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Realization of Experimental Set-ups and 
Interpretation of Measurements 

 



Chapter 9  

Torsion Test Benches: Instrumentation  
and Experimental Results 

9.1. Introduction 

The theoretical aspects of the torsional vibration of rods are presented in detail 
elsewhere, with special attention to the problem of cross-section warping [CHE 10; 
Chapter 5]. 

In this chapter, special apparatus are presented with two different objectives. The 
first concerns a torsional test bench which is easy to use. It serves to quickly 
characterize elastic and/or viscoelastic materials in the lower frequency range (up to 
approximately 400 Hertz) for industrial applications. 

The other class of apparatus is conceived and realized in such a manner that it 
permits the exploration of the largest range of frequencies, up to ultrasonic 
frequencies (of the order of 100,000 Hertz) so as to obtain a dispersion curve, i.e. 
wave velocity versus frequency. Given the large frequency range being taken into 
account, the instrumentation is naturally not the same as in a test bench realized for 
industrial purposes. 

9.2. Industrial torsion test bench 

9.2.1. Mechanical parts of the apparatus 

Before presenting details of the various mechanical parts, it is useful to sketch 
the main ideas. Our objectives are:  
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– to adopt a sample holding system which is easy to manipulate, with simple 
boundary conditions which are easy to realize; 

– if possible, to apply torque at the clamped end so as to obtain all levels of 
excitation signal, and to use an electrodynamic shaker; 

– to choose boundary conditions which avoid sample length correction, such as 
the classical clamping presented in Chapter 3, section 3.6.1; 

– to choose a pair of contactless transducers (see Chapter 5, sections 5.5.2 and 
5.5.3) to minimize their possible non-linearities. 

Figure 9.1 presents a general assembly drawing. Details of various parts of the 
mechanical apparatus are described below. Closely built-up apparatus with the same 
functions can be used, for example see Renard [REN 05], Chapter 8. 

 

Figure 9.1. Schematic drawing of the apparatus used for torsion tests 

9.2.1.1. Shaker and crank system 

With the sample being in a vertical position, the shaker is fixed horizontally on a 
rigid platform so that its axis is connected to the mandrel via a system constituted by 
the crank arm and the crank itself.1 

                                           
1 The adoption of vertical position for the sample allows a reduction in the rod bending effect, 
due to additional inertia at both ends. 



Torsion Test Benches     213 

9.2.1.2. Sample holder system 

A pseudo-clamping system is adopted (see Chapter 3, section 3.6.1) which 
allows the sample to be maintained in a vertical position. The jaw, made up of two 
steel cylinders, has the following advantages: it does not necessitate sample length 
correction and requires only a moderate clamping force compared to classical 
sample clamping between flat plates. The symmetrical disposition of the sample 
contributes to maintaining the sample in its position, without any slipping between 
the jaws and the sample. 

9.2.1.3. Mandrel and rotary bearer 

A mandrel with a key allows clamping force to be applied through the two 
cylinder jaws. A torque dynamometer is used to measure the tightening force. The 
function of the rotary bearer is to guide the alternative rotation of the sample. 
Utilization of ball bearings is to be avoided: the alternative rotary motion might 
produce an impact between balls and this creates a noise response for the 
transducers. The inner side of the rotary bearer has a special self-lubricating ring. 

9.2.1.4. Fixing of additional rotary inertia at both sample ends 

The role of the additional rotary inertia at both sample ends is to contribute to a 
mechanical amplification of torsion angles at the free ends, and also to maintain 
working frequencies in lower range.  

9.2.1.5. Device to obtain exact length of each half of the sample 

The whole set (mandrel, sample, additional inertias) must be adjusted to ensure 
that the two halves of the sample are of exactly equal length. This symmetry is 
obtained before installing the mandrel in the apparatus. First the mandrel is 
maintained in a vertical position so as to permit the sample to be in horizontal 
equilibrium. The distance between the cylinder jaws is increased so as to create an 
air gap. The equilibrium of the sample is adjusted whilst it is in contact with only 
one jaw cylinder. The sample equilibrium is obtained not only for the two half 
lengths of the sample but also for its perpendicular position with respect to the 
cylinder jaws, before applying the clamping force with a special key.  

9.2.2. Electronic set-up 

9.2.2.1. Shaker 

The size of the shaker is related to the  available power. The mechanical system 
represented above imposes a severe regime to the shaker. An electrical output power 
of 25–50 Watts is necessary to avoid damage being imposed on the moving coil. 
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9.2.2.2. Power amplifier 

A power amplifier (of approximately 100 Watts) should be chosen from a range 
of power amplifiers for high fidelity acoustic systems. However, an amplifier with 
an electronic breaker at the output stage should be selected, so as to prevent a 
sudden electric shock being  imposed to the moving coil. 

  

Figure 9.2. Sample mounting with two additional inertias. Transducers are mounted by pairs 
at both ends and in the middle: (a) good sample centering; (b) defective sample centering; (c) 

torsion; (d) parasitic bending vibration. The detection of torsional and bending vibrations 
can be made with transducers at one sample end and visual  

observation of the relative phase between vibrations 
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9.2.2.3. Signal generator and frequency synthesizer 

Two signal generators can be used. The first serves for quick adjustment of the 
resonance sample frequency. The second generator, driven by a quartz oscillator 
with digital visual display, is used for the accurate frequency measurement (∆f ≅  
10-3 Hertz). 

9.2.2.4. Amplitude control of input signal 

The amplitude control of the input signal in the middle of the sample can be 
obtained by an appropriate industrial apparatus. This is useful when we have to deal 
with a low damping sample. 

9.2.2.5. Automatic frequency sweeping velocity 

This automatic frequency sweeping velocity is inversely proportional to the 
damping capacity of the sample (see Chapter 4). 

9.2.2.6. Transducers  

A displacement-type transducer (inductive or eddy current transducer) should be 
chosen. If possible, for input and output signals, a pair of transducers for each signal 
is preferred. A preliminary calibration of each set of transducers is necessary.  

9.3. Parasitic bending vibration of rod 

If torsional vibration is recorded over a large range of frequency, it is possible 
that a defect in the mounting of the rod might have created parasitic bending 
vibration. Possible defects in rod vibration are presented in Figure 9.2(d). This is due 
probably to defective centering of the sample in the mandrel. Bending vibration 
gives rise to oscillations which are in phase at the four ends of the additional 
inertias, compared to the pure torsional oscillations presented in Figure 9.2(c). 

9.4. Shear moduli of transverse isotropic materials 

If Cartesian coordinates are adopted, axis 3 should be along the fiber direction of 
a composite material, and axes 2 and 3 in the isotropic plane. Two shear moduli, 
 G23 = G13 and G12, are to be evaluated.  
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Figure 9.3. Set-up to record sample response over a large range of frequency by using 
accelerometers. Observation of oscillations are made at both ends of the oscilloscope 

Figure 9.4 shows two samples cut from composite plates. G12 corresponds to 
Figure 9.4(b). The sample in this figure is fragile and precautions must be taken to 
avoid sample breaking. 

 

Figure 9.4. Transverse isotropic material: 3 is the isotropic axis; 1 and 2 are the two axes  
in the isotropic plane. (a) Sample with axis Oz is coincident with the material axis 3;  

(b) sample with axis oz perpendicular to axes 1 and 3 
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9.4.1. Shear moduli by elementary theory 

This theory is presented in details elsewhere ([CHE 10], Chapter 5).  

