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11.1
Introduction

It is well established that X-ray diffraction (XRD) is perfectly suited to analyze strains
in crystals [1]. The sensitivity of XRD to the position of atoms together with the high
resolution that may be achieved in diffraction space is the basis of structure solving.
On the other hand, the size of conventional X-ray beams (100 mm–1mm) prevented
until recently any local strain determination relying on direct space resolution.
During the past 10 years developments in X-ray optics [2] and in X-ray sources have
paved theway formicro- or nanobeamdiffraction [3] (expectations lie around 50 nm).
With respect to electronbeams,X-ray beams are clearly lagging behindwhen it comes
to beam size and thus direct space resolution. But X-rays have a strong advantage:
they are basically nondestructive and yield information on buried structures without
any need for special sample preparation, which may drastically alter the original
strain field in the sample. Moreover, as already mentioned, the limited real space
resolutionmay be circumvented in some cases by reciprocal space resolution (a 5 nm
resolution has been reported in Ref. [4]).

With the development of nanoscience and nanotechnologies, the need for high-
resolution strain measurements at scales as small as possible has become an
important issue. Because yield strengths are significantly higher in small dimen-
sions [5], stresses play an important role in the unusual properties often encountered
at small scales [6]. In technology andmore specifically inmicroelectronics, the ability
to measure strains in small features is critical. In small Cu interconnects, local
stresses may trigger phenomena such as stress-induced voiding [7] that is one of the
reasons for the failure of devices. In the very core of the transistors, the stress in the Si
channel (32 nmwide in emerging technologies) is a tunable parameter to control the
mobility of charge carriers [8].

This chapter is aimed at reviewing recent advances in local strain determination
usingXRD.Abrief reminder of the basics of XRDwithin the framework of kinematic
approximation is given in Section 11.2. Section 11.3 focuses on average strain
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measurements fromBragg peak shifts. Section 11.4 is devoted to submicron-sized X-
ray beams and their use for local strain measurements. In Section 11.5, we address
the issue of strain determination from the distribution of intensity in reciprocal
space. The specific issue of periodic systems is considered where the periodicity is
used to enhance the diffracted signal from a single period and hence yield local
information on the strain field. Coherent diffraction, a very promising technique for
determining strains in single nanocrystals, is also described. Section 11.6 briefly
addresses the issue of phase retrieval, which is a way to invert directly the diffracted
signal and thus obtain the displacement field without any a priori model.

11.2
Strain Field from Intensity Maps around Bragg Peaks

We will first consider the simplest situation where an incident, fully coherent
monochromatic X-ray beam with wavelength l is scattered elastically by a crystal.
The interaction of X-rays with matter is very weak, and this allows the scattered
amplitude to be written as a simple Fourier transform [9] of the electron density

Að~qÞ ¼
ð
rð~r Þei~q :~rd~r ð11:1Þ

where rð~rÞ is electron density in real space and~q ¼~kf�~ki is the scattering vector
defined as the difference between the incident wave vector and the scattered one. The
modulus of~q is simply related to the scattering angle 2y

q ¼ 4p
l
siny ð11:2Þ

where l is the wavelength of the incoming radiation.
Formula (11.1) remains an approximation and in the case of perfect crystals, it

should be carefully justified. Generally, thin crystals with thickness smaller than the
extinction length scatter waves in the kinematic regime [10]. For crystals larger than
the extinction length, it is the crystal quality (mosaicity, density of defects, etc.) that
will determine whether they scatter in the kinematic or dynamic regime.

In the case of a crystal, considering the Bravais lattice ~Rm and the shape function
sð~r Þ, one gets

Að~qÞ ¼ TF sð~r Þ
X
m

rcð~r Þ*dð~r�~RmÞ
" #

¼ Sð~qÞ*Fð~qÞ
X
m

ei~q �~Rm / Sð~qÞ*Fð~qÞ
X
m

dð~q�~GmÞ

ð11:3Þ
where rcð~rÞ is the unit cell electron density, Fð~qÞ its Fourier transform, that is, the
structure factor, Sð~qÞ is the Fourier transform of sð~r Þ, and ~Gm are reciprocal space
vectors. This very well-known expression shows simply that the diffraction pattern of
an unstrained crystal consists in well-defined Bragg peaks at positions given by the
Laue condition:~q ¼ ~Gm. Moreover, the Fourier transform Sð~qÞ of the crystal shape is
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transferred by convolution on any reciprocal space node. Figure 11.1a shows the
modulus Sð~qÞj j for a simple 2D square crystal. Periodic fringes are related to the size
of the crystal, while streaks occur along the normal to the facets.

Let us consider now the case of a strained crystal [11]. We will restrict ourselves in
the first step to purely elastic strains. Moreover, considering that elasticity in crystals
can only describe the distortion of the lattice [12] (and not of the basis) and that elastic
strains are always small (even in nanocrystals they remain of the order of a few
percent), we will assume that the structure factor Fð~qÞ remains unchanged. In the
strained crystal, the lattice is distorted

~R
0 ¼ ~Rþ~u ð11:4Þ

where~u is the displacement field. It is worth noting that diffraction is sensitive to the
displacement andnot simply to the strain, that is, diffraction is also highly sensitive to
lattice rotation. If i¼ 1, 2, 3 are the principal orthogonal directions in space, the strain
and rotation tensors [13] eij andvij are written as

eij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
andvij ¼ 1

2
@ui
@xj

� @uj
@xi

� �
ð11:5Þ

within the framework of the small displacements approximation.
The amplitude scattered from the strained crystal is written now as

Að~qÞ ¼ Sð~qÞ*Fð~qÞ
X
m

ei~q � ð~Rm þ~umÞ ð11:6Þ

In the vicinity of Bragg peak ~Ghkl, one may write~q ¼ ~G þ~g and neglect the term
~g �~u. Thus,

