
Chapter 7 

The Frequency Hilbert Transform and 
Detection of Hidden Non-linearities in 

Frequency Responses  

7.1. Introduction  

The frequency Hilbert transform is a signal processing method which has proved 
useful at the post processing stage. We will take a practical look at it in this chapter.  

When conducting experiments, one records frequency responses from a sample 
during dynamic tests. There are inevitably some hidden non-linearities in the whole 
chain of the experimental set-up: in the mechanical system including the sample and 
the holder, and in the electronic chain of apparatus as well.  

Often, non-linear transducer responses are due to the relationship between 
measured physical parameters and electrical signals (see Chapter 6). The linear 
domain of the transducer is not respected in some cases, when the sample is 
submitted to high excitation levels.  

Damping measurements of viscoelastic materials are often in themselves 
deduced from the damping measurements of the whole structure in which the sample 
constitutes only one part (see Chapter 8).  
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The experimental problem seems, at first sight, to be an intractable one which 
can only be solved by the sagacity of experimenters themselves! 

What we present here is certainly not a miracle remedy. Instead, it constitutes 
one tool amongst others to help experimenters detect hidden non-linearities which 
are localized in some parts of the sample frequency responses. A new method of 
detection and linearization is proposed. 

7.1.1. The non-causality principle of the physical system response 

In Chapter 6, devoted to signal processing, the coherence function is a candidate 
for non-linearity detection. Its use is largely adopted in experimental structural 
dynamics. Unfortunately, this function only statistically correlates the output signal 
to the input signal. It is not certain that it constitutes a good and efficient tool to 
evaluate non-linearities as a priority. There are so many possible symptoms and non-
linear behavior of the physical system would be just one of them, ascertained among 
other causes.  

In this respect, the frequency Hilbert transform, which is based on a fundamental 
mathematical principle governing all physical systems, i.e. governing causality, is an 
efficient tool to detect non-causality, when a linear transfer function of a sample is 
used. In other words, it detects the imperfections of the system, including hidden 
non-linearities. 

The time response, i.e. the transient response, deduced from the experimental 
frequency transfer function of the physical system, allows experimenters to 
eventually ascertain that a system is non-causal and closely related to any non-
linearities of the system.  

7.1.2. Complementary information provided by the frequency Hilbert transform  

In textbooks and scientific papers devoted to viscoelasticity and signal 
processing, Ferry [FER71], Goyder [GOY 80] and Gross [GRO 53], among others, 
have shown that, in the frequency domain, if one part of the transfer function is 
known, the other part, which is not measured, can be supplied by the Hilbert 
transform. 

To take an example, in the viscoelastic behavior of a material in the ultrasonic 
high frequency range, the wave velocity curve versus frequency is sometimes 
obtained indirectly via the Hilbert transform.  
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7.2. Mathematical expression of the Hilbert transform 

The frequency Hilbert transform1 is derived from Cauchy’s integral formula 
involving the function of a complex variable. Mathematically speaking, the French 
mathematician Cauchy, in the first part of the 19th Century, was the first scholar to 
study the function of a complex variable, z, being defined as: 

z = ω +jσ                                                                                              [7.1] 

where ω is the circular frequency and σ the damping coefficient. 

The two main ideas to be retained for a special class of function of complex 
variable, z, are presented below. 

The analytical (or holomorphous) function in the domain D (see Appendix 7A) is 
defined in a closed domain D delimited by a contour C:  

– if it has definite derivative sin D; and 

– if it is single valued in D. 

The consequence is that, if the function derivative has only one limit, the 
Cauchy-Riemann condition is satisfied (see Appendix 7A, equation [7.A.4].  

7.2.1. Choice of contour C  

If the function f(z) has complex poles designated by stars in Figure 7.1. and a 
real pole on the ω real axis, a contour C constituted by a semi-circle C completed by 

a diameter 2R along the ω axis and a small semi-circle of radius γ  so that inside the 
contour there are no singular points such as a simple pole, the function f(z) satisfies 
the following integral: 

F(z) = ( )( )dα            [7.2] 

                                   
1 There are two kinds of Hilbert transform: the time Hilbert transform, using an integral with 
time variable which is considered to be a complex quantity; see [GOL 70] and [OPE 75]. The 
frequency Hilbert transform uses an integral with a complex frequency variable and is 
presented above. 
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If the system is stable, damping σ must be negative. The integral in [7.2] is 
evaluated along the contour and after calculation, the following limits are obtained: 

R →∞  for the large semi-circle  C 

   →  0  for the small semi-circle   

 

Figure 7.1. Bromwich-Wagner contour in the complex plane α = Ω +jσ so that 
the function f(α )/(α−z) is analytic in the domain D defined inside the contour.  

