
Chapter 15 

Wave Dispersion in Rods with a Rectangular 
Cross-section: Higher Order Theory  

and Experimentation  

15.1. Introduction 

Wave dispersion phenomena in rods have given rise to an abundance of 
literature. Higher order theories, using simple fields with three displacement 
components, have been presented with lengths for the three types of waves: 
torsional, bending and longitudinal. However, since 1920, longitudinal wave studies 
have shown that there are some weaknesses in the theories at the high frequency 
range. In this chapter, Touratier (see [TOU 79] and Chapter 7 in [CHE 10]) shows 
that, to fill this gap, it might be interesting to apply Hellinger–Reissner’s theory 
using mixed fields of stress and displacement to satisfy all the possible boundary 
conditions. This is the price to pay to obtain satisfactory wave dispersion, 
particularly in the highest part of the frequency range. This chapter should be 
considered as complementary to Touratier’s earlier work on theoretical formulations 
(see Chapter 7 in [CHE 10]). The main part of the chapter is devoted to experimental 
studies which allow the visualization of wave dispersions, not only in the highest 
frequency range but also for wave shapes in the thickness of the sample for higher 
elastodynamic modes. These modes have not been completely and experimentally 
explored, to our knowledge.  
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Touratier’s research seems at first sight academic but his experimental 
contributions open a new field of applications, particularly in experimental fracture 
mechanics. The proposed mechanical and electrical systems can easily be realized 
by experimenters in the laboratory, allowing the frequency domain beyond 100,000 
Hertz to be explored, with special transducers which are not necessarily expensive to 
fabricate. 

15.2. Summary table of some wave dispersion research 

Space does not permit us to present an exhaustive critical study. Table 15.1 
constitutes an abstract of the principal studies. Our attention is focused on rods with 
a finite length and rectangular cross-section. In Appendix 15A, Touratier’s work is 
presented using Reissner’s variational principle. This work is applicable to 
anisotropic materials with axial symmetry.  

Authors R.D. Mindlin 
[MIN 60] 

E. Volterra 
[VOL 61] 

A.D.S. Barr 
[BAR 62] 
 

M.A. Medick 
[MED 66] 

M. Touratier 
[TOU 79] 

Essential 
points 

Boundary 
conditions 
satisfied. 
Introduction of 
surface wave 

Polynomial 
approximation 
for 
displacements. 
Shear 
weighting 
function. 
Boundary 
conditions 
partially 
satisfied 
( σ11 , σ22)

Displacement 
field. 
Weighting 
function. 

Three field 
variational 
formulation. 
Weighting 
function 

Double series of 
sine and cosine 
powers for 
displacement and 
stress field. 
Boundary 
conditions 
satisfied. Reissner 
formulation with 
two fields 

Remarks Exact solution 
for some values 
of a1 and a2 

Original 
equations of 
motion 

Original 
equations of 
motion 

Volterra’s 
equations of 
motion with 
weighting 
coefficient 

Original equations 
of motion 

Motion 
examined  

Longitudinal 
motion coupled 
with radial 
shear 

Longitudinal 
motion 
Transverse 
motion

Torsional 
motion 

Longitudinal 
motion 

Longitudinal, 
transverse and 
torsional motion 

Applications Infinity of 
modes 
Isotropic 
material 

3 modes, 
isotropic 
material 

2 modes in 
isotropic 
materials 

Infinity of modes
Isotropic 
material 

Infinity of modes: 
anisotropic 
material with axial 
symmetry 

 

Table 15.1. Summary of various research on wave dispersion:  
a1  and a2 are width and thickness, respectively 
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As this chapter is essentially devoted to applications, to be concise, details of the 
formulation of equations of motion are presented in Appendices 15A and15B.  

15.3. Longitudinal wave dispersion: influence of the material and geometry of 
the bounded medium 

For progressive wave propagation, displacement components are written as:  u (x3, t) = Ai  exp j (kx3-ωt)  [15.1] 

This plane wave propagates along  axis with k being the wave number and ω 
the circular frequency. Bringing [15.1] into the equations of motion presented in 
Appendix 15A (equations [15.A.23] and [15.A.24]) and multiplying all the equation 
members by a , the frequency spectrum is obtained after transformation. The so-
called dispersion relationship is obtained by equalizing the determinant of 
propagation equations to zero: 

       det [ (k, )] =0  [15.2] 

with the following components of the dispersion matrix [eij]: 

e 11 =    -  + ∆ ( - )  

e12 =  ∆  (s11- s13
2) = e21 

e13 = ∆  (s11- )  = -2e31 
e23 = e e13 = -2e32 [15.3a] 

e22 = -  + ∆ ( - )  

e33 = - ∆  (s11
2 -   ) 

e=  (flatness coefficient of the cross-section) 
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 = 2πa1 /Λ ,        where Λ is the wavelength 

=ρa1
2ω2S33 ,            the circular frequency  [15.3b] 

sij = Sij/ S33 ,  

The lowercase sij designates the non-dimensional compliance matrix coefficient 
in equations [15.3a]. 

Numerical resolution (obtained by applying to the circular frequency (with real 
and positive values) is effected. This corresponds to the elastic problem without 
damping, while the complex wave number  (obtained by solving the determinantal 
dispersion equation) can be explained by the higher elastodynamic modes 
propagating with absorption of these waves in an elastic medium. These waves are 
injected in the rod wave guide. The phenomena gives rise to attenuated waves along 
the rod. We then have to deal with evanescent modes which are not due to the 
material (which is supposed to be elastic) itself.1 

Let us focus our attention on the fact that the mathematical approximation 
adopted here is limited to the first order term in the series expansion of the three first 
elastodynamic modes of longitudinal wave propagation. These give rise to three 
distinct branches on the frequency spectrum drawn in the plane [ω (circular 

frequency) versus k (wave number)]. 

15.3.1. Frequency spectrum 

The frequency spectrum is a graphical representation of the curve of a circular 
frequency ω versus the real part of the wave number, Re (k), or versus the imaginary 
part of k, Im (k). From this curve, the group velocity as well as the phase velocity 
can be evaluated. Remember, these two velocities are: 

vp =         phase velocity 

v g =       group velocity 

                                   
1 This phenomenon is similar to the problem of Rayleigh’s surface wave. 
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The relationship between vp and vg is: 

vg = vp + k  

In the region where wave dispersion is weak, phase and group velocities are 
practically the same. In the region of the frequency spectrum where k is purely 
imaginary, the wave is evanescent, as mentioned above. 

15.3.2. Presentation of some frequency spectra regarding a boron fiber-aluminum 
composite 

Figure 15.1 shows that the first mode is weakly dispersive at a lower frequency. 
The low cut-off frequency corresponds to ω =0.  

 

Figure 15.1. Frequency spectrum for extensional vibration mode in a rod  
with rectangular cross-section, with flatness e=a1/a2= 0.5.  

Material: boron fiber–aluminum matrix. Volume percentage of fiber is indicated  
on curves. a1 is half width and and a2 is half thickness 
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Figure 15.2. Effect of flatness =a1/a2 (indicated on the curve.) on the frequency  
spectrum. Material: boron fiber-aluminum matrix. Continuous line = first mode,  

--- = second mode, -.-.-. = third mode. a1 is the half width and a2 is the  
half thickness of the rod 

A longitudinal wave propagates without restriction for ω  0. Figure 15.2 shows 
the influence of flatness (the ratio of width to thickness) on the frequency spectrum. 
The phase velocity is strongly dependent on flatness. 

The second and third elastodynamic modes have a lower cut-off frequency 
corresponding to the intersection of the curves with a real axis ω before entering in 
the region of imaginary values of the wave number.  

Touratier’s method gives rise to faster convergence even with a first order 
approximation.  

For comparison with existing theories, an isotropic material was adopted, with a 
rod of square cross-section and Poisson’s number ν = 0.3. This constitutes the main 
interest of Hellinger–Reissner’s mixed fields formulation. 
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Figure 15.3. Comparison of three theories for a frequency spectrum with longitudinal modes:   
T = Touratier (first order), N = Nigro (first order, with Ritz’s method), - - - =  Volterra  

(with internal constraints: V, first mode and ,V2, second mode) 

15.4. Bending wave dispersion 

Section 15A.25 in Appendix 15A gives equations of motion. If an attempt is 
made to uncouple these equations, we obtain a sixth order equation of motion in 
which F designates any of the three displacement components (u1

11, u2
00, u3

01): 

 + f1  + f2  + f3  + f 4  + f6  +f 7  + f 8  = 0 

6 4 2 6 4 2 6 6 4

1 2 3 4 5 6 7 86 4 2 6 4 2 4 2 2 4 2 2
3 3 3 3 3 3

F F F F F F F F Ff f f f f f f f 0
t t t x x x t x t x t x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + + + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 [15.4] 

15.4.1. Upper bound for phase velocities 

Using a progressive wave: 

F(x3, t) = B exp[ jk(x3-ct)] [15.5] 

with frequency tending to infinity, wave velocity reaches the following limit for a 
pure bending wave (equation [15.A.29]): 



404     Mechanical Characterization of Materials and Wave Dispersion 

c∞6  = 512
9π4s44

2 ∆F
 (s11

2 - 512s12
2

9π4 ) 

Front wave velocities are (equation [15.A.29]): 

   = √  ;   = √√   ;   = ∆     /     [15.6] 

with sij = Sij /S33; ∆  = ∆ / S33
2,  = ρS33c2 . 

