
15
Strain-Induced Nonlinear Optics in Silicon
Clemens Schriever, Christian Bohley, and Ralf B. Wehrspohn

15.1
Introduction

In contrast to ordinary linear optics where themodification of light by the presence of
an optical material system is investigated, in nonlinear optics the focus lies on the
modification of the optical properties of a material system by the presence of light.
Because only laser light is intense enough to stimulate such processes, the devel-
opment of the first laser by Maiman [1] in 1960 also initiated the research in the field
of nonlinear optics, leading to the discovery of second harmonic generation (SHG) in
1961 by Franken et al. [2]. After the first steps in the sixties and early seventies [3–6]
and a phase of low activity in the eighties, there has beenmuch progress in nonlinear
optics in the past 10 years with the focus on investigation techniques for solid state
physics. Especially, in integrated optics materials, nonlinear optical properties have
been exploited to create fast optical switches and modulators.

In the field of material diagnosis, the effect of second harmonic generation has
turned out to be a sensitive tool for the investigation of surfaces and interfaces in
optical transparent systems. Its strong dependence on structural symmetry makes
this technique a suitable tool for the investigation of lattice strains that affect the
symmetry of thematerial. In this section, the effect of SHGand its capabilities for the
investigation of strains in silicon will be elucidated. In Section 15.2, a short
introduction to the fundamentals of SHG is given followed by a more detailed
description of its relation to structural symmetry in Section 15.3. Different sources of
radiation at the second harmonic frequency are specified and the azimuthal SHG
intensity distribution for bulk and surface SHG is deduced for the cases of (111)- and
(100)-oriented silicon. In Section 15.4, the modification of the SHG signal due to the
strain-induced lattice deformation is investigated. Section 15.5 gives an overview of
recent developments in the field of integrated optics that apply strain-induced linear
and nonlinear optical effects.
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15.2
Fundamentals of Second Harmonic Generation in Nonlinear Optical Materials

Second harmonic generation describes the case of nonlinear light–matter interac-
tion, which is based on the second-order nonlinear susceptibility xð2Þ. The reason for
this effect originates from the fact that for high excitation intensities, the excited
electrons cannot be approximated as linear oscillators following Hooke�s law.
Because of their large displacement around the equilibrium position, the electronic
potentials of neighboring atoms have to be considered as well. Thus, the next higher
order term of the restoring force has to be taken into account:

Frest ¼ �kð1Þx�kð2Þx2 ð15:1Þ
This leads to a corresponding potential energy function:

U ¼ 1
2
mv2

0x
2 þ 1

3
mdx3 ð15:2Þ

As shown in Figure 15.1, the resulting potential has to be asymmetric for second-
order nonlinear contributions and it can, therefore, exist only in media that do not
show inversion symmetry. In all other cases, d ¼ 0 in Eq. (15.2).1) For the induced
polarization, this leads to an additional term that depends quadratically on the
incident electric field:

~P
ðNLÞðtÞ ¼ xð1Þ~EðtÞþ xð2Þ~E

2ðtÞ ð15:3Þ
Considering an exciting laser beam with an electric field,

~EðtÞ ¼ Ee�iwt þ c:c: ð15:4Þ

U

x

Figure 15.1 Potential energy function of a noncentrosymmetric medium (dashed line) in
comparison to the symmetric potential energy function of a centrosymmetric medium (solid line).

1) This can be proven by a simple consideration. Assume a givennonlinear polarizationPðtÞ ¼ xð2ÞEðtÞ2
for the electric field EðtÞ. Changing the sign of the applied electric field, the induced polarization has
to change to�PðtÞ ¼ xð2Þ½�EðtÞ�2 because of the inversion symmetry of themedium. Both equations
together are valid only for xð2Þ ¼ 0.
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the second-order term ~P
ð2ÞðtÞ takes the form

~P
ð2ÞðtÞ ¼ 2xð2ÞEE� þ xð2ÞE2e�i2vt þ c:c:

� �
ð15:5Þ

The first term of the second-order polarization is independent of frequency and
leads to a static electric field. This effect is known as optical rectification. The second
term shows a dependence on the frequency 2v. This is the second harmonic term of
the inducednonlinear polarization. Ifweput Eq. (15.3) in combinationwith Eq. (15.5)
into the inhomogeneous wave equation for linear optical interaction, we obtain the
wave equation for nonlinear optical media [7]:

r2~E� n2v
c2

@2~E
@t2

¼ @2~P
ðNLÞ

@t2
ð15:6Þ

wherenv is therefractionindexandc isthespeedoflight invacuum.Forthepolarization
~P

ð2ÞðtÞ in Eq. (15.5), the solution of Eq. (15.6) is an electric field that oscillates at the
second harmonic frequency of the exciting radiation. It is important to note that
Eq. (15.6) is now a nonlinear partial differential equation because of the quadratic
dependence on the electric field induced by the polarization. As a consequence,
solutions of this equation cannot bederivedby linear combinationof knownsolutions.

This process can be regarded as an exchange of photons with different frequency
components, whereas two photons with frequency v are annihilated and simulta-
neously one photon with the frequency of 2v is generated, as it is depicted in
Figure 15.2. During this process, an electron absorbs a first photon and is lifted from
the ground state to a virtual state. Because of the high intensity of the exciting beam, it
can absorb an additional photon before it relaxes into the ground state. From this
higher virtual state, it decays among the emission of a photon, which has twice the
energy of the absorbed ones.

