

F# for Scientists

Jon Harrop
Flying Frog Consultancy Ltd.

Foreword by Don Syme

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

F# for Scientists

This Page Intentionally Left Blank

F# for Scientists

Jon Harrop
Flying Frog Consultancy Ltd.

Foreword by Don Syme

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ
07030, (201) 748-601 1, fax (201) 748-6008, or online at http:l/www.wiley.com/go/permission.

Limit of LiabilitylDisclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Harrop, Jon D.
F# for scientists /Jon Harrop.

p. cm.
Includes index.
ISBN 978-0-470-242 11-7 (cloth)

1. F# (Computer program language) 2. Functional programming (Computer science) 3. Science-Data
processing. I. Title.

QA76.73.Fl63H37 2008
005.1 ' 1 u c 2 2 2008009567

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

To my family

This Page Intentionally Left Blank

Contents in Brief

Introduction

Program Structure

Data Structures

Numerical Analysis

Input and Output

Simple Examples

Visualization

Optimization

Libraries

10 Databases

11 lnteroperability

12 Complete Examples

Bibliography

1

37

63

113

127

141

173

199

225

249

267

281

325

vii

This Page Intentionally Left Blank

CONTENTS

Foreword

Preface

Acknowledgments

List of Figures

List of Tables

Acronyms

1 Introduction

1.1 Programming guidelines
1.2
1.3 Benefits of F#
1.4 Introducing F#

A brief history of F#

1.4.1 Language overview
1.4.2 Pattern matching
1.4.3 Equality
1.4.4 Sequence expressions

xix

xxi

xxiii

xxv

XXXl

xxxiii

1

2
2
3
3
4

15
24
26

ix

X CONTENTS

1.4.5 Exceptions
1.5 Imperative programming
1.6 Functional programming

1.6.1 Immutability
1.6.2 Recursion
1.6.3 Curried functions
1.6.4 Higher-order functions

2 Program Structure

2.1 Nesting
2.2 Factoring

2.2.1 Factoring out common subexpressions
2.2.2 Factoring out higher-order functions

2.3 Modules
2.4 Objects

2.4.1 Augmentations
2.4.2 Classes

2.5.1 Combinators
2.5.2 Maps and folds

2.6.1 Creating an F# project
2.6.2 Building executables
2.6.3 Debugging
2.6.4 Interactive mode
2.6.5 C# interoperability

2.5 Functional design patterns

2.6 F# development

3 Data Structures

3.1 Algorithmic complexity
3.1.1 Primitive operations
3.1.2 Complexity

3.2.1 Array literals
3.2.2 Array indexing
3.2.3 Array concatenation
3.2.4 Aliasing
3.2.5 Subarrays
3.2.6 Creation

3.2 Arrays

27
29
31
31
32
33
35

37

38
38
39
39
42
44
44
46
49
49
52
53
54
54
56
56
58

63

64
64
65
69
69
70
70
71
72
72

CONTENTS xi

3.3

3.4

3.5

3.6

3.7
3.8
3.9
3.10

3.2.7 Iteration
3.2.8 Map
3.2.9 Folds
3.2.10 Sorting
3.2.1 1 Pattern matching
Lists
3.3.1 Sorting
3.3.2 Searching
3.3.3 Filtering
3.3.4 Maps and folds
3.3.5 Pattern matching
Sets
3.4.1 Creation
3.4.2 Insertion
3.4.3 Cardinality
3.4.4 Set-theoretic operations
3.4.5 Comparison
Hash tables
3.5.1 Creation
3.5.2 Searching
3.5.3 Insertion, replacement and removal
3.5.4 Higher-order functions
Maps
3.6.1 Creation
3.6.2 Searching
3.6.3 Higher-order functions
Choosing a data structure
Sequences
Heterogeneous containers
Trees
3.10.1 Balanced trees
3.10.2 Unbalanced trees
3.10.3 Abstract syntax trees

4 Numerical Analysis

4.1 Number representation
4.1.1 Machine-precision integers
4.1.2 Machine-precision floating-point numbers

72
73
73
75
75
75
76
76
78
78
80
82
82
83
83
83
84
84
85
86
86
87
87
88
89
90
91
92
92
93

100
101
110

113

113
113
114

xii CONTENTS

4.2 Algebra
4.3 Interpolation
4.4 Quadratic solutions
4.5 Mean and variance
4.6 Other forms of arithmetic

4.6.1 Arbitrary-precision integer arithmetic
4.6.2 Arbitrary-precision rational arithmetic
4.6.3 Adaptive precision

5 Input and Output

5.1 Printing

5.2 Generic printing
5.3
5.4 Serialization
5.5 Lexing and parsing

5.1.1 Generating strings

Reading from and writing to files

5.5.1 Lexing
5.5.2 Parsing

6 Simple Examples

6.1.1 Nest
6.1.2 Fixed point
6.1.3 Within
6.1.4 Memoize
6.1.5 Binary search

6.2.1 Heaviside step
6.2.2 Kronecker &function
6.2.3 Gaussian
6.2.4 Binomial coefficients
6.2.5 Root finding
6.2.6 Grad
6.2.7 Function minimization
6.2.8 Gamma function
6.2.9 Discrete wavelet transform

6.1 Functional

6.2 Numerical

6.3 String related
6.3.1 Transcribing DNA

117
119
120
122
123
123
124
125

127

127
128
129
130
131
132
133
137

141

141
142
142
142
143
147
147
147
148
148
149
151
151
152
154
155
157
157

CONTENTS xiii

6.4

6.5

6.6

6.3.2 Word frequency
List related
6.4.1 count

6.4.2 posit ions

6.4.3 fold-to

6.4.4 insert

6.4.5 chop

6.4.6 dice
6.4.7 apply-at

6.4.8 sub

6.4.9 extract

6.4.10 shuffle

6.4.1 1 transpose
6.4.12 combinations

6.4.13 distribute
6.4.14 permute

6.4.15 Power set
Array related
6.5.1 rotate

6.5.2 swap

6.5.3 except

6.5.4 shuffle
Higher-order functions
6.6.1 Tuple related
6.6.2 Generalized products

158
159
159
160
160
161
161
162
163
163
163
164
165
165
166
167
167
168
168
168
169
169
169
170
170

7 Visualization

7.1 Windows Forms
7.1.1 Forms
7.1.2 Controls
7.1.3 Events
7.1.4 Bitmaps
7.1.5 Example: Cellular automata
7.1.6 Running an application

7.2.1 Handling DirectX devices
7.2.2 Programmatic rendering
7.2.3 Rendering an icosahedron

7.2 Managed DirectX

1 73

174
174
175
175
176
177
179
180
180
183
188

XiV CONTENTS

7.2.4 Declarative rendering 191

7.2.5 Spawning visualizations from the F# interactive mode 192
7.3 Tesselating objects into triangles 194

7.3.1 Spheres 194
7.3.2 3D function plotting 196

8 Optimization 1 99

8.1

8.2

8.3
8.4

Timing
8.1.1 Absolute time
8.1.2 CPU time
8.1.3 Looping
8.1.4 Example timing
Profiling
8.2.1 %queens problem
Algorithmic optimizations
Lower-level optimizations
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8.4.10
8.4.1 1

8.4.12

Benchmarking data structures
Compiler flags
Tail-recursion
Avoiding allocation
Terminating early
Avoiding higher-order functions
Use mutable
Specialized functions
Unboxing data structures
Eliminate needless closures
Inlining
Serializing

9 Libraries

9.1 Loading .NET libraries
9.2 Charting and graphing
9.3 Threads

9.3.1 Thread safety
9.3.2 Basic use
9.3.3 Locks
9.3.4 The thread pool
9.3.5 Asynchronous delegates

200
200
20 1
20 1
202
202
202
205
206
207
21 1
212
213
217
220
220
22 1
222
223
224
224

225

226
226
227
228
229
23 1
232
233

CONTENTS XV

9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.1 1

9.12

9.3.6 Background threads
Random numbers
Regular expressions
Vectors and matrices
Downloading from the Web
Compression
Handling XML
9.9.1 Reading
9.9.2 Writing
9.9.3 Declarative representation
Calling native libraries
Fourier transform
9.1 1 . 1 Native-code bindings
9.1 1.2 Interface in F#
9.1 1.3
9.1 1.4 Example use
Metaprogramming
9.12.1 Emitting IL code
9.12.2 Compiling with LINQ

Pretty printing complex numbers

233
234
234
235
236
237
237
237
238
238
239
240
240
242
243
244
245
245
247

10 Databases

10.1 Protein data bank
10.1.1 Interrogating the PDB
10.1.2
10.1.3
10.1.4 Visualization in a GUI

Pretty printing XML in F# interactive sessions
Deconstructing XML using active patterns

10.2 Web services
10.2.1
10.2.2 Interrogating the NCBI

10.3.1 Connection to a database
10.3.2 Executing SQL statements
10.3.3 Evaluating SQL expressions
10.3.4 Interrogating the database programmatically
10.3.5
10.3.6 Visualizing the result
10.3.7 Cleaning up

US temperature by zip code

10.3 Relational databases

Filling the database from a data structure

249

250
250
25 1

25 1

253
254
255
256
258
259
259
26 1

26 1
263
263
264

xvi CONTENTS

11 lnteroperability

11.1 Excel
1 1.1.1
1 1.1.2
1 1.1.3
1 1.1.4
1 1.1.5
1 1.1.6

1 1.2.1
1 1.2.2 Using the interface
1 1.2.3
1 1.2.4

1 1.3 Mathematica

Referencing the Excel interface
Loading an existing spreadsheet
Creating a new spreadsheet
Referring to a worksheet
Writing cell values into a worksheet
Reading cell values from a worksheet

Creating a .NET interface from a COM interface

Remote execution of MATLAB commands
Reading and writing MATLAB variables

11.2 MATLAB

1 1.3.1 Using .NET-link
11.3.2 Example

12 Complete Examples

12.1 Fast Fourier transform
12.1.1 Discrete Fourier transform
12.1.2 Danielson-Lanczos algorithm
12.1.3 Bluestein’s convolution algorithm
12.1.4 Testing and performance

12.2.1 Eigenvalue computation
12.2.2 Injecting results into Excel
12.2.3 Results

12.3 Finding nth-nearest neighbors
12.3.1 Formulation
12.3.2 Representing an atomic configuration
12.3.3 Parser
12.3.4 Lexer
12.3.5 Main program
12.3.6 Visualization

12.4 Logistic map
12.5 Real-time particle dynamics

12.2 Semi-circle law

267

267
268
268
269
269
270
27 1
272
272
273
273
273
275
275
277

281

28 1
282
283
285
287
288
289
290
29 1
29 1
292
295
295
297
297
299
301
3 03

Appendix A: Troubleshooting 311

CONTENTS xvii

A. 1
A.2
A.3
A.4
A S
A.6
A.7
A.8

Glossary

Bibliography

Index

Value restriction
Mutable array contents
Negative literals
Accidental capture
Local and non-local variable definitions
Merging lines
Applications that do not die
Beware of “it”

31 1
3 12
313
313
313
3 14
314
315

317

325

329

This Page Intentionally Left Blank

Foreword

Computational science is one of the wonders of the modem world. In almost all
areas of science the use of computational techniques is rocketing, and software has
moved from being a supporting tool to being a key site where research activities are
performed. This has meant a huge increase in the importance of controlling and
orchestrating computers as part of the daily routine of a scientific laboratory, from
large teams making and running the computers performing global climate simulations
to the individual scientist/programmer working alone. Across this spectrum, the
productivity of teams and the happiness of scientists depends dramatically on their
overall competency as programmers, as well as on their skills as researchers within
their field. So, in the last 30 years we have seen the continued rise of that new
profession: the scientijicprogrammer. A good scientific programmer will carry both
epithets with pride, knowing that programming is a key foundation for a successful
publication record.

However, programming cultures differ widely, and, over time, gaping divides can
emerge that can be to the detriment of all. In this book, Dr. Harrop has taken great
steps forward to bridging three very different cultures: managed code programming,
scientijicprogramming and functionalprogramming. At a technical level, each has its
unique characteristics. Managed code programming, epitomized by .NET and Java,
focuses on the productivity of the (primarily commercial) programmer. Scientific
programmers focus on high performance computations, data manipulation, numerical

xix

XX FOREWORD

computing and visualization. Functional programming focuses on crisp, declarative
solutions to problems using compositional techniques. The challenge, then, is to
bring these disparate worlds together in a productive way.

The language F#, which Dr. Harrop uses in this book, itself bridges two of these
cultures by being a functional language for the .NET platform. F# is an incredibly
powerful language: the .NET libraries give a rich and solid foundation of software
functionality for many tasks, from routine programming to accessing web services
and high performance graphics engines. F# brings an approach to programming
that routinely makes even short programs powerful, simple, elegant and correct.
However Dr. Harrop has gone a step further, showing how managed code functional
programming can revolutionize the art of scientific programming itself by being
a powerful workhorse tool that unifies and simplifies many of the tasks scientific
programmers face.

But what of the future? The next 20 years will see great changes in scientific
programming. It is customary to mention the ever-increasing challenges of parallel,
concurrent, distributed and reactive programming. It is widely expected that future
micro-processors will use ever-increasing transistor counts to host multiple process-
ing cores, rather than more sophisticated microprocessor designs. If computations can
be parallelized and distributed on commodity hardware then the computing resources
that can be brought can be massively increased. It is well known that successful
concurrent and distributed computing requires a combination of intelligent algorithm
design, competent programming, and core components that abstract some details of
concurrent execution, e.g. databases and task execution libraries. This needs a lan-
guage that can interoperate with key technologies such as databases, and parallelism
engines. Furthermore, the ability to declaratively and crisply describe solutions to
concurrent programming problems is essential, and F# is admirably suited to this
task.

The future, will, however, bring other challenges as well. Truly massive amounts
of data are now being generated by scientific experiments. Web-based programming
will become more and more routine for scientific teams: a good web application can
revolutionize a scientific field. Shared databases will soon be used in almost every
scientific field, and programmatic access to these will be essential. F# lends itself
to these challenges: for example, it is relatively easy to perform sophisticated and
high-performance analysis of these data sources by bringing them under the static
type discipline of functional programming, as shown by some of the samples in this
book.

You will learn much about both programming and science through this book.
Dr. Harrop has chosen the style of F# programming most suited to the individual
scientist: crisp, succinct and efficient, with a discursive presentation style reminiscent
of Mathematica. It has been a pleasure to read, and we trust it will launch you on a
long and productive career as a managed code, functional scientific programmer.

Preface

The face of scientific computing has changed. Computational scientists are no longer
writing their programs in Fortran and competing for time on supercomputers. Scien-
tists are now streamlining their research by choosing more expressive programming
languages, parallel processing on desktop machines and exploiting the wealth of
scientific information distributed across the internet.

The landscape of programming languages saw a punctuation in its evolution at the
end of the 20th century, marked by the advent of a new breed of languages. These
new languages incorporate a multitude of features that are all designed to serve a
single purpose: to make life easier. Modern programming languages offer so much
more expressive power than traditional languages that they even open up new avenues
of scientific research that were simply intractable before.

The next few years will usher in a new era of computing, where parallelism
becomes ubiquitous. Few approaches to programming will survive this transition,
and functional programming is one of them.

Seamlessly interoperating with computers across the world is of pivotal importance
not only because of the breadth of information now available on-line but also because
this is the only practicable way to interrogate the enormous amount of data available.
The amount of genomic and proteinomic data published every year continues to grow
exponentially, as each generation of technology fuels the next.

xxi

xxii PREFACE

Only one mainstream programming language combines awesome expressive power,
interoperability and performance: F#. This book introduces all of the aspects of the
F# programming language needed by a working scientist, emphasizing aspects not
covered by existing literature. Consequently, this book is the ideal complement to a
detailed overview of the language itself, such as the F# manual or the book Expert
F#[25].

Chapters 1-5 cover the most important aspects of F# programming needed to start
developing useful F# programs. Chapter 6 ossifies this knowledge with a variety
of enlightening and yet simple examples. Chapters 7-1 1 cover advanced topics
including real-time visualization, interoperability and parallel computing. Chapter
12 concludes the book with a suite of complete working programs relevant to scientific
computing.

The source code from this book is available from the following website:
http://www.ffconsultancy.com/products/fsharp-for-scientists/

J. D. HARROP

Cambridge, UK

June, 2008

Acknowledgments

I would like the thank Don Syme, the creator of F#, for pioneering research into
programming languages and for thrusting the incredibly powerful ML family of
languages into the limelight of mainstream software development.

Xavier Leroy, everyone at projet Cristal and the Debian package maintainers for
making OCaml so practically useful.

Stephen Elliott and Sergei Taraskin and their group at the University of Cambridge
for teaching me how to be a research scientist and letting me pursue crazy ideas when
I should have been working.

Ioannis Baltopoulos and Enrique Nell for proofreading this book and giving es-
sential feedback.

J. D. H.

xxiii

This Page Intentionally Left Blank

List of Figures

2.1 The f old-range function can be used to accumulate the result
of applying a function f to a contiguous sequence of integers, in
this case the sequence [1,9).

2.2 Developing an application written entirely in F# using Microsoft
Visual Studio 2005.

2.3 Visual Studio provides graphical throwback of the type
information inferred by the F# compiler: hovering the mouse
over the definition of a variable r in the source code brings up a
tooltip giving the inferred type of r.

2.4 A project’s properties page allows the compiler to be controlled.

2.5 The Add-in Manager is used to provide the F# interactive mode.

2.6 Creating a new C# class library project called ClassLibraryl
inside a new solution called In te rop .

2.7 Creating a new F# project called Pro j ect 1 also inside the
I n t e r o p solution.

40

53

54

55

57

59

59

xxv

xxvi LIST OF FIGURES

2.8

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Setting the startup project of the Interop solution to the F#
project Pro j ect 1 rather than the C# project ClassLibraryl
as a DLL cannot be used to start an application.

Complexities of the ipow-1 and ipow-2 functions in terms of
the number T(n) of multiplies performed.

Complexities of the ipow-2 function in terms of the number
of multiplies performed, showing: exact complexity T(n)
(dots) and lower- and upper-bounds algorithmic complexities
log,(n) - 1 5 T(n) 5 2(1+ log, n) for n > 1 (lines).

Measured performance of the ipow-1 and ipow-2 functions
which have asymptotic algorithmic complexities of @(n) and
O(ln n), respectively.

Arrays are the simplest data structure, allowing fast, random
access (reading or writing) to the ith element 'd i E { 0 . . . n - 1)
where n is the number of elements in the array. Elements cannot
be added or removed without copying the whole array.

The higher-order Array. init function creates an array
ai = f (i) for i E (0 . . . n - l} using the given function f .

The higher-order Array. map function creates an array
containing the result of applying the given function f to each
element in the given array a.

The higher-order Array. f old-lef t function repeatedly
applies the given function f to the current accumulator and the
current array element to produce a new accumulator to be applied
with the next array element.

Lists are the simplest, arbitrarily-extensible data structure.
Decapitation splits a list li i E { 0 . . . n - 1) into the head element
h and the tail list ti i E (0. . . n - 2).

Measured performance (time t in seconds) for inserting key-value
pairs into hash tables and functional maps containing n - 1
elements. Although the hash table implementation results in
better average-case performance, the 0 (n) time-complexity
incurred when the hash table is resized internally produces much
slower worst-case performance by the hash table.

A perfectly-balanced binary tree of depth x = 3 containing
2"+l - 1 = 15 nodes, including the root node and 2" = 8 leaf
nodes.

60

67

68

68

69

72

73

74

76

88

94

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

5.1

6.1

7.1

7.2

7.3

7.4

LIST OF FIGURES xxvii

“coral”). 183

The result of inserting an integer counter into each node of the tree
depicted in figure 3.10 using the counted-ptree-of-tree
function.

An unbalanced binary tree with the remaining depth stored in
every node.

A maximally-unbalanced binary tree of depth x = 7 containing
2x + 1 = 15 nodes, including the root node and x + 1 = 8 leaf
nodes.

An unbalanced binary tree used to partition the space T E [0, 1)
in order to approximate the gravitational effect of a cluster of
particles in a system.

Measured performance of the tree-based approach relative to a
simple array-based approach for the evaluation of long-range
forces showing the resulting fractional error 6 = 10 - EI/E vs
time taken t = ttree/tarray relative to the array-based method.

Values i of the type int, called machine-precision integers,
are an exact representation of a consecutive subset of the set of
integers i E [1 . . . u] c Z where 1 and u are given by min-int
and max-int, respectively.

Values of the type float, called double-precisionfloating-poinl
numbers, are an approximate representation of real-valued
numbers, showing: a) full-precision (normalized) numbers
(black), and b) denormalized numbers (gray).

Accuracy of two equivalent expressions when evaluated using
floating-point arithmetic: a) fi(x) = - 1 (solid line),
and b) fi(x) = x/(l + m) (dashed line).

Parsing character sequences often entails lexing into a token
stream and then parsing to convert patterns of tokens into
grammatical constructs represented hierarchically by a tree data
structure.

The first seven rows of Pascal’s triangle.

A blank Windows form.

A form with a single control, a button.

A thousand generations of the rule 30 cellular automaton.

A DirectX viewer that clears the display to a single color (called

96

98

100

106

109

114

1 I5

119

132

149

175

176

179

LIST OF FIGURES xxviii

7.5

7.6

7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Abutting triangles can be amortised into triangle fans and strips
to reduce the number of vertices required to describe a geometry.

A triangle rendered programmatically and visualized using an
orthographic projection.

A DirectX viewer that draws an icosahedron.

Progressively more refined uniform tesselations of a sphere,
obtained by subdividing the triangular faces of an icosahedron
and normalising the resulting vertex coordinate vectors to push
them onto the surface of a sphere.

3D surface plot of y = sin(r + 3x)/r where T = 5 d m .

Profiling results generated by the freely-available NProf profiler
for a program solving the queens problem on an 11 x 11 board.

Measured performance (time t in seconds) of mem functions over
set, list and array data structures containing n elements.

Relative time taken t = ts/ta for testing membership in a set (t s)
and an array (ta) as a function of the number of elements n in the
container, showing that arrays are up to 2 x faster for n < 35.

Measured performance (time t in seconds per element) of
List. of-array, Array. copy and Set .of-array data
structures containing n elements.

Measured performance (time t in seconds per element) of iter
functions over list, array and set data structures containing n
elements.

Measured performance (time t in seconds per element) of
the f old-lef t functions over list and array data structures
containing n elements.

Measured performance (time t in seconds per element) of the
fold - right functions over list, array and set data structures
containing n elements.

Controlling the optimization flags passed to the F# compiler by
Visual Studio 2005.

Deforestation refers to methods used to reduce the size of
temporary data, such as the use of composite functions to avoid
the creation of temporary data structures illustrated here: a)
mapping a function f over a list 1 twice, and b) mapping the
composite function f o f over the list 1 once.

187

189

190

195

197

204

206

208

208

209

210

210

21 1

214

LIST OF FIGURES xxix

8.10

8.1 1

9.1

9.2

10.1

10.2

11.1

11.2

12.1

12.2

12.3

12.4

12.5

12.6

An array of tuples or records containing pairs of f l o a t values
incurs a level of indirection.

A struct can be used to completely unbox the float values,
placing them directly into the array. This is often the most
efficient representation.

The XYGraph tool from ComponentXtra.

Fourier series of a discretely sampled sine wave, showing: a)
the samples u, T E [0,16) and Fourier series sin($ T) , and b)
the corresponding Fourier coefficients us computed numerically
using FFT W.

Using a Windows Forms TreeView control to visualize the
contents of an XML document from the Protein Data Bank.

Visualizing the contents of a SQL Server database using the
Windows Forms DataGrid control.

An Excel spreadsheet with cell values generated from a F#
interactive session.

A plot of sin(z) created in MATLAB by an F# program

The approximately semi-circular eigenvalue density P(A) for
a dense, random, square matrix Mij = fl with n = 1024,
showing the computed eigenvalue distribution.

Conventionally, atoms are referenced only by their index
i E II ={ 1 . . . N } within the supercell. Consequently, atoms
i, j E lI at opposite ends of the supercell are considered to be
bonded.

We use an unconventional representation that allows all atoms
to be indexed by the supercell they are in as well as their index
within the supercell. In this case, the pair of bonded atoms are
referenced as ((O , O) , ii) and ((l , O) , ij), i.e. with i in the origin
supercell (0,O) and j in the supercell with offset (1 , O) .

The 50th-nearest neighbour shell from a 105-atom model of
amorphous silicon [I] rendered using the F# for Ksualization
library.

Chaotic behaviour of the logistic map.

Real-time interactive simulation and visualization of non-
interacting particles bouncing on a 3D surface.

222

222

227

244

254

265

270

274

292

293

294

301

3 04

308

This Page Intentionally Left Blank

List of Tables

3.1 Complexity of the ipow-2 function measured as the number of
multiply operations performed. 67

3.2 Functions implementing common operations over data structures. 9 1

3.3 Asymptotic algorithmic complexities of operations over different
data structures containing n elements where i E { 0 . . . n - l} is
a parameter of some of the operations, e.g. insert at index i. 91

7.1 DirectX primitive drawing functions. 187

xxxi

This Page Intentionally Left Blank

Acronyms

ADO
ASP
AST
BNF
CAML
FFT
FFTW
GOE
HOF
IDE
INRIA

I 0
LCF
ML

Active Data Objects
Active Server Pages
Abstract-syntax tree
Backus-Naur form
Categorical Abstract Machine Language
Fast Fourier Transform
Fastest Fourier Transform in the West
Gaussian Orthogonal Ensemble
Higher-Order Function
Integrated Development Environment
Institut National de Recherche en Informatique et en
Automatique
Input and Output
Logic of Computable Functions
Meta-Language

xxxiii

XXXiV ACRONYMS

OCaml
00
OOP
OpenGL
RPC
SOAP
UDDI
VM
vs
WSDL
XML
XSLT

Objective CAML
Obj ect-Oriented
Obj ect-Oriented Programming
Open Graphics Library
Remote Procedure Call
Simple Object Access Protocol
Universal Description, Discovery and Integration
Virtual Machine
Visual Studio
Web Service Definition Language
extensible Markup Language
extensible Stylesheet Language Transformations

CHAPTER 1

I NTROD U CTI ON

For the first time in history, and thanks to the exponential growth rate of computing
power, an increasing number of scientists are finding that more time is spent creating,
rather than executing, working programs. Indeed, much effort is spent writing
small programs to automate otherwise tedious forms of analysis. In the future, this
imbalance will doubtless be addressed by the adoption and teaching of more efficient
programming techniques. An important step in this direction is the use of higher-level
programming languages, such as F#, in place of more conventional languages for
scientific programming such as Fortran, C, C++ and even Java and C#.

In this chapter, we shall begin by laying down some guidelines for good program-
ming which are applicable in any language before briefly reviewing the history of the
F# language and outlining some of the features of the language which enforce some
of these guidelines and other features which allow the remaining guidelines to be
met. As we shall see, these aspects of the design of F# greatly improve reliability and
development speed. Coupled with the fact that a freely available, efficient compiler
already exists for this language, no wonder F# is already being adopted by scientists
of all disciplines.

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

1

2 INTRODUCTION

1.1 PROGRAMMING GUIDELINES

Some generic guidelines can be productively adhered to when programming in any
language:

Correctness over performance Programs should be written correctly first and op-
timized last.

Factor programs Complicated or common operations should be factored out into
separate functions or objects.

Interfaces Abstract interfaces should be designed and concrete implementations
should be coded to these interfaces.

Avoid magic numbers Numeric constants should be defined once and referred back
to, rather than explicitly “hard-coding’’ their value multiple times at different
places in a program.

Following these guidelines is the first step towards reusable programs.

1.2 A BRIEF HISTORY OF F#

The first version of ML (Meta Language) was developed at Edinburgh University
in the 1970’s as a language designed to efficiently represent and manipulate other
languages. The original ML language was pioneered by Robin Milner for the Logic of
Computable Functions (LCF) theorem prover. The original ML, and its derivatives,
were designed to stretch theoretical computer science to the limit, yielding remarkably
robust and concise programming languages without sacrificing the performance of
low-level languages.

The Categorical Abstract Machine Language (CAML) was the acronym originally
used to describe what is now known as the Caml family of languages, a dialect of
ML that was designed and implemented by GCrard Huet at the Institut National
de Recherche en Informatique et en Automatique (INRIA) in France, until 1994.
Since then, development has continued as part of projet Cristal, now led by Xavier
Leroy. Objective Caml (OCaml) is the current flagship language of projet Cristal.
The OCaml programming language is one of the foremost high-performance and
high-level programming languages used by scientists on the Linux and Mac 0s X
platforms [111.

Don Syme at Microsoft Research Cambridge has meticulously engineered the
F# language for .NET, drawing heavily upon the success of the CAML family of
languages. The F# language combines the remarkable brevity and robustness of the
Caml family of languages with .NET interoperability, facilitating seamless integration
of F# programs with any other programs written in .NET languages. Moreover, F#
is the first mainstream language to implement some important features such as active
patterns and asynchronous programming constructs.

BENEFITS OF F# 3

1.3 BENEFITS OF F#

Before delving into the syntax of the language itself, we shall list the main, advanta-
geous features offered by the F# language:

Safety F# programs are thoroughly checked prior to execution such that they are
proven to be entirely safe to run, e.g. a compiled F# program cannot cause an
access violation.

Functional Functions may be nested, passed as arguments to other functions and
stored in data structures as values.

Strongly typed The types of all values are checked during compilation to ensure
that they are well defined and validly used.

Statically typed Any typing errors in a program are picked up at compile-time by
the compiler, instead of at run-time as in many other languages.

n p e inference The types of values are automatically inferred during compilation by
the context in which they occur. Therefore, the types of variables and functions
in F# code rarely need to be specified explicitly, dramatically reducing source
code size. Clarity is regaining by displaying inferred type information in the
integrated development environment (IDE).

Generics Functions are automatically generalized by the F# compiler, greatly sim-
plifying the writing of reusable functions.

Pattern matching Values, particularly the contents of data structures, can be matched
against arbitrarily-complicated patterns in order to determine the appropriate
course of action.

Modules and objects Programs can be structured by grouping their data structures
and related functions into modules and objects.

Separate compilation Source files can be compiled separately into object files that
are then linked together to form an executable or library. When linking, object
files are automatically type checked and optimized before the final executable
is created.

Interoperability F# programs can call and be called from programs written in other
Microsoft .NET languages (e.g. C#), native code libraries and over the internet.

1.4 INTRODUCING F#

F# programs are typically written in Microsoft Visual Studio and can be executed
either following a complete build or incrementally from the F# interactive mode.
Throughout this book we shall present code snippets in the form seen using the F#
interactive mode, with code input following the prompt:

4 INTRODUCTION

>

Setup and use of the interactive mode is covered in more detail in chapter 2 .
Throughout this book, we assume the use of the #light syntax option, which requires
the following command to be evaluated before any of the code examples:

> #light; ;

Before we consider the features offered by F#, a brief overview of the syntax of
the language is instructive, so that we can provide actual code examples later. Other
books give more systematic, thorough and formal introductions to the whole of the
F# language [25 ,22] .

1.4.1 Language overview

In this section we shall evolve the notions of values, types, variables, functions,
simple containers (lists and arrays) and program flow control. These notions will
then be used to introduce more advanced features in the later sections of this chapter.

When presented with a block of code, even the most seasoned and fluent pro-
grammer will not be able to infer the purpose of the code. Consequently, programs
should contain additional descriptions written in plain English, known as comments.
In F#, comments are enclosed between (* and * or after / / or / / / on a single
line. Comments appearing after a / / / are known as autodoc comments and Visual
Studio interprets them as official documentation according to standard .NET coding
guidelines.

Comments may be nested, i.e. (* (* . . . *) *) is a valid comment and
comments are treated as whitespace, i.e. a (* . . . *) b is understood to mean
a b rather than ab.

Just as numbers are the members of sets such as the integers (E Z), reals (E W),
complexes (E C) and so on, so values in programs are members of sets. These sets
are known as types.

I .4.1.1 Basic types Fundamentally, languages provide basic types and, often,
allow more sophisticated types to be defined in terms of the basic types. F# provides
a number ofbuilt-in types, such as unit, int, float, char, string and bool.
We shall examine these built-in types before discussing the compound tuple, record
and variant (also known as discriminated union) types.

Only one value is of type unit and this value is written () and, therefore,
conveys no information. This is used to implement functions that require no input or
expressions that return no value. For example, a new line can be printed by calling
the print - newline function:

> print-newline () ; ;

val it : unit = ()

This function requires no input, so it accepts a single argument () of the type
unit, and returns the value () of type unit.

INTRODUCING F# 5

Integers are written -2 , -1, 0, 1 and 2. Floating-point numbers are written
- 2 . 0, - 1 . 0, - 0 . 5 , 0 . 0, 0 . 5 , 1 . 0 and 2 . 0. Note that a zero fractional part may
be omitted, so 3 . 0 may be written 3 . , but we choose the more verbose format for
purely esthetic reasons. For example:

> 3;;
val it : int = 3

> 5.0;;
val it : float = 5.0

Arithmetic can be performed using the conventional +, -, *, / and % binary infix'
operators over many arithmetic types including int and float.

For example, the following expression is evaluated according to usual mathemati-
cal convention regarding operator precedence, with multiplication taking precedence
over addition:

> 1 * 2 + 2 * 3;;
val it : int = 8

The same operators can be used for floating point arithmetic:

> 1.0 * 2 . 0 + 2.0 * 3.0;;
val it : float = 8.0

Defining new operators and overloading existing operators is discussed later, in
section 2.4.1.3. Conversion functions or type casts are used to perform arithmetic
with mixed types, e.g. the float function converts numeric types to the float
type.

However, the types of the two arguments to these operators must be the same, so
* cannot be used to multiply an int by a float:

5 2 * 2.0;;
Error: FS0001: This expression has type float but is
here used with type int

Explicitly converting the value of type float to a value of type int using the
built-in function int results in a valid expression that the interactive session will
execute:

> 2 * int 2 . 0 ; ;

val it : int = 4

In most programs, arithmetic is typically performed using a single number repre-
sentation (e.g. either int or float) and conversions between representations are,
therefore, comparatively rare. Thus, the overhead of having to apply functions to
explicitly convert between types is a small price to pay for the added robustness that
results from more thorough type checking.

'An infix function is a function that appears between its arguments rather than before them. For example,
the arguments i and j of the conventional addition operator + appear on either side: i + j .

6 INTRODUCTION

Single characters (of type char) are written in single quotes, e.g. ' a ' , that may
also be written using a 3-digit decimal code, e.g.

Strings are written in double quotes, e.g. IfHello World!)I. Characters in a
string of length n may be extracted using the notation s . [i] for i E (0 . . . n - l}.
For example, the fifth character in this string is "0":

> "Hello world! I t . 141 ; ;
val it : char = ' 0 '

\ 0 9 7 .

Strings are immutable in F#, i.e. the characters in a string cannot be altered once
the string is created. The char array and byte array types may be used as
mutable strings.

A pair of strings may be concatenated using the overloaded + operator:

> "Hello + "world! I!; ;
val it : string = ItHello world!"