Stars designate negative damping coefficients. They correspond to the instability of  
the system and must be excluded 

7.2.2. Evaluation of integral [7.2.] 

Symbolically, the contour integral in equation [7.2] is decomposed into four 
integrals (see Figure 7.1):   =   +    +   +   [7.3] 

C     C                  γ                         

Jordan’s lemma says that f(z) = G(z)   0 when z  ∞. The boundedness of the 
transfer function is a physical property of the system G(z) . In some 
circumstances it is not true, as we shall see in this chapter when the inertance 
transfer function is examined. The third integral evaluated along γ is non-zero. For 
this purpose, a change of variable is effected: 
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α = ω + r e j θ  ; dα = r .e jθ. jdθ [7.4] 

Bringing [7.4] into [7.A.11] integrating along the contour γ we obtain:   =  j  ( ) [7.5] 
   

We are able, at this stage, to express [7.A.1] in the following form, where PV 
designates the principal value of the integral: 

G( ) = ( ) ( ) =  [-PV ( ) /( )+ j G( )] [7.6] 

Inside the bracket, in the second  member the integral corresponding in [7.3] to 
the second and fourth integrals which operate on the real function G(Ω), on the real 

axis, Ω is the circular frequency variable. 

Bringing the non-integral term into the first member: 

G(ω) =  - 1  PV
( )∞

∞  [7.7] 

7.2.3. Hilbert transform expressed in real and imaginary parts 

Let us express G in Cartesian coordinates:  

G(  ) = Re G( ) + j Im G(  ) [7.8] 

Bringing [7.8] into [7.7] we obtain the two following relationships: 

Re G( ) =  PV ( )( )  [7.9] 

ImG( )  =    PV 
( )( ) du [7.10] 

[7.9] and [7.10] relate the real and imaginary parts of the transfer function of a 
linear and stable system.2 

                                   
2 Readers unfamiliar with the function of complex variables can find another demonstration 
of the Hilbert transform, using decomposition of real function into the sum of impulses, in 
Appendix  7B. 
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7.2.4. Physical interpretation of Hilbert transform 

In this section, various considerations concerning stability, parity, causality and 
linearity will be raised. These ideas have, of course, been presented and exploited 
since 1925 in numerous scientific and technical domains. A specialist in 
viscoelasticity, Ferry [FER 71] presented formulae to deduce one of the parts of the 
frequency response from the other without mentioning Cauchy’s integral. Kramer 
[KRA 27], as early as 1927, raised this same possibility in the study of dielectrics, 
and Kronig [KRO 27], raised it with regard to the dispersion of X-rays. 

The massive introduction of computers in around 1980 and advances in digital 
signal processing made a drastic change and now make it possible and easy to 
perform the calculation of the integrals presented in this section. 

7.2.4.1. Analytic function 

If the system is stable and has a minimum phase (no poles inside the contour of 
Figure [7.1]), then equations [7.9] and [7.10] tell us that we need not have the 
complete portrayal of G(ω) in both real and imaginary parts. The complete 

characteristics of the system are included either in Re G(ω) or Im G(ω). We can 
deduce one from the other. This property is the consequence of the analytic function 
G (ω) in the complex plane. 

We know that the real part of the transfer function is an even function and that 
the imaginary part of the same function is odd. 

G (ω) = Even function (ω) + j Odd function (ω) [7.11] 

If we change the circular frequency ω into −ω , we have: 

G (-ω) = Even function (-ω) – j Odd function (-ω) [7.12] 

Adding these two equations member to member: 

Re G (ω) = Even function =    [G(ω)+G(-ω)]  

This construction is possible by separation of the real and imaginary parts, if the 
complex function G(z) is analytic in the specified domain D. 
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7.2.4.2. Sufficiency and causality 

To discuss causality, we must use the time function which is the inverse Fourier 
transform of the transfer function. This is the impulse response of the system: 

g (t) = G(ω)ejωdf∞
∞      where ω =2πf 

g (t) = ( ) cos  - ( )sin d f [7.13] 

If the system is initially at rest, g(t) must be zero for negative time t < 0. Taking 
the parity of the real and imaginary parts of G(ω) into account: 

0= ( ) cos( ) - ( ) sin( )   ;  t 0 [7.14]  

The integrals in the second member of [7.14] must be equal and equation [7.13] 
is rewritten as: 

g (t) = 2 ( ) cos  .  [7.15] 

or g(t) = -2 ( )  .  [7.16] 

[7.15] and [7.16] show that either the real or imaginary part of G(ω) suffices to 
evaluate impulse response. 

7.2.4.3. Linearity test 

The most interesting property of the Hilbert transform is that it constitutes a 
straightforward method to test the linearity of the system itself. 