This process is not limited to the case of equal excitation frequencies. For different
frequencies, additional processes like sum-frequency generation are possible. Here,
two photons atv1 andv2 are absorbed and one photon at frequencyv3 ¼ v1 þv2 is
generated. It is also possible to generate light at lower frequency v3 by difference-
frequency generation. In this case, the nonlinear interaction leads to the generation
of a photon at v3 ¼ v1�v2. However, this is beyond the scope of this chapter,
additional information may be found in Ref. [7].

ω

2ω

ω

Figure 15.2 Second harmonic generation regarded as annihilation of two photons at frequencyv
and simultaneous generation of one photon at frequency 2v.
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It is important to note that the nonlinear susceptibility xð2Þ in Eq. (15.3) has a high
sensitivity to structural properties and, therefore, cannot be simplified to a scalar, like
it can be done in the case of the linear susceptibility of an isotropic medium. In its
general form, xð2Þ is a third rank tensor with 27 independent components, leading to
the polarization components:

Pið2vÞ ¼
X
jk

x
ð2Þ
ijk ð2v;vÞEjðvÞEkðvÞ ð15:7Þ

where i, j, k¼ x, y, z. However, the treatment of this tensor can often be simplified.
Many of the tensor components are equal to each other because the indices j and k can
be interchanged in the case of SHG.This allows to use a contractednotation knownas
Kleinman notation [7]. Here, the indices j; k are replaced by a single index l according
to the following prescription:

jk 11 22 33 23,32 31,13 12,21

l 1 2 3 4 5 6

The tensor is thereby reduced to 18 independent components. In this notation, the
nonlinear polarization responsible for SHG can be written in the form of a matrix
equation:

Pxð2vÞ
Pyð2vÞ
Pzð2vÞ

2
64

3
75 ¼

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

2
64

3
75

ExðvÞ2
EyðvÞ2

EzðvÞ2
2EyðvÞEzðvÞ
2ExðvÞEzðvÞ
2ExðvÞEyðvÞ

2
66666666664

3
77777777775

ð15:8Þ

Furthermore, many of the x
ð2Þ
ijk components will vanish or become equal to each

other because of the structural symmetry of the investigated material. To identify
these components, the symmetry group of the considered material has to be
specified. Each symmetry group contains transformations that leave the lattice
structure unaffected. Because of its relation to the materials structural properties,
the xð2Þijk tensor is also invariant under these transformations. By the application of the
symmetry operators, the tensor elements that have to be equal to zero to guarantee
the invariance can be determined [8].

15.3
Second Harmonic Generation and Its Relation to Structural Symmetry

In this section, the influence of certain structural symmetries on the components of
the second-order nonlinear susceptibility in Eq. (15.8) is investigated besides the
origin of the SHG signal in silicon.
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15.3.1
Sources of Second Harmonic Signals

Generally, the sources of second harmonic generation can be separated into two
parts: the second harmonic signal that is generated in the bulk of the excited
material and the signal generated at the interface between the material and the
adjacent medium. Comparing both contributions in the case of a noncentrosym-
metric medium shows that the contribution of the bulk signal is much larger than
that of the signal from the surface [9]. Because the contributing bulk volume is
much larger than the volume that can be regarded as the surface, the investigation
of SHG from surfaces and interfaces is limited to the case of centrosymmetric
media where the dipolar bulk contribution vanishes. For this case, Guyot-Sionnest
and Shen [9] have shown that bulk and interface contribution can be on the same
order of magnitude. For media with high dielectric contrast, they predict that
the interface contribution should actually dominate the second harmonic signal.
This is valid for reconstructed surfaces in vacuum [10]; however, for silicon with
a native oxide, the contribution of bulk and surface are reported to be
comparable [11].

In the case of silicon, bulk and surface contribution may have different sources
[9, 12, 13]. Because the surface shows no inversion symmetry, there is a dipolar
contribution to the second harmonic signal:

Ps;dpð2vÞ ¼ x
s;dp
ijk EjðvÞEkðvÞ ð15:9Þ

In addition, there is a quadrupolar contribution that originates from a surface layer
with thickness d � l because of the discontinuity of the electric field normal
component [12, 13]:

Ps;qpð2vÞ ¼ x
s;qp
ijzz EjðvÞrzEzðvÞ ð15:10Þ

Because the bulk silicon is centrosymmetric, only higher order quadrupolar
contributions to the second harmonic signal can occur. They can be described with
a fourth rank tensor of the form

Pb;qp
i ð2vÞ ¼ CijklEjðvÞrkElðvÞ ð15:11Þ

In the case of cubic bulk symmetry, Eq. (15.11) is usually expressed by the use of
phenomenological constants d; b; c; f in the form [6, 9, 11, 14]

Pb;qp
i ð2vÞ ¼ ðd�b�2cÞð~ErÞEi þ bEiðr �~EÞþ crið~E �~EÞþ fEiriEi ð15:12Þ

For SHG in a homogeneous medium excited by a transverse plane wave, the first
two terms are equal to zero. A detailed description can be found in Ref. [6]. In the case
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of SHGin reflection, the third termgives an isotropic contribution. This termand the
anisotropic fourth term will be considered in detail later.

