
Chapter 13 

Stationary and Progressive Waves in  Rings 
and Hollow Cylinders1 

13.1. Introduction 

The objective of this chapter is to show that in some circumstances, 
experimenters do not have material samples at their disposal which are made 
according to the recommendations of national standards’ offices. In such situations, 
the samples tend to be fabricated from an existing mechanical object, such as a 
hollow cylinder, curved rod, etc. The nature of the material is often unknown; and 
experimenters must choose the shape and number of samples based on the following 
considerations: 

(i) whether it is an isotropic or anisotropic material; 

(ii) the shape of the sample to be fabricated from the existing object and whose 
elastic (or viscoelastic) characteristics are to be evaluated; 

(iii) the choice of special set-ups, which depends on the samples and their 
unusual shapes. 

With regard to the first item, the problem is to evaluate the symmetry directions 
of the existing object. Often, fabrication techniques furnish information concerning 
the symmetry of an anisotropic material.  
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This consideration has been discussed in detail elsewhere (see Chapter 1 [CHE 
10]). The number of elastic (or viscoelastic) constants depends on the symmetry 
degree of the material. 

For item (ii) above, the choice of the sample geometry is restricted to the object’s 
symmetry itself. Appropriate equations of motion have to be written as well as 
appropriate boundary conditions. For item (iii), special sample holders need to be 
designed.  

Initially, in our research, the vibrations of rings and hollow cylinders were 
realized in the framework of an industrial contract. The object was to estimate the 
elastic moduli of pyrolytic graphite used in the electronics industry.  

13.2. Choosing the samples based on material symmetry 

The fabrication technique might serve as a guide to the symmetry degree of the 
material. If the hypothesis of a material symmetry axis of the object is adopted, a 
transverse isotropic material is the first one. Figure 13.1 shows a hollow cylinder 
with three possible samples. Rod (A), whose axis is collinear with the cylinder axis 
oz, has a curved cross-section. Ring (B) maintains the symmetry of the cylinder. The 
whole object (C) can be used for torsion tests. A curved rod, not represented in 
Figure 13.1, which makes an angle Θ with respect to the z axis of the object, can be 

used to evaluate Poisson’s ratio νrz . 

 

Figure 13.1. Initial object from which samples are to be cut (1); cylindrical coordinates are 
used for the geometry of the object (2) three kinds of samples are cut from the object:  

A: longitudinal rod; B: a ring (circumferential); C: the whole object 



Stationary and Progressive Waves     337 

Sample and moduli Equations of motions Remarks 

(1) E z , G z Θ 
= Gzr Bernoulli-Euler’s or Timoshenko’s 

equation or Saint Venant’s 
equation  

Inertia moment of the 
cross-section to be 
evaluated 

(2) E r Flexural ring equation of motion 
(Appendix 13A) 

More convenient to 
handle than curved rod 

(3) ν r z = ν z rΘ 

Coupled equations of motion 
(torsional-bending) to be written 

Warping phenomenon 

Table 13.1. Three samples cut from hollow cylinder to be used in bending and torsional tests 

Table 13.1 contains comments concerning the three samples. with the exception 
of sample 3, whose coupled equations of motion are difficult to handle, the two first 
samples (1 and 2) allow only three elastic moduli to be evaluated. The two 
remaining elastic moduli necessitate wave propagation through the sample 
thickness. Low frequency vibrations are consequently not appropriate. Ultrasonic 
waves are referred to and are easier to use2. The fourth sample is the whole hollow 
cylinder itself. Torsional vibration tests enable Gθz to be evaluated. 

13.2.1. Ultrasonic tests  

Ultrasonic tests are applicable if the thickness of the hollow cylinder is not too 
small (i.e. if the thickness is at least three or four times the wavelength). They are 
useful for shear modulus evaluation.  

13.3. Practical realization of a special elasticimeter for curved beams and rings: 
in plane bending vibrations 

As we have to deal with curved beams and rings, elasticimeters need to be 
specially conceived and realized, in which the sample holder must be well adapted 
to the sample geometry, on the one hand, and able to satisfy the specific boundary 
considerations, on the other hand.  

                                   
2 Ultrasonic measurements enable the stiffness matrix coefficients Cijkl to be evaluated when 
vibration tests give compliance matrix coefficients Sikjl from which elastic moduli are 
deduced. As we have to deal with pyrolytic graphite, which is weakly viscoelastic, the 
hypothesis of predominant elastic behavior permits us to use low frequency vibration 
techniques and ultrasonic waves (at high frequency) concurrently. If this hypothesis is not 
valid, tests of the same family (vibrations of rod, ring and cylinder) or ultrasonic progressive 
waves should be chosen.  
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13.3.1. Clamping of the ring sample 

Taking into account the symmetry of the sample, a clamping system with two 
rigid cylinders is adopted here (see Chapter 3, section 3.5). Figure 13.2 shows the 
sample holder which is easy to realize. Details of double clamping techniques, to 
obtain symmetric clamping with respect to the symmetry of the ring, can be found in 
Chapter 3. 