Að~qÞ � Sð~qÞ*Fð~qÞ
X
m

ei
~Ghkl~um � ei~q �~Rm ð11:7Þ

Figure 11.1 Coherent diffraction pattern from a square crystal calculated within the kinematic
approximation. (a) At the origin of reciprocal space, the influence of crystal size is solely visible.
(b) Around Bragg reflection, strain in the crystal distorts the diffraction pattern.
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This shows that the amplitude scattered by the strained crystal may be described to
a very good approximation [14] as the Fourier transform of a modified electron
density:

Að~qÞ � TF½rð~rÞei~Ghkl �~uð~r Þ� ð11:8Þ

In consequence, a strained crystal behaves as if it had a complex electron density
with a phase factor ~Ghkl �~uð~r Þ. This phase strongly influences the intensity distri-
bution as shown, for example, in Figure 11.1b where a displacement field has been
introduced in the previous square crystal. Because the phase field considered here is
not centrosymmetric, the diffraction pattern does not remain centrosymmetric, that
is, Friedel�s law is not valid any more. The corresponding asymmetry in the
diffraction pattern is a good sign for the presence of a strain field within the crystal.
One should, however, remember that a centrosymmetric phase field would yield a
centrosymmetric diffraction pattern. Hence, a strained crystal may still have a
symmetric diffraction pattern.

At variance with the size effect previously described, this strain effect is clearly
Bragg peak dependent. When the strain is homogeneous throughout the crystal
under investigation, the displacement field varies linearly with position and the
amplitude remains unaffected. The strain is then deduced directly from the shift in
peak position. This forms the basis of many methods to determine strains and
stresses in materials.

The examples illustrated in Figure 11.1 are typical of what is conventionally named
coherent X-ray diffraction (CXD) where a crystal is illuminated by a fully coherent
beam. The coherence length depends heavily on the source and optics used. The
longitudinal coherence length is related to the energy spread in the beam. Typically, a
Si(111) monochromator yields an energy spread of 10�4, hence a longitudinal
coherence length of 1 mm at 8 keV. The transverse coherence length is inversely
related to the source size. On third-generation synchrotron source, it may reach
100 mm; but on laboratory setups, 1 mm is an upper limit that calls for a very small
divergence.

When the beam size is larger than the coherence length, the intensity on the
detector is an incoherent addition of intensities scattered by different parts of
the sample under the beam. Because of the dispersion in size, strains, and so on
in the beam footprint, one does not observe fringes any more but a diffraction peak
whose width may be related to the average size distribution and strain distribution
standard deviation.

11.3
Average Strains from Diffraction Peak Shift

Under Bragg conditions q ¼ Ghkl ¼ 2p=dhkl, where dhkl is the interplanar spacing.
One can then derive the corresponding strain from the knowledge of the strain-free
spacing d0hkl
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e ¼ dhkl�d0hkl
d0hkl

ð11:9Þ

The change in the length of the scattering vector can be written as

dq ¼ q�q0 ¼ eq ð11:10Þ
This shows that much better accuracy is obtained for large qs, that is, for large

scattering angles.
On a four-circle diffractometer, q-values may be measured with different orienta-

tions y and j with respect to the surface normal (Figure 11.2).
The corresponding strain is thus measured in a reference frame that has been

rotated with respect to the sample�s reference frame. Performing the proper tensor
rotation (strain is a symmetric second-rank tensor) yields

ewy ¼ eS11cos
2 j sin2yþ eS12 sin 2j sin2yþ eS22 sin

2 j sin2y

þ eS33cos
2yþ eS13 cos j sin 2yþ eS23 sin j sin 2y

ð11:11Þ

where eSij refers to the strain tensor components in the sample�s reference frame.
Thus, the measurement of a large number of Bragg peak positions for different
values of y and j provides a powerful and accurate means of determining the full
strain tensor.

In the simple case of an equal biaxial stress state, often encountered in thin films
(here x3 is taken as the surface normal), there is no dependence on the in-plane
azimuth j and the strain along y writes

ey ¼ e==sin
2 yþ e?cos2 y ð11:12Þ

where es11 ¼ es22 ¼ e== and es33 ¼ e?.
Equation (11.12) shows that eyðsin2yÞ is a straight line whose slope yields directly

the in-plane stress s. This is the so-called sin2y technique [1]. Moreover, there is a
particular direction y0 for which strain is zero and which depends solely on the

Figure 11.2 Diffraction geometry and scattering vector.
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material�s elastic constants. For a cubicmaterial,measurement of lattice parameter at
y0 yields directly the stress-free lattice parameter a0.

A typical example of a sin2y plots can be found in Figure 11.3, where measure-
ments taken [15] from an epitaxial GaAs layer grown onGe(001) are shown. The slope
indicates that the GaAs film is under tension. It is worth noting that what is actually
measured with diffraction is the displacement field. The transition from displace-
ment to strain requires the knowledge of strain-free lattice parameters [16], which
may differ from bulk values because of the presence of impurities.

X-ray diffraction and Eq. (11.11) may be used to investigate more complex stress
states [17] as encountered, for example, in trencheswhere a triaxial stress state occurs.

The transition from strain to stress is straightforward in the case of a single crystal
since it requires the use of Hooke�s law with proper provision for anisotropic
elasticity. In the case of polycrystals, it is more delicate since a proper account of
the way X-ray diffraction averages over different grain populations together with a
mechanical model for grain interaction [18] should be used. Let us consider a very
simple example of a Cu thin film with two types of grains: {100} and {111}. Cu is
highly anisotropic with an anisotropy factor A¼ 3.2. It is thus expected that large
grain-to-grain strain variations occur in such a film. Two extreme cases may be
considered: (i) all grains are in the same state of stress (Reuss approximation) and (ii)
all grains are in the same state of strain (Voigt approximation). The corresponding
sin2y plots are shown in Figure 11.4. These extreme cases do not satisfy basic
compatibility requirements for the fields. One should therefore look for more
elaborate models (self-coherent approaches do respect compatibility requirements).
It is, however, clear that mean field approaches, which do not take into account the
exact environment of a given grain, are borne tomiss the exact distribution of strains
within the film.
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Figure 11.3 Sin2y plot from an epitaxial GaAs layer on Ge(001).