9.4.1.1. Eigenequation2 

ρLIp / Ja = ζ tanζ [9.1] 

where  ρ is the material density, L the half length of the sample, Ip the polar surface 
inertia, and Ja the additional torsional inertia at z=L.  

Remember that the eigenvalue δ is used to express the torsional angle θ (z,t), z 
being the coordinate along the sample axis: 

θ (z,t) = exp(jωt) [ A cos(ζ z/L) + B sin(ζ z/L)]  [9.2] 

The torsional stiffness is: 

CT = LJaω2(tan ζ /ζ ) [9.3] 

As in [9.1], the first member is small: 

γ = ρLIp/ Ja << 1 [9.4] 

With limited expansion of the series representing tan δ, [9.3] is rewritten as: 

            ρLIp/ JL = γ ≅ δ(δ+δ3/3) 

Then, from [9.3], the stiffness is:  

CT ≅ LJaω2(1+ζ2/3) or CT ≅ LJaω2(1+γ/3) 

                                           
2 See Appendix 9A for further information concerning these formulae. 
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though this approximation is valid only for the first mode of vibration. In the general 
case, [9.3] can be solved by an iterative program using Newton’s method giving all 
the modes.  

9.4.1.2. Expression of shear modulus Gyz  

Two cases are distinguished: 

(a) Sample axis z coincident with the material’s isotropic axis 3 

The formula giving Gxz is: 

CT = Gyz hb3βΤ(c) = Gxz bh3βΤ(1/c)  [9.5] 

with: c =    [9.6] 

As Gyz = Gxz, c is reduced to c =     

βΤ(c)   is given by the series presented in Appendix 9C.  

Then: 

Gyz = G23 = G13 =  = 
       [9.7] 

(b) Sample axis coincident with axis 1 or 2 (Figure 9.4(b)) 

The formula is given above in [9.5]; the difference between this and case (a) 
above is that the two shear moduli under the square root are not equal: 

c =       with  1223 1 [9.8] 

From [9.8] we write: 

βΤ(c)=    [9.9] 
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in which G23 is as previously evaluated in the sample presented above in Figure 9.4. 
The intermediate parameter is c, equation [9.5]: 

c =   [9.10] 

c is then evaluated when βΤ(c) is calculated from [9.9]. From c, G12 is deduced, G23 

being known. The successive operations are different to those in case (a) previously 
presented. The parameter β(c) versus c is given in Table 9C.1.  

Then: Gxz = G12 = G23   [9.11] 

Interpolating, using Table 9C.1, βΤ(c) must be effected with enough accuracy for 
the c value. 

In equation [9.6] the variable c depends on the flatness ratio δ of b (width) to h 
(thickness). If too large a ratio is chosen, there is a problem. In Figure 9.5, variable c 
can have a large value and the curve βΤ(c) is nearly in the horizontal asymptotic 
region. If possible, a small ratio h/b is selected. 

 
Figure 9.5. c is estimated from the value βΤ(c) calculated by equation [9.C.3] 

9.4.2. Shear moduli by higher approximation equation of motion 

In the elementary equation of motion a simple field of displacement is adopted.  
We have two unknown functions to evaluate: the torsion angle  θ (z ,t) and the 

warping function φw (x ,y) which can be solve as a static problem. For higher 
approximation, we cannot hypothesize that the axial displacement w(z,t) is 
dependent only on the torsion angle α and the function φw .  
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φw. θ(t) is replaced by a function of two variables as follows: 

w(z,t) = ξ (z,t) φw(x,y) [9.12] 

We can formulate the equations of motion by using Hamilton’s principle. The 
result is that we have to deal with two equations of motion of second order with 
coupled terms. Using the substitution method, we obtain a differential equation of 
one unknown variable of the fourth order. Details of the solving of this equation can 
be found elsewhere (see [CHE 10, Chapter 5]).  

Young’s modulus is obtained by a complementary bending test, see Chapter 10. 
 

 

Figure 9.6. Solving a couple of equations using trigonometric and  
hyperbolic functions to obtain higher order eigenvalues (for [9.D.15] and [9.D.16]  

see Appendix 9D) 

9.5. Elastic moduli obtained for various materials 

Five materials were tested: steel, brass, unidirectional glass-fiber composites 
with epoxy resin matrix and phenolic resin matrix and Kevlar. Let us mention that 
with higher order approximation theory of vibration, shear moduli obtained are 
sensibly different from the value using elementary theory. Tables 9.1 and 9.2 present 
data, measurements and elastic moduli. Table 9.3 presents the torsional 
eigenfrequencies at different modes. The two theories (elementary and higher order 
theories) are used to predict eigenfrequencies which are compared to experimental 
values. 

For metallic materials, discrepancies between the theories are weak. For 
composite materials, higher order approximation theory gives better results and 

Initialization tan β = 1/(βηm) ; β =βi 
 

β2 = βi 
                                            Solving equation [9.D.13]

v1 = v1
i 

                                            Solving equation [9.D.14]
β2 = βi+1 

 
v1 

[9.D.15]

[9.D.16]

 [9.D.15]

 [9.D.16]
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estimated eigenfrequencies approach experimental ones particularly for higher 
modes. 

Data and 
measures 

Steel Brass Glass fiber- 
epoxy resin 

Glass 
fiber-

phenolic 
resin 
(Long.) 

Kevlar 
(Long.) 

(Long.) (Trans.) 

b.10-3 m 10.4 10.1 8.15 7.66 8.85 9.85 

h.10-3 m 1 1.01 0.8 4.25 1.34 3.8 

2L.10-3 m 181 211 188 137 140.4 150 

Lu.10-3 m 84.5 99.5 88 62.5 64.2 69 

ρ.103 Kg/m3 7.531 8.226 1.983 2.006 2.013 1.102 

β (c)  0.313133 0.312325 0.312711 0.182752 0.301524 0.252332 

P1
*.10-18 m6 7.496 7.051 1.844 24.587 10.481 199.54 

f Hz 
(bending) 

102.9 52.3 77 437 213 730 

f Hz 
(torsion) 

166.2 102 31.2 336 7.97 134.7 

Table 9.1. Data and measurements for five materials. Asterisk (*) designates modulus 
obtained with higher order approximation theory of motion. 2L = full sample length,  

Lu = useful sample half length. Long. = longitudinal: sample axis collinear with material 
axis; Trans. = transverse: rod axis z perpendicular to material axis 3 

Data and measures 
(Young’s moduli) 

Steel Brass 
Glass fiber- 
epoxy resin 

Glass fiber-  
phenolic resin Kevlar 

(Long.) 
(Long.) (Trans.) (Long.) (Trans.) 

