
Chapter 12 

Realization of Le Rolland-Sorin’s Double 
 Pendulum and Some Experimental Results1 

12.1. Introduction 

Among elasticimeters working in the low frequency range, the double pendulum 
presented here is the simplest instrument to fabricate and to use. Its utilization does 
not necessitate complicated instrumentation. Only the simplest apparatus are 
required for measurement.2 Details of the fabrication of the apparatus are discussed 
in this chapter and, finally, some experimental results serve to illustrate its 
versatility.  

12.2. Principal mechanical parts of the double pendulum system 

The system breaks down into four parts: a frame supporting the sample, jaws for 
sample clampings at both ends, a platform for the two oscillating pendulums, and 
the sample itself. 

The presentation made here is, to our knowledge, only one possible solution, 
which is not unique. Readers need only retain the main guiding ideas to conceive 

                                   
Chapter written by Mostefa ARCHI and Jean-Baptiste CASIMIR 
1 Long extracts were taken for this chapter from M. Archi’s PhD. thesis, Elastic moduli of 
composite materials by Le Rolland-Sorin’s double pendulum, in French [ARC 86]. Dr. 
Casimir [CAS 10] contributed to the final version of the chapter. 
2 The theory of the pendulum can be found in Chapter 8 [CHE 10]. 

Edited by Yvon Chevalier and Jean Tuong Vinh
Mechanical Characterization of Materials and W   ave Dispersion: Instrumentation and Experiment Interpretation

© 2010 ISTE Ltd.  Published 2010 by ISTE Ltd.



306      Mechanical Characterization of Materials and Wave Dispersion 

and realize different versions of the instrument and to imagine original apparatus 
themselves, different to what we present here.  

The main idea we wish to underline is the following: 

The sample environment, including the sample holder, must have the highest 
mechanical stiffness with respect to the sample stiffness. 

The apparatus and the sample holder must be rigid and have a great mass, and 
great bending and torsional inertias so that they do not influence the motion of the 
pendulums and the sample’s motion itself. 

12.2.1. Mechanical frame 

Figure 12.1 shows three vertical steel columns which are rigidly fixed to a heavy 
stand. The high stiffness of the frame in both bending and torsion is obtained by 
forcing the three vertical columns into three recessed holes in a steel parallelepipedic 
steel block at the top. Clearance at the top and the contact between columns and the 
stand are excluded. The columns are assumed to be clamped  at the extremities. 

 

Figure 12.1. The frame’s high bending and torsion stiffness are obtained by  
three vertical columns rigidly attached together at both ends. The stand  

hasa heavy weight compared to the set (sample-platform) 
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12.2.2. Jaws for realizing sample clamping 

12.2.2.1. Pair of jaws to attach the sample to the columns 

A pair of jaws form two adjustable pseudo-clamping positions at the two tips of 
the sample. Parts A and B (Figure 12.2) have cylindrical grooves which are in 
contact with the three vertical columns in Figure 12.1. Bolts and nuts (which are not 
represented in Figure 12.2(a)), help to maintain the jaws firmly in position. A thick 
steel block with three grooves (Figure 12.2; A and B) serves to fix the jaw, by two 
bolts, at the desired height depending on the vertical sample length. 

 

Figure 12.2. Massive jaws are solidly attached to vertical columns (see Figure 12.1). Parts A 
and B have cylindrical grooves. Cylinders C1 and C2 are parts of the sample pseudo- 
clamping system. C1 is fixed in cylindrical grooves in Part A by nuts and bolts. C2 is 

connected to C1 by two guiding cylindrical pins, (Part D in Figure 12.2(c)) so as to ensure the 
parallelism of the two cylinders. The thick plate E serves to uniformly transmit the 
compressive force, created by two bolts, to the sample between cylinders C1 and C2 

12.2.2.2. Sample pseudo-clamping by double cylinder system 

Clamping by cylinder is adopted here, and requires sample length correction.3 

In Figure 12.2(b) the left horizontal cylinder C1 is an integral  part of the jaw in a 
semi-cylinder groove of part A. The right horizontal cylinder C2 can be adjusted in 
its horizontal position with respect to the left cylinder. The parallelism of the two 
                                   
3 See Chapter 3, section 3.2, which presents the mechanical parts of the vibration test bench. 
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axes is obtained by means of two guiding cylindrical pins (Figure 12.2(c)). To apply 
compressive force to the sample along the clamping line, a moving plate E with 
horizontal groove (Figure 12.2(b)) is used in conjunction with two horizontal bolts 
whose axes are disposed in a vertical plane at the middle of the sample width.  

The distance between the rod axis and the axis of the nearest column must be 
sufficient to allow the easy attachment of the central platform (which is not 
represented in Figure 12.2). This precaution is taken when choosing an inertial effect 
parameter u1 (equation [10.1]) shaped jaw (Figure 12.2(b)). 