If there is an additional inhomogeneous strain applied to the silicon, for
example, by the oxidation of the silicon surface, a further source of SHG can
occur. The emerging biaxial strains lift the centrosymmetry of the bulk material in
the vicinity of the interface, giving rise to a dipolar second harmonic contribution.
Because the strain translates the surface symmetry into the bulk material, the
generated second harmonic signal shows the same symmetry as the dipolar
contribution of the surface [13, 15–17]:

Pdp
strð2vÞ ¼ x

ð2Þdp;str
ijk ðzÞEjðvÞEkðvÞ ð15:13Þ

This effect will be discussed in detail in Section 15.4.
Furthermore, in connection with the oxidation of silicon, the effect of a static

electric field-induced second harmonic (EFISH) can occur. In this case, an additional
static electric field, breaking the inversion symmetry, enhances the dipolar second
harmonic signal:

Pdp
EFISHð2vÞ ¼ x

ð3Þdp
ijkz EjðvÞEkðvÞ~E0 ð15:14Þ

The staticfield originates froma space–charge region at the interface that can occur
during oxidation. For certain process and substrate parameters, the static electric
field is believed to be strong enough to lift the symmetry along the normal
direction [18].

15.3.2
Bulk Contribution to Second Harmonic Generation

To derive an expression for the phenomenological dependence of the SHG intensity
on the structural symmetry of the investigated material, it is convenient to treat bulk
and surface contribution separately. It is clear from Eq. (15.12) that the induced
nonlinear bulk polarization can be expressed as

Pð2vÞ
i ¼ crið~E �~EÞþ fEiriEi ð15:15Þ

where the first term shows isotropic behavior and the last term an anisotropic
dependence on the crystal orientation. As exciting beam we consider a single plane
wave at frequencyv that penetrates into themediumwith a dielectric constant eðvÞ at
an angle y0, as shown in Figure 15.3. Its electric field has the form

~E0ð~r ; tÞ ¼ ~E 0e
ið~k �~r�vtÞ ð15:16Þ

The electric field amplitude can be written as a superposition of s- and p-polarized
components:

~E0 ¼ E0;pp̂þE0;s ŝ ð15:17Þ
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It is convenient to describe the propagation of the incident beam in a beam
coordinate system with the axes ŝ; k̂jj, and ẑ, whereas ẑ is normal and k̂jj is parallel to
the sample surface. Thus, the two polarization directions are

ŝ ¼ k̂jj � ẑ and p̂ ¼ kjjẑþ k?k̂jj
v=c

ð15:18Þ

As for the incident beam, it is convenient to define a coordinate system for the
investigatedmedium. Its axes (x̂0; ŷ0; ẑ0) are chosen to have the z-axis perpendicular to
the respective crystal face. Thus, for the different crystal faces, the coordinates related
to the particular standard crystal axes (x̂; ŷ; ẑ) are transformed into the coordinates
related to (x̂0; ŷ0; ẑ0) by

x0

y0

z0

0
B@

1
CA ¼ �D

x

y

z

0
B@

1
CA ð15:19Þ

For (111)-oriented silicon, �D takes the form

�Dð111Þ ¼

ffiffiffiffiffiffiffiffi
2=3

p �1=
ffiffiffi
6

p �1=
ffiffiffi
6

p

0 1=
ffiffiffi
2

p �1=
ffiffiffi
2

p

1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

0
B@

1
CA ð15:20Þ

Figure 15.3 Schematic drawing of SHG in
reflection. The respectivewaves can be regarded
as consisting of vector components parallel (kjj)
and normal (k?) to the sample surface. k
denotes a wave vector at fundamental, while K

denotes a wave vector at second harmonic
frequency. The normal components scale with
the refractive index of the respective medium
and frequency.
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For (100)-oriented silicon, the z-axis is just chosen to be perpendicular to the
surface. With the z-axis defined equally in beam and crystal face coordinates, the
residual coordinates can be transformed into each other by a simple rotation around
the z-axis by an angle w:

ŝ

k̂jj
ẑ

0
B@

1
CA ¼

sin ðwÞ �cos ðwÞ 0

cos ðwÞ sin ðwÞ 0

0 0 1

0
B@

1
CA

x̂0

ŷ0

ẑ0

0
B@

1
CA ð15:21Þ

To investigate the second harmonic electric fields generated by the polarization in
Eq. (15.15), it is useful to deal with the isotropic and anisotropic parts separately. The
isotropic part remains unaffected by the coordinate transformation from crystal to
beam coordinates. For the anisotropic part, the partial derivatives of the electric field

~E tð~r ; tÞ ¼ ~E 0e
ið~kt �~r�vtÞ; v2

t ¼ eðvÞ v0=cð Þ2�k2jj ð15:22Þ

have to be solved first. With the derivatives in beam coordinates,

rs ¼ 0; rkjj ¼ ikjj; rz ¼ �iv ð15:23Þ

the nonlinear polarization transformed into beam coordinates has the form

Pð2vÞ
i;anis ¼ iv=cnfM0

ilnE
0
lE

0
n ð15:24Þ

The elementsM0
iln correspond to the transformations fromstandard crystal axes to

beam coordinates. Their expressions can be found in Sipe et al. [14].
Solving the nonlinear wave equation (Eq. (15.6)) in the medium for a polarization

of the form

~P
ð2vÞ
anis ð~r ; tÞ ¼ ~P

ð2vÞðzÞeið2~k �~r ðx;yÞ�2vtÞ þ c:c: ð15:25Þ
leads to an electric field outside the medium of the form