E33 (107 Pa) 
20535 10455 

5469  4724  4933 

E11 (107 Pa)  1802  1842  

G13 (107 Pa) 8729 3887 796  769  111 

G13
* (107 Pa) 8491 3788 768  738  101 

G12 (107 Pa) 8729 3887  452  412  

G12
* (107 Pa) 8491 3788  474  471  

Table 9.2. Tests on five materials. Young’s moduli are measured on another bending test 
bench. Asterisk (*) designates modulus obtained with higher order approximation theory of 

motion. Long. = longitudinal: sample axis collinear with material axis;  
Trans. = transverse: rod axis z perpendicular to material axis 3  
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Material 
Frequency per 

mode rank 
(Hz) 

Saint Venant’s 
method 

(Hz) 

Higher 
approximation 

(Hz) 

Experimental 
data 
(Hz) 

Steel f1 
f2 
f3 
f4 

29.4 
3686 
7372 
1108 

29.8 
3802 
7684 
11752 

29 
3726 
7608 

- 
Brass f1 

f2 
f3 
f4 

17 
1951 
3902 
5853 

17.2 
2008 
4045 
6185 

16.4 
2012 
4109 
6257 

Glass fiber 
phenolic resin 
Transverse 

f1 
f2 
f3 
f4 

80 
11423 
22846 
34269 

60.3 
11491 
23013 
34596 

f1=58.5 

Glass fiber- 
epoxy resin 
Longitudinal 

f1 
f2 
f3 
f4 

5.5 
2117 
4234 
6351 

5.6 
2207 
4492 
6933 

5.6 
2197 
4780 
7297 

Kevlar fiber- 
epoxy resin 
Longitudinal 

f1 
f2 
f3 
f4 

23 
4348 
8697 

13046 

24.1 
4987 
10789 
18363 

f1= 24 
f2=5110 

 

Table 9.3. Confrontation theories (Saint Venant’s and higher approximation theories) 
and experiments on various materials 

9.6. Experimental set-up to obtain dispersion curves in a large frequency range 

In the experimental set up presented in Figure 9.1, we used an electrodynamic 
shaker which is adapted for low frequency excitation (10 < f < 5,000 Hz). If the 
frequency range is extended to higher frequency (say f ≅ 100,000 to 300,000 Hertz) 
this shaker should be replaced by a piezoelectric exciter or contactless inductive 
exciter. 

9.6.1. Rod suspension and instrumentation3  

As long a sample as possible is chosen so as to obtain the lowest 
eigenfrequencies. Additional inertias at both ends are to be avoided because they 
favor a lower working frequency and are an energy consumer to the detriment of 
higher frequencies. The best system to adapt is the free-free rod with piezoelectric 
exciter and a transducer as light as possible with respect to the rod mass. This 

                                           
3 This section is extracted from [ONO 78].  
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problem was presented in Chapter 3. Figure 9.7 shows a rod suspended by two nylon 
yarns. To prevent parasitic lateral rod vibration, two pairs of yarns are proposed. As 
stationary torsional vibrations are adopted, anti-symmetrical exciters are used to 
prevent parasitic bending vibrations. 

 

Figure 9.7. Two nylon (or cotton) yarns are used to suspend a long rod 

 

Figure 9.8. Contactless magnetic exciters are disposed anti symmetrically with respect to the 
steel short lever so as to produce torsional vibrations on the sample S. The gaps between E1 

and E2 (exciters) and T1 and T2 (transducers) must be adjusted so as to obtain the same 
sensitivities for both exciters and transducers. Two pairs of strings are used to prevent 

parasitic lateral motion of the sample 

9.6.2. Electronic set-up 

We should mention that the use of two pairs of transducers necessitates  
multi-entrance oscilloscopes in Figure 9.9 by observation of in-phase (bending) and  
anti-phase (torsional) oscillations of transducers and exciters.4 

                                           
4 In bending tests, in Figure 9.9, the excitation signals E1 and E2 are in phase. So are the 
signals T1 and T2  representing the response of the bar. I torsion tests, exciter signal E1 and E2  
must be in phase opposition. The signals T1 and T2 are also in phase opposition. 
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Figure 9.9. Basic view of electronic set-up 

9.7. Experimental results obtained on short samples 

The weight of the two steel levers and their inertias is small compared to the 
sample weight and inertia; the sample can be considered as free-free rod. This 
considerably eases the calculations. The utilization of a pair of transducers permits 
the difference between torsional vibrations and parasitic bending vibrations to be 
distinguished as indicated in footnote 4. 

Appendix 9B presents Onobiono’s contribution concerning the eigenfrequencies 
of torsional rod vibrations. 

The objective of this section is twofold: 

– to check the validity of dynamic torsion theories: Saint Venant’s theory and 
Engstrom’s generalized theory extended to composite materials; 

– to take measurements of more than ten eigenfrequencies by resonance tests. 
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9.7.1. Checking the validity of Saint Venant’s theory and Onobiono’s theory on 
isotropic material 

9.7.1.1. Test on steel ADXE 

Table 9.4 presents results concerning steel ADXE. The flatness of the sample 

being large (δ =  = 2), phase velocity varies with frequency and the 

relative error e2 can reach 7%, while the relative errors e1 are of the order of 3%. The 
length L= 0.199m, width b= 0.0198m, thickness h= 0.0099 m, ρ density = 7.819.10-3 
kg/m3, additional masses m1= 0.0085 kg, m2 = 0.0027 kg. 

J  
(mode rank) 

f M (Hz) f C (Hz) f SV (Hz) e1 (error) e2 (error) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

3688 
7214 

11845 
15692 
21410 
26222 
30094 
36945 
48729 
53628 
59049 
65125 
73420 

3720 
7309 

11905 
15828 
21967 
26823 
31020 
37456 
49826 
54416 
60128 
67011 
76338 

3731 
7342 

11953 
16029 
22318 
27412 
32225 
38825 
51425 
55902 
63488 
70002 
79498 

0.0086 
0.0129 
0.0050 
0.0085 
0.0253 
0.0224 
0.0298 
0.0136 
0.0220 
0.0144 
0.0179 
0.0281 
0.0382 

0.0115 
0.0174 
0.0090 
0.0210 
0.0406 
0.0434 
0.0661 
0.0484 
0.0524 
0.0406 
0.0699 
0.0696 
0.0764 

Table 9.4. Results for ADXE steel.  j is the rank of eigenfrequency, fM is the measured 
frequency, fC is the calculated eigenfrequency from Onobiono’s theory,  

fSV the calculated eigenfrequency from Saint Venant’s theory,  
e1 and e2 relative discrepancies between (fM and fC) and (fM and fSV) 

9.7.1.2. Test on glass – epoxy resin composite 

Sample length L= 0.179 m, width b=0.0192, thickness h= 0.00384m, density  
ρ= 1.869.10-3 kg / m3, additional masses: m1 = 0.0032kg , m2 = 0.0027kg, Flatness 

δ = 5. 

The frequency range was extended to the 12th mode. The discrepancy obtained 
for e2 was 7%, while e1 is of the order of 2%. 
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J (rank) fM (Hz) fC (Hz) fSV (Hz) e1 e2 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

3133 
6486 

10113 
14118 
18047 
23907 
27853 
30449 
35540 
40177 
49170 
53806 

3325 
7345 

11841 
15241 
19246 
24401 
29941 
32383 
36442 
42317 
52306 
58998 

3510 
7888 

12695 
16498 
19866 
25708 
30025 
32879 
37272 
45028 
55823 
63628 

0.0577 
0.1169 
0.1459 
0.0736 
0.0736 
0.0622 
0.0697 
0.0597 
0.0247 
0.0505 
0.0599 
0.0864 

0.1074 
0.1777 
0.2033 
0.1442 
0.0915 
0.0700 
0.0723 
0.0739 
0.0464 
0.1077 

0.11191 
0.1543 

Table 9.5. Tests on composite glass fiber-epoxy resin. fM   is the measured eigenfrequency;, fC 
the eigenfrequency estimated using Onobiono’s theory, fSV  the eigenfrequency estimated using 
Saint Venant’s theory. Length L= 0.179m, Width b= 0.0192, Thickness h= 0.0038m, density 

ρ=1.869.10-3kg/m, Additional masses: m1 = 0.0032kg, m2 = 00027kg 

9.7.2. Remarks on elastic characterization of materials with torsion tests 

Isotropic metallic materials currently have elastic moduli which vary weakly 
with frequency. The  viscoelastic behavior of such materials at ambient temperature 
gives rise to a damping coefficient in the range (10-3–10-2). If experiments are 
confined to low eigenfrequencies (see Tables 9.4 and 9.5), the relative errors with 
respect to experiments are of the order of 1–2% and Saint Venant’s theory is 
acceptable.  