12.2.3. Clamping cylinders 

The two clamping cylinders must be made of hardened steel to reduce the 
surface deformation during clamping and their eventual permanent plastic 
deformation; see Figure 12.2(c). 

12.2.4. Platform supporting the two pendulums in the middle of the sample 

Only half of the symmetric platform is represented in Figure 12.3. The platform 
is a thick plate (a) which is soldered to a thick square vertical rigid bar (b). This last 
plate is attached to the sample by nuts and bolts. The rectangular open hole on the 
right (d) serves to install the pendulums in position to create the torsion motion of 
the sample, which will be explained later. 

Figure 12.4 shows a general view of the mechanical system without the 
pendulums. Cylinder (c) serves to reinforce the rigidity of the horizontal platform       
(d). 

 

Figure 12.3. Only half of the platform supporting the pendulum is  represented.  
Its bending stiffness is reinforced partly by means of the T-shaped cross-section  
of the platform. At the right end, there is a rectangular slot which serves to force  
torsional sample oscillations by positioning the knife edges of both pendulums  

appropriately on the platform, with respect to the sample 
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Figure 12.4. General view of the mechanical system. The horizontal position of the stand is 
realized by three bolts and nuts with spirit air level. The shape of the central platform is 

conceived in such a manner that the apparatus can work either in bending test or in torsion 
test. Pendulums are not represented 

12.2.5. Pendulums 

The design of each pendulum is made so that it is nearly assimilated to a simple 
pendulum (meaning that a concentrated mass is oscillating at a distance from the 
oscillating center). Figure 12.5 shows the components of the pendulum. 
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Figure 12.5. The pendulum is composed of (a) a square frame, which bears a knife edge 
(presented in detail in (a1)); (b) a cylindrical rod; (c) a  massive cylinder weight whose 

position is adjustable; (d) a complementary weight in the form of a thick disk serving to adjust 
the pendulum period by changing its position along the rod (b) 

12.2.5.1. The pendulum and the system-supporting knife edge 

The first part of the pendulum is a square frame made of four steel pieces, see 
Figure 12.5. The top of the frame is constituted by the knife edge itself (a) which is 
realized in hardened steel. The square frame is designed to allow pendulums to 
function either in a bending test or a torsion test. The pendulum is designed to 
behave like a simple pendulum, i.e. its mass is concentrated at one point along the 
pendulum’s length. For this purpose, a massive cylinder, (c), is fixed to the frame by 
means of a cylindrical rod; a disk, (d), permits the adjustment of the two pendulum 
eigenperiods to the same value by varying the disk position with respect to the 
cylinder (c). 

Figure 12.6(b) represents the position of the knife edge with respect to the plate 
form. Figure 12.6(a) shows the position of both pendulums adopted for a bending 
test with respect to a sample in a vertical position. Figure 12.6(c) shows that 
oscillations of both pendulums are in the plane of the figure. Details of the position 
of the knife edge (BB’) are presented in Figure 12.6(b). It is fixed along a cylinder 
rod which is partly threaded to allow adjustment of the disk position. 
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Figure 12.6. Bending oscillation of the sample: (a) position of the two  
pendulums at rest; (b) details of the knife edges in the direction BB’ are  
perpendicular to the horizontal axis of the platform. AA’; (c) schematic  

representation of both pendulums which oscillate in the figure plane 

12.2.5.2. Pendulum period adjustment 

To facilitate the adjustment of the equality of periods of both pendulums (which 
constitutes the necessary condition for the good functioning of the apparatus), a disk 
is disposed under the massive cylinder (d) in Figure 12.5 and  serves to adjust the 
equality of the oscillating period of both pendulums. This operation is effected 
without the sample on a motionless  platform.  

12.2.6. Pendulum positioning 

The position of the pendulum depends on the kind of vibration one wishes to 
obtain: whether bending or torsional vibration of the sample. 

12.2.6.1. For sample bending 

Figure 12.6 shows the knife edge positioning. The two pendulums oscillate in the 
plane of the figure i.e. the plane defined by the vertical rod axis and the horizontal 
symmetry axis of the platform. Figure 12.6(b) shows the position of the knife. 
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12.2.6.2. For sample torsion 

Figure 12.7 shows the position of the knife, which is perpendicular to the figure 
plane. A glass plate is used for this purpose. The knife edge is parallel to the 
horizontal axis AA’ of the platform. A glass plate is used to minimize the friction 
with the knife edge. The pendulums oscillate in a plane which is perpendicular to the 
figure. 