 

 

Figure 13.2. Electronic set-up. Precautions must be taken to prevent damage to the moving 
coil of the shaker from the sample weight and its holder. The ring is submitted to bending 
vibrations. The sample holder is realized by double pseudo-clamping. In this figure, the 
mechanical system to apply to both cylinders and uniform pressure are not represented 

13.3.2. Electromechanical shaker (see also Chapter 4) 

An electromechanical shaker is used when mechanical excitation is realized by 
means of short rigid rods fixed to the sample holder. The electric power of the 
shaker must be sufficient to deliver alternative motion to the sample via the holder. 
The weight of the set (sample and sample holder) is taken into account for the 
moving coil of the shaker so as to avoid its deterioration. Finally, the mechanical 
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rigidity of the moving coil is set in parallel with an external spring made from a 
blade attached at both sides of the moving coil. 

13.3.3. Transducers 

To avoid the additional weight of a transducer fixed or glued to the sample (an 
accelerometer, for example) a contactless displacement transducer is adopted. On 
the upper side of the ring, only a small, thin, light, steel blade is glued to the ring.  

If the transducer response is non-linear, a linearizing electronic circuit must be 
used. It is possible to use a couple of inductive transducers fixed on both sides of the 
ring on a rigid bar to obtain a better linear transducer response (see Chapter 5). 

13.3.4. Wheatstone bridge (or other signal conditioner) 

If inductive contactless transducers are used, an alternative current Wheatstone 
bridge is used. The main precaution is to choose a carrier frequency fosc (for the 
oscillator feeding the bridge), that is high enough so that fosc ൒ 5 to 10 fh, where fh 
designates the highest measured frequency. Often, a low pass filter is disposed at the 
output of the bridge. In that case, the cut-off frequency of the filter is considered to 
be the upper bound of fh. 

13.3.5. Variable frequency generator and frequencymeter 

They are used to measure the forced oscillation frequency. At high frequency, 
forced excitation can produce a high structural mode with nodes on the ring. 
Localization of these vibration nodes is not necessary.  

13.3.6. Torsional vibration of a hollow cylinder 

Figure 13.3 shows the three possible set-ups. Figure 13.3(a) corresponds to the 
application of a torque on the upper disk, the lower disk being fixed. In Figure 
13.3(b), displacement is imposed on the lower disk. Figure 13.3(c) shows a  torque 
applied to the lower disk. This last solution is retained for torsion tests. 

In Figure 13.4, adjustable weights are symmetrically fixed on the higher disk. 
Figures 13.3 (a), (b) and (c) represent the tests used to obtain the circumferential 
Young’s modulus E θθ and shear modulus Gθz,  respectively. 
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Figure 13.3. The three possible excitations applied to the hollow cylinder:  
(a) torsional couple applied to the upper disk, the lower disk being fixed;  

(b) forced displacement imposed on the lower disk, the upper cylinder being free;  
(c)  torque imposed on the lower disk 

  

Figure 13.4. Schematic representation of torsion test on a hollow cylinder 

Figure 13.5(a) shows the torsional test. The sample cross-section is curved and 
cut from a hollow cylinder of the same thickness. Figure 13.5(b) corresponds to 
bending tests. 
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Figure 13.5(a). Mechanical set-up for torsional test on rod with curved cross-section 

  

Figure 13.5(b). Bending test on rod with curved cross-section.  
Instrumentation is similar to that used for the torsional test in Figure 13.5(a) 
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13.4. Ultrasonic benches 

Ultrasonic benches can be used to estimate coefficients of the material stiffness 
6x6 matrix {C}. Remember that ultrasonic tests do not enable us to directly evaluate 
elastic moduli which are deduced from coefficients of compliance 6x6 matrix {S}. If 
ultrasonic waves are used to complete the missing information for {S}, shear waves 
are used to evaluate the shear modulus, which does not necessitate the matrix  
inversion applied to the stiffness matrix (see Chapter 1 [CHE 10]).   

13.4.1. Direct contact benches with two identical transducers 

One transducer serves as emitter, the other as receiver. The basic theory of 
ultrasonic wave propagation is presented elsewhere (see Chapter 10 [CHE 10]). 
Practical information about ultrasonic benches is presented here.  

Figure 13.6 shows a direct contact bench for shear waves. It is necessary to 
adjust the wave polarization of both transducers by means of a goniometer. 
Translational micrometers are used to adjust the transmitter axis with respect to the 
receiver axis. For longitudinal waves, a direct contact bench is presented in Figure 
13.7. The adjustments of the two transducer axes are similar to those used in Figure 
13.6 for shear waves , the wave polarization of longitudinal waves being collinear 
with the direction of wave propagation.  

 

Figure 13.6. Ultrasonic direct contact bench for shear waves. The sample is held between  
two transducers, one used as transmitter, the other as receiver. The polarization wave  

direction of the transmitter is adjusted by a goniometer. Two sliding caliper gauges with  
linear micrometers (one horizontal and one vertical) are used to adjust the transmitter  

position with respect to the receiver position 
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Figure 13.7. Ultrasonic direct contact bench for longitudinal waves. Three coordinate  
axis adjustments are necessary for the transmitter. Rotary adjustment is not necessary,  

unlike in Figure 13.6, polarization vector is collinear with propagation direction vector.  
The oblique incidence of ultrasonic waves is obtained with a special ultrasonic lens 

In principle, the measurements can be made without the benches presented in 
Figures 13.6 and 13.7. However, it is difficult to adjust the coincidence of both 
transducer axes, on the one hand, and the coincidence of the same wave polarization 
of the transducers for shear wave, on the other hand.  