Composite materials. The two main parameters to retain when evaluating the 
performance of composite materials are: 

Flatness δ =
   . Flatness has a strong influence on the wave dispersion 

in isotropic materials and also on composite materials. In order to reduce the 
influence of a large flatness coefficient, and if the experimenter has a latitude of 
choice, a square cross-section is preferred. This cross-section gives rise to a 
dispersion curve which approaches the ideal circular section. 

Ratio 
    , 3 in the subscripts  indicates the direction of the 

fibers in transverse-isotropic materials. 

For isotropic materials (metallic) the upper limit for this ratio is 3 while for 
anisotropic materials, this ratio reaches 40 to 50, which explains the trend of 
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dispersion curves in which wave velocity strongly varies with frequency before 
reaching a horizontal asymptote. 

The important conclusion we can retain is that, if one wants to characterize 
composite materials in shear, by using dynamic methods at medium and high 
frequency, it is important to refer to higher approximation equations of motion. 

Table 9.5 shows, at medium frequency, that the relative error is of the order 15% 
for Saint Venant’s theory, while Onobiono gives rise to 8% as an upper limit. 

9.8. Experimental wave dispersion curves obtained by torsional vibrations of a 
rod with rectangular cross-section 

In the preceding section, torsional dynamic tests were used to evaluate shear 
moduli of isotropic and anisotropic materials. For this purpose, rods with short 
length are used. With these kinds of test, the phase velocity is evaluated via the 
resonance frequency of the sample. 

If one wants to draw the experimental dispersion curve concerning phase 
velocity, the objective is then to obtain the greatest number of eigenfrequencies as 
possible so as to cover a large range of frequency (or wave numbers). The rod 
adopted for this experiment must be as long as possible. The measured 
eigenfrequencies must be less dependent on boundary conditions imposed at both 
ends. If we look back to the experimental set-ups in Figures 9.7 and 9.8, we notice 
that the additional masses or inertias imposed at both ends complicate the 
calculation by adopting (for displacement components in the rod) normal functions. 
In the eigenvalue equations, transcendental functions are used. 

Consequently the adopted boundary conditions are often those with free ends. 
Taking into account the excitation sources and the measurement of vibration 
amplitude by transducers, the additional metallic weights at both ends (bending test) 
or additional inertia (torsion test) must be small compared to the weight of the rod.       or  

            1 [9.13] 

If this inequality is satisfied we can say that, when a resonance occurs, the rod 
length L is related to the wavelength λn of order n by: 

L =n λn /2 or λn =2L/n   [9.14] 

where n is a positive integer.  
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The velocity is then: 

vn =  . f n  [9.15] 

Introducing the wave number kn : 

vn =  fn  [9.16] 

Adopting a dimensionless phase velocity as: v =      [9.17] 

where v0 is equal to 2Lf1, f1 being the fundamental resonance frequency. 

With h being the thickness, the dimensionless wave number is:   = kn .h/2  [9.18] 

9.8.1. Dispersion curves of metallic rods with rectangular cross-section 

For each of the rods below, 150 resonance frequencies were detected and 
measured. Detection beyond 100,000 Hz of resonance frequency becomes difficult. 

9.8.1.1. Aluminum alloy AU4G 

 The dimensions of the sample are given below. AU4G is the reference of 
aluminum fabricated in France. 

   L = 1.719m, b (width) = 14.9 x 10-3 m, h (thickness) = 14.9 x 10-3 m (square 
cross-section), flatness δ = 1. 

9.8.1.2. French aluminum alloy AU4G  

The sample has the following dimensions: 

L= 1.719 m, b = 19.8.10-3m, h= 9.9.10-3m (rectangular cross-section); flatness  
δ = 2. 

9.8.1.3. Steel ADXE  

L= 1.194 m, b= 11.8 x 10-3 m, h = 11.8 x 10-3 m (square cross-section); flatness  
δ = 1. 
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9.8.1.4. Steel ADXE  

L=2.1m  b= 20 x 10-3m, h= 10 x 10-3 m (rectangular cross-section); flatness δ =2. 

Figure 9.10 presents dispersion curves for the two aforementioned materials. 

 

Figure 9.10. Experimental dispersion curves of isotropic metallic rod (aluminum and steel). 
Only the first branch is represented.  

▲ = rod with rectangular cross-section – aluminium; 
◊ = rod with rectangular cross-section – steel; 
□ = rod with square cross-section – aluminium; 
○ = rod with a square cross-section – steel; 

v is the dimensionless velocity and k the dimensionless number 

For the square section, the first branch of elastodynamic mode corresponds to a 
horizontal line with a small decrease at a high value of waves number  . 

For a rectangular cross-section, for both materials, the dispersion is pronounced. 

9.8.2. Dispersion curves of anisotropic materials 

(a) Rod with square section: composite material with long glass fiber–polyester 
resin as matrix:  

L= 1,750 m, b= 11.8 x 10-3 m, h= 11.8 x 10-3 m 

(b) Rod with rectangular cross-section: composite with long glass fiber–polyester 
resin as matrix: 

L= 1,435 m, b= 18.8 x 10-3 m, h= 9.4 x 10-3 m, flatness coefficient δ= 2  
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The frequency range extends from 30 Hertz to 60 KHertz. The energy level 
necessary to obtain detectable resonances is higher than for metals.5 

The elastic coefficients of the stiffness matrix of the composite (fiber glass–
polyester resin) are: 

C1111 = 1726 x 107 Pa; C1212= 381 x 107 Pa ; C1313= 502 x 107 Pa; 

C3333= 4256 x 107 Pa; C2323= 586 x 107Pa;  

Density  ρ = 2.0008 x 103 kg/m3. 

 

Figure 9.11. Experimental dispersion curve of composite material (glass fiber–polyester 

resin). Dimensionless velocity  =  1 = versus dimensionless wave number = , 

 h thickness. O = square cross-section; ∆ = rectangular cross-section. The rectangular cross-
section corresponds to the flatness coefficient δ=2 

9.9. Frequency spectrum for isotropic metallic materials (aluminum and steel 
alloy) 

The elastodynamic spectrum6 must be understood as a representation of an 
elastodynamic curve in the circular frequency ω versus wave number k plane. If k is 
complex, it does not necessarily mean that the material is viscoelastic. Rather, 
viscoelasticity corresponds to the complex value of k obtained after calculation. 

                                           
5 Inductance transducers are used in the experimental set-up. If higher resonance frequencies 
are to be exploited, special piezoelectric transducers are necessary; see Chapter 15. 
6 This spectrum must not be confused with the spectrum currently used in digital signal 
processing.  
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Figure 9.12 concerns two metallic materials already presented above (steel and 
aluminum alloy). The curves are presented with real values of k. Figure 9.13 
concerns composite materials (glass fiber with polyester resin as a matrix). For a rod 
with a rectangular section, the curve departs from the straight line. This means that, 
in the region of circular frequency explored, there is a weak dispersion. 