 

Figure 12.7. Torsional sample oscillation: (a) for comparison, sample bending vibration  
is obtained by pendulum oscillations in the figure plane with knife edge contact along  
the BB’ axis; (b) the open slot in half of the platform permits the pendulum knife edge  

to be positioned in the slot. The knife edge is in contact with a moving rectangular  
glass plate disposed along the axis AA’, perpendicular to axis BB’; (c) position of the knife 

edge parallel to the sample axis AA’ 

12.3. Instrumentation  

The instrumentation required is very simple: 

– a double pendulum does not necessitate the need for an exciter. The two 
pendulums contribute alternatively to store and restitute energy via the sample. Free 
oscillations of both pendulums, for low and medium damping materials, might last a 
dozen minutes or more; 

– the time duration measurement requires either a hand activated chronometer or 
an electronic chronometer with appropriate electronic gate circuits; 

– for damping ratio measurement, electronic recording is necessary. 
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A displacement transducer is a necessary part of the electronic set-up to record 
and evaluate beating periods and decreasing amplitude oscillations of one of the 
pendulums, from which measurement of a logarithmic decrement is evaluated. 

Figures 12.8 and 12.9 show respectively that, the sample being in the same 
position, for a bending test, the pendulums oscillate in the plane (z, x), while for a 
torsion test, the pendulums oscillate in the plane (z, y). The interest is that, for both 
tests, the sample is in exactly the same position without modification of the central 
platform. A change of test nature requires only the change of the direction of the 
knife edges. For the torsion test, one only has to introduce the glass plate; see 
Figures 12.7  and 12.9.   

Figure 12.10 is a schematic representation of the electronic and electrical set-up. 
The choice of displacement transducer is large (see Chapter 3). A couple of 
contactless inductive transducers, even with a low carrier frequency generator to 
supply the dynamic Wheatstone bridge or eddy current transducer, can be chosen.  

Beware the possible non-linear response curve of the transducers. Preliminary 
calibration is necessary to ensure the linear response. If this is not done, a 
linearization circuit is necessary. Displacement measurements are taken on one of 
the pendulums. 

 

Figure 12.8. Schematic diagram of the double pendulums showing bending motion of the 
sample clamped at both ends. The pendulums oscillate in the plane (z,x). 2 Lp is the length of 

the platform where z is the rod axis and x the direction of the sample thickness 
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Figure 12.9. Schematic diagram of torsional double pendulum. The pendulums oscillate in 
the plane (z,y), where z is the sample axis and  y the direction of the sample width 

 

Figure 12.10. Schematic representation of the electronic set-up. Pendulums need not have 
large angle oscillations. The recorder is necessary for damping ratio estimation by 

logarithmic decrement. A couple of transducers working in a push-pull system are used to 
improve linearity response. Transducers are mounted on guiding bars with adjustable  

vertical and horizontal positions; (A) is an adjustable guide rail supporting the transducer 
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In the case where the elastic (Young’s and shear) moduli are the only desired 
measurements, only a hand-actuated chronometer is necessary, on the condition that 
the measured beating period of the pendulum exceeds many minutes. For a high 
damping material, an electronic chronometer is, naturally, adopted.  

 

 

Figure 12.11. Schematic representation of electronic set-up. It is not necessary to obtain  
a large oscillation amplitude for the pendulums. Recording of oscillations is necessary  

for the evaluation of the sample damping coefficient by logarithmic decrement.  
A couple of contactless transducers working in a push-pull system are used to improve the 

linearity of the transducers. The transducers are mounted on guiding bars  
with adjustable vertical and horizontal positions 

12.4. Experimental precautions 

The following practical recommendations contribute to obtaining acceptable 
measurements.  

12.4.1. Platform installation 

The symmetric double platform must be adjusted  to the exact middle of the sample. 
An error in the positioning of the platform clamping with respect to the sample creates a 
dissymmetry in the oscillations and their amplitude minimum departs from zero. 
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12.4.2. Natural oscillation period of the pendulums 

Preliminary adjustment of the natural period of oscillation of each pendulum is 
necessary. The two oscillation periods of the pendulums must be identical and 
adjusted separately. Eventually, adjustment of the position of the lower disc permits 
the period equalization. This is the main precaution to take to obtain further accurate 
measurements of beating periods with a sample in action. In this case, motion of one 
of the pendulums gives rise to beating oscillations going to zero amplitude. This 
precaution enables accurate measurement of beating periods.  

12.4.3. Platform attachment to the sample 

The clamping of the vertical sample to the platform uses classical sample 
clamping between flat plates so as to avoid possible sample slipping with respect to 
the platform, taking into account the platform weight. A sample length correction is 
necessary. The clamping force applied to the two parts of the platform is the 
important parameter to take into account. For this purpose, the applied force is 
evaluated via screw tightening by a  torque dynamometer key. The  torques applied 
to all the bolts must be equal to ensure the equal distribution of pressure. The curves 
representing the square of the period versus the sample length, as presented in 
Chapter 3 (Figures 3.4 and 3.5) enable the evaluation of length correction. This 
operation requires changes of length of the sample. 