The term in [15.4] with the lowest degree gives the lower bound for velocity 
 = 0. 

Note: the first order approximation of bending motion permits phase velocities to 
be reached with the following levels of accuracy:  

5% between c1∞ and  the exact value cR (Rayleigh velocity); 

10% between c2∞ and the exact value cT (shear wave velocity); 

40% between c3∞ and the exact value cT (shear wave velocity). 

15.4.2. Dispersion of bending wave: the influence of various characteristics 

The dispersion relationship is obtained from the following matricial equation: 

det [fij]  =0 [15.7] 

with the following coefficients: 

f11= ω2- 64
9π2s44

k1
2 - π

2

4∆F
(s11- 64s13

2

9π2  - 16e2

9s66
 

f12 = f21 =0   [15.8a] 

f13= -
2js13∆F

( 
64s12
9π2 -s11) k1 = -2f31  with j= √ 1 

f22 = ω2- 
8

π2s44
k1

2
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f23= je
s44

k1 = -1
2
f 32  with j=√ 1 

f33= ω2- 1∆F
( s11

2 - 
512
9π4 s12

2) k1
2- 

π2

4s44
e2 [15.8b] 

k1 = ka1;   ω2 = ρa1
2ω2S33 ;  e=a1

a2
 

∆F = ∆F/ S33
2   ;  sij = Sij / S 33 [15.8c] 

With regard to the compliance matrix coefficients Sij, for a composite boron fiber 
-aluminum matrix, and for a given percentage volume of fiber, it is possible to 
evaluate Sij using previsional calculations of the transverse isotropic composite; see 
[CHE 75]. 

By bringing Sij into [15.8], all the fij coefficients can be numerically evaluated. 
Solving [15.7] allows the frequency spectrum to be obtained. 

15.4.3. Frequency spectrum for a bending wave 

Figure 15.4 shows the frequency spectrum for the boron fiber-aluminum 
composite matrix indicated above. The following remarks can be made: 

– the spatial attenuation of the bending wave is small compared to that of an 
extensional wave. The spectra with imaginary parts of the wave number as abscissa 
(which concern only the higher modes and not the first elastodynamic mode), are 
presented in Figures 15.4 and 15.5; 

– the phase velocity increases with the frequency for the first mode; 

– the wave dispersion is more pronounced for a higher percentage volume of fiber. 
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Figure 15.4. Frequency spectrum of a bending wave (material: boron  
fiber–aluminum matrix). The transverse isotropic material is e = a2/a1. Percentage  

volume p is indicated on each curve. Continuous line = first mode; 
 --- = second mode; -. -. - (mixed lines/dots) = third mode 

15.4.4. Influence of flatness e = a1/a2 

The frequency spectrum for the same material is presented for various values of 
p, the percentage volume of fiber, in Figure 15.5. When e increases, the dispersion is 
more pronounced, particularly for the first mode.  

By contrast, for the second and the third modes, dispersion is less pronounced as 
flatness e increases. This can be attributed to the intervention of longitudinal 
components along axis O  of the displacement which are predominant in higher 
modes. 
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Figure 15.5. Influence of flatness e=a1/a2 on the frequency spectrum of bending  
wave. Material: boron fiber-aluminum matrix, transverse isotropic material.  

First mode ---- continuous line; Second mode interrupted line -. -. -. -;  
Third mode mixed lines and dots. a1 half thickness, a2 half width 

15.4.5. Comparison between various theories 

We examined an isotropic material with Poisson’s number ν = 0.3 and with 
flatness e = a1/a2 = 2. Touratier [TOU 79] used Reissner’s variational principle up to 
the tenth order for the displacement field.  

Figure 15.6 shows that in a frequency spectrum representation, for a bending 
fundamental mode, there is agreement between his theory with those proposed by 
S.P. Timoshenko [TIM 21] and N.J. Nigro [NIG 68] amongst others, at least for the 
first elastodynamic modes.  

By contrast, Nigro’s and Timoshenko’s theories give poor convergence. The 
reason for this is the low degree of equations of motion adopted by these authors. 
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Figure 15.6. Bending frequency spectrum of a rod with a rectangular cross-section. Material: 
composite boron fiber-aluminum matrix. Percentage volume of fiber: 60%. 

 Flatness: e= a1/a2=2- 

A second observation concerns Nigro’s theory which uses a simple displacement 
field. Although the series is expanded to ten terms, convergence is poor for the 
second mode; the main reason being essentially that boundary conditions are not 
fully satisfied. 

15.5. First order for torsional motion in a transverse isotropic rod 

15.5.1. Equations of motion 

Series expansion is limited to the first term. The displacement field is 0  , the 
axis of the rod being the symmetrical axis of the transverse isotropic material: 

u  (M,t) = sin
πφ1

2
 u1

01x1 + sinπφ2
2

u2
10x2 + sin

πφ1
2

sinπφ2
2

u3
11x3 [15.9] 

with φi xi 
ai

 

The matricial form of stress field is:      1
2
 sinπ

2
φ1sinπ

2
φ2.σ11

11   cosπφ1
2

cosπφ2
2
σ12

00    cosπφ1
2

sinπφ2
2
σ31

01 

 [ σ ] =    cosπφ1
2

cosπφ2
2
σ12

00 1
2
sinπφ1

2
sinπφ2

2
σ22

11     sinπφ1
2

cosπφ2
2

.σ23
10 [15.10] 

   cosπφ1
2

sin πφ2
2
σ31

01      sin
πφ1

2
cosπφ2

2
σ23

10     sin
πφ1

2
sinπφ1

2
σ33

11  
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The equations of motion deduced from [15.9 and 15.10] are, with the degree of 
time derivative designated (after a comma) by the number of letter t’s in the 
subscript, with the first member and space derivative after a comma in subscripts 
with respect to coordinate 3 in the second member: 

ρu1,tt01 = 
2
π
σ31,301 - 1

a2
σ12

00 

ρu2,tt10   =  2
π σ23,310  - 1

a1
σ12

00 [15.11] 

ρu3,tt11  = σ33,3 10 - π
2a2
σ23

10 - π
2a1
σ31

01 

Constitutive equations for the material give, using a letter after a comma to 
notate the derivative with respect to the variable before the comma: 

S11σ11
11 + 

64
9π2 σ22

11+ 
16
3π

S13σ33
11 =0 

64
9π2σ11

11 + S11σ22
11 + 

16
3π

S13σ33
11= 0 

4
3π

S13 σ11
11 + 

4
3π

S13 σ22
11 + S33σ33

11= u3,311  [15.12] 

σ23
10 = 4

πS44
u2,310  + π

2a2S44
u3

11  

σ31
01 = 4

πS44
u1,301  + π

2a1S44
u3

11 

σ12
00 = 

2
S66

( 1
a2

u1
01+ 1

a1
u2

10 )   

Bringing [15.12] and [15.10] into [15.11] we obtain equations of motion 
expressed only with displacement components: 
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ρu1,tt01  = 
8

π2S44
u1,33

01 - 2
a2

2S66
u1

01 - 
2u2

10

a1a2S66
 + 1

a1S44
u3,311  

ρu2,tt10  = 8
π2S44

u2,33
10 − 2

a1
2S66

u2
10− 2

a1a2S66
u1

01+ 1
a2S44

u3,311  

ρu3,tt11  = 
1∆T

{ S11
2 - 64S12

9π2 2 }u3,33
11 - 

π2

4S44
( 1
a1

2 +
1
a2

2) u3
11 [15.13] 

                                                - 2
a1S44

u1,301  - 2
a2S44

u2,310  

with  ∆T= (S11- 
64S12
9π2 ) {S13(

  64S12
9π2  +S11 ) - 

128S13
2

9π2 } [15.14] 

15.5.2. Physical interpretation of displacement components 

The following comments are of interest for further applications: 

– term u11
3 is associated with inertia correction along the axis 0x  . The term u ,  describes longitudinal stress, whilst u3

11 is a warping term; 

– terms u1,33
01 and u233

10 concern shear effects; 

– functions u1
01, u2

10 and u3
11 are related to three modes of torsional motion to 

which drawings in Figure 15.7(a) and (b) are associated; 

– it is useful to return to Saint Venant’s theory of torsion to discuss the warping 
of the cross-section. The longitudinal component of displacement is written as: 

w(z ,t) = u3(x3,t) = φ(x1, x2) ζ (x3 ,t) [15.15] 

where w = u3 , u = u1 and v = u2. 

