
Chapter 8 

Measurement of Structural Damping  

8.1. Introduction 

Material damping and structural damping concerning the sample as a whole 
cannot be dissociated from the dynamic responses of the sample. The question we 
try to present in this chapter is how to relate these two coefficients with the objective 
of evaluating material damping without recourse to a solution of the viscoelastic 
inverse problem? 

In some cases, it is possible to find an explicit relationship between the material 
damping coefficient and the sample damping coefficient, particularly around 
resonance frequency.  

Complex modulus is, in many cases, related to sample structure by simple 
relationships at and around resonance frequencies of the transfer function1. In these 
regions, the transfer function can be simplified and the interest of the method 
presented here is that it requires less sophisticated methods, simple apparatus and 
computer codes. As the measurements and interpretation are restricted to dynamic 
response around resonance frequencies, the results obtained are not as complete as 
those obtained by solving the inverse problem directly using the whole complex 
transfer function using all the information contained in real and imaginary parts or in 
polar representations (gain and phase). 

                                   
Chapter written by Jean Tuong VINH 
1 Defined as the ratio of output signal over the input signal. 
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The method presented in this chapter is applicable only for low damping 
materials (tan δൎ 10ିଶ). It constitutes a particular case in the solution of the inverse 
problem. 

8.1.1. Material damping  

There are two methods to evaluate damping coefficients of materials in 
viscoelasticity. The first is derived from a long (or short) transient method which 
allows creep (or relaxation) curves versus time to be obtained. Appropriate formulae 
or Fourier transforms are then used to obtain complex viscoelastic moduli (or 
compliances) versus frequency; see [FER 70], [VIN 67]. 

The second method is directly applied in the frequency domain. By vibrations of 
rods (or other structures), the damping capacity of a material is deduced using the 
dynamic responses with one or many resonances. Using this method, one obtains a 
reduced number of damping coefficients at the eigenfrequencies of the sample.2 

The damping coefficient of the structure is not the material damping coefficient 
which is intrinsically attached to the viscoelastic material itself. This problem 
deserves some preliminary restatement. 

If the sample is considered a spring dashpot and mass in parallel, the mechanical 
structure is considered a single degree of freedom system (SDOF) with mass, 
damper and stiffness. In this case, the experimenter does not use the partial 
derivative equation of motion but a simple equation of motion, in which the time 
variable is the only variable.  

This hypothesis is a priori attractive in application and is often used in rheology. 
However, the range of frequency must be limited to lower frequencies, and often 
below the first resonance frequency. 

8.1.2. Damping coefficient of material evaluated in harmonic regime  

The second class of methods uses vibrations of a sample over a large frequency 
range.  

Rod vibrations are governed by partial differential equations of motions with one 
(or more) space variables and a time variable. 

                                   
2 This method is applicable in a case where the expression of the transfer function versus the 
eigenvalues lends itself to an expansion of the characteristic functions into series. 



Measurement of Structural Damping     189 

 

Figure 8.1. Damping capacity of material is evaluated via the structural damping.  
Successive steps of calculations 

The stationary waves in bounded media give rise to eigenvalues βi which depend 
on boundary conditions imposed on the sample. 

The elastic modulus is deduced via the closed form expression of the transfer 
function. The correspondence principle permits a complex transfer function versus 
complex eigenvalues to be obtained.  

Consequently, there are two steps in the calculation of material damping 
coefficients (Figure 8.1). We take the closed form expression of the transmissibility 
function into account, including eigenvalue βi

* as parameters.  
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In the domain of modal analysis applied to mechanical structures, all kinds of 
vibrations (impact, white noise, sinusoidal, etc.) are used. Tremendous progress has 
been obtained, not only in the equipment to produce a great variety of excitations 
but also in the analyzers to obtain, by signal processing and fast Fourier transforms, 
a variety of functions with one, two or more input signals. In the field of signal post- 
processing, a great number of computer codes are available in structural dynamics.  

Aside from the complex transfer function (Figure 8.1) used to solve the inverse 
problem, we will try to examine the possibility of simpler methods, offered by 
recent progress in the domain of structural dynamics. 