Booleans are either true or false. Booleans are created by the usual compari-
son functions =, < > (not equal to), <, >, <=, >=. These functions are polymorphic,
meaning they may be applied to pairs of values of the same type for any type. The
usual, short-circuit-evaluated* logical comparisons && and I I are also present. For
example, the following expression tests that one is less than three and 2.5 is less than
2.7:

> 1 < 3 && 2.5 < 2.7;;
val it : boo1 = true

Values may be assigned, or bound, to names. As F# is a functional language,
these values may be expressions that map values to values - functions. We shall
now examine the binding of values and expressions to variable and fknction names.

1.4.1.2 Variables and functions Variables and functions are both defined
using the let construct. For example, the following defines a variable called a to
have the value 2:

> let a = 2;;
val a : int

Note that the language automatically infers types. In this case, a has been inferred

Definitions using 1 e t can be defined locally using the syntax:
to be of type int.

let var = exprl in
expr2

expr2. For example, the following evaluates u2 in the context u = 3, giving 9:
This evaluates exprl and binds the result to the variable var before evaluating

?Short-circuit evaluation refers to the premature escaping of a sequence ofoperations (in this case, boolean
comparisons). For example, the expression f a l s e && expr need not evaluate expr as the result of the
whole expression is necessarily f a l s e due to the preceding fa lse .

INTRODUCING F# 7

> let a = 3 in

val it : int = 9
a * a;;

Note that the value 3 bound to the variable a in this example was local to the
expression a * a and, therefore, the global definition of a is still 2 :

> a;;
val it : int = 2

More recent definitions shadow previous definitions. For example, the following
supersedes a definition a = 5 with a = a x a in order to calculate 5* = 625:

> let a = 5;;
val a : int

let a = a * a;;
val a : int

> a * a;;
val it : int = 625

Note that many of the keywords at the ends of lines (such as the in keyword)
may be omitted when using the #1 ight syntax option. This simplifies F# code and
makes it easier to read. More importantly, nested lines of code are written in the
same style and may be evaluated directly in a running F# interactive session. This is
discussed in chapter 2.

As F# is a functional language, values can be functions and variables can be
bound to them in exactly the same way as we have just seen. Specifically, function
definitions include a list of arguments between the name of the function and the = in
the let construct. For example, a function called sqr that accepts an argument n
and returns n * n may be defined as:

> let sqr n = n * n;;
val sqr : int - > int

Type inference for arithmetic operators defaults to int . In this case, the use of the
overloaded multiply * results in F# inferring the type of sqr to be int - > int,
i.e. the sqr function accepts a value of type int and returns a value of type int.

The function sqr may then be applied to an int as:

sqr 5; ;
val it : int = 25

In order to write a function to square a float, it is necessary to override this
default type inference. This can be done by explicitly annotating the type. Types
may be constrained by specifying types in a definition using the syntax (expr :
Qpe) . For example, specifying the type of the argument alters the type of the whole
function:

> let sqr (x : float) = x * x;;
val sqr : float - 7 float

8 INTRODUCTION

The return type of a function can also be constrained using a similar syntax, having
the same result in this case:

> let sqr x : float = x * x;;
val sqr : float - 5 float

A variation on the let binding called a use binding is used to automatically
dispose a value at the end of the scope of the use binding. This is particularly usehl
when handling file streams (discussed in chapter 5) because the file is guaranteed to
be closed.

Typically, more sophisticated computations require the use of more complicated
types. We shall now examine the three simplest ways by which more complicated
types may be constructed.

7.4.1.3 Product types: tuples and records Tuples are the simplest form
of compound types, containing a fixed number of values which may be of different
types. The type of a tuple is written analogously to conventional set-theoretic style,
using * to denote the Cartesian product between the sets of possible values for each
type. For example, a tuple of three integers, conventionally denoted by the triple
(i , j , k) E Z x Z x Z, can be represented by values (i , j , k) of the type int *
int * int. When written, tuple values are comma-separated and often enclosed
in parentheses. For example, the following tuple contains three different values of
type int:

> (1, 2, 3) ; ;
val it : int * int * int = (1, 2, 3)

At this point, it is instructive to introduce some nomenclature: A tuple containing
R values is described as an n-tuple, e.g. the tuple (1, 2, 3) is a 3-tuple. The
value n is said to be the arity of the tuple.

Records are essentially tuples with named components, known asfields. Records
and, in particular, the names of their fields must be defined using a type construct
before they can be used. When defined, record fields are written name : tjpe where
name is the name of the field (which must start with a lower-case letter) and type is
the type of values in that field, and are semicolon-separated and enclosed in curly
braces. For example, a record containing the 2 and y components of a 2D vector
could be defined as:

> type vec2 = { x : float; y : float } ; ;
type vec2 = { x:float; y:float }

A value of this type representing the zero vector can then be defined using:

> let zero = { x = 0 . 0 ; y = 0 . 0 } ; ;
val zero : vec2

Note that the use of a record with fields x and y allowed F# to infer the type of
zero as vec2.

INTRODUCING F# 9

Whereas the tuples are order-dependent, i.e. (1 , 2) # (2, l), the named fields of a
record may appear in any order, i.e. {x = 1; y = 2} = {y = 2 ; 2 = l}. Thus, we
could, equivalently, have provided the x and y fields in reverse order:

> let zero = { y = 0 . 0 ; x = 0 . 0 } ; ;
val zero : vec2

The fields in this record can be extracted individually using the notation record .field
where record is the name of the record andJield is the name of the field within that
record. For example, the x field in the variable zero is 0:

> zer0.x;;
val it : float = 0.0

Also, a shorthand with notation exists for the creation of a new record from an
existing record with some of the fields replaced. This is particularly useful when
records contain many fields. For example, the record { x= 1 . 0 ; y= 0 . 0 } may be
obtained by replacing the field x in the variable zero with 1:

val x-axis : vec2

> x-axis; ;
val it : vec2 = {x = 1.0; y = O . O }

creating a new record instead.

7.4.7.4 Sum types: variants The types of values stored in tuples and records
are known at compile-time. The F# compiler enforces the correct use of these types
at compile-time. However, this is too restrictive in many circumstances. These
requirements can be slightly relaxed by allowing a type to be defined which can
acquire one of several possible types at run-time. These are known as variant types.

Variant types are defined using the type construct with the possible constituent
types referred to by constructors (the names of which must begin with upper-case
letters) separated by the I character. For example, a variant type named button
that may adopt the values On or O f f may be written:

> type button =

let x-axis = { zero with x = 1.0 } ; ;

Like many operations in F#, the with notation leaves the original record unaltered,

I On
I Off;;

type button = On I Off
The constructors O n and Off may then be used as values of type but ton:

z On;;
val it : button = On

> O f f ; ;
val it : button = Off

In this case, the constructors On and Off convey no information in themselves
(i.e. like the type unit, On and Off do not carry data) but the choice of O n or O f f

10 INTRODUCTION

does convey information. Note that both expressions were correctly inferred to be of
type button.

More usefully, constructors may take arguments, allowing them to convey infor-
mation by carrying data. The arguments are defined using of and are written in
the same form as that of a tuple. For example, a replacement button type which
provides an On constructor accepting two arguments (and int and a string) may
be written:

> type button =
I On of int * string
I Off;;

type button = On of int * string I Off
The On constructor may then be used to create values of type but ton by append-

ing the argument in the style of a tuple:

> On (1, "mine") ; ;
val it : button = On (1, l1rnine1l)

> On (2, ;;

val it : button = On (2, llherslg)

> Off;;
val it : button = Off

Types can also be defined recursively, which is very useful when defining more
sophisticated data structures, such as trees. For example, a binary tree contains either
zero or two binary trees and can be defined as:

> type binary-tree =

I Leaf
I Node of binary-tree * binary-tree;;

type binary-tree =

I Leaf
I Node of binary-tree * binary-tree
A value of type binary-tree may be written in terms of these constructors:

> Node (Node (Leaf, Leaf), Leaf) ;;
val it : binary - tree = Node (Node (Leaf, Leaf), Leaf)

Of course, we could also place data in the nodes to make a more useful data
structure. This line of thinking will be pursued in chapter 3. In the meantime, let us
consider two special data structures which have notations built into the language.

1.4.1.5 Generics The automatic generalization of function definitions to their
most generic form is one of the critical benefits offered by the F# language. In order
to exploit such genericity it is essential to be able to parameterize tuple, record and
variant types over type variables. A type variable is simply the type theory equivalent
of a variable in mathematics. In any given type expression, a type variable denotes

INTRODUCING F# 11

any type and a concrete type may be substituted accordingly. Type variables are
written a, b and so on.

For example, the following function definition handles a 2-tuple (a pair) but the
type of the two elements of the pair are not known and, consequently, the F# compiler
automatically generalizes the function to apply to pairs of any two types denoted a
and ‘ b, respectively:

> let swap(a, b) = b, a;;
val swap : ’a * ‘b - > ‘b * ‘a

Note that the behaviour of this swap function, to swap the elements of a pair,
is reflected in its type because the type variables appear in reverse order in the
return value. As a programmer grows accustomed to the implications of inferred
types, the types of expressions and function definitions come to convey a significant
amount of information. Moreover, the type information printed explicitly following
an interactive definition or expression in an F# interactive session (as shown here) is
made available directly from the source code in an IDE such as Visual Studio. This
is described in more detail in chapter 2.

b, the type of a generic record
t is written (’ a, ’ b) t. For example, the previous record type vec may be
parameterized over a generic field type ’ a. This is defined and used as follows:

> type ’a vec = { x: ’a; y: ’a } ; ;
type ‘a vec = { x: ‘a; y: ‘a }

val it : float vec = { x = 3 . 0 ; y = 4 . 0 }

Note that the parameterized record type is referred to generically as ‘ a vec and
specifically in this case as float vec because the elements are ofthe type float.

Generic variant types are written in an equivalent notation. For example, the
following defines and uses a generic variant type called ’ a opt ion:

> type ’a option =

I None
1 Some of ’a;;

So the type of a generic pair is written a *

> { x = 3 . 0 ; y = 4 . 0 };;

type ‘a option = None I Some of ‘a
> None; ;
val it : ’a option = None

> Some 3;;
val it : int option = Some 3

This type is actually so useful that it is provided by the F# standard library. Many
of the built in data structures, including lists and arrays, are parameterized over the
type of elements they contain and generic functions and types are used extensively
in the remainder of this book.

In the context of generic classes and generic .NET data structures, a generic type
‘a t is often written equivalently as t<’a>. This alternative syntax arises in
section 1.4.4 in the context of sequence expressions.

12 INTRODUCTION

1.4.1.6 Lists and arrays Lists are written [a ; b ; c 3 and arrays are written
[1 a ; b ; c 1] . As we shall see in chapter 3, lists and arrays have different merits.

Following the notation for generic types, the types of lists and arrays of integers
are written int list and int array, respectively:

> [l; 2 ; 31 ;;
val it : int list = [I; 2; 31

val it : int array = [I I ; 2; 311
> [II; 2; 3 1 1 ; ;

In the case of lists, the infix cons operator : : provides a simple way to prepend
an element to the front of a list. For example, prepending 1 onto the list [2 ; 31
gives the list [I; 2 ; 3 1 :
> 1 : : [2; 3 1 ; ;
val it : int list = [I; 2; 31

In the case of arrays, the notation array. [i] may be used to extract the i + lth
element. For example, [I 3 ; 5 ; 7 I I . [1 I gives the second element 5:

> [13 ; 5 ; 7 1 1 . [I1 ;;
val it : int = 5

Also, a short-hand notation can be used to represent lists or arrays of tuples by
omitting unnecessary parentheses. For example, [(a, b) ; (c , d)] may be
written [a, b; c , dl.

The use and properties of lists, arrays and several other data structures will be
discussed in chapter 3. In the mean time, we shall examine programming constructs
which allow more interesting computations to be performed.

1.4.1.7 The i f expression Like many other programming languages, F# pro-
vides an if construct which allows a boolean “predicate” expression to determine
which of two expressions is evaluated and returned, as well as a special if construct
which optionally evaluates an expression of type unit:

i f exprl then expr:!
if expg then expr2 else expry

In both cases, exprl must evaluate to a value of type bool. In the former case,
exprz is expected to evaluate to the value of type unit . In the latter case, both exprz
and expry must evaluate to values of the same type.

The former evaluates the boolean expression exprl and, only if the result is true,
evaluates the expression expr2. Thus, the former is equivalent to:

if exprl then exprz else ()

The latter similarly evaluates exprl but returning the result of either exprz, if exprl

For example, the following function prints “Less than three” if the given argument
evaluated to true, or of expry otherwise.

is less than three:

INTRODUCING F# 13

> let f x =

if x < 3 then
print-endline “Less than three” ; ;

val f : int - 5 unit

5 f 5;;
val it : unit = 0
> f 1;;
Less than three
val it : unit = 0

The following function returns the string “Less” if the argument is less than 3 and
“Greater” otherwise:

> let f x =

Less
if x < 3 then

else
“Greaterll ; ;

val f : int - > string

> f 1;;
val it : string = IlLessIl

> f 5;;
val it : string = IlGreaterIl

The if expression is significantly less common in F# than many other languages
because a much more powerful form of run-time dispatch is provided by pattern
matching, which will be introduced in section 1.4.2.

1.4.1.8 More about functions Functions can also be defined anonymously,
known as A-abstraction in computer science. For example, the following defines a
function f(x) = z x z which has a type representing3 f : Z -+ Z:

> fun x - > x * x;;
val it : int - 5 int = <fun:clo@0-3>

This is an anonymous equivalent to the sqr function defined earlier. The type of
this expression is also inferred to be int - > int. This anonymous function may
be applied as if it were the name of a conventional function. For example, applying
the function f to the value 2 gives 2 x 2 = 4:

> (fun x - 5 x * x) 2 . - I ,

val : int = 4

Consequently, we could have defined the sqr function equivalently as:

let sqr = fun x - 5 x * x;;

’We say “representing” because the F# type i n t is, in fact, a finite subset of Z, as we shall see in chapter 4.

14 INTRODUCTION

val sqr : i n t - > i n t

Once defined, this version of the sqr function is indistinguishable from the
original.

The l e t . . . i n construct allows definitions to be nested, including function
definitions. For example, the following function ipow3 raises a given i n t to the
power three using a sqr function nested within the body of the ipow3 function:

> l e t ipow3 x =

l e t sqr x = x * x
x * sqr x;;

val ipow3 : i n t - > i n t

Note that the #light syntax option allowed us to omit the i n keyword from the
inner l e t binding, and that the function application sqr x takes precedence over
the multiplication.

The l e t construct may also be used to define the elements of a tuple simultane-
ously. For example, the following defines two variables, a and b, simultaneously:

> l e t a, b = 3 , 4 ; ;
val a : i n t
val b : i n t

This is particularly useful when factoring code. For example, the following
definition of the ipow4 function contains an implementation of the sqr function
which is identical to that in our previous definition of the ipow3 function:

> l e t ipow4 x =

l e t sqr x = x * x
sqr(sqr x) ; ;

val ipow4 : i n t - > i n t

Just as common subexpressions can be factored out of a mathematical expression,
so the ipow3 and ipow4 functions can be factored by sharing a common sqr
function and returning the ipow3 and ipow4 functions simultaneously in a 2-tuple:

> l e t ipow3, ipow4 =

l e t sqr x = x * x
(fun x - > x * sqr x), (fun x - > sqr(sqr x));;

val ipow3 : i n t - > i n t
val ipow4 : i n t - > i n t

Factoring code is an important way to keep programs manageable. In particular,
programs can be factored much more aggressively through the use of higher-order
functions (HOFs) - something that can be done in F# but not Java, C++ or Fortran.
We shall discuss such factoring of F# programs as a means of code structuring in
chapter 2 . In the meantime, we shall examine recursive functions, which perform
computations by applying themselves.

As we have already seen, variable names in 1 e t definitions refer to their previously
defined values. This default behaviour can be overridden using the rec keyword,

INTRODUCING F# 15

which allows a variable definition to refer to itself. This is necessary to define
a recursive function4. For example, the following implementation of the ipow
function, which computes nm for n, m 2 0 E Z, calls itself recursively with smaller
m to build up the result until the base-case no = 1 is reached:

> l e t rec ipow n m =

i f m = 0 then 1 else

v a l ipow : i n t - > i n t - > i n t
n * ipow n (m - 1);;

For example, 216 = 65,536:

> ipow 2 1 6 ; ;
val it : i n t = 65536

Recursion is an essential construct in functional programming and will be dis-
cussed in more detail in section 1.6.

The programming constructs described so far may already be used to write some
interesting functions, using recursion to act upon values of non-trivial types. How-
ever, one important piece of functionality is still missing: the ability to dissect variant
types, dispatching according to constructor and extracting any data contained in them.
Pattern matching is an incredibly powerful core construct in F# that provides exactly
this functionality.

1.4.2 Pattern matching

As a program is executed, it is quite often necessary to choose the future course of
action based upon the value of a previously computed result. As we have already
seen, a two-way choice can be implemented using the i f construct. However, the
ability to choose from several different possible actions is often desirable. Although
such cases can be reduced to a series of i f tests, languages typically provide a
more general construct to compare a result with several different possibilities more
succinctly, more clearly and sometimes more efficiently than manually-nested i f s.
In Fortran, this is the SELECT CASE construct. In C and C++, it is the switch
case construct.

Unlike conventional languages, F# allows the value of a previous result to be
compared against various patterns - pattern matching. As we shall see, this ap-
proach is considerably more powerful and even more efficient than the conventional
approaches.

The most common pattern matching construct in F# is in the match . . . with
. . . expression:

match expr with
I pattern1 - exprl
I pattern2 - > expr2

4A recursive function is a function that calls itself, possibly via other functions.

16 INTRODUCTION

I patterns - 5 expr3

I pattern, - expr,

This evaluates expr and compares the resulting value firstly with pattern1 then
with pattern2 and so on, until a pattern is found to match the value of expr, in which
case the corresponding expression expr, is evaluated and returned.

Patterns may reflect arbitrary data structures (tuples, records, variant types, lists
and arrays) that are to be matched verbatim and, in particular, the cons operator : :
may be used in a pattern to decapitate a list. Also, the pattern - matches any value
without assigning a name to it. This is useful for clarifying that part of a pattern is
not referred to in the corresponding expression.

For example, the following function f compares its argument i against three
patterns, returning the expression of type string corresponding to the first pattern
that matches:

> let f i =

1 . . .

match i with
I o - > llZeroll
1 3 - >
I - - > "Neither zero nor three";;

val f : int - > string

Applying this function to some expressions of type int demonstrates the most
basic functionality of the match construct:

> f 0 ; ;
val it : string = llZeroll

> f 1;;
val it : string = "Neither zero nor three"

> f (1 + 2);;
val it : string = llThreel'

As pattern matching is such a fundamental concept in F# programming, we shall
provide several more examples using pattern matching in this section.

A function is-empty-list which examines a given list and returns true if
the list is empty and f a1 se if the list contains any elements, may be written without
pattern matching by simply testing equality with the empty list:

> let is-empty-list list =

val is-empty-list : 'a list - > boo1
list = [I ;;

Note that the clean design of the F# language allows the identifier list to be

Using pattern matching, this example may be written using the match . . . with
used to refer to both a variable name and a type without conflict.

. . . construct as:

> let is-empty-list list =

INTRODUCING F# 17

match list with
I [] - > true
I _ . ._ . . - > false;;

val is-empty-list : 'a list - > bool

Note the use of the anonymous -pattern to match any value, in this case accounting
for all other possibilities.

The i s-empty-1 i s t function can also be written using the function . . .
construct, used to create one-argument A-functions which are pattern matched over
their argument:
> let is-empty-list = function

I [] - > true
I -::- - > false;;

val is-empty-list : 'a list - > bool

In general, functions that pattern match over their last argument may be rewritten
more succinctly using function.

7.4.2.7 Variables in patterns Variables that are named in the pattern on the
left hand side of a match case are bound to the corresponding parts of the value
being matched when evaluating the corresponding expression on the right hand side
of the match case. This allows parts of a data structure to be used in the resulting
computation and, in particular, this is the only way to extract the values of the
arguments of a variant type constructor.

The following function f tries to extract the argument of the Some constructor of
the built in option type, returning a default value of 0 if the given value is None:
> let f = function

I None - > 0
I Some x - > x;;

val f : int option - > int

Note that the default value of 0 returned by the first match case of this pattern
match led type inference to determine that the argument to the f function must be of
the type int opt ion.

For example, applying this function the values None and Some 3 gives the results
0 and 3 as expected:

f None; ;
val it : int = 0

> f (Some 3);;
val it : int = 3

In the latter case, the second pattern is matched and the variable name x appearing
in the pattern is bound to the corresponding value in the data structure, which is 3 in
this case. The second match case simply returns the value bound to x, returning 3 in
this case.

The ability to deconstruct the value of a variant type into its constituent parts is
the single most important use of pattern matching.

18 INTRODUCTION

7.4.2.2 Named subpatterns Part of a data structure can be bound to a variable
by giving the variable name in the pattern. Occasionally, it is also useful to be able
to bind part of a data structure matched by a sub pattern.

The as construct provides this functionality, allowing the value corresponding to
a matched subpattern to be bound to a variable.

For example, the following recursive function returns a list of all adjacent pairs
from the given list:

> let rec pairs = function
I hl:: (h2::- as t) - > (hl, h2) : : pairs t
I - - > [I ; ;

val pairs : ’a list - > (‘a * ‘a) list

In this case, the first two elements from the input are named hl and h2 and the

Applying the pairs function to an example list returns the pairs of adjacent
tail list after hl is named t, i.e. h2 is the head of the tail list t.

elements as a list of 2-tuples:

> pairs [I; 2; 3; 4; 51 ;;
val it : (int * int) list =

[(I, 2); (2, 3); (3 , 4) ; (4 , 5) 1

Named subpatterns are used in some of the later examples in this book.

7.4.2.3 Guarded patterns Patterns may also have arbitrary tests associated
with them, written using the when construct. Such patterns are referred to as guarded
patterns and are only allowed to match when the associated boolean expression (the
guard) evaluates to true.

For example, the following recursive function filters out only the non-negative
numbers from a list:

let rec positive = function
I [I - > [I
I h::t when h < 0 - 5 positive t
I h::t - > h::positive t;;

val positive : int list - > int list

Applying this function to a list containing positive and negative numbers results
in a list with the negative numbers removed

> positive [-3; 1; -1; 41 ;;
val it : int list = [l; 41

Although guarded patterns undermine some of the static checking of pattern
matches that the F# compiler can perform, they can be used to good effect in a variety
of circumstances.

7.4.2.4 Or patterns In many cases it is useful for several different patterns to be
combined into a single pattern that is matched when any of the alternatives matches.
Such patterns are known as or-patterns and use the syntax:

INTRODUCING F# 19

pattern1 I pattern2

Or patterns must bind the same sets of variables.
For example, the following function returns true when its argument is in

{ - l , O , l } and false otherwise:

let is-sign = function
I -1 I 0 I 1 - > true
I - - > false;;

val is-sign : int - > boo1

The sophistication provided by pattern matching may be misused. Fortunately,
the F# compilers go to great lengths to enforce correct use, even brashly criticising
the programmers style when appropriate.

1.4.2-5 Erroneous patterns Alternative patterns in a match case must share
the same set of variable bindings. For example, although the following function
makes sense to a human, the F# compilers complain about the patterns (a, 0 1 and
(0 , b) binding different sets of variables ({ a } and {b} , respectively):
let product a b =

match a, b with
I a, 0 1 0 , b - > O
I a, b - > a * b;;

Error: FS0018: The two sides of this 'or' pattern bind
different sets of variables

In this case, this function can be corrected by using the anonymous - pattern as

let product a b =

match a, b with

I a, b - > a * b;;

neither a nor b is used in the first case:

I - I 0 1 0 , - - > o

val product : int - > int - > int

This actually conveys useful information about the code. Specifically, that the
values matched by - are not used in the corresponding expression.

F# uses type information to determine the possible values of expression being
matched. If the patterns fail to cover all of the possible values of the input then, at
compile-time, the compiler emits:

Warning: FS0025: Incomplete pattern match.

If a program containing such pattern matches is executed and no matching pattern
is found at run-time then MatchFailureException is raised. Exceptions will
be discussed in section 1.4.5.

For example, in the context of the built-in option type, the F# compiler will warn
of a function matching only the Some type constructor and neglecting None:

> let extract = function

20 INTRODUCTION

I Some x - > x;;
Warning: FS0025: Incomplete pattern match.
The value ‘None‘ will not be matched.
val extract : ‘a option - > int

This extract function then works as expected when given that value Some 3:

> extract (Some 3) ;;
val it : int = 3

but causes MatchFailureExceptionto be raised at run-time i faNone value
is given, as none of the patterns in the pattern match of the extract function match
this value:

> extract None;;
Exception of type
’Microsoft.FSharp.MatchFailureException’ was thrown.

As some approaches to pattern matching lead to more robust programs, some
notions of good and bad programming styles arise in the context of pattern matching.

7.4.2.6 Good style The compiler cannot prove that any given pattern match
covers all eventualities in the general case. Thus, some style guidelines may be
productively adhered to when writing pattern matches, to aid the compiler in its
proofs:

0 Guarded patterns should be used only when necessary. In particular, in any
given pattern matching, the last pattern should not be guarded.

0 In the case of user-defined variant types, all eventualities should be covered
explicitly (such as [] and h : : t which, between them, match any list).

As proof generation cannot be automated in general, the F# compilers do not try to
prove that a sequence of guarded patterns will match all possible inputs. Instead, the
programmer is expected to adhere to a good programming style, making the breadth
of the final match explicit by removing the guard. For example, the F# compilers do
not prove that the following pattern match covers all possibilities:

> let sign = function
I i when i < 0.0 - > -1

I i when i > 0.0 - > 1;;
I 0 . 0 - > 0

Warning: FS0025: Incomplete pattern match.
val sign : float - > int

In this case, the function should have been written without the guard on the last
pattern:

> let sign = function
I i when i < 0.0 - > -1

INTRODUCING F# 21

I 0 . 0 - > 0

I - - > 1;;
val sign : float - > int

Also, the F# compilers will try to determine any patterns which can never be
matched. If such a pattern is found, the compiler will emit a warning. For example,
in this case the first match accounts for all possible input values and, therefore, the
second match will never be used:

> let product a b =

match a, b with
I a , b - > a * b
I - 1 0 . 0 I 0 . 0 , - - > 0 .0 ; ;

Warning: FS0026: This rule will never be matched.
val product : int - > int - > int

When matching over the constructors of a type, all eventualities should be caught
explicitly, i.e. the final pattern should not be made completely general. For example,
in the context of a type which can represent different number representations:

> type number =

I Integer of int
I Real of float;;

type number = Integer of int I Real of float
A function to test for equality with zero could be written in the following, poor

style:

> let bad-is-zero = function
1 Integer 0 I Real 0.0 - > true
I - - > false;;

val bad-is-zero : number - > bool

When applied to various values of type number, this function correctly acts a
predicate to test for equality with zero:

> bad - - is zero (Integer (-1));;
Val it : bool = false

> bad - is-zero (Integer 0);;
val it : bool = true

> bad-is-zero (Real 0.0);;
val it : bool = true

bad - - is zero (Real 2.6);;
Val it : bool = false

Although the bad-i s-zero function works in this case, this formulation is
fragile when the variant type is extended during later development of the program.
Instead, the constructors of the variant type should be matched against explicitly, to

22 INTRODUCTION

ensure that later extensions to the variant type yield compile-time warnings for this
function (which could then be fixed):

> let good-is-zero = function
I Integer 0 I Real 0.0 - > true
I Integer - I Real - - > false;;

val good-is-zero : number - > bool

The style used in the good-is-zero function is more robust. For example, if
whilst developing our program, we were to supplement the definition of our number
type with a new representation, say of the complex numbers z = x + i y E @:

> type number =

I Integer of int
I Real of float
I Complex of float * float;;

type number =

I Integer of int
I Real of float
I Complex of float * float

the bad-is-zero function, which is written in the poor style, would compile
without warning despite being incorrect:

> let bad-is-zero = function
I Integer 0 1 Real 0.0 - > true
I - - > false;;

val bad-is-zero : number - > bool

Specifically, this function treats all values which are not zero-integers or zero-
reals as being non-zero. Thus, zero-complex z = 0 + O i is incorrectly deemed to be
non-zero:

> bad-is-zero (Complex (0.0, 0.0)) ; ;
val it : bool = false

In contrast, the good-is-zero function, which was written using the good
style, would allow the compiler to spot that part of the number type was not being
accounted for in the pattern match:

> let good-is-zero = function
I Integer 0 I Real 0.0 - > true
I Integer - I Real - - > false;;

Warning: FS0025 : Incomplete pattern match.
val good-is-zero : number - > bool

The programmer could then supplement this function with a case for complex
numbers:

> let good-is-zero = function
I Integer 0 I Real 0.0 I Complex(O.0, 0.0) - > true

INTRODUCING F# 23

I Integer - I Real - I Complex - - > false;;

The resulting function would then provide the correct functionality:

val good-is-zero : number - > bool

> good - is-zero (Complex (0.0, 0.0));;
val it : bool = true

Clearly, the ability have such safety checks performed at compile-time can be very
valuable during development. This is another important aspect of safety provided by
the F# language, which results in considerably more robust programs.

Due to the ubiquity of pattern matching in F# programs, the number and structure
of pattern matches can be non-trivial. In particular, patterns may be nested and may
be performed in parallel.

1.4.2.7 Parallel pattern matching Pattern matching is often applied to several
different values in a single function. The most obvious way to pattern match over
several values is to nest pattern matches. However, nested patterns are rather ugly
and confusing.

For example, the following function tries to unbox three option types, returning
None if any of the inputs is None:

> let unbox3 a b c =

match a with
I Some a - >

match b with
I Some b - 5

match c with
I Some c - > Some(a, b, c)
I None - 5 None

I None - > None
I - - > None;;

val unbox3 :

'a option - > 'b option - > 'c option - >

('a * 'b * 'c) option

Applying this function to three option values gives an option value in response:

> unbox3 (Some 1) (Some 2) (Some 3) ; ;
val it : (int * int * int) option = Some (1, 2, 3)

Fortunately, parallel pattern matching can be used to perform the same task more
concisely. This refers to the act of pattern matching over a tuple of values rather than
nesting different pattern matches for each value.

For example, a function to unbox three option values simultaneously may be
written more concisely using a parallel pattern match:

> let unbox3 a b c =

match a, b, c with

24 INTRODUCTION

I Some a, Some b, Some c - > Some (a, b, c)
I - - > None;;

val unbox3 :

'a option - > 'b option - > 'c option - >

As a core feature of the F# language, pattern matching will be used extensively in
the remainder of this book, particularly when dissecting data structures in chapter 3.

('a * 'b * 'c) option

1.4.2.8 Active patterns ML-style pattern matching provides a simple and ef-
ficient way to dissect concrete data structures such as trees and, consequently, is
ubiquituous in this family of programming languages. However, ML-style pattern
matching has the disadvantage that it ties a function to a particular concrete data
structure. A new feature in the F# programming language called active patterns is
designed to alleviate this problem by allowing patterns to perform computations to
dissect a concrete data structure and present it in a different form, known as a view
of the underlying structure.

As a simple example, active patterns can be used to sanitize the strange total
ordering function compare that F# inherited from OCaml by viewing the int
result as the sum type that it really represents:

> let ((LesslEqual(Greater1) = function
I c when C < O - > Less
I c when c>O - > Greater
I - - > Equal;;

val (ILesslEquallGreater)) :
int - > Choicecunit, unit, unit>

Pattern matches over int values can now use the active patterns Less, Equal
and Greater. Moreover, the pattern matcher is now aware that these three patterns
form a complete set of alternatives.

A more useful example of active patterns is the dissecting of object oriented data
structures carried over from the .NET world. The use of active patterns to simplify
the dissection of XML trees is described in chapter 10.

1.4.3 Equality

The F# programming language includes a notion of structural equality that auto-
matically traverses values of compound types such as tuples, records, variant types,
lists and arrays as well as handling primitive types. The equality operator = calls the
Equals method of the .NET object, allowing the equality operation to be overridden
for specific types where applicable.

> 3 - 1 = 2 . . , I

val it : boo1 = true

For example, the following checks that 3 - 1 = 2:

The following tests the contents of two pairs for equality:

INTRODUCING F# 25

> (2, 3) = (3, 4) ;;
val it : bool = false

In some cases, the built-in structural equality is not the appropriate notion of
equality. For example, the set data structure (described in detail in chapter 3) is
represented internally as a balanced binary tree. However, some sets have degenerate
representations, e.g. they may be balanced differently but the contents are the same.
So structural equality is not the correct notion of equality for a set. Consequently,
the Set module overrides the default Equals member to give the = operator an
appropriate notion of set equality, where sets are compared by the elements they
contain regardless of how they happen to be balanced.

Occasionally, the ability to test if two values refer to identical representations
(e.g. the same memory location) may be useful. This is known as reference equality
in the context of .NET and is provided by the built-in = = operator.

For example, pairs defined in different places will reside in different memory
locations. So, in the following example, the pair a is referentially equal to itself but
a and b are logically but not referentially equal:

let a = 1, 2;;
val a : int * int
> let b = 1, 2;;
val b : int * int
> a ==

val it : bool = true
stdin(26,l): warning: FS0062: This construct is for
compatibility with OCaml. The use of the physical
equality operator ‘ = = I is not recommended except in
cross-compiled code. You probably want to use generic
structural equality I = ’ . Disable this warning using
--no-warn 632 or #nowarn “62”

I ,

This warning is designed for programmers used to languages where == denotes
ordinary equality. Safe in the knowledge that == denotes referential equality in F#,
we can disable this warning before using it:

a = b;;

#nowarn “62 , I - .
a == b;;

val it : bool = true

val it : bool = false

Referential equality may be considered a probabilistic alternative to logical equal-
ity. If two values are referentially equal then they must also be logically equal,
otherwise they may or may not be logically equal. The notion of referential equality
can be used to implement productive optimizations by avoiding unnecessary copying
and is discussed in chapter 8.

26 INTRODUCTION

1.4.4 Sequence expressions

The F# programming language provides an elegant syntax called sequence expres-
sions for generating lists, arrays and Seq'. A contiguous sequence of integers can
be specified using the syntax:

seq Cfirst . . last}

For example, the the integers i E { 1 . . . 5 } may be created using:

> seq {I . . s};;
val it : seq<int> = seq [I; 2 ; 3 ; . . . I

Note that the generic sequence type is written using the syntax seq< a> by

All comprehension syntaxes can be used with different brackets to generate lists
default rather than ' a seq.

and arrays. For example:

> [1 . . 51;;
val it : int list = [l; 2; 3; 4; 51

val it : int array = [I I ; 2; 3 ; 4; 511
> [I1 . . 511;;

Non-contiguous sequences can also be created by specifying a step size using the
syntax:

seq {first . . step . . last}

For example, the integers [0 . . .9] in steps of 3 may be created using:

> seq {0 . . 3 . . g } ; ;
val it : seq<int> = seq [O ; 3; 6; . . . I

Lists, arrays and sequences can be filtered into a sequence using the syntax:

seq { for puttern in container -
eXPr 1

For example, the squares of the Some values in an option list may be filtered out
using:

> seq { f o r Some i in [Some 1; Some 3; None ; Some 21 - >

val it : seq<int> = seq [l; 9; 41
i * i};;

The pattern used for filtering can be guarded using the syntax:

seq { for pattern in container when guard -
eXPr 1

For example, extracting only results for which i < 3 in the previous example:

'Seq is discussed in detail in section 3.8

INTRODUCING F# 27

> let xs = [Some 1; Some 3; None; Some 21 in
seq {for Some i in xs when i < 3 - 5

i * i};;
val it : seq<int> = seq [I; 41

These examples all generate a data structure called Seq. This data structure is
discussed in detail in chapter 3.