Theorem I: if the system is linear and stable, its transfer function G(ω) coincides 
with its Hilbert transform. This is the consequence of equation [7.7]. 

7.2.4.4. Comparison between the Hilbert transform and coherence function 

The coherence function is widely used in signal processing (see Chapter 6). As 
we mentioned in the introduction, it portrays the statistical parenthood between the 
input and output signals. Non-linearities are only one possibility among other 
eventualities and no mathematical demonstration can be presented in this respect.  

The Hilbert transform is based on the analyticity of the transfer function. The 
aforementioned theorem is a consequence of this property.  
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7.2.4.5. Does the Hilbert transform (equation [7.7]) constitute a sufficient condition 
for system linearity? 

If equation [7.7] is validated, is the system linear or not? The answer is that it is 
not possible to assert that equation [7.7] constitutes a sufficient condition. 

7.2.4.6. Is the Hilbert transform a tool to prove whether a system is causal or not? 

Yes. Equation [7.7] gives rise to either a linear system or a non-linear system as 
well. However, it must be remarked that while the necessary condition has been 
found, the sufficient condition has not yet been either found or demonstrated. The 
following remark might be a great help: Methods to exploit a linear system are 
extensively presented and used in all domains of science i.e. the Fourier transform 
with one frequency variable, linear convolution to relate input to output signals, 
Boltzmann’s superposition theorem, etc. The Hilbert transform presented above uses 
one complex frequency variable. What we have presented above is adapted to a 
linear system and might be considered as a linear filter tools privileging the linear 
part of the signal. That constitutes a remark and not necessary a demonstration.  

Hilbert transforms exist, however, for transfer functions with many complex 
frequency variables (not used in this book). They are suited to examining non-linear 
component responses. Used concurrently with appropriate methods to define a 
signal with linear and non-linear components, for example the Volterra functional 
series, they constitute a good framework to analyze the whole signal. One uses 
linear functions (with one time variable) and also non-linear functions (with many 
time variables). These tools are more adapted to study non-linear systems.  

In spite of the lack of sufficient conditions mentioned above, the Hilbert 
transform presented in this chapter is a new and efficient tool for rheologists to 
detect non-linearities in sample dynamic responses.  

7.3. Kramer-Kronig’s relationships 

This relationship is well known in publications devoted to viscoelasticity [FER 
71]. It is useful when a transfer function is not known in totality. From equations 
[7.8] and [7.9], and by exploiting the parity property of Re G( ) and Im G( ): 

Re G (  ) = -     PV [   +  ]  [7.17] 

Re G (  ) = -   PV [ 
( ) ( )  du   +   ( )( ) du ] 
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  ReG(  ) =  [ 22 2+∞0 ] ( ) du  with variable u=ω [7.18] 

In a similar manner, ImG(ω) can be expressed as: 

ImG (u=ω ) = 1
π
 PV [- ReG(u)du(u ω)∞

0    + ReG(u)du(u ω)∞
0  ] 

Im G ( = ) =  PV [∞ 1/ (u2-ω2)] Re G(u) du [7.19] 

Equations [7.18] and [7.19] are largely exploited in studies of viscoelasticity and 
also in electricity [FRO 58]. 

7.4. Causal signal and Fourier transform 

We present here the expression of a causal signal and its Fourier transform. This 
will serve to us to establish the computer code needed to numerically obtain the 
Hilbert transform  

A signal is causal if, for t   0, the signal is zero. This signal can physically be 
considered as the product of a continuous signal x(t) and the unit step Heaviside 
function u(t): 

xcausal (t) =  u(t).x(t) [7.20] 
u(t) = 0    for t  0 

u (t) = 1    for t 0 [7.21] 

Let us apply the Fourier transform (symbol F) to [7.20]. Using “FT” to designate 
the Fourier transform, and the symbol * to designate a linear convolution: 

Xc (f) = U(f) * X(f) [7.22] 

X c (f) = F [x c(t)] ;   U(f) = F [u(t)] [7.23] 

U(f) = PF (1/2j f ) + ( )/2 [7.24] 

PF is a pseudo-function,  is the Dirac impulse function. 

Equality [7.23] becomes  

XC (f) = [PF ( ) + (f)] * X(f) [7.25] 



164     Mechanical Characterization of Materials and Wave Dispersion 

We recognize the expression of the Hilbert transform in [7.25]. If x(t) is the 
impulse response of the system, X(f) is the transfer function G(f). [7.25] 
demonstrates the causal characteristics of the Hilbert transform without recourse to a 
function with a complex frequency variable. 