The complex transfer functions (see [CHE 10]) corresponding to various kinds of 
rod vibrations, in the perspective to obtain material damping,  takes into account the 
possible sets of boundary conditions adopted by the experimenters.  

The first part of this chapter is devoted to an overview of available methods to 
obtain structural damping. In the second part we will present some simple methods 
to evaluate material damping coefficients. 

8.2. Overview of various methods used to evaluate damping ratios in structural 
dynamics  

8.2.1. Damping ratio Z deduced from one isolated resonance curve 

Let us recall briefly the definition of Z for a single degree of freedom system 
(SDOF): 

The equation of motion of the mechanical system is 

m 
ௗమ௬ௗ௧మ    + c ௗ௬ ௗ௧    + k y = f(t) [8.1] 

in which m, c and k designate mass, damping, and stiffness, respectively, and f(t) is 
applied force. In a harmonic regime, ω being circular frequency: 

f(t) = F0sinωt [8.2] 

The transfer function H is defined as:  

H (߱) = 
ଵሾ (ିఠమ௠ା௞)ା௝௖ఠሿ   = ௒ி  [8.3a] 
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with Y and F being the Fourier transforms of y(t) and f(t) respectively.  

The absolute value of H(߱) is: │H(߱) │   = ଵ௠ሾ( ೖ೘ ିఠమ)మ ାቀ೎ഘ೘  ቁ మ ሿ భ/మ    [8.3b] 

k/m is recognized as the square of undamped natural circular frequency of the 
system: 

 ௞௠ = ߱଴ଶ  [8.4] 

│H (߱)│ ൌ  ଵ௠ሾ(ఠబమିఠమ)మା௖మ ഘమ೘మ ሿభ/మ  [8.5] 

The damping ratio Z is defined as: 

Z =  ௖ଶ௠ఠబ [8.6] 

Bringing [8.6] into [8.3] and setting m as a factor in the denominator: 

[H(߱)]2 = 
ଵ௠ሾ ିఠమାఠబమା௝ଶ௓ఠఠబ   [8.7] 

This is the canonical form of a second order equation in harmonic regime of a 
SDOF mechanical system. 

Before presenting various methods for the calculation of Z, let us remark that Z 
is a dimensionless coefficient and the ratio c/m has the dimension of a circular 
frequency.  

8.2.2. The half power bandwidth 

The half power bandwidth is extensively used in electrical engineering to 
characterize electrical elements as an inductance, L, for example, with its own 
resistance R. An apparatus used in this field, called a Qmeter, permits the quality 
coefficient to be evaluated: 

Q = 
ோ௅ఠ  
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The coefficient Z is equal to half of the inverse of Q:    ଵଶொ   = Z 

Electrical engineers and electronics experts know that the aforementioned 
definitions are only valid if the quality coefficient Q is at least of the order of 100.  

At resonance frequency ωr , the transfer function H* reaches its maximum value 
H*(ωr) which is taken as a reference value. By varying the angular frequency in such 
a manner that equation [8.8] is satisfied (with the corresponding power3 being the 
half value of this power at resonance frequency), we obtain two frequencies which 
delimit the bandwidth: ߱௠௜௡  ൑  ߱  ൑   ߱௠௔௫ 

│ H ( ߱ ൌ (߱௠௜௡   or ߱௠௔௫ ) │ଶ  = ଵଶ │ H (߱௥) │2 [8.8] 

The bandwidth corresponds to the relative amplitude of 1/ √2 = 0.707 with 
respect to the value of │ H (߱) │at resonance frequency ߱௥. 