This equation gives rise to the Laplace equation. Barr retained Saint Venant’s 
expression. Engstrom has shown that the cross-section warping function is a 
Helmholtz’s equation [NUG 77], and this equation is time dependent. Comparing 
the longitudinal displacement component u3 suggested above by Barr and Engstrom, 
the same component in Touratier’s theory is: 

u3= ∑  sin,  φ1. sin2q+1  φ2 .
, (x3,t )  [15.16] 

We notice that [15.16] takes warping into account in the product of the two first 
terms of the second member and u3 is frequency dependent. However, the warping 
effect does not explicitly appear. This constitutes a simple method  which  takes into 
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account the warping effect. This effect changes simply with the elastodynamic 
mode.  

 

Figure 15.7. Displacement components in torsional motion  
(a) influence of rotational inertia b) warping phenomena which creates  

distorsion of the cross-section 

15.5.3. Asymptotic values of phase velocities 

The three equations of motion [15.13] can be reduced to just one by eliminating 
the other variables: 

−
6T

t6
 + t1

4T

t4
 + t2

2T

t2
 + t3

6T
x3

6+ t4
4T

x3
4+ t5

2T
x3

2+ t6
6T

t4 x3
2+ t7

6T

t2 x3
4+ t8

4T
t2 x3

2 = 0  [15.17]  

in which T designates any function among the three displacement components ( , 
, ). The upper limits for velocities are  = t3, t3 being a coefficient in [15.17]. 

With reduced variables (equations [15.A.27]) 

= ∆  {s11
2 – ( )2}  [15.18] 

from which the following asymptotic values of phase velocities are obtained: 

   c1∞=c2∞ =1
π

8
s44

c3∞ = 1∆T
{s11

2 -(64s12
9π2

2}1/2 [15.19] 

For an isotropic material with Poisson’s coefficient ν = 0.3, the following 
discrepancies are obtained: 

    no discrepancy for fundamental mode; 

    10% discrepancy for second mode; 
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 1   40% discrepancy for third mode. 

The effective front wave velocity is given by: 

c0
2= - t5/t2, t5 and t2 being coefficients of equation [15.17], giving the asymptotic 

values of phase velocities (upper limits), or: 

 =  ;   e=  [15.20] 

Formula [15.20] shows that if e=1 (square cross-section) we find  . 

The square cross-section is interesting from an experimental point of view. In 
many circumstances, the corresponding wave dispersion is nearly that of a circular 
cross-section.   

If e  1, the value of  depends on the flatness, e. Only a torsional wave 
presents this specific property. 

15.5.4. Torsional wave dispersion: influence of the material and the geometry of 
the medium 

Displacement components are expressions of plane progressive waves. The 
frequency spectrum equation is: 

det[tij] = 0 [15.21] 

The components tij of coefficients in [15.17] are presented below: 

t11= -  - 2 2 66 

t12 =   -  = t 21 

t13 =  j / s  = -   [15.22a] 

t23= e t13 = -   t32 

t22= - -   

t33 =  - ∆  { - )2} -  
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∆  = ∆ / S   ;   e =  [15.22b] 

sij =       ;         = ρa1
2ω2 S33  ;      = 2πa1/Λ 

15.5.5. Frequency spectrum for torsional waves 

Figure 15.8 shows the frequency spectrum for a rod with a rectangular cross-
section, the material being an anisotropic composite with a boron fiber-aluminum 
matrix. The fiber percentage is indicated on each curve.  

15.5.5.1. Characteristics of torsional waves 

For the first mode, the relative wave number  is complex, as is the case for 
longitudinal and bending waves. 

 

Figure 15.8. Frequency spectrum for a torsional wave; rod with a rectangular cross-section; 
material: boron fiber-aluminum composite matrix. Flatness e =a1/a2= 0.5. 

Continuous line - first mode; dotted line - - -  second mode; alternate line and dots  · · third 
mode,with projections in the real and imaginary planes for complex branches 

 The decrease in percentage volume of fibers is accompanied by an accentuation 
of wave dispersion for the three examined modes. Figure 15.8 describes the 
influence of the flatness parameter, e, on the frequencies associated with the first 
three modes for a percentage fiber volume of 60%. 
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 For the first mode, if e = a1/a2 1,  the dispersion is weak, particularly when  
e = 1 (for a square section). It is less sensitive to the variation of e than for 
longitudinal motion. 

 

Figure 15.9. Comparison between three theories of torsion applied to an isotropic material 
with Poisson’s number ν = 0.3. Rectangular cross-section with e= a1/a2=0.5. 

 ° ° °  = A.D. Barr; ••• = N.J. Nigro; ----- = Touratier 

15.5.6. Comparison with other theories 

The material is isotropic with Poisson’s number ν = 0.3. Touratier’s theory is 
compared to Nigro’s theory. Figure 15.9 collects the three groups of results.  

For the first elastodynamic mode with e = 0.5 the three theories give practically 
the same results. For the second mode, although Touratier’s theory presented above 
is of the first order, it gives more satisfactory results than Nigro’s theory. Remember 
that this last theory uses ten terms in the series expansion of displacement 
components. Barr’s theory is presented only for the first mode.   

15.6. Interest in theories with higher degrees of approximation 

In Appendix 15A, a higher degree approximation is utilized by Touratier  
[TOU 79] to study up to nine first elastodynamic modes.  

We focus our attention here on the practical aspects of wave dispersions 
concerning the three types of waves.    
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15.6.1. Choice of appropriate theory for application in the characterization of 
viscoelastic materials 

If we are interested in this type of application, the first elastodynamic modes for 
the three types of waves are sufficient. However, the degree of decoupled equations 
of motion has an influence on the accuracy of the dispersion curves, particularly at a 
higher frequency.  

15.6.1.1. Practical remarks about longitudinal waves 

For Bishop’s equation of motion, Nugues (see Chapter 5 in [CHE 10]) indeed 
affords some improvements with respect to elementary equations at medium 
frequency. But at a higher frequency, this equation is unable to portray dispersion 
curves correctly. A comparative study of wave dispersion curves is interesting and 
allows the appropriate theory to be chosen in a given interval of frequencies. 
Experimenters must have in mind the principal parameters which have an important 
influence on the trend of the dispersion curve: 

– the flatness, e, which characterizes the cross-section;  

– for composite anisotropic materials, the ratio of shear modulus to the Young’s 
longitudinal modulus constitutes an important factor which strongly influences the 
wave dispersion; 

– observation of Bishop’s and Touratier’s curves permits the appropriate theory 
to be chosen. Eventually the coincidence of the two curves helps us to determine the 
maximum frequency for which Bishop’s theory is valid for the first elastodynamic 
mode; 

– if the exploration of the frequency interval goes beyond the aforementioned 
upper frequency, Touratier’s theories might be more appropriate.2 

15.6.1.2. Practical remark about bending waves 

Mindlin’s theory is appropriate for utilization at the first elastodynamic mode.3 

15.6.1.3. Practical remarks about torsional waves 

A preliminary comparative study is necessary. The following theories have to be 
examined4: Saint Venant’s theory at the lowest frequency range (the Improved Saint 
Venant’s Theory (Barr’s theory), with frequency dependent warping (Chapter 5), is 

                                   
2 Remember that Touratier proposed a theory using simple field of displacement which is the 
extension of Volterra’s theory to composite materials (see Chapter  7 [CHE 10]). 
3 A bending wave is the only one which necessitates fourth order theory to cover higher 
frequency ranges up to the asymptotic Rayleigh’s velocity. 
4 If possible, use non-dimensional variables: frequency, velocity, slenderness and flatness. 
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good. If Barr’s theory is not appropriate at a medium or higher frequency, 
Touratier’s theory (presented in this chapter) might be useful.     

15.6.2. Interest in elastodynamic modes higher than fundamental ones 

Higher elastodynamic modes are used with success in ultrasonics and 
piezoelectric waveguides. We notice that, in some cases, waves propagate with 
higher energy than which occurs in the first elastodynamic mode. 

If the frequency spectrum is examined at higher modes, parts of the frequency 
spectrum correspond to real values of wave number k. This means that waves 
propagate without attenuation. This property is exploited in piezoelectric wave 
guides.  

15.6.2.1. Defect size 

One of the possible applications is in defect detection in materials when the 
defects are of small size. With the dispersion curves presented above in view, if the 
size of a defect is of the order of the wave length, Λ, a progressive wave at high 
frequency crossing the defect has its shape modified by the defect itself.   

15.6.2.2. Defect localization 

Ultrasonic defect control is already a well-known field. The difference here is 
that, for defect localization, special transducers not yet commercially available are 
required; the frequency and size of such transducers are for the moment unusual but 
they are realizable in practice.  

15.7. Experimental set-ups to visualize stationary waves in rods 

This section presents mechanical and electronic set-ups which can be easily 
realized.5 In Chapter 11, experimental set-ups were devoted to longitudinal 
fundamental (first) modes. This section presents not only fundamental modes but 
also higher vibration elastodynamic modes with the aim of a confrontation between 
theory and experimentation.   