Comprehensions may also be nested to produce a flat data structure. For example,
nesting loops over x and y coordinates is an easy way to obtain a sequence of grid
coordinates:

> [for x in 1 . . 3

for y in 1 . . 3 - >

x, y I ; ;
val it : (int * int) list =

11, 1; 1, 2; 1, 3; 2 , 1; 2 , 2; 2 , 3 ; 3, 1; 3 , 2 ; 3 , 31

Sequence expressions have a wide variety of uses, from random number generators
to file 10.

1.4.5 Exceptions

In many programming languages, program execution can be interrupted by the rais-
ing6 of an exception. This is a useful facility, typically used to handle problems such
as failing to open a file or an unexpected flow of execution (e.g. due to a program
being given invalid input).

Like a variant constructor in F#, the name of an exception must begin with a capital
letter and an exception may or may not carry an associated value. Before an exception
can be used, it must declared. An exception which does not carry associated data
may be declared as:

except ion Name

An exception which carries associated data of type type may be declared:

exception Name of Vpe

Exceptions are raised using the built-in raise function. For example, the fol-
lowing raises a built-in exception called Failure which carries a string:

raise (Failure "My problemll)

F# exceptions may be caught using the syntax:

t rY

with
I pattern1 - exprl

aPr

%ometimes known as throwing an exception, e.g. in the context of the C t t language.

28 INTRODUCTION

1 pattern2 - > expr2
I patterns - > exprs
I . . .
I pattern, - > expr,

where expr is evaluated and its result returned if no exception was raised. If an
exception was raised then the exception is matched against the patterns and the value
of the corresponding expression (if any) is returned instead.

For example, the following raises and catches the Failure exception and returns
the string that was carried by the exception:

> try
raise (Failure “My problem1’)

with
I Failure s - >

s;;
val it : string = “My problemu1

Note that, unlike other pattern matching constructs, patterns matching over ex-
ceptions need not account for all eventualities - any uncaught exceptions simply
continue to propagate.

For example, an exception called ZeroLength that does not carry associated
data may be declared with:

> exception ZeroLength;;
exception ZeroLength

A function to normalize a 2D vector r = (z, y) to create a unit-length 2D vector:

Catching the erroneous case of a zero-length vector, this may be written:

> let norm (x, y) =

match sqrt(x * x + y * y) with
I 0.0 - > raise ZeroLength
1 s - > x / s, Y / s;;

val norm : float * float - > float * float

Applying the norm function to a non-zero-length vector produces the correct
result to within numerical error (a subject discussed in chapter 4):

> norm (3.0, 4.0);;
val it : float * float = (0.6, 0.8)

Applying the norm function to the zero vector raises the ZeroLength exception:

> norm (0.0, 0.0);;
Exception of type ‘FSI_0159+ZeroLength’ was thrown.

IMPERATIVE PROGRAMMING 29

A “safe” version of the norm function might catch this exception and return some
reasonable result in the case of a zero-length vector:

> let safe-norm r =

norm r
try

with
I ZeroLength - >

0 . 0 , 0 .0 ; ;
val safe-norm : float * float - > float * float

of the expression norm r to be returned:

> safe-norm (3 . 0 , 4.0);;
val it : float * float = (0.6, 0.8)

Applying the saf e-norm function to a non-zero-length vector causes the result

However, applying the saf e-norm function to the zero vector causes the norm
function to raise the ZeroLength exception which is then caught within the
saf e-norm function which then returns the zero vector:

> safe-norm (0.0, 0.0);;
val it : float * float = (0.0, 0.0)

The use of exceptions to handle unusual occurrences, such as in the saf e-norm
function, is one important application of exceptions. This functionality is exploited
by many of the functions provided by the core F# library, such as those for handling
files (discussed in chapter 5). The saf e-norm function is a simple example of using
exceptions that could have been written using an if expression. However, exceptions
are much more useful in more complicated circumstances, where an exception might
propagate through several functions before being caught.

Another important application is the use of exceptions to escape computations. The
usefulness of this way of exploiting exceptions cannot be fully understood without
first understanding data structures and algorithms and, therefore, this topic will be
discussed in much more detail in chapter 3 and again, in the context of performance,
in chapter 8.

The Exit, Invalid-argument and Failure exceptions are built-in, as
well as two functions to simplify the raising of these exceptions. Specifically, the
invalid-arg and failwith functions raise the Invalid-argument and
Failure exceptions, respectively, using the given string.

F# also provides a try . . . finally . . . construct that executes a final ex-
pression whether or not an exception is raised. This can be used to ensure that state
changes are correctly undone even under exceptional circumstances.

1.5 IMPERATIVE PROGRAMMING

Just like conventional programming languages, F# supports mutable variables and
side effects: imperative programming. Record fields can be marked as mutable,

30 INTRODUCTION

in which case their value may be changed. For example, the type of a mutable,
two-dimensional vector called vec2 may be defined as:

> type vec2 = { mutable x: float; mutable y : float } ; ;
type vec2 = { mutable x : float; mutable y : float; }

A value r of this type may be defined:

> let r = { x = 1.0; y = 2.0 } ; ;
val r : vec2

The s-coordinate of the vector r may be altered in-place using an imperative style:

> r.x < - 3.0;;
val it : unit = ()

The side-effect of this expression has mutated the value of the variable r, the
%-coordinate of which is now 3 instead of 1 :

> r;;
val it : vec = {x = 3.0; y = 2.0)

A record with a single, mutable field can often be useful. This data structure,
called a reference, is already provided by the type ref. For example, the following
defines a variable named a that is a reference to the integer 2:

> let a = ref 2;;
val a : int ref = {contents = 2}

The type of a is then int ref. The value referred to by a may be obtained
using ! a:

> !a;;
val it : int = 2

The value of a may be set using : =:

> a : = 3;;
val it : unit = ()

> !a;;
val it : int = 3

In the case of references to integers, two additional functions are provided, incr
and decr, which increment and decrement references to integers, respectively:

> incr a; ;
val it : unit = ()

> !a;;
val a : int = 4

In addition to mutable data structures, the F# language provides looping constructs
for imperative programming. The while loop executes its body repeatedly while the

FUNCTIONAL PROGRAMMING 31

condition is true, returning the value of type unit upon completion. For example,
this while loop repeatedly decrements the mutable variable x, until it reaches zero:

> let x = ref 5;;
val x : int ref

while !x > 0 do
decr x;;

val it : unit = ()

5 !x;;
val it : int = 0

The for loop introduces a new loop variable explicitly, giving the initial and final
values of the loop variable. For example, this for loop runs a loop variable called i
from one to five, incrementing the mutable value x five times in total:

for i = 1 to 5 do
incr x;;

val it : unit = ()

> !x;;
val it : int = 5

Thus, while and for loops in F# are analogous to those found in most imperative
languages.

1.6 FUNCTIONAL PROGRAMMING

Unlike the imperative programming languages C, C++, C#, Java and Fortran, F#
is a functional programming language. Functional programming is a higher-level
and mathematically more elegant approach to programming that is ideally suited
to scientific computing. Indeed, most scientists do not realise that they naturally
compose programs in a functional style even if they are using an imperative language.
We shall now examine the various aspects of functional programming and their
implications in more detail.

1.6.1 Immutability

In mathematics, once a variable is defined to have a particular value, it keeps that
value indefinitely. Thus, variables in mathematics are immutable. Similarly, most
variables in F# are immutable.

In practice, the ability to choose between imperative and functional styles when
programming in F# is very productive. Many programming tasks are naturally suited
to either an imperative or a functional style. For example, portions of a program
dealing with user input, such as mouse movements and key-presses, are likely to
benefit from an imperative style where the program maintains a state and user input
may result in a change of state. In contrast, functions dealing with the manipulation

32 INTRODUCTION

of complex data structures, such as trees and graphs, are likely to benefit from being
written in a functional style, using recursive functions and immutable data, as this
greatly simplifies the task of writing such functions correctly. In both cases, functions
can refer to themselves - recursive functions. However, recursive functions are
pivotal in functional programming, where they are used to implement functionality
equivalent to the while and f o r looping constructs we have just examined.

One of the simplest differences between conventional imperative languages and
functional programming languages like F# is the ubiquitous use of immutable data
structures in functional programming. Indeed, the F# standard library provides a
wealth of efficiently-implemented immutable data structures. The use of immutable
data structures has some subtle implications and important benefits.

When a function acts upon an immutable data structure to produce a similar
immutable data structure there is no need to copy the parts of the input that are reused
in the output because the input data structure can never be changed. This ability to
refer back to old values is known as referential transparency. So functions that act
over immutable data structures typically compose an output that refers back to parts
of the input.

For example, creating a list b as an element prepended onto a list a does not alter
a:

> l e t a = [l; 2; 31 ;;
val a : i n t l i s t
> l e t b = 0::a;;
val b : i n t l i s t
> a, b ; ;
val it : i n t l i s t * i n t l i s t = (11; 2 ; 31, [O ; 1; 2; 3 1)

Note that the original list a is still [1 ; 2 ; 3 1 . Imperative programming would
either require that a is altered (losing its original value) or that a is copied. Essentially,
the former is confusing and the latter is slow.

Immutable data structures are beneficial for two main reasons:

0 Simplicity: Mathematical expressions can often be translated into efficient
functional programs much more easily than into efficient imperative programs.

0 Concurrent: Immutable data structures are inherently thread safe so they are
ideal for parallel programming.

When a programmer is introduced to the concept of functional programming for the
first time, the way to implement simple programming constructs such as loops does
not appear obvious. If the loop variable cannot be changed because it is immutable
then how can the loop proceed?

1.6.2 Recursion

Looping constructs can be converted into recursive constructs, such as recurrence
relations. For example, the factorial function is typically considered to be a product

FUNCTIONAL PROGRAMMING 33

with the special case O! = 1:
n

This may be translated into an imperative function that loops over i E { 1 . . . n} ,
altering a mutable accumulator called accu:

> let factorial n =

let accu = ref 1
for i = 1 to n do

! accu; ;
accu : = i * !accu

val factorial : int - > int

For example, 5! = 120:

> factorial 5;;
val it : int = 120

However, the factorial may be expressed equivalently as a recurrence relation:

O ! = 1
n! = n x (n - 1)!

This may be translated into an recursive function that calls itself until the base
case O! = 1 is reached:

> let rec factorial = function
I 0 - > 1
I n - > n * factorial (n - I);;

val factorial : int - 5 int

> factorial 5;;
val it : int = 120

In this case, the functional style is significantly simpler than the imperative style.
As we shall see in the remainder of this book, functional programming is often more
concise and simpler than imperative programming. This is particularly true in the
context of mathematical programs.

The remaining aspects of functional programming are concerned with passing
functions to functions and returning functions from functions.

1.6.3 Curried functions

A curried function is a function that returns a function as its result. Curried functions
are best introduced as a more flexible alternative to the conventional (non-curried)
functions provided by imperative programming languages.

Effectively, imperative languages only allow functions to accept a single value
(often a tuple) as an argument. For example, a raise-to-the-power function for

34 INTRODUCTION

integers would have to accept a single tuple as an argument which contained the two
values used by the function:

> let rec ipow-l(x, n) =

match n with

I n - > x * ipow-l(x, n - I);;
val ipow-1 : float * int - > float

I 0 - > 1.0

But, as we have seen, F# also allows:

> let rec ipow-2 n x =

match n with

I n - > x * ipow-2 (n - 1) x;;
I 0 - 5 1.0

val ipow-2 : int - > float - > float

This latter approach is actually a powerful generalization of the former, only

The difference between these two styles is subtle but important. In the latter case,
available in functional programming languages.

the type can be understood to mean:

val ipow-2 : int - > (float -z float)

i.e. this ipow-2 function accepts an exponent n and returns a function that raises
a float x to the power of n, i.e. this is a curried function.

The utility of curried functions lies in their ability to have their argumentspartially
applied.

In this case, the curried ipow-2 function can have the power n partially applied
to obtain a more specialized function for raising a float to a particular power. For
example, functions to square and cube a float may now be written very succinctly
in terms of ipow-2:

> let square = ipow-2 2;;
val square : float - > float

> square 5.0;;
val it : float = 25.0

> let cube = ipow-2 3;;
val cube : float - > float

> cube 3.0;;
val it : float = 27.0

Thus, the use of currying has allowed an expression of the form:

fun x - > ipow-l(x, 2)

to be replaced with the more succinct alternative:

ipow-2 2

FUNCTIONAL PROGRAMMING 35

This technique actually scales very well to more complicated situations with
several curried arguments being partially applied one after another. As we shall see
in the next chapter, currying is particularly useful when used in combination with
higher-order functions.

1.6.4 Higher-order functions

Conventional languages vehemently separate functions from data. In contrast, F#
allows the seamless treatment of functions as data. Specifically, F# allows functions
to be stored as values in data structures, passed as arguments to other functions and
returned as the results of expressions, including the return-values of functions.

A higher-orderfunction is a function that accepts another function as an argument.
As we shall now demonstrate, this ability can be of direct relevance to scientific
applications.

Many numerical algorithms are most obviously expressed as one function pa-
rameterized over another function. For example, consider a function called d that
calculates a numerical approximation to the derivative of a given one-argument func-
tion. The function d accepts a function f : R + EX and a value x and returns a
function to compute an approximation to the derivative % given by:

where d : (R + R) + (R + R).

f as an argument7:

> let d (f : float - > float) x =

This is easily written in F# as the higher-order function d that accepts the function

let dx = sqrt epsilon-float
(f (X + dx) - f (X - dx)) / (2.0 * dx);;

val d : (float - > float) - > float - > float

For example, consider the function f (z) = z3 - x - 1:

> let f x = x * * 3.0 - x - 1.0;;
val f : float - > float

The higher-order function d can be used to approximate % = 11:
Iz=2

d f 2.0;;
val it : float = 11.0

More importantly, as d is a curried function, we can use d to create derivative
functions. For example, the derivative f ' (z) = 2 can be obtained by partially
applying the curried higher-order function d to f :

'The built-in value epsilon-f loat is the smallest floating-point number that, when added to I , does
not give 1. The square root of this value can be shown to give optimal properties when used in this way.

36 INTRODUCTION

> let f’ = d f ; ;
val f f : (float - > float)

The function f’ can now be used to calculate a numerical approximation to the
derivative o f f for any 5. For example, f ’ (2) = 11:

> f’ 2.0;;
val it : float = 11.0

Higher-order functions are invaluable for representing many operators found in

Now that the foundations of F# have been introduced, the next chapter describes
mathematics, science and engineering.

how these building blocks can be structured into working programs.

CHAPTER 2

PROGRAM STRUCTURE

In this chapter, we introduce some programming paradigms designed to improve pro-
gram structure. As the topics addressed by this chapter are vast, we shall provide only
overviews and then references to literature containing more thorough descriptions and
evaluations of the relative merits of the various approaches.

Structured programming is all about managing complexity. Modern computational
approaches in all areas of science are intrinsically complicated. Consequently, the
efficient structuring of programs is vitally important if this complexity is to be
managed in order to produce robust, working programs.

Historically, many different approaches have been used to facilitate the structuring
ofprograms. The simplest approach involves splitting the source code of the program
between several different files, known as compilation units. A marginally more
sophisticated approach involves the creation of namespaces, allowing variable and
function names to be categorised into a hierarchy. More recently, an approach known
as object-oriented (00) programming has become widespread. As we shall see, the
F# language supports all of these approaches as well as others. Consequently, F#
programmers are encouraged to learn the relative advantages and disadvantages of
each approach in order that they may make educated decisions regarding the design
of new programs.

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

37

38 PROGRAM STRUCTURE

Structured programming is not only important in the context of large, compli-
cated programs. In the case of simple programs, understanding the concepts behind
structured programming can be instrumental in making efficient use of well-designed
libraries.

2.1 NESTING

Function and variable definitions can be structured hierarchically within an F# pro-
gram, allowing some definitions to be globally visible, others to be defined separately
in distinct portions of the hierarchy, others to be visible only within a single branch
of the hierarchy and others to be refined, specialising them within the hierarchy.

Compared to writing a program as a flat list of function and variable definitions,
structuring a program into a hierarchy of definitions allows the number of dependen-
cies within the program to be managed as the size and complexity of the programs
grows. This is achieved most simply by nesting definitions. Thus, nesting is the
simplest approach to the structuring of programss.

For example, the ipow3 function defined in the previous chapter contains a nested
definition of a function sqr:

> let ipow3 x =

l e t sqr x = x * x
x * sqr x;;

va l ipow3 : i n t - > i n t

The nested function sqr is only “visible” within the remainder of the definition
of ipow3 and cannot be used outside this function. This capability is particularly
useful when part of a function is best factored out into an auxiliary function that
has no meaning or use outside its parent function. Nesting an auxiliary function
can improve clarity without polluting the external namespace, e.g. with a definition
ipow3-aux.

Nesting can be more productively exploited when combined with the factoring of
subexpressions, functions and higher-order functions.

2.2 FACTORING

The concept of program factoring is best introduced in relation to the conventional
factoring of mathematical expressions. When creating a complicated mathematical
derivation, the ability to factor subexpressions, typically by introducing a substitution,
is a productive way to manage the incidental complexity of the problem.

8Remarkably, many other languages, including C and C++, do not allow nesting of function and variable.
definitions.

FACTORING 39

2.2.1 Factoring out common subexpressions

For example, the following function definition contains several duplicates of the
subexpression z - 1:

f (z) = (z - 1 - (z - 1) (. - 1) y - I

By factoring out a subexpression a (z) , this expression can be simplified:

2 a f (u) = (a, - a)

where a(z) = z - 1.
The factoring of subexpressions, such as z - 1, is the simplest form of factoring

available to a programmer. The F# function equivalent to the original, unfactored
expression is:

> let f x =

val f : float - > float

> f 5.0;;

(x - 1.0 - (x - 1.0) * (x - 1.0)) * * (x - 1.0);;

val it : float = 2 0 7 3 6 . 0

The F# function equivalent to the factored form is:

> let f x =

let a = x - 1.0
(a - a * a) * * a;;

val f : float - > float

> f 5.0;;
val it : float = 2 0 7 3 6 . 0

By simplifying expressions, factoring is a means to manage the complexity of
a program. The previous example only factors a subexpression but, in functional
languages such as F#, it is possible to factor out higher-order functions.

2.2.2 Factoring out higher-order functions

As we have just seen, the ability to factor out common subexpressions can be useful.
However, functions are first-class values in functional programming languages like
F# and, consequently, it is also possible to factor out common sub-functions. In fact,
this technique turns out to be an incredibly powerful approach to software engineering
that is of particular importance in the context of scientific computing.

Consider the following functions that compute the sum and the product of a
semi-inclusive range of integers [zg , XI), respectively:

> let rec sum-range x0 xl =

val sum-range : int - > int - > int
if x0 = xl then 0 else x0 + sum-range (x0 + 1) xl;;

40 PROGRAM STRUCTURE

+
fold-range f 1 9 accu

Figure 2.1
function f to a contiguous sequence of integers, in this case the sequence [l, 9).

The f old-range function can be used to accumulate the result of applying a

> let rec product-range x0 xl =

if x0 = xl then 1 else
x0 * product-range (x0 + 1) xl;;

val product-range : int - > int - > int

product of the integers [1,6):

> product-range 1 6;;
val it : int = 120

For example, the product-range function may be used to compute 5! as the

The sum-range and product-range functions are very similar. Specifically,
they both apply a function (integer add + and multiply *, respectively) to 1 before
recursively applying themselves to the smaller range [Q + 1 , q) until the range
contains no integers, i.e. 20 = 51.

This commonality can be factored out as a higher-order function f old-range:

> let rec fold-range f x0 xl accu =

if x0 = xl then accu else
f x0 (fold-range f (x0 + 1) xl accu) ; ;

val fold-range :

(int - > 'a - > 'a) - > int - > int - > 'a - 5 'a

The f old-range function accepts a function f, a range specified by two integers
xo and xl and an initial value accu. Application of the f old-range function
to mimic the sum-range or product-range functions begins with a base case
in accu (0 or 1, respectively). If zo = 21 then accu is returned as the result.
Otherwise, the f old-range function applies f to both 1 and the result ofa recursive
call with the smaller range [Z + 1, u). This process, known as a right fold because f is
applied to the rightmost integer and the accumulator first, is illustrated in figure 2.1.

FACTORING 41

The sum-range and product-range functions may then be expressed more
simply in terms of the fold-range function by supplying a base case (0 or 1,
respectively) and operator (addition or multiplication, respectively)’:

> let sum-range x0 xl = fold-range (+) x0 xl 0;;
val sum-range : int - > int - > int

val product-range : int - > int - 5 int
let product - range x0 xl = fold-range (*) x0 xl 1;;

These functions work in exactly the same way as the originals:

> product-range 1 6;;
val it : int = 120

but their commonality has been factored out into the f old-range function. Note
how succinct the definitions of the sum-range and product-range functions
have become thanks to this factoring.

functions, the f old-range function may also be used in new function definitions.
For example, the following higher-order function, given a length n and a function f,
creates the list containing the n elements (f (O) , f (l) , . . . , f(n - 1)):

> let list-init n f =

fold-range (fun h t - > f h : : t) 0 n [I ; ;
val list-init : int - > (int - > ‘a) - > ’a list

This list init function uses the fold range function with a A-function,
an accumulator containing the empty list [I a n d a range [0, n). The A-function
prepends each f h onto the accumulator t to construct the result. For example, the
1 is t-ini t function can be used to create a list of squares:

> list-init 5 (fun i - 5 i*i) ;;
val it : int list = [O; 1; 4; 9; 161

In addition to simplifying the definitions ofthe sum-range and produc t-range

The functionality of this list init function is already provided in the F#
s t . ini t function: standard library in the form of the

List.init 5 (fun i - 5 i*i);;
val it : int list = [O ; 1; 4; 9; 161

In fact, this functionality of the List. init function can be obtained more
clearly using sequence expressions and comprehensions (described in section 1.4.4):

> [for i in 0 . . 4 - >

val it : int list = [O; 1; 4; 9 ; 161

As we have seen, the nesting and factoring of functions and variables can be
used to simplify programs and, therefore, to help manage intrinsic complexity. In

i * i I ; ;

9The non-infix form of the + operator is written (+) , is. (+) a b is equivalent to a + b. Note
the spaces to avoid (*) from being interpreted as the start of a comment.

42 PROGRAM STRUCTURE

addition to these approaches to program structuring, the F# language also provides
two different constructs designed to encapsulate program segments. We shall now
examine the methodology and relative benefits of the forms of encapsulation offered
by modules and objects.

2.3 MODULES

In the F# programming language, substantial sections of related code can be produc-
tively encapsulated into modules.

We have already encountered several modules. In particular, the predefined mod-
ule:

Microsoft.FSharp.Core.0perators

encapsulates many function and type definitions initialized before a program is
executed, such as operators on the built-in int, float, boo1 and string types.
Also, the Array module encapsulates function and type definitions related to arrays,
such as functions to create arrays (e.g. Array. init) and to count the number
elements in an array (Array. length).

In general, modules are used to encapsulate related definitions, i.e. function, type,
data, module and object definitions. In addition to simply allowing related definitions
to be grouped together, the F# module system allows these groups to form hierarchies
and allows interfaces between these groups to be defined, the correct use of which is
then enforced by the compiler at compile-time. This can be used to add “safety nets”
when programming, to improve program reliability. We shall begin by examining
some of the modules available in the core F# library before describing how a program
can be structured using modules, stating the syntactic constructs required to create
modules and, finally, developing a new module.

By convention, if a module focuses on a single type definition (such as the defini-
tion of a set in the Set module) then that type is named t, e.g. Set . t.

In the interests of clarity and correctness, modules provide a well-defined interface
known as a signature. The signature of a module declares the contents of the module
which are accessible to code outside the module. The code implementing a module
is defined in the module structure.

The concepts of module signatures and structures are best introduced by example.
Consider a module called Float Range that encapsulates code for handling ranges
on the real number line, represented by a pair of float values. This module will
include:

0 A type t to represent a range.

0 A function make to construct a range from a given float pair.

0 A function mem to test a number for membership in a range.

0 Set theoretic operations union and intersection.

MODULES 43

A FloatRange module adhering to a given signature may be defined as:

> module FloatRange =

type t = { XO: float; XI: float }
let make x0 xl =

if xl >= x0 then { x0 = x0; xl = xl } else
invalid-arg ‘lFloatRange.makell

r.xO <= x && x < r.xl
let mem x r =

let order a b =
if a.xO < b.xl then b, a else a, b

let a, b = order a b
if a.xl < b.xO then [a; bl else
[make (min a.xO b.xO) (max a .xl b.xl) I

let a, b = order a b
if a.xl < b.xO then [I else
[make (max a .xO b.xO) (min a.xl b.xl) 3 ; ;

let union a b =

let inter a b =

module FloatRange : begin
type t = {XO: float;

XI: float;}

val make : float - > float - > t
val mem : float - > t - > boo1
val order : t - > t - > t * t
val union : t - > t - > t list
val inter : t - > t - > (float * float) list

end

This Float Range module encapsulated definitions relating to ranges of real-
valued numbers and may be used to create and perform operations upon values
representing such ranges. For example, a pair of ranges may be created:

> let a, b =

val a : F1oatRange.t
val b : F1oatRange.t

FloatRange.make 1.0 3.0, F1oatRange.make 2.0 5.0;;

The union and intersection of these ranges may then be calculated using the
union and inter functions provided by the FloatRange module. For example,
[l, 3) u [2 ,5) = [l, 5) :

5 FloatRange.union a b;;
val it : F1oatRange.t list = [{ x O = 1.0; xl = 5 . 0 }]

and [l, 3) n [a, 5) = [a, 3):

44 PROGRAM STRUCTURE

FloatRange.inter a b;;
val it : F1oatRange.t list = [{xO = 2 . 0 ; xl = 3 . 0 }]

The F# standard library provides many useful modules, such as the modules used
to manipulate data structures described in chapter 3. In fact, the same syntax can be
used to access objects, such as the .NET standard library.

Modules can be extended by simply creating a new module with the same name.
As the two namespaces are indistinguishable, F# will look in all definitions of a
module with a given name starting with the most recent definition.

2.4 OBJECTS

The .NET platform is fundamentally an object oriented programming environment.
Related definitions are encapsulated in classes of objects under .NET. The F# pro-
gramming language actually compiles all of the constructs we have seen (e.g. records,
variants and modules) into .NET objects. This can be leveraged by augmenting these
F# definitions with object-related definitions. Object oriented programming is par-
ticularly important when interoperating with .NET libraries, which will be discussed
in chapter 9.

2.4.1 Augmentations

Properties and members are written using the syntax:

member object. member args = . . .

Record and variant types may be augmented with member functions using the
type . . . with . . . syntax. For example, a record representing a 2D vector may
be supplemented with a member to compute the vector’s length:

> type vec2 = { x: float; y: float } with
member r.Length = sqrt(r.x * r.x + r.y * r.y);;

Note that the method name r . Length binds the current object to r in the body

The length of a value of type vec2 may then be computed using the object oriented
of the method definition.

syntax:

> {x = 3.0; y = 4.0j.Length;;
val it : float = 5.0

The member Length, which accepts no arguments, is called aproperty.

2.4.1.1 Getters and Setters Properties can provide both get and set func-
tions. This capability can be used to good effect in this case by allowing the length
of a vector to be set:

> type vec2 = {mutable x: float; mutable y: float} with

OBJECTS 45

member r.Length
with get () =

and set len =

sqrt(r.x * r.x + r.y * r.y)

let s = len / r.Length
r.x < - s * r.x;
r.y < - s * r.y;;

Note that the fields of the record have been marked mutable so that they can be

For example, setting the length of a vector to one scales the vector to unit length:

let r = {x = 3.0; y = 4.0);;

set.

val r : vec2

> r.Length < - 1.0;;
val it : unit = ()

> r;;
val it : vec2 = {x=O.6; y=O.8}

As this example has shown, significant functionality can be hidden or abstracted
away using contmcts like getters and setters. This ability to hide complexity is vital
when developing complicated programs. The form of abstraction offered by getters
and setters is most useful in the context of GUI programming, where it can be used
to provide an editable interface to a GUI that hides the internal representation and
communication required to reflect changes in a GUI.

2.4.1.2 lndexing Classes, records and variants can also provide an ~t em prop-
erty to allow values to be indexed. For example, we may wish to index the vec2
type by an integer 0 or 1:

> type vec2 = {mutable x: float; mutable y: float} with
member r.Item
with get(d) =

match d with
I o - > r.x
1 1 - > r.y
I - - > invalid-arg 11vec2.get9T

match d with
I o - > r.x < - v
I 1 - > r.y < - v
I - - > invalid-arg 11vec2.set11;;

and set d v =

For example, setting the x-coordinate of r to 3:

let r = {x=4.0; y=4.0};;
val r : vec2

46 PROGRAM STRUCTURE

> r.[O] c- 3.0;;
val it : unit = ()

> r;;
val it : vec2 = {x=3.0; y=4.0}

The vec2 type can now act as an ordinary container, like an array, but the
dimensionality is constrained to be 2. Moreover, this constraint is checked by
F#’s static type system. If we had a similar vec3 type then vectors of different
dimensionalities will be considered incompatible by the F# type system and any
errors confusing vectors of the two different types will be caught at compile time.

Leveraging the static type system in this way helps to catch bugs and improve
program reliability and reduce development time. There are many ways that F#’s
type system can be exploited and some more interesting methods will be described
later in this book.

2.4.1.3 Operator Overloading In the interests of brevity and clarity, many
operators are overloaded in F#. For example, the + and * operators can be used to
add numbers of several different types, including int and float. These overloaded
operators can be extended to work on user defined types by augmenting the type with
static member functions.

Static member functions are member functions that are not associated with any
particular object and are defined using the syntax:

static member member args = . . .

For example, our vec2 type may be supplemented with a definition of a static
member to provide an overload of the built-in + operator for this type:

> type vec2 = { x: float; y: float } with
static member (+) (a, b) =

{x = a.x + b.x; y = a.y + b.y};;

The + operator can then be used to add vectors of the type vec2:

> {x = 2.0; y = 3 . 0 } + {x = 3.0; y = 4.0);;
val it : vec2 = {x = 5 . 0 ; y = 7 . 0)

Many of the built-in operators can be overloaded. See the F# manual for specific
details.

2.4.2 Classes

In conventional object-oriented programming languages, the vec2 type would have
been defined as an ordinary class. There are two different ways to define ordinary
classes in F#.

2.4.2.1 Explicit constructors The following definition of the vec2 class uses
the conventional style with private variables x- and y-, members x and y that expose

OBJECTS 47

their values publically, two overloaded constructors and a Length property that uses
the public members rather than the private variables:

> type vec2 =

val private x- : float
val private y- : float

new(x) =

new(x, y) =

member r.x = r.x-
member r.y = r.y-

member r.Length =

{x- = x; y- = o . o }

{x- = x; Y- = Y}

sqrt(r.x * r.x + r.y * r.y) ;;

Note the verbosity of this approach compared to the augmented record definition
(section 2.4.1).

This two overloaded constructors are defined using the new keyword. The first
constructs a vec2 assuming the default y = 0. The second constructs a vec2 from
both x and y coordinates.

The public members x and y facilitate abstraction and by using these, rather than
the internal private variables x- and y- directly, the Length property will continue
to work if the internal representation is changed. For example, the internal variables
x- and y- might be altered to represent the vector is polar coordinates, in which
case the public members x and y will be updated to continue to present the vector in
Cartesian coordinates and the Length property will continue to function correctly.
This might be useful if performance is limited by operations that are faster in the
polar representation.

In F#, the new keyword is not required when constructing an object. For example,
the following creates a vec2 using the second constructor and calculates its length
using the Length property:

> vec2(3.0, 4.0) .Length;;
val it : float = 5.0

The F# programming language also provides a more concise and functional ap-
proach to object definitions when there is a single implicit constructor.

2-4.2.2 lmplicit Constructor Many classes present only one constructor that
is used to create all objects of the class. In F#, a shorthand notation exists that allows
an implicit constructor to be defined from a more idiomatic F# definition of the class
using let bindings. The vec2 example may be written with the arguments of the
constructor in the first line of the type definition:

type vec2(x : float, y : float) =

member r.x = x

48 PROGRAM STRUCTURE

member r.y = y

member r.Length =

sqrt(r.x * r.x + r.y * r.y);;

This shorter definition works in exactly the same way as the previous one except
that it provides only one constructor:

z vec2 (3 . 0 , 4.0) .Length; ;
val it : float = 5.0

This object-oriented style of programming is useful when dealing with the interface
between F# and other .NET languages. Object oriented programming will be used
later in this book for exactly this purpose, particularly when dealing with DirectX
and Windows Forms GUI programming in chapter 7 and .NET interoperability in
chapters 9 and 1 1.

2.4.2.3 Run-time type testing The F# programming language inherits the
use of run-time type information from the underlying .NET platform. This allows
interfaces to be dynamically typed and allows the value of a type to be determined
at run time. Testing of run-time types is virtually non-existent in self-contained
idiomatic F# code but this feature can be very important in the context of interfacing
to other .NET languages and libraries. In particular, run-time type testing is used in
F# programs to catch general .NET exceptions.

In F#, run-time type tests appear as a special pattern matching construct : ? written
in the form:

match object with
1 : ? class - > . . .

In this case, it is often useful to extract the matched value using a named subpattern
(this technique was described in section 1.4.2.2):

match object with
I : ? clussas x - > f x

The ability to match values of a particular type is important when handling ex-
ceptions generated by other .NET programs or libraries. This technique is used in
chapter 7 to handle exceptions generated by the DirectX library.

2.4.2.4 Boxing Excessive use of objects is a serious impediment to good per-
formance. Consequently, the .NET platform provides several primitive types that
are not represented by objects, such as int and float. In some cases, it can be
necessary to force a value of a primitive type into an object oriented representation
where its class is derived from the univeral obj class. In F#, this functionality is
provided by the box function. For example, boxing an int:

> box 12; ;
val it : obj = 12

FUNCTIONAL DESIGN PATTERNS 49

The ability to represent any value as a type derived from obj is essentially
dynamic typing. The use of dynamic typing has many disadvantages, most notably
performance degredation and unreliability due to the lack of static checking by
the compiler. Consequently, use of dynamic typing should be minimized, limited
only to cases where existing interfaces require it to be used. This functionality
is discussed later in the context of the DirectX bindings (chapter 7) and the .NET
metaprogramming facilities (chapter 9).