238j 11 X-Ray Diffraction Analysis of Elastic Strains at the Nanoscale



Using �conventional� X-ray beam sizes in the range 100–1000mm, it is average
quantities that are determined from X-ray diffraction. Since strain fields are most
often highly inhomogeneous on short length scales, the diffracted intensity will
result from an incoherent addition of intensities scattered from areas with different
strain levels. This results in a broadening of Bragg peaks, and a considerable amount
of work [19] has been devoted to what is called line profile analysis (LPA), which is
mostly aimed at extracting the second moment of the strain distribution from the
width of Bragg peaks. The major difficulty arises when different sources of strain
inhomogeneity are present at the same time (dislocations, boundary conditions,
elastic anisotropy, etc.).

How can one determine the strain field at a scale as local as possible? The most
obvious approach is to decrease the size of the X-ray beam in order to analyze as small
an area as possible andmonitor the average strainwithin the beam footprint via shifts
in diffraction peaks. This is described in the next section.

Figure 11.4 Calculated Sin2y plots for (111) Cu grains (dashed line) and (001) grains (solid line) in
the Reuss (a) or Voigt (b) approximation.
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11.4
Local Strains Using Submicrometer Beams and Scanning XRD

11.4.1
Introduction

The comprehension of complex crystalline materials (e.g., polycrystalline and/or
multiphased), and their inhomogeneous distributions of stress and plastic defor-
mation, requires microprobe techniques. Two X-ray diffraction techniques will be
addressed here, 3DXRD [20, 21] and Laue microdiffraction [22, 23].

The physical meaning, in real space, of the objects dealt with, and of the quantities
measured, when using microprobe X-ray diffraction, first need to be reminded.

Concerning space averages, diffraction is very sensitive to well-crystallized parts of
the material, and very little sensitive to poorly crystallized parts: it acts as a filter of
order. Any measured average of a quantity over the probed volume is therefore a
�diffraction-wise� average, essentially a space average weighted by the degree of
order. This needs to be taken into account when comparing �measured� strain with
strain derived from a simulation of the displacement field.

Here we define a grain as one orientation of the crystal unit cell, with a certain
angular tolerance, inside the probe volume. A grain can contain several well-
crystallized domains separated by defective and/or differently oriented regions.
The intragrain orientation distribution either may come from lattice curvature
inside the well-crystallized domains or may come from rotations between the
domains. When translating the material with respect to an X-ray microbeam, this
angular tolerance is necessary to sort grains encountered at different positions of
the probed volume according to their orientation, to draw the frontiers of the
grains.

The �local elastic stress� measurements consist in using the well-crystallized
domains of a grain as �ideal� small local stress sensors, dispersed inside a possibly
much less ideal material. An extreme example would be small diamond single
crystals dispersed in amatrix of amorphous glass. The sensors react to stress with the
elastic rigidity tensor of the macroscopic single crystal. This hypothesis allows
converting the measured lattice parameters, and the derived strain tensor, into a
local elastic stress tensor.

In practice, the level of accuracy on strain (10�4) required for useful mechanical
measurements often implies that the center-of-mass positions of the diffraction spots
(which serve as input for deriving the lattice parameters) need to be determined with
an uncertainty much smaller than the spot width. This accuracy is accessible for
simple spot shapes, but it becomes much more problematic when spots are
asymmetric or split, which is often the case for plastically deformed materials. In
such cases, spot shape analysis and simulation in terms of microdisorientation and
microstrain inside the probe volume are necessary to locate the average spots and
derive the average lattice parameters with a reasonable accuracy.

We will now describe how the two techniques proceed to map the positions,
orientations, and elastic strain of the grains inside a polycrystalline material.
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11.4.2
High-Energy Monochromatic Beam: 3DXRD

Themethodology for 3DXRDwas developed by the group of H.F. Poulsen using two
high-energy beamlines: ID11 at ESRF (Grenoble, France) and 1-ID at APS (Argonne,
IL, USA).

The basic version of 3DXRD allows to locate in 3D the center of mass (CM) of the
grains and to determine their orientation, in the volume of a thick (a fewmillimeters
to centimeters) polycrystal, with a spatial resolution around 5 mm. For successful
measurements, the grains along the beam path should all be illuminated (sufficient
transparency), in small numbers (<1000) and with low plastic deformation.
Enhanced versions of the technique also allow to obtain (1) the full strain tensor
of the grains and (2) a 3D reconstruction of the grain boundaries, for grains with low
plastic strain.

Thanks to the high-energy X-ray beams (50–100 keV), small diffraction angles are
obtained and allow to collect several {HKL} rings from a powder diffraction pattern
with a 2D detector and to explore the almost complete1) pole figures with only one
sample rotation axis v (Figure 11.5).

This statistical texture measurement can be extended to a grain-by-grain texture
measurement when the number of diffracting grains for a given v is small enough
for the continuous Debye rings to become �granular.� Asv rotates, a single grain will
send diffracted beams into the different rings of the powder pattern. The first step of
the analysis is to sort the list of (y, z, v) peak positions derived from the N patterns
measured at the N values of v, to group together the spots coming from the same
grain and index them (i.e., find their HKLs). This sorting is performed by
the GRAINDEX program [20], now available for download on the SourceForge web
site, thanks to the TotalCryst project, as part of the FABLE software [24]. Note that the
monochromatic beam readily provides the {HKL} family of a spot from its 2y value
(i.e., its ring number), which greatly facilitates the indexation. The maximum
number of simultaneously illuminated grains is fixed by the need of separating the
spots produced by the different grains for the indexation: it decreases when the spots
are broader.

Figure 11.5 3D X-ray diffraction geometry: grain-to-grain texture analysis.

1) Save for a cone of angle 2yHKL around the v-axis.
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The method for locating the diffracting grains is described in Figure 11.6.
The locating is first performed in 2D, in a horizontal (x, y, z¼ z0) slice of the sample.
The operation is then repeated for several slices at different z-values, providing the
3D position of the grain�s CM.