7.5. Hilbert transform of a truncated transfer function 

7.5.1. How to write Hilbert transform computer code 

In the framework of digital signal processing, it is not theoretically possible  to 
evaluate unbounded integrals (for example, for the Fourier transform). Special 
precautions are necessary to reduce the discrepancies between the theoretical 
definition (equation [7.25]) and bounded integrals used in signal processing by using 
appropriate methods, such as time windows or correction at high frequencies, for the 
transfer functions to satisfy asymptotic behavior. Such methods are used to 
overcome inevitable discontinuities in signal processing when one has to deal with 
bounded samples of a signal, etc. 

7.5.2. Hilbert transform of a truncated transfer function 

The Hilbert transform is an integral whose bounds are -∞ to +∞. This means that 
the eventual non-causality detection is not local but concerns the whole frequency 
range. This constitutes the first difficulty in writing a computer code.  

In practice, this frequency interval is finite and limited to upper and lower 
bounds for circular frequencies ωU and ωL: 

ω L          ωU [7.26] 

The Hilbert transform (H ) is then broken down into three integrals: 

H [G( ) ] = +   +    [7.27] 

The second integral will be effectively computed in [7.27] but the first and third 
integrals cannot be evaluated, the transfer function being unknown in the following 
intervals: 

0    L   ;     U   +∞   [7.28] 
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The truncating effect, due to the experimental limitation, consequently 
introduces errors in computation. Two cases can be envisaged: 

– the existence of possible resonances in the frequency intervals indicated in 
[7.28]; errors in computation may be important. To improve the calculation, new 
transfer functions in a larger frequency interval should be recorded and additional 
resonance zones included in the transfer function (Figure 7.2);  

– no resonance zones are observed outside the frequency interval [7.26]; this 
case gives rise to correcting terms which are calculated with the help of asymptotic 
expansions of G(ω) (Figure 7.2).  

 

Figure 7.2. Truncated transfer function. (a) In hatched intervals, there exists resonance zones 
and large errors in correcting terms; (b) no resonance zones in hatched 

intervals: possibility to evaluate additional correcting terms 

Two correction methods are presented below. Calculation of the correcting terms 
is based on the closed form expression of the transfer function using the 
decomposition of the dynamic response of the system into the sum of modal 
parameters. The system is supposed to be linear. Such expressions might admit low 
damping in the Simon’s approach.  

7.5.3. Simon’s correction [SIM 83]  

In his thesis, Simon [SIM 83] suggested that modal parameters (resonance 
frequencies and damping coefficients) be evaluated by: 

G(ω) = ∑  (  [ ( )] ) [7.29] 
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where N is the system degree of freedom, A*
r the complex number, ωr the resonance 

frequency, and δr structural damping3. 

For the sake of simplicity, only one mode is examined below: 

G (ω) = jω (Re Ar + j ImAr)/ [( ω2−ωr
2(1+jδr) ]  [7.30] 

A generalization to a multimode system will be made in the next stage. 

7.5.3.1. Real part of the Hilbert transform 

When truncation is effected at a frequency ω which is not in the neighborhood of 
the resonance zone and if the damping is weak, we can write the denominator of 
[7.30] as: 

ω2 - ωr
2(1+jδ r) ω2−ωr

2 [7.31] 

The denominator of [7.30] is then real and we can write, for the real part of the 
HT (Hilbert transform): 

Re H (ω) = - 2
π
 PV [

u.Im[G(u)]du
u2 ω2

ωL  
0  +   u.Im(G(ω)]du

u2 ω2
ωU
ωL

 +  . ( ( )]
  ] [7.32] 

Let us designate BR(ω) and CR(ω) as the correcting terms corresponding to the 
first and third integrals in [7.32], respectively: 

BR (ω) = - PV  . [ ( )]  [7.33] 

CR (ω) = - 2
π
 PV 

u.Im[G(u)]du
u2 ω2

∞  
ωU

 [7.34] 

[7.33] and [7.34] are easily calculated by introducing [7.30] and [7.31] and using 
the Naeperian (natural) logarithm: 

                                   
3 Structural damping is commonly adopted in structural dynamics. However, it creates 
mathematical difficulties which will be discussed in the next section. 
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BR (ω) = -   ∑   .(  )( ) du [7.35] 

CR (ω)=  ∑   .  (  ) [7.36]  

Adding the two correcting terms: 

BR (ω ) + CR(ω) = (      ) [  Ln ( )( )( )( )                +   ( )( )( )(  ) ] [7.37]  

7.5.3.2. Imaginary part of Hilbert transform 

The two correcting terms are obtained in a similar manner: 

BR( ω) + CR(ω) =  ∑   . ( )  
                       + ∑  .  ( ) [7.38] 

BR(ω) + CR(w) = ∑   ( ) { [ ( )( )( )( )   
                                           +  [( )(  )( )(  ) ] } [7.39] 

When many modes are present in the interval, summation is to be made in [7.38] 
and [7.39], with subscript r varying from 1 to N. 

