapid adatom diffusion and strong trapping are the main ingre-
dients needed to get an ordered growth over a large temperature range. We now
focus on the other key point of ordered growth, which is the achievement of narrow
size distributions. Unfortunately, the mean field approach of the previous mean
field model cannot give any idea about the island size fluctuations during the
nucleation and growth processes. Although a phenomenological model has been
proposed for homogeneous growth by Amar and Family [62], very little is known for
the growth on heterogeneous substrates, especially for ordered growth. To obtain
some information on these size distributions, KMC simulations can be
performed [53]. Some results of these simulations are shown in Figure 7.4c and d,
which correspond to the case of an homogeneous surface and a surface prestructured
with a rectangular array of traps, respectively. The homogeneous growth size dis-
tributions are perfectly reproduced by the Amar and Family model [62] and show
typical full widths at half maximum (FWHM) of 110% whatever the temperature.
In the case of the growth on the prestructured surface, when nucleation occurs on the
traps (T0 < T < Te), the size distributions are narrower and almost constant with
temperature in this range. The FWHM for nt ¼ 1=200 and y ¼ 0:1 MC is typically
50%. Interestingly, these size distributions are very well fitted by simple binomial
distributions pðkÞ ¼ Cn

ky
kð1�yÞn�k, with k the island size (in number of atoms) and n

the number of atomic sites of the Vorono€ı area in the trap lattice (i.e., n ¼ 1=nt). This
fact has already been pointed out for the ordered growth of Ag/Ag(2 ML)/Pt(111) [4]
but is less trivial for growth inducedbypointdefect nucleation. Thismeans that during
the growth regime, the probability that an adatom deposited on the surface does not
stick to its closest island is vanishingly small, whatever the coverage or the temperature
between T0 and Te, at least for the parameters used in our simulations. Moreover,
simulations on randomlydistributed atomic traps showabroadening of the islandsize
distribution due to the distribution of traps Vorono€ı area. This confirms that the
analysis of size distributions in terms of the Vorono€ı area distribution is always
pertinent. Therefore, theFWHMof the sizedistribution is limited to theperfectness of
the traps array for a given coverage. In addition, even for a perfect trap array, there is an
intrinsic statistical limit to the size distributionwidth.As for thebinomial distribution,
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the variance is s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�yÞ=nyp
, the only way to improve the size distribution

quality is to increase the coverage and use a surface with a lower trap density (larger
Vorono€ı cells).

7.4
Stress Relaxation by the Formation of Surface-Confined Alloys

Stress effects play also an important role in the process of alloying. Already since
ancient times, it has been known that alloying twometals can result in the formation
of a newmaterial with superior properties to that of the constituentmetals. However,
not all combinations of metals will form stable alloys; the empirical rules governing
alloy formation were formulated by Hume-Rothery et al. [63]. The first of these rules
states that if the sizemismatch between the twometals is greater than 15%, then alloy
formation is disfavored; this is because otherwise toomuch elastic strain builds up in
the material. The surprising discovery in recent years has been that bulk-immiscible
metals may, however, form surface-confined alloys. The driving force behind such
surface alloying is generally believed to be stress relief, though, as we will discuss
later, in some cases, such as when one of the constituents is a magnetic element, we
have reason to believe that other mechanisms also play an important role.

7.4.1
Two-Component Systems

As an example, Au andNi are immiscible in the bulk.However, whenAu is deposited
onNi(110), surface alloying is observed [64]. This has been confirmedby calculations,
making use of potentials derived from effective medium theory. There are many
other such examples, such as Na/K on Al(111) and Al(100) [65], Ag on Pt(111) [66],
and Sb on Ag(111) [67]. It has subsequently been shown by Tersoff [68] that one may
expect to see such a phenomenon, in general, in systems dominated by size
mismatch and in which, therefore, elastic stress plays a major role. The remarkable
thing is that the same feature, atomic size mismatch, that prevents intermixing in
the bulk actually promotes mixing at the surface. In some cases, such surface alloys
are disordered; however, in other cases, they form ordered structures; long-range
order is of interest for certain applications. Surface alloys, in general, offer possi-
bilities as novel catalyticmaterials and (when one ormore of the constituentmetals is
magnetic) materials for applications in nanomagnetism.

7.4.2
Three-Component Systems

One can also consider another type of surface alloy: one can codeposit two bulk-
immisciblemetals, A andB, on a substrate Cof intermediate spacing. If Ahas a lattice
constant smaller than that of C, while B has one larger than that of C, then an
unreconstructedmonolayer of A onCwould display tensile stress, while amonolayer
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of B on C would exhibit compressive stress. One might thus expect that stress relief
might provide a driving force for mixing in such a system and one may obtain a
surface alloy of A and B on C. Motivated by such considerations, Thayer et al.
consideredCo andAg codeposited on aRu(0001) substrate [69, 70]. Since the nearest-
neighbor distance of Ag is larger than that of Ru by 8%, while that of Co is smaller
than that of Ru by 7%, one might expect to find such surface alloy formation in this
system. However, one does not find atomic-level mixing. Instead, for submonolayer
films, onefindsAg droplets surrounded by aComatrix. For larger Ag concentrations,
the system forms a phase consisting of dislocated Ag/Ru(0001) and alloy droplets.
The reason that there is no atomic levelmixing is because elastic interactions alone do
not determine the surface structure, one also has to take into account chemical
interactions. The droplet size is determined by a balance between energy reduction
due to stress reduction and the energetic cost of forming unfavorable chemical
bonds.