                                   
5 They can be used as laboratory work for students to illustrate an advanced course on 
elastodynamics. The same set-up can also be used for material characterization. 
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15.7.1. Choice and fabrication of special transducers and exciters  

As the working frequency may be high and reaches the ultrasonic frequency 
range, the electrodynamic exciter (shaker) is replaced by special piezoelectric or 
ferroelectric transducers. These transducers are specially designed and built for 
utilization in special ultrasonic benches. Their weights and volumes are reduced so 
that their presence at the sample free ends can be considered negligible. The total 
surfaces of the transducers are that of the sample cross-section. When these 
transducers are glued at the free ends of the rod, their weight contributes to lower the 
resonance frequency of the stationary waves if the rod length is short. In practice, 
the ratio (mass of the transducers at one end/rod mass) is to be taken into account. If 
the ratio is small, much less than 1/50, the end sample is assimilated to a free end.   

In Chapter 4, the functioning principles of ferroelectric transducers6 were 
presented in detail concerning practical utilization. Let us recall here the basic ideas. 

15.7.1.1. Polarization 

Both the polarization vector  and the mechanical vibration vector  are not 
necessarily collinear (see Figure 4.19 of Chapter 4). 

For a longitudinal (axial) vibration of a rod, the two vectors  and  are 
collinear. In ceramic plates, vibration is created by the change of thickness in the 
direction o  of the rod (second and third column of Table 4.15, Chapter 4). 

For transverse (shear wave) vibration, a ceramic plate with  orthogonal to  
should be chosen. 

15.7.1.2. Size of transducer 

Figure 15.10 shows one single emitter which produces longitudinal motion in a rod.  

15.7.1.2.1. Longitudinal vibration of a rod with ferroelectric transducer to create the 
first  mode 

The choice of the number of transducers depends on the profile of the 
displacement in the cross-section we wish to obtain; see Figure 15B.1. 15B.1(a) 
corresponds to one transducer, whereas 15B.1(b) requires two transducers. If 
possible, the height of the transducer chosen is equal to the thickness of the rod.  

                                   
6 A ferroelectric transducer is preferred to a piezoelectric one because large ferroelectric 
plates with various thickness are commercially available and a latitude of choice of  
ferroelectric parameters is possible.   
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Figure 15.10. Ceramic ferroelectric transducers tailored to the plate, serving as emitter 
which produces longitudinal (extensional) stationary vibration in the rod 

 

Figure 15.11. Positioning of special ferroelectric transducers on the surface of the sample 
free end section. (a) Three small rectangular transducers cut from a large ferroelectric plate 
and glued at one free end; (b) nine small rectangular ferroelectric emitters used to obtain a 

more complicated profile of emitter waves (see Figure 15B.1)  

15.7.1.2.2. Longitudinal vibration of rod to create elastodynamic mode order higher 
than one 

It is possible to create a wave profile in the whole section with many nodes and 
antinodes. Figure 15.11(a) shows profiles with two nodal lines and two peaks 
separated by one trough in the middle. Figure 15.11(b) shows nine pavements which 
allow nine zones to be obtained over the whole sample, with alternate peaks and 
troughs across the width as well as across the thickness. 

15.7.1.2.3. Electric isolation of adjoining zones between pavements  

It is necessary to electrically isolate these zones to ensure the wave profiles at 
higher elastodynamic modes. 

15.7.1.2.4. Rod bending motion  

The ferroelectric plates are presented in section 4.7.4 (Chapter 4 shows that it is 
easy to choose polarization vector  and orthogonal vibration direction  
orthogonal, see Table 4.3). For bending motion in a rod, the experimenter has to 
choose bending motion either in the direction of thickness or the direction of width. 
Figure 15.12 indicates the positioning of the ferroelectric plates. 
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Figure 15.12. Bending motion in the fundamental elastodynamic mode.  
(a) Horizontal bending motion, direction  orthogonal to polarization , 

oriented in the direction of rod axis O ; (b) Vertical bending motion,  
polarization  is in the horizontal direction,  bending motion is vertical 

 

Figure 15.13. Ferroelectric emitter constituted of three transducers to produce higher 
elastodynamic mode in bending. , polarization vector, and displacement vector, 

 , are orthogonal. Transducers are realized to create vibration  
and to measure horizontal bending motion 

 

Figure 15.14. An even number of ferroelectric transducers is necessary to  
create torsional motion. (a) Shear motion in first elastodynamic mode;  

(b) higher elastodynamic shear mode with an even number of transducers 
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15.7.1.2.5. Rod torsional motion  

For symmetric shear motion, an even number of ferroelectric plates is adopted, 
see Figure 15.14. 

15.7.2. Mechanical and electrical operations on ferroelectric transducers  

Cutting, milling and gluing operations are necessary after the choice of the 
rod sample. 

15.7.2.1. Cutting of small transducers 

From a ferroelectric plate, any cutting of small transducers should be done with 
caution to avoid breaking the fragile ferroelectric plate.  

15.7.2.2. Milling  

This operation is necessary to obtain transducer dimensions with sufficient accuracy. 

15.7.2.3. Micro-sanding  

Instead of cutting small transducers, a ferroelectric rectangular plate can be 
realized which has the surface of the whole cross-section. On this plate, an array of 
transducers is realized. The first operation consists of masking the surfaces of future 
principal electrodes which are distributed regularly on the rectangular plate. By 
micro-sanding the non-protected surfaces, the metallic coating is removed. Thus, 
isolated surfaces are created periodically, see Figure 15.15. 

 

Figure 15.15. Emitter and receiver transducers for extensional waves7. Creation of array of 
transducers by micro-sanding. The whole transducer array occupies the entire cross-section 

                                   
7 This figure is just an example. For a shear wave and bending waves, the two 
aforementioned vectors must be correctly oriented so as they are orthogonal (Chapter 4, 
section 4.7). 
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15.7.2.4. Electric connections 

Two kinds of electrodes are to be realized: electrodes to create polarization  , 
and control electrodes in the sand blasted narrow zones between transducers in the 
array which ensure, during tests, that the polarity of obtained waves (vector  are 
correct. For the control electrodes, a conducting glue is used with fine electrical 
wires. 

15.7.3. Gluing the  isolated transducer and transducer array 

Caution is necessary for this operation. The glue used must be non-conducting 
and the glue layer must be as thin as possible. This operation is definitive and repair 
is difficult or even impossible after glue drying. 

15.8. Electronic set-up and observed signals on a multi-channel oscilloscope 

15.8.1. Electronic equipment 

Figure 15.16 shows the electronic equipment required. The following apparatus 
are necessary: 

– generator, wobulator and synthesizer. Utilization of a quartz piloted generator 
is necessary to obtain greater accuracy. Eventually, a one current generator is used 
with a wobulator (to observe the presence of resonances across a  frequency range) 
and a special quartz piloted generator;  

– wide band amplifiers. The power required to excite all the emitter-transducers 
is not high; 10 to 50 watts is sufficient. It is necessary to have two power amplifiers 
so as to obtain two electric signals of opposite phase, or in phase. This couple of 
amplifiers permits both symmetric and anti-symmetric vibration motions to be 
obtained, as presented above; 

– a phase inverter to obtain two signals equal in amplitude and opposite in phase 
so as to obtain symmetric and anti-symmetric displacements according to the kind of 
waves one wants to obtain (extensional, bending, or torsional); 

– a frequency meter, where a quartz piloted generator is not available; 

– two (or more) multi-channel oscilloscopes to observe the emitted and received  
signals at both ends of the rods.  
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Figure 15.16. Electronic equipment required to visualize the three  
types of motion and various elastodynamic modes 

15.8.2. Signals representing various motions in rods 

When installing transducers, we will have already chosen the type of waves we 
desire to observe. Longitudinal, torsional or bending waves are created separately 
and analyzed, giving rise to transducers which are different in their polarizing vector 

 and in the nature of the symmetry of the wave itself, as presented above. 
However, it is inevitable that experimenters deal with parasitic signals due to defects 
in mounting and installing the transducers themselves. 

15.8.2.1. Longitudinal (extensional) stationary waves 

Figure 15.17(a) shows the first elastodynamic modes. The first mode 
corresponds to the receiver array of transducers which delivers signals of the same 
phase. The working frequency is indicated in the figure. Figure 15.17(b) corresponds 
to the second elastodynamic mode. Signals are delivered by two extreme receiver 
transducers in opposite phase. Figure 15.17(c) shows the third elastodynamic modes 
for five array transducer signals of opposite phase, for two neighboring transducers. 

15.8.2.2. The two first elastodynamic bending modes 

Figure 15.18 shows the two first modes. Figure 15.18(a) shows that all the 
vibration signals delivered by the array are in phase. Figure 15.19(b) shows three 
groups of signals which are in opposite phase. Remember that bending motion is 
symmetrical in nature and signals furnished by transducers at the peripherals must 
be in phase. 
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Figure 15.17. The three first elastodynamic extensional modes visualized. Material:  steel. 
The working frequency is greatly extended in the ultrasonic range 

 

Figure 15.18. Visualization of bending motion for various elastodynamic modes:  
(a) first modes; (b) second modes 

Remember that the disposition (number of transducers in the receiver array) and 
the relative phase of signals delivered by neighboring transducers in the array must 
be taken into account. Figure 15.19 shows four groups of transducers for the three 
first elastodynamic modes; for the first mode there is only one change of phase for 
the two groups of transducers. Remember also that the number of transducers in the 
array must be really even with respect to the anti-symmetric nature of this kind of 
wave. 
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15.8.2.3. The three first elastodynamic torsional modes 

Figure 15.19(b) shows four changes of phase for the second mode and Figure 
15.19(c) shows six changes of phase for the third mode.  