 
7.5.4. Fei’s correction 

Fei, in his thesis [FEI 83], suggested a correction method using an upper bound 
truncation and asymptotic behavior of the transfer function at higher frequency. The 
method is valid for viscous damping and gives rise to correcting terms which depend 
on the nature of the transfer function itself (receptance, mobility, inertance4). 

                                   
4 Receptance = displacement/force; mobility = velocity/force; inertance = acceleration/force. 
In dynamic tests, one can use G(ω) = displacement/displacement (or another parameter of the 
same nature). 
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7.5.4.1. Receptance correction 

Remember that receptance, by definition, is the ratio of displacement to force: 

G(ω)=∑  [7.40] 

where Ar is the real modal constant, ωr the eigencircular frequency, and Zr the modal 
damping. 

If damping is supposed to be weak and the truncation upper frequency different 
from the resonance frequency ωr then [7.40] can be simplified to: 

G (ω) = ∑  ;              [7.41] 

7.5.4.1.1. Correction terms for imaginary part of Hilbert transform 

Im[H(ω)] = H   [Re G(ω)] = 
2ω
π

Re(G(u)du
u2 ω2

ωU
0 + 2ω

π
Re[G(u)]du

u2 ω2
∞
ωU

 [7.42] 

Taking into account the approximation in [7.41]: 

CI (ω) = 
∑ ( ) [7.43] 

CI(ω)  =  ( ∑ ) [ Ln   -  ] [7.44] 

In [7.44], we can  write: 

Re G(ω) = ∑ Ar
ωU

2
N
r 1  

Then:∑ = ReG(ω) [7.45] 

Bringing [7.45] into [7.44]: 

CI(ω) =  ReG(ω)[ Ln  -  ]  [7.46] 
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7.5.4.2. Mobility correction  

By definition, mobility is the ratio of velocity to force. The transfer function is: 

G(ω) = ∑  [( 2 2) 2 ]  [ [7.47] 

with  

The following approximation is adopted: 

G(ω) (∑ A )   = A  [7.48] 

with  A= ∑  A  

7.5.4.2.1. Real part of Hilbert transform 

CR(ω) = - 2
π

Adu(u2 ω2)∞
ωu

 

CR ( ) = Ln [ ] [ [7.49] 

As approximation [7.48] is adopted  

Im G(ω)   ∑      =  [7.50] 

Then,  ∑ =A=  Im G ( ) 

CR(ω)= ImG( ) . Ln(  )  [7.51] 

with 0. 

7.5.4.3. Inertance correction 

Inertance is defined as the ratio of acceleration to force.  

G(ω)= ∑    ( )  [7.52] 
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R  ∞ 

G(ω) =  PV 
( )( )  + A  [7.59] 

where frequency ω tends to zero, and PV designates the principal value. 

PV
( )  = G(0) –A  [7.60] 

The Hilbert transform takes the value: 

H(ω =0) = PV 
( )  [7.61] 

Then 

A= G(0) - H(0) =-H(0) [7.62] 

 
Adding the two corrections presented in [7.56] and [7.62]: 

CI( ) =  - [ H(0) +j 
( )

Ln (  ) ] [7.63] 

 

Table 7.1 summarizes the main characteristics of the two correcting methods. 

 Receptance Mobility Inertance 

Simon’s correction Only mobility is considered. Modal parameters are to be evaluated 
first. Weak structural damping 

Fei’s correction One correction term 
for upper correction 

One correction term 
for upper correction 

One correction term 
for upper correction. 

Correction due to 
the behavior of 

inertance at infinite 
frequency 

Table 7.1. Comparison between Simon and Fei’s correction methods 
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7.6. Impulse response of a system. Non-causality due to measurement defects  

Hilbert transform, as we have seen, expresses causal properties of a physical 
system. It is surprising, a priori, that HT can detect in many cases non-causality in 
the system response which can be either linear or non-linear. The detected non-
causality of the system response is due to the defects attributed to the measurement 
techniques themselves, being either mechanical or electrical.  

7.6.1. Transfer function of a linear system 

Let x(t), y(t) be input and output signals. Let capital letters designate the Fourier 
transforms:  

F [x(t)]  = X(f) 

F [y(t)] = Y(f)  [7.64] 

 The transfer function is defined, as the star designates the conjugate quantity: 

TF(f) = ( )( )  =   ( ). ( )( ) ( )                                          [7.65] 

TF(f) = 
 ( )( )  = G(f)                                            [7.66] 

We know that linear system obeys Boltzmann’s superposition principle: 

y(t) =  ( ) ( )                                   [7.67] 

Applying the Fourier transform to [7.66], we obtain: ( )( )  =   ( ) =  ( )                                  [7.68]  