The sample slice is illuminated by a planar beam, around 5 mm high and a few
millimeters wide. At each value of v, two powder patterns are recorded, one with a
semitransparent 2Ddetector close to the sample and the secondwith a 2Ddetector far
from the sample. After indexing the patterns taken at the detector positions d1 and d2,
the equation of each diffracted ray and its point of intersection with the planar beam
can be calculated. This gives the (x, y) position of the CM of the diffracting grain. At
this stage, one can test if the various diffracted rays attributed to a given grain diverge
from the same source point, to check the spot-sorting process. Each of these rays
provides an independent determination of the source point position, which helps
reduce the incertitude.

To reach the desired accuracy of 5mmon (x, y), thefirst detector needs to be as close
as possible to the sample (small d1� 4mm) and tohave a high spatial resolution (pixel
size �2.5mm). The smallness of the 2y angles (<10�) makes this particularly
necessary for the x-position, along the beam. An incertitude on the z-position of
the spot at d1 translates into an incertitude on x that is 1/tan(2y) (>5.7) times larger.

The sample size should be adapted in order to be always fully illuminated by the
horizontal section of the sample with the beam (Figure 11.6b). Otherwise, the spots
coming from the periphery of the sample will not be exploitable and will only
overcrowd the diagram and slow down the image analysis and indexation processes.

With this method, the orientation of each grain is determined, as well as the
position of its CM, first in 2D and then in 3D.

The full elastic strain tensor (i.e., the six components), averaged over a 5mm-thick
slice at z¼ z0 of the grain, can then be determined by two methods [25]. In the first
method, only the 2y positions of the spots are used and compared to their theoretical
values for a strain-free sample, that is, strain (six parameters) is determined
independent of orientation (three parameters). A minimum of six (HKL) spots are
needed, with 3� 3 linearly independent q-vectors. The required high accuracy on 2y
is achieved by (1) using the largest possible sample-to-2nd detector distance d2, (2)
simultaneously locating the grain�sCMby ray tracing, and (3) carefully calibrating the

Figure 11.6 3DXRD: (a) triangulation method (two 2D detectors þ planar beam) for locating the
center of mass of a grain and (b) the sample periphery as a source of parasitic spots.
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experimental geometry (incident beam/detectors 1 and 2) using the diffraction
pattern of a strain-free sample.

In the second method, the full angular information about each diffracted ray,
including thev sample rotation, is used to calculate the coordinates of the q-vector in
the sample frame.

The q-vectors of at least four peaks (3� 3 linearly independent) are then used to
derive the full nine-component tensor giving the coordinates of the a�, b�, c� vectors
in the sample frame, that is, strain and orientation are refined simultaneously. The
main difference is that here the v angle is explicitly used in the matrix calculation,
while in the first method it is used only when checking that the grain�s CM is at the
same position in the sample for all diffracted rays.

Finally, the use of a third 2D detector, semitransparent and close to the sample, is
under development on ID11 at ESRF [26] to separate the spot broadening due to
plastic deformation (which increases with detector distance) from the one due to
grain shape (which is best seen at small detector distances, before beam divergence
due to plastic deformation distorts the projection). The goal is to exploit the spot
shape even for plastically deformed samples, to derive both the grain boundary
maps [27, 28] and the intragrain orientation distribution function [29].

11.4.3
White Beam: Laue Microdiffraction

Laue diffraction is originally known mainly as a method to orient single crystals,
thanks to the ability of a white (i.e., broadband) X-ray beam to produce many
diffracted rays (each of them monochromatic) from a crystal of any orientation,
without rotating the sample. It was recently adapted to probe the local orientation and
deviatoric strain of single grains near the surface of a polycrystalline sample, by using
a microfocused white beam (<1� 1 mm2, 5–30 keV). 2D maps can then be obtained
by translating the sample with respect to the beam.

Themethodologywasfirst developed by the group of G.E. Ice at the APS and by the
groupofN. Tamura at theALS (Berkeley,CA,USA), andmore recently by the groupof
F. Rieutord on the CEA-CNRS BM32 beamline at ESRF.

Variations of the technique offer additional information. A 3D version adds spatial
resolution along the beam by scanning a knife-edge between the sample and the
detector. A �full strain tensor� version adds lattice expansion bymeasuring the energy
of a Laue peak, on a grain�s volume element for which the white beam Laue pattern
was already measured and analyzed for orientation and deviatoric strain. Advanced
analysis of spot shapes (and not only spot average positions) adds information about
local orientation/strain distribution functions and about dislocation orientation and
densities [30] from a fit with a model of defect arrangement.

A typical diffraction geometry is shown in Figure 11.7a, with the distance/angles
taken from theBM32 setup [31]. Thewhite beam (divergence 0.5mradV� 1mradH)
arrives on the sample with an angle around 40�, and the diffracted beams are
collected over a solid angle of about 100�, by a 2D detector centered on 2y¼ 90� (pixel
size 80mm). Figure 11.7b shows a �single grain� Laue pattern with many spots.
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For accurate strain analysis, the experimental geometry (direction of incident
beam and 3Dposition of the point of impact on the sample, in the detector coordinate
system) is first calibrated using the Laue pattern of a Ge strain-free single crystal.
After prealigning the sample with amicroscope to put the same position of the point
of impact along the beam as on the Ge calibration crystal, Laue patterns from the
sample are collected. Sample preparation usually involves mechanical polishing, as
low surface roughness (<few micrometers) is needed to maintain a constant
calibration when translating the sample parallel to its surface for 2D mapping,
followed by chemical etching to remove the surface crystal damage induced by
polishing.

For the analysis of the sample�s Laue pattern, the spot positions, the calibration,
and the (known) undeformed unit cell parameters and crystal structure are used,
first to index the spots of each grain and second to refine eight of the nine
coordinates of the (a, b, c) lattice vectors expressed in the detector axes. These
eight parameters are then split into orientation (three Euler angles) and deviatoric
strain (b/a, c/a, a, b, c).