13.5. Experimental results and interpretation 

13.5.1. Bending tests and Young’s modulus Ez estimation 

The sample is presented in Figure 13.8.  
 

 

Figure 13.8. Sample with curved cross-section.  
Angle 2α is defined at the z axis of the hollow cylinder 
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The equation of motion is presented in Appendix 13B. The only difference with 
classical bending tests for a straight rod with rectangular cross-section resides in the 
curved cross-section which requires calculation of the inertia moment with respect 
to the gravity center G of the cross-section. 

13.5.1.1. Calculation of OG (O being the trace3 of the cylinder axis)  

By definition, using Cartesian coordinates (x,y,z):  

        OG = 
׭ ௬ௗ௫ௗ௬ ವ׬ ௗ௫ௗ௬ ವ                                                                    [13.1] 

  With cylindrical coordinates (ρ,θ,z), from tests undertaken as shown in Figure 
13.8: 
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ρ θ ρ θ ⎡ ⎤α= +⎢ ⎥α ⎣ ⎦ρ ρ θ

∫ ∫
∫ ∫

                                    [13.2]                                                   

13.5.1.2. Inertia moment in Cartesian coordinates (Figure 13.8)          ߠ݋ܫ  ൌ ׭  ଶ ஽ݕ  [13.3]                                                                             ݕ݀ݔ݀

In the cylindrical coordinates: 

׭ =  ௢ఏܫ          ଷ ஽ߩ  ߠ݀ߩ݀ ߠଶݏ݋ܿ 

׬=   ଷோାఈோିఈߩ ߩ݀ ׬ ןିןଶାݏ݋ܿ  [13.4] ߠ݀ ߠ

௢ఏୀ2ܴܽሺܴଶ+ ܽଶሻሺ ௦௜௡ଶఈଶܫ  [13.5]  (ߙ+

                                   
3 The projection of the axis on a transverse section of the cylinder. 
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Figure 13.9. Two ultrasonic lens are used to focus an ultrasonic beam on the sample and the 
receiver. A, B, C, and D represent thin layers of coupling liquid which are necessary.  

For a shear wave, the coupling liquid must be viscous 

This inertia with respect to O must be converted into IGΘ with G the center of 
gravity previously evaluated. Huygen’s theorem is used. If S is the cross-section 
area, and dG the distance between O and G, then: ீܫ ఏ= ܫைீ- S݀ଶீ  [13.6] 

ܫீ = ఏ= 2a R[(R2+a2)(௦௜௡ଶఈଶ  +α)−
ଶ௦௜௡మఈோమఈ (ܴଶ+௔మଷ )2]  [13.7] 

[13.7] can be expressed versus l as: 

l=Rα  , R=l/α 

IGθୀ 2a[ l3

α4 ( α2+ α
2

sin2α െ2sin2α) + 
la2

α
(sin2α

2
 +α) -4la2

3 α2sin2α -
2a4

91
sin2α] [13.8] 

If the angle α is small, a limited series expansion can be effected, as follows:   ீܫ ఏ಴ ؆ ܫீ  ఏೝ೐೎೟  ሺ1 ൅ ߳ሻ [13.9] 

The first term designates the inertia moment corresponding to the curved cross-
section, the second term designates the inertia moment for the rectangular cross-
section, with thickness h and width b.  

[1+ [ ] [ ]
C

3 3

G
be 4 aI ] 1 1
12 3θ ≅ + ε = + ε l

 
[13.10a] 
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߳ ؆ ఈమଷ௟௔మ [ (
௟యହ  - ௔ర௟  +݈ܽଶ) - ଶ௟యଷହ  ଶ ]  [13.10b]ߙ

 If Bernoulli-Euler’s equation of motion is used (see Chapter 10 in [CHE 10]), the 

Young’s modulus is given by:  

E = ఘௌఠమ௅రூಸഇ಴ఉర  [13.10c] 

where β depends on the eigenmode rank related to the boundary conditions of the 
rod sample; see, equation [13.C.4]. For the clamped-free rod, the first values of β 
are:  

β1= 1.875104, β2= 4.69409, β3= 7.855, β4=10.996, βn = (2n-1)π/ 2 

with n൐ 4 [13.10d]  

When using [13.10c] one must ensure that inertia and shear effects can be 
neglected. 

13.5.1.3. Experimental results 

The set-up in Figure 13.5(b) is used: 

M: half sample weight  = 2.47 x 10-3 kg. 

b width  = 1.01 x 10-2 m,    h thickness = 10-3 m. 

L half length4 = 15.07 x 10-2 m (the symmetry of the sample is respected, pseudo 
clamping is applied at the sample middle). 

R radius of curvature = 5.52 x 10-2 m. 

ε  (equation [13.10a])      = 5.961 x 10-2. 

f (resonance frequency)  = 120.9 Hz. 

Ez (Young’s modulus) = 2.765 x 1010 Pascal. 