 

Figure 15.19. Visualization of three torsional (shear) elastodynamic modes.  
Material: steel The so-called branch rank is related to the elastodynamic mode  

which are distinguished from one another by the odd number of phase changes − one in  
first mode, upper figure; three phase changes for second mode, middle figure; and  

five phase change for the  third elastodynamic mode 

15.9. Presentation of experimental results 

15.9.1. Frequency spectrum of the two first elastodynamic modes for three types of 
waves  

Measurements were effected on two steel rods whose dimensions were 
0.500 0.008  0.020 m3 and 1.000 0.020 0.040 m3 (length thickness width). 
The number of resonance frequency varies with the elastodynamic mode rank and 
also with the rod length. In the curves presented below, reduced circular frequency 
is used, such that  =  where = 2 N, a1 is half of the rod thickness, and c0 the 

velocity of the longitudinal wave at very low frequency, where c0= . 

The reduced wave number is:  = ka1= 2πa1 / Λ; where Λ is the wavelength. 



Wave Dispersions in Rods     425 

15.9.2. Six first experimental elastodynamic modes of extensional waves 

Figure 15.20 shows six experimental elastodynamic modes compared to theoretical 
curves obtained by Touratier [TOU 79] using Reissner-Hellinger’s variational 
principle with a displacement field of order three. Satisfactory agreement is obtained 
for elastodynamic modes up to the fourth mode. Discrepancies occur for the fifth and 
sixth modes. This is due to the displacement field being reduced to order three. 

 

Figure 15.20. Experimental frequency spectrum of a steel rod with a rectangular cross-
section. Experimental points: • longitudinal waves with two branches (elastodynamic modes) 
E1 and E2the two upper curves. The continuous line concerns theory and points, experimental 

curves;  ∆ bending wave in the direction  with one branch F1
1; ▲: bending direction  

with two branches F2
1and F2

2; o torsion, one branch T1  

15.9.3. Six first experimental elastodynamic bending modes of a steel rod  

A third order theory is adopted in Hellinger-Reissner’s theory by Touratier. For 
the three first elastodynamic modes, agreement of theoretical problem formulation 
and experimental studies are satisfactory. For the three higher elastodynamic modes, 
there are discrepancies due to the restricted number of terms retained in the series 
expansion. 
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Figure 15.21. Extensional waves: three elastodynamic modes obtained  
from experimental results. First mode E1, second mode E2,  
third mode E3, fourth mode E4, fifth mode E5, sixth mode E6 

 
Figure 15.22. Confrontation theory experiments. Bending waves at various elastodynamic 

modes. Superscripts designate the mode order. Bending is in the direction  
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15.9.4. Six first elastodynamic modes in torsion of a steel rod 

The confrontation between theory and experiments shows that using a theory 
with order three (field of displacement reduced to three terms in series expansion) 
shows that agreement is satisfactory up to the order five for elastodynamic modes, 
contrary to the two other kinds of waves presented above. Figure 15.22 shows 
experimental results against the theoretical formulation obtained by Touratier. 

 

 
Figure 15.23.Experimental frequency spectrum of torsional motion. for a teel rod with 

flatness e= 0.4. • First mode T1,   Second mode T2, ▲  Third mode T3, o Fourth mode T4, 
∆ Fifth mode T5, □ Sixth mode (continuous line: third order Touratier’s theory)  

15.10. Concluding remarks 

This chapter has two levels of objectives. The following items outline the main 
points:  

a) the theoretical formulation of the rod vibration problem. The literature is very 
prolific on this aspect. For an experimenter tackling the wave dispersion problem for 
the first time, it seems difficult to adopt a correct theory to cover a frequency range, 
particularly for extensional waves;  

b) boundary conditions need to be satisfied. The main idea to retain is that 
theoretical formulation of vibration problems using a simple field of displacement, 
even when one adopts series expansion with a profusion of terms (up to 12 terms) 
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does not necessarily satisfy all the boundary conditions. This insurmountable 
difficulty is the reason for the weakness of some theories in the study of dispersion 
problems, particularly in the higher frequency range;  

c) mixed fields of displacement and stress. In some cases, it is not necessary to 
appeal to complicated fields of displacement when using Hellinger–Reissner’s 
variational principle. A mixed field with a reduced number of terms for the 
displacement series and for stress components is more efficient  than using a 
sophisticated simple displacement field with a greater number of terms for 
displacement components, when using Hamilton’s principle; 

d) experimental studies of dispersion curves. This chapter shows that it is not 
complicated to conceive and realize mechanical or electronic equipment, special 
transducers and arrays of transducers to go beyond the first elastodynamic mode. 
Higher modes, in this respect, are not necessarily confined to academic studies. 
Corresponding waves can be produced with simple ferroelectric materials and 
fabrication of special transducers for this objective are not out of the reach of 
experimenters. 

e) useful aspects of wave dispersions. Wave dispersions are presented at length 
in many chapters and open a new field of experimentation for the vast problem of 
dynamic characterization of materials and also fracture dynamics. 
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15.12. Appendix 15A. Touratier’s theory using Hellinger–Reissner’s mixed 
fields 

The variational Hamilton’s principle with one displacement field was often used 
to study extensional motion coupled with transverse and shear motion. However, 
unfortunately, all the boundary conditions were not satisfied for stress components. 

The mixed field Hellinger–Reissner’s principle enables the displacement field 
and stress field to be adopted separately. All the boundary conditions are satisfied. 
This constitutes the main advantage of this variational formulation. 

15A.1. Outline of Touratier’s mixed field theory 

15A.1.1. General hypotheses 

a) Nature and symmetry of the material. The material is supposed to be 
homogenous and has an isotropic plane normal to axis O . This axis is a 
geometrical symmetry axis of the rod. 

b) Test functions. All the test functions belong to the class Cm and the series 
adopted for displacement uj and for stress σi j are convergent. 

c) Free surface boundaries. The lateral surfaces of the rod are free of any stress 
components. 
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15A.1.2. Construction of displacement field and stress field 

15A.1.2.1. Displacement field 

The displacement field is represented by the following series: 

3
i ii 1

u(M, t) u (M, t) x
=

= ∑r r   [15.A.1] 

with M0= (0,0,x3).  

[15.A.1] is written as follows: 

ui (M,t) = ui
00(x3,t) + x1ui

10(x3,t) + x2ui
01(x3, t) [15.A.2] 

This is a one-dimensional formulation of displacement. 

15A.1.2.2. Stress field 

Stress components must satisfy the following conditions: 

C1: They are set to zero on lateral boundaries of the rod. 

C2: In a cross-section of the rod, a distribution of stress components is similar to 
that of displacement and satisfying the constitutive equation: 

σij =  Cijkl ε kl 

C3: All the stress component distributions are relatively easy to manipulate in 
energy calculations. The first condition C1 gives rise to vectorial equality: 

 (P,n] = 0 [15.A.3] 

     P  ∂ DL 

where  is the stress vector, P is a point on the free boundary ∂ DL,  external 
normal to ∂ DL. The cross-section is defined as [2a1, 2a2]. 

The following scalar equations are deduced: 

(σii )  0 , i = 1,2; xi =  ai [15.A.4] 

(σij)  0, j = 2,3; x1 =  a1 [15.A.5] 

(σij)  0, j = 3,1; x1 =  a2  [15.A.6] 
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With variable change: 

     ξi = xi/ai  ,    i = 1,2 [15.A.7] 

Equalities [15.A.4] to [15.A.6] are satisfied with functions which are zero for 

│ξi│=1. Among elementary functions, cosine function: cos ξI has this property and 

is not zero for ξi = 0, as the function sin ξi takes the values identical to linear 

function for │ξi│=1 and ξi =0. 

The utilization of such trigonometric functions seems to be appropriate.  

15A.1.2.3. Expression of [15.A.2]  

pqp 1 q 2
i 3ip 0 q 0

u (M, t) sin .sin u (x , t) 
2 2

∞ ∞

= =

πξ πξ
= ∑ ∑   [15.A.8] 

i  {1,2,3}   ;    (p,q)  N 

15A.1.2.4. Expression of  σij(M,t) 

Taking [15.A.4] and [15.A.6] into account: 

pqp 1 q 2
ij i 1 j 2 3ijp 0 q 0
(M, t) sin . ( ).sin . ( ) (x , t) 

2 2
∞ ∞

= =

πξ πξ⎡ ⎤σ = α ξ β ξ σ⎢ ⎥⎣ ⎦∑ ∑   [15A.9a] 

In [15.A.9a] two new coefficients are introduced 

αi (ξ1) = cos ξ1, (i=1, j=1,2,3) , αi(ξ1)=1    1 

βj (ξ2) = cos  ξ2,   (i=2, j=2, 3), i=1,j=2 

if not  βj(ξ2)  1  [15.A.9b] 

Note: the fields  and  are independent. [15.A.9a] and [15.A.9b] are not 
deduced from [15.A.8] by a classical elastic constitutive equation. However, 
conditions C1 and C2 are satisfied, i.e. there are free lateral boundaries and 
distribution of stress components similar to MacLaurin’s series expansion of a stress 
vector. In [15.A.8] expansion of functions of ξ1 and ξ2 allows [15.A.1] to be found 
again by using substitution of functions.  