12.4.4. Calibration of displacement transducers  

This calibration corresponds to a given position of the transducers, with the 
pendulums being at rest. The gaps between transducers and the pendulums are 
adjusted by means of a key (in the form of steel plates with a predetermined 
thickness, with an accuracy of 1/100 of millimeter). This operation is followed by 
electronic calibration of the signal conditioners. 

12.4.5. Geometry of the sample  

This is an important parameter. A preliminary length measurement of the sample 
is necessary. It should be mentioned that, for bending sample motion, the thickness 
intervenes as the cube power in the inertia moment. For some multilayered 
composite samples, the accuracy of the thickness strongly depends on the fabrication 
of the material itself. This accuracy is rarely lower than 0.1 mm, which is a problem 
to be accounted for. 
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12.4.6. Stability of the stand 

The horizontal position of the stand is a condition of good measurements. The 
double pendulum system must be sheltered from any parasitic vibrations in the 
laboratory. 

12.4.7. Electronic triggering circuit for period pendulum measurements  

For a low modulus (soft) material, the beating period can be of the order of 
several seconds. A hand-activated chronometer lacks accuracy in this condition and 
can be replaced by an electronic chronometer. An electronic triggering circuit with 
photodiodes can be used to advantage.  

12.4.8. Damping ratio measurements  

The logarithmic decrement method presented in Chapter 8 in [CHE 10] is the 
most appropriate one to use to measure the damping ratio. The decreasing of the 
envelope (which is the mathematical locus) of the maximum pendulum oscillations 
concerns the beating periods of two combined sinusoidal oscillations. An electronic 
recorder is then necessary for this purpose; see Appendix 12A. 

12.5. Details and characteristics of the elasticimeter 

12.5.1. Characteristics of the double pendulum 

The characteristics below are given only to illustrate the various steps involved 
in the calculations. Evidently, another set of characteristics will be found with a 
different pendulum design. Our pendulum characteristics are: 

Mass of the two platforms, mp = 2.588 kg 

Mass of each pendulum, m = 1. 240 kg 

Platform inertia in bending, Ip = 0.0081 kg.m2 

Inertia of the platform and the pendulums (torsion tests), 
      Ip +2ml2 = 0.0314 kg.m2 

Natural periods of each pendulum T1 = 0.68 s 

Natural pendulum frequency, f1=  1 / T1 = 1.47Hz. 
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12.5.2. Elastic modulus calculation programs 

Formulae giving elastic moduli (Young’s and shear) are presented in Appendix 
12B for both bending vibration and torsional vibration. Non-diagonal compliance 
matrix coefficients are evaluated for anisotropic materials by using off-axis samples. 
Appendix 12C presents succinctly the mathematical formulation of the simultaneous 
bending and torsion of the sample. 

12.6. Some experimental results 

Details of the fabrication of the pendulums as well as precautions to adjust the 
mechanical system (clamping of the platform on the sample and its influence on the 
length correction of the sample, periods of the two pendulums to be equalized etc.) 
are presented elsewhere (see Chapter 8 [CHE 10]). In this section, we will show 
that, despite its simplicity of operation, Le Rolland-Sorin’s double pendulum can be 
advantageously compared to more sophisticated instruments. 

12.6.1. Measurements on isotropic metallic materials 

These measurements are used at first to test the reliability of the apparatus. 

12.6.1.1. Aluminum sample 

Thickness h = 2 mm, width b = 15.5 mm; length 2L = 187 mm. 

a) Beating period τE= 53.27 s (for Young’s modulus using bending oscillation); 

b) Beating period τG = 12.34 s (for shear modulus using torsional vibration). 

Measurements on the double pendulum were completed with measurements on 
ultrasonic benches. Formulae concerning elastic moduli of isotropic materials are 
the simplest.  Details of  the successive steps of the calculations are given in [CHE 
10] Chapter 8, Figure 8.6. The accuracy of Young’s modulus using bending tests 
depends on the accuracy obtained on the geometry of the sample, essentially on the 
sample thickness. 

For torsion tests, the calculation of shear modulus is given by equations [12.B.5] 
and [12.B.7] in Appendix 12B. For isotropic material using Saint Venant’s theory of 
torsion, the torsional stiffness is given by (see [12.B.7]) : 

CT = bh3G βT (1/c) 
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where c = h/b, with b (width) and h (thickness). β(c) is given by a series formulae in 
Appendix 12B.  

The ultrasonic method permits the evaluation of the stiffness matrix of a material 
and not the compliance matrix. Consequently, Young’s modulus is deduced from Cii 
and Cij (with i്j) by matrix inversion. Naturally, the sample is supposed to be 
essentially elastic and the damping coefficient related to the Young’s modulus is 
supposed to be very low tan δ Εൎ  10ିଶ. 

Table 12.1 gives values of E and G for aluminum, using two different 
measurement methods.  

Elastic modulus Ultrasonic measurements Double pendulum 
measurements 

Young’s modulus  E 5739 x 107 Pa.* 5598 x 107Pa. 