                                   
4 Half weight and half length are used to take the symmetry (with respect of the center of the 
rod which is submitted to force vibration) into account. 
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13.5.2. Shear modulus estimation by torsional tests effected on a rod sample 

The theory of torsional vibration is presented elsewhere (see Chapter 5  
[CHE 10]). The experimental set-up is presented in Figure 13.5(a). The same sample 
used in the bending test presented above is adopted here. 

13.5.2.1. Elementary Saint Venant’s equation of torsion 

The elementary Saint Venant’s equation of torsion is used here as a first 
approximation. The second order equation of motion is used:  

ρ I p 
డమఏడ௧మ  = CT

 డమఏడ௭మ    [13.11a] 

with  ܫ௣ = ׭ ሺ ݔଶ ஽  ଶ) dx dy [13.11b]ݕ  +

where ρ is density, Ip polar inertia of the cross-section, CT torsional stiffness and 

 θ torsion angle. 

13.5.2.2. Eigenvalue equation 

The eigenvalue equation is given by:  

p

L

LI
=  tan  

J
ρ

ζ ζ
 

[13.11c] 

Remember that ζ is adopted in the expression of torsion angle θ (z,t) for z = L 
(half sample length):  

j t z z(L, t) e A cos  B sin  
L L

ω ζ ζ⎡ ⎤θ = +⎢ ⎥⎣ ⎦  
[13.11d] 

where JL designates additional inertia (see Figure 13.5(a)). In Equation [13.11c] 
presented above, the first member is known. This equation has to be solved to obtain 
the first root ζ : 

  p 2 2 2

L L

LI M (b e )
J 24J

ρ
= γ = + ≅ ζ  [13.11e] 
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As ߛ is small (of the order 3 x 10-3), a series expansion limited to the fourth order 
gives: 

2
1ζ  ؆ 1൅ට1൅4/32/3ߛ  [13.11f] 

13.5.2.3. Torsion stiffness 

Bringing [13.11d] to [13.11a] we obtain:  

2
T L

tan  C LJ ζ= ω
ζ

 [13.12] 

13.5.2.4. Shear modulus Grz. 

The shear modulus is deduced from the torsion stiffness expression  (see Chapter 
10, in [CHE 10]): 

CT = Gθz hb3 βΤ(c) = Grz bh3 βΤ(1/c) [13.13] 

In this equation, warping of the section is represented by the factor βT(c) which is 
expressed by a series:  

βΤ(c) = [ ଵଷ -    ଺ସ௖గఱ ∑  ଵ௞ఱ  ௞ୀଵ,ଷ,ହ...    tanh ௞గ௖ଶ  ] [13.14] 

and c is defined as: 

 c= 
ఓ௘ሺ௧௛௜௖௞௡௘௦௦ሻ௕ሺ௪௜ௗ௧௛ሻ  = ௘௕ ටீഇ೥ீೝ೥  [13.15] 

As the material is supposed to be transverse isotropic with material symmetry  
collinear with the z axis: G r z = GΘ z. [13.15] is then reduced to  

c’=1/c = 
௘௕                         [13.16] 

From [13.15] and [13.13] we can write: 

  ஼೅௕௛యఉሺభ೎ሻ [13.17] 
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T
rz 3

T

C
G

be (c ')
=

β
 

 βΤ( c ) can be estimated either directly from [13.14]5 or from a table with 
possible interpolation.  

13.5.2.4.1. Experimental results  

L (half length) = 13.8 x 10-2 m 

b (width) = 1.01 x 10-2 m 

e (thickness) = 10-3 m 

M (half weight) = 2.212 x 10-3  kg 

 J (additional rotational inertia) = 3.084 x 10-6 m.kg 

I G z (quadratic moment) = 8.67 x 10-11 m2.kg 

γ (equation [13.11e]) = 3.08 x 10-3 

2ζ  (equation [13.11c]) = 3.076 x 10-3 

βΤ(c’) (equation[13.14]) = 0.292 

c’ (equation [13.16]) = b/ h = 5.1 

f (resonance frequency) = 66.2 Hz 

G r z = C4 4 = 3.179 x 109 Pascal = G Θ z 

13.5.2.5. Remarks concerning torsion test with a straight sample 

This was not a straight sample with a rectangular cross-section. The cross-
section is curved and the torsion center is not coincident with the gravity center. The 
sample was subjected to coupled motions (bending and torsion) and, during the test, 
bending motion was neglected.  

                                   
5 As the series in [13.14] is quickly convergent, three or four terms are sufficient in a usual 
application. However, as c in this peculiar application is high  ܿᇱ ൐ 5, β reaches nearly a 
horizontal asymptote. A numerical computation is then necessary.  
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The accuracy of  βΤ depends on the value c’. As c’ = 5.1, the curve βΤ versus c 
reaches nearly an asymptotic value and an error on the adopted c’ value has a strong 
influence on  βΤ. Consequently β should be evaluated numerically with accuracy. 

The hypothesis of transverse isotropy of the material is to be checked with 
further experimental results to validate (or invalidate) this hypothesis. Additional 
tests are consequently necessary to improve the estimation of elastic moduli. 