432     Mechanical Characterization of Materials and Wave Dispersion 

15A.2. General equations deduced from the two fields principle 

The Hellinger–Reissner principle is represented by the following integral action. 

J(  , σ) =     + , - , + Sklij +2uifi ) dV 

-  2 dSF+  2 ) nj dSu   [15.A.10] 

which can be formally written as: 

J(  ,σ) = J1+ J2 – J3+ J4 +J5 –J6+ J7  [15.A.11] 

The seven integrals come from seven terms in [15.A.10]. The stationarity of this 
functional, in the time interval (t1, t2), is ensured by the two fields  and  if:   , ) dt= 0 ;   ;  [15.A.12] 

The domain D is defined as 

D= [-a1,a1]  [- a2, a2 ]  [0, L] 

By adopting dimensionless variables, domain D becomes  such as 

 = [-1,1]  [-1,1]  [0,1] 

Extremely lengthy calculations were presented in Touratier’s thesis [TOU 79]. 
We present the guidelines here.  

15A.3. Formulation of the boundary condition problem  

The seven integrals in [15.A.11] are evaluated. The three stress conditions 
indicated in [15.A.4, 15.A.5 and 15.A.6] are each examined. 

15A.3.1. First case: force prescribed at the rod ends x3=0 and x3 = L 

-∑ , (L,t) +  (ξ1,ξ2,L,t) sinm    ξ1. sin n  ξ2 dξ1 dξ2 = 0 

∑ , (0,t)+  (ξ1,ξ2,0,t)sinm   ξ1.sinn  ξ2. dξ1dξ2 =0    [15.A.13] 

 (with i  { 1,2,3}). 
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αmnrs
1 = dm r,1bn s ,   αmnrs

2  = bm rdn s,1  ,   αmnrs
3  = bm rbn s [15.A.14] 

Coefficients in [15.A.14] serving to evaluate [15.A.13] are used to express 
equations [15.A.13] under close form expressions. 

15A.3.2. Second case: displacements   imposed on the ends  x3= 0 and x3 = L  ∑ , (L,t) -  (ξ1,ξ2,L,t) sinm  ξ1 sinn  ξ2. cos  ξιdξ1dξ2  =0 

-∑ , (0,t)+  ( ξ1,ξ2,0,t) sinm  ξ1sinn ξ2cos ξi dξ1dξ2 =0 [15.A.15] 

i   { 1,2,3 } ;  cos ξi =1 if  i=3 

15A.3.3. Third case: mixed conditions: prescribed displacements at x3 = 0 and 
prescribed at x3 =L 

-∑ , (0,t)+  (ξ1,ξ2,0,t)sinm  ξ1sinn  ξ2cos  ξidξ1dξ2 =0 

∑  α , σ (L ,t) +  (ξ1,ξ2,L ,t) sin m  ξ1sinn ξ2dξ1dξ2 = 0 [15.A.16] 

15A.4. Symmetry considerations concerning the three kinds of motion 

15A.4.1. Extensional motion  

The following remarks will serve to us to express displacement and stress fields: 

– the displacement components u1 u2 are anti-symmetric functions of x1 and x2 
and symmetric with respect to x2 and x1, respectively; 

– axial displacement u3 is a symmetric function of x1 and x2. 

The displacement field is: 

u1 =  ∑   , sin2i+1 ξ1sin2j   ξ2 , (x3,t) 

u2= ∑   , sin2i  ξ1sin2j+1  ξ2 , (x3,t)   [15.A.17a] 

u3= ∑   , sin2i  ξ1sin2j  ξ2 
, (x3,t)  



434     Mechanical Characterization of Materials and Wave Dispersion 

 

Figure 15A.1. The four points M, M‘, M’’, M’’’ give rise to displacement components indicated above 

15A.4.1.2. The stress field 

σ11= ∑   , sin 2i  ξ1 .cos  ξ1 .sin2j ξ2.σ11
2i,2j (x3,t) 

σ22 = ∑   , sin2i  ξ1 .sin2j  ξ2 .cos  ξ2.σ22
2i,2j (x3, t) 

σ33 = ∑   , sin2i  ξ1 .sin2j  ξ2. σ33
2i,2j( x3,t) 

σ23=  ∑   , sin2i  ξ1 .sin2j+1 ξ2.cos  ξ2.σ23
2i,2j+1(x3,t)  [15.A.17b]  

σ31= ∑   , sin2i+1  ξ1 .cos   ξ1.sin2j  ξ2 .σ31
2i+1, 2j (x3,t) 

σ12 =∑   , sin2i+1  ξ1.cos  ξ1.sin 2j+1 ξ2.σ12
2i+1, 2j+1(x3,t) 

The next step is to write constitutive equations of materials relating the stress 
components in [15.A.17b] to the displacement components in [15.A.17a]. 
Derivatives of displacement components with respect to coordinates give rise to a 
number of intermediate coefficients [TOU 79]. 

The last step is to write down boundary conditions for the extensional 
symmetrical motion. 

15A.4.2. Bending motion 

Bending motion in the direction  gives rise to the following displacement 
components: the lateral component u1 is an anti-symmetric function of x1,x2. Lateral 
component u2 is a symmetric function of x1 and x2. 

The longitudinal component u3 is a symmetric function of x1and an anti-
symmetric function of x . 

(u1, u2, u3)M 

(-u1, u2, u3)M’ 

(u1, -u2, u3)M’’ 

(-u1, -u2, u3)M’’’ 
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u1 = ∑   , sin2i+1  ξ1 .sin2j+1  ξ2 .u1
2i+1,2j+1(x3,t) 

u2=∑   , sin2i    ξ1 .sin2j  ξ2 . u2 2i, 2j(x3,t)   [15.A.18a] 

u3= ∑  ,  sin2i  ξ1 .sin2j+1  ξ2 .u3
2i,2j+1 (x3 ,t) 

 

Figure 15A.2. The four points M, M’, M’’ , M’’’ in the cross-section  
with the corresponding displacement components 

The stress field is as follows: 

σ11= ∑  , sin2i  ξ1 .cos  ξ1 .sin2j+1  ξ2 . σ11
2i, 2j+1(x3,t) 

σ22 = ∑  , sin2i  ξ1 .sin2j+1 ξ2 .cos  ξ2. σ22
2i,2j+1(x3,t) 

σ33 = ∑  ,  sin2i   ξ1 .sin2j+1  ξ2 .σ33
2i,2j+1(x3 ,t) 

σ23 = ∑  ,  sin2i  ξ1 .sin2j  ξ2.cos  ξ2.σ2i,2j
23(x3,t)  [15.A.18b] 

σ31 = ∑  , sin2i+1  ξ1 .cos  ξ1.sin2j+1  ξ2.σ31
2i+1,2j+1(x3,t) 

σ12 = ∑  , sin2i+1 ξ1 .cos  ξ1 .sin2j  ξ2 .cos  ξ2. σ12
2i+1,2j(x3,t) 

15A.4.3. Symmetric shear (torsional) motion 

This motion is effected around longitudinal axis 0 . It is characterized by the 
three following displacement components: 

– the radial components u1 is symmetric function of x1 and antisymetric function 
of x2, u2  is antisymmetric functions of x1 and symmetric function of x2 ; 

– longitudinal component u3 along axis 0  is an anti-symmetric function of the 
two lateral coordinates x1, x2. 

X2 
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The dissymmetry of the longitudinal components is related to section warping. 

 

Figure 15A.3. Displacement components of four points in the cross-section  
in torsion motion: M, M’, M’’, M’’’ 

u1= ∑  , (sin2i  ξ1.sin2j+1  ξ2). u1
2i, 2j+1(x3,t) 

u2 = ∑  , sin2i+1  ξ1sin2j   ξ2) u2
2i+1,2j (x3,t)  [15.A.19a] 

u3 = ∑  , (sin2i+1  ξ1 sin2j+1  ξ2) u3
2i+1,2j+1(x3,t) 

Components of stress are: 

σ11 =  ∑  , sin2i+1  ξ1.cos  ξ1sin2j+1  ξ2.σ11
2i+1;2j+1 (x3,t) 

σ22= ∑  , sin2i+1  ξ1. sin2j+1   ξ2.cos  ξ2 . σ22
2i+1,2j+1(x3, t) 

σ33 = ∑  , sin2i+1  ξ1.sin2j+1  ξ2.σ33
2i+1,2j+1(x3,t) [15.A.19b] 

σ23 = ∑  , sin2i+1  ξ1 .sin2j  ξ2.cos  ξ2.σ23
2i+1,2j (x3,t) 

σ31= ∑  , sin2i  ξ1 .cos  ξ1 .sin2j+1  ξ2.σ31
2i,2j+1 (x3,t) 

σ12 =  ∑  , sin2i   ξ1 .cos  ξ1 .sin2j ξ2 .cos  ξ2.σ12
2i,2j (x3,t) 

Equations of motion require the writing of constitutive equations of materials 
and also of boundary conditions.  