~E
ð2vÞðzÞ ¼ Eð2vÞ

s ŝþEð2vÞ
p p̂r

� �
eiK?z ð15:26Þ

Further modification leads to the following relations between the incident electric
fields and the generated SHG [14]. For (100)-oriented crystal faces, the second
harmonic electric fields are as the following:

Eð2vÞ
s;s ¼ Ksfb

ð100Þ
s;s sin ð4wÞE2

s ð15:27Þ

Eð2vÞ
s;p ¼ Ksfb

ð100Þ
s;p sin ð4wÞE2

p ð15:28Þ

Eð2vÞ
p;p ¼ Kpf að100Þp;p þ cð100Þp;p cos ð4wÞ

� �
E2
p ð15:29Þ

Eð2vÞ
p;s ¼ Kpf að100Þp;s �cð100Þp;s cos ð4wÞ

� �
E2
s ð15:30Þ
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The coefficients Ks=p depend on the angle of incidence y0, as well as the a, b, and c.
The latter are determined by the components of the transformation tensor M0

iln

introduced in Eq. (15.24).M0
iln alsomediates the azimuthal dependence of the second

harmonic electric field.
For (111)-oriented crystal faces, the second harmonic electric fields are deduced

analogous to the (100)-oriented surfaces [14]:

Eð2vÞ
s;s ¼ Ksfb

ð111Þ
s;s sin ð3wÞE2

s ð15:31Þ

Eð2vÞ
s;p ¼ Ksfb

ð111Þ
s;p sin ð3wÞE2

p ð15:32Þ

Eð2vÞ
p;p ¼ Kpf að111Þp;p þ cð111Þp;p cos ð3wÞ

� �
E2
p ð15:33Þ

Eð2vÞ
p;s ¼ Kpf að111Þp;s �cð111Þp;s cos ð3wÞ

� �
E2
s ð15:34Þ

The isotropic SHG electric fields originating from the first term of Eq. (15.15) can
be derived similar to the anisotropic fields. This leads to the following:

Eð2vÞ
s;s ¼ Eð2vÞ

s;p ¼ 0 ð15:35Þ

Eð2vÞ
p;p ¼ AcE2

p ð15:36Þ

Eð2vÞ
p;s ¼ AcE2

s ð15:37Þ

Coefficient A depends on the angle of incidence y0. The isotropic contribution to
the second harmonic signal is the same for all crystal orientations.

15.3.3
Surface Contribution to Second Harmonic Generation

In the next step, the SHG contribution from a silicon surface is investigated. Because
the inversion symmetry of the bulk is lifted at the surface, a dipolar contribution can
be observed. The contributing xð2Þ tensor components are determined by the crystal
symmetry at the sample surface. Considering several surface layers for (111)-oriented
silicon, a C3;v symmetry is obtained (see Figure 15.4). Because the xð2Þ tensor in
Eq. (15.8) has to be unaffected by the application of the corresponding symmetry
operators, many of its elements are zero or equal to other elements. This reduces the
tensor to

x
ð2Þ
ð111Þ ¼

d11 �d11 0 0 d15 0

0 0 0 d15 0 �d11
d31 d31 d33 0 0 0

0
B@

1
CA ð15:38Þ
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In the case of a (100)-oriented surface, the xð2Þ tensor has to be invariant under all
operations of the group C4;v. This reduces the tensor to

x
ð2Þ
ð100Þ ¼

0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0
B@

1
CA ð15:39Þ

As for derivation of the bulk second harmonic electric field, we also have to
transform here the xð2Þ tensor from crystal coordinates (x̂; ŷ; ẑ) to beam coordinates
(̂s; k̂jj; ẑ). To calculate the surface second harmonic electric fields, an ansatz similar to
Eq. (15.25) is used. In this case, the nonlinear polarization can be described as [19]

~P
ð2vÞð~r ; tÞ ¼ ~P

ð2vÞ
surf dðz�z0Þ eið2

~k �~r ðx;yÞ�2vtÞ þ c:c:
� �

ð15:40Þ

Here, we assume that the second harmonicfield is generated in a thin surface layer of
thickness z0. d is the function of Dirac.

Therefore, we obtain for a (111)-oriented silicon surface the s- and p-polarized
second harmonic electric fields:

Eð2vÞ
s;s ¼ Ksb

ð111Þ
s;s d11 sin ð3wÞE2

s ð15:41Þ

Eð2vÞ
s;p ¼ Ksb

ð111Þ
s;p d11 sin ð3wÞE2

p ð15:42Þ

Eð2vÞ
p;p ¼ Kp að111Þ1p;p d31 þ að111Þ2p;p d15 þ að111Þ3p;p d33 þ cð111Þp;p d11 cos ð3wÞ

� �
E2
p ð15:43Þ

Figure 15.4 Stereo view of the silicon (111)
face. The crystal shows threefold rotational
symmetry, with the green axis as the rotation
axis. The crystal also has planes of mirror

symmetry. In the figure, one of these planes is
indicated by two gray lines lying in this plane.
The (111) face shows C3;v symmetry.2)

2) Use the 3D free-viewing method that is called cross-eyed method. The eyes have to be aimed so that
the lines of sight cross in front of the image.
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Eð2vÞ
p;s ¼ Kp að111Þp;s d31�cð111Þp;s d11 cos ð3wÞ