 

Figure 9.12. Elastodynamic spectrum concerning steel and aluminum alloy, where   is the 
reduced circular frequency, and  the reduced wave number. ∆ and O correspond to 

experimental values; the continuous line  corresponds to theory 

 

Figure 9.13. Elastodynamic spectrum (real branch) first mode (composite material: glass 
fiber–polyester resin), where   is the reduced circular frequency, and  the reduced wave 

number. ▲ is the square cross-section, O rectangular cross-section with flatness δ=2  
reduced circular frequency 
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Figure 9.13 shows composite materials; the departure from the straight line is 
perceptible for relative wave numbers exceeding 1.3.  

 

Figure 9.14. Sketch of experimental set-up. The sample (with a square cross-section) is glued 
to the upper support in a vertical position. The inertia arm is fixed to the middle of the 

sample. Additional inertia is fixed at lower free end 

9.10. Impact test on viscoelastic high damping material 

The problem treated in this section concerns a solid propellant whose damping 
coefficient is high and for which dynamic tests must be carried out in the minimum 
of time so as to avoid temperature change. The impact test is chosen for this reason 
but also because of the viscoelastic characteristics of this special material itself. The 
peak amplitude of the impact force produced by a hammer may be high. When 
exploring the behavior of this material in the region called the temperature transition 
zone, the damping coefficient is unusually high: tan δ G ≈ 0.2–4. 

Figure 9.14 shows a sketch of the experimental set-up. The impact force created 
by a special hammer is applied to the metallic lever at the middle of the sample. To 
avoid parasitic bending vibration, the lower additional inertia level has a guiding 
pivot. The upper metallic support is connected to a vertical metallic axis. 

9.10.1. Solution of the viscoelastic problem 

As the damping coefficient of a solid propellant is high, the forced dynamic 
vibrations of the sample are confined to the lower range of frequency. Elementary 
torsion theory is referred to. The principle of correspondence is invoked to obtain a 
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close form viscoelastic solution from an elastic solution with the same boundary 
conditions [CHE 10].  

As we have to deal with a high damping viscoelastic material and the explored 
frequency range is up to 100 Hz, an elementary equation of motion is adopted:  

CT
*   =    [9.19] 

Boundary conditions for the additional inertias arms are: 

( )
( ) ( )

1
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θ θ

θ θθ

θ θ

 [9.20] 

Indexes 1 and 2 designate the rotation angle at the upper and lower parts of the 
sample respectively. 

Let s* = ± [ 
   ]1/2 [9.21] 

where p is a complex Laplace variable. 

The Laplace transform of θ(z,t) is:         (p,z) = , dt [9.22] 

We try a solution for θ∗ (p, z) under the form: 

θ1
∗(p,z)= A(p) cosh s*z +B(p) sinh s*z 

θ2
∗(p,z)= C(p) cosh s*z  +D(p) sinh s*z [9.23] 



234     Mechanical Characterization of Materials and Wave Dispersion 

Taking into account the boundary conditions [9.20] and adopting the following 
parameters: 

α = CT
*s* [9.24] 

the transmissibility function can be expressed under the form: 

T*= 
,,  = [cosh (s*L) +  sinh(s*L)] 

Replacing D/C by its value calculated versus the applied torque: 

T*=    .          [9.25] 

If one works in the harmonic regime, in [9.24] p= jω and the transmissibility 
function becomes: 

T* = 
*ς *ς   *ς    [9.26] 

with φ =  =     m*= [  ]1/2 [9.27] 

I is the inertia of half the sample. The inverse of the transmissibility function is 
written as: 

γ =  =     *ς = ωL[  ]1/2    [9.28] 

*ς = p+ jq 

η R= cos p .cosh q- γp sin p.cosh q+ γq cos p.sinh q  

η I = sin p.sinh q+ γp cos p.sinh q + γq sin p.cosh q    [9.29] 
 

Newton-Raphson’s method, applied to the coupled equations to solve the 
dynamic viscoelastic problem, is presented elsewhere (see [CHE 10], Chapter 5). 
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The following equations are useful to obtain complex shear modulus for a solid 
propellant: 

G* = µ∗ =µ R + j µ I ; CT
*= CR+ jCR [9.30] 

µ∗ =      [9.31] 

The real part µR and imaginary part µI are, respectively: 

µR =  .        [9.32] 

µ R   = 13   . 2   2   2 22 2 2  

 

µI =      . [     ] [9.33] 

µ I   =     . [    ] 

where    is the Saint Venant’s warping function, which is a function of the 
flatness of the cross-section (defined as the ratio of the width b to thickness h, see 
equation [9.C.1], Appendix 9C).  

tan δµ =    =  [9.34] 

9.10.2. Solution of the viscoelastic problem 

As the complex shear modulus is deduced from the transmissibility function, 
electronic equipment with a discrete Fourier transform is necessary. Repeated 
impact tests allow better results to be obtained. Figures 9.15(a) and (b) present 
absolute values of shear modulus and damping ratio at various sample temperatures. 
Figure 9.15(a) shows regular curves while the curves concerning the damping ratio 
(Figure 9.15(b)), seem to vary in a random manner. 
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Figure 9.15 gathers only portions of curves at various temperatures which are 
suited to apply the translation technique of the William-Landel-Ferry’s method. 
Figure 9.16 presents the translation factor and the shear modulus over three decades 
of frequency. 

 

Figure 9.15(a). Complex shear modulus (expressed in absolute value) of solid propellant 
versus frequency at various temperatures 

 

Figure 9.15(b). Damping ratio of solid propellant at various temperatures versus frequency 
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Figure 9.16. (a) Complex shear modulus of solid propellant (absolute value)  
gathered in view of application of translation William-Landel-Ferry’s method;  

(b) translation coefficient aT  versus frequency 

In logarithmic coordinates, the curve in Figure 9.15 clearly shows two distinct 
slopes in the transition zone. 

9.10.3. Closed form expression of complex shear modulus of solid propellant 
using versus frequency 

We have previously presented [CHE 10] two methods to express complex 
modulus in the form of a quotient of two polynomials, or by using fractional 
derivatives. Those methods are purely graphical.  

9.10.3.1. Expression of complex shear modulus G*(f)= µ∗( f)  

The curves presented here [CHE 10] for a solid propellant presents some 
analogies with those obtained by Osaki, Tamura et al. [OSA 65].7  

Then expression of complex shear modulus G*(f)= µ∗( f)  is given by equation 
[9.35]: 

µ*(p= jω) = ( ..  )( . )[( )( ) . . 2.108 Pa. [9.35] 

                                           
7 There are two classes of methods; the fractional derivative method and the polynomial 
method which are explained in details in [CHE 10], Chapter 3. 
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Figure 9.17. Master curve of complex shear modulus of solid propellant  
versus frequency; reference temperature: 20°C 

9.11. Concluding remarks 

9.11.1. Metallic materials 

 9.11.1.1. Isotropic materials 

– With the exception of special composite materials fabricated for specific 
applications, the elastic shear modulus of isotropic materials does not vary with 
frequency in isothermal tests in the case of square cross-sections, due to the relative 
wave number being defined as the ratio of the wave number on the half of the 
sample thickness. 

– Shear wave dispersion is relatively weak but cannot be neglected at high 
frequency. The dispersion curve varies with the flatness coefficient of the rod 
sample. 

– If the experimenter has the latitude to choose a square cross-section of the 
sample rod, the dispersion curve approaches that of a circular cross-section very 
closely, at least for the first elastodynamic mode. 
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9.11.2. Composite materials  

− In the case of special composite materials which have been fabricated for 
advanced applications with high strength and high modulus, fibers must not be 
assimilated with those of metallic materials. Young’s modulus in the direction of 
fibers is high while shear moduli are weak and, in practice, of the order of those 
concerning high polymers. The ratio E3/G13 or E3/G23 is very high (3 direction of 
fiber) and this ratio strongly influences wave dispersion. 