In the three cases presented above, we do not present the six stress components 
which are written similarly to those used in [15.A.17, 15.A.18 and 15.A.19]. The 
coefficient of each stress component is, however, the product of three terms instead 
of two for displacement components. 

(u1, u2, u3)M, (-u1, u2, -u3)M’’ 

(u1, -u2, -u3)M’, (-u1, -u2, u3)M’’’ 
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15A.5. Truncating process for one dimensional theories: extensional waves 

Displacement components as well as stress components are represented by infinite 
series. It is not reasonable to keep these series as sums of infinite number of terms. 

As a first step, we work to truncate these series. Let us begin with a first order 
truncation. This consists of retaining, in each series in [15.A.17] to [15.A.19], one 
term for each component of displacement and stress. 

The second step consists of integrating using the functional J( ,σ) bringing 
displacement components and stress components into [15.A.12]. 

The following displacement vector is obtained: 

 (M,t) = sin  ξ1. u1
10.  + sin  ξ2.u2

01.  + u3
00.   [15.20] 

 The stress components presented under matricial form are: 

[ ]

1 00 1 10
11 31

2 00 2 01
22 23

1 10 2 01 00
31 23 33

πξ πξ1cos .σ 0 sin .σ
2 2 2

πξ πξ1σ = 0 cos .σ sin .σ
2 2 2

πξ πξ1 1sin .σ sin .σ σ
2 2 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 [15A.21] 

The equations of motion are: 

ρ   +  -  ,  = 0 

ρ  +   - ,  = 0  [15.A.22] 

ρ   − , = 0 

Constitutive equations are now introduced in [15.A.22] so as to eliminate stress 
components and retain only the displacement components and their time and space 
derivatives: 
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15A.6. Equations of motion for extensional movement 

In the absence of volumic forces, we obtain the following equations: 

ρ    = , + ∆  (8  - S11S33)   

              + ∆  (S12S35 – S13
2)  + ∆  (S11- 8 ) ,   [15.A.23a] 

ρ    =  , + ∆ (+  ∆ S12S33-S13
2)   

               + ∆ (S11- ) ,    [15.A.23b]  

ρ  =   ∆  (S11
2-  ) ,  + ∆  (  -S11) ,  

+ ∆  (  - S11S13) ,   [15.A.23c] 

∆  = S11(S11S33-  ) -  ( S12S33-S13
2) +  (  – S11)  [15.A.24] 

where Sij is the compliance matrix coefficient. 

15A.6.1. Physical interpretation of terms in equation [15.A.23] 

The terms 101,33 and ,  from the two first equations [15.A.23] describe the 
radial inertia for extensional motion. 

Terms  and ,  in the same equation represent lateral shear motion.  

The other correction terms in [15.A.23] concern the intervention of the 
displacement field and stress field. They are consequently the terms describing 
vibration coupling. 

The two last terms of the equation in [15.A.23] represent the equivalent, in 
elementary theory, to the coefficient of ; : 

∆  ( S11
2- ) 

which is different from the elementary theory term . 
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15A.6.2. Interpretation of vibration mode type by different displacement components 
in [15.A.2]  

The partial displacement component u  corresponds to uniform translation (see 
Figure15A.4). 

 

Figure 15A.4. Fundamental longitudinal mode represented by displacement component u3
00 

which is the only displacement component in elementary theory 

For partial displacement component u1
10 and u2

01, longitudinal motion is 
accompanied by lateral contraction or expansion of the cross-section. This 
constitutes expansion modes in the thickness. 

 

Figure 15A.5. Lateral expansion and contraction modes associated with longitudinal modes 

15A.7. Effective front velocity and wave front velocity  

These terms designate asymptotic values of velocities obtained from equations of 
motion at lower frequencies and at an upper frequency which tends to infinity. 

Equations of motion (derived from [15.A.23]) are of the same order. They can be 
reduced to a unique equation of motion of the sixth degree: 

-
6E
t6

 + e1
4E
t4  + e2

2 E
t2  + e3 

6E
x3

6 + e 4 
4E
x3

4  + e 5 
2E
x3

2+ e6 
6

t4 x3
2 + e7 

6E
t2 x3

4+ 

e8
4E

t2 x3
2  = 0   

 [15.A.25] 
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where E represents any displacement component among the trio of (u1
10, u 2

01, u 3
00). 

The progressive wave is obtained by writing: 

E (x3 , t) =  A. exp j[kx-ct] [15.A.26] 

where k is the wave number, and c the phase velocity. There are three phase 
velocities corresponding to three possible modes (types). 

15A.7.1. Wave front velocity8 

The upper bound limit Ci00 of the three velocities is represented by the term of 
highest degree in [15,A.25] taking [15,A.26] into account: 

 = e3 [15.A.27] 

c∞6  = 1∆E
 ( 64

9π2S44
)2( S11

2- 64S12
2

π4  )    where = ij
ij

33

S
s

S
  ∆E = ∆E

S33
2 ;  c2= ρS33c2 

So, when k ∞, the reduced phase velocity 1, 2, 3 for the first elastodynamic 
longitudinal modes are, respectively: 

 =  = √  [15.A.28] 

 = {∆  (s11
2-   )}1/ 2 [15.A.29] 

Note: using [15,A.28] we obtain the relative velocity  which,is for isotropic 
elasticity: c 0,85s44  

Elementary theory gives c  = √  = c . 

The difference between the two values can be explained by the fact that 
elementary theory cannot allow an asymptotic value of  to be obtained at an 
infinite frequency. 

                                   
8 The velocity of each type of wave is related to components of displacement. At high 
frequency, the profile of a wave depends closely on the displacement components of a higher 
degree retained in the displacement series. The wave front profiles for the same type of wave 
(extensional, torsion, bending) are different from one theory to another.  
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Physically speaking, at a higher frequency, and in a homogenous material, waves 
tend to “concentrate” near the free surface and the velocity is given by Rayleigh’s 
wave velocity. For an isotropic material, the Poisson’s number is of the order 0.3 
and Rayleigh’s velocity approaches the value: 

 0.9  

Touratier’s theory gives: c  0.85 c  

15A.7.2. Effective wave front velocity 

The effective wave front is represented by the lowest degree in equation 
[15.A.25]. It corresponds to the wave number k 0 

e 2 c0
2 = -e5 

The corresponding reduced velocity is: 2  = 1. 

This effective wave front propagates at the longitudinal wave velocity in the 
elementary theory. At higher frequency, c0 cannot describe the behavior of an 
extensional wave. Higher degree terms in [15.A.25] have an influence which 
increases with frequency. These wave fronts (there are three waves) travel with 
imposed discontinuities, without damping. 

15A.8. Bending equations of motion  

Equation [15.A.18] proposes a displacement field for bending motion using a 
trigonometric double series for coefficients. For the first order approximation, 
truncation of the series is limited to the first term. Then the displacement vector is 
written as (i = 0,j = 0): 

 (M,t) = sin  ξ1.sin  ξ2.  +   + sin  ξ2.   [15.A.30] 

The stress components are written in matricial form as: 
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[ ]

1 2 00 1 2 10 1 2 11
11 12 31

1 2 10 2 01 2 00
12 22 23

1 2 11 2 00 2 01
31 23 33

πξ πξ πξ πξ πξ πξ1 1cos . sin σ sin . cos σ sin . sin σ
2 2 2 2 2 2 2 2
πξ πξ πξ πξ1 1σ = sin . cos σ sin .σ cos .σ

2 2 2 2 2 2
πξ πξ πξ πξ1 sin . sin σ cos .σ sin σ

2 2 2 2 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  [15.A.31] 

The equations of motion are: 

ρ   +   +   -  ,  = 0   

ρ u2
00 - 2

π
σ23,301  = 0  [15.A.32] 

ρ u3
01 + π

2a2
σ23

00 - σ33,301 = 0   

Constitutive equations of material permit 6 equations for six stress components 
to be obtained, and displacement components and their derivatives: 

S11σ11
01 +  σ22

01 +   =      

S12. + S22  + S23 σ33
01 = 0   [15.A.33] 

13 2301 01 01 01
11 22 33 33 3,3

2S 4S
S u

3
σ + σ + σ =

π π
 

S44σ23
00  =   ,  +  ,  

S44 .  =  ,    

S66  =   

Note: if in [15.A.30] the first component is neglected:  

u (M,t) = u 200 x2 + sin
2
ξ2. u3

01x3 

σ33 = sin
2
ξ2σ33

01 ;   σ23 = cos
2
ξ2.σ23

00  ,  
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then [15.A.32] and [15.A.33] give the following equation: 

ρu2
00 + 32

4
a2

2

S33
u2,33

00  = 0  [15.A.34] 

This will be recognized as Bernoulli−Euler’s equation. The ratio of the quadratic 
moment I1= 4a1a2

3on the cross-section area gives: 

I1/ S =  / 3  32 / π4 

The coefficient 32/π4 is in [15A.34] as the second term.  