2.5 FUNCTIONAL DESIGN PATTERNS

Like all programming languages, programs written in F# often contain idiomatic
approaches to solving certain types of problem or expressing particular functionality.
Many books have been written on design patterns in imperative procedural or object
oriented languages but there is little information about design patterns in functional
programming and nothing specifically on F#.

This section describes some common styles adopted by F# programmers that will
be used in the remainder of this book. The clarity and elegance of these approaches
makes them worth learning in their own right.

2.5.1 Combinators

The ability to handle functions as values opens up a whole new way of programming.
When making extensive use of functional values, the ability to compose these values
in different ways can be very useful.

Higher-order functions and currying are often combined to maximize the utility of
function composition. Higher-order functions that work by composing applications
of other functions (including their argument functions) are sometimes referred to as
combinators [131. Such functions can be very useful when designed appropriately.

The practical benefits of combinators are most easily elucidated by example. In
fact, we have already seen some combinators such as the derivative function d (from
section 1.6.4).

The F# language provides three useful combinators that are written as operators:

0 f i < g composes the functions f and g (written f o g in mathematics) such
that (f < < g) x is equivalent to f (g x) .

0 f > g is a reverse function composition, such that (f > > g) x is equiv-
alent to g (f x) .

0 x I > f is function application written in reverse, equivalent to f x.

These combinators will be used extensively in the remainder of this book, particularly
the I > combinator.

A surprising amount can be accomplished using combinators. A simple combi-
nator that applies a function to its argument twice may be written:

50 PROGRAM STRUCTURE

> l e t app ly -2 f =

f < < f ; ;
val app ly -2 : (’ a - > ’ a) - > (’ a - > ’a)

For example, doubling the number five twice is equivalent to multiplication by
four:

> apply-2 ((*) 2) 5 ; ;
val i t : i n t = 2 0

A combinator that applies a function four times may be written elegantly in terms
of the existing app ly -2 combinator:

> l e t apply-4 f =

val apply-4 : (’ a - > ’ a) - 5 (‘ a - > ‘ a)
app ly -2 app ly -2 f ; ;

As a generalization of this, a combinator can be used to nest many applications of
the same function:

> l e t rec nest n f x =

match n w i t h

1 n - > nes t (n - 1) f (f X I ; ;
I O - > X

val nes t : i n t - > (‘ a - > ‘ a) - > ’a - > ’ a

Forexample,nest 3 f xg ives f (f (f x)) :

> nes t 3 ((*) 2) 1;;
val i t : i n t = 8

Recursion itself can be factored out into a combinator by rewriting the target
function as a higher-order function that accepts the function that it is to call, rather
than as a recursive function. The following y combinator can be used to reconstruct
a one-argument recursive function:

> l e t rec y f x =

val y : ((’a - > ’b) - > ’a - > ‘b) - 5 ’a - 5 ‘b
f (y f) x ; ;

Note that the argument f to the y combinator is itself a combinator.
For example, the factorial function may be written in a non-recursive form, ac-

cepting another f a c t o r i a l function to call recursively as its first argument:

> l e t f a c t o r i a l f a c t o r i a l = func t ion

I n - > n * f a c t o r i a l (n - 1) ;;
I O - > l

va l f a c t o r i a l : (i n t - > i n t) - > i n t - 5 i n t

This process of rewriting a recursive function as a combinator to avoid explicit
recursion is known as “untying the recursive knot” and makes it possible to stitch

FUNCTIONAL DESIGN PATTERNS 51

functions together, injecting new functionality between function calls. For example,
this will be used to implement recursive memoization in section 6.1.4.2.

Applying the y combinator yields the usual factorial function:

> y factorial 5;;
val it : int = 120

Composing functions using combinators makes it easy to inject new code in
between function calls. For example, a function to print the argument can be injected
before each invocation of the factorial function:

> y (factorial > > fun f n - > printf l1%d\nl1 n; f n) 5;;
5
4
3

1
0
val it : int = 120

This style of programming is useful is many circumstances but is particularly
importance in the context of asynchronous programming, where entire computations
are formed by composing fragments of computation together using exactly this tech-
nique. This is so useful that the F# language recently introduced a customized syntax
for asynchronous programming known as asynchronous worl$ows.

The task of measuring the time taken to apply a function to its argument can be
productively factored into a time combinator. The .NET Stopwatch class can be
used to measure elapsed real time with roughly millisecond (0.001s) accuracy. The
following time combinator accepts a function f and its argument x and times how
long it takes to apply f to x, printing the time taken and returning the result f x:

> let time f x =

let timer = new System.Diagnostics.Stopwatch0
timer. Start ()

try f x finally
printf IITook %dms\nrl timer.ElapsedMil1iseconds;;

val time : ('a - 5 'b) - > 'a - > 'b

Note the use o f t ry . .

For example, the time taken to construct a 106-element list:

finally to ensure that the time taken is printed even
if the function application f x raises an exception.

> time (fun () - 5 [1 . . l O O O O O O]) 0;;
Took 446ms

Computations can also be timed from F# interactive sessions by executing the
#time statement:

> #time;;
- - > Timing now on

52 PROGRAM STRUCTURE

> [1 . . 1 0 0 0 0 0 0 1 ;;

Real: 0 0 : 0 0 : 0 0 . 6 1 9 , CPU: 0 0 : 0 0 : 0 0 . 6 4 0 , GC gen0: 6,
genl: 2, gen2: 1

> #time;;
- - > Timing now of€

This has the advantage that it prints both elapsed real time and CPU time (which
will be discussed in section 8) as well as the number of different generations of
garbage collection that were invoked (quantifying how much the computation stressed
the garbage collector). However, our time combinator has the advantage that it
can be placed inside computations uninvasively in order to time certain parts of a
computation.

Our time combinator will be used extensively throughout this book to compare
the performance of different functions. In particular, chapter 8 elaborates on the time
combinator in the context of performance measurement, profiling and optimization.

2.5.2 Maps and folds

Section 2.2 introduced the concept of a fold. This is a higher-order function that
applies a given function argument to a set of elements, accumulating a result. In the
previous example, the fold acted upon an implicit range of integers but folds are most
often associated with container types (such as lists and arrays), a subject covered in
detail in chapter 3.

Folds over data structures are often categorized into left and right folds, referring
to starting with the left-most (first) or starting with the right-most (last) element,
respectively.

The addition operator can be folded over a container in order to sum the int
elements of a container xs. With a left fold this is written in the form:

fold - left (+) 0 xs

With a right fold this is written in the form:

fold-right (+) xs 0

Note the position of the initial accumulator 0, on the left for a left-fold and on the
right for a right-fold.

For example, if xs is the sequence (1,2,3) then the left-fold computes ((0 + 1) +
2) + 3 whereas a right-fold computes 1 + (2 + (3 + 0)).

Maps are a similar concept. These higher-order functions apply a given function
argument f to a set of elements zi to create a new set of elements yi = f(xi).
Container types (e.g. lists and arrays) typically provide a map function.

Maps and folds are generic algorithms used in a wide variety of applications. The
data structures in the F# standard library provide maps and folds where appropriate,
as we shall see in chapter 3.

F# DEVELOPMENT 53

Figure 2.2
2005.

Developing an application written entirely in F# using Microsoft Visual Studio

2.6 F# DEVELOPMENT

The simplest way to develop software in F# is to use Microsoft’s own Visual Studio
and then install Microsoft’s F# distribution. Visual Studio is an integrated devel-
opment environment that makes it easy to develop .NET applications in various
languages including F#. Moreover, Visual Studio allows you to build applications
that are written in several different programming languages. Figure 2.2 shows one
of the applications from The F#.NET Journal being developed using Visual Studio
2005.

In Visual Studio terminology, an application or program is a solution and a solution
may be composed of severalprojects. Projects may be written in different languages
and refer to each other. Both individual projects and complete solutions can be built
to create executables that can then be run.

54 PROGRAM STRUCTURE

type vec2 = { mutable x : f l o a t ; mutable y: f l o a t } with
member r . I t e m

with g e t = f u n c t i o n
I 0 -> r . x
I 1 -> r . y
I - -> inval id-arg f fvec2 .ge t f f

I 0 -> r . x <- v
I 1 -> r . y <- v
I - -> inval id-arg ffvec2 . s e t f f

and s e t i v = match i with

end; ;

lvai r : vec21
r . [O] <- 3 . ; ;

Figure 2.3 Visual Studio provides graphical throwback of the type information inferred by
the F# compiler: hovering the mouse over the definition of a variable r in the source code
brings up a tooltip giving the inferred type of r.

2.6.1 Creating an F# project

To create a new project in Visual Studio click File D New D Project. From the New
Project window, select F# Projects from the Project type tree, give the project a
name and click OK.

To add an F# source code file to the new project, right-click on the project’s name
in the Solution Explorer pane and select Add D New Item. From the Add New
Item window, select F# Source File, give the file a name and click OK. The new F#
source code file can then be edited.

An important advantage of Visual Studio is the graphical throwback of inferred
type information. For example, figure 2.3 shows the inferred type vec2 of the
variable r in some F# source code. As type information is not explicit in F#, this
functionality is extremely useful when developing F# programs.

Once written, F# source code can be executed in two different ways: a solution or
project may be built to create an executable or the code may be entered into a running
F# interactive mode.

2.6.2 Building executables

A Visual Studio solution or project may be built to create an executable. To build
an executable press CTRL+SHIFT+B. More often, solutions are built and executed
immediately. This can be done in one step by pressing F5 to build and run a solution
in debug mode or CTRL+F5 to build and run a solution in release mode. As the

F# DEVELOPMENT 55

Figure 2.4 A project’s properties page allows the compiler to be controlled.

names imply, debug mode can provide more information when a program goes wrong
as opposed to release mode which executes more quickly.

Various options can be adjusted in the Project Properties window (see figure 2.4),
to control the way an executable is built:

0 If an executable is to be distributed to third parties (e.g. when writing a
commercial application), the project should be compiled with the option
- -standalone in order to compile in the F# libraries that are not included
in .NET itself.

0 Graphical programs do not want the console window that appears by default.
This can be removed either by changing the project type from EXE to WINEXE
or by compiling with the option --target -winexe.

0 Libraries used by a project may be described on the compile line using the
syntax - r name. dl 1 or in the source code using the #r pragma.

These options are set in the Project Properties window.

is worth mentioning the subject of debugging.
Although a detailed tutorial on Visual Studio is beyond the scope of this book it

56 PROGRAM STRUCTURE

2.6.3 Debugging

The static typing provided by the F# language goes a long way in eliminating errors in
programs before they are run. However, there are still cases when a program will fail
during its execution. In such cases, a detailed report of the problem can be essential
in debugging the application.

Visual Studio provides a great deal of debugging support to help the programmer.
In the case of F#, an application that fails (typically due to the raising of an exception
that is never caught and handled) gives immediate throwback on where the exception
came from and what it contained. Breakpoints can be set the in source code, to stop
execution when a particular point is reached. The values of variables may then be
inspected.

One of the most useful capabilities of the Visual Studio debugger is the ability to
pause a program when an exception is thrown even if it is subsequently caught. This
functionality is enabled through the Debug D Exceptions ... dialog box.

In addition to building executable applications, F# provides a powerful interactive
mode that allows code to be executed without being built beforehand.

2.6.4 Interactive mode

In addition to conventional project building, F# provides an interactive way to execute
code, called the F# interactive mode. This mode is useful for trying examples when
first learning the F# programming language and for testing snippets of code from
programs during development.

Scientists and engineers typically use two separate kinds of programming lan-
guage:

1. Fast compiled languages like C and Fortran.

2. Expressive high-level interactive languages with integrated visualization like
Matlab and Mathematica.

F# is the first language to combine the best of both worlds with the F# interactive
mode.

Before the F# interactive mode can be used within Visual Studio, it must be
selected in the Add-in Manager (available from the menu Tools D Add-in Manager,
see figure 2.5).

The F# interactive mode can be started by pressing ALT-tENTER in the editor
window. Lines of code from the editor can be evaluated in an interactive mode
by pressing ALT+’. Selected blocks of code can be evaluated in an interactive
mode by pressing ALT+ENTER. When typing directly into an F# interactive session,
evaluation is forced by ending the last line with ; ; .

2.6.4.7 Double semicolons The examples given so far in this book have been
written in the style of the F# interactive mode and, in particular, have ended with ; ;
to force evaluation. These double semicolons are not necessary in compiled code
(i.e. in .fs and .fsx files).

F# DEVELOPMENT 57

Figure 2.5 The Add-in Manager is used to provide the F# interactive mode.

For example, the two function definitions can be interpreted simultaneously in an
interactive session, with only a single ; ; at the end:

> let fl x =

let f2 x =

if x < 3 then print-endline “Less than three”

if x < 3 then l1Lessl1 else IlGreaterll;;
val fl : int - > unit
val f2 : int - > string

When compiled, programs can be written entirely without ; ; .

2.6.4.2 Loading F# modules Module definitions from compilation units (the
.fs and .fsx files) can be loaded into a running F# interactive session using the #use
and #load directives.

The #use directive interprets the contents of a compilation unit directly, defining
everything from a module directly into the running interactive session. For example,
assuming a file “foo.fs” contains a definition for x, invoking the #use directive:

#use I1foo.fs1l;;

causes the definition of x to be available from the interactive session.
The #load directive interprets the contents of a compilation unit as a module.

For example:

> #load I1foo.fs1l;;

58 PROGRAM STRUCTURE

makes the definition of x available as Foo . x.

2.6.4.3 Prefty printing The way an F# interactive session prints values of
different types can be altered by registering new functions to convert values into
strings with the Addprinter member function of the f s i object.

The following variant type might be used to represent lengths in different units,
starting with one type constructor to represent lengths in meters:

> type length = Meters of float;;

Values of this type may be pretty printed with:

> fsi .Addprinter (fun (Meters x) - > sprintf I1%fmt8 x) ; ;

For example:

> Meters 5 . 4 ; ;
val it : length = 5.400000m

The ability to control the printing of values by an F# interactive session will be
used in the remainder of this book. In particular, chapter 7 will use this approach is
to spawn windows visualizing values that represent graphics.

2.6.5 C# interoperability

One of the great benefits of the common language run-time that underpins .NET is the
ability to interoperate with dynamically linked libraries (DLLs) written in other .NET
languages. In particular, this opens up the wealth of tools available for mainstream
languages like C# including the GUI Windows Forms designers integrated into Visual
Studio and the automatic compilation of web services into C# functions. A specific
example of this will be discussed in chapter 10 in the context of web services.

An F# program that requires a C# library is easily created using Visual Studio:

1. Create a C# project inside a new Solution directory (see figure 2.6).

2. Create an F# project in the same solution (see figure 2.7).

3. Set the startup project of the solution to the F# program rather than the DLL
(see figure 2.8) by right clicking on the solution in the “Solution Explorer”
window and selecting Properties from the menu.

4. Build the C# DLL (right click on it in Solution Explorer and select “Rebuild”)
and reference it from the F# program.

The name.dl1 DLL can be referenced from the source code of an F# program with:

#r ttname.dllT8

In this case, the directory of the DLL must be added to the search path before the
DLL is referenced.

F# DEVELOPMENT 59

Figure 2.6
solution called Interop.

Creating a new C# class library project called ClassLibraryl inside a new

Figure 2.7 Creating a new F# project called Pro j ect 1 also inside the Interop solution.

60 PROGRAM STRUCTURE

Figure 2.8 Setting the startup project of the Interop solution to the F# project Pro j ect 1
rather than the C# project ClassLibraryl as a DLL cannot be used to start an application.

For example, the following adds a member function f oo () to the C# DLL:

using System;
using System.Collections.Generic;
using System.Text;

namespace ClassLibraryl

public class Class1
I

{
public static void foo0

Console.WriteLine (l l f o o l l) ;
{

1
1

1
The following F# source code adds the default location of the debug build of the

C# DLL to the search path, references the DLL and then calls the f oo () function:

#light
System.Environment.CurrentDirectory < -

I @ I 1 . . \ClassLibraryl\bin\Debug1I
SOURCE DIRECTORY

F# DEVELOPMENT 61

#r IIClassLibraryl . dll"
ClassLibraryl.Classl.foo0

The syntax @I1 . . . is used to quote a string without having to escape it manually.
This can be compiled or run interactively. When evaluated in an interactive

solution, this F# code produces the following output:

> #light; ;

> System.Environment.CurrentDirectory < -

val it : unit = ()

> #I @ I 1 . . \ClassLibraryl\bin\Debugll ; ;
- - > Added 'C:\Visual Studio 2005\Projects\Interop\
Projectl\..\ClassLibraryl\bin\Debug' to library include
path

> #r llClassLibraryl. dll" ; ;
- - > Referenced 'C:\Visual Studio 2005\Projects\Interop\
Projectl\..\ClassLibraryl\bin\Debug\ClassLibraryl.dll'

> ClassLibraryl.Classl.foo0;;
Binding session to 'C:\Visual Studio 2005\Projects\
Interop\Projectl\..\ClassLibraryl\bin\Debug\
ClassLibraryl.dl1' . . .
foo
val it : unit = ()

- SOURCE - DIRECTORY-;;

Note that the invocation of the C# function from F# prints "foo" as expected.
The same procedure can be used to add C# projects containing autogenerated code

from the Windows Forms designer or by adding Web References to the C# project.

This Page Intentionally Left Blank

CHAPTER 3

DATA STRUCTURES

Scientific applications are among the most computationally intensive programs in
existence. This places enormous emphasis on the efficiency of such programs. How-
ever, much time can be wasted by optimizing fundamentally inefficient algorithms
and concentrating on low-level optimizations when much more productive higher-
level optimizations remain to be exploited.

Too commonly, a given problem is shoe-horned into using arrays because more
sophisticated data structures are prohibitively complicated to implement in many
common languages. Examples of this problem, endemic in scientific computing,
are rife. For example, Finite element materials simulations, numerical differential
equation solvers, numerical integration, implicit surface tesselation and simulations
of particle or fluid dynamics based around uniformly subdivided arrays when they
should be based upon adaptively subdivided trees.

Occasionally, the poor performance of these inappropriately-optimized programs
even drives the use of alternative (often approximate) techniques. Examples of this
include the use of padding to round vector sizes up to integer-powers of two when
computing numerical Fourier transforms (Fourier series). In order to combat this
folklore-based approach to optimization, we shall introduce a more formal approach

F# for Scientists. By Jon Harrop
Copynght @ 2008 John Wiley & Sons, Inc.

63

64 DATA STRUCTURES

to quantifying the efficiency of computations. This approach is well known in
computer science as complexity theory.

The single most important choice determining the efficiency of a program are
the selection of algorithms and of data structures. Before delving into the broad
spectrum of data structures accessible from F#, we shall study the notion of algo-
rithmic complexity. This concept quantifies algorithm efficiency and, therefore, is
essential for the objective selection of algorithms and data structures based upon their
performance. Studying algorithmic complexity is the first step towards drastically
improving program performance.

3.1 ALGORITHMIC COMPLEXITY

In order to compare the efficiencies of algorithms meaningfully, the time requirements
of an algorithm must first be quantified. Although it is theoretically possible to predict
the exact time taken to perform many operations such an approach quickly becomes
intractable.

Consequently, exactness can be productively relinquished in favour of an approxi-
mate but still quantitative measure of the time taken for an algorithm to execute. This
approximation, the conventional notion of algorithmic complexity, is derived as an
upper- or lower-bound or average-case" of the amount of computation required, mea-
sured in units of some suitably-chosen primitive operations. Furthermore, asymptotic
algorithmic efficiency is derived by considering these forms in the limit of infinite
algorithmic complexity.

We shall begin by describing the notion of the primitive operations of an algorithm
before deriving a mathematical description for the asymptotic complexity of an
algorithm. Finally, we shall demonstrate the usefulness of algorithmic complexity in
the optimization of a simple function.

3.1.1 Primitive operations

In order to derive an algorithmic complexity, it is necessary to begin by identifying
some suitable primitive operations. The complexity of an algorithm is then measured
as the total number of these primitive operations it performs. In order to obtain a
complexity which reflects the time required to execute an algorithm, the primitive
operations should ideally terminate after a constant amount of time. However, this
restriction cannot be satisfied in practice (due to effectively-random interference from
cache effects etc.), so primitive operations are typically chosen which terminate in a
finite amount of time for any input, as close to a constant amount of time as possible.

For example, a first version of a function to raise a floating-point value J: to a
positive, integer power n may be implemented nayvely as:

> let rec ipow-1 x = function

"Average-case complexity is particularly useful when statistics are available on the likelihood of different
inputs.

ALGORITHMIC COMPLEXITY 65

1 0 - > 1.0
I n - > x * ipow-1 x (n - I);;

val ipow-1 : float - > int - > float

The ipow-1 function executes an algorithm described by this recurrence relation:

Consequently, this algorithm performs the floating-point multiply operation exactly
R times in order to obtain its result, i.e. zo = 1, x1 = x x 1, x2 = z x z x 1 and
so on. Thus, floating-point multiplication is a logical choice of primitive operation.
Moreover, this function multiplies finite-precision numbers and the algorithms used to
perform this operation in practice (which are almost always implemented as dedicated
hardware) always perform a,finite number of more primitive operations at the bit level,
regardless of their input. Thus, this choice of primitive operation will execute in a
finite time regardless of its input.

We shall now examine an approximate but practically very useful measure of algo-
rithmic complexity before exploiting this notion in the optimization of the ipow-1
function.

3.1.2 Complexity

The complexity of an algorithm is the number of primitive operations it performs.
For example, the complexity of the ipow-1 function is T (n) = n.

As the complexity can be a strongly dependent function of the input, the math-
ematical derivation of the complexity quickly becomes intractable for reasonably
complicated algorithms.

In practice, this is addressed in two different ways. The first approach is to derive
the tightest possible bounds of the complexity. If such bounds cannot be obtained
then the second approach is to derive bounds in the asymptotic limit of the complexity.

3.1.2.1 Asymptotic complexity An easier-to-derive and still useful indicator
of the performance of a function is its asymptotic algorithmic complexity. This gives
the asymptotic performance of the function in the limit of infinite execution time.

Three notations exist for the asymptotic algorithmic complexity of a function

66 DATA STRUCTURES

The 0 form of asymptotic complexity is more restrictive and, therefore, conveys
more information. In particular, “f(x) is O(g(x))” implies both “f(x) is R(g(x))”
and “ f (z) is O(g(x))”. The 0 notation is more commonly encountered as it repre-
sents the practically more important notion of the upper-bound of the complexity.

The formulation of the asymptotic complexity of a function leads to some simple
but powerful manipulations:

0 f(x) is O (a g (z)) , a > 0 + f (n) is O(g(x)) , i.e. constant prefactors can be
removed.

0 f (z) is O(xa + xb), a > b > 0 + f(x) is 0 (x ”) , i.e. the polynomial term
with the largest exponent dominates all other polynomial terms.

0 f(x) is O(za + b”), a > 0 , b > 0 + f (n) is O(b”), i.e. exponential terms
dominate any polynomial terms.

0 f (z) is O(a” + b”), a > b > 0 + f (n) is O(a”), i.e. the exponential term a”
with the largest mantissa a dominates all other exponential terms.

These rules can be used to simplify an asymptotic complexity.
As the complexity of the ipow-1 function is T(n) = n, the asymptotic com-

plexities are clearly O(n), R(n) and, therefore, O(n) .
The algorithm behind the ipow-1 function can be greatly improved upon by

reducing the computation by a constant proportion at a time. In this case, this can be
achieved by trying to halve n repeatedly, rather than decrementing it. The following
recurrence relation describes such an approach:

f 1 n = O

(‘‘7% x 2 1 2 n > 1 and n even

> let rec ipow-2 x = function
I 0 - > 1.0
I l - > X

I n - 5

l e t x2 = ipow-2 x (n/2)
x2 * if n m o d 2 = 0 then x2 else x * x2;;

val ipow-2 : float - > int - > float

This variant is clearly more efficient as it avoids the re-computation of previous
results, e.g. x4 is factored into (x2)’ to use two floating-point multiplications instead
of four. Quantifying exactly how much more efficient is suddenly a bit of a challenge!

We can begin by expanding the computation manually for some small n (see Table
3.1) as well as computing and plotting the exact number of integer multiplications
performed for both algorithms as a function of n (shown in figure 3.1).

ALGORITHMIC COMPLEXITY 67

Table 3.1
operations performed.

Complexity of the ipow-2 function measured as the number of multiply

t

n Computation T(n)

0 1 0
1 X 0
2 x x x 1

2
3

3 x x x 2 2
4 (4
5 x x (x">"
6 (x x x'))" 3
7 x x (XXX2)>" 4

3

n
0 20 40 60 80 100

Figure 3.1
T(n) of multiplies performed.

Complexities of the ipow-1 and ipow-2 functions in terms of the number

Lower and upper bounds of the complexity can be derived by considering the
minimum and maximum number of multiplies performed in the body of the ipow - 2
function, and the minimum and maximum depths of recursion.

The minimum number of multiplies performed in the body of a single call to the
ipow 2 function is 0 for n 5 1, and 1 for n > 1. The function recursively halves
n, giving a depth of recursion of 1 for n 5 1, and at least [log, nj for n > 1. Thus,
a lower bound of the complexity is 0 for n 5 1, and log, (n) - 1 for n > 1.

The maximum number of multiplies performed in the body of a single call to the
ipow 2 function is 2. The depth of recursion is 1 for n 5 1 and does not exceed
[log, for n > 1. Thus, an upper bound of the complexity is 0 for n 5 1, and
2(1 + log, n) for n > 1.

From these lower and upper bounds, the asymptotic complexities of the ipow-2
function are clearly n(lnn), O(ln n) and, therefore, @(inn). The logarithmic
complexity of ipow-2 (illustrated in figure 3.2) originates from the divide-and-

68 DATA STRUCTURES

Figure 3.2 Complexities of the ipow-2 function in terms of the number of multiplies
performed, showing: exact complexity T(n) (dots) and lower- and upper-bounds algorithmic
complexities log,(n) - 1 5 T(n) 5 2(1 + log, n) for n > 1 (lines).

4k
L

Z L

Figure 3.3
asymptotic algorithmic complexities of O(n) and O(ln n), respectively.

Measured performance of the ipow-1 and ipow-2 functions which have

conquer strategy, reducing the computation required by a constant factor (halving n)
at each stage rather than by a constant absolute amount (decrementing n).

The actual performance of these two versions of the ipow function can be mea-
sured (see Figure 3.3). As expected from the algorithmic complexity, we find that
the ipow-2 function is considerably faster for large n.

ARRAYS 69

o 1 2 1 3 n-4 n-3 n-2 n-1

Figure 3.4 Arrays are the simplest data structure, allowing fast, random access (reading or
writing) to the ith element Vz E (0 . . . n - l} where n is the number of elements in the array.
Elements cannot be added or removed without copying the whole array.

Asymptotic algorithmic complexity, as we have just described, should be consid-
eredjrst when trying to choose an efficient algorithm or data structure. On the basis
of this, we shall now examine some of the wide variety of data structures accessible
from F# in the context of the algorithmic complexities of operations over them.

3.2 ARRAYS

Of all the data structures, arrays will be the most familiar to the scientific programmer.
Arrays have the following properties in F#:

0 Mutable.

0 Fixedsize.

0 Fast random access and length.

0 Slow insertion, deletion, concatenation, partition and search.

More specifically, arrays are containers which allow the z* element to be extracted
in 0(1) time (illustrated in figure 3.4). This makes them ideally suited in situations
which require a container with fast random access. As the elements of arrays are
typically stored contiguously in memory, they are often the most efficient container
for iterating over the elements in order. This is the principal alluring feature which
leads to their (over!) use in numerically intensive programs. However, many other
data structures have asymptotically better performance on important operations.

3.2.1 Array literals

As we have already seen, the F# language provides a notation for describing arrays:

> let a = 111; 211

let b = 113; 4; 511
let c = [16 ; 7 ; 911;;

val a : int array
val b : int ar ray
val c : int ar ray

In F#, arrays are mutable, meaning that the elements in an array can be altered
in-place.

70 DATA STRUCTURES

3.2.2 Array indexing

The element at index i of an array b may be read using the short-hand syntax b . [i 1 :
> b. [l] ;;
val it : int = 4

Note that array indices run from (0 . . . n - l} for an array containing n elements.
Array elements may be set using the syntax used for mutable record fields, namely:

> C. [2] < - 8;;
val it : unit = ()

The contents of the array c have now been altered:

> c;;
val it : int array = [) 6 ; 7; 811

Any attempt to access an array element which is outside the bounds of the array
results in an exception being raised at run-time:

> C. [31 < - 8;;
System.IndexOut0fRangeException: Index was outside the
bounds of the array

The mutability of arrays typically leads to the use of an imperative style when
arrays are being used.

The core F# library provides several functions which act upon arrays in the Array
module. We shall examine some of these functions before looking at the more exotic
array functions offered by F#.

3.2.3 Array concatenation

The append function concatenates two arrays:

> Array.append a b;;
val it : int array = [[I; 2; 3 ; 4; 511

The append function has complexity O (n) where n is the length of the resulting

The concat function concatenates a list of arrays:
array.

> let e = Array.concat [a; b; cl ; ;
val e : int array

val it : int array = [ll; 2; 3 ; 4; 5 ; 6 ; 7 ; 8 1 1
e;;

The concat function has complexity O (n + m) where n is the length of the
resulting array and m is the length of the supplied list.

ARRAYS 71

3.2.4 Aliasing

As we discussed in section 1.6.1, values are referenced so a new variable created
from an existing array refers to the existing array. Thus the complexity of creating a
new variable which refers to an existing array is 0(1), i.e. independent ofthe number
of elements in the array. However, all alterations to the array are visible from any
variables which refer to the array. For example, the following creates a variable
called d which refers to the same array as the variable called c:

> let d = c ; ;
va l d : int a r ray = [16; 7 ; 811

i.e. they are the same array:
The effect of altering the array via either c or d can be seen from both c and d,

> d. [O] < - 17; ;
va l it : unit = ()

> C , d ; ;
va l it : int a r ray * int a r ray =

(“17; 7 ; 811 , 1117; 7; 8 1 1)

> C . [O] < - 6 ; ;
v a l it : unit = ()

> C , d ; ;
va l it : int a r r a y * int a r r a y =

(“ 6 ; 7; 811 , [(6 ; 7; 8 1 1)

The copy function returns a new array which contains the same elements as the
given array. For example, the following creates a variable d (superseding the previous
d) which is a copy of c:

> let d = Array.copy c ; ;
v a l d : int a r r a y

Altering the elements of the copied array d does not alter the elements of the
original array c:

> d. [O] < - 17; ;
va l it : unit = 0
> C , d ; ;
va l it : int a r r a y * int a r r a y =

([16; 7 ; 8 1 1 , [117; 7; 8 1 1)

Aliasing can sometimes be productively exploited in heavily imperative code.
However, aliasing is often a source of problems because the sharing of mutable data
structures quickly gets confusing. This is why F# encourages a purely functional
style of programming using only immutable but performance sometimes leads to the
use of mutable data structures because they are more difficult to use correctly but are
often faster, particularly for single-threaded use.

72 DATA STRUCTURES

Figure 3.5
(0 . . . n - 1) using the given function f.

The higher-order Array. init function creates an array ai = f (i) for i E

3.2.5 Subarrays

The sub function returns a new array which contains a copy of the range of elements
specified by a starting index and a length. For example, the following copies a
sub-array of 5 elements starting at index 2 (the third element):

Array.sub e 2 5;;
val it : int array = "3; 4; 5; 6 ; 711

In addition to these conventional array functions, F# offers some more exotic
functions. We shall now examine these functions in more detail.

3.2.6 Creation

The higher-order ini t function creates an array, filling the elements with the result of
applying the given function to the index i E (0 . . . n - 1) of each element (illustrated
in figure 3.5). For example, the following creates the array ai = i2 for i E (0 . . .3}:

> let a = Array-init 4 (fun i - > i * i);;
val a : int array

> a;;
val it : int array = " 0 ; 1; 4; 911

Several higher-order functions are provided to allow functions to be applied to the
elements of arrays in various patterns.

3.2.7 Iteration

The higher-order function iter executes a given function on each element in the
given array in turn and returns the value of type unit . The purpose of the function
passed to this higher-order function must, therefore, lie in any side-effects it incurs.
Hence, the iter function is only of use in the context of imperative, and not
functional, programming. For example, the following prints the elements of an int
array:

> Array.iter (printf II%d\n") a; ;
0
1
4
9

ARRAYS 73

Figure 3.6
applying the given function f to each element in the given array a.

The higher-order A r r a y . m a p function creates an array containing the result of

Functions like it er are sometimes referred to as aggregate operators. Several
such functions are often applied in sequence, in which case the pipe operator I > can
be used to improve clarity. For example, the above could be written equivalently as:

z a I Array.iter (printf Il%d\nI') ; ;
0
1
4
9

The iter function is probably the simplest of the higher-order functions.

3.2.8 Map

The map function applies a given function to each element in the given array, returning
an array containing each result (illustrated in figure 3.6). For example, the following
creates the array bi = a::

> let b = Array.map (fun e - 5 e * e) a;;
val b : int array

val b : int array = [l o ; 1; 16; 8111
b;;

Higher-order map functions transform data structures into other data structures of
the same kind. Higher-order functions can also be used to compute other values from
data structures, such as computing a scalar from an array.

3.2.9 Folds

The higher-order f old-lef t and f old-right functions accumulate the result
of applying their function arguments to each element in turn. The f old-lef t
function is illustrated in figure 3.7.

In the simplest case, the fold functions can be used to accumulate the sum or
product of the elements of an array by folding the addition or multiplication operators
over the elements of the array respectively, starting with a suitable base case. For
example, the sum of 3,4, and 5 can be calculated using:

74 DATA STRUCTURES

Figure 3.7 The higher-order A r r a y . f old-lef t function repeatedly applies the given
function f to the current accumulator and the current array element to produce a new
accumulator to be applied with the next array element.

> Array.fold-left (+) 0 [13; 4 ; 511;;
val it : int = 98

We have already encountered this functionality in the context of the f old-range
function developed in section 2.1. However, arrays may contain arbitrary data
of arbitrary types (polymorphism) whereas the f old-range function was only
applicable to sequences of consecutive ints.

For example, an array could be converted to a list by prepending elements using
the cons operator:

> let to-list a =

val to-list : 'a array - > 'a list
Array.fold-right (fun h t - > h :: t) a [I ;;

Applying this function to an example array produces a list with the elements of
the array:

> to-list 110; I; 4; 911;;
val it : int list = [O ; 1; 4 ; 91

This to-list function uses f old-right to cumulatively prepend to the list
t each element h of the array a in reverse order, starting with the base-case of an
empty list [1 . The result is a list containing the elements of the array. The t 0-1 is t
function is, in fact, already in the Array module:

Array.to-list [l o ; 1; 4; 911 ;;
val it : int list = [O ; 1; 4 ; 91

Although slightly more complicated than iter and map, the fold-lef t and
f old-right functions are very useful because they can produce results of any
type, including accumulated primitive types as well as different data structures.