8.2.2.1. Amplitude of transfer function at resonance frequency ωr  

Equation [8.7] is rewritten as: 

│ H ( ߱ )│ = 
ଵ௠│൫ିఠమାఠబమ൯ା௝ଶ௓ఠఠబ│ = ଵ௠஽ 

with 

 D = [ ( ߱଴ଶ- ߱ଶ)2 + 4Z2߱଴ଶ߱ଶ ሿଵ/ଶ [8.9] 

The derivative of [8.9] equalized to zero gives: ߱௥௘௦ଶ  = ߱଴ଶ   (1-2Z2) [8.10] 

                                   
3 The power, defined in the sense of signal processing, corresponds to the square of transfer 
function │ H(߱)│2. 
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Figure 8.2. The resonance curve of an SDOF mechanical system │ܪ(߱)│.  
The bandwidth corresponds to the relative amplitude of 1/√2 =0.707 with respect to the value 

of │H(ωr)│at resonance frequency ωr  

8.2.2.2. Frequency bandwidth 

The value of Dres
2 at resonance frequency ߱ ൌ ߱res is obtained by the time 

derivative of [8.9]:  

D2 = Dres
2= [ ߱଴ଶ - ߱଴ଶ (1- 2Z2) ]2 + 4Z2 ߱଴ସ (1- 2Z2) 

Dres
2= 4Z2߱଴ସ (1- Z2)  [8.11] 

The amplitude of │H ( ω )│ at the limits of the bandwidth corresponds to two 
times Dres

2: 

DBW
2 = (ω0

2−ω2)2+ 4Ζ2ω0
2ω2 = 8Ζ2ω0

4(1−Ζ2) [8.12] 

Solving equation [8.12], we obtain: 

ω2 = ω0
2(1−2Ζ2) േ   2Ζω0

2(1− Ζ2)1/2  

The difference between the two roots ωmax
2

 and ω min
2 is: 

ωmax
2 - ωmin

2 = 4Z ω0
2 (1−Ζ2)1/2    or  

ωmax -  ωmin = 4Z ω0
2(1−Ζ2)1/2 / ( ωmax   +  ωmin) [8.13] 
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8.2.2.3. First approximation for the damping ratio Z  

ωmax   +   ωmin ؆ 2ω0(1−2Ζ2)1/2 [8.14] 

The relative bandwidth is used to determine Z: 

( ωmax  −   ωmin  ) / [ω0(1−2Ζ2)1/2] ؆  2Z (1+Z2/2) [8.15] 

The applicability of this equation depends on the value of Z itself. In practice:  

Z ൑  5.10-2 [8.16] 

For damping coefficients exceeding this value, higher approximation formulae 
are necessary. 

8.2.3. Polar representation of transfer function: Nyquist-Argand’s plot  

Polar coordinates are widely used for an SDOF system. But the majority of 
publications in the technical literature are devoted to systems with low damping 
whose value is indicated above, in [8.16]. 

This section concerns medium and high values of the damping ratio:4 

5.10-2 ൑   Z    ൑   1 to 5 [8.17] 

Presented below is the currently accepted position in structural dynamics (see 
inequality [8.16]) so that the resonance frequency ωres is assimilated to ω0 (equation 
[8.10]). 

The absolute value of H(ω ) is rewritten as5: 

│ H ( ߱) │= [m߱଴ଶ│ (1-β2)+2j Z β│ ]-1/2 [8.18] 

with β = 
ఠఠబ , ߱଴  , and undamped natural frequency:  ߱଴ଶ = ௞௠ . 

                                   
4 Special composites, elastomers and solid propellants have high damping capacity, say, tan δ 
which can exceed 3. 
 used here is the notation adopted in structural dynamics and is not the eigenvalue ߚ 5
commonly used for the vibration of rods. 
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Figure 8.3. Polar Argand–Nyquist plot of dimensionless response of  
an SDOF system; see equation [8.21] 

In Figure 8.3, H*(ω ) is represented in dimensionless form: 

H* ( ω ) =     Φ [8.21] 

with D = [ (1-β2)2+4Ζ2β2]1/2    and Φ = tan-1 [ -2Zβ /(1−β2)], β = ω/ω0. 

The dimensionless polar coordinate is ρ /ρ0=  D-1/2, ρ0 =mω2.  

For Z = 0.1,  the angle Φ at resonance frequency is −84° 231 

For Ζ=0.5 the angle Φ resonance = -54° 133 

Figure 8.4 shows the frequency responses (in absolute values) which becomes 
more and more dissymmetric with respect to resonance frequency for high damping. 
The approximation in [8.20] becomes problematic, taking into account the adopted 
value of (ωmin+ ωmax) = 2ω0. 