Taking the inverse Fourier transform of [7.67] we obtain the impulse response:  

h(t) =  F -1[H(f)]  = F -1[G(f)]                                         [7.69] 



The Frequency Hilbert Transform     173 

h(t) must satisfy the causality principle applicable to any realizable system. 

h(t)    0            for   t 0                                                          [7.70]  

h(t)  0             for    t 0                                                      [7.71] 

Application of inverse Fourier’s transform to [7.71] hypothesizes that the system 
is linear. Unfortunately, the system submitted to a dynamic test might have a non-
linear behavior. The non-linearities are hidden and the output signal y(t) is a sum of 
linear and non-linear time responses: 

y(t)   =      y1(t)     +           y NL (t)              [7.72] 

           total         linear              all non-linear terms 

In [7.64] and [7.65], y(t) and Y(f) is the Fourier transform concerning the global 
response of the system. The Fourier transform is applied to non-linear time 
responses as well. 

If there is no attempt to extract linear term y1 (t) from the total response, there is 
an error in measurement. For simplicity, let us hypothesize that the second order 
time response is described by5: 

yNL(t)≈ y2(t)= [ ( , )x(t- ) ( ) ]   [7.73] 

It is the second order Volterra functionals which extend Boltzmann’s principle to 
a second order non-linear system. 

Applying a one-dimensional Fourier transform to [7.73]: 

F1 [ y2(t)] =   [ ( , ) ( ) ( ) ]  

Y2
(1) (f)  = ( , )X(f1) X(f- f1) df1                         [7.74] 

The superscript between brackets with number 1 designates the one-dimensional 
Fourier transform6. 

                                   
5 Volterra functional series makes it possible to express the non-linear responses as a sum of 
functionals of various orders under the form of multiple integrals with many time variables.    
6 For the demonstration see Bendat [BEN 90]. 
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The inverse Fourier transform from [7.67] is: 

 h(t) = h1(t) + F -1 [ Y2
(1)(f) / X(f) ]+ other terms                 [7.75] 

total       linear               non-linear 

In the second member, extraneous terms are the errors in computation including 
non-causality of the total impulse response. 

It is consequently interesting to compute the impulse response from the transfer 
function. If for negative time t 0 and the impulse response is non-zero, we shall try 
to exploit this characteristic in the following sections. 

7.7. Summary of principal result in sections 7.5 and 7.6  

− Hilbert transform (HT) derived from Cauchy’s integrals makes it possible to 
evaluate the real part of HT of transfer function G(ω) from the imaginary part of 

G(ω) and imaginary part of HT applied to the real part of G(ω). 

− Comparison between Hilbert transform (H) and the transfer function is 
interesting: 

Re[H{ Im G(ω) }] and  Re G(ω) 

Im[H { Re G(ω)}] and Im G(ω)  

The comparison makes it possible to detect some hidden non-linearities of the 
system or defects of  measurement set-up. 

− Inverse Fourier transform of Hilbert transform:  

F-1 [ H [G(ω) ] gives he(t)                               [7.76] 

which is to be compared with the first order impulse response of the system: 

F-1 [ G(ω) ] = h(t)                                  [7.77] 

If [7.76] and [7.77] are identical, we can ascertain that the system is linear. 
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 If   he(t)   h(t) , and both contain a non-causal part, in the next sections we shall 
present some methods to improve transfer function by modifying impulse responses 
hs (t) and h(t) to linearize the system or to improve the measurements. 

7.8. Causalized Hilbert transform7 

If in the time domain we set to zero the non-causal part of h(t), we create a new 
system that is physically significant, the modified impulse response hc(t) is 
“causalized”.  

Let g(t) be the inverse Fourier transform of the transfer function: 

g(t) =  F -1[G(f)]                                                            [7.78] 

g(t) includes a non-causal part:  

g(t) ≠ 0 for t 0                                           [7.79] 

We proceed to a “causalization” of g(t) by multiplying with unit step function 
(which is identically zero for negative time): 

Gc (t) = g(t) . U(t) = hc (t)                                            [7.80] 

Taking now the direct Fourier transform of h c (t): 

F [ h c(t) ]  = H c (f)                                                           [7.81] 

H c (f) possesses analyticity properties in the frequency complex domain Hc(ω). 

To illustrate the interest of hc(t) and Hc(f), let us examine  Figure 7.3 concerning 
a one-degree-of-freedom system with a back-lash. The Nyquist plots present 
respectively the frequency response G(f), the extended Hilbert transform and the 
causalized Hilbert transform. We notice that the Nyquist (Argand) plot of the last 
one almost approaches a circle; see Appendix 7B. 

 What we have presented above might present a practical interest in 
viscoelasticity with hidden non-linearities. We shall return to this problem when 
dealing with the practical problem of viscoelasticity in Chapter 8.  
                                   