LISTS 75

3.2.10 Sorting

The contents of an array may be sorted in-place using the higher-orderarray . s o r t
function, into an order specified by a given total order function (the predefined
compare function, in this case):

> l e t a = [I I ; 5 ; 3 ; 4 ; 7 ; 911;;
val a : i n t array
> Array . so r t compare a ; ;
val i t : u n i t = ()

> a ; ;
val i t : i n t array = [[I; 3 ; 4; 5; 7; 911

In addition to these higher-order functions, arrays can be used in pattern matches.

3.2.1 1 Pattern matching

When pattern matching, the contents of arrays can be used in patterns. For example,
the vector cross product a x b could be written:

l e t cross (a : f l o a t array) b =

match a , b w i t h
I “xl; y l ; 2111, “x2; y2; 7-21] - >

[I y l * 22 - zl * y2;

xl * y2 - yl * x211
21 * x2 - xl * 22;

I - - 9 invalid-arg “cross”; ;
val cross : f l o a t array - > f l o a t array - > f l o a t array

applies to f l o a t elements rather than the default i n t elements.

forming a useful complement to the map and fold algorithms.

Note the use of a type annotation on the first argument to ensure that the function

Thus, patterns over arrays can be used to test the number and value of all elements,

3.3 LISTS

Lists have the following properties:

0 Immutable.

0 Fast prepend and decapitation (see figure 3.8).

a Slow random access, length, insertion, deletion, concatenation, partition and
search.

Arguably the simplest and most commonly used data structure, lists allow two fun-
damental operations. The first is decapitation of a list into two parts, the head (the

76 DATA STRUCTURES

---.,--
Head Tail

Figure 3.8
list Zi i E (0 . . . n - 1) into the head element h and the tail list ti i E (0 . . . n - 2 } .

Lists are the simplest, arbitrarily-extensible data structure. Decapitation splits a

first element of the list) and the tail (a list containing the remaining elements). The
second is the reverse operation of prepending an element onto a list to create a new
list. The complexities of both operations are 0(1), i.e. the time taken to perform
these operations is independent of the number of elements in the list. Thus, lists are
ideally suited for the creation of a data structure containing an unknown number of
elements (such as the loading of an arbitrarily-long sequence of numbers).

As we have already seen, the F# language implements lists natively. In particular,
the cons operator : : can be used both to prepend an element and to represent
decapitated lists in patterns. Unlike arrays, the implementation of lists is functional,
so operations on lists produce new lists.

The List module contains the iter, map, fold-left and fold-right
functions, equivalent to those for arrays, a flatten function, which provides
equivalent functionality to that of Array. concat (i.e. to concatenate a list of lists
into a single list). In particular, the append function has the pseudonym @:

> [l; 21 @ 13; 41 ;;
val it : int list = [l; 2; 3; 41

The List module also contains several functions for sorting and searching.

3.3.1 Sorting

The contents of a list may be sorted using the higher-order List. sort function,
into an order specified by a given total order function (the predefined compare
hnction, in this case):

> List.sort compare [l; 5; 3; 4; 7; 91;;
val it : int list = [l; 3; 4; 5; 7; 91

Lists can be searched using a variety of functions.

3.3.2 Searching

There are three main forms of searching provided by the List module.

LISTS 77

3.3.2.1 Membership An element may be tested for membership in a list using
the List . mem function:

> List.mem 4 [l; 3; 4 ; 5 ; 7 ; 91 ;;
val it : bool = true

> List.mem 6 [l; 3; 4; 5 ; 7 ; 91;;
val it : bool = false

This is the simplest form of searching that can be applied to lists and is an easy
but inefficient way to handle sets of values.

3.3.2.2 Predicate The first element in a list that matches a given predicate
function may be extracted using the higher-order List . find function:

> List.find (fun i -z (i-6)*i 0) [l; 3; 4 ; 5 ; 7 ; 91;;
val it : int = 7

This function raises an exception if all the elements in the given list fail to match
the given predicate:

z List.find (fun i - > (i-6)*i = 0) [l; 3 ; 4 ; 5; 7; 91;;
System.IndexOut0fRangeException: Index was outside the
bounds of the array

The related function List . f ind-all returns the list of all elements that match
the given predicate function:

> [l; 3 ; 4 ; 5; 7 ; 91

val it : int list = [7 ; 91
I > List-find-all (fun i - > (i-6)*i > 0);;

Searching lists using predicate functions works well when several different pred-
icates are used and performance is unimportant.

3.3.2.3 Association lists The contents of a list of key-value pairs may be
searched using the is t . as SOC function to find the value corresponding to the first
matching key. For example, the following list list contains (i, i2) key-value pairs:

> let list =

[€or i in 1 . . 5 - 5

i, i*i 3 ;;
val list : (int * int) list
> list;;
val it : (int * int) list

= [(I, 1); (2, 4) ; (3 , 9); (4 , 16); (5, 25)l

Searching list for the key i = 4 using the List. assoc function finds the
corresponding value i2 = 16:

> List.assoc 4 list;;

78 DATA STRUCTURES

val it : int = 16

As we have seen, lists are easily searched in a variety of different ways. Con-
sequently, lists are one of the most useful generic containers provided by the F#
language. However, testing for membership is really a set-theoretic operation and
the built-in HashSet and S e t modules provide asymptotically more efficient ways
to implement sets as well as extra functionality. Similarly, the ability to map keys to
values in an association list is provided more efficiently by hash tables and maps. All
of these data structures are discussed later in this chapter.

3.3.3 Filtering

The ability to grow lists makes them ideal for filtering operations based upon arbitrary
predicate functions. The List .partition function splits a given list into two
lists containing those elements which match the predicate and those which do not.
The following example uses the predicate xi I 3:

List.partition (fun x - 5 x <= 3) [l .. 51;;
val it : int list * int list = (11; 2; 31, [4; 5 1)

Similarly, the List . f i 1 t e r function returns a list containing only those ele-
ments which matched the predicate, i.e. the first list that List. partition would
have returned:

> List-filter (fun x - > x <= 3) [l . . 51 ;;
val it : int list = [l; 2; 31

The partition and filter functions are ideally suited to arbitrarily extensible data
structures such as lists because the length of the output(s) cannot be precalculated.

3.3.4 Maps and folds

In addition to the conventional higher-order it er, map, folds, sorting and searching
functions, the List module contains several functions which act upon pairs of lists.
These functions all assume the lists to be of equal length. If they are found to be of
different lengths then an Inval id-argument exception is raised. We shall now
elucidate these functions using examples from vector algebra.

The higher-order function map2 applies a given function to each pair of elements
from two equal-length lists, producing a single list containing the results. The type
of the map2 function is:

val map2 :

(’a - > ’b - > ‘ c) - > ‘a list - > ‘b list - 5 ‘c list

The map2 function can be used to write a function to convert a pair of lists into a
list of pairs:

> let list-combine a b =

List.map2 (fun a b - > a, b) a b;;

LISTS 79

val list-combine : 'a list - > 'b list - > ('al 'b) list

Applying the 1 is t-combine function to apair oflists of equal lengths combines
them into a list of pairs:

> list combine [I; 2; 31 ["aTr; "b"; lIcll] ; ;

val it : (int * string) list =
-

[(I, Ilall); (2, "b"); (3, "cl1)1

Applying the 1 is t combine function to a pair of lists of unequal lengths causes
an exception to be raised by the map2 function:

> list-combine [l; 2; 31 [2; 3; 4; 51 ;;
Microsoft.FSharp.Invalid?irgumentException: map2

In fact, the functionality of this 1 is t-combine function is already provided by

Vector addition for vectors represented by lists can be written in terms of the map2
the combine function in the is t module of the F# standard library.

function:

let vec-add (a : float list) b =

List.map2 (+) a b;;
val vec-add : float list - > float list - > float list

When given a pair of lists a and b of floating-point numbers, this function creates
a list containing the sum of each corresponding pair of elements from the two given
lists, i.e. a + b:

> vec-add [1.0; 2.0; 3.01 L2.0; 3.0; 4.01;;
val it : float list = L3.0; 5.0; 7 - 0 1

Thehigher-order fold-lef t2 and fold-right2 functionsintheList mod-
ule are similar to the fold left and fold-right functions, except than they
act upon two lists simultaneously instead of one. The types of these functions are:

val fold-left2 :

('a - > 'b - > 'c - > 'a) - 5 'a - > 'b list - 5 'c list - >
'a

val fold-right2 :

('a - Z 'b - > 'c - 5 'c) - 5 'a list - > 'b list - > 'c - 5

'C

Thus, the f old-lef t2 and f old-right2 functions can be used to implement
many algorithms which consider each pair of elements in a pair of lists in turn. For
example, the vector dot product could be written succinctly using f old-lef t2 by
accumulating the products of element pairs from the two lists:

> let vec-dot (a : float l i s t) (b : float list) =

val vec-dot : float list - > float list - > float
List-fold - left2 (fun d a b - 5 d + a * b) 0.0 a b;;

80 DATA STRUCTURES

When given two lists, a and b, of floating-point numbers, this function accumulates
the products ai x bi of each pair of elements from the two given lists, i.e. the vector
dot product a. b:

> vec-dot L1.0; 2 . 0 ; 3.01 L2.0; 3.0; 4 . 0 1 ; ;
val it : float = 20.0

The ability to write such functions using maps and folds is clearly an advantage
in the context of scientific computing. Moreover, this style of programming can be
seamlessly converted to using much more exotic data structures, as we shall see later
in this chapter. In some cases, algorithms over lists cannot be expressed easily in
terms of maps and folds. In such cases, pattern matching can be used instead.

3.3.5 Pattern matching

Patterns over lists can not only reflect the number and value of all elements, as
they can in arrays, but can also be used to test initial elements in the list using
the cons operator : : to decapitate the list. In particular, pattern matching can be
used to examine sequences of list elements. For example, the following function
“downsamples” a signal, represented as a list of floating-point numbers, by averaging
pairs of elements:

> let rec downsample : float list - > float list =

function

I hl::h2::t - 5 0.5 * (hl + h2) : : downsample t
I [-I - > invalid-arg “downsample” ; ;

I [I - > [I

val downsample : float list - > float list

This is a simple, recursive function which uses a pattern match containing three
patterns. The first pattern downsamples the empty list to the empty list. This pattern
acts as the base-case for the recursive calls of the function (equivalent to the base-case
of a recurrence relation). The second pattern matches the first two elements in the
list (hl and h2) and the remainder of the list (t). Matching this pattern results in
prepending the average of hl and h2 onto the list resulting from downsampling the
remaining list t. The third pattern matches a list containing any single element,
raising an exception if this erroneous input is encountered:

> downsample 15.01 ; ;
Exception: Invalid-argument lldownsamplell.

As these three patterns are completely distinct (any input list necessarily matches
one and only one pattern) they could, equivalently, have been presented in any order
in the pattern match.

The downsample function can be used to downsample an eight-element list into
a four-element list by averaging pairs of elements:

> LO.0; 1 . 0 ; 0 . 0 ; -1.0; 0 . 0 ; 1.0; 0 . 0 ; -1.01
I > downsample;;

LISTS 81

val it : float list = E O . 5 ; - 0 . 5 ; 0 . 5 ; - 0 . 5 1

The ability to perform pattern matches over lists is extremely useful, resulting in

Note that, in the context of lists, the it er and map higher-order functions can be
a very concise syntax for many operations which act upon lists.

expressed succinctly in terms of folds:

let iter f list =

let map f list =

List.fold - left (fun () e - > f e) () list

List.fold-right (fun h t - > f h : : t) list [I
and that all of these functions can be expressed, albeit more verbosely, using

pattern matching. The it er function simply applies the given function f to the head
h of the list and then recurses to iterate over the element in the tail t :

let rec iter f = function

I h::t - 5 f h; iter f t

The map function applies the given function f to the head h of the list, prepending
the result f h onto the result map f t of recursively mapping over the elements in
the tail t :

let rec map f = function

I [I - > 0

I [I - > [I
I h::t - 5 f h : : map f t

The f old-lef t function applies the given function f to the current accumulator
accu and the head h of the list, passing the result as the accumulator for folding
over the remaining elements in the tail t of the list:

let rec fold - left f accu list =

match list with
I h::t - > fold - left f (f accu h) t
I [I - > accu

The f old-right function applies the given function f to the head h of the list
and the result of recursively folding over the remaining elements in the tail t of the
list:

let rec fold-right f list accu =

match list with
I h::t - > f h (fold - right f t accu)
I [I - 5 accu

Thus, the map and fold functions can be thought of as higher-order functions
which have been factored out of many algorithms. In the context of scientific
programming, factoring out higher-order functions can greatly increase clarity, often
providing new insights into the algorithms themselves. In chapter 6, we shall pursue
this, developing several functions which supplement those in the standard library.

82 DATA STRUCTURES

Having examined the two simplest containers provided by the F# language itself,
we shall now examine some more sophisticated containers which are provided in the
standard library.

3.4 SETS

Sets have the following properties:

0 Immutable.

Sorted.

0 Duplicates are removed.

0 Fast insertion, deletion, membership, partition, union, difference and intersec-
tion.

0 No random access.

In the context of data structures, the term “set” typically means a sorted, unique,
associative container. Sets are “sorted” containers because the elements in a set
are stored in order according to a given comparison function. Sets are “unique”
containers because they do not duplicate elements (adding an existing element to
a set results in the same set). Sets are “associative” containers because elements
determine how they are stored (using the specified comparison function).

The F# standard library provides sets which are implemented as balanced binary
trees”. This allows a single element to be added or removed from a set containing
n elements in O(ln n) time. Moreover, the F# implementation also provides func-
tions union, inter and dif f for performing the set-theoretic operations union,
intersection and difference efficienctly.

In order to implement the set-theoretic operations between sets correctly, the sets
used must be based upon the same comparison function. If no comparison function
is specified then the built-in compare function is used by default. Sets implemented
using custom comparison functions can be created using the Set . Make function.

3.4.1 Creation

The empty set can be obtained as:

Set.empty;;
val it : Setelas

The type Set e ’ a> represents a set of values of type ‘ a.
A set containing a single element is called a singleton set and can be created using

the Set. singleton function:

I’Balanced binary trees will be discussed in more detail later in section 3.10.

SETS 83

> let set1 = Set.singleton 3;;
val setl : Set<int>

Sets can also be created from sequences using the set function:

set [I; 2 ; 31;;
val it : Set<int> = seq [I; 2; 31

Once created, sets can have elements added and removed.

3.4.2 Insertion

As sets are implemented in a functional style, adding an element to a set returns a
new set that shares immutable data with the old set:

> let set2 = Set.add 5 setl;;
val set2 : Set<int>

Both the old set and the new set are still valid:

> setl, set2;;
val it : Set<int> * Set<int> = (seq [31 , seq [3; 51)

Sets remove duplicates:

let s = set [lo; 1; 9; 2; 8; 4; 7; 4; 6 ; 7 ; 71;;
val s : Set<int>

A set may be converted into other data structures, such as a list using the t 0-1 is t
function in the Set module:

Set-to-list s;;

As we shall see in section 3.8, sets are also a kind of sequence.

val it : int list = [l; 2; 4; 6; 7; 8 ; 9; 101

3.4.3 Cardinality

The number of elements in a set, known as the cardinality of the set, is given by:

> Set.cardina1 s ; ;
val it : int = 8

Perhaps the most obvious functionality of sets is that of set-theoretic operations.

3.4.4 Set-theoretic operations

We can also demonstrate the set-theoretic union, intersection and difference opera-
tions. For example:

84 DATA STRUCTURES

> Set.union (set [l; 3; 51) (set [3; 5; 71);;
val it : Set<int> = [l; 3; 5; 71

{1,3,5) n {3,5,71 = (315)
> Set.inter (set [I; 3; 51) (set [3; 5; 71);;
val it : Set<int> = [3; 51

{1,3,5) \ (3,537) = (11
Set.diff (set [l; 3; 51) (set [3; 5; 71);;

Set union and difference can also be obtained by applying the + and - operators:
val it : Set<int> = [ll

> set 11; 3 ; 51 + set [3; 5; 71 ;;
val it : Set<int> = [l; 3 ; 5; 71

> set [l; 3; 51 - set [3; 5; 71 ;;
val it : Set<int> = [ll

The subset function tests if A c B. For example, {4,5,6} c (1.. .lo):
> Set.subset (set [2; 4; 61) s ; ;
val it : bool = true

Of the data structures examined so far (lists, arrays and sets), only sets are not con-
crete data structures. Specifically, the underlying representation of sets as balanced
binary trees is completely abstracted away from the user. In some languages, this can
cause problems with notions such as equality but, in F#, sets can be compared safely
using the built-in comparison operators and function.

3.4.5 Comparison

Although sets are non-trivial data structures internally, the polymorphic comparison
functions (<, <=, =, >=, 5, <> and compare) can be applied to sets and data
structures containing sets in F#:

> Set.of-list 11; 2; 3 ; 4 ; 51 =

val it : bool = true
Set.of-list 15; 4; 3 ; 2 ; 11;;

In chapter 12, we shall use a set data structure to compute the set of @-nearest
neighbours in a graph and apply this to atomic-neighbour computations on a simulated
molecule. In the meantime. we have more data structures to discover.

3.5 HASH TABLES

Hash tables have the following properties:

0 Mutable.

HASH TABLES 85

0 Each key maps onto a list of values.

0 Fast insertion, deletion and search.

A hash table is an associative container mapping keys to corresponding values. We
shall refer to the key-value pairs stored in a hash table as bindings or elements.

In terms of utility, hash tables are an efficient way to implement a mapping from
one kind of value to another. For example, to map strings onto functions. In order
to provide their functionality, hash tables provide add, replace and remove
functions to insert, replace and delete bindings, respectively, a find function to
return the first value corresponding to a given key and a f ind-all function to
return all corresponding values.

Internally, hash tables compute an integer value, known as a hash, from each
given key, This hash of a key is used as an index into an array in order to find the
value corresponding to the key. The hash is computed from the key such that two
identical keys share the same hash and two different keys are likely (but not guaran-
teed) to produce different hashes. Moreover, hash computation is restricted to O(1)
time complexity, typically by terminating if a maximum number of computations is
reached. Assuming that no two keys in a hash table produce the same hash, finding
the value corresponding to a given key takes O(1) timei2.

The F# standard library contains an imperative implementation of hash tables in
the Hashtbl module.

3.5.1 Creation

The Hashtbl . of-seq function can be used to create hash tables from association
sequences:
5 let m =

["Hydrogenll, 1.0079; "Carbon", 12.011;
I1Nitrogen1l, 14.00674 ; llOxygenlt, 15.9994;
I1Sulphur1l, 32.061

(> Hashtbl.of-seq;;
val m : Hashtbl.HashTable<string, float>

represents the following mapping from strings to floating-point values:
The resulting hash table m, of type Has ht bl . Has hTabl e < string , f loa t >,

Hydrogen -+ 1.0079
Carbon -+ 12.011

Nitrogen -+ 14.00674
Oxygen -+ 15.9994
Sulphur -+ 32.06

Hash tables are primarily used for searching.

I2Cornputing the hash in O(1) time and then using it to access an array element, also in Q(1) time.

86 DATA STRUCTURES

3.5.2 Searching

Having been filled at run-time, the hash table may be used to look-up the values
corresponding to given keys. For example, we can find the average atomic weight of
carbon:
> Hashtbl . find m "Carbon" ; ;
val it : float = 12.011

Looking up values in a hash table is such a common operation that a more concise
syntax for this operation has been provided via the getter of the 1 tem member,
accessed using the notation:

m. [key]

For example:
m . ["Carbon"] ; ;

Hash tables also allow bindings to be added and removed.
val it : float = 12.011

3.5.3 Insertion, replacement and removal

A mapping can be added using the Hashtbl . add function:
> Hashtbl . add m "Tantalum" 180.9 ; ;
val it : unit = ()

Note that adding a new key-value binding shadows any existing bindings rather
than replacing them. Subsequently removing such a binding makes the previous
binding for the same key visible again if there was one.

> Hashtbl .replace m "Tantalum" 180.948 ; ;
val it : unit = ()

Any previous binding with the same key is then replaced.
The setter of the Item property is also implemented, allowing the following

Bindings may be replaced using the Hashtbl . replace function:

syntax to be used to replace a mapping in a hash table m:
m . [key] < - value

If the hash table did not contain the given key then a new key is added.
For example, the following inserts a mapping for tantalum:
m. [llTantalumrf] < - 180.948;;

If necessary, we can also delete mappings from the hash table, such as the mapping
val it : unit = ()

for Oxygen:
> Hashtbl . remove m IIOxygenl' ; ;
val it : unit = ()

The usual higher-order functions are also provided for hash tables.

MAPS 87

3.5.4 Higher-order functions

The remaining mappings in the hash table are most easily printed using the iter
function in the Hashtbl module:
> Hashtbl.iter (printf “ % s - > %f\nll) m;;
Carbon - > 12.011
Nitrogen - > 14.00674
Sulphur - > 32.06
Hydrogen - > 1.0079
Tantalum - > 180.948

Note that the order in which the mappings are supplied by Hashtbl . iter
(and map and fold) is effectively random. In fact, the order is related to the hash
function.

Hash tables can clearly be useful in the context of scientific programming. How-
ever, a functional alternative to these imperative hash tables can sometimes be de-
sirable. We shall now examine a functional data structure which uses different
techniques to implement the same functionality of mapping keys to corresponding
values.

3.6 MAPS

Maps have the following properties:

0 Immutable.

0 Each key maps to a single value.

0 Fast insertion, deletion and search.

We described the functional implementation of the set data structure provided by
F# in section 3.4. The core F# library provides a similar data structure known simply
as a map13.

Much like a hash table, the map data structure associates keys with corresponding
values. Consequently, the map data structure also provides add and remove func-
tions to insert and delete mappings, respectively, and a find function which returns
the value corresponding to a given key.

Unlike hash tables, maps are represented internally by a balanced binary tree,
rather than an array, and maps differentiate between keys using a specified total
ordering function, rather than a hash function.

Due to their design differences, maps have the following advantages over hash
tables:

0 Immutable: operations on maps derive new maps without invalidating old
maps.

I3Not to be confused with the higher-order m a p function provided with many data structures.

88 DATA STRUCTURES

Figure 3.9 Measured performance (time t in seconds) for inserting key-value pairs into hash
tables and functional maps containing n - 1 elements. Although the hash table implementation
results in better average-case performance, the O(n) time-complexity incurred when the hash
table is resized internally produces much slower worst-case performance by the hash table.

0 Stable O(1og n) time-complexity for inserting and removing a mapping, com-
pared to unstable, amortized O(1) time-complexity in the case of hash tables
(which may take up to O(n) for some insertions, as illustrated in figure 3.9).

0 Maps are based upon comparison and hash tables are based upon hashing.
Comparisons are easier to define and more readily available.

0 If comparison is faster than hashing (e.g. for structurally large keys, where
comparison can return early) then a map may be faster than a hash table.

0 The key-value pairs in a map are kept sorted by key.

However, maps also have the following disadvantages compared to hash tables:

0 Logarithmic O(ln n) time-complexity for insertion, lookup and removal, com-
pared to amortized O(1) time-complexity in the case of hash tables (see figure
3.9).

0 If comparison is slower than hashing (e.g. for small keys) then a hash table is
likely to be faster than a map.

In single threaded applications, a map is typically lox slower than a hash table in
practice.

3.6.1 Creation

We shall now demonstrate the functionality of the map data structure reusing the
example of mapping strings to floating-point values. A map data structure containing
no mappings is represented by the value:

MAPS 89

> let m = Map.empty;;
val m : Map<'a, ' b>

Note that this value is polymorphic, allowing the empty map to be used as the
basis of mappings between any types.

Mappings may be added to m using the Map. add function. As a functional data
structure, adding elements to a map returns a map containing both the new and old
mappings. Hence we repeatedly supersede the old data structure m with a new data
structure m:

A map may be built from a list using the Map . of -1 is t function:

let m =

Map.of-list
[lgHydrogenll, 1.0079; ITCarbon", 12.011;
I1Nitrogen1l, 14.00674 ; "Oxygen1', 15.9994 ;
IT Sulphur IT , 3 2 . 0 6 I

val m : Map<string, float>

Note that the type has been inferred to be a mapping from strings to floats.
The contents of a map can be converted to a list using the fold function:

> let list-of map =

val list-of : Map<'a, 'bs - > ('a, 'b) list
Map.fold (fun h t - 5 h : : t) map [I ;;

Once created, a map can be searched.

3.6.2 Searching

We can use the map m to find the average atomic weight of carbon:

Map. find llCarbonll m; ;
val it : float = 12.011

The syntax used for hash table lookup can also be used on maps:

> m. ["Carbon"] ; ;
val it : float = 12.011

However, as maps are immutable they cannot be altered in-place and, consequently,
the I t em setter method is not implemented. Adding a binding to a map produces
a new immutable map that shares much of its internals with the old map (which
remains valid). For example, we can create a new map with an additional binding:

> let m2 = Map.add ITTantalumlT 180.948 m;;
val m2 : Mapcstring, float>

Both the old map m and the new map m2 are valid:

> list-of m, list - of m2;;
val it : (string * float) list * (string * float) list

90 DATA STRUCTURES

= ([("Carbon", 12.011) ; ("Hydrogen", 1.0079) ;
("Nitrogen11, 14.00674) ; (gTOxygenll, 15.9994) ;
("Sulphur", 32.06)1,

("Nitrogenll , 14.00674) ; (ItOxygen1l, 15.9994) ;
(ltSulphurT1, 32.06); ("Tantalum", 180.948)l)I

[(ttCarbontt, 12.011) ; ("Hydrogen", 1.0079) ;

Note that the key-value pairs are sorted by key, alphabetically in this case.
Deleting mappings from the functional map data structure produces a new data

structure containing most of the old data structure:

> Map. remove "Oxygenft m2 ; ;
val it : MaPCstring, float>

= [(ltCarbonal, 12.011) ; (l1Hydrogenl1, 1.0079) ;
(I1Nitrogen1l, 14.00674) ; (ltSulphurll, 32.06) ;
("Tantalum", 180.948) I

Maps contain the usual higher-order functions.

3.6.3 Higher-order functions

The remaining mappings are most easily printed by iterating a print function over the
key-value pairs:

> Map.iter (printf "%s - > %f\nll) m2;;
Carbon - > 12.011
Hydrogen - 5 1.0079
Nitrogen - > 14.00674
Oxygen - > 15.9994
Sulphur - > 32.06
Tantalum - > 180.948

Note that m2 still contains the entry for oxygen as deleting this binding created a
new map that was discarded.

The ability to evolve the contents of data structures along many different lineages
during the execution of a program can be very useful. This is much easier when
the data structure provides a functional, rather than an imperative, interface. In
an imperative style, such approaches would most likely involve the inefficiency of
explicitly duplicating the data structure (e.g. using the Hashtbl . copy function)
at each fork in its evolution. In contrast, functional data structures provide this
functionality naturally and, in particular, will share data between lineages.

Having examined the data structures provided with F#, we shall now summarise
the relative advantages and disadvantages of these data structures using the notion of
algorithmic complexity developed in section 3.1.

CHOOSING A DATA STRUCTURE 91

Table 3.2 Functions implementing common operations over data structures.
~~

Array List Set Hash table Map

Create init init of-array of-list of-list

Insert add replace add

Search find find mem find find
Remove - remove-assoc remove remove remove

Sort sort sort NIA NIA NIA
Index get nthlassoc NIA find find

Table 3.3
structures containing n elements where i E (0 . . . n - 1) is a parameter of some of the
operations, e.g. insert at index i.

Asymptotic algorithmic complexities of operations over different data

h a y List Set Hash table Map

Create 0 (n) O (n) O(nl0gn) O(n) O(nl0gn)
Insert W n) O (i) O(l0gn) O(1) O(l0gn)
Find O(n) O(n) O(l0gn) O(1) O(l0gn)

Membership O(n) O(n) O(1ogn) O(1) O(l0gn)
Remove @(n) O(2) O(l0gn) O(1) O(l0gn)

sort O(n log n) O(n log n) 0 N/A 0
Index W) O (i) O(l0gn) O(1) O(l0gn)

3.7 CHOOSING A DATA STRUCTURE

As we have seen, the complexity of operations over data structures can be instrumental
in choosing the appropriate data structure for a task. Consequently, it is beneficial
to compare the asymptotic complexities of common operations over various data
structures. Table 3.2 shows several commonly-used functions. Table 3.3 gives the
asymptotic complexities of the algorithms used by these functions, for data structures
containing n elements.

Arrays are ideal for computations requiring very fast random access. Lists are ideal
for accumulating sequences of unknown lengths. The immutable set implementation
in the Set module provides very fast set-theoretic operations union, intersection and
difference. Hash tables are ideal for random access via keys that are not consecutive
integers, e.g. sparsely-distributed keys or non-trivial types like strings.

The F# standard library contains other data structures such as mutable sets based
upon hash tables. These do not offer fast set-theoretic operations but testing for
membership is likely to be several times faster with mutable rather than immutable
sets.

Having examined the various containers built-in to F#, we shall now examine a
generalisation of these containers which is easily handled in F#.

92 DATA STRUCTURES

3.8 SEQUENCES

The .NET collection called IEnumerable is known as Seq in F#. This collection
provides an abstract representation of any lazily evaluated sequences of values. A
lazily evaluated sequence only evaluates the elements when they are required, i.e. the
sequence does not need to be stored explicitly.

The list, array, set, map and hash table containers all implement the Seq interface
and, consequently, can be used as abstract sequences.

For example, the following function doubles each value in a sequence:

> let double s =

val double : #seq<ints - > seq<int>
Seq.map ((*) 2) s ; ;

Note that the argument to the double function is inferred to have the type
#seq<ints, denoting objects of any class that implements the Seq interface, but
the result of double is of the type seq< int 5 .

For example, this double function can be applied to arrays and sets:

double “1; 2 ; 311;;
val it : seq<int> = 12; 4; 61

> double (set [l; 2; 31);;
val it : seq<int> = [2; 4; 61

Sequences can be generated from functions using the Seq . generate function.
In particular, such sequences can be infinitely long. The generate function accepts
three functions as arguments. The first argument opens the stream. The second
argument generates an option value for each element with None denoting the end of
the stream. The third argument closes the stream.

This abstraction has various uses:

0 Functions that act sequentially over data structures can be written more uni-
For example, by using Seq. fold instead of formly in terms of Seq.

List.fold-1eftorArray.fold-left.

0 Simplifies code interfacing different types of container.

0 The higher-order Seq .map and Seq . filter functions are lazy, so a series
of maps and filters is more space efficient and is likely to be faster using
sequences rather than lists or arrays.

Sequences are useful in many situations but their main benefit is simplicity.

3.9 HETEROGENEOUS CONTAINERS

The array, list, set, hash table and map containers are all homogeneous containers,
i.e. for any such container, the elements must all be of the same type. Containers of

TREES 93

elements which may be of one of several different types can also be useful. These
are known as heterogeneous containers.

Heterogeneous containers can be defined in F# by first creating a variant type
which combines the types allowed in the container. For example, values of this
variant type number may contain data representing elements from the sets Z, R or
@:

> type number =

I Integer of int
I Real of float
I Complex of float * float;;

A homogeneous container over this unified type may then be used to implement
a heterogeneous container. The elements of a container of type number 1 is t can
contain Integer, Real or Complex values:

> let nums = [Integer 1; Real 2.0; Complex (3.0, 4.0)l;;
val nums : number list

Let us consider a simple function to act upon the effectively heterogeneous con-
tainer type number list. A function to convert values of type number to the
built-in type Math. Complex may be written:

> let complex-of-number = function
I Integer n - 5 complex (float n) 0 . 0

I Real x - 5 complex x 0.0
I Complex(x, y) - > complex x y; ;

For example, mapping the complex-of-number function over the number

val complex-of-number : number - > Math.Complex

list called nums gives a Complex. t list:

> List.map complex-of-number nums;;
val it : Comp1ex.t list =

[1.0r + 0.oi; 2.0r + 0.Oi; 3.0r + 4.0il

The list, set, hash table and map data structures can clearly be useful in a scientific
context, in addition to conventional arrays and the heterogeneous counterparts of
these data structures. However, a major advantage of F# lies in its ability to create
and manipulate new, custom-made data structures. We shall now examine this aspect
of scientific programming in F#.

3.10 TREES

In addition to the built-in data structures, the ease with which the F# language allows
tuples, records and variant types to be handled makes it an ideal language for creating
and using new data structures. Trees are the most common such data structure.

A tree is a self-similar data structure used to store data hierarchically. The origin
of a tree is, therefore, itself a tree, known as the root node. As a self-similar, or

94 DATA STRUCTURES

1

Figure 3.10
nodes, including the root node and 2" = 8 leaf nodes.

A perfectly-balanced binary tree of depth 2 = 3 containing 2"+l - 1 = 15

recursive, data structure, every node in a tree may contain further trees. A root that
contains no further trees marks the end of a lineage in the tree and is known as a leaf
node.

The simplest form of tree is a recursive data structure containing an arbitrarily-
long list of trees. This is known as an n-ary tree and may be represented in F# by the
type:

> type tree = Node of tree list;;

A perfectly balanced binary tree of depth d is represented by an empty node for
d = 0 and a node containing two balanced binary trees, each of depth d - 1, ford > 0.
This simple recurrence relation is most easily implemented as a purely functional,
recursive function:

> let rec balanced-tree = function
1 0 - > Node [I
I n - 5

Node [balanced-tree (n-1) ; balanced-tree (n-1) 1 ; ;
val balanced-tree : int - 5 tree

The tree depicted in figure 3.10 may then be constructed using:

> let example = balanced-tree 3;;
val example : tree =

Node
[Node [Node [Node [I ; Node [I 1 ;

Node [Node [Node [I ; Node [I 1 ;
Node [Node [I ; Node [I I 1 ;

Node [Node [I ; Node [l l l l
We shall use this example tree to demonstrate more sophisticated computations

Functions over the type tree are easily written. For example, the following
over trees.

function counts the number of leaf nodes:

> let rec leaf-count = function

TREES 95

I Node [I - > 1
I Node list - >

Seq.fold (fun s t - > s + leaf-count t) 0 list;;
val leaf-count : tree - > int

val it : int = 8
leaf-count example;;

Trees represented by the type tree are of limited utility as they cannot contain
additional data in their nodes. An equivalent tree which allows arbitrary, polymorphic
data to be placed in each node may be represented by the type:

type 'a ptree = PNode of 'a * 'a ptree list;;
As a trivial example, the following function traverses a value of type tree to

create an equivalent value of type ptree which contains a zero in each node:

let rec zero - ptree-of-tree (Node list) =

val zerogtree-of-tree : tree - > int ptree
PNode(0, List.map zero-ptree-of-tree list);;

For example:

> zerogtree - of-tree (Node [Node E l ; Node [I]) ; ;
val it : int ptree =

PNode (0, [PNode (0 , [I) ; PNode (0 , [I l l)
As a slightly more interesting example, consider a function to convert a value of

type tree to a value of type ptree, storing unique integers in each node of the
resulting tree.

We begin by defining a higher-order function auxl that accepts a function f that
will convert a tree into a ptree and uses this to convert the head of a list h and
prepend it onto a tail list t in an accumulator that also contains the current integer n
(i.e. the accumulatorwill be oftype int * int ptree list):

> let auxl f h (n, t) =

let n, h = f h n
n, h : : t;;

val auxl :

('a - 5 'b - > 'c * 'd) - > 'a - 5 'b * 'd list - >

'c * 'd list
A function aux2 to convert a tree into a ptree can be written by folding the

auxl function over the counter n and child trees 1 i s t, accumulating a new counter
n' and a list plist of child trees.