In polar Argand’s representation the circle radius becomes increasingly small 
with increasing damping coefficient Z. Briefly we will list the shortcomings of polar 
Argand’s method: 
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– For high structural damping, accuracy of the method is poor. 

– Relationship between material damping and structural damping depends on 
boundary conditions imposed on the sample and also on the type of vibration and the 
adopted hypothesis concerning displacement field. 

– In the case where a closed form relationship between these two aforementioned 
damping coefficients, characteristic functions (which are a combination of 
trigonometric functions and hyperbolic functions) requires expansion into series and 
often simple relationships are obtained only in the case of low material damping  
tan ߜ   

– High damping material gives rise to a large bandwidth, as shown in Figure 8.4, 
in which constancy of material damping versus frequency is not ensured. Utilization 
of this method becomes problematic. 

– In many circumstances, complete polar representation of transfer function, 
Figure 8.5, includes many loops which are closed and the accuracy to obtain circles 
is poor. This is due to the truncated information obtained for each circle.   

8.3. Measurement of structural damping coefficient by multimodal analysis 

Our interest is focused on measurement of viscoelastic characteristics of materials 
over a large range of frequencies including a large number of vibration modes. 

 

Figure 8.4. Frequency response│H(ω)│ versus dimensionless 
frequency β=ω/ω0, and ω0  undamped natural frequency. H(ω) is represented by the 

dimensionless coordinate Hr(ω)=H(ω)/H(ω=ω0). The “phase resonance” with Re(H(ω0 )= 0.  
The amplitude resonance depends on damping ratio Z=ω0(1−2Ζ2)1/2 
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In the dynamics of structures, over the last three decades, a great deal of research 
has been devoted to the problem of modal analysis extraction techniques which 
merit the attention of those experimenting in linear viscoelasticity. The technical 
literature is very prolific in this respect. We have tried, in this chapter, to mention 
the principal methods which are widely used in structural dynamics. Our perspective 
is oriented towards possibilities of application to material characterization.  

8.3.1. Overview of modal parameter extraction methods 

There are two types of method: frequency domain methods and time domain 
methods. 

8.3.1.1. Frequency domain methods and the circle fit technique  

Systems responses are obtained by various excitations: sinus, random and 
impact. The complex transfer function is evaluated in gain and phase or in real and 
imaginary parts. 

Modal extraction is based on Klosterman’s work [KLO 71]. Argand-Nyquist’s 
graphical representation is used; see Figure 8.5. The graphical representation shows 
a certain number of loops which are more or less partly opened. The problem is to fit 
a circle on each loop and the characteristics of the circle give rise to the frequency 
dependent damping coefficient Z and the eigenvalues of the modes. The circle fit 
technique gives rise to a least square error algorithm, which optimizes modal 
parameters [SDR 80]. This method is widely used in industry but is applicable to 
damping ratio measurement only in the case where Z ൑ 5.10-2. The same remarks 
represented in the preceding section are applicable here. 

 

 

Figure 8.5. Nyquist’s plot of the transfer function; ω being the parameter 
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8.3.1.2. Frequency domain method using rational fraction polynomials 

The transfer function is expressed as a quotient of two polynomials as: 

H (ω) = 
∑  ௔ೖ(௝ఠ)ೖమಿషభೖసబ∑  ௕ೖమಿషభೖసబ (௝ఠ)ೖ [8.22] 

The error function em is defined as the difference between the analytical transfer 
function defined in [8.22] and the experimental transfer function He (ω): 

em = 
∑ ௔ೖ (௝ఠ)ೖమಿషభೖసబ∑ ௕ೖమಿషభೖసబ (௝ఠ)ೖ  - He(ωm) [8.23] 

The gradient method is used to minimize the error vector, as one has to deal with 
ill-conditioned matrices. 

After obtaining coefficients of the rational fraction, modal parameters are 
evaluated. The roots of the denominator root or poles contain the values of the 
material frequency and damping ratio.  