− The flatness of the cross-section (δ = (width b)/(thickness h)) also plays an 
important role in the dispersion curve trend.  

− Utilization of scientific research devoted to the dispersion phenomena of 
isotropic rod samples cannot be extended to composite materials without taking 
precautions [CHE 10]. 

9.11.3. Experimental set-up 

The experimental set-up must be adapted to specific application, say a simple 
industrial characterization or for dispersion studies, the frequency range not always 
being the same.  

With regard to material characterization for industrial applications, short or long 
samples should be used, with apparatus devised for low frequency.  

The dispersion curves used should be a free sample with a lightweight special 
transducers and special suspensions which do not influence the measurements at 
high frequency (i.e. a contact string sample). 

For low damping materials, two methods have been presented for viscoelastic 
characterization. See [CHE 10], Chapters 4 and 11 for theory and in [CHE 10], 
Chapter 8 for measurement techniques. William-Landel-Ferry’s method is one of the 
possibilities on the condition that the applicability of the translation method is valid 
with combined parameters of temperature and frequency. 
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9.13. Appendix 9A. Choice of equations of motion 

The objective of this appendix is to present a quick overview on the choice of 
appropriate equations of motion, taking into account the important parameters 
depending either on sample geometrical parameters or on elastic (or viscoelastic) 
moduli of the tested sample.  

9A.1. Circular cross-section 

If we have the latitude of choice of cross-section geometry, a circular cross-
section is the easiest and favourable choice. There is no restriction on the frequency 
range and no wave dispersion, at least for the first elastodynamic vibration mode. 
The equation of motion is reduced to an elementary second degree one: 

 G  =   [9.A.1] 

where G is shear modulus, and ρ density.  

In the case of an isotropic material and where the z axis is a symmetry axis, G 
should be replaced by Gxz or Gyz. In the case of an isotropic material and where z is 
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not coincident with the symmetry axis of the material, there is a warping 
phenomenon and equation [9.A.1] is not valid. 

On practical grounds, if the material is an artificial multilayered composite, there 
is difficulty in fabricating a circular cross-section sample. 

9A.2. Square cross-section 

If the dynamic torsion tests are limited to the evaluation of shear modulus, a 
square cross-section presents interesting properties. In this case, only the first 
elastodynamic torsional mode is retained and wave dispersion is absent, on the 
condition that the sample axis is coincident with the symmetry axis of the material. 

9A.3. Rectangular cross-section 

A rectangular cross-section sample is the easiest one to fabricate. Inevitably, the 
phenomenon of warping occurs in torsion tests and must be taken into account.  

9A.3.1. Important geometrical parameters 

There are two parameters: 

(a) slenderness =h (thickness) or b (width)/ L(length); 

(b) flatness δ = b(width)/h(thickness). 

Wave dispersion is strongly dependent on δ and varies in the same sense. 

9A.4. Ratio of Young’s modulus to shear modulus 

For an isotropic material, the importance of this ratio is taken into account in the 
equations of motion via the influence of components of displacement other than the 
shear component. In other words, the displacement field has more than one 
component and the formulation of a torsion problem gives rise to various hypotheses 
adopted at the beginning. In increasing order of complexity we can have various 
equations of motion, as follows. 

9A.4.1. Saint Venant’s theory for the formulation of adopted static torsion 

Saint Venant’s theory gives rise to a second order elementary equation of 
motion: 

CT  = ρIp   [9.A.2] 
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with CT = C[Gyz, Gxz , βΤ(b,h,Gyz/Gxz)], where CT is the rod torsional stiffness 
expressed via Saint Venant’s theory (describing the warping of the cross-section). 
β is a parameter function of thickness, h, and width, b, of the rod and the two shear 
moduli Gxz and Gyz  (see[CHE 10], Chapter 5). 

9A.4.2. More elaborate Saint Venant’s theory 8  

This takes into account axial displacement. Coupled motion exists: where the 
torsional angle θ and axial displacement w(x,y) each give rise to a second order 
equation of motion with a coupling term. 

The decoupled equation of motion is of the fourth order.  

 9A.4.3. Other theories 

Barr’s theory, with a correcting term obtained by evaluating an asymptotic value 
of the phase velocity (which tends to Rayleigh’s wave velocity) should be 
mentioned.  

9A.5. Special experimental studies of wave dispersion phenomenon 

In this chapter, an experimental set-up using an exciter and transducers has been 
adopted and is commercially available. The mechanical system is easy to realize 
with a very long rod. 

The objective of this study has been not only to evaluate shear modulus but also 
to compare, eventually, the validity of different proposed equations. The 
phenomenon of warping is described, not by Saint Venant’s theory, but by a more 
elaborated theory proposed by Engstrom. 

9.14. Appendix 9B. Complementary information concerning formulae used to 
interprete torsion tests 

9B.1. Quick overview of Saint Venant’s theory applied to the problem of dynamic 
torsion 

9B.1.1. Quasi-static theory of torsion 

The choice of an appropriate theory depends on the objective chosen at the 
beginning. If the choice is confined to calculation of shear modulus at a lower 
frequency range, inside of which wave dispersion is not taken into account, then 
                                           
8 See Nugues’s theory, [NUG 76], which is applicable to composite anisotropic material. 
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Saint Venant’s theory (valid for the static study of the warping function) is 
applicable.  

A second order theory of rod torsion is adopted:    =  [9.B.1] 

In [9.B.1] CT is expressed versus the warping function φw(x,y), where x,y are the 
cordinates of the section. 

The boundary conditions give rise to a wave number β equation which is 
necessary to calculate the shear modulus Gxz and Gyz. 

9B.1.2. Higher order theory 

The hypothesis adopted above in 9B.1.1 is that the projection of the cross-section 
rotates rigidly in its plane. It is not valid for higher elastodynamic modes. The 
displacement component along the rod axis w(z,t) was written above in [9.B.2]; see 
also [CHE 10], Chapter 5, Appendix 5B:  

w(z,t)=ξ(z,t)φw(x,y) [9.B.2] 

Using the Hamilton principle, we obtain equations of motions as well as 
boundary conditions. Two Euler’s equations are obtained: 
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[9.B.3] [9.B.4] 

where m designates distributed torque on the rod lateral surface. Coefficients in 
[9.B.3] are expressed in terms of φw and coodinates x,y. m=0 for a free lateral 
surface. 

An uncoupling operation is possible to reduce [9.B.3] [9.B.4] into an equation of 
the fourth degree:    - [   ]   +  = 0 
 [9.B.5] 
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We recognize that the last two terms in [9.B.5] are equation [9.B.1], an 
elementary equation. It has been demonstrated that (Ia-Ka) is reduced to CT as in 
[9.B.1]. The third term is called the longitudinal inertia term. The first two terms 
correspond to an axial stress correcting term. 

9B.1.2.1. Boundary conditions 

 There are two boundary conditions at each end in Figure 9.1. This is coherent 
with the fourth order equation of motion [9.B.5]. 

For z=0 at the middle of the sample, there is no axial displacement: δξ=0.  

The second boundary condition is a prescribed external torque  
2

0 a a2
   J    = 2 I   - K  

 zt
∂ θ ∂ θ⎡ ⎤ξ⎢ ⎥∂∂ ⎣ ⎦

 [9.B.6] 

J0 is the mandrel polar inertia. Coefficient 2 can be explained by adoption of 
excitation at the middle at the sample. 