Spot indexation may be involved, as all the illuminated grains inside the beam
path may diffract, producing �multigrain� patterns (Figure 11.7c). These can be
indexed up to �20 grains per pattern. Sensitivity to small grains increases with
crystalline perfection and atomic number. The probed depth is spot-dependent:
each spot has its own incident beam energy(ies) and penetration depth(s) that can
vary from a few micrometers to a few millimeters [32]. This variation in calibration
between spots is usually neglected in the analysis or solved by excluding the high-
energy spots.

The accuracy of deviatoric strain relies on statistics over several independent
determinations: the positions of 4 well-chosen spots (with 3� 3 linearly independent
q-vectors) are necessary and sufficient to derive the 8 parameters, but at least 10–12

Figure 11.7 (a) Laue microdiffraction geometry (b þ c) Laue patterns: �single grain� Cu (b) and
�multigrains� W (c).
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peaks (givingmore than 50 �good� spot quadruplets) are needed to reach the desired
accuracy, between 	1 and 	2.10�4 (depending on strain components). Several
measures of the data set quality can be built. The simplest is the difference, averaged
over the N peaks of a grain, between experimental and theoretical spot positions on
the detector, which should be 0.2–0.25 pixels (i.e., 0.2–0.3 mrad in 2y) for reliable
strain determination. Another is thewidth of the histograms (Figure 11.8) describing
the strain results for all the four-spot determinations.

Special caution is needed for multigrain patterns involving grains linked by
twinning relations. Spots common to several twins (�multitwin� spots) may be
inconsistent in position with the monotwin spots of the crystal under analysis.
Indeed, perfectly superimposed spots at zero strain may split when strain alters the
orientation relation between the twins.

The Laue patterns provide only five of the six components of the strain tensor, with
the lattice expansionmissing. This is readily explained (Figure 11.9): the white beam
arrivingunder an angley on a given (HKL) planewith interreticular distance dHKLwill
produce a diffracted beam if the incident spectrum contains a wavelength l that

Figure 11.8 Histograms of 4-spot results for deviatoric strain components, from the 32-spot Laue
pattern of a micrometer-sized W grain. x, y are parallel and z is perpendicular to the sample surface.
Of the three xx, yy, and zz components, only two are independent, the sum being fixed at zero.

Figure 11.9 (a) Construction of diffracted beams, (b) experimental energy spectrum of a �side�
peak (gray: raw data; black: corrected for detector efficiency), and (c) the 2D detector is in the �top�
position above the sample, the energy-resolved point detector travels in the �side� plane.
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verifies 2 dHKL sin y¼ l. The diffracted beam direction is given by its unit vector
uf¼ui þ 2�sin y�uq, ui and uq being unit vectors along the incident beam and the
diffraction vector q¼H�a� þ K�b� þ L�c�, respectively. If the lattice expands chang-
ing only the length of q but not the direction of uq, y and ufwill remain constant, and
the spot will stay at the same place on the detector, with only a change in the diffracted
wavelength, to match the change in dHKL. The spot positions in the Laue pattern are
therefore insensitive to small changes in lattice expansion: they are sensitive only to
changes in lattice rotation and deviatoric strain, which change the direction of uq.
Note that the same spot may contain several harmonics, (HKL) at E0, (2H 2K 2L) at
2E0, and so on, and therefore mix several probing depths.

The lattice expansion is given by the difference between the experimental spot
energy EexpHKL and the theoretical spot energy at zero lattice expansion EtheorHKL.
EtheorHKL is calculated from the grain�s orientation and deviatoric strain experi-
mentally found using the Laue pattern. Illuminating exactly the same volume inside
the grain for the twomeasurements (of the Laue pattern– givingEtheor– andof Eexp)
is therefore mandatory, especially as Etheor varies very quickly with lattice rotation.

Thefirst technique tomeasure lattice expansion is tomonochromatize the incident
beam and scan its energy around EtheorHKL, while recording theHKL spot on the 2D
detector, to find the energy giving the maximum intensity [23]. Ideally, the exper-
imental energies of several spots per volume element inside a grain should be
measured. This implies several realignments of the beamline optics and checks of the
beam size and position with respect to the sample, except if spots with similar
energies (within 1 keV) can be used.

The second technique is to collect �side� Laue peaks in thewhite beammode, using
an energy-resolved point detectormounted on two translation stages [33]. This allows
to simultaneously measure the �top� Laue pattern with the 2D detector and the
energy spectrum of a �side� Laue peak (Figure 11.9b and c), ensuring that Etheor and
Eexp are measured under the same illumination conditions. To reach the desired
accuracy on peak energy, the detector�s energy channel relation is recalibrated at each
spectrum using the sample�s main fluorescence line. Measured energies are also
corrected for the variations of E(ch) with the detector�s total intensity. The resolution-
limited �200 eV-wide peaks are measured with �20 eV channels, and peak fitting
achieves a resolution of�0.1 eVchannel on peak position for peaks with a symmetric
shape.

To add spatial resolution along the beam, one uses a triangulation/ray-tracing
method called �differential aperture X-ray microscopy� described in Figure 11.10.
A thin absorbing wire is translated with submicron accuracy parallel and close to
the sample surface, and successively masks the various diffracted beams. In
materials with small grains, this allows to sort simultaneously illuminated grains
according to their depth below the surface. The center of mass of a grain�s
illuminated volume is located by ray tracing of the diffracted beams. The ray is
traced using the average position of the spot on the detector and the y-position of
the wire to cut half the spot intensity. This ray tracing is precise close to the
sample, thanks to the large ratio between the sample detector and sample wire
distances.
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In materials with bigger grains showing intragrain strain or orientation distribu-
tion (and therefore elongated spots), the technique allows to measure the gradient
along the beam of the strain/orientation matrix. Here the analysis is more involved:
the problem is to reconstruct a list of spot positions specific to a given crystal slice
located at a distance ysource below the surface. This is achieved by analyzing spot
positions in the difference images, each obtained by subtracting the image at ywire
from the image at ywire þ dy. From a difference image in which a portion of spotN is
visible (i.e., corresponding to a ywire for which the wire partially masks this spot), the
source of the partial spot is located by tracing the fan from the partial spot position to
the wire edge position, and crossing with the (known) incident beam. This allows to
classify partial spots from all different images according to their source position, and
to reconstruct the slice-specific spot lists. Thismethod requires high stability of beam
intensity and position during the scan.