A combinatorial study of smallmagneticmetalsMalloyed with large nonmagnetic
metals N on the Ru(0001) surface has recently been carried out using density
functional theory techniques [71]. Among the results that emerged from this study,
we mention that (i) several bulk-immiscible M-N pairs were found to atomically mix
on the surface, (ii) atomic sizes at the surface were sometimes significantly different
from bulk sizes, (iii) both elastic and chemical interactions were found to be
important, and (iv) no simple size-dependent criterion emerged in predicting
mixing; this is because unlike the bulk case, in the surface case the phase segregated
forms contain large elastic energy. As a result of this study, Fe-Au/Ru(0001) was
identified as a promising candidate to observe a long-range ordered surface alloy,
even though Fe and Au are bulk immiscible. Indeed, using STM and low-energy
electron diffraction (LEED) experiment, we have discovered a new ordered surface
alloy made out of Fe and Au, deposited on a Ru(0001) substrate. The alloy films were
prepared by depositing one metal, annealing, and repeating the same procedure for
the secondmetal; in this way, large islands were obtained. Au was deposited from an
e-beam heatedMo crucible at the rate of 0.04 ML/min and Fe was deposited from an
e-beam heated Fe rod at the rate of 0.07ML/min. Evaporation rates were determined
by analyzing the STM images giving rise to a typical error bar for the concentration x
of around 5%. It is worth noting that thefinal results were found to be independent of
whether Fe or Au was deposited first, demonstrating that we indeed reached the
equilibrium configuration. For alternate deposition where the Fe fraction x is close to
0.33, we obtain a periodic structure as shown inFigure 7.5d. Althoughwe can observe
some local defects due to an imperfect 1 : 2 stoichiometry, there is relatively good
long-range order, giving rise to a clear LEED diffraction pattern, characteristic of affiffiffi
3

p � ffiffiffi
3

p
unit cell. This structure is the simplest two-dimensional ordered phase on a

hexagonal lattice for the 1 : 2 stoichiometry. Simulation of constant height STM image
calculated from ab initio data strongly supports the observed structure of the alloy,
showing that Fe is imaged lower than Au, in good agreement with the experiments.

To get a deeper understanding of the driving forces that stabilized these pseudo-
morphic alloyed phases, we have performed spin polarized ab initio density func-
tional theory calculations for several different configurations and compositions of
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this system. These calculations have confirmed that mixing is favored in this system
and that the stress is indeed reduced on mixing (Figure 7.5a and b). Note that the
stress for a pure monolayer of Au on Ru(0001) is compressive, while for a pure
monolayer of Fe/Ru(0001) is tensile and for intermediate compositions, the surface
stress is reduced, following an almost linear trend. However, these results hint at the
fact that surface stress may not, surprisingly, be the dominant mechanism in this
system, since the enthalpy of mixing DH shown in Figure 7.5c (which determines
alloy stability) is lowest for an Au-rich phase, and not for Fe-rich phases, whereas the
surface stress appears to go to zero under Fe-rich conditions at x ’ 0:8.Moreover, the
positions of the blue dots in Figure 7.5a and b indicate that the lowest energy
configuration at a given value of Fe concentration x does not necessarily correspond
to that with the lowest surface stress x. In fact, by performing additional calculations
with the spin polarization suppressed, we have found that the principal driving force
for mixing in this system is magnetism rather than stress relief. This surprising
result explains the stability of the

ffiffiffi
3

p � ffiffiffi
3

p
structure of the long-range ordered

surface alloy of Fe0.33Au0.67, which has been observed by STM and electron
diffraction [72].

7.5
Conclusion

The realization and study of metallic nanostructures on surfaces is of particular
importance for improved and innovative performances in various fields such as
optics, magnetism, catalysis, and so on. We have shown in this chapter that a great

Figure 7.5 Ab initio results for (a) the xx
component of the surface stress, (b) the yy
component of the surface stress, and (c) the
enthalpy of mixing DH, for FexAu1�x/Ru(0001),
as a function of Fe concentration x. Forty-three
different structures, containing up to six surface
atoms per unit cell, have been considered. The

blue line represents the convex hull and the blue
dots represent stable alloy phases that lie on the
convex hull. (d) 2.1� 2.1 nm2 STM image of 0.9
ML coverage of Fe0.33Au0.67 deposition, after
annealing at 600 K. Fe atoms are seen in darker
dots located at the center of hexagons made up
of lighter dots that are Au atoms.
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variety of metallic surfaces exhibit a nanoscale order at thermal equilibrium,
including adsorbate-induced reconstruction, surface dislocation networks, vicinal
surfaces, andmore complex systems. Continuummodels have been proposedwhere
long-range elastic interactions induced by surface stress are responsible for spon-
taneous periodic domain formation. We have also discussed how these surfaces can
be used as templates for ordered growth, which allows one to tailor a system with a
very high density of monodisperse and regularly arranged nanostructures. The
ordered growth usually appears within a temperature range for the temperature
deposition, which is due to kinetically limited processes. A rate equation model
modified to account for the preferred nucleation sites is generally able to qualitatively
reproduce the epitaxial ordered growth behavior.However,microscopicmechanisms
are complex and determined only by an extensive comparison between experiments
and calculation. Eventually, by using both vicinal surfaces and strain-relief patterns,
one can improve the two-dimensional long-range ordered growth of nanostructures.
Concerning metallic alloys, we have recently discovered, by using epitaxial strain, a
new ordered surface alloy made out of Fe and Au, two species largely immiscible in
their bulk form. In this system, spin polarized ab initio calculations show that the
most stable structures are always the ones with the highest magnetic moment per Fe
atoms and not the onesminimizing the surface stress, in remarkable agreementwith
the observations.

Eventually, such a high quality of both long-range and local ordered growth opens
up the possibility of making measurements of physical properties of such nanos-
tructures by macroscopic integration techniques. This opens up novel possibilities
for creating materials with unique properties of relevance to device applications.
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