7 We suggest this vocabulary to designate a mathematical method based on Hilbert transform 
to suppress the non-causal part of the linear component. 
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7.9. Some practical aspects of Hilbert transform computation 

 

Figure 7.3. One-degree-of-freedom system. Non-linear system with backlash: 
 (a) measured transfer function G(f); (b) causalized Hilbert transform 

Succinctly we will present some practical aspects concerning this transform in 
the framework of signal processing. In the preceding sections we have presented the 
computation of Hilbert transform in the frequency domain. The inverse Fourier 
transform applied to transfer function G(ω) enables us to obtain the impulse 
response h(t). It gives rise to classical programs which can be found in any Fourier 
analyzer or computer codes. 

However, examination of h(t) for negative time (t 0) is particularly interesting. 
As we have presented above, suppressing the non-causal part of h(t) is the way to 
obtain causalized impulse response hc(t). This operation does not consist of setting 
to zero for t< 0. In signal processing, it introduces sharp discontinuities in h(t) and 
there are problems when we return to the frequency domain by direct Fourier 
transform. This problem is very well known when we have to deal with a signal 
record sample with discontinuities at both ends. A time window is then necessary. 
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7.9.1. Hilbert time window [FEI 83] 

 Without going into detail, we will mention the main ideas and successive steps 
to solve practical problems of signal processing. The bibliography at the end of this 
chapter presents principal contributions in this field by researchers in our laboratory 
in France and those who have been working with Tomlinson’s team in England 
since 1981. 

7.9.1.1. Ideal time window 

For the moment let us examine the continuous time signal corresponding to what 
we have presented above.  

 Suppressing the non-causal part of h(t) signifies that we multiply the original 
signal with the function: 

2U(t) -1  = f(t)                                                                  [7.82] 

hi (t) = h(t) [2U(t) -1]                                                  [7.83] 

U(t) designates the Heaviside step function: 

U(t) =1                    for t 0 

U(t) =0                    for  t 0                                       [7.84] 

The Fourier transform of [7.82] is:  

Hi (f )  = G(f)  Pf                         [7.85a] 

and Pf (  ) =    F [2U(t) -1]                 [7.85b]  

   designates a convolution, Pf designates a pseudo-function, f frequency, G(f) the 
transfer function of the system.  

7.9.1.2. Hilbert time window in the framework of digital signal processing 

 Practically, the signal is digitized and decomposed into a collection of samples. 
Figure 7.5 shows, in the time domain, the representation of the ideal Hilbert time 
window. 
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Figure 7.4.  (a) Impulse function h(t) with non-causal part (t 0);  (b) ideal Hilbert time 
window for continuous signal 

 

Figure 7.5. In digital signal processing, the Hilbert time window is rendered artificially 
periodic by considering a collection of samples. Each sample has a length T 

Figure 7.5 shows that signal presented in [7.4b] is transformed into periodic 
square signal: 

1    with   kT t kT
2

f(t) 0   with   t = kT, (k+1)t / 2
-1  with   kT-T / 2 t kT

T⎧ ≤ ≤ +⎪
⎪

= ⎨
⎪ ≤ ≤⎪
⎩

 [7.86] 
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The Fourier transform of f(t) is shown to be: 

   F(k) = -j cotan  ( with k odd)                                      [7.87] 

where k is the discretized frequency variable. 1024 represents the maximum value of 
points adopted for calculation in the binary system 2 n with integer n. 

 Clearly this function F(k) is different from:  

F(k) =    in equation [7.85] representing the Fourier transform of [7.85] 

7.9.1.3. Optimized Hilbert time window and circular convolution problem 

There are additional problems to be solved, i.e.: 

− the replacement of ideal time window (equation [7.83]) with an optimized time 
window which avoids the two sharp discontinuities at the time origin and at the end 
of a sample;8 

 

Figure 7.6. Improved version of Hilbert time window which has no discontinuities at the time 
origin and at the end of the sample 

− The circular convolution in the frequency domain is due to the fact that the 
Fourier transform is applied to a succession of finite length samples9. 

                                   
8 Sample here designates a portion of time recording of a response in signal processing. 
9 In signal processing we call it discrete Fourier transform (DFT). 
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It can be shown [FEI 86] that the optimized time window is represented in 
Figure 7.6. Only one half of the optimized time window is represented for time  
t 0. A mirror symmetry is adopted to complete the figure in the time interval with 
respect to the time origin: 

T/2     t      +T/2 

7.9.1.4. The circular convolution  

This is due to the use of the fast Fourier transform applied to a succession of 
finite length sample. Relation [7.85a] indicates that in the frequency domain 
evaluating the Fourier transform is equivalent to a convolution. However, the ideal 
Hilbert time window is to be replaced by the optimized time window presented in 
Figure 7.7 and whose Fourier transform is indicated in equation [7.87]. 