Rough arguments for choosing which technique is best adapted to a given sample
are given below. 3DXRD is faster for getting a grain-center-of-mass 3D structure, but
needs bigger grains (>5 mm). Grain boundary mapping with 3DXRD works best for
well-crystallized materials. Laue microdiffraction is able to handle smaller grains
(down to 0.1mm if well crystallized) and larger degree of intragrain plastic strain (but
not the two at the same time). Elastic strain measurements are comparatively more
straightforward for Laue microdiffraction but the lattice expansion is rarely mea-
sured, in contrast with 3DXRD that maps the full tensor. The two techniques require
well-crystallized grains for elastic strain measurements. Full 3D Laue microdiffrac-
tion is slow.

Developments point toward faster detectors with smaller pixels and smaller
beams, as well as handling the analysis for sample with larger intragrain plastic
strain.

Figure 11.10 Geometry of thewire-scanning technique. Theproportions are not respected: the real
sample–detector distance is typically 200 times bigger than the wire–sample distance (few 100mm).
The wire (diameter 50mm) acts as a knife edge that masks the diffracted beams.
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11.5
Local Strains Derived from the Intensity Distribution in Reciprocal Space

11.5.1
Periodic Assemblies of Identical Objects with Coherence Length > Few Periods

11.5.1.1 Introduction
Since the lateral dimension of electron devices is continuously decreasing, stress
engineering is becoming of rising interest to enhance microelectronic device
performance in particular by improving electron or hole mobility in strained silicon
channel [34, 35]. As a consequence, mapping the strain induced in silicon single
crystal at the nanometer scale is an important requirement but remains a real
challenge.

In the particular case of single crystals, one way to achieve the nanometer
resolution is to use X-Ray diffraction with a wide beam (hence with a size larger
than the coherence length) and quasiparallel beam, which requires working under
high-resolution conditions [36–38]. The resolution in the object space is reached
through the study of reciprocal space maps (RSMs) of the intensity in the Fourier
space. These maps are very sensitive to local strains (<10�4) [39–41].

Periodic structures are often encountered in real semiconductor devices, whether
they are prepared by lithography or by self-organization. They can also be made on
purpose, in order to get more scattered amplitude. X-Ray measurements are thus
performed on periodic assemblies of identical objects. The periodicity induces a
Fourier pattern where the intensity of each Fourier component is related to the
amplitude scattered by a single cell. In practice, the periodic strain field induced in
single-crystal silicon yields satellites in reciprocal space around Si Bragg peaks. The
intensities of these satellites represent a fingerprint of the strain field in the silicon
substrate.

For example, an array of trenches etched in silicon and filled with silicon oxide
gives rise to satellites in the reciprocal space around the Si(404) Bragg peak [40] (see
Figure 11.13a), their intensity being directly linked not only to the geometrical shape
of the Si lines between the trenches but also to the local strain field induced in Si by
the filling material. The satellites spacing is inversely proportional to the period
(Figure 11.13c).

It is, however, not possible to invert directly the diffracted intensity to deduce the
strainfield because the phase information is lost bymeasuring the squaremodulus of
the amplitude (under some particular conditions, the phase may be numerically
retrieved as explained in Section 11.6). As a consequence, the displacement field is
first simulated and used for calculations of the diffracted intensitymaps in reciprocal
space. The displacement field can be either calculated by solving an analytical
mechanical model [42] or extracted from a finite element (FE) modeling [43]. The
comparison between the experimental and the calculated reciprocal space maps,
tuning the mechanical loading of the materials, allows for the validation of the
induced strain field in the silicon [43, 44].
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11.5.1.2 Reciprocal Space Mapping
The reciprocal space is the Fourier representation of the crystal, each family of
crystalline planes being represented by a node called Bragg peak (Figure 11.11). The
scattering vector q is perpendicular to the crystal planes under Bragg conditions. The
axis called qx, qy, and qz correspond to the components of the scattering vector as
defined in Eq. (11.2). For an HKL reflection, they write

qx ¼ qy ¼ 4p
l
sin y sin ðy�vÞ and qz ¼ 4p

l
sin y cos ðy�vÞ ð11:13Þ

where the angles y and v correspond, respectively, to the diffracted and to the
incident angles with respect to the crystal plane (Figure 11.11).

In practice, themeasurements are performed by scanning a small area around the
unstrained silicon substrate Bragg peak, for a chosenHKL reflection. The key factor
in such a measurement is the resolution within the reciprocal space. The use of an
analyzer (three-reflectionSi orGemonocrystals) between the sample and the detector
allows for decreasing the acceptance angle. The detector is usually one dimensional.

Twoseriesofscanshavetobedefinedinordertoreconstruct thereciprocalspacemap.
Depending on the software, one can either monitor the qx- and qz-values for

mapping directly the reciprocal space or monitor the motor 2y and v angular values
and then calculate the qx- and qz-values to plot the map. Thev–2y scan corresponds
to a variation in the exit angle being twice the incident angle v value. The v scans
(called �rocking curve�) are perpendicular to the v–2y ones in the reciprocal space.
Typically, for an angular step equal to 0.003�, the corresponding step in reciprocal
space is 0.004 nm�1 at the wavelength of Cu Ka radiation.

In order to extract normal strains along the three directions, both symmetric and
asymmetric Si reciprocal spacemaps are necessary. In the symmetrical geometry, the
scattering vector has only a vertical component qz because the incident wave vector~ki
and scattered wave vector~kf are symmetric with respect to the y-direction. A tensile
strain (ezz> 0) along the vertical direction shifts the scattered intensity to lower qz

→
q

→
k

0

→
'k

2θ ω
qx

qz

Figure 11.11 Reciprocal space of a (001) cubic crystal with [100] orientation. The vector~ki is the
incident wave vector and~kf is the scattered one.
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values in reciprocal space, while a compressive strain (ezz< 0) is associated with
higher qz values. In the asymmetrical geometry, vertical and horizontal components
of the scattering vector qx and qz yield information about the horizontal strain.