Shear modulus G 2152 x 107 Pa. 2110 x  107 Pa. 

Table 12.1. Measurement of aluminum with two different methods: ultrasonic  
and double pendulum.(*). This is not a direct measurement. The Young’s modulus  

is obtained by inversion of the complete stiffness matrix 

12.6.1.2. Measurement of steel 

Table 12.2 concerns steel elastic moduli. 

Beating 
period   First test Second test Third test Elastic moduli 

τE 52.4 s. 52.61 s. 52.32 s. E= 21843 x 107 Pa. 

τG 10.78 s. 10.96 s. 10.83 s. G=7512 x 107 Pa. 

Table 12.2. Measurements with double pendulum for steel 

12.6.1.3. Measurements of glassfiber–epoxy resin composite (transverse isotropic) 

Length 2L = 186.4 mm; thickness h = 3.4 mm; width b = 10mm; rod axis z = 3 
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Beating 
period First test Second test Third test Elastic moduli 

τE3 64.2 s. 64.10 s. 64.70 s. E3= 41.41 x 109 Pa. 

τG13 8.50 s. 8.55 s. 8.44 s. G13= 5.1 x 109 Pa. 

Table 12.3. Measurements of a glass epoxy composite G13=G23; plane (1,2)  
is transversely isotropic. τE3= beating period in bending vibration;  

τG13= beating period in torsional vibration 

12.6.1.4. Glass epoxy composite  

This material is transverse-isotropic. The rod axis, z, is perpendicular to the fiber 
axis 3 (Figure 12.9). 

Length 2L = 113mm; width b= 10.7 mm; thickness h= 3.45 mm; density ρ = 1946 kg/m3 

Beating period First test Second test Third test Elastic moduli 

τE1 74.35 s. 74.23 s. 74.60 s. E1=9.58 x 109 Pa. 

τG12 15.48 s. 15.47 s. 15.38 s. G12= 5.27 x 109 Pa. 

Table 12.4. Measurements of glass fiber-epoxy resin composite.  
Rod axis is along direction 2, perpendicular to fiber axis 3 

12.6.2. Non-diagonal compliance coefficient of anisotropic material 

Details of the mathematical formulation of simultaneous bending and torsion of 
an off-axis sample are presented elsewhere (see Chapter 8 [CHE 10]). Here, we give 
some remarks on the testing method and its accuracy. 

The main problem to be solved is the coupling between bending and torsion due 
to the utilization of an off-axis sample. As the rod axis z is not coincident with the 
reference material axis, compliance matrix coefficients must be calculated for the 
sample reference axis. The compliance matrix being of the fourth order, a change of 
reference axes gives rise to the power four of the direction cosines in the formulae 
(see Chapter 1 in [CHE 10]).  

This constitutes the main problem in compliance coefficient calculation. To take 
this into account in practice, optimization calculation methods are referred to. An 
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example of the calculation of Poisson’s number for boron fiber-epoxy resin is 
presented below. 

12.6.2.1. Preliminary measurement of compliance matrix coefficient, the axis of the 
material being coincident with the sample axis 

In a first step, the matrix diagonal coefficients must be evaluated before 
envisaging the non-diagonal matrix coefficient calculations. In this preliminary 
calculation stage, a sample whose reference axes coincide with the reference 
material axes is used.  

 Two samples are necessary, one sample with fiber axis 3 perpendicular to the 
rod axis z, as in Figure 12.12. The other sample has its z axis coinciding with fiber 
axis 3. 

 

Figure 12.12. Rod axis z with respect to fiber axis 3 

Two elastic moduli are obtained for each sample: 

a)        E1 = 24.5 x 109 Pa.  G13 = 2.25 x 109 Pa. 

b)        E3 = 204.6 x 109 Pa.   G12= 2.25 x 109 Pa. 

12.6.2.2. Calculation of Poisson’s ratio ν13 

Figure 12.13 presents the variation of ν31 = ν31
4

 versus the shear modulus G13 and 

the rotation angle α between fiber axis and rod axis. The sensitivity of ν13 with 

respect to shear modulus G13 is less pronounced than that with respect to angle α. 
The calculation program gives the compliance component of boron fiber epoxy resin 
composite: s13 = -1.47 x 10-12 Pa-1. 

 

                                   
4 This equality means the material is transverse isotropic and has a symmetric axis 3 
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Figure 12.13. Variation of Poisson’s number ν31  versus  shear modulus G13 and the angle α 
between fiber axis and rod axis z. Optimization method consists in finding the stationary zone 

The corresponding Poisson’s number is: ν13= -s13E3 = 0.28 

Details of calculation of s35 and ν31 with formulae can be found in [CHE 10] 
Chapter 8, Appendix 8D.  

