
Chapter 10 

Bending Vibration of Rod 
Instrumentation and Measurements  

10.1. Introduction 

Of the experimental set-ups proposed in the technical literature for the evaluation 
of the Young’s modulus, an apparatus using bending vibration is the easiest to 
realize. Theories involving the bending vibration of rods to obtain the Young’s 
modulus (and also to obtain some non-diagonal compliance matrix coefficients for 
anisotropic materials), from the simplest theories (Bernoulli-Euler’s) to the most 
elaborate (Timoshenko’s and Mindlin’s1), are presented elsewhere (see [CHE 10], 
Chapter 6).  

This chapter places its emphasis on practical applications. 

10.2. Realization of an elasticimeter 

The main objective of an elasticimeter is essentially the measurement of the 
Young’s modulus. We begin this section with a discussion concerning boundary 
conditions, namely: the free end; additional weight; clamping end and support. 

Various boundary conditions were discussed in Chapter 3, from a practical point 
of view. Figure 10.1 presents the four possible boundary conditions and 
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1 Mindlin-Timoshenko’s theory is valid up to the second elastodynamic mode. Beyond this 
mode, the theory is not valid. However, for industrial applications, this is largely sufficient. 
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commentaries about their feasibilities. The mechanical set-up adopted corresponds 
to free ends with excitation in the middle by an electromechanical shaker (System 3 
in Figure 10.1). The advantages of this system are presented below. 

Sample mounting system Commentaries 
 
 
 

 
 

1. Wire suspension 

- free ends with glued thin metallic blades; 
- inductive exciter at one end; 
-  contactless displacement transducers. 

 
 
 
 

2. Wire suspension 

- additional weights at the free ends 
facilitate resonance amplitude visualization 
and measurements; 

- inductive exciter at one end; 
-  contactless displacement transducer. 

 

 
 
 
 
3. Shaker in the middle 

- free ends; 
- excitation by electromechanical shaker at 

the middle of the sample; 
- contactless displacement transducers; 
-  pseudo-clamping between two cylinders. 

 
 
 
 
4. Exciter in the middle 

- additional weights at free ends; 
- exciter in the middle of the rod; 
- contactless displacement transducers; 
-  requires more power. 

 
 
 
5. Exciter in the middle 

- support at both ends; 
-  difficulty to practically realize these 
boundary conditions. 

 
 
 
 
6. Exciter in the middle 

- clamping at both ends; 
- needs length correction which depends on 

clamping force. 

 

Figure 10.1. Various boundary conditions at both ends. System (3) is adopted in this chapter 

10.2.1. Forced vibration of symmetrical free-free rod 

The forced vibration of a symmetrical rod, excited in the middle of the rod, 
requires less power from an electromechanical shaker compared to System 6 (Figure 
10.1) using a double clamping, or System 4 (Figure 10.1) which has additional 
weights at both ends. 
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10.2.2. Pseudo-clamping between two cylinders  

This system, presented in Chapter 3, has the advantage that a sample length 
correction is not necessary. Taking into account the symmetry of the system and the 
position of the exciter, the compressive clamping force is reduced to a minimum.  

However, a disadvantage exists, when tests are carried out at high temperature 
and with “soft” materials such as rubber. In such cases, the sample can move by 
sliding between the two cylinder jaws.  

10.2.3. Free-free rod suspended by yarns 

System 1 (Figure 10.1) is particularly interesting if one wants to study bending 
wave dispersion in a large range of frequencies. If possible, the rod must be very 
long (see Chapter 3, Figure 3.14), and the contactless transducer can be replaced by 
a lightweight accelerometer, whilst a contactless inductive-type transducer is used as 
the exciter. 

10.2.4. Additional weights at free ends 

As shown in Systems 2 and 4 (Figure 10.1), the two set-ups require length 
correction. These systems are used when the objective of testing is to work at very 
low frequency, the additional weights working as a mechanical amplifier for 
oscillation amplitudes at the free ends. 

10.2.5. Mechanical system 

As for any other elasticimeter, the stand on which the sample holder and the 
exciter are fixed must be heavy enough to be a motionless base. The stand receives 
the electromechanical shaker whose moving axis is connected to the set (the frame 
and sample combined); see Figure 10.2. The sample clamping between two 
cylinders is described in Chapter 3, section 3.6 and Figure 3.9. 