For z = L there is no warping stress at both ends; 0. 
The second boundary condition concerns the additional lever inertia which 

corresponds to prescribed torque: 

2

L a a2
  - J    = I   - K  

 zt
∂ θ ∂ θ ξ

∂∂
 [9.B.7] 

Boundary conditions include the torsion angle  θ(z,t) and also the second variable 
Z(z,t). 

It can be demonstrated that the same equation of motion [9.B.5] is valid for 
variable  ξ(z,t) in which  θ(z,t) is replaced by  ξ(z,t). We can express these two 
functions versus characteristic functions (two trigonometric functions and two 
hyperbolic functions). There are consequently eight coefficients to determine and we 
have at our disposal only four boundary conditions. Fortunately, there are 
relationships between the two sets of four coefficients given by equation [9.B.4]. 
Details concerning closed form expressions of  ξ(z,t) and θ(z,t) as well as 
calculations of eigenvalues of the rod submitted to torsional vibration are given in 
[CHE 10], Chapter 5 and Appendixes 5B and 5D. 

Computer programs can be elaborated and a trial and error method is used to 
obtain eigenvalues. 
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9.15. Appendix 9C: details concerning the  βΤ(c)  function in the calculation of 
rod stiffness CT 

The expression of rod stiffness CT is: 

CT = Gyz hb3 βΤ(c) = Gxz bh3 βΤ(1/c) [9.C.1] 

with b width, h thickness, z direction of the rod axis, and c is defined as: 

c=   [9.C.2] 

The series giving βΤ(c) is the following: 

   βΤ(c) = [  -    ∑    , , ...    tanh  ] [9.C.3] 

Series [9.C.3] is quickly convergent taking into account the fifth power of odd 
integer k in the denominator of the quotient inside the brackets. 

c βΤ(c) c βΤ(c) c βΤ(c) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.14058 
0.22868 
0.26832 
0.28081 
0.29132 
0.29832 
0.30332 
0.30707 
0.30999 
0.31232 
0.31423 
0.31588 
0.31717 

 

14
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

0.31833
0.31933 
0.32020 
0.32098 
0.32166 
0.32228 
0.32283 

0.323786 
0.323786 
0.324202 
0.324581 
0.324984 
0.325255 

27
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.325553 
0.325553 
0.325833 
0.326092 
0.326561 
0.326771 
0.326972 
0.327161 
0.327338 
0.327502 
0.327657 
0.327815 
0.327953 
0.328092 

Table 9C.1. The warping function  βΤ(c), where c is given by [9.C.2] 
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9.16. Appendix 9D. Compliments concerning the solution of equations of 
motion with first order theory 

The higher order theory of torsion is presented, given in detail elsewhere by 
Chevalier and Vinh [CHE 10] in Chapter 5. We give here the principal equations 
and formulae which enable the reader to conceive the computer code giving 
eigenvalue results with boundary conditions inherent to the torsion apparatus 
presented in Figure 9.1, i.e. pseudo-clamping in the middle of the sample and 
additional torsional inertias at both ends.  

9D.1. Displacement field9 

( ) ( )
( ) ( )

( ) ( ) ( )w

u  z , t  = - z ,t  y
v  z , t  = z ,t  x

w z , t  =   z , t   x , y

θ
θ

ξ φ
 [9.D.1] 

ξ (z, t) replaces the torsion angle θ  in the component w(z,t) adopted in 
elementary theory. We then have two functions θ (z, t) and ξ(z, t) to evaluate instead 
of one function θ (z, t). ( )w  x , yφ  is the warping function supposed to be identical 
to the warping function in static torsion.  

9D.2. Relations between two sets of coefficients 

Harmonic solutions for  θ (z, t) = Α (z) exp(jωt) and for ξ(z, t) = B(z) exp jωt are 
adopted. 

Introducing [9D1] into [9.B.4] we obtain for [9.B.4]: 

2 22
a a2
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∂ ∂ρ ω
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 [9.D.2] 

By dividing all the terms in [9.D.2] by 2
TC L we obtain: 

                                           
9 The projection of the cross-section rotates rigidly in its plane. That is the simplifying 
assumption in the framework of Saint Venant’s theory. 
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It is convenient to adopt the following dimensionless parameters: 
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CT is the torsion rigidity relating torque to angle. It is equal to: 

CT = (Ia – Ka)   
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1 2 3 44 4 2 4 2
1 1

2 3 4 2 3 4 2 3 4 2 3 4

 P  I P IP  I   P  I I K
 +  +   -  -  I   +  = 0

s  K  s  K  K KL L

v v (v v )v 1 v 1 v
v v 0

v v v v v v v v v v v v

⎡ ρ ⎤ ρ⎛ ⎞⎛ ⎞ ρ −ωβ + β ρ ω ω⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤+− −
β − − β − − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

  

 [9.D.5] 

In the second equation in [9.D.5] dimensionless parameters adopted in [9.D.4] 
are used. 

In the bi-squared equations in β, the sum of the roots is positive and their product 
is negative.  

The solutions for A (z) and B(z), see [CHE 10] equations [5.62] and [5.68], can 
be written as: 

( ) 1 1 2 2
a a a a

 z  z  z  z
A z  = A  cos h  + B  sin h  + C  cos  + D  sin 

L L L L
β β β β  [9.D.6] 

B(z) = Abcosh   + Bb sinh  + Cbcos   +Dbsin  
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The set of coefficients Aa, Ba, Ca, Da is to be evaluated by the four boundary 
conditions, two at each end. Coefficients of B(z) are obtained as shown in the 
following section. 

9D.3 Equations giving the two sets of coefficients Aa,Ba,Ca,Da deduced from the 
four boundary conditions 

Equation [9.B.6] has proven to be convenient for expressing coefficients with 
index b as functions of a coefficients with index a. The following two coefficients 
concern non-dimensional polar inertia at the free end of the rod and the polar inertia 
of the mandrel in the rod middle. 

η L= = 1/γ                     η0 =                                                           [9.D.7] 

The denominators of the parameters above represent the polar inertia of half of 
the rod , Jm, and the polar inertia Ja is the polar inertia of  the lever at the free end. 

For z=L the prescribed torque T is JL  so: 

1 4
L

4 4

v v  - 1 A  A =  - B 
L v  z v

⎛ ⎞∂η ⎜ ⎟∂⎝ ⎠
 [9.D.8] 

 Z  = 0
 z

∂
∂

(no warping stress) 

For z=0 

η0  Α =2[ − −B  ] [9.D.9]  

9D.4. Evaluation of coefficients in [9.D.6] 

With the parameters v1, v2, v3, v4 in [9.D.4], equation [9.D.2] has the following 
form: 



Torsion Test Benches     249 

( )
2

2 2
1 4 42

 A  Bv  A + v  L  - L  v  - 1   = 0
 z z

∂ ∂
∂∂

 [9.D.10] 

[9.D.7] relates variable Θ to Z as follows: 

( )
2

1 4 1
b a

1 4

v  + v  A  = B  
 L v  - 1

β
β

,             
( )

2
1 4 1

b a
1 4

v  + v  
B  = A  

L v  - 1
β

β
 

( )
( )

2
1 4 2

b a
2 4

v  - v  
C  =- D  

 L v  - 1

β

β                      

( )
( )

2
1 4 2

b a
2 4

v  - v  
D  =  C  

L v  - 1

β

β
 

Or 

b a aA  = r  B ,                                         b a aB  = r  A  

b a aC  = - s  D ,                                   b a aD  =  s  C  

 [9.D.11] 

In [9.D.11], 1 2 , β β  are the two roots of the characteristic equations [9.D.5] 

9D.5. Equations in a a a a A  , B  , C  , D deduced from the four boundary conditions 

[9.D.11] (or [5.D.4] in [CHE 10]) is proved to be convenient to express 
coefficients with index b as functions of a coefficient with index a. 