8.3.1.3. Time domain method using Prony’s complex exponential series 

A multi degree of freedom system (MDOF) is defined as a sum of N transfer 
functions of single degree of freedom systems (SDOFs). The transfer function is 
represented as: 

Hik(ω) = 
௒೔(ఠ)ிೖ(ఠ) =∑ ஺೔ೖೝఠೝ௓ೝା௝(ఠିఠೝඥଵି௓ೝమ)ே௥ୀଵ   + 

஺೔ೖכೝఠೝ௓ೝା௝(ఠାఠೝඥଵି௓ೝమ )     

 [8.24] 

The star superscript designates a conjugate quantity. Another way of writing 
[8.24] is to collect the complex conjugate poles in a unique set of a system of 2N 
degrees of freedom:  

H ik ( ω) = ∑ ஺ೕೖೝఠೝା௓ೝା௝(ఠିఠೝ)ଶே௥ୀଵ  [8.25] 

߱ᇱ   = ߱௥ඥ1 െ ܼ௥ଶ  ߱௥ାேᇱ = - ߱௥ᇱ   [8.26] 

כ௝௞ܣ = ௝௞௥ାேܣ    
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The complex exponential method works with the impulse response of the system 
obtained by inverse Fourier transform of the transfer function [8.22]:   ௝݄௞  (t)=∑ ௝௞௥ଶே௥ୀଵܣ   ݁௦ೝ௧  [8.27] 

An example of impulse response function is represented in Figure 8.6. The total 
time duration can be evaluated by the impulse response function. It can be divided 
into intervals with ∆t = value of the time increment. 

t0=0 , t1 = ∆t , t2= 2∆t, ……tL= L∆t [8.28] 

 

Figure 8.6. Impulse response function of a multimodal system 

Let us adopt the following notations: 

h0 = h(0) = ∑ ௥ᇱଶே௥ୀଵܣ  

h1 = h (∆t) = ∑ ௥ ᇱଶே௥ୀଵܣ ݁௦ೝ∆௧    

. . . . . . . .                                                 [8.29]     

h L = h(∆t) =  ∑ ௥ᇱܣ ݁௦ೝ௅∆௧ଶே௥ଵ     

The problem is to evaluate all the components in [8.29], the first members h1 
being known, the factors in the second member: the coefficients ܣ௥ᇱ  and the 
exponentials are evaluated by an algorithm using a polynomial of order L, with a 
real coefficient β called an autoregressive coefficient [VOL 82]. 
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When the exponential terms have been evaluated, the exponent sr ∆t is obtained. 
The circular natural frequency and damping ratio of r mode are calculated:  

ω r = s r     ;   Z r =  
ଵ  ଵାሾ಺೘(ೃೝ )ೃ೐(ೃೝ ሿ మ        with Rr = sr ∆t   [8.30] 

8.4. The Hilbert envelope time domain method  

This method permits the envelope of the impulse response to be extracted from 
exponentially decreasing oscillations. The Hilbert transform of time is extensively 
used in digital signal processing. It is described by the following equation, where the 
star represents a linear convolution, and H and F are the Hilbert transform and 
Fourier transform, respectively: 

H [x(t)] = XH (t) = - 
ଵ గ௧   * x(t) = F -1[ F (jω) . X(jω)] [8.31] 

The Fourier transform of -1/πt is j(sign ω), which is +j for positive ω and –j for 

negative ω. Consider the Hilbert transform of time, in which an even function is odd 
and the Hilbert transform of an odd function is even. 

The practical interest of the Hilbert transform of time is to transform negative 
sine into cosine and negative sine into a cosine component. 

The original signal and its Hilbert transform are combined to form an analytic 
signal:    

x(t) = x (t) – j xH(t)    [8.32] 

8.4.1. The practical interest of the Hilbert transform of time 

The magnitude of the analytical signal is the envelope of the original time signal. 
The envelope is plotted on a decibel scale, so that the graph is a line. 