� �
E2
s ð15:44Þ

The s-polarized second harmonic signals show a sixfold rotational symmetry. The
same symmetry can be exhibited by the p-polarized components; however, the signal
mostly shows a threefold symmetry depending on themagnitude of the single tensor
components. In the case of a (100)-oriented surface, the secondharmonicfields are as
the following:

Eð2vÞ
s;s ¼ Eð2vÞ

s;p ¼ 0 ð15:45Þ

Eð2vÞ
p;p ¼ að100Þ1p;p d31 þ að100Þ2p;p d15 þ að100Þ3p;p d33

� �
E2
p ð15:46Þ

Eð2vÞ
p;s ¼ að100Þ1p;s E2

s ð15:47Þ

In this case, the surface SHG signal is isotropic. Nevertheless, the detected signal
as superposition of bulk and surface contribution is anisotropic. Because of the
similar symmetries of bulk and surface contribution, it is generally not possible
to distinguish between both contributions unambiguously [9, 14, 20]. However,
Bottomley et al. [21] proposed a theoretical solution for this problem by exploiting the
fact that surface and bulk nonlinear susceptibilities are represented by tensors of
different rank. This solution is applicable for (100) and (110) faces in the case that the
phase of the SHG signal is known.

15.4
Strain-Induced Modification of Second-Order Nonlinear Susceptibility in Silicon

Asexplained inSection15.2, for semiconductorswith inversion symmetry, the second-
order bulk nonlinearity does not exist in the electric dipole approximation, while a
quadrupole-type nonlinearity can be observed. By this reason, the complete second
harmonic signal is dominated by the surface dipole contribution that is rather weak.

In the late eighties, a newpossibility to create an enhanced second harmonic signal
caused by an electric dipole contribution from crystals with inversion symmetry was
tested: an inhomogeneous deformation of the crystal lattice at the interface layer
where the reflection occurs [16, 22, 23]. An increase in the second harmonic signal by
more than two orders of magnitude caused by inhomogeneous mechanical stress
was reported by Govorkov et al. [24]. A theory for this optical nonlinearity was first
given in 1989 by Govorkov et al. for diamond-type crystals as Si and Ge [15, 24], later
with a similar approach by Huang [17]. In these models, the sp3 orbital concept is
used, calculating the susceptibility tensor xð2Þ from the Hamiltonian of the covalent
crystal bonds [25]. A phenomenological description using the concept of a strain-
dependent photoelastic tensor as part of the dielectric permittivity tensor was
presented some years later [26, 27].
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In the following, wewill give an outline of the theory described byGovorkov et al. in
Ref. [24] where the SHGsusceptibility of the silicon layer is derived fromdependence
on the strain of the layer.

In the sp3 orbitalmodel (see Figure 15.5), aHamiltonian considering the Coulomb
interaction between the covalent bonds is defined. By introducing an additional term
to the electron–phonon interaction, the Hamiltonian can be extended to the case of
crystal deformation. Thus, it is possible to calculate complete orbitals as a superpo-
sition of the single wave functions. Expressions for the corresponding susceptibility
tensor xð2Þ of the total bond Hamiltonians are derived with a model in Ref. [25].

Armstrong et al. showed that in a centrosymmetric material, SHG is forbidden in
the electric dipole approximation (see also Section 15.2) [28]. An important condition
for the violation of the centrosymmetry of a crystalline structure by strain is its
inhomogeneity. This is guaranteed if the strain is induced by surface disturbances as
mismatches or defects.

Assume a strain in a surface layerwith a strain gradient in direction znormal to the
interface. This can be, for example, due to the thermal oxidation of a thin layer onto
the silicon substrate. If the strain is caused by structural mismatch in the presence
of dislocations, the strain decreases exponentially with the substrate depth if
the dislocations are at the substrate surface [29]. Thus, the strain is given by an
atomic displacement vector ~u with

div~u ¼ f0expð�CzÞ ð15:48Þ

Figure 15.5 Tetrahedral geometry of hybrid orbitals of four silicon bonds in a silicon unit cell. The
angle between two orbital axes is 109.5�. The nonlinear optical response of the whole cell
corresponds to the geometric superposition of the nonlinear responses of each bond.
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where f0 is the deformation value at the surface and C is the reciprocal of the
deformation characteristic lengthwithCa � 1, a being the bond length in the crystal.
With the sp3 model explained above, Govorkov et al. [24] stated that a stress-induced
SHG signal IIH, measured in reflection from a Si(001) interface, can be estimated
with thematerial absorptiona in cm�1 and IQ as the bulk quadrupole SHGtaken as a
reference value. They found for weak absorption að2vÞ � C,

IIH

IQ
¼ 4� 10�2að2vÞf0

� �2 ð15:49Þ

and for strong absorption að2vÞ 	 C,

IIH

IQ
¼ 4� 10�2Cf0

� �2 ð15:50Þ

Hence, it can be concluded that for a slight variation of the deformation, the ratio
of stress-induced and quadrupole SHG contribution is small. This could be
confirmed in experiments where the deformation is created by thin films deposited
upon the silicon substrate. Several groups of authors investigated SHG of silicon
samples that are stressed with film layers grown upon the silicon surface by thermal
oxidation. For the p-polarized SH components and a p-polarized probe beam at a
Si(111) substrate with a 50 nm thick silicon oxide layer, Govorkov et al. achieved an
SH intensity increase of a factor of 20 compared to the silicon substrate with native
oxide. For silicide films (optically transparent SixNiy polycrystalline layers) on
Si(001), an SH increase of 200 was observed [24]. Huang investigated Si(111)
substrates with thermally grown silicon oxide layers of different thickness [17].
According to Sipe et al. [14], the reflected SH signals have an azimuthal dependence
of the form