Experimental Setup In a high-resolution setup, a monochromator is necessary to
reduce the wavelength spread and get a parallel incident beam, followed by an
analyzer to achieve the required angular resolution [45, 46]. Amajor advantage of this
methodology is that the measurements on periodic arrays on silicon can be often
performed by using a laboratory instrument.

For example, at IM2NP laboratory inMarseille, a 4-circle goniometer with a sealed
Cu X-ray tube and a 3-bounce Ge 220 analyzer is used for high-resolution measure-
ments. Two setups are available for the monochromator. The first one is a 4-bounce
Ge(220) symmetrical DuMond-Bartels monochromator used with a point focus,
which presents a low divergence in the scattering plane (12 arcsec). With this setup,
both monochromator and analyzer streaks are reduced and almost not visible in the
reciprocal space maps (Figure 11.13a). This setup is needed for large period arrays
(around 1mm), and because the satellites get closer in the reciprocal space, the
highest resolution is necessary [47]. The second setup is a 2-bounce Ge(220)
associated with a parabolic variable-step multilayer mirror used in line focus. The
intensity is thus increased by a factor of 20 that is absolutely necessary when
measuring large maps (structures with submicrometric period) with a good
signal/noise ratio [48]. The drawback is an incident beam divergence around three
times larger than the previous one and themonochromator streakmore visible on the
maps [49] (see Figure 11.12). In some cases, a more brilliant source might be
necessary and is achieved with synchrotron radiation. For example, the BM32 line at
ESRF is equipped with a double-crystal Si(111) monochromator and a triple-bounce
Si(111) analyzer may be used [43, 46, 47].

Modeling Let us consider the general case of a line adherent on a silicon substrate.
When the displacement field is known at each lattice point, the intensity map can be
determined with the kinematical [50] or dynamical theories [51].

The displacement values within the structure are usually determined through
finite elementsmodeling (FEM). In a few simple cases, it can also be calculated using
an analytical approach [42, 52–54]. FEM is a numerical method to solve partial
differential equations, here theNavier–Lam�e equations. It consists in a discretization
of the structure by a finite number of elements with a simple geometrical shape, and
connected with nodes. The continuous medium is thus converted in discrete areas,
with a finite number of unknown quantities that are the displacement values.

In the particular case of periodic arrays, a single cell is simulated with boundary
conditions (lateral borders blocked along x-direction, which is perpendicular to the
line direction). The periodic structures are considered as infinite along the
y-direction. Plane strain (in the x–z-plane) is assumed in silicon (but not in the
stressor line), which simplifies the problem to a 2D analysis. Mechanical parameters
E, n, a, and Cij are introduced for the different materials. The initial stress is
introduced in the materials through an artificial thermal loading DT since
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s0 ¼ E
1�n

Da*DT ð11:14Þ

where Da is the thermal expansion coefficient difference between the considered
material and the silicon (reference), E and n are the elastic coefficients (Young�s
modulus and Poisson ratio) of the linematerial (considered here isotropic), and s0 is
the residual stress in the line material (prior to any elastic relaxation).

The displacement field values obtained with FEM at each node j are then used to
calculate the expected diffracted intensity: within kinematical approach and
Takagi [14] approximation a simple Fourier transform is needed (see Eq. (11.8)).

11.5.1.3 Applications
The periodic array can be either deposited on top of the single crystal or directly
created within the Si by etching and filling trenches. When the periodic array is

Figure 11.12 Experimental (004) reciprocal
space maps for Si capped by an array of nitride
lines, with same spacing¼ 250 nm and (a)
width¼ 250 nm or (b) width¼ 500 nm. Below

are represented the corresponding vertical
displacement fields extracted fromFEM. Bare Si
is at the center, the nitride line is separated into
two parts on each side.
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deposited on top of the Si substrate without any etching, the periodicity measured on
the reciprocal space is solely caused by the strainfield periodicity. For example, silicon
nitride lines are periodically deposited single-crystal (001) Si substrates [55]. The
effect of the siliconnitride stressorwas shownon two sets of the sample. In the case of
model bare nitride arrays, the strain field was simulated with the help of FEM. The
diffracted intensity was calculated for the symmetrical (004) reflection, and adjusted
with the experimental one as shown in Figure 11.12. The best agreement with
measurementwas found for an initial stress so¼ 1.5GPa in the nitride lines, giving a
maximum vertical strain value ezz¼�1 10�3 in the silicon below the lines. This
maximum value extends two times deeper into the silicon for a line two times larger
(see Figure 11.12).

This method has also been applied for measuring the strain in silicon lines,
induced by a periodic array of filled trenches. In the submicrometric shallow trench
isolation (STI) process, the silicon substrate is etched in pyramidal lines, with the
trenches in-between the lines filled with silicon oxide SiO2. On the asymmetric
RSMs, the satellite envelope is clearly not centered on the substrate peak. A secondary
maximum is evidenced in addition to the intense diffraction peak attributed to the
unstrained Si [40], which suggests there is a large enough amount of silicon with
almost constant strain to produce a well-separated diffraction peak in the array
satellite envelope.On asymmetric RSMs (Figure 11.13), the diffracted signal is clearly
shifted to lower value of L and to higher value ofH that corresponds to compressive
strain across Si lines and tensile strain vertically [47]. The secondary peak was
interpreted, with the help of FEM calculations, as arising from a homogeneously
strained area in the Si lines where exx and ezz values remain stable vertically on half
the depth and laterally on half the width of the lines [49]. In the particular case of a
homogeneously strained area, the strain value can be directly extracted from the
secondary peak position in the experimental map. In practice, the normal strains e0xx
and e0zz are related to the relative position of that peakDH andDL as compared to the
Si substrate Bragg peak (H0, L0) along H and L, as follows:

e0xx ¼
DH
H0

and e0zz ¼
DL
L0

ð11:17Þ

Stress values are then deduced from the strains via Hooke�s law si¼Cijej.