For an SDOF system: 

x(t) = A ݁ି௓௧ఠబ[sin(ω01√ݐ െ ܼଶ )]   [8.33] 
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Its Hilbert transform of time is : 

Xn(t)= ܣ ݁ି௓ఠబ௧ሾcos൫߱଴ݐඥ(1 െ ܼ ଶ൯ሿ    [8.34] 

The analytical signal is: 

xA(t) = ି݁ܣ௓ఠబ௧ [sin(߱଴t√1 െ ܼଶ) + cos(߱଴t√1 െ ܼଶ)]   [8.35] 

The magnitude of the analytical signal is: 

│ xA (t) │ = A ݁ି௓௧ఠబ[ sin2ω0t√1 െ ܼଶ + cos2ω0t√1 െ ܼଶ ] 

│ xA (t) │ = A݁ି௓௧ఠబ [8.36] 

Consequently the method improves the calculation accuracy for Ζ with the 
condition that each mode must be isolated from the other in a frequency domain. If 
the frequency interval chosen is too large, the proximity of other modes has an 
influence on the logarithmic decrement with eventually parasitic oscillations. Figure 
8.7 gives an example of the Hilbert envelope method, after Iglesias [IGL 00]. 

 

Figure 8.7. Hilbert transform of time applied to an impulse response function.  
Each mode is separated and treated in the time domain. A natural logarithm is 
 applied to the envelope of the impulse response. Oscillations on the curve are  

due to an isolating window, after Iglesias [IGL 00] 
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8.5. Detection of hidden non-linearities 

In Chapter 7, the Hilbert transform for frequency was presented. Its interest, for 
damping ratio estimates, resides in the fact that it does not require any a priori non- 
linearity models.  

The non-causal part of the frequency response can be detected by evaluating the 
positive and negative parts of the Hilbert transform which permit the experimenter 
to evaluate the degree of pollution of the frequency response by the following 
possible causes: 

a) non-linearities from the transducers; 

b) non-linearities due to the high level of force applied to the sample. 

In a case where non-linear behavior of the viscoelastic sample is important, the 
problem must be examined in another framework, e.g. looking at the non-linear 
behavior of the material using the Volterra functional series. 

8.6. How to relate material damping to structural damping? 

So far, we have presented the damping ratio of a sample (considered to be a 
mechanical structure) being evaluated. But how do we relate material damping to 
structural damping? In a previous publication [CHE 10] we have addressed this 
problem directly, considering material damping versus frequency. In this chapter, 
one parameter of the material (the damping coefficient) is directly deduced from 
structural damping, and an estimation of the complex modulus at and around 
resonance frequency is made.  

Our proposed process to solve this is as follows: 

a) from the transfer function expressed in a closed form expression, an attempt is 
made to relate material damping to sample (structural) damping for each 
eigenmodes; 

b) if possible, for low material damping (tan δ ≈ 10-2), a limited expansion of 
hyperbolic and trigonometric functions used in the transfer function is effected 
around the resonance frequency; 

c) evaluation of tan δ is effected via the structural damping ratio Z.  
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8.6.1. Example: flexural vibration of a clamped-free Bernoulli-Euler’s rod  

The transmissibility of the rod is: 

H(ω) = 
஼௢௦ ఉכାୡ୭ୱ୦ ఉכଵାୡ୭ୱ ఉכ.௖௢௦௛ఉ[8.37]    כ  

The force excitation is applied at the clamping end, whilst the other end is free. 
In the case of a low damping material (tan δ ≈ 10-2) the eigenvalues are, in practice, 
those obtained in an elastic regime. This corresponds to the poles of [8.37]: 

β01 = 1.875104  ;  β02 = 4.694091  ;  β03 = 7.855  ;   β04= 10.996    [8.38] 

β0N ؆  (ଶ௡ିଵ)గଶ     with n ൐ 4 

Bernoulli’s equation permits the relationship between a complex wave number 
and a complex Young’s modulus6 to be obtained: 

E* = 
ఠమ௅రఘௌఉכరூ  [8.39] 

where L is the rod length, S the cross-section area, ρ density, ω circular frequency, I 
cross-section inertia with respect to the neutral line. The star designates a complex 
quantity. 

8.6.1.1. Sharpness of the resonance curve  

In the case of low material damping, the imaginary part of complex β* varies 
very slowly and it is reasonable to hypothesize that this imaginary part is practically 
constant; and we write: 

βk
∗(ω) ؆ βok (1-jtan δE) [8.40] 

β0k is the wave number at resonance for the kth mode (equation [8.38]). 