 

Figure 7.7. Fourier transform of the optimized Hilbert time window adopted in [7.88] 

Instead of [7.87] we adopt: 

Hopt (f) = G(f) (-j cotan  ) [7.88] 

In the second member, the bracket represents the Fourier transform of the 
optimized time window represented in Figure 7.7. 
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7.10. Conclusion  

Causality is a principle which characterizes real physical systems. 
Mathematically, Cauchy’s integral in the complex domain allows this principle to be 
exploited. The Hilbert transform for frequency has been used to complete missing 
(or wrong) information in electric and/or ultrasonic measurement.  

In the domain of the characterization of materials by dynamic methods, this tool 
has proved to be efficient in detecting hidden non-linearities and, as such, it merits 
the attention of specialists in this field. 

Signal processing invades all scientific domains. In this respect, dynamic tests on 
samples to evaluate dynamic moduli (or stiffness coefficients) are just some 
examples amongst others. Recent results obtained in computer programming to 
obtain Hilbert transforms of digitized signals in the frequency domain are proving to 
be efficient when the non-linearities are hidden and spoil the interpretation of 
dynamic functions such as the transfer functions. One of the properties of this 
transform is that it does not require knowledge of the nature of the non-linearities 
themselves.  
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7.12. Appendix 7A. Line integral of complex function and Cauchy’s integral 

Let us take the following modified frequency complex variable10 

z =  + j  = x + j y [7.A.1] 

where  is the circular frequency and  the damping coefficient. 

7A.1. Analyticity of a function f(z) of complex variable z  

A function f(z) is analytic if it has definite derivatives in a region D and if it has 
a single value in D. 

The integral along a contour C is broken down into: ( )  = ( )  + j ( + )  [7.A.2] 

                                   
10 Readers will notice that there is another way to define the complex variable z = + ,  
commonly used in electricity and physics, with p = j  used as Heaviside’s notation. 
Physically, damping must be negative for a stable system. It depends on the method of writing 
the exponent of exponentials, with or without j= √ 1. 
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Real and imaginary parts of the function f(z) are: 

f(z) = u + j v [7.A.3] 

If the function derivative has only one limit, in [7.A.2], we must take the Cauchy 
Riemann condition: 

 =   ,  =  [7.A.4] 

If f(z) is analytic in D, the integral  is independent of the path. ( )  = F(z2) – F(z1) [7.A.5] 

  The integral calculated along a closed contour C is zero: ( )  =0 [7.A.6] 

This is Cauchy’s integral formula.  

7A.2. Expression of Cauchy’s integral of the function f(z)/(z- ) 

This function has a pole at z = . Let us choose two contours surrounding this 
pole. The domain delimited by contour C and   is consequently analytic, inside the 
domain (Figure 7A.1).  

 

Figure 7A.1. In a complex frequency plane, two contours C and Cε are drawn with a pole 
α at the center of a circle Ce whose radius is ε 
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Z(s) = ( )  - j ( )  = Re (Z) +jIm(Z) [7.B.2] 

If = 0  the pole is on the j axis. The real part in [7.B.2] is apparently zero. In 
reality this real part is a bell shaped curve. Integrating under the curve, Figure 7B.1, 
we obtain: ( ) = 1 2+ 2+∞∞  = 1  ∞+∞ = 1 [7.B.3] 

when  0 

Re [Z( )] becomes an unit impulse ( ). Evaluating Z(s) for s = j  yields: 

Z(j ) =  ( ) +  [7.B.4] 

 

Figure 7B.1. Integration under the bell shaped curve, equation [7.B.3] 

Similarly if s =  j     

Z(s) =   ( +  )  [7.B.5] 

We can build an arbitrary function by using a collection of impulses, Figure 7B.2. 
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Figure 7B.2. Integration to obtain the area under the curve 

The pulse area of an element is R( ) dω , where R( ) designates the real part. 
Using [7.B.5]: 

dZ(s) =  
( )  (  + ) = ( )( )  [7.B.6] 

Consequently, we show that the real and imaginary parts of the complex function 
[7.B.4] constitute a conjugate potential. Thus the conjugate of a unit impulse located 
at     =  is equal to   (  ) 

Let us take an analytic function  

G(j ) = ( )+ j ( ) [7.B.7] 

If integration is effected on the element  ( )( )  , the imaginary part is obtained: 

( ) =  1( )( )+∞∞  [7.B.8] 

Using Cauchy-Riemann equation: 

 =    ; =  [7.B.9] ( ) =  ( )( )  [7.B.10] 

[7.B.8] and [7.B.9] match equations [7.9] and [7.10] exactly.  