As the shaker’s moving axis connecting the moving coil to the sample is long, it 
is necessary to protect the moving coil by a shaft bearing which is self-lubricated. 
This precaution avoids any parasitic motion of the sample in torsion and horizontal 
translation. The use of a translational ball bearing is excluded for the reason that, 
during alternative motion of the shaft, impacts between balls are a source of noise. 

The main role of the shaft bearing is to ensure a vertical alternative motion of the 
sample holder without backlash.   
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In order to prevent damage of the moving coil when the electrodynamic shaker is 
submitted to an excessive voltage or a sudden electric transient signal, it is necessary 
to limit the stroke of the cylinder which is integral with the moving coil. 

 

Figure 10.2. General view of the mechanical set-up for bending tests. The shaft  
bearing is connected to a heavy cowl , not represented. The cowl  

serves to guide the vertical motion of the moving coil shaker 

The shaft bearing is connected to a cowl which also supports the shaker (and is 
not represented in Figure 10.2). When the cowl is fixed on the stand, the only visible 
parts of the elasticimeter are the sample holder, the transducers and the vertical 
column which is part of the vertical rack and pinion gearing. 

10.2.6. Electronic set-up 

If we only have to deal with elastic material characterization, then the electronic 
instrumentation required is simple. Figure 10.3 presents a schematic view. For 
details about the choice of transducers and exciters, see Chapters 4 and 5.  
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10.2.7. Successive operations in sample mounting and measurements 

10.2.7.1. Fixing the sample in the sample holder 

The excitation adopted in the middle of the sample requires a preliminary 
positioning of the sample in an exact place between the two cylinders. Successive 
operations are indicated as follows (Figure 10.4); 

– loosen the bolt which applies compressive force to the sample; 

– let the sample lie in equilibrium on the lower cylinder, and try to obtain the 
horizontal equilibrium of the sample whilst, at the same time, making sure that the 
sample is perpendicular to the cylinder axes. For this purpose, a simple additional 
system can be used (Figure 10.4). Two thick circular disks are placed at both sides 
of the sample on either side of the cylinders.  The line joining the center of the disks 
serves as a reference axis in the adjustment of a sample axis.  

 

Figure 10.3. Electronic instrumentation for estimation  
of Young’s modulus by bending test 

Each disk can rotate around its central axis and has two pins. By rotation in one 
direction or the other and by moving the sample and adjustment of the two sample 
half lengths so as to obtain sample equilibrium on the lower cylinder. The bolt on 
the upper side of the frame is then tightened to apply a compressive force on the two 
cylinders. For this operation the frame integer with the two cylinders must be taken 
off the shaker axis, see Figure 10.4. 



260     Mechanical Characterization of Materials and Wave Dispersion 

 

Figure 10.4. Mechanical system to adjust the middle and perpendicularity of a sample  
with respect to the cylinder axes. The two circular disks serve to maintain the horizontal 

position of the sample during adjustment. The two pins on both disks contribute  
to maintain the sample in a horizontal position 

10.2.7.2. Transducer installation 

An adjustment needs to be made to the distance between the sample and the 
transducers:  

– let the sample vibrate at resonance frequency and adjust the output electric 
voltage of the power amplifier to ensure that the displacement amplitude of the 
sample is not too large and no contact occurs between the sample and the contactless 
transducers at resonance frequency; 

– the Wheatstone bridge (or any other signal conditioner) equilibrium in gain and 
phase needs to be adjusted, the two transducers being at an equal distance with 
respect to the sample. 

10.2.8. Electronic set-up for measurement over a large frequency range  

The electronic set-up presented above requires additional instruments. Figure 
10.5 shows three groups of electronic instruments: an electrodynamic exciter and 
related electronic equipment, and the two pairs of transducers with electronic 
equipment.  
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Figure 10.5. Electronic set-up to obtain the transfer function (gain and phase, or real and 
imaginary parts, versus frequency). From these graphs, the variation of the complex Young’s 

modulus versus frequency is obtained, after using computing programs 

10.2.8.1. Power amplifier and electromechanical exciter 

A power amplifier with an available power output of the order of 100 Watts and 
electrodynamic shaker requiring the same power constitute a reasonable choice.  