13.5.3. Bending tests on ring 

The experimental set-up is presented in Figure 13.2. Equations of motion are 
briefly presented in Appendix 13A devoted to bending vibration of a ring. The 
expression of Young’s modulus EΘ is given by formula, in Appendix 13B, which is 
also presented here: 

E Θ = 
ସగమொೖூ   =R4ܵߩ

ଶగ௙ೖమொೖூ Mܴଷ [13.18] 

where Qk is the root of order k obtained by solving the third order characteristic 
equation. The three  values of Qk (k= 1; 2 ,3) are given by [CHE 10] equation [9.39] 
or [13.A.3]: 

[Q1=2.56,   Q2=33.15 ,   Q3=147.3] 

The parameter values in [13.18] are indicated below: 

M (ring weight) = 6.63 x 10-3 kg 

R (medium radius) = 5.5 x 10-2 m 

b (width)  = 10.3 x 10-3 m 

e (thickness) = 10-3 m 

fk (with k=1) (first eigenfrequency) = 96 Hz 

E Θ = 2.9 x 1010 Pascal 
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13.5.4. Torsion tests on a hollow cylinder 

This test enables shear modulus GΘ z to be estimated (Figure 13.4). Two kinds of 
test are adopted. The first corresponds to the sample presented in Figure 13.3(c) in 
which the upper plate has no additional weight, as in Figure 13.4. The second test 
concerns the sample with additional and adjustable weights presented in Figure 13.4.  

13.5.4.1. Upper disk without additional weight 

Appendix 13B presents an experimental method of evaluation of inertia moment 
by a pendulum suspended by three threads.  

The additional inertia is J = 2.36528 x 10-3 m2 kg. 

It is shown that at resonance, the following equation must be satisfied: 

G Θ z . K β0cos β0L = Jω2 sin β0L [13.19] 

with 0 L
ζβ =  

β0 =ωට ఘீഇ೥    ;    ω2= ఉబమఘ  ఏ௭  [13.20]ܩ

Eigenvalue equation is: 

ఘ௄௅௃  [13.21] (଴Lߚ) tanܮ଴ߚ = 

That is a classical elementary equation of torsional motion with additional inertia 
moment J at one end: 

4 4

c
4 L(b a )KL J

2
ρ − πρ = =

 
[13.22] 

where b is the external curvature radius and a the internal curvature radius, thickness 
e=b-a, That is the inertia moment of the cylinder with respect to axis OݖԦ. Then the 
eigenvalue equation is:   
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c
k k

J
 tan

J
= ζ ζ

 
[13.23] 

G ΘΖ = ρω2/β0
2 = ρωk2L2/ 2

kζ = 4π2ρL2 f2
k / 2

kζ  [13.24] 

For the hollow cylinder  

JC = M(b2+a2) / 2 =  M (4R2 + e2) / 4 [13.25] 

13.5.4.1.1. Experimental results 

M = MC (cylinder weight) = 96.10-3 kg 

R (curvature radius) = 5.52.10-2 m 

h (thickness) = 10-3 m 

L (length) = 138 x 10-3 m 

J C (quadratic moment) = 2.9254 x 10-4 m4 

J (inertia of the upper disk) = 2.36 x 10-3m2.kg 

f (frequency) = 1,108 Hz 

G Θ z= C 44 = 1.414 x 1010 Pascal 

13.5.4.2. Upper disk with additional weight  

Figure 13.4 shows additional weights and their distance from the cylinder axis, 
the upper disk inertia being much greater than the additional weight inertia. The 
shear modulus GΘz is given by: 

G Θ z = 
௄∆௃௙భమ௙మమ௙భమି௙మమ   [13.26] 

2 2
8 LK

eR(4R e )
π=

−  
[13.27] 

∆J = J1 - J2    
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where ∆J = m ( d1
2- d2

2); m additional weight, and d distances of additional weight 
to the cylinder axis. 

13.5.4.2.1. Experimental results 

K (equation [13.27]) = 5.017 x 106  

∆ J (inertia variation) = 2.742 x 10-3 m2.kg 

f1 (first resonance frequency) = 627 Hz 

C44 = G Θz = 1.336 x 1010 Pascal 

13.5.4.3. Comments 
The method using additional weights is the simplest method to evaluate the 

inertia of a mechanical system which can have a complicated geometry. It does not 
necessitate knowing the value of upper disk inertia which is tedious to evaluate.  

Adjustment of the distance of the additional weights with respect to the cylinder 
axis must be carefully effected.  

Additional weights must be maintained firmly in position when experimental 
tests are carried out. 

13.5.5. Ultrasonic tests 

13.5.5.1. Interest of ultrasonic tests and their limitation- 

Among the various methods presented in this book, ultrasonic methods are the 
easiest to carry out and handle. Results can be rapidly obtained even with small 
samples. However, there is a problem we must consider before using this technique.  

If the material is strongly viscoelastic, the complex viscoelastic stiffness matrix 
coefficients are frequency dependent and the ultrasonic working frequency is much 
higher than the acoustic vibration frequency of the rod or sample used in this chapter.  

In this condition, it is difficult to compare results obtained by vibration techniques 
with results deduced from ultrasonic tests. This is the case of some polymers and 
rubbers, etc. 
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However, if ultrasonic waves propagate in such viscoelastic mediums without 
dispersion and high attenuation, such a technique might be used to check the degree 
of symmetry of the material.  