> let rec aux2 (Node list) n =

let n', plist =

n' , PNode (n, plist) ; ;
List.fold-right (auxl aux2) list (n + 1, [I)

val aux2 : tree - > int - > int * int ptree

96 DATA STRUCTURES

Figure 3.11
figure 3.10 using the counted-ptree-of-tree function.

The result of inserting an integer counter into each node of the tree depicted in

For example:

aux2 (Node [Node [I ; Node [I ; Node[] 1) 1;;

(5 , PNode (1, [PNode (4 , [I) ;
PNode (3, [I);
PNode (2 , [I) 1))

val it : i n t * i n t p t r e e =

The aux2 function can be used to convert a t r e e into a p t ree with counted
nodes by supplying an initial counter of 1 and stripping off the final value of the
counter from the return value of aux2 using the built-in function snd to extract the
second part of a 2-tuple:

l e t rec countedstree-of-tree t r e e =

snd (aux2 t r e e 1) ; ;
val countedgtree-of-tree : tree - > i n t p t ree

Applying this function to our example tree produces a more interesting result
(illustrated in figure 3.1 1):

> counted-ptree-of-tree example;;
va l it : i n t p t ree =

PNode (1,
[PNode (9 , [PNode (13, [PNode (15 , [I) ;

PNode (1 0 , [PNode (1 2 , [I) ;
PNode (14, [I)]) ;

PNode (11, [I)])]) ;
PNode (2 , [PNode (6 , [PNode (8 , [I) ;

PNode (3 , [PNode (5 , [I) ;
mode (7, [I l l) ;

PNode (4 , [1) 1) 1) 1)

Note that t$e use of a right fold in the aux2 function allowed the child trees
to be accumulated into a list in the same order that they were given but resulted in
numbering from right to left.

TREES 97

In practice, storing the maximum depth remaining in each branch of a tree can be
useful when writing functions to handle trees. Values of our generic tree type may
be converted into the ptree type, storing the integer depth in each node, using the
following function:

> let rec depth-ptree-of-tree (Node list) =

let list = List.map depth-ptree-of-tree list
let depth of (PNode(d, -)) = d
let depth-= Seq.fold (+) (-1) (Seq.map depth-of list)
PNode(depth + 1, list);;

val depth - ptree-of-tree : tree - > int ptree

This function first maps itself over the child trees to get their depths. Then it folds
an anonymous function that computes the maximum of each depth (note the use of
partial application of max) with an accumulator that is initially - 1. Finally, a node
of a ptree is constructed from the depth and the converted children.

Applying this function to our example tree produces a rather uninteresting, sym-
metric set of branch depths:

> depthjtree-of-tree example;;
val it : int ptree =

PNode (3 ,
[PNode (2,
[PNode (1, [PNode (0 , [I); PNode (0 , [Ill);
PNode (1, [PNode (0 , [I); PNode (0 , [l)l)l);

PNode (2,
[PNode (1, [PNode (0 , [I); PNode (0 , [l)l);
PNode (1, [PNode (0 , [I); mode (0 , [1)1)1)1)

Using a tree of varying depth provides a more interesting result. The follow-
ing function creates an unbalanced binary tree, effectively representing a list of
increasingly-deep balanced binary trees in the left children:

> let rec unbalanced-tree n =
let aux n t = Node [balanced-tree n; t]
List .fold-right aux [O . . n - 11 (Node [I ;;

val unbalanced-tree : int - > tree

This can be used to create a wonky tree:

> let wonky = unbalanced-tree 3;;
val wonky : tree =

Node
[Node [I ;
Node
[Node [Node [I ; Node [I I ;
Node [Node [Node [Node [I ; Node [I 1 ;

Node [Node [I ; Node [I 1 1 ;
Node [I111

98 DATA STRUCTURES

Figure 3.12 An unbalanced binary tree with the remaining depth stored in every node.

Converting this wonky tree into a tree containing the remaining depth in each node
we obtain a more interested result (illustrated in figure 3.12):

> depthgtree-of-tree wonky;;
val it : i n t p t r e e =

PNode (5 ,
[PNode (0 , [I) ;
PNode (4 ,

[PNode (1, [PNode (0 , [I) ; mode (0 , [l) l) ;
PNode (3 ,

[PNode (2 ,
[PNode (1, [PNode (0 , [I) ; PNode (0 , [l) l) ;
PNode (1, [PNode (0 , [I) ; PNode (0 , [I)])]) ;

PNode (0 , [1) 1) 1) 1)

However, the ability to express a tree in which each node may have an arbitrary
number of branches often turns out to be a hindrance rather than a benefit. Conse-
quently, the number of branches allowed at each node in a tree is often restricted to
one of two values:

0 zero branches for leaf nodes and

0 a constant number of branches for all other nodes.

Trees which allow only zero or two branches, known as binary trees, are particularly
prolific as they form the simplest class of such trees14, simplifying the derivations of
the complexities of operations over this kind of tree.

141f only zero or one “branches” are allowed at each node then the tree is actually a list (see section 3.8).

TREES 99

Although binary trees could be represented using the tree or pt ree data struc-
tures, this would require the programmer to ensure that all functions acting upon these
types produced node lists containing either zero or two elements. In practice, this is
likely to become a considerable source of human error and, therefore, of programmer
frustration. Fortunately, when writing in F#, the type system can be used to enforce
the use of a valid number of branches at each node. Such automated checking not
only removes the need for careful inspection by the programmer but also removes
the need to perform run-time checks of the data, improving performance. A binary
tree analogous to our tree data structure can be defined as:

type bin-tree =

I Leaf
I Node of bin-tree * bin-tree;;

A binary tree analogous to our ptree data structure can be defined as:

type 'a pbin-tree =

I Leaf of 'a
I Node of 'a pbin-tree * 'a * 'a pbin-tree;;

Values of type ptree which represent binary trees may be converted to this
pbin-tree type using the following function:

> let rec pbin-tree-of-ptree = function
I PNode(v, [I) - 5 Leaf v
I PNode(v, [l; rl) - >

Node(pbin-tree-ofgtree 1,
v,
pbin-tree-of-ptree r)

I - - > invalid-arg "pbin-tree-of-ptree" ; ;
val pbin-tree-ofgtree : 'a ptree - > 'a pbin-tree

a binary tree using the pbin-tree-of-ptree function:

> pbin-tree-of-ptree (depth-ptree-of-tree example);;
val it : int pbin-tree =

For example, the arbitrary-branching-factor example tree may be converted into

Node
(Node
(Node (Leaf 0, 1, Leaf 0),
2,
Node (Leaf 0, 1, Leaf O)) ,

3,
Node
(Node (Leaf 0, 1, Leaf 0 1 ,

2 ,
Node (Leaf 0, 1, Leaf 0)))

stored in all nodes, could beusefully altered to an (' a,
Note that the ' a pbin tree type, which allows arbitrary data of type ' a to be

' b) t type which allows

100 DATA STRUCTURES

Figure 3.13
nodes, including the root node and x + 1 = 8 leaf nodes.

A maximally-unbalanced binary tree of depth x = 7 containing 22 + 1 = 15

arbitrary data of type a to be stored in leaf nodes and arbitrary data of type ' b to
be stored in all other nodes:

t y p e ('a, 'b) t =

I Leaf of 'a
I Node of 'b * ('a, 'b) t * ('a, 'b) t;;

Having examined the fundamentals of tree-based data structures, we shall now
examine the two main categories of trees: balanced trees and unbalanced trees.

3.10.1 Balanced trees

Balanced trees, in particular balanced binary trees, are prolific in computer science
literature. As the simplest form of tree, binary trees simplify the derivation of
algorithmic complexities. These complexities often depend upon the depth of the
tree. Consequently, in the quest for efficient algorithms, data structures designed
to maintain approximately uniform depth, known as balanced trees, are used as the
foundation for a wide variety of algorithms.

A balanced tree (as illustrated in figure 3.10) can be defined as a tree for which
the difference between the minimum and maximum depths tends to a finite value for
any such tree containing n nodes in the limitI5 n + 00. Practically, this condition is

lSAlthough taking limits over integer-valued variables may seem dubious, the required proofs can, in fact,
be made rigorous.

often further constricted to be that the difference between the minimum and maximum
depths is no more than a small constant.

The efficiency of balanced trees stems from their structure. In terms of the number
of nodes traversed, any node in a tree containing either n nodes or n leaf nodes may
be reached by O(1og n) traversals from the root.

For example, the set and map data structures provided in the F# standard library
both make use of balanced binary trees internally. This allows them to provide
single-element insertion, removal and searching in O(ln n) time-complexity.

For detailed descriptions of balanced tree implementation, we refer the eager
reader to the relevant computer science literature [3] and, in particular, to an article
in The F#.NET Journal [121. However, although computer science exploits balanced
trees for the efficient asymptotic algorithmic complexities they provide for common
operations, which is underpinned by their balanced structure, the natural sciences can
also benefit from the use of unbalanced trees.

3.10.2 Unbalanced trees

Many forms of data commonly used in scientific computing can be usefully repre-
sented hierarchically, in tree data structures. In particular, trees which store exact
information in leaf nodes and approximate information in non-leaf nodes can be of
great utility when writing algorithms designed to compute approximate quantities. In
this section, we shall consider the development of efficient functions required to simu-
late the dynamics of particle systems, providing implementations for one-dimensional
systems of gravitating particles. We begin by describing a simple approach based
upon the use of a flat data structure (an array of particles) before progressing on to a
vastly more efficient, hierarchical approach which makes use of approximate meth-
ods and the representation of particle systems as unbalanced binary trees. Finally,
we shall discuss the generalisation of the unbalanced-tree-based approach to higher
dimensionalities and different problems.

In the context of a one-dimensional system of gravitating particles, the mass
m > 0 E IR and position T E IR1 of a particle may be represented by the record:

> type particle = { m: float; r: float } ; ;

A function f orce2 to compute the gravitational force (up to a constant coeffi-
cient):

between two particles, pl and p2, may then be written:

> let force2 pl p2 =

let d = p2.r - p1.r
p1.m * p2.m / (d * abs-float d);;

val force2 : particle - > particle - > float

102 DATA STRUCTURES

For example, the force on a particle pl of mass ml = 1 at position rl = 0.1 due
to a particle p2 of mass m2 = 3 at position 7-2 = 0.8 is:

300
(0.8 - 0.1)2 49

- 6.12245 - - 1 x 3
F =

> force2 { m = 1.0; r = 0.1 } { m = 3.0; r = 0.8 } ; ;
val it : float = 6.12244897959183554

The particle type and force2 function underpin both the array-based and
tree-based approaches outlined in the remainder of this section.

3.10.2.1 Array-based force computation The simplest approach to com-
puting the force on one particle due to a collection of other particles is to store the
other particles as a particle array and simply loop through the array, accumulating
the result of applying the f orce2 function. This can be achieved using a fold:

> let array-force p ps =

Array.fold-left (fun f p2 - > f + force2 p p2)

val array-force : particle - > particle array - 5 float

This function can be demonstrated on randomised particles. A particle with
random mass m E [O . . . 1) and position T E [O . . . 1) can be created using the
function:

> let rand = new System.Random0;;
val rand : System.Random

> let randomjarticle - =

val random-particle : 'a - > particle

0.0 ps;;

{ m = rand.NextDouble(); r = rand.NextDouble0 };;

A random array of particles can then be created using the function:

let random-array n = Array.init n random-particle;;

The following computes the force on a random particle origin due to a random

val random-array : int - > particle array

array of 105 particles system:

> let origin = random-particle 0;;
val origin : particle

> let system = random-array 100000;;
val system : particle array

> array-force origin sys;;
val it : float = 2362356950.0

Computing the force on each particle in a system of particles is the most fun-
damental task when simulating particle dynamics. Typically, the whole system is

TREES 103

simulated in discrete time steps, the force computed for each particle being used
to calculate the velocity and acceleration of the particle in the next time step. In
a system of n particles, the array-f orce function applies the f orce2 function
exactly n - 1 times. Thus, using the array-f orce function to compute the force
on all n particles would require O(n2) time-complexity. This quadratic complexity
forms the bottleneck of the whole simulation. Hence, the array-f orce function
is an ideal target for optimization.

In this case, the array-based function to compute the force on a particle takes around
a second. Applying this function to each of the lo5 particles would, therefore, be
expected to take almost a day. Thus, computing the update to the particle dynamics for
a single time step is likely to take at least a day. This is highly undesirable. Moreover,
there is no known approach to computing the force on a particle which both improves
upon the O(n2) asymptotic complexity whilst also retaining the apparent exactness
of the simple, array-based computation we have just outlined.

In computer science, algorithms are optimized by carefully designing alternative
algorithms which possess better complexities whilst also producing exactly the same
results. This pedantry concerning accuracy is almost always appropriate in com-
puter science. However, many subjects, including the natural sciences, can benefit
enormously from relinquishing this exactness in favour of artful approximation. In
particular, the computation of approximations known to be accurate to within a quan-
tified error. As we shall now see, the performance of the array-based function to
compute the force on a particle can be greatly improved upon by using an algorithm
designed to compute an approximation to the exact result.

Promoting the adoption of appro&imate techniques in scientific computations can
be somewhat of an uphill struggle. Thus, we shall now devote a little space to the
arguments involved.

Often, when encouraged to convert to the use of approximate computations, many
scientists respond by wincing and citing an article concerning the weather and the
wings of a butterfly. Their point is, quite validly, that the physical systems most
commonly simulated on computer are chaotic. Indeed, if the evolution of such a
system could be calculated by reducing the physical properties to a solvable problem,
there would be no need to simulate the system computationally.

The chaotic nature of simulated systems raises the concern that the use of approx-
imate methods might change the simulation result in an unpredictable way. This is a
valid concern. However, virtually all such simulation methods are already inherently
approximate. One approximation is made by the choice of simulation procedure, such
as the Verlet method for numerically integrating particle dynamics over time [8]. An-
other approximation is made by the use of finite-precision arithmetic (discussed in
chapter 4). Consequently, the results of simulations should never be examined at the
microscopic level but, rather, via quantities averaged over the whole system. Thus,
the use of approximate techniques does not worsen the situation.

We shall now develop approximation techniques of controllable accuracy for
computing the force of a particle due to a given system of particles, culminating
in the implementation of a force function which provides a substantially more
efficient alternative to the array-f orce function for very reasonable accuracies.

104 DATA STRUCTURES

3.10.2-2 Tree-based force computation In general, the strength of particle-
particle interactions diminishes with distance. Consequently, the force exerted by a
collection of distant particles may be well-approximated by grouping the collection
into a pseudo-particle. In the case of gravitational interactions, this corresponds to
grouping the effects of large numbers of smaller masses into small numbers of larger
masses. This grouping effect can be obtained by storing the particle system in a tree
data structure in which branches of the tree represent spatial subdivision, leaf nodes
store exact particle information and other nodes store the information required to
make approximations pertaining to the particles in the region of space represented by
their lineage of the tree.

The spatial partitioning of a system of particles at positions ri may be represented
by an unbalanced binary tree of the type:

I Leaf of particle list
I Node of partition * particle * partition;;

type partition =

Leaf nodes in such a tree contain a list of particles at the same or at similar
positions. Other nodes in the tree contain left and right branches (which will be
used to represent implicit subranges [xo, x1) and [XI, Q) ofthe range [Q, 2 2) where
x1 = (xo +Q), respectively) and the mass and position of a pseudo-particle chosen
to approximate the summed effects of all particles farther down the tree.

The mass mp and position rp of a pseudo-particle approximating the effects of a
set of particles (mi, ri) is given by the sum of the masses and the weighted average
of the positions of particles in the child branches, respectively:

1
mp = C mi rp = - C miri

2 mP a

In order to clarify the accumulator that contains these two sums and the current
sub-partition, we shall use a record type called accu:

> type accu = { mp: float; mprp: float; p: partition } ; ;

A function to compute the accumulator for a Leaf partition from a list of particles
ps may be written:

> let make-leaf ps =

let sum = List-fold-left (+) 0.0
let m = List.map (fun p - > p.m) ps I > sum
let mr = List.map (fun p - > p.m * p.r) ps I > sum
{mp = m; mprp = mr; p = Leaf ps};;

val make-leaf : particle list - > accu

For example:

> make-leaf [{m = 1.0; r = -l.O}; {m = 3.0; r = l . O } l ; ;
val it : accu =

{mp = 4.0;

TREES 105

mprp = 2.0;
p = Leaf [{m = 1.0; r = -I.o;};

{m = 3.0; r = l.~;}];}

A function to compose two accumulators into a Node partition that includes a
pseudo-particle approximant may be written:

> let make-node a1 a2 =

let mp = al.mp + a2.mp
let mprp = al.mprp + a2.mprp
{mp = mp;
mprp = mprp;
p = Node(al.p, {m = mp; r = mprp / mp}, a2.p)};;

val make-node : accu - > accu - > accu

partition itself:
A particle system consists of the lower and upper bounds of the partition and the

type system =

{ lower: float; tree: partition; upper: float } ; ;

The partition must be populated from a flat list of particles. This can be done by
recursively bisecting the range of the partition until either it contains 0 or 1 particles
or until the range is very small:

> let rec partition x0 ps x2 =

match ps with
I [I I [-I as ps - > make-leaf ps
I ps when x2 - x0 < epsilon-float - > make-leaf ps

I PS - >
let xl = (xo + x2) / 2.0
let p s l , ps2 =

make-node
List.partition (fun p - > p.r < XI) ps

(partition x0 psl XI)
(partition xl ps2 x2);;

val partition : float - 5 particle list - > float - > accu

The List. partition function is used to divide the list of particles ps into
those lying in the lower half of the range (psl) and those lying in the upper half
(PS2).

This partition function can be used to create a system from an array of particles:

> let rec make-system lower ps upper =

{lower = lower;
tree = (partition lower (List .of-seq ps) upper) .p;
upper = upper};;

val make-system :

float - 5 particle array - > float - > system

106 DATA STRUCTURES

0.875

I
0.5 0

& &
I I I

C e I 0.8125

{m=l.; r=0.8} {m=l.; r=0.82)

Figure 3.14
approximate the gravitational effect of a cluster of particles in a system.

An unbalanced binary tree used to partition the space r E [0, 1) in order to

For example, consider the partition that results from 3 particles:

let particles =
[[{m = 3.0; r = O.l}; {m = 1.0; r = 0.8};
{m = 1.0; r = 0.82})1;;

make-system 0.0 particles 1.0;;
val it : system =

{lower = 0 . 0 ;

val particles : particle array

tree = Node (Leaf [{m = 3.0; r = 0.1;}],
{m = 5.0; r = 0.384;},
Node (Leaf null, {m = 2.0; r = 0.81;},

(Node (Leaf [{m = 1.0; r = 0.8;}],
{m = 2.0; r = 0.81;},
Leaf [{m = 1.0; r = 0.82;}1),

{m = 2.0; r = 0.81;}, Leaf null)));

Node

upper = I.o;}

This tree is illustrated in figure 3.14. Note that the pseudo-particle at the root node
of the tree correctly indicates that the total mass of the system is m = 3 + 1 + 1 = 5
and the centre ofmass is at T = i (3 x 0.1 + 0.8 + 0.82) = 0.384.

We shall now consider the force on the particle at T = 0.1, exerted by the other
particles at T = 0.8 and 0.82. The force can be calculated exactly, in arbitrary units,
as:

mimj 3 x 1 3 x 1
- + - - 11.9095 - F = C -

(~ j - ~ i) ~ 0.72 0.722 -
j

TREES 107

In this case, the force on the particle at ~i = 0.1 can also be well-approximated by
grouping the effect of the other two particles into that of a pseudo-particle. From the
tree, the pseudo-particle for the range 5 rp < 1 is { m = 2 . 0 ; r = 0 . 8 1 }.
Thus, the force may be well approximated by:

mpmi 3 x 2
11.9024 - N - F N -

(rP - ~ i) ’ 0.71’ -

where mp and rp are the mass and centre of mass of the pseudo-particle, respectively.
Given the representation of a particle system as an unbalanced partition tree, the

force on any given “origin” particle due to the particles in the system can be computed
very efficiently by recursively traversing the tree either until a pseudo-particle in a
non-leaf node is found to approximate the effects of the particles in its branch of
the tree to sufficient accuracy or until real particles are found in a leaf node. This
approach can be made more rigorous by bounding the error of the approximation.

The simplest upper bound of error is obtained by computing the difference between
the minimum and maximum forces which can be obtained by a particle distribution
satisfying the constraint that it must produce the pseudo-particle with the appropriate
mass and position. If ri $i! [X O , 2 2) , the force F is bounded by the force due to masses
at either end of the range and the force due to all the mass at the centre of mass:

mpm c - x o + mpmi < F < ~

(rp - rz)2 - 2 2 - 2 0 ((2 2 - r)2 (2 0 - r)2

For example, the bounds of the force in the previous example are given by r = 0.1,
m = 3, 20 = 0.5, c = 0.81,22 = 1 and M = 2:

3 x 2 3 x 2 0.81 - 0.5 1 - 0.81
5 F 5 ----(1 - 0.5 (1 - 0.1)2 -k (0.5 - 0.1)2

(0.81 - 0.1)2
11.9024 5 F 5 18.8426

If this error was considered to be too large, the function approximating the total
force would bisect the range and sum the contributions from each half recursively. In
this case, the lower half contains no particles and the upper half [XI, 2 2) = [0.75,1)
is considered instead. This tightens the bound on the force to:

11.9024 5 F 5 12.5707

This recursive process can be repeated either until the bound on the force is tight
enough or until an exact result is obtained.

The following function computes the difference between the upper and lower
bounds of the force on an origin particle p due to a pseudo-particle pp representing
a particle distribution in the spatial range from x0 to x2:

> let metric p pp x0 x2 =
if x0 <= p.r && p.r < x2 then infinity else
let sqr x = x * x

108 DATA STRUCTURES

let fmin = p.m * pp.m / sqr (p.r - pp.r)
let g x y = (pp-r - x) / sqr(p.r - y)
let fmax =

fmax - fmin;;
p.m * pp.m / (x2 - xo) * (g xo x2 - g x2 xo)

val metric :

particle - > particle - > float - 5 float - > float

Note that the metric function returns an infinite possible error if the particle p
lies within the partition range [Q, zz), as the partition might contain another particle
at the same position (=+ i).

For example, these are the errors resulting from progressively finer approxima-
tions:

metric { m = 3.0; r = 0.1 } { m = 2.0; r = 0 . 8 1 }
0 . 0 1.0;;

val it : float = infinity

> metric { m = 3.0; r = 0.1 } { m = 2.0; r = 0 . 8 1 }

val it : float = 6.94019227519524939

> metric { m = 3.0; r = 0.1 } { m = 2.0; r = 0 . 8 1 }

val it : float = 0.668276868664461787

> metric { m = 3.0; r = 0.1 } { m = 2.0; r = 0 . 8 1 }

val it : float = 0.277220270131675051

0 . 5 1.0;;

0.75 1.0;;

0.75 0.875;;

A function to compute an approximation to the total force on a particle p due to
other particles in a system sys to within an error de 1 t a can be written:

> let rec force-aux x0 x2 = function
I Leaf list - 5

I Node(left, pp, right) - >
Seq-fold (fun f p2 - 5 f + force2 p p2) 0.0 list

if metric p pp x0 x2 < delta then

else
force2 p pp

let xl = 0.5 * (x0 + x2)
force-aux x0 xl left + force-aux xl x2 right;;

val force-aux : float - > float - >

> let force p system delta =

val force : particle - 5 system - > float - 5 float
force-aux system.lower system.upper sys.tree;;

The tree representation of this particle system is easily constructed by folding our
insert function over the array which was used to test the array-f orce function:

Figure 3.15 Measured performance of the tree-based approach relative to a simple array-
based approach for the evaluation of long-range forces showing the resulting fractional error
6 = 10 - EI/E vs time taken t = ttree/tarray relative to the array-based method.

> let system = make-system 0.0 system 1.0;;
val system : system

The tree-based force function can compute controllably accurate approxima-
tions to the force on an origin particle due to a collection of other particles, trading
accuracy for performance.

3.10.2.3 Performance comparison Applying the force function with in-
creasing permitted error results in a significant improvement in performance:
> force origin system le-9;;
val it : float = 2362356950.0

> force origin system le-6;;
val it : float = 2362356950.0

> force origin system le-3;;
val it : float = 2362356950.0

Moreover, the result does not change within 11 significant figures in this case!
From measurements of real-time performance (illustrated in figure 3.15), when

requiring a force computation with an accuracy of one part in one million accuracy
(log, b = -20), the tree-based approach is approximately one thousand times faster
(log, t N -10) than the array-based approach. Considering that, even when using
the array-based approach, such computations are inherently approximate, a fractional
error of 10W6 is a small price to pay for three orders of magnitude improvement in
performance.

The tree-based approach we have just described is a simple form of what is
now known as the Fast Multipole Method (FMM) [23]. Before being applicable

11 0 DATA STRUCTURES

to most physical systems, the approaches we have described must be generalized to
higher dimensionalities. This generalisation is most easily performed by increasing
the branching factor of the tree from 2 to 2d for a &dimensional problem. A
more powerful generalisation involves associating the branches of the binary tree
with subdivision along a particular dimension (either implicitly, typically by cycling
through the dimensions, or explicitly, by storing the index of the subdivided dimension
in the node of the tree). In particular, this allows anisotropic subdivision of space,
i.e. some dimensions can be subdivided more than others. Anisotropic subdivision is
useful in the context of anisotropic particle distributions, such as those found in many
astrophysical simulations. One such method of anisotropic subdivision is known as
the k-D tree.

3.1 0.3 Abstract syntax trees

Symbolic expressions can be represented very elegantly in F# as a form of tree
known as an abstract syntax tree. This section describes a minimal implementation
of symbolic expressions in F# and some simple functions to manipulate them.

3.10.3.1 Definition Expressions composed of integers, variables, additions and
multiplications may be represented by the variant type:

> type expr =

I I n t of i n t
I Var of s t r i n g
I Add of expr * expr
1 Mu1 of expr * expr ; ;

For example, the following F# value represents the expression (1 + z) x 3:

> Mu1 (Add(1nt 1, Var "x") , I n t 3) ; ;
va l it : expr = Mu1 (Add(1nt 1, Var t t x t t) , I n t 3) ; ;

Such expressions can be manipulated using functions over the expr type. Before
we delve into this area, it is useful to provide a more convenient way to construct
symbolic expressions as well as a more convenient way to visualize them in the F#
interactive mode.

3.10.3.2 Easier construction Symbolic expressions may be constructed by
overloading the + and * operators. This is done by supplementing the definition of
the variant type expr with static member functions (described in section 2.4.1.3):

> type expr =

I I n t of i n t
1 Var of s t r i n g
I Add of expr * expr
I Mu1 of expr * expr
with

s t a t i c member (+) (f , g) = Add(f, g)

static member (-) (f, g) =

static member (*) (f , g) = Mul(f, 9) ; ;
Add(f, Mu1 (Int (-1), g))

The previous example may be constructed more clearly using these infix operators:

> (Int 1 + Var I1xll) * Int 3;;
val it : expr = Mu1 (Add(1nt 1, Var "xll) , Int 3)

In this case, the arithmetic operators naively compose subexpressions. More
intelligent constructors can be used to maintain a more sophisticated and efficient
representation of symbolic mathematical expressions.

3.10.3.3 Evaluating expressions Perhaps the simplest function that acts
upon a symbolic expression is one that evaluates the expression to get a value.
Values of this expr type can be evaluated to the F# type int using the following
eval function:

let rec eval vars = function
I Int n - > n
I Var v - > List.assoc v vars
I Add(f, g) - > eval vars f + eval vars g
I Mu1 (f, g) - 5 eval vars f * eval vars g; ;

val eval : (string * int) list - 5 expr - > int

The argument vars is an association list giving the values of variables that might

For example, the expression (1 + x) x 3 may be evaluated in the context x = 2 to
appear in the expression being evaluated.

get (1 + 2) x 3 = 9:

val it : int = 9
eval [I1xlt, 21 ((Int 1 + Var Itxtt) * Int 3) ; ;

By defining another variant type (typically called value) to represent the kinds
of values that can result from evaluation, this approach can be generalized to evaluate
more complicated expressions containing different kinds of numbers and even strings,
compound types and functions. When expressions can define and apply arbitrary
functions, this eval function becomes an interpreter for a simple programming
language [141. Many programming languages are implemented in this way and
domain-specific languages have a variety of applications in scientific computing.

3.10.3.4 Term rewriting Another important use of symbolic expressions is
rewriting them to produce related expressions. This approach is often known as
term rewriting and involves repeated applications of sets of rewrite rules designed to
transform an expression into a different (but typically equivalent) form.

A higher-order rewrite function can be used to implement generic term rewrit-
ing:

> let rec rewrite rule expr =

11 2 DATA STRUCTURES

let expr' =

match expr with
I Int - I Var - as f - > rule f
I Add(f, 9) - >

I Mul(f, 4) - >

rule(rewrite rule f + rewrite rule g)

rule(rewrite rule f * rewrite rule g)
if expr = expr' then expr else rewrite rule expr';;

val rewrite : (expr - > expr) - 5 expr - > expr

This rewrite function takes a function rule that transforms expressions and ap-
plies it to every subexpression of the given expression. For example, using rewrite
to apply the identity rule to the expression 3 + x will apply the rule to the subex-
pressions 3, then x and then the whole expression 3 + x. This rewrite function
continues rewriting until the expression stops changing.

The rewrite rule (f + g) x h + f x h + g x h can be used to expand products of
sums and may be written:

let rec expand = function

f * h + g * h
I Mul(Add(f, g), h) I Mul(h, Add(f, 9)) - >

I f - > f;;
val expand : expr - > expr

Note that F# does not know that Mu1 (f , g) and Mu1 (9, f) are equivalent,
so we are careful to account for both alternatives in the pattern.

For example, the rewrite and expand functions may be used to expand the
expression (1 + x) x 3 to 1 x 3 + x x 3:

rewrite expand ((Int 1 + Var "x") * Int 3) ; ;

Add(Mu1 (Int 1, Int 3) , Mu1 (Var IIxtl, Int 3))

Symbolic computations are of increasing importance in scientific computing and
the ML family of languages are very powerful tools for such work, with existing ap-
plications ranging from accumulating contributions from billions of Feynman graphs
in string theory [6] to the generation of the high-performance FFT implementations
in software such as MATLAB [9].

We shall revisit the handling of symbolic expressions in F# later in this book, in the
context of parsing (section 5.5.2), metaprogramming (section 9.12) and interoperating
with computer algebra systems (section 11.3).

val it : expr =

CHAPTER 4

NUMERICAL ANALYSIS

Computers can only perform finite computations. Consequently, computers only
make use of finite precision representations of numbers. This has several important
implications in the context of scientific computation.

This chapter provides an overview of the representations and properties of values
oftypes i n t and f l o a t , used to represent members ofthe sets Z andIR, respectively.
Practical examples demonstrating the robust use of floating-point arithmetic are then
given. Finally, some other forms of arithmetic are discussed.

4.1 NUMBER REPRESENTATION

In this section, we shall introduce the representation of integer and floating-point
numbers before outlining some properties of these representations.

4.1.1 Machine-precision integers

Positive integers are represented by several, least-significant binary digits (bits).
For example, the number 1 is represented by the bits . . .OOOOl and the number
11 is represented by the bits . . ,01011. Negative integers are represented in twos-

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

113

114 NUMERICAL ANALYSIS

Figure 4.1 Values i of the type int, called machineprecision integers, are an exact
representation of a consecutive subset of the set of integers i E [1 . . . u] C Z where I and
u are given by min-int and max-int, respectively.

complement format. For example, the number - 1 is represented by the bits . . . 11 11 1
and the number -1 1 is represented by the bits . . . 10101.

Consequently, the representation of integers n E ;Z by values of the type int is
exact within a finite range of integers (illustrated in figure 4.1). This range is platform
specific and may be obtained as the min-int and max-int values. On a 32-bit
platform, the range of representable integers is substantial:

> min-int, max-int;;
val it : int * int = (-2147483648 , 2147483647)

On a 64-bit platform, the range is even larger.
The binary representation of a value of type int may be obtained using the

let binary-of-int n =

following function:

[€or i in Sys.word-size - 1 . . -1 .. 0 - 5

I String.concat llll; ;

if (n > > > i) % 2 = 0 then 11011 else 111" 1

val binary-of-int : int - 5 string

For example, the 32-bit binary representations of 11 and - 11 are:

> binary-of-int 11;;
val it : string = 11000000000000000000000000000101111

val it : string = lllllllllllllllllllllllllllllOIOltl
binary-of-int (-11) ; ;

As we shall see in this chapter, the exactness of the int type can be used in many
ways.

4.1.2 Machine-precision floating-point numbers

In science, many important numbers are written in scientiJic notation. For example,
Avogadro's number is conventionally written NA = 6.02214 x This notation
essentially specifies the two most important quantities about such a number:

1. the most significant digits called the mantissa, in this case 6.02214, and

2. the offset of the decimal point called the exponent, in this case 23.

NUMBER REPRESENTATION 11 5

Figure 4.2 Values of the type f l o a t , called double-precisionjoating-point numbers, are an
approximate representation of real-valued numbers, showing: a) full-precision (normalized)
numbers (black), and b) denormalized numbers (gray).

Computers use a similar, finite representation called “floating point” which also
contains a mantissa and exponent. In F#, floating-point numbers are represented by
values of the type float. Roughly speaking, values of type int approximate real
numbers between min-int and max-int with a constant absolute error of 3 ~ ;
whereas values of the type float have an approximately-constant relative error that
is a tiny fraction of a percent.

In order to enter floating-point numbers succinctly, the F# language uses a standard
“e” notation, equivalent to scientific number notation a x lob. For example, the
number 5.4 x 1OI2 may be represented by the value:

> 6.02214e23; ;
val it : float = 6 .02214e+23

As the name “floating point” implies, the use of a mantissa and an exponent allows
the point to be “floated” to any of a wide range of offsets. Naturally, this format uses
base-two (binary) rather than base-ten (decimal) and, hence, numbers are represented
by the form a x 2‘ where a is the mantissa and b is the exponent. Double-precision
floating-point values consume 64-bits, of which 53 bits are attributed to the mantissa
(including one bit for the sign of the number) and the remaining 1 1 bits to the
exponent.

By default, F# interactive mode only displays a few digits of precision. In order to
examine floating point numbers more accurately from the interactive mode, we shall
replace the pretty printer used to visualize values of the float type with one that
conveys more precision:

fsi.AddPrinter(sprintf ‘1%0.20g11) ;;
val it : unit = ()

Compared to the type int, the exponent in a value of type float allows a huge
range of real-valued numbers to be approximated. As for the type int, this range is
given by the predefined values:

> min-float, max-float;;
val it : float * float =

(2 .22507385850720138e-308 , 1.79769313486231571e+308)

Some useful values not in the set of real numbers R are also representable in
floating-point number representation. Numbers out of range are expressed by the

116 NUMERICAL ANALYSIS

values - 0 . 0 , -Infinity (-m) and Infinity (00). For example, in floating-
point arithmetic = 00:

> 1.0 / 0.0;;
val it : float = Infinity

Floating point arithmetic includes a special value denoted nan in F# that is used
to represent results that are “not a number”. This is used when calculations do not
return a real-valued number J: E R, e.g. when a supplied parameter falls outside the
domain of a function. For example16, In(-1) $! R:

> log -1.0;;
val it : float = NaN

The domain of the log function is 0 5 z 5 00, with log 0 . 0 evaluating to
-Infinity. and log infinity evaluating to Infinity.