IIHpp ¼ app þ cpp cos 3w
�� ��2I2p ð15:51Þ

for a p-polarized SH signal of a p-polarized probe beam (cf. Eq. (15.33)) and

IIHss ¼ bss sin 3wj j2I2s ð15:52Þ

for the s-polarized SH signal of a s-polarized probe beam (cf. Eq. (15.31)). Here, app,
bss, and cpp comprise the contributions from surface and bulk electric dipole and
electric quadrupole terms. In Figure 15.6; the dependence of bss and cpp on the
thickness of the thermally grown silicon dioxide layer is shown. It can be assumed
that the surface stress on the silicon substrate depends exponentially on the thickness
of the silicon oxide layer that was grown thermally on it [30]. With a bulk stress s,

s ¼ s0expð�z=dÞ ð15:53Þ
depending exponentially on the depth z in the bulk (d is a decay length), for the tensor
components of the inhomogeneous stress-induced second-order nonlinear suscep-
tibility in dipole approximation holds after Ref. [15]:

x
ð2Þ
D;def /

s0

d
ð15:54Þ
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These considerations can explain that the angular components in Figure 15.6
depend exponentially on the silicon oxide layer thickness. The SH signal reflected
from a Si(111) surface with silicon oxide layers of thicknesses between 5 and 60 nm
was investigated by An [31] for different photon energies, revealing that the situation
is more complex for thinner layers. This is explained with the influence of the
interface layer between silicon and silicon oxide. For example, at a two-photon energy
of 3.44 eV, the angular coefficients for the fourfold rotational anisotropies depend
nonmonotonically on the silicon oxide layer thickness. It is to note that a thinner
interface width corresponds to a larger oxide thickness if that is smaller than
50 nm [32].

Several authors investigated the SH signal from silicon with thermally oxidized
layers for different frequencies of the input beam [31, 33, 34]. Daum et al. found a
strong resonance band at 3.3 eV photon energy [33]. The resonance at 3.3 eV can be
explained with the fact that the frequency dependence of the nonlinear susceptibility
close to a resonance at the second harmonic frequency is approximately that of the
linear susceptibility of the bulk material (see Figure 15.7). This linear susceptibility
has a resonance at 3.37 eV, caused by the E1 bandgap transitions in silicon. It is
concluded that the resonance is enhanced by transitions between valence and
conduction band states in a few monolayers at the interface between silicon and
silicon oxide. Later, the difference between the nonlinear and linear resonance
frequencies was explained as arising from interfering surface and bulk contributions
that can distort the spectroscopic results taken for a single azimuthal angle [35].
Furthermore, An showed that the resonant photon energy value of 3.3 eVcan slightly
be influenced by the layer thickness if the layer is thinner than 100 nm [31].

Schriever et al. investigated a Si(111) SH signal with a fundamental wavelength of
800 nm in reflection (45�) depending on the strain of a silicon dioxide layer of a
thickness between 10 and 250 nm Clemens Schriever, Christian Bohley, and Ralf B.

Figure 15.6 The cos 3w respectively sin 3w
angular components cpp (open squares) and bss
(filled squares) of the azimuthal SH
susceptibility in Eqs (15.51) and (15.52) versus

the thickness of the silicon oxide layer on the Si
(111) substrate. Reproduced from Ref. [17] with
permission from the Japan Society of Applied
Physics.
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Wehrspohn, �Strain dependence of second-harmonic generation in silicon�, Optics
Letters, Vol. 35, Issue 3, pp. 273-275 (2010). The p-polarized SH signal of a p-polarized
probe beam, obeying Eq. (15.51) (cf. Eq. (15.33)), shows a linear dependence of the
coefficients app and cpp on the layer strain (see Figure 15.8Þ. This corresponds to
the statement in Eq. (15.54), assuming that the second-order susceptibility induced by
the silicon layer is proportional to the silicon interface stress. The linear relationship
between susceptibility enhancement and strain could also be used in the reverse
directiondetermining the stress level of a strained layer by analyzing the enhancement
of the second harmonic generation. The average deviation of the measurements in
Figure 15.8 is approximately 13%. For the reverse measurement of the stress level,

Figure 15.7 Spectral dependence of jxð2Þzzzj2
(filled symbols) evaluated from an oxidized Si
(100) sample with an oxide layer thickness of
700 nm and of xj j2 (solid line), with x as linear

bulk susceptibility of silicon, calculated from the
dielectric function of Si with xð2vÞ ¼ eð2vÞ�1.
Reproduced with permission from Ref. [33].
Copyright American Physical Society.

Figure 15.8 The angular components app (a) and cpp (b) of the azimuthal SH susceptibility in
Eq. (15.51) versus the strain of the silicon oxide layer on the Si(111) substrate.
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the same deviation is to be expected to occur because of the linear relation between
both quantities. A considerable part of the deviation originates from the fact that the
enhancement in Ref. Clemens Schriever, Christian Bohley, and Ralf B. Wehrspohn,
�Strain dependence of second-harmonic generation in silicon�,Optics Letters,Vol. 35,
Issue 3, pp. 273-275 (2010) is measured relative to a single reference sample. Because
different samples with slightly different substrate histories are compared, this
enhances the error by approximately 6%. If SHG is used to investigate strained
structures onone sample, the average error should be reduced below7%.Thismethod
could also be used for high-resolution strain mapping, whereas the maximum
resolution is limited to the half of the used wavelength due to Abbes resolution limit.
However, because of its high sensitivity to structural symmetry, its main advantage
compared to other methods would be the possibility to investigate the strain of buried
interfaces situated between two centrosymmetric media.