If the material is weakly viscoelastic with low damping capacities, ultrasonic 
methods can be used to obtain complementary results to those furnished by vibration 
tests. This is the case of special composites fabricated with high strength long fibers 
(graphite, boron, etc.) and a high polymer as matrix.  

High performance composites such as a three-dimensional graphite composite 
have viscoelastic moduli which vary weakly with frequency. An ultrasonic method 
can then be used.  

The material under test in this chapter is pyrolytic graphite. Ultrasonic tests can 
be used concurrently with other test methods to estimate elastic coefficients. 
Remember that ultrasonic tests using progressive waves permit the coefficients of 
6x6 stiffness matrix {C} to be obtained when vibration tests allow evaluation of 
coefficients of compliance 6x6 matrix {S}. With the exception of shear moduli, it is 
difficult to obtain directly coefficients of {S} unless all the coefficients of {C} are 
evaluated. And then the inversion of matrix {C} allows matrix {S} to be obtained. 

13.5.6. Utilization of transmitted waves 

Tests with transmitted waves, which travel through a sample only once, give rise 
to simple methods. Figures 13.7 and 13.8 show how to realize the two corresponding 
benches.6 

13.5.7. Test procedure 

13.5.7.1. Acoustical lens for curved plates 

In order to improve test accuracy, two acoustical lenses made from a high 
polymer such as polymethacrylate or plexiglas can be made (Figure 13.9). 

They focus the ultrasonic beam which is nearly parallel when reaching the 
receiver. Coupling liquid layers are used as thin as possible so as to neglect their 
thickness with respect to the sample thickness. The part of the ultrasonic beam 
which reaches the receiver first corresponds to the sample thickness. 

                                   
6 Details concerning the practical use of ultrasonic benches can be found in Chapter 4. 
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13.5.7.2. Electronic set-up  

The electronic equipment required is reduced and outlined in basic form in 
Figure 13.10. 

A tone burst signal with adjusted repetition rate is produced by an impulse 
generator with a power amplifier (output electric impedance, Zo ؆ 200 Ohms). The 
signal is applied to a transducer which is used as an emitter. The sweeping of an 
oscilloscope is triggered by the impulse generator. The signal from the receiver is 
analyzed on the oscilloscope screen. 

 

Figure 13.10. Electronic equipment is reduced to its simplest expression 

Two measurements are made: 

– one without a sample, Signal A, corresponding to the position of a signal 
received on the oscilloscope at position A; 

– one with a sample, Signal B, corresponding to the position where the signal is 
visualized on the oscilloscope (position B) after travelling through the sample.  

The time interval between oscilloscope measurements A and B corresponds to 
the travel time in the sample. This difference between the two positions A and B is 
the travel time in the sample: ∆t = t B - tA which can be accurately evaluated. The 

corresponding velocity is : vi /j = e / ∆t , where e is the sample thickness. 

Subscripts ଓԦ and ଔԦ  designate the wave polarization and propagation direction, 
respectively. If these directions are coincident, we have a pure longitudinal wave. If 
these directions are orthogonal, we have a pure shear wave. If these directions are 
neither collinear nor orthogonal we have coupled waves. This serves to evaluate a 
non diagonal stiffness coefficients of the {C} matrix. 
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13.5.8. Some experimental results 

Table 13.2 gives the types of waves. Table 13.3 contains the three elastic 
coefficients.  

Normal to phase 
plane 

Propagation 
direction 

Type of wave Elastic coefficient 

n1 = 1, n2 = n3 = 0 1 L (longitudinal) C11= C22 = Γ11 = ρv2 

n3 =1, n1 =  n2 = 0 3 L(longitudinal) C33 = Γ33 = ρv2 

n3 = 1, n2= n1 = 0 2 T (transverse) C44 = Γ22 = ρv2 

Table 13.2. Type of wave and corresponding elastic coefficient of stiffness matrix {C} 

Velocity and wave nature Stiffness coefficient Uncertainty 

4,395m/s, longitudinal C11=C22= 3.090 x 1010 Pa. 1.4% 

2,270 m/s, longitudinal C33 = 0.825 x 1010 Pa. 4% 

1,157m/s, transverse  C44= C55= 0.214 x 1010Pa 3.5% 

Table 13.3. Ultrasonic measurements on pyrolytic graphite 

13.5.9. Stiffness matrix {C} and compliance matrix {C} evaluated by ultrasonic 
methods 

If the transverse isotropy of the material needs to be checked, the non diagonal 
coefficient C12 = C11- 2C66 is given by transverse isotropy symmetry. By matrix 
inversion, we obtain: 

C13 = C33 
ሾ ஼భభమ ି ஼భమమ ି ாభ஼భభ    ሿସ஼లలିாభ   

E1 = C33- 2C13
2

C11ା C12
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ν12=  ν21 = C12C33ିC13
2

C11C33ିC13
2  

ν31 = ν32 =  C13
C11ାC12

 

ν13 = ν23 = C13ሺC11ିC12ሻሺC11C33ିC13
2 ሻ 

Taking the reference axes indicated in Figure 13.1, we obtain the following 
matrix {C}. The letter O indicates that outside of the diagonal and of the non-zero 
values of stiffness matrix components all the remaining terms are zero.  