The special value nan has some interesting and important properties. In particular,
all comparisons involving nan return f a1 se except inequality of nan with itself:

> nan <= 3.0;;
val it : bool = false

> nan >= 3.0;;
val it : bool = false

> nan <> nan;;
val it : bool = true

However, although comparing nan with itself using equality indicates that nan
is not equal to itself, the built-in compare function returns 0 when comparing nan
with nan as a special case:

> compare nan nan;;
val it : int = 0

This ensures that collections built using the compare function, such as sets (de-
scribed in section 3.4), do not leak when many nan values are inserted:

set [nan; nan; nanl ;;
val it : Set<float> = seq [NaNl

In the case of ln(-l), the implementation of complex numbers provided in
the Math . Compl ex module may be used to calculate the complex-valued result
ln(-1) = Ti:

> log(comp1ex -1.0 0.0) ;;
val it : Complex = O.Or + 3.141592654i

Note that the built-in log function is overloaded to work transparently on the
complex type as well as the float type. This makes it very easy to write functions
that handle complex numbers in F#.

I6Note that negative float literals do not need brackets, i.e. log - 1 . 0 is equivalent to log (- 1 . 0)

ALGEBRA 117

As well as min-f loat, max-f loat, infinity and nan, F# also predefines
contains an epsilon-f loat value:

> epsilon-float;;
val it : float = 2.22044604925031308e-16

This is the smallest number that, when added to one, does not give one:

> 1.0 + epsilon-float;;
val it : float = 1.00000000000000022

Consequently, the epsilon-f loat value is seen in the context of numerical
algorithms as it encodes the accuracy of the mantissa in the floating point represen-
tation. In particular, the square root of this number often appears as the accuracy
of numerical approximants computed using linear approximations (leaving quadrat-
ics terms as the largest remaining source of error). This still leaves a substantially
accurate result, suitable for most computations:

> 1.0 + sqrt epsilon-float;;
val it : float = 1.000000015

This was used in the definition of the d combinator in section 1.6.4.
The approximate nature of floating-point computations is often seen in simple

calculations. For example, the evaluation of is only correct to 16 fractional digits:

> 1 . 0 / 3 . 0 ; ;
val it : float = 0.333333333333333315

In particular, the binary representation of floating-point numbers renders many
decimal fractions approximate. For example, although 1 is represented exactly by
the type float, the decimal fraction 0.9 is not:

> 1.0 - 0.9;;
val it : float = 0.0999999999999999778

Many of the properties of conventional algebra over real-valued numbers can no
longer be relied upon when floating-point numbers are used as a representation. For
more details, see the relevant literature [171.

4.2 ALGEBRA

In real arithmetic, addition is associative:

(u + b) + c = a + (b + c)

In general, this is not true in floating-point arithmetic. For example, in floating-
point arithmetic (0.1 + 0.2) + 0.3 # 0.1 + (0.2 + 0.3):

> (0.1 + 0.2) + 0.3 = 0.1 + (0.2 + 0.3);;
val it : boo1 = false

11 8 NUMERICAL ANALYSIS

In this case, round-off error results in slightly different approximations to the exact
answer that are not exactly equal:

> (0 . 1 + 0.2) + 0.3, 0.1 + (0.2 + 0.3);;
val it : float * float =

(0.60000000000000009, 0.59999999999999998)

Hence, even in seemingly simple calculations, values of type float should not
be compared for exact equality.

More significant errors are obtained when dealing with the addition and subtraction
of numbers with wildly different exponents. For example, in real arithmetic 1.3 +
1015 - 1015 = 1.3 but in the case o f f loat arithmetic:

> 1.3 + le15 - le15;;
val it : float = 1.25

The accuracy of this computation is limited by the accuracy of the largest magni-
tude numbers in the sum. In this case, these numbers are 1015 and -1015, resulting in
a significant error of 0.05 in this case.

In general, this problem boils down to the subtraction of similar-sized numbers.
This includes adding a similar-sized number of the opposite sign.

The accuracy of calculations performed using floating-point arithmetic may often
be improved by carefully rearranging expressions. Such rearrangements often result
in more complicated expressions which are, therefore, slower to execute.

Consider the following function f(2):

fl(2) = G- 1

This involves the subtraction of a pair of similar numbers when 2 N 0. This may be
expressed in F# as:

> let f-1 x =

val f-1 : float - 5 float

2 N 0. For example:

sqrt (1.0 + x) - 1.0;;

As expected, results of this function are significantly erroneous in the region

f (10 - l~) = /= - 1 4.99999999999999875.. . x

> f-1 le-15;;
val it : float = 4.4408920985006262e-16

Note that the result given by F# differs from the mathematical result by N 0.056.
The f1 function may be rearranged into a form which evades the subtraction of

similar-sized numbers around 5 N 0:

INTERPOLATION 1 19

2 ~ 1 0 - l ~

Figure 4.3
arithmetic: a) fi(z) =
line).

Accuracy of two equivalent expressions when evaluated using floating-point
- 1 (solid line), and b) fi(z) = z/(1 + m) (dashed

This alternative definition may be expressed in F# as:

let f-2 x =

x / (1 . 0 + sqrt (1.0 + x));;
val f-2 : float - > float

Although f i (x) = f i (x) b' x E R, the f i form of the function is better behaved
when evaluated in the region x N 0 using floating-point arithmetic. For example, the
value of the function at x = is much better approximated by f i than it was by
f 1 :

> f-2 le-15;;
val it : float = 4 .9999999999999994e-16

This is particularly clear on a graph of the two functions around x N 0 (illustrated
in figure 4.3).

4.3 INTERPOLATION

Due to the accumulation of round-off error, loops should not use loop variables of
type float but, rather, use the type int and, if necessary, convert to the type float
within the loop. Interpolation is an important example of this.

Comprehensions provide an easy way to demonstrate this. The following com-
prehension generates a list of values interpolating from 0.1 to 0.9 inclusive:

120 NUMERICAL ANALYSIS

> r o . 1 . . 0 . 2 . . 0 .91 ; ;
val it : float list = LO.1; 0.3; 0 . 5 ; 0 . 7 ; 0 .91

However, specifying the step size in this way is not numerically stable because
repeated float additions lead to numerical error. For example, using a step size of
0.16 leads to the last value being omitted:
> LO.1 . . 0.16 . . 0 .91 ;;
val it : float list = [0.1; 0 . 2 6 ; 0 .42 ; 0 . 5 8 ; 0 .741

In this case, the result of repeatedly adding the approximate representation of d to
that ofx, starting with x = I , produced an approximation which was slightly greater
than u. Thus, the sequence terminated too early. This produced a list containing five
elements instead of the expected six.

As such functionality is commonly required in scientific computing, a robust
alternative must be found.

Fortunately, this problem is easily solved by resorting to an exact form of arithmetic
for the loop variable, typically int arithmetic, and converting to floating-point
representation at a later stage. For example, the interp function may be written
robustly by using an integer loop variable i:

i - 1
n - 1

zi = 21 + -(Xn - 51)

fori E (1.. . n}:

> let interp xl xn n =

[for i in 1 . . n - 5

XI + float(i - 1) * (xn - XI) / float(n - 1) 1 ;;

Thanks to the use of an exact form of arithmetic, this function produces the desired

interp 0 . 1 0 . 9 6;;

In terms of comprehensions, this is equivalent to:

0.1 + float i * 0 . 8 / 5 . 0 1 ; ;

val interp : float - 5 float - > int - > float list

result:

val it : float list = [0.1; 0 . 2 6 ; 0 .42 ; 0 . 5 8 ; 0 .74 ; 0.91

> [for i in 0 . . 5 - >

val it : float list = [0.1; 0.26; 0 .42 ; 0 .58; 0 .74 ; 0 .91

We shall now conclude this chapter with two simple examples of the inaccuracy
of floating-point arithmetic.

4.4 QUADRATIC SOLUTIONS

The solutions of the quadratic equation ax2 + bx + c = 0 are well known to be:

-b f d n
2a x1,2 =

QUADRATIC SOLUTIONS 121

The root d m may be productively factored out of these expressions:

- b - y
2 1 = - - b + y x 2 = -

2a 2a

These values are easily calculated using floating-point arithmetic:

> let quadratic a b c =

let y = sqrt (b * b - 4.0 * a * c)
(-b + y) / (2.0 * a), (-b - y) / (2.0 * a);;

val quadratic : float - 5 float - > float - > float * float

However, when evaluated using floating-point arithmetic, these expressions can
be problematic. Specifically, when b2 >> 4ac, subtracting 4ac from b2 in the
subexpression b2 - 4ac will produce an inaccurate result approximately equal to b2.
This results in -b + d m becoming equivalent to -b + b and, therefore, an
answer of zero.

For example, using the conditions a = 1, b = lo9 and c = 1, the correct solutions
are x N - lop9 and - lo9 but the above implementation of the quadrat i c function
rounds the smaller magnitude solution to zero:

> quadratic 1.0 le9 1.0;;
val it : float * float = (0 . 0 , -le+9)

The accuracy of the smaller-magnitude solution is most easily improved by cal-
culating the smaller-magnitude solution in terms of the larger-magnitude solution,
as:

This formulation, which avoids the subtraction of similar values, may be written:

let quadratic a b c =

let y = sqrt (b * b - 4.0 * a * c)
let xl = (if b < 0.0 then y-b else -y-b) / (2.0 * a)
XI, c / (XI * a);;

val quadratic : float - > float - > float - > float * float

This form of the quadratic function is numerically robust, producing a more
accurate approximation for the previous example:

quadratic 1.0 le9 1.0;;
val it : float * float = (-1000000000.0, -1e-09)

Numerical robustness is required in a wide variety of algorithms. We shall now
consider the evaluation of some simple quantities from statistics.

122 NUMERICAL ANALYSIS

4.5 MEAN AND VARIANCE

In this section, we shall illustrate the importance of numerical stability using expres-
sions for the mean and variance of a set of numbers.

The mean value 2 of a set of n numbers x k is given by:

The sum may be computed by folding addition over the elements and dividing by
the length:

> let mean xs =

val mean : #seq<float> - 5 float
Seq.fold (+) 0.0 xs / float(Seq.length xs);;

Note that this definition of the mean function can be applied to any sequence

For example, the mean of { 1 , 3 , 5 , 7 } is i(1 + 3 + 5 + 7) = 4:

mean L 1 1 . 0 ; 3.0; 5.0; 7 .011 ; ;

Although the sum of a list of floating point numbers may be computed more
accurately by accumulating numbers at different scales and then summing the result
starting from the smallest scale numbers, the straightforward algorithm used by this
mean function is often satisfactory. The same cannot be said of the straightforward
computation of variance.

container (lists, arrays, sets etc.).

val it : float = 4.0

The variance u2 of a set xk of numbers is typically written:

Although variance is a strictly non-negative quantity, the subtraction of the sums
in this expression for the variance may produce small, negative results when com-
puted directly using floating-point arithmetic, due to the accumulation of rounding
errors. This problem can be avoided by computing a numerically robust recurrence
relation [171:

Thus, the variance may be computed more accurately using the following func-
tions:

let variance-aux (m, s , k) x =

let m’ = m + (x - m) / k

OTHER FORMS OF ARITHMETIC 123

m’, s + (x - m) * (x - m’), k + 1.0;;
val variance-aux :

float * float * float - > float - >

float * float * float

let -, s, n2 = Seq.fold aux (0.0, 0.0, 1 . 0) xs
s / (n2 - 2.0);;

let variance xs =

val variance : #seq<float> - > float

The auxiliary function vari ance-aux accumulates the recurrence relation
when it is folded. The variance function simply folds this auxiliary func-
tion over the sequence to return a better-behaved approximation to the variance

For example, the variance of { 1 ,3 ,5 ,7} is o2 = 6; and the variance function
gives an accurate result:

variance L (1 . 0 ; 3.0; 5.0; 7.011;;
val it : float = 6 .66666666666666696

The numerical stability of this variance function allows us to write a function
to compute the standard deviation o the obvious way, without having to worry about
negative roots:

> let standard-deviation x =

val variance : #seq<float> - > float

oz N Sn/ (n - 1).

sqrt (variance x) ; ;

Clearly numerically stable algorithms which use floating-point arithmetic can be
useful. We shall now examine some other forms of arithmetic. ’

4.6 OTHER FORMS OF ARITHMETIC

As we have seen, the int and float types in F# represent numbers to a fixed,
finite precision. Although computers can only perform arithmetic on finite-precision
numbers, the precision allowed and used could be extended indefinitely. Such repre-
sentations are known as arbitrary-precision numbers.

4.6.1 Arbitrary-precision integer arithmetic

The vast majority of F# programs use machine-precision integer arithmetic (described
in section 4.1.1) because it is provided in hardware and, consequently, is extremely
efficient. In some cases, programs are required to handle integers outside the range
of machine-precision integers. In such cases, F# programs can use the built-in
Math. BigInt type.

> open Math;;

Arbitrary-precision integers may be specified as literals with an I suffix:

124 NUMERICAL ANALYSIS

> 1231;;
val it : bigint = 1231

The Big Int class provides some useful functions for manipulating arbitrary-
precision integers such as a factorial function:
> BigInt.factoria1 331;;
val it : bignum = 868331761881188649551819440128000000001

Arbitrary-precision integers are used in some parts of scientific computing, most
notably in computer algebra systems.

4.6.2 Arbitrary-precision rational arithmetic

Rationals, fractions of the form :, Q > 0, p E Z, may be represented exactly using
rational arithmetic. This form of arithmetic uses arbitrary precision integers to
represent p and q.

Compared to the type float, rational arithmetic allows arbitrary precision to
be used for any value in R. However, arithmetic operations on floating point num-
bers are O(1) but arithmetic operations on arbitrary-precision rational numbers are
asymptotically slower. The larger the numerators and denominators, the slower the
calculations.

Arbitrary-precision rational arithmetic is implemented by the BigNum class. Ra-
tional literals are written 12 3N or:

> 123N / 456N;;
val it : bignum = 41/152N

Note that the fraction is automatically reduced, in this case by dividing both

For example, an arbitrary-precision factorial function may be written:
numerator and denominator by 3.

> let rec factorial = function
I 0 - 5 1N
I n - 5 BigNum.of-int n * factorial (n - 1);;

val factorial : int - > bignum

> factorial 33;;
val it : bignum = 8683317618811886495518194401280000000N

Rational arithmetic, represented by the constructor Ratio, may then be used to
calculate an approximation to:

O ” 1 e=C,!
n=O

> open Math;;

let rec e = function
I 0 - > 1N
I n - > 1 N / factorial n + e (n - 1) ;;

OTHER FORMS OF ARITHMETIC 125

val e : int - 5 BigNum

For example, the first eighteen terms give the rational approximation to e of:

1 7437374403113
n! = 2736057139200

17

n = O

> e 17 ; ;
val it : string = 7437374403113 /2736057139200N

Converting this result from rational representation into a floating point number
demonstrates that the result is very close to the value given by a native floating point
evaluation of e:

> Math.BigNum.to-float(e 1 7) ; ;
val it : float = 2 . 7 1 8 2 8 1 8 2 8

> exp 1 . 0 ; ;
val it : float = 2 . 7 1 8 2 8 1 8 2 8

Rational arithmetic can be useful in many circumstances, including geometric
computations.

4.6.3 Adaptive precision

Some problems can use ordinary precision floating-point arithmetic most of the time
and resort to higher-precision arithmetic only when necessary. This leads to adaptive-
precision arithmetic, which uses fast, ordinary arithmetic where possible and resorts
to suitable higher-precision arithmetic only when required.

Geometric algorithms are an important class of such problems and a great deal
of interesting work has been done on this subject [24]. This work is likely to be of
relevance to scientists studying the geometrical properties of natural systems.

This Page Intentionally Left Blank

CHAPTER 5

INPUT AND OUTPUT

In this chapter, we examine the various ways in which an F# program can transfer
data, including printing to the screen and saving and loading information on disc. In
particular, we examine some sophisticated tools for F# which greatly simplify the
task of designing and implementing programs to load files in well-defined formats.

5.1 PRINTING

The ability to print information on the screen or into a string or file is useful as a means
of conveying the result of a program (if the result is simple enough) and providing
run-time information on the current state of the program as well as providing extra
information to aid debugging. Naturally, F# provides several functions to print to the
screen. In particular, the print f function can be used to print a variety of different
types and perform some simple formatting.

The print f fbnction understands several format speciJiers:

%sprint a string

0 %d print an int

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc

127

128 INPUT AND OUTPUT

0 %f printa float

0 %g print a float in scientific notation

0 %a print a value using a custom print function

0 %O print a value of any type using the ToSt ring () method.

0 %A print a value of any type using the built-in structural pretty printer.

Special characters can also be printed:

0 \nnewline

0 \ I1 double-quotes

0 \ t t a b

For example, the following prints a string in quotes, an int and then a float:

> printf "String: \ l l%s\l l , int: %d, float: %f\n" "foe" 3

String: llfooll, int: 3, float: 7.4
7.4;;

The following function uses the generic %A format specifier to print a value as a
running F# interactive session would:

> printf I1%Al1 (1, 2.3, llfooll);;
(1, 2.3, "foo")

The ability to pretty print values of any type at run time is particularly useful
during debugging. There are also related functions that use the same syntax to print
into a string or to a channel.

5.1.1 Generating strings

Values can be printed into strings using the sprint f function. This functionaccepts
the same format specifiers as the printf function.

For example, the following prints the same result as the previous example but
returns a string containing the result:

> sprintf IIString: \ll%s\ll, int: %d, float: %f\n" "foe" 3

val it : string = "String: \I1foo\I1, int: 3, float: 7.4"
7.4;;

The %a format specifier is most easily elucidated using a example based upon the
sprint f function. This format specifier expects two corresponding arguments, a
print function g and its argument x:

> let f g x = sprintf I1%ag1 9 x;;
val f : (unit - 5 'a - > string) - > 'a - > string

GENERIC PRINTING 129

This is particularly useful when printing recursive data structures such as lists and
trees as a print function can pass itself or another related function as an argument to
sprint f.

The F# interactive mode can be supplemented with custom pretty printers for
user-defined types by supplying a function to convert a value of that type into the
corresponding string to the f si .Addprinter function. A function to convert a
value of the type expr to a string may be written using the sprint f function and
the %d and %a format specifiers:

> let rec string-of-expr () expr =

I Int n - > sprintf I1%dl1 n
I Var v - > v
I Add(f, g) - >

sprintf "%a + %af1
string-of-expr f string-of-expr g

I Mul(f, 9) - >
sprintf "%a * %a"
string-of-mu1 f string-of-mu1 g

I Int - I Mu1 - as f - > string-of-expr () f
1 Add - as f - 5 sprintf ll(%a)ll string-of-expr f;;

and string-of-mu1 () = function

val string-of-expr : unit - 5 expr - > string
val string-of-mu1 : unit - > expr - > string

Printing of subexpressions inside a product are dispatched to the auxiliary function
string-of-mu1 in order to bracket subexpressions that have a lower precedence.
Specifically, any addition inside a multiplication must be bracketed when pretty
printing an expression.

The previous example expression is now printed more comprehensibly by the F#
interactive mode:

> (Int 1 + Var I1xl1) * Int 3;;
val it : expr = (1 + x) * 3;;

Note that the subexpression 1 + 2 is bracketed correctly when it is printed because
the s t ring-of -expr function takes the relative precedence of multiplication over
addition into account.

5.2 GENERIC PRINTING

In addition to printing values of specific types, the F# programming language also
provides a print-any function (equivalent to printf II%AI1) to print values of
any type. For example, to print a list of 2-tuples in F# syntax:

> print-any [I, 2; 2, 31; ;
[(I, 2) ; (2 , 3) l

Analogously, there is an any-to-string function:

130 INPUT AND OUTPUT

> any-to-string [I, 2; 2, 31;;
val it : string = "[(I, 2); (2, 3)1"

This is particularly useful when debugging, to avoid having to write conversion
functions for each and every type.

5.3 READING FROM AND WRITING TO FILES

The act of saving data in a file is performed by opening the file, writing data to it
and then closing the file. F# provides an elegant and efficient way to do this using
functionality provided by .NET in the System. I0 namespace combined with F#'s
sequence expressions.

The following lines - - of file function returns a sequence of the lines in the
file with the given name:

> open System.10;;

let lines-of-file filename =

seq { use stream = File.OpenRead filename
use reader = new StreamReader(stream)
while not reader.EndOfStream do
yield reader.ReadLine0 };;

val lines-of-file : string - > seq<string>

The sequence expression in this finction loops until the end of the file, reading
and yielding each line of the file in turn. The use bindings are analogous to let
bindings except that they also dispose of the created objects when enumeration over
the sequence is complete. In this case, the use bindings cause the file to be closed
when enumeration over the sequence is complete.

The .NET platform actually provides similar functions for reading whole files
such as stream. ReadToEnd () but this sequence expression has an important
advantage: the file is only read as the sequence is enumerated over. This is a form
of lazy evaluation and is one of the most important benefits of sequences in F#. For
example, this lines-of-f ile function can be used to read only the first three
lines of a file without having to read the entire file first:

> lines-of-file ttfib.mltt

val it : seqcstrings =

I > Seq.take 3;;
["let rec fib = functionll;

11 1 o I 1 as n - > ,It;
I n - > fib(n-1) + fib(n-2)"I

The lines-of-file function can be used to count the number of space-

lines - - of file @1TC:\bible13.txt11
I > Seq.map (String.split [' 'I > > Seq.length)

separated words in a file as follows:

SERIALIZATION 131

I > Seq.fold (+) 0;;
val it : int = 823647

An important characteristic of this word counter is that it handles a single line
at a time and, consequently, has very low memory requirements compared to more
obvious solutions that read in the whole file. This kind of programming makes F#
interactive sessions a very powerful tool for data dissection and manipulation.

This functionality is of particular importance when handling large amounts of
data, such as many database applications. This function will be used to write a
simple word frequency counter in chapter 6. The use of sequence expressions to
transparently interrogate databases on demand is covered in chapter 10.

5.4 SERIALIZATION

The following save function uses the built-in .NET serialization routines to save
any value of any type to the given file:

open System.Runtime.Serialization.Formatters.Binary;;

> let save filename x =

use stream =

(new BinaryFormatterO) .Serialize(stream, x);;
new FileStream(filename, FileMode.Create)

val save : string - 5 'a - > unit

For example, the following saves a 3-tuple to the "test.dat" file:
> save "test .dat" (1, 3 .O, ["piece"l) ;;
val it : unit = ()

function:
The following load function reads back a value that was saved by the save

let load filename =

use stream = new FileStream(filename, FileMode.Open)
(new BinaryFormatter()) .Deserialize(stream, x)
I > unbox; ;

val load : string - > 'a

For example, the saved 3-tuple can be loaded back with:
> (load lltest.datll : int * float * string list);;
val it : int * float * string list = (1, 3.0, [llpiecelll)

Note that we are careful to annotate the type of the data. Although such type
annotations can be omitted in compiled code under certain circumstances, it is always
a good idea to make this information explicit in the source code as we have done.

The standard .NET serialization routines can store and retrieve arbitrary data in a
binary format. Data stored in non-trivial formats is typically read using techniques
known as Zexing andparsing. Serialization is simpler but often an order of magnitude
slower than using a custom format, even a readable text-based format.

132 INPUT AND OUTPUT

Abstract
Characters . Tokens Syntax

Tree

Lexing Parsing

/=(

jll

121
0

I 1DENT"x" I

I INTEGER2 I

d

Figure 5.1 Parsing character sequences often entails lexing into a token stream and then
parsing to convert patterns of tokens into grammatical constructs represented hierarchically by
a tree data structure.

5.5 LEXING AND PARSING

In addition to the primitive input and output functions offered by F#, the language
is bundled with very powerful tools, called f slex and f syacc, for deciphering
the content of files according to a formal grammar. This aspect of the language has
been particularly well honed due to the widespread use of this family of languages
for writing compilers and interpreters, i.e. programs which understand, and operate
on, other programs.

In the context of scientific computing, providing data in a human readable format
with a formally defined grammar is highly desirable. This allows a data file to convey
useful information both to a human and to a computer audience. In the case of a
human, the file can be read using a text editor. In the case of a computer, the file
can be parsed to produce a data structure which reflects the information in the file
(illustrated in figure 5.1). In the latter case, the program could then go on to perform
computations on the data.

The ability to use f s lex and f syacc is, therefore, likely to be of great benefit
to scientists. We shall now examine the use of these tools in more detail.

LEXING AND PARSING 133

5.5.1 Lexing

The first step in using these tools to interpret a file is called lexing. This stage involves
reading characters from the input, matching them against patterns and outputting a
stream of tokens. A token is a value which represents some of the input. For example,
a sequence of space-separated digits could be lexed into a stream of integer-valued
tokens.

5.5.1. 1 Using String. s p l i t The task of lexing can be elucidated by the simple
example of splitting a file into lines and words, expected to represent the columns
and elements of a matrix, respectively.

A function to read a matrix by splitting each line into words, converting each
word into a float and constructing an F# Matrix may be written in terms of the
lines-of-file function that was defined in section 5.3:

let read-matrix filename =

lines-of-file filename
15 Seq.map (String.spIit [‘ ‘ I)
I > Seq.map (Seq.map float)
) > Math.Matrix.of-seq;;

val read-matrix : string - > Math.Matrix

Note that reading from the file is deferred until the call to Matrix. of-seq
because Seq is lazy.

The String. split function is lazily mapped over this sequence to obtain a
sequence of string lists representing the space-separated words on each line. Two
sequence maps are used to apply the f loat-of-string function to each element.
Finally, the Matrix. of-seq function enumerates the elements of the sequences
(opening, reading and closing the file) and generates the matrix result.

For example, reading a 3 x 3 matrix from a file:

> read-matrix @ “ C : \vectors. txt” ; ;
val it : Math.Matrix = matrix “1.0; 2.0; 3.01;

L4.0; 5 . 0 ; 6 . 0 1 ;
L7.0; 8 . 0 ; 9 . 0] ; 1

Splitting strings can be a useful way to lex and parse very simple formats. However,
this approach is not very powerful or extensible. In particular, lexing mathematical
expressions with a sophisticated syntax would be very tedious. Fortunately, the
f s 1 ex tool allows more complicated lexing to be performed easily.

5.5.1.2 Using fslex The fslex tool is a lexer generator that takes F#-like
source code in a file with the suffix “.fsl” that describes a lexer and compiles it into
efficient F# source code that implements that lexer, which can then be compiled with
the F# compiler as an ordinary source file. The resulting lexer translates an incoming
stream of characters into an outgoing stream of tokens. A token is a variant type. In
order to produce tokens, patterns are spotted in the stream of characters by matching

134 INPUT AND OUTPUT

them against regular expressions, also known as regexs. Like pattern matches, the
regexs handled by f s 1 ex may contain several kinds of structure:

’x’ match the specified, single character.

a - z match any character from a range. ’ 9 ”

- match any single character.

“string” match the given string of characters.

Several other constructs are specific to regexps:

[’a’ ’c’ ’e’] match any regexp in the given set.

[A ’a’ ’c’ ’e’] match any regexp not in the given set.

regexp * match zero or more repetitions of a string matching regexp.

regexp + match one or more repetitions of a string matching regexp.

regexp ? match regexp or the empty string.

regexpl# regexpa match any string which matches regexpl and does not match
regexpz.

regexpl I regexpa match any string which either matches regexpl or matches regexpa.

regexpl regexpz concatenate a string matching regexpl with a string matching
regexpa.

eof match the end of file.

In an f s lex file (with the suffix “.fsl”), regular expressions can be named using the
let construct. A regular expression named digit that matches any decimal digit
may be written:

let digit = [’ 0 ‘ - ‘ 9 1 1

String representations of floating-point numbers are somewhat more adventurous.
An initial attempt at a regular expression might match a sequence a digits followed
by a full-stop followed by another sequence of digits:

let floating = digits+ I . ’ digits+

This will match 12 .3 and 1 . 2 3 correctly but will fail to match 12 3 . and . 1 2 3.
These can be matched by splitting the regular expression into two variants, one which
allows zero or more digits before the full-stop and one which allows zero or more
digits after the full-stop:

let floating = digit+ ’ . I digit* I digit* I . ‘ digit+

Note that a single ‘ . I does not match this floating regexp.

LEXING AND PARSING 135

As we have already seen, a conventional notation (e.g. 1,000,000,000,000~lel2)
exists for decimal exponents. The exponent portion of the string (“el2”) may be
represented by the regexp:

let exponent = [’el ’E’l [’ + ’ ‘-’I? digit+

as strings may be written:

let digit = [‘0’-’9’]

let mantissa = digit+ ’ . ‘ digit* 1 digit* ‘ . I digit+

let exponent = [’el ‘E‘] [‘ + ’ ‘-‘I? digit+

let floating = mantissa exponent?

Thus, a regular expression matching positive floating-point numbers represented

On the basis of these example regular expressions for integer and floating-point
number representations, we shall now develop a lexer. A file giving the description
of a lexer for f slex has the suffix “.fsl”. Although lexer definitions depend upon
external declarations, we shall examine the description of the lexer first. Specifically,
we shall consider an example file “lexer.fs1”:

open Parser
open Lexing

{

1
let digit = [’0’-‘9’1

let mantissa = digit+ ‘ . ‘ digit* 1 digit* ‘ . I digit+

let exponent = [’e‘ ‘E’] [’ + ‘ ’-‘I? digit+

let floating = mantissa exponent?

rule token = parse
I [‘ ‘ ‘\t‘ ‘\n’] { token lexbuf }
I floating
I digit+ { NUMBER(float(1exeme lexbuf)) }
I ‘ + I I ADD 1

I MUL 1 I # * I

I eof { EOF 1
This lexer defines regular expressions for digits and floating point numbers (as

a mantissa followed by an optional exponent) and uses these regular expressions to
convert a stream of characters into a stream of four different kinds of token: NUMBER,
ADD, MUL and EOF.

The lexer contains a single rule called token. The first pattern in this rule matches
whitespace (spaces, tabs and newlines) and the corresponding action simply calls the
token rule recursively to continue lexing, i.e. it skips all whitespace.

The next two patterns match either the floating regular expression or se-
quences of one or more digits, converting the matched string (given by applying
the Lexing . lexeme function to the lexbuf variable) into a token containing

136 INPUT AND OUTPUT

the number as a value of the type float. The order of the regular expressions is
important in this case. If the stream were searched for digits first then the front of a
floating point number would be matched up to the decimal point or e, leaving either
an incorrect float to be parsed next (the fractional part) or an erroneous result. For
example, the regular expression digit + would match 12 3 in 12 3 . 4 5 6, leaving
. 4 5 6 to be matched next.

The next two patterns match the + and * symbols in the input, generating tokens
called ADD and MUL, respectively.

The final pattern generates an EOF token when the input character stream ends
(denoted by the built-in regexp eof).

This lexer can be compiled into an F# program using the f s lex compiler which,
at the time of writing, must be invoked manually from a DOS prompt. For example:

c : \ . . . s fslex lexer.fs1
compiling to dfas (can take a while . . .)
148 NFA nodes
17 states
writing output

The resulting F# source code which implements a lexer of this description is placed
in the "1exer.fs" file. Before this file can be compiled, we must create the Parser
module which it depends upon.

In many cases, a parser using a lexer would itself be generated from a parser
description, using the f syacc compiler. We shall describe this approach in the next
section but, before this, we shall demonstrate how the functionality of a generated
lexer may be exploited without using f syacc.

Before compiling the F# program "lexer.fs", which implements our lexer, we must
create the Parser module which it depends upon:

module Parser =

type token =

I NUMBER of float

I MUL
I EOF; ;

I ADD

Note that the NUMBER, ADD, MUL and EOF tokens used by the lexer are actually
nothing more than type constructors, in this case for for the Parser. token type.
Having defined the Parser module and, in particular, the Parser. token variant
type, we can include the Lexer module in the interactive session using the #load
directive:

#load "1exer.rnl"; ;
. . .

A function to lex a string into a sequence of tokens may be written:

> let rec lex lexbuf =

match Lexer.token lexbuf with

LEXING AND PARSING 137

I Parser.EOF as token - > [token]
I token - > token : : lex lexbuf;;

val lex :

Tools.FsLex.LexBuffer<Lexing.position, bytes - >

For example, the expression 1 + 2 x 3 is lexed into six tokens:

Parser.token list

> lex (Lexing.from-string ”1 + 2 * 3 ”) ;;
val it : seq<token>

= [NUMBER 1.0; ADD; NUMBER 2.0; MUL; NUMBER 3 . 0 ; EOF]

The capabilities of a lexer can clearly be useful in a stand-alone configuration.
In particular, programs using lexers, such as that we have just described, will val-
idate their input to some degree. In contrast, many current scientific applications
silently produce erroneous results. However, the capabilities of a lexer can be greatly
supplemented by an associated parser, as we shall now demonstrate.

5.5.2 Parsing

The parsing stage of interpreting input converts the sequence of tokens from a lexer
into a hierarchical representation (illustrated in figure 5.1) - the abstract syntax tree
(AST). This is performed by accumulating tokens from the lexer either until a valid
piece of grammar is recognised and can be acted upon, or until the sequence of tokens
is clearly invalid, in which case a Parsing. Parse-error exception is raised.

The f syacc compiler can be used to create F# programs which implement a
specified parser. The specification for a parser is given by a description in a file with
the suffix “.fsy”. Formally, these parsers implement LALR(1) grammars described
by rules provided in Backus-Naur form (BNF).

For example, consider a parser, based upon the lexer described in the previous
section, which interprets textual data files. These files are expected to contain simple
mathematical expressions composed of numbers, additions and multiplications.

A program to parse these files can be generated by f syacc from a grammar
which we shall now describe. Given a file “name.fsy” describing a grammar, by
default f syacc produces a file “name.fs” containing an F# program implementing
that grammar. Therefore, in order to generate a Parser module for the lexer, we
shall place our grammar description in a “parser.fsy” file.

Grammar description files begin by listing the definitions of the tokens which the
lexer may generate. In this case, the possible tokens are NUMBER, ADD and MUL and
EOF.