                                   
6 Imaginary part of Young’s modulus is positive while the imaginary part of β* is negative 
after [8.39]. 
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The first part of [8.45] being obtained by experiment, this equation allows β2 to 
be obtained: 

│ α1resonance│≅ 0.51627( 
ଵ ఉమమ   + 0.5715)   [8.46] 

The damping coefficient is then deduced: 

tan ߜா = 
ூ௠(ாכ)ோ௘(ாכ)   ؆  ଵ.ହଷଶ଼ఈభೝ೐ೞ೚೙ೌ೙೎೐   (ଵିబ.భరళమ   ഀభೝ೐ೞమ )  [8.47] 

8.6.1.3. Material damping versus bandwidth 

With respect to the amplitude of the transfer function αres   at resonance 

frequency, the amplitude at the bandwidth frontier is αres/√2, with 2∆f being the 
bandwidth: 

tan δE = │2∆f / fres│[ 1+1.4521.10-2( 2∆f/ f) + 6.2633(2∆f/f )2]-1 [8.48] 

Similar equations can be obtained for higher eigenmodes, see equation [8.38]. 
One obtains similar equations as above with different set of coefficients. 

8.6.1.4. Young’s modulus  

As we have to deal with material with low damping, the absolute value of the 
complex modulus is (taking equation [8.39]):  

│E*
resonance│؆ ܫ12ߚܵߩ4ܮ2߱ , I=bh3/12 [8.49] 

where b is width, and h thickness. 

Taking into account the validity condition in section 8.6.1.1, [8.40] the 
imaginary part of β* is neglected in its absolute value: 

│ β*│≅ Re[ β∗]=β1  [8.50] 

The example presented in 8.6.1 uses Bernoulli-Euler’s rod. Longitudinal and 
torsional vibration of a viscoelastic rod can be treated in a similar manner, for 
various eigenmodes. For a material and sample governed by equations of a higher 
degree of approximation, theoretically speaking this method is applicable but at the 
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price of lengthy calculations using limited expansion of series for characteristic 
functions. 

8.7. Concluding remarks  

This chapter is written as a complement to the solution of the inverse problem 
which permits calculation, frequency by frequency, of the complex modulus. There 
are two interesting groups of remarks. 

8.7.1. Exploitation of resources in signal processing and computer codes in 
structural dynamics  

With an effort at adaptation, researchers and experimenters in material 
characterization, particularly in the domain of viscoelasticity, can find a variety of 
methods to interpret complex moduli of material, particularly when one has to deal 
with a large frequency range in which transfer functions are obtained. Methods to 
obtain eigenfrequencies and structural damping in the frequency domain and the 
time domain can also be achieved.  

Evaluation of complex moduli and material damping is within the competence of 
experimenters themselves. 

8.7.2. Complementary methods to evaluate complex moduli and damping coefficients 

The methods to solve inverse problems governed by differential equations with 
time and space variables are presented elsewhere [CHE 10]. The solution is not 
restricted to a narrow low frequency range as usually adopted in experimental 
viscoelasticity, with the possibility of artificial expansion of the frequency (or time) 
range using the Williams-Landel-Ferry method.  

We are convinced there are now many opportunities: there has been much 
progress in dynamic tests and a variety of methods for evaluating complex moduli 
and material damping have been developed. We have tried to show that some 
simplified methods are available if the hypothesis of weak damping is verified. 

Readers will remember that the well-known method of half power bandwidth 
permits structural damping ratios to be evaluated. Relations deduced from transfer 
functions also allow material damping and complex moduli to be obtained in a direct 
manner.  
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The logarithmic decrement method is well known in experimental 
viscoelasticity. Recent progress accomplished in the analysis of structural dynamics, 
in the elaboration of new programs such as the Hilbert transform for time (for 
detecting the time response envelope with appropriate frequency filters) has 
contributed to seriously improve the damping ratio estimation by logarithmic 
decrement methods. 

Multimodal methods can be extended to viscoelastic materials. Progress in 
digital signal processing as well as special programs devoted to the multimodal 
analysis of structures have suggested new tools for experimenters.    
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