 

and also the following matrix {S}: 

 

Finally technical moduli of this material are : 

E1=E2= 27.3 GPa,      E3= 6.8 GPa,  G13=G23= 2.14 GPa,     G12= 12.4 GPa 

ν12 = ν21= 0.095,     ν13 = ν23= 0.57,   ν31 = ν32= 0.143 

  3.09 x 1010 0.59 x 1010 0.524 x 1010  
0

  
  3.09 x 1010 0.52 x 1010   
[C] = (Pa)   0.826 x 1010    
    0.214 x 1010   
 Sym.   0.214 x 1010  
      1.247 x 1010 

{C} 

 
  3.66 x 10-11 -3.5 x 10-12 -2.1 x 10-11  

0
  

  3.66 x 10-11 -2.1 x 10-11   
[S]=(m2/N)   1.47 x 10-10    
    4.67 x 10-10   
 Sym.   4.67 x 10-10  
      8.019 x 10-11 

{S} 
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13.6. List of symbols 

13.6.1. Latin alphabet 

E Young’s modulus 

f force 

I quadratic moment of the ring cross-section 

l, m, n roots of characteristic equation 

N, T normal and tangential force components 

M bending moment 

Mr ring mass 

2
c

f ''m  = -  
E f
µ

 ratio coefficient 

p, q coefficients in characteristic equation 

Q= mc R4/I coefficient in characteristic equation 

R mean radius of the ring 

s curvilinear coordinate 

13.6.2. Greek alphabet 

 ,  , υ τ β
r rr

 Cartesian unit vector in polar coordinates 

θ  angular displacement 

µ  density 

λ  variable in characteristic equation 

ρ  Mass density 

 ,  ζ η  wave numbers 

ω  angular displacement component 
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13.8. Appendix 13A. Evaluation of Young’s modulus by using in plane bending 
motion of the ring 

For a ring, a cylindrical coordinate is adopted. θ is the angle centered at the ring 
axis, u the coordinate along the radius, v the coordinate tangential to the ring in the 
ring plane. D’Alembert’s principle enables the following equation of motion to be 
obtained (see Chapter 9 [CHE 10]): 

µ [ பర୴ப஘మ ப୲మ െ பమ୴ப୲మ  ሿ ൅ ୉୍ୖర  ሾ பల୴ப஘ల ൅ 2 பర୴ப஘ర ൅ பమ୴ப஘మ ሿ = 0  [13.A.1] 

where µ is the mass per unit length = ρS, ρ density, S the area of the cross-section, R 
ring radius, and I inertia moment of the ring cross-section. 
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The equation of the ring motion is of degree 6 compared to the degree 4 of the 
bending equation of the rod. If we use the separation variable method to find a 
solution of [13.A.1]:  

s6 + 2s4 +s2(1- ௠మோరூ  ) + ௠మோరூ = 0  [13.A.2] 

With λ = s2 we obtain an equation of degree 3 in λ: 

   λ3 + 2 λ2 + λ(1− Q) +Q =0     [13.A.3] 

Q= ௠ோరூ   (where m is a positive integer), ω2 = Εm2 / µ.  

The successive steps to evaluate the solution are: 

– evaluate the roots λi  of [13.A.3];  

– calculate Qk
7

 for each mode k; 

– evaluate Young’s modulus: 

 E=ସ஠మ୤ౡమ஡ୗୖర୕ౡ୍  = ଶ஠୤ౡమୖయ୑୕ౡ୍  [13.A.4] 

where M is the ring weight. 

13.9. Appendix 13B. Determination of inertia moment of a solid by means of a 
three-string pendulum 

13B.1. Principle of the method 

An equilateral triangular horizontal plate is suspended by three strings of equal 
length. At rest, the strings are vertical (Figure 13B.1) where axis directions are 
indicated. H is the inertia center of the plate.  

13B.1.1. First measurement 

The eigenperiod of the plate submitted to a rotation around Hz is measured.  

                                   
7 The eigenvalues Qk must not be confused with Q in equation [13.A.3]. 
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13B.1.2. Inertia moment of the object 

The sample is put on the plate so as the object axis includes the inertia center and 
is coincident with axis Hz of the pendulum. The measurement of the period of the 
pendulum supporting the object is evaluated. 

The two periods allow the calculation of the inertia moment of the object. 

 

Figure 13B.1. An equilateral triangle suspended by three strings is used to evaluate the 
inertia moment of an object put on a triangle platen. A vertical line containing the inertia 

center of the triangle coincides with axis HݖԦ of the object 

13B.2. Calculations 

The following notations are adopted: 

– m0 plate mass 

– m1 object mass 

– m = m0+m1 

– R radius of the circle circumscribing the triangular plate 

– L string length 
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– α,Θ, ψ angles indicated in Figure 13.B.1 

– IH inertia moment of the couple triangle-object 

The rotations are the following: 

(x, y, z) (v,u, z)      rotation axis round z,  angle → αr r r r r r r  

1(x, y, z) (n , n, z)      rotation axis round z,  angle → ψ
r rr r r r r  

1 1 1 1(n , n, z) (n , w, z )      rotation axis round n ,  angle → θ
r r r rr r r