12.7. Damping ratio estimation by logarithmic decrement method 

This method is presented and discussed, with possible improvements by special 
signal processing (see Chapter 8 regarding the time Hilbert transform). With the 
double pendulum, two records of beating oscillations are presented in Figure 12.14. 
Only a few beating periods are presented in this figure. The beating angular 
frequency is represented by the difference (ω1−ω2*); ߱ଶכ  with the star designating the 
complex natural angular frequency of the viscoelastic sample, which concerns the 
envelope of the pendulum 1 oscillations. ߱ଵ is the natural angular frequency of the 
pendulum, which is supposed to be real. The position of one point on the envelope at 
an instant t depends on the value ሺ߱ଵି߱ଶ′ ሻt and also on ߱ଵt. Calculation of the 
logarithmic decrement can be effected. 

The mathematical expression of oscillation is: ߠଵ(t) = ߠ଴(0) ݁ିఠమ′′௧[cos (߱ଵ െ ߱ଶ′ ሻ ௧ଶ ]. cos߱ଵt  [12.1] 
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Figure 12.14. Record of pendulum (1) oscillations. The pendulum is launched at  
its maximum amplitude with zero initial velocity ߠଵ′ (0) =0. ߬  is the beating period.  

The material damping coefficient is evaluated from the envelope of oscillations 

where: ω1 is the natural circular frequency of the pendulum 1; ߱ଶ′   is the real part of natural complex circular frequency of the sample;  ߱ଶ′′  is the imaginary part of the sample circular eigenfrequency.  

After [12.1] the beating period is given by: 

( ߱ଵ െ ߱ଶ′  )ఛଶ = kߨ , k integer                                             [12.2] 

where k is an integer.                                            

τ = 2kπ
ω1ିω2

′   [12.3] 

The choice of amplitudes of pendulum 1 is such that the time interval must be: 

   tmeasured  =  n ߬      [12.4] 

where n is a positive integer. If the time translation is effected with reference to the 
initial amplitude ܣ଴௣, the other amplitude on the other beating period is ܣ଴௣ or ܣଶ௣. , 
etc. 
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Relation [12.4] must be satisfied. The damping ratio is related to the slope of a 
graphical curve of the envelope of a graphical curve of the envelope in a  
semi-logarithmic coordinate: ζ2 = − slope / (ω1−ω2'). 

And the damping ratio is expressed as ln, designating a Naeperian (or natural) 
logarithm: 

ζ2 =  ଵ௡ ln [ ஺బ೛஺೙೛]  [12.5] 

The translation of time such that ܣ଴଴ is replaced by ܣ଴௣, and p is the integer 
number of the natural period of pendulum (1). ܣ௡௣ designates the amplitude, with n 
being the rank of beating period and p the notation indicated above. 

The material damping is defined as the ratio of the imaginary part to the real part 
of the viscoelastic modulus: 

tan δE =  
ூ௠ሾாכሿோ௘ሾாכሿ    =         ζ2

Ε /π  [12.6] 

To take the example of boron-epoxy composite with unidirectional fibers, for 
Young’s modulus E3

* and shear modulus G13
*: 

ζ E = 
ଵ଻ l nଵହଵଵଶଽ = 0.0225 

tan δ E3 = 
଴.଴ଶଶହగ  = 0.0071 

ζ G13 = 
ଵଵ଴ln

ଵ଺ସଵସଷ = 0.0137 

tan δ G13 = 
଴.଴ଵଷ଻గ  = 0.0044 

12.8. Concluding remarks 

The double pendulum presented in this chapter has absolutely no resemblance to 
any other industrial elasticimeter. It is based on a completely different functioning 
principle with respect to classical apparatuses which include two main independent 
parts: (a) oscillator and exciter, and (b) a set of transducers. 
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12.8.1. Absence of external exciter 

Le Rolland-Sorin’s pendulum does not need an external exciter. One of the 
pendulums is launched by gravity and the potential energy due to the initial 
amplitude of pendulum 1 is sufficient to maintain the oscillations of the two 
pendulums during the experiment’s duration. By exchanging energy, oscillations of 
each pendulum are maintained with a slow decrease in amplitude. The main features 
to be remembered are: 

– measuring instruments are reduced: a chronometer is sufficient to evaluate 
elastic moduli; 

– additional instruments (transducers and recorders) enable this apparatus to 
explore the domain of viscoelasticity of materials; 

– possible extension of measurements to characterization of composite materials 
by using an off-axis sample; 

– its ease of use; 

– it is of interest for working in the lowest working frequency (just a few Hertz).  