The two following coefficients concern the non-dimensional polar inertia at the 
free end and the polar inertia of the mandrel in the middle. 

L
L

p

J 1 =  = 
 I  L

η
ρ γ

.     0
0

p

J = 
I  L

η
ρ

 [9.D.12] 
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The denominators (m) of Lη  and 0η in [9.D.12] represent the polar inertia of 
half of the rod. γ  is  used for elementary torsional equation of motion. 

a) For z = L 

The prescribed torque T, [5.B.13], at the end z =L of the sample is 
2

L 2J  
t

∂ θ−
∂

, 

then: 

1 4
0

4 4

v v  - 1 A  A = 2 B
v  L  z v

⎡ ⎤∂η −⎢ ⎥∂⎣ ⎦
 [9.D.13] 

Z = 0 

Bringing the harmonic solution, sections 9.D.2 into [9.D.9] and [9.D.13] the 
following set of equations are obtained (see [CHE 10], Appendix 5.D) 

L 1 1 4
a 1 1 a

4 4

v v  - 1
A  -   cos h  + sin h   -  r  +

v L L v
⎡ ⎤⎛ ⎞η β

β β⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

( )4L 1 1
a 1 1 a

4 4

v  - 1v
B  -   sin h  + cos h   -  r  +

v L L v
⎡ ⎤⎛ ⎞η β

β β⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

L 1 2 4
a 2 2 a

4 4

v v  - 1
C  -   cos  - sin    -  s  +

v L L v
⎡ ⎤⎛ ⎞η β

β β −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

L 1 2 4
a 2 2 a

4 4

v v  - 1
D  -   sin  + cos   +  s  = 0

v L L v
⎡ ⎤⎛ ⎞η β

β β⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

a a 1 1 a a 1 1 a a 2 2 a a 2 2A  r   cos h  + B  r   sin h  + C  s   cos h  + D  s   sin h  = 0β β β β β β β β  
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m 1 1 4
a a a

4 4

2 4 m 1
a a a

4 4

 v v  - 1
A  -  - 2 B   -  r  

v  L L v

v  - 1  v
    - 2 D   +  s   + C  -  = 0

L v v  L

⎡ ⎤ ⎡ ⎤η β
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤β η
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦  

Ba ra – Da ra = 0 [9.D.14] 

The four equations in [9.D.14] enables us to establish the determinant of 
coefficients of A a, B a, Ca, D a presented under matricial form. 

( ) ( ) ( ) ( )

2 2
1 4 1 1 4 2

1 2

0
1 2

0

2 2 2 2
1 4 1 1 1 4 1 1 1 4 2 1 1 4 2 2

1 1 2 2
L 1 1 L 2 L 2

1 1 2 2

0 0

2 2
 

+v cosh  +v sinh  -v cosh  -v sinh  

sinh  cos h  sinh  cosh 
cos h sinh cosh sinh     L

v v v v

v v v v

β β
β β

η η
β β

β β β β β β β β

β β β β
η β η β η β η β

β β β β

+ −

−

+ + + −

⎡

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= 0 

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
 

 [9.D.15] 

By setting this determinant to zero we obtain the characteristic equation in β1, β2. 

There are two unknowns β1 and β2, but the sum of the squares of β1 and β2 in the 
bisquared equation is: 

( ) ( )2 1 2 3 42 2 2 4
1 2 1 2

2 3 4 2 3 4

v  v  v  + vv  - 1
 + j  =  -  =  - 

v  v  v v  v  v
β β β β  [9.D.16] 

and the product is: 

( ) ( )2 2 2 2 4 1 2
1 2 1 2 1

2 3 4 2 3 4

v - 1 v  v
  j  = -   = - v   - 

v  v  v v  v  v
⎡ ⎤

β • β β β ⎢ ⎥
⎣ ⎦

 [9.D.17] 

[9.D.15, 16, 17] are three equations in β1, β 2, v1. 
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The following notations are adopted to simplify the writing of equations: 

1 2 3 4S  = v  v  v , 
4

2
1

v  - 1
S  = 

s , 
2

3
1

v
S  = 

s , 
( )2 3 4

4
1

v  v  + v
S  = 

s  [9.D.18] 

Eliminating β1, we obtain: 

( ) ( )2 2 4 2 = 1 3 1 2 2 4 2 2 2v  S  - v  S  +  S  +  + S  0β β β  [9.D.19] 

Effecting [9.D.15] and eliminating β1, a new equation in v1and v2 is obtained (see 
[CHE 10], relation [5.D.14]). 

( )
( ) ( )L 2 2

1 4 1 2 4 1 4 1 2 1 31/2
1 2 1 3

- 2  v  + v  v  S  - v  v  - v  v  S  - v  S  
v  S  - v  S

η ⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

 

( ) ( )
( )

1/22
2 2 2 1 4

2 2
L 0 2 1 4 2 2 4 4

4 1/2
2 1 2 1 1 3

 sin  cosh  + S  - v  S

2 -  v  + v   + S  - v  S
v  

 v  S  - v  v  S

⎡ ⎤+ β β⎣ ⎦
⎡ ⎤η η β β⎣ ⎦• ∆

⎡ ⎤β ⎣ ⎦

  

1/ 22
2 2 2 1 4- sin  sin h  + S  - v  S⎡ ⎤β β •⎣ ⎦  

( ) ( ) ( )
( )

2 2
L 2 1 4 1 4 1 2 1 4 4 1 2 1 4

1 2 1 3

 S  - v  S  v  + v  v  S  - v  S  - v  v  S  - v  S

v  S  - v  S

⎡ ⎤η⎡ ⎤⎣ ⎦ ⎣ ⎦  

1/ 22
2 2 2 1 4- cos   sin h  + S  - v  S⎡ ⎤β β •⎣ ⎦  

( ) ( )
( ) [ ]

2 2
1 4 2 4 L 0 2 2 1 4

1/2 1/2
1 2 1 3 2 2 1 4

v  - v     v  2 +    + S  - v S

v  S  - v  S   - S  - v  S

⎡ ⎤β • ∆ η η β⎣ ⎦

⎡ ⎤ β⎣ ⎦
 

1/ 22
2 2 2 1 4- cos   cos h  + S  - v  S⎡ ⎤β β •⎣ ⎦  
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( )

( ) ( )( )
( )

2
0 4

1/2
1 2 1 3

22 2 4 2
L 1 1 4 2 1 4 4 2 2 2 1 4

1/2
1 2 1 3

2  v  
 

v  S  - v  S
= 0

 2 v  + v  v  S  - v  S  + v   +  + S  - v  S
+ 

v  S  - v  S

⎧ ⎫η ∆
⎪ ⎪
⎡ ⎤⎪ ⎪⎣ ⎦⎪ ⎪

⎨ ⎬⎡ ⎤η β β⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤⎣ ⎦⎩ ⎭

 [9.D.20] 

[9.D.19] and [9.D.20] constitute a set of two equations whose unknowns are 1v  
and β2. It would be possible to solve those equations to obtain v1 and β. The 
calculations are tedious. It is better to solve them numerically.  

 

 

 