10.2.8.2. Variable frequency generator 

The variable frequency generator allows  the controlled displacement amplitude 
of the excitation signal applied to the middle of the sample. This amplitude is 
maintained at a constant level during the whole frequency sweeping.  

The sweeping velocity is defined as the ratio of frequency interval to time 
interval (∆௙ሺ௙௥௘௤௨௘௡௖௬ሻ∆௧ሺ௧௜௠௘ሻ ) on a linear or logarithmic scale. 

10.2.8.3. Fourier analyzer with transfer function program and recorder 

The sweeping velocity is the most important parameter, and needs to be adjusted 
with caution and accuracy (see Chapter 6, Figure 6.16). 
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The lower the damping coefficient of a material, the more often a low sweeping 
velocity is chosen. If this precaution is not respected, the wrong damping and wrong 
dynamic curves are obtained. The reason for this is that, in the resonance region and 
with a varying frequency response, the amplitude oscillates before reaching its 
equilibrium. The transient regime is, in this case, predominant during the whole 
sweeping time covering the resonance zone. This phenomenon (to be avoided) is 
pronounced when the damping coefficient of the material is weak (tan ൑ 10ିଶ). 

10.3. How to conduct bending tests 

10.3.1. Preliminary remarks 

It is important to remember the remarks within the following sections when 
considering the Bernoulli-Euler and Timoshenko-Mindlin equations of motion. 

10.3.1.1. Inertia effect 

Bernoulli-Euler’s equation resorts to elementary theory in which the inertia 
effect and shear effect are neglected. Consequently, for the first effect, the 
dimensionless coefficient is useful to evaluate its influence: 

u1 = 
Iሺcrossିsection inertia with respect to neutral lineሻ

SL2 ሺS crossିsection area,   L sample leng୲hሻ  

where S is the cross-section area and 2L the sample length. 

If u1<< 1 for a rectangular cross-section, with width b, thickness h, and length L: 

u1= 
bh3

12ሺbhሻL2   = h2

12L2 ا 1 [10.1] 

This ratio is extensively adopted in discussions on Bernoulli’s theory, Appendix 
10.A. 

10.3.1.2. The shear effect  

The shear effect intervenes in Timoshenko’s equation by the ratio: 

୉౰ሺ ଢ଼୭୳୬୥ᇲୱ ୫୭ୢ୳୪୳ୱ ୧୬ ୲୦ୣ ୢ୧୰ୣୡ୲୧୭୬ ୸ ୟ୶୧ୱ ୭୤ ୲୦ୣ ୱୟ୫୮୪ୣሻୋ౮౰ሺ ୱ୦ୣୟ୰ ୫୭ୢ୳୪୳ୱ ୧୬ ୲୦ୣ ୮୪ୟ୬ୣ ୶୸ሻ  [10.2] 
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This ratio is equal to 2(1+ ν)ൎ 2.6, ν being Poisson’s number, for an isotropic 
material. This parameter enables the validity of Bernoulli’s equation to be evaluated 
at a very low frequency which does not exceed the first eigenmode.  

For composite materials, the ratio indicated in [10.2] might exceed 40(!) and the 
applicability of Bernoulli’s equation is controversial, and further calculations are 
necessary to validate this hypothesis. The shear effect requires the preliminary 
estimation of the shear modulus Gxz. This is possible when using a trial and error 
method. At the beginning of the procedure neither Young’s modulus Ez nor shear 
modulus Gxz are known, z being the rod axis. 

10.3.1.3. Combined shear and inertia effects 

The last term of equation [10.A.2] includes the following coefficient (see [CHE 
10], Chapter 6, [6.38]): 

u2= ( ୉౰ୋ౮౰୏) (u1) [10.3] 

K takes into account the non-uniform shear in the cross-section. Even for high 
slenderness (u1<<1) in equation [10.A.2.] the shear coefficient can counterbalance u1 
in the expression of u2. This remark should be taken into account for composite 
materials. 