To work in this frequency range, a hydraulic exciter working in sinusoidal 
regime requires a great deal of room and apparatus.  
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12.10. Appendix 12A. Equations of motion for the set (pendulums, platform 
and sample) and Young’s modulus calculation deduced from bending tests 

12A.1. Equations of motion 

Kinetic energy Uc and potential energy of the system are (Figure 12.6 and 12.8]): 

2 22

1 2c p
1U  =  m  x  + m x  + L  + m x  + L 
2

θ θ
• • • • •⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠  
[12.A.1a] 

( )2 2 2
p 1 2

1U  =  mg L  + mg L  + k x
2

θ θ  [12.A.1b] 

with mp being the platform mass, m the pendulum mass, k the sample translation 
rigidity, g the gravity acceleration, l the length of the pendulum, x the horizontal 
displacement of the platform, and θ1 and θ2 the oscillation amplitudes of the 
pendulums. 
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Lagrange’s equations are deduced, the dots on the letters designating the time 
derivative of the corresponding variable 

1 2p

1 1

2 2

m   x  + L  + m x  + L  + k x = 0

m L  x  + L  + L mg  = 0

m L  x  + l  + L mg  = 0

θ θ

θ θ

θ θ

•• •• •• ••

•• ••

•• ••

⎫⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ ⎝ ⎠ ⎪

⎪⎛ ⎞
⎬⎜ ⎟

⎝ ⎠ ⎪
⎪⎛ ⎞
⎪⎜ ⎟

⎝ ⎠ ⎭

 [12.A.2] 

( ) 1 2p

1 1

2 2

 x  m  + 2 m +  mL  +   mL  + k x = 0

x  +  L   + g  = 0

  x  + L  + g  = 0

θ θ

θ θ

θ θ

•• •• ••

•• ••

•• ••

⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭

 [12.A.3] 

The pendulums are supposed to be simple for the first presentation. To obtain a 
non-trivial solution, the determinant of the coefficients in [12.A.3] is set to zero. 
This gives the eigenfrequency. 

The eigenvalue equation is obtained by setting the determinant of [12.A.3] to 
zero: 

( )2 2 2
p

2 2

2 2

k- m 2m    -mL    -mL

-    g-L 0
- 0 g - L

ω ω ω

ω ω
ω ω

+

= 0 [12.A.4] 

By developing [12.A.4]: 

( )2 2 4
pg - l k -  m  + 2m   - 2m l   = 0ω ω ω⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  [12.A.5] 

A solution corresponds to  

2
1  = g/Lω  
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This gives the eigenfrequency of the pendulums ω1. The second factor of the 
developed determinant is: 

( ) ( )4 2
p p L m  -  k L + g m  + 2m  + kg = 0ω ω ⎡ ⎤⎣ ⎦  [12.A.6] 

The two roots of [12.A.6] are positive. 

The greatest root corresponds to motion at highest frequency. This higher mode 
of vibration tends to disappear rapidly with time. The lowest mode remains and it is 
easily shown that the corresponding circular frequency is lower than the pendulum 
eigen circular frequency. 

2 pendulum 1 <  = ω ω ω  [12.A.7] 

12A.2. Solutions for pendulum oscillations 

The solutions θ1(t) and θ2(t) depend on the initial conditions adopted for the 
pendulums: 

2 11 0 2t = 0      =    ,    =   =  = x  = x = 0θ θ θ θ θ
• • •

 [12.A.8] 

The platform is initially at rest, as is the second pendulum. Pendulum 1 is 

launched at θ1 = θ0 and without initial angular velocity: 1 = 0θ
•

.  

Details of calculations of θ1(t) are presented by using the Laplace transform  
(Chapter 8 [CHE 10]). 

Taking into account the practical construction of the pendulums, we have to deal 
with the coupling of two mechanical oscillators of eigenfrequencies ω1, ω2. 

As both pendulums are identical and only the first pendulum is launched at 
amplitude θ0 without initial velocity, the two pendulums oscillate in phase opposition.  
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( )

( )

1 2 1 2
1 0

1 2 1 2
2 0

 +  - 
t  =  cos ( ) t.cos ( ) t

2 2
 +  - 

t  =  sin ( ) t.sin ( ) t
2 2

ω ω ω ωθ θ

ω ω ω ωθ θ

⎫
⎪⎪
⎬
⎪
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 [12.A.9] 

A beating phenomenon of the two oscillators takes place, and in [12.A.9] the 
envelope of oscillation corresponds to a beating period: 

1 2

2 = 
 - 
πτ

ω ω
 [12.A.10] 

12A.3. Relationship between beating periodτ and sample stiffness k 

12A.3.1. Stiffness calculation 

By setting 2
1  = g/lω  and 2 = ω ω the lower circular eigenfrequency is the root of 

the following equation:  

( ) ( )2 2 4
pk -  m  + 2 m  g - L  - 2 m L  = 0ω ω ω⎡ ⎤⎣ ⎦  

[12.A.11]
 

( ) ( )2 2 4
p pk g - L  = m  + 2 m  g -  m  Lω ω ω  

Sample stiffness is deduced: 

( ) 2 4p
p

2 2

gm  + 2 m   m  Lk = 
g g - L  -  
L L

ω ω

ω ω
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

That gives  the sample  stiffness when  ω =  ω2  

( )
( ) ( )