11.5.2
Single-Object Coherent Diffraction

A small crystal illuminated by a fully coherent beam (i.e., whose longitudinal and
transverse coherence lengths are larger than the diffracting crystal) yields a coherent
diffraction patternwhose intensity is the squaremodulus of the amplitude as given in
(11.1) or (11.8). Streaks perpendicular to the crystal facets and thickness fringes are
typical of coherent diffraction patterns related to the shape function of the crystal. As
shown in (11.8) strains may have a large influence on the diffraction pattern; see also
Figure 11.1). Figure 11.14 shows the coherent diffraction pattern from a single
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Au grain (375� 200 nm2) within a polycrystalline thin film [56]. The 111 reflection
shownhere corresponds to lattice planes parallel to thefilm surface. Fringes along the
2y direction are clearly visible. Moreover, the diffraction pattern shows a clear
asymmetry, which is a fingerprint for the presence of strain. The 004 diffraction
pattern from Si lines [43] shown in Figure 11.15 is even more striking. Along the
qz-direction perpendicular to the surface, finite size fringes are inversely related to
the Si thickness. Along the transverse direction, a large broadening is observed
together with aperiodic fringes. This is completely dominated by the strain gradient
present in the line. Finite element modeling of the displacement field in the line
yields a diffracted intensity, which is in very good agreement with the measured
one [43]. Since the phase of the scattered amplitude is actually not recorded, the
determination of the strain in the crystal directly from the measured diffraction
pattern remains ambiguous. The phase problem may, however, be circumvented
using phase retrieval algorithms as will be discussed in the next section. A good

Figure 11.13 (a) Strain field ezz calculated by
FEM. The iso-strain lines are separated by
	0.45�10�3. The x- and z-axes are in nanometer.
Si line is located between the two half trenches.

(404) silicon reciprocal space maps: (b) on the
left laboratory measurement, (c) on the right
FEM simulation. The secondary peak is red
rounded on measurement.
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review on the capabilities of coherent diffraction imaging at the nanoscale has been
recently published [57].

11.6
Phase Retrieval from Strained Crystals

Since the phase of the scattered amplitude (8) is not measured, one uses generally
model-dependent approaches. The square modulus of the Fourier transform from

Figure 11.15 004 reciprocal space map from an array of 100 nm� 1mm Si lines as recorded at
ESRF BM32 beam line. Adapted from Ref. [43].

Figure 11.14 111 coherent diffraction pattern from an Au crystal (375 nm� 200 nm) within a
polycrystalline film. Adapted from Ref. [56].
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a model structure is compared with the experimental intensity. Direct inversion,
based on phase retrieval algorithms, is on the other hand a very promising
technique. It is based on the oversampling conception [58], which states that the
diffracted intensity pattern should be sampled at a frequency at least twice the
highest spatial frequency in the object. The principle of direct inversion algo-
rithms [59, 60] relies on phase retrieval starting from a set of random phases,
which are constrained (i) in real space by adding additional information such as
finite support for the object and (ii) in reciprocal space by pushing the calculated
amplitudes to the measured ones. This approach has been highly successful in
retrieving the shape of objects, whether noncrystalline [61] or crystalline [62] from
their diffraction pattern. The case of inhomogeneously strained crystals is more
challenging. The strain field in amicrometer-sized Pb crystal has been recently [63]
retrieved from its diffraction pattern. In this particular case, the maximum phase
difference was less than 2p, which implies very small strains, in the 10�4 range.
Larger strains hinder the convergence of standard algorithms [59, 60]. Recently, a
modified algorithm [64, 65] with additional constraints on the derivatives of the
displacement field has been successfully implemented. The displacement field in
silicon lines is retrieved with a spatial resolution of 8 nm (Figure 11.16) and is in
very good agreement with the one deduced fromFEM. This result is very promising
for the general issue of model-independent determination of strains in
nanocrystals.

11.7
Conclusions and Perspectives

This article is a tentative review of recent advances in strain measurements using
X-ray diffraction. Thanks to third-generation synchrotrons and continuous progress

Figure 11.16 Direct inversion via phase
retrieval from the diffraction pattern in
Figure 11.13: (a) amplitudes (in arbitrary units),
which are related to the shape and the density of

the Si line; (b) phases (in radians); (c) retrieved
displacement field uz (in A

�
), (d) displacement uz

(in A
�
) calculated by finite element modeling.

Adapted from Ref. [64].
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being made in the capabilities of X-ray optics, the past 10 years have witnessed
important developments in the field of local strainmapping. The availability of small
beams is one of the key factors that have allowed for local strain measurements
whether through monochromatic or Laue diffraction. These approaches are starting
to diffuse within the community of physicists, metallurgists, and mechanical
engineers and will soon become almost routine tools for evaluating strains down
to submicrometer scales. It is interesting to notice that a 1mm length of dislocation in
1mm3 translates in a dislocation density of 1012m�2. Hence, these local strain
measurement techniques are also drastically changing the way we think about how
diffraction averages over strain gradients and defects. Coherent X-ray diffraction,
which can map strains in small crystals with a spatial resolution as small as 8 nm, is
also extremely promising for looking at mechanical properties of small crystals. Its
development is strongly linked with the availability of robust phase retrieval
algorithms.

What lies ahead? First of all smaller beams, 50 nm beams have been demon-
strated [66–70] andmost synchrotron sources in the world are putting a lot of effort to
develop nanobeam stations (see, for example, the ESRF upgrade program [71]). One
should also follow with attention the possibilities that offer a drastically new kind of
X-ray source that is the X-ray free electron laser (XFEL). The first one in the world has
recently delivered its first beam at Stanford [72]. In Europe, XFEL is expected to
deliver its first beam in Hamburg by 2014 [73]. These new X-ray sources will offer a
tremendous gain in photon flux (there are actually concerns about beam damage)
together with very high transverse coherence.
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