Appendix 10A presents useful equations of motion (Bernoulli-Euler’s and 
Timoshenko-Mindlin’s equations) as well as the principal parameters to be taken into 
account.  

10.3.2. Tests on isotropic materials  

Two tests using bending and torsional vibrations on the same sample permit 
elastic characterization. 

Let us focus our attention on the bending test. The first idea is to adopt 
Bernoulli-Euler’s equation (see Appendix 10.A, [10.A.1]). If validity conditions 
attached to this equation are satisfied, i.e.: 

u1<< 1     and  ሾܧ௭/ܩ௫௭ሿ2 = ܭ(1+ν)/K [10.4] 
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then, for a rectangular cross-section Kൎ 0.8, the upper bound of [10.4] is: 

 
ா೥ ீೣ೥ ௄ ൑ 2.6 /0.8 = 3.25  (valid only for isotropic materials) 

10.3.2.1. First case: long sample 

If there is a possibility of choice of the half length, L with L>> b (width), then 
the coefficient u1 is small. It is reasonable to assume that Bernoulli’s equation is 
applicable on the condition that the first eigenmode is adopted. Then, the 
corresponding resonance circular frequency (first mode) gives Young’s modulus 
(see Appendix 10A): 

E= ସ଼గమఉర [ ெ௕್  ] [ ௅௛ ]3. f 2    [10.5] [10.A.6a] 

where the weight of the sample is 2M, its length is 2L, with width b, thickness h, 
and where β is the first eigenvalue in [10.A.6b], valid for a clamped-free half 
sample.2 

Measurement is reduced to the evaluation of resonance frequency, f = fr. 

It should be mentioned that the cube of thickness in equation [10.A.4] indicates 
that Young’s modulus is strongly dependent on the accuracy obtained on the sample 
thickness h. For some artificial composite materials, the accuracy obtained for h 
rarely exceeds 0.1 mm. This constitutes a serious limitation in the accuracy of 
Young’s modulus evaluation. 

10.3.2.2. Second case: short sample 

In Appendix 10A, the Young’s modulus is deduced from Bernoulli’s equation 

(presented above) being known, from which curves 
ఉరఉబర can be drawn with 

ா೥ீೣ೥ as a 

parameter. 

Figure 10.6 presents such curves for steel. Depending on the mode rank, the 
variation of the curve mentioned above is more or less pronounced. If such curves 
are available, we can see that Timoshenko’s correction is necessary to obtain β. 

                                   
2 Remember that the sample is free at both ends and excited in the middle, which is clamped. 
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Figure 10.6. Deviation of β (Timoshenko’s equation) with respect to the value β0 
(Bernoulli’s equation) versus the slenderness coefficient u1=I1/SL2. The material is steel  

(Ez/Gxz= 2.6). The figures 1,2,3 on the curves represent the mode rank 

10.3.3. Tests on a composite anisotropic material 

The diskrepancy of β obtained by Timoshenko’s theory with respect to β0 

obtained by Bernoulli’s theory is represented by (β/β0)4 versus u1= I/ SL2. 

This ratio deviates strongly from unity for a higher eigenmode (Figure 10.7). 

For a composite material it is possible to use previsional calculus (see [CHE 10]) 
to obtain the order of elastic moduli whose number depends on the symmetry degree 
of the material itself. For transverse isotropic materials (long fibers periodically 
distributed in the matrix) formulae giving elastic moduli versus the fiber volume 
percentage and the elastic moduli of fiber and matrix are available. 

Studies concerning bending wave dispersion over a very large frequency range  
are not detailed in this chapter.  

10.3.3.1. Slenderness is low  

Figure 10.6 is drawn with dimensionless coordinates. If the slenderness is low, 
(of the order 10-4), the calculation of Young’s modulus using Bernoulli-Euler’s 
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equation is acceptable formula [10.A.5]. Eventually we can use the formula [10.A.7] 
as an improved one.   