2 2 4
p 2 1 p

2 2 2 2
1 2 1 2

m  + 2 m   m  
k = 

  -  -  

ω ω ω
ω ω ω ω

−  [12.A.12] 
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1 1 2

1 1 2

T  - 2  =  =    ;    = 
- 

ω ω πδ τ
τ ω ω ω

 [12.A.13] 

( )2 1 =  1 - ω ω δ  [12.A.14] 

Bringing [12.A.13] and [12.A.14] into [12.A.11]: 

( ) ( )
( )

( )
( )

2 4
p 2 2

1 p 1

m  + 2 m  1 - 1 - 
k =   -  m  

2 2

δ δ
ω ω

δ δ δ δ− −
 [12.A.15] 

or 

( ) ( )22
1 p

2 mk =  m  +  1 - 
 2 - 

ω δ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 [12.A.16] 

The sample stiffness k depends on the relative beating period δ  in [12.A.16], 
with m and mp being the parameters of the pendulum system itself. 

12A.4. Young’s modulus calculation 

The Young’s modulus is related to the sample stiffness by classical formula used 
in the strength of material: 

3

48 E Ik = 
L

 [12.A.17] 

The sample is clamped at both ends and a platform is attached in its middle. As 
the platform is associated with the sample without sliding, some precautions are 
necessary for the fixing of the platform. In later chapters, details are given to take 
into account the clamping force applied between the platform and the sample. The 
length of the sample consequently necessitates a correction. In [12.A.17] I is the 
inertia moment of the sample: 

3b hI = 
12

,  where b is the width, and h the thickness. 
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12.11. Appendix 12B. Evaluation of shear modulus by torsion tests 

Equations of motion of Le Rolland-Sorin’s double pendulum working in torsion 
are similar to the equations of motion in bending tests presented in Appendix 12A. 

12B.1. Energy expression 

The potential and kinetic energies are (dots on the letters designate time 
derivatives): 

( )2 2 2
p p 1 2

1U  =  C  + m g L  + m g L 
2

θ θ θ  [12.B.1]
 

2 2
2

p p 1c p p p 1 p
1U  =  I   + m L   + m L   + L 
2

Lθ θ θ θ θ
• • • • •⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

Lagrange’s equations of motion are deduced: 

p p p 1 2 p

p 1 1

p 2 2

I +m(L ) m( )  + C = 0

m(L ) mg 0

m(L ) mg 0

p p p p p

p

p

L L L L L

L L L

L L L

θ θ θ θ θ θ

θ θ θ

θ θ θ

+ + +

+ + =

+ + =

&& && && && &&

&& &&

&&

 [12.B.2] 

where Ip, Lp and θp designate respectively the inertia moment of the platform, the 
length  the torsional angle of the platform  

T2 C
 = 

L
C  [12.B.3] 

where CT is torsional stiffness.  
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Arranging [12.B.2] we obtain the following equations: 

( )2
p 1 2p p p p p

p 1 1p

p 2 2p

I  + 2 m L   + m L L   + m L L   +   = 0

L   + L  + g  = 0 

L  + L  + g  = 0 

θ θ θ θ

θ θ θ

θ θ θ

•• •• ••

•• •• •

•• ••

C

 [12.B.4] 

Comparing [12.B.4] to [12.A.3] we notice that the two sets of equations are 
similar. The solutions obtained previously for flexural vibrations can be transposed 
here by changing corresponding coefficients:  

( )
( ) ( ) ( )

( )

42
p2 2

p p 1

1 -  I1 - 
 =  I  + 2 m L  -  

2 -  2 - 
δδ

ω
δ δ δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

C  

( ) ( )
2

2 p2
1 p

2 m L
 =  1 -  I  + 

2 - 
ω δ

δ δ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

C  [12.B.5] 

TC
 = 2 

L
C  [12.B.6] 

The torsion stiffness of a rod with rectangular cross-section is given by Saint 
Venant’s theory: 

( )3
T xz TC  = b h  G   1/cβ  [12.B.7] 

where ( )T cβ  is a warping function deduced from Saint Venant’s torsion formula: 

xz

yz

Ghc =  
b G

,  [12.B.8]  

β ( c ) = [ ଵଷ - ଺ଷ௖గఱ ∑   ଵ௞ఱଵ,ଷ,ହ tanhሺ௞గ௖ଶ ሻሿ   [12.B.9] 
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where b is width, h thickness, and Gyz and Gxz the shear moduli in the planes yz and 
xz, respectively. In the case of isotropic materials, these two moduli are equal and c 
is reduced to the ratio of width (b) to thickness (h) in formula [12.B.8]. 

C is deduced from the measured beating period δ. Torsional stiffness CT is 
evaluated from C. Shear modulus is obtained from equation [12.B.7]. 