Summarizing, detecting strain with the help of the enhancement of the SHG
signal reflected by a silicon layer is in principle possible. It could be shown that for a
known crystal orientation, the strain can be estimated by means of the linear
dependence of the nonlinear signal on the strain Clemens Schriever, Christian
Bohley, and Ralf B. Wehrspohn, �Strain dependence of second-harmonic generation
in silicon�, Optics Letters, Vol. 35, Issue 3, pp. 273-275 (2010).

15.5
Strained Silicon in Integrated Optics

Until now we were focused on the nonlinear optical properties arising from strained
bulk silicon. However, in recent years, strained silicon has also found its way into the
field of integrated optics. Similar to the field of microelectronics where it has proven
itself as a viable material for transistors because of higher strain-induced charge
mobilities [36], its advantages in integrated optics are now being explored. The linear
and nonlinear properties could already be exploited, for example, in the design of a
novel electro-optical modulator based on a strain-induced linear electro-optical
effect [37, 38]. A further example that will be contemplated in this section is the
strain-induced photoelastic effect. It leads to a strain-dependent shift of the refractive
index and has been used to eliminate birefringence in ridge waveguides [39] or for
electrically tunable phase matching processes in integrated optical devices [40, 41].
Using its nonlinear optical properties in combination with optimized photonic
structures, strained silicon, similar to nonlinear organic polymers [42], could become
a promisingmaterial candidate for the production of ultrafast all-optical computation
devices.

15.5.1
Strain-Induced Electro-Optical Effect

The strain-induced electro-optical effect described by Jacobsen et al. [37] can be
regarded as a special case of second harmonic generation. Instead of having two

348j 15 Strain-Induced Nonlinear Optics in Silicon



electric fields of the form described in Eq. (15.4), here only one field is regarded,
whichmeans that the intensity of the incident light can be considered as low. For the
second field, we have a strong static field Estatðv ¼ 0Þ that is applied to the medium.
For the second-order nonlinear polarization, we now get instead of Eq. (15.5)

~P
ð2ÞðtÞ ¼ xð2Þðv;v; 0Þ~E statð~Ee�ivt þ c:c:Þ ð15:55Þ

It is obvious that the nonlinear polarization describes a contribution to the
polarization at the frequency of the incident field. Therefore, the prefactor
xð2Þðv;v; 0Þ~E stat can be regarded as a nonlinear contribution to the refractive index:

nðEÞ ¼ n0 þ xð2ÞEstat ð15:56Þ
This dependence of the refractive index on the applied electric field is known as the

linear electro-optical or Pockels effect [7].
Jacobsen et al. [37, 38] used this effect to create an electro-optical modulator based

on the principle ofMach-Zehnder interferometer (MZI) (Figure 15.9a). TheMZIwas
etched into the silicon device layer of a silicon on insulator chip. To avoid optical
coupling, they deposited 1.2 mm silicon dioxide on top of the device structure and
additionally a highly strained silicon nitride layer on top of the sample to induce
strain. By applying a static field to one of the arms of the MZI, the strain-induced
susceptibility xð2Þ led to a change of the refractive index and thereby to a phase shift
between the electric fields traveling through the respective arms. This effect was even
enhanced by the use of photonic crystal structures (Figure 15.9b) whose parameters
were chosen to result in a high effective group index ng, thus slowing down the light
considerably and enhancing the light–matter interaction (Figure 15.10). By shifting
the phase of the electric fields, they presented their device as an optical switch
showing transmission depending on the phase shift induced interference.

In addition, the device is compared with a LiNbO3 modulator, thus determining
the electro-optical coefficient of the strained silicon. For a slow light photonic crystal,
they obtained a value of xð2Þeff 
 830 pm=V. However, the real value of the strained
silicon is much smaller because it has to be scaled down by the effective group index
to [37]

Figure 15.9 (a) Schematic drawing of aMach-
Zehnder interferometer (MZI) used in Ref. [37].
The incident beam is split into both arms of the
MZI. The phase in one arm is modulated by a

static electric field (yellow). (b) Showing that
this effect can be enhanced if the light is slowed
down by the presence of suitable photonic
crystal structures.
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xð2Þ ¼ n
ng

x
ð2Þ
enh ¼ 15 pm=V ð15:57Þ

Although this value is much smaller than the susceptibility of highly nonlinear
materials like LiNbO3 (xð2Þ 
 360 pm=V) [37], it has been shown in this work that the
combination of strained silicon and proper optical design can compete with the
established nonlinear materials.