 

and then 

u sin  x cos  y= − α + α
r r r  

1z sin  sin  x sin  cos  y cos  z= − θ ψ − θ ψ + θ
r r r r  

We have: ܱܯሬሬሬሬሬሬԦ= -zݖԦ + R ݑሬԦ (ߙሻ [13.B.1] ܱܯሬሬሬሬሬሬԦ= RݕԦ - LݖଵሬሬሬԦ [13.B.2] 

These two equations give: 

 On ݔሬሬԦ   :    -Rsinߙ ൌ  െL sinߠsinψ                                                         [13.B.3] 

 Ον ݕԦ   :    Rcosα =R+Lsinθcosψ                  [13.B.4]  

On   ݖԦ  :    -z = -Lcosθ [13.B.5] 

Let us designate F as string tension ݏԦ  (string՜s) = FݖଵሬሬሬԦ [13.B.6]            

.Ԧݖ  ுሬሬሬሬሬሬሬԦ(string՜ܯ Ԧݖ ଵሿሬሬሬሬሬԦ               [13.B.7]ݖሬԦ (α)^FݑԦ [Rݖ = ுሬሬሬሬሬሬԦ(string՜S)ܯ ܵሻ ൌ  ψ−cosα sinψ) = ΙΗ α’’  [13.B.8]ݏ݋ܿߙ݊݅ݏሺߠ݊݅ݏܴܨ

 [13.B.8] is the dynamic moment equation along axis ݖԦ .  
The equation concerning the dynamic sum is: 
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-mz’’= -mg + Fcosθ [13Β.9] 

Let us set:  L/R = λ 

Geometrical equations [13.B.3] to [13.B.5] give: 

sinα = λ sinθ sinψ
cos α = 1+λsin θcos ψ
z = L cos θ

⎫
⎪
⎬
⎪
⎭

 [13.B.10] 

α , θ being small, we obtain: 

2

2

α = λ θ sinψ

-α /2 = λθcosψ

z = L(1- θ / 2)

⎫
⎪
⎬
⎪
⎭

 [13.B.11] 

From [13Β.11] we deduce: 

tan ψ = −
ଶן   ,   sin ψ= 

ିଶ√ସାןమ   ,   cos ψ = 
 మ [13.B.12]ןସା√ןି

θ =  [−α /2λ] √4 ൅ןଶ [13.B.13] 

L = z  (first order approximation)    [13.B.14] 

Equation [13.B.14] makes it possible to write [13.B.8] as follows: 

mg  = F                                                                                     [13.B.15] 

Bringing [13.B.15]  into [13.B.8] and retaining only first order terms: 

IH α''  =  -m g R α/λ [13Β.16]  

This differential equation gives the period : 

T = 2π [ I Η λ / mgR  ]1/2     with   λ / R [13.B.17] 

Then  IH is deduced from [13.B.17]: 

IH = T2[m0 g R / 4π2λ] [13Β.18] 
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The following notations are adopted: 

Ι0 , m0 ,  T0  inertia moment, weight, period of the platen alone; 

I1 , m1 , T1  inertia moment of the sample,  weight of the sample, period of the set 
(sample + plate); see Figure 13B.1 

From [13.B.18] the following equations are obtained: 

I0 =  [  T1
2(m0+m1)gR] / 4π2λ          

(I0+ I1) =  [ T1
2(m0+m1) gR] / 4π2λ           [13Β.19] 

I1 is deduced from [13.B.19]: 

I1  = [( T1
2 - T0

2) m0 +  T1
2 m1 ] . gR / 4π2λ [13Β.20] 

Inertia moment of the sample I1  is obtained by measurements of the two periods 
T0 , T1 

13.10. Appendix 13C. Necessary formulae to evaluate Young’s modulus of a 
straight beam 

A straight beam is presented in Figure 13.1 as sample A. However, the beam has 
a curved section. The inertia moment IGθ must be calculated taking into account this 
section geometry, see equation [13.7]. 

As an elastic characterization of the graphite composite material is required, in 
the dynamic test we choose weak slenderness (ratio of thickness h to length l) and a 
low working frequency so that Bernoulli-Euler’s equation is applicable. 

EI డర௪డ௫ర   +  ρS డమ௪డ௧మ  = 0 [13.C.1] 

For simplification, we adopt in [13.C.1]: 

I = IGθc 

As the sample is symmetric with respect to the sample middle and concerning 
the boundary conditions, i.e. pseudo-clamping in the middle and free ends at both 
side, we need therefore only examine half of the sample length l. 
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The natural boundary conditions are: 

– at the free end, x=L: 

bending moment M(L)=0  and shear force F(L)=0 [13.C.2a] 

–at the free end: x=0: 

displacement w(o) = 0 and slope డ௪డ௫  = 0 [13.C.2b]  

To find a closed form expression of the boundary equations, characteristic 
functions are referred to:  

j t x x x xw(x, t) e A sin B cos C sinh D cosh
L L L L

ω β β β β⎡ ⎤= + + +⎢ ⎥⎣ ⎦
 [13.C.3] 

The four boundary conditions [13.C.2] permit the set of coefficients A, B, C, D 
to be evaluated. 

Finally the eigenequation for the clamped free rod is: 

1+cosβ coshβ = 0 [13.C.4] 

Τhe first eigenvalues are given in [13.10d]. 