15A.8.1. Bending equations of motion 

Elimination of stress components permits the following set of equations of 
motion to be obtained: 

ρ 1
11 =  ,  - { ∆ (S11S33-  ) + }  ∆ ( - ) ,  

ρ  =  ,  + ,    

ρ  =  ∆  ( - 
 

) ,  + ∆ ( - ) ,  -   ,  -       

 [15A.35] 

where ∆  is defined as: ∆F = S11(S11S33 - 
64S13

2

9π2 ) - 
512S12

9π4 ( S12S33 – S13
2) + 

8
π2 S13

2( 
64S12
9π2  - S11)  [15.A.36]  

15A.8.2. Physical interpretation of various displacement components 

1. The term   constitutes a radial inertia correction. 

2. The term ,  concerns shear correction. 

3. The other terms correspond to coupling terms. 

4. Bending in direction  is deduced from the equations presented above by 
changing e into 1/e, the material being transversely isotropic. 
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15A.8.3. Particle motion in bending vibration  

In Figure 15A.6 the mode associated with displacement component u2
00 is 

represented in Figure 15A.6(a) which corresponds to a uniform translation of the 
cross-section in the direction 0 . It is called the bending amplitude of the rod in the 
strength of material. This bending mode is coupled with two others modes, u1

11 and 
u3

01, which are interpreted in Figure 15A.6(b). 

 

Figure 15A.6. Bending motion: (a) motion of component u2
00;(b) motion of component u1

01; 
(c) motion of component u3

01 

15A.9. Equations of motion: torsional vibration 

15A.9.1. Equations of motion 

Truncating the series to the first order, we obtain the vector displacement: 

(M,t) = sin ξ2.u10
1  + sin ξ1.u21

0.  + sin ξ1.sin ξ2. u3
11.   [15.A.37] 

The stress field has following matricial representation:                 sinπξ1.sin ξ2.σ11
11    cos ξ1cos ξ2 .σ12

00     cos ξ1sin ξ2σ31
01 

[σ] =    cos  ξ1cos  ξ2.σ12
00      sin  ξ1sinπξ2.σ22

11   sin ξ1cos ξ2.σ23
10           [15.Α.38] 

            cos  ξ1.sin ξ2.σ31
01      sin  ξ1.cos  ξ2.σ23

10     sin ξ1sin ξ2.σ33
11 
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Equations of motion are obtained in a similar manner as for bending wave: 

ρu1
01 = 8

π2S44
u1,33

01- 2
a2

2  S66
u1

01- 2
a1a2S66

u3,3
11 

ρu2
10 = 8

π2S44
u2,33

10 - 2
a1

2S66
u2

10 - 2
a1a2S66

u1
01+ 1

a2S44
u3,3

11 [15.A.39] 

ρu3
11 = 1∆T

{S11
2 − (

64S12
9π2 )2}u3,33

11  - π2

4S44
( 1

a1
2+ 1

a2
2 ) -

2
a1S44

 u1,301- 2
a2S44

u2,3
10 

Where 

 ∆Τ = (S11- ) { S33( + S11) - }  [15.A.40] 

Figure 15A.7 completes the mathematical formulation of the torsion problem in 
section 15A.4.3. The motion of axial component u3

11 in [15.A.6b] creates warping of 
the cross-section. 

 

Figure 15A.7. Torsional motion. (a) The two displacement components u1
01 and u2

10 are 
represented; (b) axial component u3

11creates warping of the cross-section 

15.13. Appendix 15B. Third order Touratier’s theory 

The accuracy obtained for a given order of elastodynamic mode depends on the 
degree of decoupled equations of motion. 

If this degree is 2n, the (n-1) first mode has good accuracy and the nth mode 
might have poor accuracy. The situation is similar to the problem of (eigenvalue) 
modes of a mechanical structure, which is governed by matricial equations with a 
matrix n n. If calculations are effected with the Ritz’s method, the n-1 first modes 
are acceptable whilst the last eigenvalue has poor accuracy. 
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This idea can be considered as a guide when truncating a set of series expressing 
displacement components and stress components. 

In the framework of Reissner-Hellinger’s variational principle, if we truncate 
each series to the third term, we obtain 9 branches for the frequency spectrum and 
we can be sure that the 8 first modes are correctly portrayed.  

15B.1. Extensional waves with nine evaluated modes  

From equation [15.A.17], three terms are retained for each series for 
displacement components, (i=0,j=0), (i=0,j=1), (i=1,j=0): 

1 10 1 2 2 20 3 1 30
1 1 1 1u sin .u sin .sin .u sin .u

2 2 2 2
πξ πξ πξ πξ

= + +  

2 01 1 2 21 3 2 03
2 2 2 2u sin .u sin .sin .u sin .u

2 2 2 2
πξ πξ πξ πξ

= + +  

00 2 1 20 2 2 02
3 3 3 3u u sin .u sin .u

2 2
πξ πξ

= + +  [15.B.1] 

The stress components, expressed in series are: 

σ11 = cos ξ1.σ11
00 + sin2 ξ1.cos ξ1 .σ11

20 + cos ξ1 .sin2 ξ2 .σ11
02 

σ22 = cos ξ2.σ22
00 + sin2  ξ1 .cos ξ2.σ22

20 +sin2 ξ2.cos ξ2.σ22
02 

σ33 = σ33
00+ sin2 ξ1.σ33

20 + sin2 ξ2. σ33
02           [15.B.2] 

σ23= sin ξ2.cos ξ2.σ23
01+ sin2  ξ2.cos ξ2 sin ξ2.σ23

21sin3 ξ2.cos ξ2.σ23
03 

σ31= sin ξ1.cos ξ1.σ31
10+sin ξ1.cos ξ1sin2 ξ2 σ31

12+ sin3 ξ1.cos ξ1σ31
30 

σ12= sin ξ1cos ξ1sin ξ2cos ξ2σ12
11  
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15B.2. Geometrical characteristics of displacement components uj
mn and physical 

interpretation  

 

Figure 15B.1. The three displacement components in extensional mode in a cross-section 

Axial displacement components in the series [15.B.1] are represented in Figure 
15B.1. u3

mn  are associated with fundamental components u3
00and with shear mode 

in the section (u3
20,u3

02). 

 

Figure 15B.2. Higher order displacement components in the cross-section u1
11, 

u1
13,u1

31. . u11 describes elementary rotation around axis o  

 

Figure 15B.3. The three axial components in the series [15.B.1] shows  
shear effect in the cross-section 
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Figure 15B.4. Frequency spectrum for nine first longitudinal modes of an isotropic rod. 
(Poisson’s number ν= 0.3) with a rectangular cross-section with flatness e = 0.5 

15B.3. Bending mode in the direction  − geometrical interpretation 

Figures 15B.5, 15B.6 and 15B.7 show displacement components related to the 
rank of each component. Figure 15B.7 shows the frequency spectrum with nine 
elastodynamic modes. 
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Figure 15B.5. Bending displacement component u2
00 in the direction .  

The second components in the series [15.B.1] are associated with  
the fundamental motion in the direction  

 

Figure 15B.6. (a) Bending displacement component u3
11 describes the elementary  

rotation of the section around axis o  (b) motion of higher order u3
13,  

u3
31create tension in the cross-section 

 

Figure 15B.7. Bending motion: longitudinal components u3
01, u3

21and u3
03 describe the shear effect  
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Figure 15B.8. Frequency spectrum for bending elastodynamic modes. Rectangular cross-
section; isotropic material ν = 0.3; flatness e = a1/a2 = 0.5 

15B.4. Shear motion around longitudinal rod axis  

Series expansion for torsion motion requires that the radial components be 
symmetrical to x1,x2. Longitudinal components u3 are anti-symmetric with respect to 
lateral coordinates x1,x2. The dissymmetry of the axial components describes the 
warping effect of the section.  

15B.4.1. Geometrical representation of some displacements 

Figures 15B.9 and 15B.10 show various components in torsion motion. 
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Figure 15B.9. Displacement components in the three directions: 1, 2 and 3 in torsion mode 

 

Figure 15B.10. Displacement components in torsion are coupled with  
modes due to warping of the cross-section 

The shear frequency spectrum, as for extensional and bending motion, is 
obtained by solving with displacement components and stress components expressed 
as progressive waves, such that: 

det[ Z ijt ]  = 0 [15B.3] 
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Figure 15B.11. Frequency spectrum of nine first torsional modes; isotropic material  
with ν = 0.3; rectangular cross-section with flatness e =a2/a1 = 0.5 