10.3.3.2. Slenderness is high   

The curve in Figure 10.7 shows that the eigenvalue β departs from the 
eigenvalue β0. In this case, it is necessary to use Timoshenko’s equation, [10.A.7] 
The eigenvalue equation is more complicated and recourse to numerical 
computation of eigenvalues is necessary (see [CHE 10], Chapter 6, pp. 309). Let us 
recall that slenderness coefficient concerns inertia effect 

10.3.3.3 Experimental set-up for the study of bending wave dispersion  

The set-up presented in Figures 6.1 to 6.5 is not appropriate for measurements of 
higher resonance frequencies beyond 10,000 Hertz. 3 

 

Figure 10.7. Deviation of eigenvalue β (obtained from Timoshenko’s equation) with respect 
to β0 (from Bernoulli-Euler’s equation) versus the slenderness coefficient u1= I1/SL2. 

Material: long graphite fiber-epoxy resin composite (Ez/Gxz=40).  
Capital figures 1;2;3 on the curves designate the mode rank 

                                   
3 See Chapter 9 [CHE 10] devoted to wave dispersions of the three kinds of wave dispersions. 
Details of experimental set-ups are given. 
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10.3.3.4. Shear effect in bending tests of composite materials  

Shear effect plays a predominant role. Let us recall that it is characterized in 
Timoshenko’s equation by the ratio Ee/(Gxz or Gyz ). This ratio can reach the value of 
40 instead of 3 for isotropic materials. Before effecting the bending tests, it is 
necessary to obtain the scale of sizes of this ratio by using, if possible, previsional 
calculations for composite materials (see [CHE 10], Chapter 1). This ratio can be 
high, in this case recourse to Timoshenko’s equation is necessary (see [CHE 10, 
Chapter 6, pp. 309). 

10.4. Concluding remarks 

10.4.1. Apparatus 

The mechanical set-up is easy to fabricate. We have to choose the most 
convenient system. The sample holder system is the most important one to adopt to 
facilitate testing. The boundary conditions must be chosen with care by the 
experimenter. 

10.4.2. Samples and useful parameters 

The symmetry consideration for the sample might be helpful and sometimes 
length correction is not necessary (pseudo-clamping). 

Sample parameters to consider include the inertia effect (slenderness) defined as 
the ratio of thickness to length, and the shear effect represented by the ratio of the 
axial Young’s modulus EZ to shear modulus (Gxz or Gyz), should be taken into 
account.  

When one enlarges the frequency range towards a higher frequency, it is 
important to take into account the best equation of motion (Timoshenko’s equation). 

10.4.3. Transducers 

If possible, contactless transducers should be used which do not create a 
mechanical influence, such as the influence of their own weight at the free ends or 
the eventual magnetic force (in the case of an inductance transducer with a 
permanent magnet as its core) which creates additional forces at the sample end 
which can influence the damping measurement as well as the resonance frequency 
of the sample. 
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10.4.4. Electronic equipment  

When using the automatic sweeping velocity of the generator frequency, the 
experimenter must take care concerning the recording of the sample response (see 
Chapter 6) which strongly depends on the damping coefficient of the sample itself. 

10.4.5. Young’s modulus evaluation 

The choice of the appropriate equation of motion depends on the range of 
working frequency on the geometric parameters of the sample and also on the ratio 
Ez/Gxz. Shear modulus plays an important role, particularly for composite materials. 

Computer programs are needed to evaluate eigenvalues related to Timoshenko’s 
equation and adopted boundary conditions (see [CHE 10], Chapter 6). 

10.4.6. Wave dispersion  

Systematic wave dispersion (say the wave velocity versus the frequency f or 
wave number k) study is presented in detail (for isotropic and/or anisotropic 
materials) in a very large range of frequency (or wave number) in Chapter 15 of this 
book. Special set-ups (which are different from the one in Figure 10.1) might give 
interesting information for researchers. 
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10.6. Appendix 10A. Useful formulae to evaluate the Young’s modulus by 
bending vibration of rods4 

The objective of this Appendix is to gather necessary equations and formulae to 
help the reader use them to interpret practical experiments. 

10A.1. Bernoulli-Euler’s equation  ܵߩ డమ௪డ௧మ  ൅ ܧ௭ܫ డర௪డ௭ర  ൌ  0         [10A.1] 

                                   
4 Equations of motion are presented without demonstrations; see [CHE 10], Chapter 6. 
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where ߩ , S, ܧ௭ and I represent rod density, cross-section area, axial Young’s 
modulus, and the cross-section area quadratic momentum, respectively; w(z,t) and t 
are the rod displacement, coordinate along rod axis z, and time, respectively. 