15.5.2
Strain-Induced Photoelastic Effect

Contrary to the effects already described, the photoelastic effect used by Xu et al. [39]
and Tsia et al. [40, 41] is a linear optical effect that is directly caused by strain. It
describes the influence of strains on the refractive index tensor in an birefringent
medium. The presence of strain leads to a linear dependence of the refractive index
components on the symmetry of the single-strain tensor components, which results
in [43]

nijðsklÞ ¼ nijð0Þþ
X
kl

Cijklskl ð15:58Þ

Here, Cijkl is the photoelastic tensor that depends on structural symmetries of the
medium and on the applied strain field. The photoelastic effect can be depicted as a
mechanical effect where the lattice spacing of the medium is changed by the applied
strain in a certain direction. The process of light passing themediumcan be regarded
as a nonresonant absorption and reemission of photons at different atoms, which
leads to a slower propagation in the medium described by the refractive index. If the

Figure 15.10 Comparison between the nonlinear coefficient xð2Þenh (black) and the group index ng
(red). xð2Þenh scales linearly with ng that is determined by the parameters of the photonic crystal.
Reproduced from Ref. [37] with permission from the Nature Publishing Group.
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lattice is now spread in one direction, it is obvious that the speed of the propagating
light is direction dependent.

The reverse effect is used by Xu et al. [39] for compensation of the geometry-
induced birefringence in a ridgewaveguide by the deposition of a straining layer. This
induced birefringence originates from asymmetric conditions of the surrounding
material (e.g., air on top, silicon oxide at the bottom) and fromgeometric deviations in
the production process. The biaxial strain in the deposited layer also evokes strains in
x- and y-directions in the core of the waveguide structure (Figure 15.11a and b). For a
film with a thickness of 370 nm and a stress level of s ¼ �320MPa, significant core
stress contributions ofsx 
 �70MPa and sy 
 �180MPawere calculated [39]. This
stress anisotropy induces the birefringence that is used to compensate the birefrin-
gence originating from the geometry. Besides the tuning of the core stress by
changing the external stress level, they also investigated the effect of increasing the
cladding thickness, which also enhances the birefringence due to additional core
stress (Figure 15.11c). Because the film stress is very sensible to deposition condi-
tions, the variation of the cladding thicknessmight bemore suitable for a fine-tuning
of the birefringence. The effect on the refractive index can be significant as for a 2 mm
thick oxide layer with sfilm ¼ �300MPa, an index change of Dn ¼ 1:6� 10�3 is
calculated.

A similar approach is chosen by Tsia et al. [41], however, they take the idea one step
further by creating a waveguide with electrical tunable birefringence. Therefore, they
cover their ridge waveguides with a transparent layer of 500 nm silicon oxide to avoid
absorption losses by the piezoelectricmanipulator, which is put on the top. The strain
applied by this device can thus be varied by changing the applied voltage (Fig-
ure 15.12). The induced stress is much smaller than the stress from the cladding
layer, the calculated core stress level induced solely by the piezo is spiezo

x ¼ �1MPa
and spiezo

y ¼ 12MPa, respectively. However, this results in an induced birefringence

Figure 15.11 Calculated stress distribution in
an SOI waveguide in (a) x-direction and (b) y-
direction. (c) Showing the stress and thickness
dependence of the birefringence. It saturates at

a thickness of 2.5 mm because the stress in a
thicker layer does not reach the waveguide
anymore. Reproduced from Ref. [39] with
courtesy of the Optical Society of America.
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of Dn 
 3� 10�4. This effect is believed to be sufficient to correct structural
deviations in waveguide dimensions of approximately 50 nm.

In Ref. [40], Tsia et al. used the electrical tunability of the refractive index to achieve
phase matching between different light waves in a coherent anti-Stokes Raman
scattering (CARS) experiment. It is reported that the conversion efficiency can be
enhanced by 5–6 dB with the variation of the applied piezoelectricity.

The idea of achieving phase matching by strain modification is fascinating for
the case that phase matching capabilities are used to investigate strain-induced
nonlinear processes itself like SHG in silicon waveguides. Because the funda-
mental (v) and second harmonic (2v) waves will generally propagate at different
velocities due to refractive index dispersion, phase matching is crucial to avoid
destructive interference between the different waves. This could be achieved by
tuning the directional refractive indices by applying suitable strain to the
waveguide.

15.6
Conclusions

The recognition of the possibility to alter material properties by the application of
strain and the progressmade in nonlinear optics led to efforts to investigate silicon as
the most important semiconductor material concerning these aspects. The origin of
the nonlinear response arising from the strained silicon could be described theo-
retically. This theory gives the starting point for the modification of the second-order
nonlinear properties of silicon in a determined manner. It could be compared with
experimental results that verify the relationship between strain and the xð2Þ suscep-
tibility. It was shown that the second harmonic signal can be drastically enhanced by
applying strain to a silicon substrate, for instance, by a thermally grown silicon oxide

Figure 15.12 Dependence of phase mismatch and birefringence of an SOI waveguide on the
voltage applied to the piezoelectric manipulator. Reproduced from Ref. [40] with courtesy of the
Optical Society of America.

352j 15 Strain-Induced Nonlinear Optics in Silicon



layer. Thus, SHG with its high sensitivity to interfaces is a suitable method to
investigate strains induced at material interfaces.

Until now, the direct SHG although seems to be suited rather for analyzing
techniques, other strain-induced effects have been implemented in integrated optical
devices. For example, a Mach-Zehnder interferometer using the linear electro-
optical effect in a strained silicon photonic crystal has been used as an electro-optical
modulator. The use of strained silicon in combination with suitable photonic design
can open the possibility to create affordable nonlinear optical devices with features
that can compete with properties of conventional nonlinearmaterials. First obstacles
like the dynamic control of strain by the use of the piezoelectric effect have already
been overcome.
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