When using equation [10.A.1], readers must recall that the inertia effect, as well 
as the shear effect, is neglected. Remember also that the inertia effect is a dynamic 
effect whose influence is pronounced at higher frequency. The shear effect takes 
place over the whole range of frequency. 

10A.2. Timoshenko-Mindlin’s equation ሺ ܵߩ డమ௪డ௧మ ൅ ܧ௭ܫ డర௪డ௧ర  ሻ + ఘమூ௄ீೣ೥ డర௪డ௧ర െ ሺ ܫߩ ൅ ா೥ఘூ௄ீೣ೥ ) డర௪డ௧మడ௭మ ൌ 0 + [[10.A.2] 

 where K is the correcting coefficient depending on the calculation method adopted 
(whether Timoshenko’s static theory of shear, or Mindlin’s dynamic asymptotic 
phase velocity)5 and ܩ௫௭ is the shear modulus in the plane (xz). 

10A.3. Boundary conditions and wave number equation 

10A.3.1. Clamped-free rod 

a) Bernoulli-Euler’s theory: 

1+ coshβ.cosβ =0                                                                                  [10Α.3] 

b) Timoshenko-Mindlin’s theory: the wave number equation is more complex 
(remember: eigenvalues β and β0 concern Bernoulli’s and Timoshenko’s equations, 
respectively). [CHE 10] chapter 6. 

10A.4. Important parameters in rod bending vibration 

10A.4.1. Inertia effect and slenderness factor for a rectangular cross-section 

u1 = 
I ሺୡ୰୭ୱୱିୱୣୡ୲୧୭୬ area moment with respect to neutral lineሻ

SL2   = h2

12L2 [10.A.4] 

                                   
5 Coefficients in equation [10.A.2] differ only by two different considerations.  Timoshenko 
suggested to use shear distribution in the thickness and calculate the coefficient in the neutral 
plane in static bending. Mindlin  proposed a coefficient based on frequency consideration 
when frequency goes to infinity, the bending wave becomes a Rayleigh’s wave whose 
velocity is known. 
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10A.4.2. Shear factor 

Ratio : ௒௢௨௡௚ᇲ௦ ௠௢ௗ௨௟௨௦ ா೥ௌ௛௘௔௥ ௠௢ௗ௨௟௨௦ ௜௡ ௣௟௔௡௘ሺ௫௭ሻ ீೣ೥             = 2(1+ ν) ൎ 2.6 (isotropic material) 

                                                            ؆ 10 to 50 (anisotropic material) 

The numerical value of this ratio is obtained by previsional calculations applied 
to composite materials concerning the two moduli Ez and Gxz. 

10A.5. Expression of wave number 

The expression of the wave number is deduced from [10.A.1] or [10.A.2] 
depending on the bending theory adopted (either Bernoulli or Timoshenko). 

10A.6. Young’s modulus (Bernoulli’s theory)   Eࢠ  ൌ  ஡ୗனమ୐ర୍ஒర      [10.A.5] 

For a rectangular cross-section: ܧ௭ ൌ  ସ଼గమఉర  ሺெ௕ ሻሺ௅௛ሻଷ݂ଶ     [10.A.6a] 

where S=bh (area), I=bh3/12 (inertia moment of the cross-section), ρ=density, Μ is 

the rod mass, and β the eigenvalue solution of equation [10.A.3]. 

βא (10.996 ,7.875 ,4.69409 ,1.8751, etc.) [10.A.6b] 

The eigenvalues β  different order is related to the set of boundary conditions 
(say clamping at one side: the middle and free end at the other side) of the adopted 
mechanical experimental set-up, as shown in Figure 10.1. 

10A.7. Young’s modulus (Timoshenko-Mindlin’s equation) 

Ez = 
ω2ሺρSିρIβ2

L2 ሻሾIβ4

L4 ା ρIω2β2

GxzKω2β
2

L2

ሿ [10.A.7] 

β is given by a more complex eigenvalue equation (see footnote 1 above) and is 
evaluated numerically by a computer program, based on a trial and error method. 