Tokens which carry no associated values are defined with:

%token token1 token2 .
Tokens which carry an associated value of type type are defined by:

%token <type> token1 token2 . . .
Thus, the tokens for our lexer can be defined by:

138 INPUT AND OUTPUT

%token ADD MUL EOF
%token < f l o a t > NUMBER

The token definitions are followed by declarations of the associativities and relative
precedences (listed in order of increasing precedence) of tokens. In this case, both
ADD and MUL are left associative and MUL has higher precedence:

% l e f t ADD
% l e f t MUL

Then a declaration of the entry point into the parser. In this case, we shall use a
parsing rule called expr to parse expressions:

% s t a r t exp r

case, we shall use a type expr:

%type <expr> expr

This is followed by a declaration of the type returned by the entry point. In this

Before the rules and corresponding actions describing the grammar and parser are
given, the token and entry-point definitions are followed by a separator:

%%

Like ordinary pattern matching, the guts of a parser is represented by a sequence
of groupings of rules and their corresponding actions:

1 rule1 { action1 }
I rule2 { action2 }

1 rule, { action, }

group :

. . .

,

A grouping represents several possible grammatical constructs, all of which are
used to produce F# values of the same type, i.e. the expressions action1 to action,
must have the same type. Rules are simply a list of expected tokens and groupings. In
particular, rules may be recursive, i.e. they may refer to themselves, which is useful
when building up arbitrarily long lists.

Tokens and rule groups carry values. The value of the nth-matched subexpression
of a rule is referred to by the variable $n in the corresponding action.

This example parser contains a single, recursive group of rules that parses simple
symbolic expressions:

expr :
1 NUMBER { Num $1 }
I OPEN expr CLOSE { $2 }
I expr ADD expr { $1 + $3 }
I expr MUL expr { $1 * $3 }

LEXING AND PARSING 139

The first rule matches a NUMBER token and generates a Num node in the AST with
the float value carried by the token (denoted by $1). The second rule returns the
AST of a bracketed expression. The third and fourth rules handle the infix addition
and multiplication operators, generating Add and Mu1 nodes in the AST using the
static member functions of the expr type.

An F# program “parser.fs” and interface “parser.fsi” that implement this parser,
described in this “parser.fsy” file, may be compiled using the f syacc program:

$ fsyacc parser.fsy
building tables
computing first function
building kernels
computing lookahead relations
building lookahead table
building action table
building goto table
10 states
2 nonterminals
9 terminals
5 productions
#rows in action table: 10
#unique rows in action table: 7
maximum #different actions per state: 4
average #different actions per state: 2

The lexer and parser can be tested from the F# interactive mode. The parser
must be loaded before the lexer and the expr type must be loaded before the parser.
Therefore, we begin with the definition of the expr type:

> type expr =

I Num of float
I Add of expr *
I Mu1 of expr *

static member (
static member (

The Parser module that

with

expr
expr

+) (f, 9) = Add(f, 9)
*) (f, 9) = Mul(f, 9) ;;

uses this expr type can be loaded from the generated
file using the #load directive:

> #load “parser. f s ” ; ;
. . .

The Lexer module that uses the Parser module can be loaded from the gener-
ated file using the #load directive:

#load “1exer.fs“;;
. . .

140 INPUT AND OUTPUT

Finally the lexer and parser can be used to parse a simple symbolic expression to
produce an abstract syntax tree by applying the Lexer . token function and the lex
buffer to the higher-order Parser. expr function:

> Lexing.from-string "1 + 2 * 3"
(> Parser.expr Lexer.token;;

val it : expr = Add(Num 1.0, Mul(Num 2.0, Num 3.0))

Note that the lexer handled the whitespace and the parser handled the operator
precedences.

Thus our lexer and parser have worked together to interpret the integer and floating-
point numbers contained in the given text as well as the structure of the text in order
to convert the information contained in the text into a data structure that can then be
manipulated by further computation.

Moreover, the lexer and parser help to validate input. For example, input that
erroneously contains letters is caught by the lexer. In this case, the lexer will raise
Fai 1ureExcept ion. A file which erroneously contains a floating-point value
where an integer was expected will be lexed into tokens without fault but the parser
will spot the grammatical error and raise the Parsing . Parser-error exception.

In an application, the call to the main function in the Parser module can be
wrapped in a try . . with to catch the Parsing. Parser-error exception and
handle it.

As we have seen, the f slex and f syacc compilers can be indispensable in
both designing and implementing programs that use a non-trivial file format. These
tools are likely to be of great benefit to scientists wishing to create unambiguous,
human-readable formats.

CHAPTER 6

SIMPLE EXAMPLES

This chapter presents a wide variety of code snippets implementing useful functions
in different ways. These examples should serve to ossify the readers understanding
of the F# language in order to prepare them for the complete example programs in
chapter 12. Whilst describing these functions we endeavour to explain the relation-
ships between the styles chosen and the information disseminated in the previous
chapters of this book.

6.1 FUNCTIONAL

Many useful mathematical and scientific constructs can be encoded very elegantly
by exploiting the features of functional programming. In the introduction, we saw a
remarkably simple and yet powerful numerical derivative function. In this section,
we shall examine more functions that will be useful to scientists using F#.

F#for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

141

142 SIMPLE EXAMPLES

6.1.1 Nest

The nest function is found in many technical computing environments. This combi-
nator nests applications of its function argument f to a given value x a given number
of times n. The nest function may be written:

let rec nest n f x =

match n with

I n - > nest (n - 1) f (f x);;
I O - > X

val nest : int - 5 (’a - 5 ’a) - > ‘a - > ’a

Note that we have phrased the recursive call to nest such that it is tail re-
cursive. An equivalent but non-tail-recursive implementation would have been
f (nest (n - 1) f XI.

For example, in the context of the numerical derivative combinator d and the
example function f = x3 - x - 1 from section 1.6.4, the third derivative of f may
be written:
> let f ” ’ = nest 3 d f;;
val f”‘ : (float - > float)

The nest combinator has many uses.

6.1.2 Fixed point

Iterative algorithms sometimes terminate when an iteration leaves the result un-
changed. This is known as iterating tofixedpoint. A f ixedgoint combinator
can implement this functionality using recursion:
> let rec fixedgoint f x =

match f x with
I f-x when x = f-x - > x
I x - > fixedsoint f x;;

val fixedgoint : (‘a - > ’b) - > ‘a - 5 ‘b

For example, the golden ratio may be expressed as the fixed point of the iteration
x,+1= J-:
> fixedgoint (fun x - 5 sqrt (1.0 + x)) 1.0;;
val it : float = 1.618033989

Note that this iterative algorithm does not terminate in theory. The function only
terminated because the next result was rounded to the same float value, i.e. the
result was unchanged to within the error of a floating point value.

6.1.3 Within

In scientific computing, many algorithms act only upon values that lie within a specific
range. For example, to sum the elements of a list that lie within the range [3 . . .6] we
might filter out those elements first:

FUNCTIONAL 143

> [1 . . 1 0 1
I > List.filter (fun x y - > 3 <= y && y <= 6)
I > List.fold-left (+) 0;;

val it : int = 18

or filter as we fold by specifying a more complicated function argument:

) > List.fold-left
5 [1 . . 101

(fun x y - >

val it : int = 18
if 3 <= y && y <= 6 then x + y else x) 0;;

The former approach is less efficient because it allocates and then deallocates
a temporary list. The latter approach is more efficient but less comprehensible.
Consequently, it is useful to have a combinator that “propagates” a fold only when
the argument lies within a specified range:

> let within x0 xl f accu x = combinator

val within :

if xo <= x && x <= xl then f accu x else accu;;

‘a - > ’a - 5 (’b - > ’a - > ‘b) - > ’b - > ’a - > ’b

For example, the within combinator can be used to filter out elements lying
within a range without creating an intermediate data structure or resorting to se-
quences (which are also slower):

List.fold - left (within 3 6 (+)) 0 [l . . 101 ;;

Note that we have been careful to order the arguments to the within function
such that currying can be exploited to simplify uses of this function in a left fold.

Higher-order functions can clearly be used to aggressively factor code without
sacrificing clarity or performance. Indeed, clarity has arguably been improved in this
case and, as we shall see in chapter 8, this is an excellent way to write efficient code.

val it : int = 18

6.1.4 Memoize

Caching the results of computations to avoid recomputation can be a very effective
optimization. This applies not only to complicated numerical computations but also
to functions that are slowed by external limitations, such as database connectivity,
web access and so on.

The Fibonacci function is the pedagogical example of a function that can be
accelerated using caching:

> let rec fib = function
I o 1 1 a s n - > n
I n - > fib(n - 1) + fib(n - 2);;

val fib : int - 5 int

144 SIMPLE EXAMPLES

This function is slow to compute even small Fibonacci numbers, taking 0.222s to
compute the 35th Fibonacci number:

> time fib 35;;
Took 222ms
val it : int = 9227465

The fib function is heavily recursive, making two recursive calls almost every
time it is invoked (each of which make two more recursive calls and so on). Conse-
quently, the asymptotic complexity of this function is O(an). As the function is slow
to execute, the results can be productively cached for reuse.

6.1.4.1 Simple memoization Fortunately, even the generic concept of caching
the results of function calls can be factored out and expressed as a higher-order
function. This technique is known as memoization. A higher-order function to
memoize a given function may be written:

> let memoize f =

let m = Hashtbl.create 1
fun x - >
try m. [XI with Not-found - >

let f-x = f x
m. [XI < - f-x
f-x; ;

val memoize : (‘a - > ‘b) - > ‘a - > ‘b

This memoi ze combinator can be applied to the fib function to produce a new
function that has the same type as the fib function but transparently caches previously
computed results:

> let mfib = memoize fib;;
val mfib: (int - > int)

This function is slow when invoked for the first time on any given input but is fast
the next time it is invoked with the same input:

time mfib 35;;
Took 240ms
val it : int = 9227465

time mfib 35;;
Took Oms
val it : int = 9227465

MLmoization can clearly be useful in a variety of circumstances. However, this
implementation of the memoi ze combinator can be generalized even further.

6.1.4.2 Recursive memoization The previous example cached the return val-
ues of the original fib function to improve performance when a calculation was
repeated. However, when computing the 35th Fibonacci number, the function still

FUNCTIONAL 145

recomputes the 33rd and 34th Fibonacci numbers. Caching would be more effective
if it could memoize the results of the recursive calls made inside the fib function as
well as the calls made from the outside.

This can be done by first unravelling the fib function such that it is no longer
recursive, a technique known as “untying the recursive knot”. To do this, the function
is written as a higher-order function and is passed the function that it will recurse into.
This is most simply written by removing the rec from the definition and adding an
initial argument with the same name as the function itself:
> let fib fib = function

I o I ~ a s n - > n
I n - > fib(n - 1) + fib(n - 2);;

val fib : (int - > int) - > int - > int

By passing this fib function a memoized version of itself as its first argument, the
recursive calls inside the fib function can also be memoized. Doing this required a
slightly modified version of the memoi ze combinator as well:
> let memoize-rec f =

let m = Hashtbl.create 1
let rec f‘ x =

try m. [XI with Not-found - 5

let f-x = f f’ x
m. [XI < - f-x
f-x in

f‘;;

The nested f function is the memoized version of the f function. Note that the
function is careful to pass itself as the first argument to f, so that calls in f that

Applying memoi ze-rec to the untied fib function creates a recursively mem-

val memoize : ((’a - > ’b) - > ’a - 5 ’b) - > ’a - 5 ‘b

f
were recursive become calls to the memoized version f ‘ instead.

oized version of the fib function:
> let mfib = memoize-rec fib;;
val mfib : (int - > int)

This function is not only quick to recompute Fibonacci numbers but is now
asymptotically quicker to compute all Fibonacci numbers! Specifically, computing
the n th number only requires the previous n numbers [0 . . . n - 11 to be computed,
i.e. the asymptotic complexity is now only O(n). Consequently, this function can be
used to compute larger Fibonacci numbers very quickly.

For example, computing the 45th Fibonacci number takes only 2ms:
> time mfib 45;;
Took 2ms
val it : int = 1134903170

The ability to represent memoization as a combinator makes it much easier to use
in functional languages. However, the F# programming language actually provides

146 SIMPLE EXAMPLES

sophisticated support for recursive definitions and, in fact, can represent this recursive
memoization using only the original memoi z e function:

let rec fib =

(function
memoize

I o I ~ a s n - s n
I n - > fib(n - 1) + fib(n - 2));;

val fib : (int - > int) - 5 int - > int

The compiler will emit a warning explaining that the soundness of this function
definition cannot be checked at compile time and run-time checks will be inserted
automatically but we can prove to ourselves that the definition is correct. This
approach elegantly combines the brevity and clarity of the original implementation
with the efficiency of a completely memoized function, including recursive calls:

> time mfib 45;;
Took 2ms
val it : int = 1134903170

However, the growth of the hash table used to memoize previously-computed
results in this implementation can grow unbounded. This can sometimes be an
effective memory leak when previous results are no longer needed and should be
“forgotten”. Consequently, it may be useful to replace the memoize combinator with
an implementation that uses a more sophisticated data structure to remember only a
certain number of the most commonly used answers, or even to measure the memory
required by memoization and limit that.

6.1.4.3 Dynamic programming Divide and conquer describes the strategy
of algorithms that break large problems into separate smaller problems. This is a
vitally important topic in algorithm design and underpins many high-performance
algorithms that make practical problems tractable. A closely related subject that has
received growing attention in recent years is called “dynamic programming”. This
refers to strategies similar to divide and conquer that manage to break large problems
into overlapping smaller problems. Optimal asymptotic efficiency is then most easily
obtained by memoizing the overlaps and reusing them rather than recomputing them.

The Fibonacci function described in the previous section is perhaps the simplest ex-
ample of dynamic programming. At each step, the classic description of the Fibonacci
function breaks the large computation of fib n into two smaller computations of
fib (n - 1) and fib (n - 2) but the smaller computations overlap because
fib(n - 1) canbeexpressedintermsoffib(n - 2) andfib(n - 3) . A p -
plying the memoize combinator, as we did, allows the overlapping solutions to be
reused and greatly improves performance as a consequence.

Dynamic programming will be revisited in section 12.3.

NUMERICAL 147

6.1.5 Binary search

Many problems can be solved using recursive bisection and the generic algorithm is
known as binary search.

The following function splits a range that is assumed to bracket a change in the
comparison function cmp and returns the subrange that brackets the change:
let binary-search split cmp (x, c-x, y, c-y) =

let m = split x y
let c-m = cmp m
match c-x = c-m, c-m = c-y with
I true, false - 5 m, c-m, y, c-y
I false, true - > x, c-x, m, c-m
I - - > raise Not-found;;

val binary-search :

(’a - > ‘a - > ‘a) - > (‘a - > ‘b) - > ’a * ’b * ‘a * ‘b - 5

‘a * ‘b * ‘a * ‘b

Note that this function is careful to avoid recomputation of cmp with the same
argument, in case this is a slow function. This is achieved by bundling the values of
cmp x and cmp y in the range and reusing them in the subrange that is returned.

The choice of currying the function arguments split and cmp but coalescing
the range into a 4-tuple might seem odd but this is, in fact, a careful design decision.
Thanks to this design, the binary-search function can be partially applied with its
function arguments to yield a function that maps ranges onto ranges. Consequently,
such a partial application can then be used with combinators such as nest and
fixedjoint to control the recursive subdivision of ranges.

This function will be used in the context of root finding, in section 6.2.5.

6.2 NUMERICAL

Many useful functions simply perform computations on the built-in number types.
In this section, we shall examine progressively more sophisticated numerical com-
putations.

6.2.1 Heaviside step

The heaviside step function:

0 x < o
1 2 2 0

H (x) =

is a simple numerical function which may be implemented trivially in F#:
> let heaviside x =

val heaviside : float - 5 float
if x < 0.0 then 0.0 else 1.0;;

This function is particularly useful when composed with other functions.

148 SIMPLE EXAMPLES

6.2.2 Kronecker &function

may be written as:

let kronecker i j =

if i = j then 1 else 0;;
val kronecker : ‘a - 5 ‘a - > int

However, this implementation is polymorphic, which may be undesirable because
static type checking will not enforce the application of this function to integer types
only. Consequently, we may wish to restrict the type of this function by adding an
explicit type annotation:

let kronecker (i : int) j =

if i = j then 1 else 0;;
val kronecker : int - > int - 5 int

Erroneous applications of this function to inappropriate types will now be caught
at compile-time by the F# compiler.

6.2.3 Gaussian

Computations involving trigonometric functions may be performed using the sin,
cos, tan, asin (arcsin), acos (arccos), atan (arctan), atan2 (as for atan but
accepting signed numerator and denominator to determine which quadrant the result
lies in), cosh, sinh and tanh functions.

The conventional mathematical functions fi (sqrt x) and e5 (exp x) are
required to compute the Gaussian:

Thus, a function to calculate the Gaussian may be written:

> let gaussian mu sigma (x : float) =
let sqr x = x * x
exp (- sqr (x - mu) / (2 . O * sqr sigma) /

(sqrt(2.0 * System.Math.PI) * sigma)
val gaussian : float - > float - > float - > float

As this implementation of the Gaussian function is curried, a function representing
a probability distribution with a given ,LL and cr may be obtained by partially applying
the first two arguments:

> seq { for x in -1.0 . . 0 . 5 . . 1 . 0 - >

gaussian 1.0 0 . 5 x } ; ;

NUMERICAL 149

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 6.1 The first seven rows of Pascal's triangle.

val it : seq<float> =

seq [0.0002676604; 0.008863696; 0.107981933;
0.483941449; . . . I

Many of the special functions can be productively written in curried form to allow
their arguments to be partially applied.

6.2.4 Binomial coefficients

The binomial coefficient (:) is typically defined in mathematics as:

n! (r) = r!(n - r) !

Naturally, this may be written directly in terms of the factorial function:

let binomial n r =

factorial n / (factorial r * factorial (n - r));;

For example, the binomial coefficients in the expansion of (a + b)6 are given by:

val binomial bigint - 5 bigint - > bigint

> [for r in 01 . . 61 - >

val it : bigint list = [lI; 61; 151; 201; 151; 61; 111
binomial 61 r 1 ; ;

However, computing relatively small binomial coefficients requires the compu-
tation of large intermediate values due to the use of factorials. For example, the
computation of ('yo) = 499500 requires the 2,568-digit value of lOOO! to be com-
puted and then discarded, which takes around 12ms:

> time (loop 1000 (binomial 10001)) 21;;
Took 12123ms
val it : bigint = 4995001

This implementation of the binomial function is clearly a suitable candidate for
algorithmic optimization.

The performance of this binomial function is most easily improved upon by
computing Pascal's triangle, where each number in the triangle is the sum of its two

150 SIMPLE EXAMPLES

"parents" from the row before (illustrated in figure 6.1). This may be represented as
the recurrence relation:

1 r=O
r = n (') = { (";') (:I:) otherwise

When using finite precision arithmetic (e.g. the int type), computing binomial
coefficients using Pascal's triangle is more robust than computing via factorials
because the numbers involved now increase monotonically, only overflowing if the
result overflows. Our example can then be computed using only machine precision
integers, even on 32-bit machines.

The recurrence relation may be expressed as a recursive function:

> let rec binomial n r =

if r = 0 1 1 r = n then 1 else
binomial (n - 1) r + binomial (n - 1) (r - 1);;

val binomial : int - 5 int - > int

This implementation of the binomial function is slightly faster than the factorial-
based implementation, taking around 9ms to compute ('YO") using finite-precision
integer arithmetic:

time (loop 1000 (binomial 1 0 0 0)) 2;;
Took 8904ms
val it : int = 499500

Moreover, this is a divide and conquer algorithm amenable to memoization. Con-
sequently, this binomial function is most easily optimized using the memoi ze com-
binator from section 6.1.4.1, replacing the two curried arguments n and r with a
single 2-tuple argument:

> let rec binomial =

(fun (n, r) - >

memoize

if r = 0 I I r = n then 1 else
binomial(n - 1, rl + binomial(n - 1, r - 1));;

val binomial : (int * int - > int) - > int * int - > int

The resulting function is 65x faster than the first implementation at the same
computation:

> time (loop 1000 (binomial 1000)) 2;;

Took 188ms
val it : int = 499500

Let us examine some more sophisticated numerical functions.

NUMERICAL 151

6.2.5 Root finding

The fixed - point and binary-search combinators from sections 6.1.2 and
6.1.5, respectively, can be used to implement a simple root finder by recursively
subdividing a range that brackets the zero-crossing of a function:

> let find-root f x y =

let split x y = (x + y) / 2.0
let cmp x = compare (f x) 0.0
(x, cmp x, Y, cmp Y)
I > fixed-point (binary-search mid cmp);;

val find-root :

(float - > float) - > float - 5 float - >

float * int * float * int
For example, this function can be used to find the root of the function f (x) =

x3 - x - 1 that lies in the range x E { 1 . . .2}:

> find - root (fun x - > x**3.0 - x - 1.0) 1.0 2.0;;
val it : float * int * float * int =

(1.324717957, -1, 1.324717957, 1)

This result contains two very similar values of x that bracket the root.
When writing programs to perform scientific computations, programmers should

constantly consider the possibility of factoring out higher-order functions. Although
functional programming languages are becoming increasingly popular, the vast ma-
jority of the existing literature covers fundamental algorithms written in a relatively
unfactored and typically very imperative style.

6.2.6 Grad

The V operator in mathematics computes the vector derivative of a function of many
variables:

Vf(x,y,z, . . .) = (- a f - a f - a f)
dx ’ dy ’ dz ’ . . .

In F#, a function of many variables may be represented by the type:

val f : vector - > float

The vector value of V f may be computed as the numerical derivative o f f with
respect to each variable using the same procedure as the one-dimensional numerical
derivative function d from section 1.6.4.

A numerical approximation to the partial derivative o f f with respect to its i th
variable may be calculated using the following function:

let partial-d f-xs f xs i xi =

xs. [i] < - xi + delta
try (f xs - f - xs) / delta finally
xs. [i] c - xi;;

152 SIMPLE EXAMPLES

val d :

float - 5 (vector - > float) - > vector - 5 int - >
float - > float

where f -xs is the value of f xs and xi is the original value of xi. This definition
ofthe part ial-d function allows f-xs, f and xs to be partially applied such that
the resulting closure can be applied to the conventional mapi function to obtain the
grad.

Note the use of the try . . . finally construct to ensure that the state change
to the array xs is undone even if the application f xs causes an exception to be
raised.

The vector value of V f can then be computed using a simple combinator:

> let grad f xs =

Vector.mapi (partial-d (f xs) f xs) xs; ;
val grad : (vector - > float) - > vector - > vector

The efficiency of this grad function is likely to be dominated by the cost of
applying f. This implementation has factored out the computation of f xs for the
original xs, so this grad function only applies the f function T (n + 1) times.

This grad function can be used in many important numerical algorithms, such as
the minimization of multidimensional functions.

6.2.7 Function minimization

The task of altering the variables of a function in order to minimize or maximize the
value of the function is common in scientific computing. By convention, this class
of problems are generally referred to as minimization problems. There are many
algorithms for function minimization and they are broadly classified into local and
global minimization. Local function minimization refers to the task of tweaking the
variables from an initial set in order to find a maximum that is close to the initial
values by monotonically decreasing the value of the function. In contrast, global
function minimization refers to grossly altering the variables in an attempt to find the
highest possible value of the function, typically allowing the value of the function to
increase in the interim period.

One of the simplest local function maximization algorithms is called gradient
descent. This algorithm repeatedly steps in the direction of the downward gradient
-V f to monotonically decrease the value of the function f . In order to achieve good
performance, the step size X is increased when the function is successfully decreased
and the step is accepted and X is drastically decreased if the function increases:

for some Q << 1 and P > 1.

> let descend alpha beta f f'
(lambda, xs: vector, f-xs) =

NUMERICAL 153

let xs 2 = xs - lambda $* f' xs
let f-xs-2 = f xs-2
if f-xs-2 >= f-xs then

else

val descend :

-

alpha * lambda, xs, f-xs

beta * lambda, xs-2, f-xs-2;;

float - > float - > (vector - z 'a) - >
(vector - > vector) - 5 float * vector * 'a - 5

float * vector * 'a

Note that this descend function is designed to work with the f ixedgoint
combinator from section 6.1.2 after partial application of alpha, beta, f, and f ' .

In the interests of numerical robustness, the algorithm is careful to decrease X
if the function stays the same to within numerical error. When numerical accu-
racy is exhausted, f(x) stops changing and X is monotonically decreased until it
underflows to 0 at which point the accumulator (A, x, f(x)) stops changing and the
f ixedgoint combinator terminates.

The gradient descent algorithm applies the f ixedgoint combinator to this
auxiliary function descend with suitable arguments and extracting the vector of
variables x from the result:

> let gradient-descent f f' xs =
- let -, xs, - -

xs; ;
fixedgoint (descend 0.5 1.1 f f') (1.0, xs, f xs)

val gradient-descent :

(vector - > 'a) - > (vector - 5 vector) - > vector - >
vector

For example, consider the function f (x , y) = x4 + y2 - x3y - 32:

let f v =

let x, y = v. [OI, v. [ll
x**4.0 + y**2.0 - x**3.0 * y - 3.0 * x;;

val f : vector - > float

A local minimum of f (z , y) starting from (2 , y) = (0,O) is most easily found
using the numerical grad function from section 6.2.6:

> gradient - descent f (grad f) (vector E O . 0 ; 0.01) ;;
val it : vector = [1.1274523; 0.7165797311

Many important algorithms in scientific computing can be composed from simpler
functions using higher-order functions, currying and combinators.

154 SIMPLE EXAMPLES

6.2.8 Gamma function

Numerical computing often requires the definition of various special functions. Sev-
eral useful functions such as sin(z) and arctan(z) are built-in but many more func-
tions must be defined in terms of these. The gamma function:

This function arises particularly in the context of factorial functions because it is
a generalization of factorial:

n! = r (n + 1)

r (Z + 1) = Z r (Z)

Also, the gamma function satisfies the following recurrence relation:

A good numerical approximation to r (z) for %[z] > 0 may be derived from
Lanczos' approximation [181:

Using the first six terms gives the following implementation of ln(r(z)):

5 let q =

[I 75122.6331530; 80916.6278952; 36308.2951477;
8687.24529705; 1168.92649479; 83.8676043424;
2.50662827511 I]

I > Array.map (fun x - > complex x 0.0);;
val q : Math.complex array

> let gamma z =

let f x = complex x 0.0
let 22 = z * z
let 24 = 22 * 22
let pow zl 22 = exp(z2 * log zl)
(9. [O] + q. [l] * z + q. [2] * 22 + q. [3] * z * 22 +
q. [41 * 24 + q. 151 * z * 24 + q. [61 * 22 * 24) /

(z * (f 1.0 + z) * (f 2.0 + z) * (f 3.0 + z) *

pow (z + f 5.5) (z + f 0.5) * exp(-(z + f 5.5));;
(f 4.0 + z) * (f 5.0 + z) * (f 6.0 + z)) *

val gamma : Math.complex - 5 Math.complex

function. For example, r(6) = 5! = 120:

> gamma (complex 6.0 0.0);;
val it : Math.complex = 120.0r + 0.Oi

We can test this function on some well-known identities involving the gamma

NUMERICAL 155

The following identity also holds:

gamma(comp1ex (1 . 0 / 3.0) 0 . 0) *
gamma(comp1ex (2.0 / 3.0) 0 . 0) ;;

val it : Math.Complex = 3.627598728r+O.Oi

> 2.0 * System.Math.PI / sqrt 3.0;;
val it : float = 3.627598728

This and other similar functions have a wide variety of uses in scientific computing.

6.2.9 Discrete wavelet transform

Wavelet transforms have many applications in science and engineering. These ap-
plications rely largely upon the on the unique time-frequency properties of this class
of transforms. Wavelet transforms are most broadly classified into continuous and
discrete wavelet transforms. Continuous wavelet transforms are widely used in the
sciences and engineering for signal analysis, most notably time-frequency analysis.
Discrete wavelet transforms are widely used in computer science and information
theory for signal coding, particularly as a way of preconditioning signals to make
them more amenable to compression.

All wavelet transforms consider their input (taken to be a function of time) in
terms of oscillating functions (wavelets) that are localised in terms of both time
and frequency. Specifically, wavelet transforms compute the inner product of the
input with child wavelets which are translated dilates of a mother wavelet. As the
mother wavelet is both temporally and spectrally localised, the child wavelets (as
dilated translates) are distributed over the time-frequency plane. Thus, the wavelet
transform of a signal conveys both temporal and spectral content simultaneously.
This property underpins the utility of wavelets.

Discrete wavelet transforms of a length n input restrict the translation and dilation
parameters to n discrete values. Typically, the mother wavelet is defined such that
the resulting child wavelets form an orthogonal basis. In 1989, Ingrid Daubechies
introduced a particularly elegant construction which allows progressively finer scale
child wavelets to be derived via a recurrence relation [4]. This formulation restricts
the wavelet to a finite width, a property known as compact support. In particular,
the pyramidal algorithm [20,2 11 implementing Daubechies’ transform (used by the
above functions) requires only O(n) time complexity, even faster than the FFT. The
Haar wavelet transform is the simplest such wavelet transform.

In this section, we shall examine a simple form of wavelet transform known as
the Haar wavelet transform. Remarkably, the definition of this transform is more
comprehensible when given as a program, rather than as a mathematical formulation
or English description.

The Haar wavelet transform of a length n = 2 P p 2 0 E Z float 1 is t is given
by the following function:

156 SIMPLE EXAMPLES

> let rec haar-aux (xs : float list) ss ds =

match xs, ss, ds with

I [I , ss, ds - > haar-aux ss [I ds
I [s s] , [I , ds - > SS::~S

I x~::x~::xs, S S , ds - >
haar-aux xs (xl + x2 :: s s) (xl - x2 : : ds)

I - - > invalid-arg "haar"; ;
val haar-aux :

> let haar xs =

val haar : float list - > float list

float list - > float list - > float list - > float list

haar-aux xs 11 [I ; ;

For example, the Haar wavelet transform converts the following sequence into a
more redundant sequence that is more amenable to other data compression techniques:

> haar [1.0; 2.0; 3.0; 4.0; -4.0; -3.0; -2.0; -1.01;;
val it : float list =

10.0; 20.0; 4.0; 4.0; -1.0; -1.0; -1.0; -1.01

The ihaar aux function implements the transform by tail recursively taking
pairs of elemen& off the input list and prepending the sum and difference of each pair
onto two internal lists called s s and ds, respectively. When the input is exhausted,
the process is repeated using the list of sums of pairs as the new input. Finally, when
the input contains only a single element, the result is obtained by prepending this
element (the total sum) onto the list of differences.

The inverse transform may be written:

let rec ihaar-aux xs ss ds =

match xs, ss, ds with

I ss, [I, ds - > ihaar-aux [I ss ds
I xs, [I , [I - > xs

I XS, x~::ss, x2::ds - >
ihaar-aux (0.5 * (hl+h2) : : 0.5 * (xl-x2) : : xs)

ss ds
1 - - > invalid-arg ttihaarll

Val haar-aux :

float list - > float list - 5 float list - > float list

let ihaar = function
I [I - > [I
I ss::ds - 5 ihaar-aux [I [ssl ds;;

val ihaar : float list - 5 float list

The previous example transform can be reversed to recover the original data from
its representation in the wavelet basis:

> ihaar [O . O ; 20.0; 4.0; 4.0; -1.0; -1.0; -1.0; -1.01;;
val it : float list =

STRING RELATED 157

[1.0; 2 . 0 ; 3 . 0 ; 4 . 0 ; - 4 . 0 ; - 3 . 0 ; - 2 . 0 ; -1 .01

Wavelet transforms are often perceived as a complicated form of analysis but, as
these example functions have shown, discrete wavelet transforms can be implemented
quickly and easily in F#.

6.3 STRING RELATED

In recent times, the dominance of numerical methods in scientific computing has been
significantly displaced by other forms of analysis. Particularly in the context of DNA
and protein sequences, scientists are analysing a wider range of data structures than
before. Strings are commonly used to represent such sequences and, consequently,
are commonly using in bioinformatics as well as more directly-related sciences such
as computational linguistics.

6.3.1 Transcribing DNA

Transcription creates a single-strand RNA molecule from the double-strand DNA.
The process replaces the nucleic acid thymine with uracil.

Consider the representation of a DNA sequence as a string containing the charac-
ters A, C, G and T:

let dna = l1ACGTTGCAACGTTGCAACGTTGCAI1 ; ;
val dna : string

The St ring. map function is the simplest way to replace single characters in a
string. For example, the transcription of dna is given by:

> String.map (function 'T' - > ' U ' I c - > c) dna;;
val it : string = I1ACGUUGCAACGUUGCAACGUUGCA"

Regular expressions are a more powerful alternative. Transcription can be repre-
sented as:

open System.Text.RegularExpressions;;

> let transcribe dna =
(new Regex(llT1l)) .Replace (dna, I1U1l) I , . .

val transcribe : string - > string

For example:

> transcribe IIACGTTGCAACGTTGCAACGTTGCA" ; ;
val it : string = I1ACGUUGCAACGUUGCAACGUUGCA"

Although regular expressions are overkill for this trivial example, they can be very
useful for more sophisticated analyses.

158 SIMPLE EXAMPLES

6.3.2 Word frequency

This section details a simple program that uses a regular expression to separate words
in order to accumulate the distribution of word frequencies in a given file. The
implementation includes a general purpose counter that uses a Map to accumulate
the frequency of each word.

Regular expressions can be used to identify words in strings, as sequences of
alphabet characters. The following regular expression matches any sequence of one
or more non-alphabet characters, i.e. word separators:

> open System.Text.Regu1arExpressions;;

let not-alpha = new Regex(@" [^a-zA-zl + I 1) ; ;

val not-alpha : Regex

The following function uses the I> operator to compose a sequence of opera-
tions that, ultimately, present the words and their frequencies from the given file in
descending order by number of occurrences:

> let freqs file =

let a =

lines - - of file file
I > Seq.map not-alpha.Sp1i.t
I > Seq.concat
(5 Seq.filter ((<>) f l f l)

15 Seq.map String.lowercase
I s Seq.countBy (fun s - 5 s)
15 Seq.to-array

Array.sort (fun (-, n) (-, m) - 5 -compare n m) a
a; ;

val freqs : string - z (string * int) array
The lines in the given file are first obtained as a seq<string> using the

lines-of file function (defined in section 5.3). The Split member of the
not-alpha regular expression is used to split each line into its constituent words.
The sequence of sequences of words on each line are concatenated together to obtain
the sequence of words in the file. Empty words are filtered out. The remaining words
are converted into lowercase. Then the Seq . countBy function is used to count the
number of occurrences of the key obtained by applying the given function (in this
case the identity function) to each element. This gives the frequencies of the words in
the file in an unspecified order. All of these operations are performed at once on each
element when the laziness is forced into action by the Seq . to-array function.

The resulting array is then sorted into reverse order by the second elements of
each of the pairs in the array. This gives the word frequencies with the most frequent
words listed first.

For example, this f reqs function takes only 2.9s to compute the word frequencies
in the King James bible:

> time freqs @ " C : \biblel3, txt"; ;

LIST RELATED 159

Took 2911rns
val it : (string * int) array

= [I (Ilthell, 64034) ; ("and", 51744) ; ("ofTT, 34688) ;
(Istoll, 13638); (Ilthat", 12922); (llinll , 12693);
(I1heg1, 10420) ; (llshall", 9838) ; (ltuntoll, 8997) ;
(ltforll, 8994) ; (I1iT1 , 8854); (llhisfl , 8473); . . . 1 1

Regular expressions have a wide variety of uses in scientific computing, ranging
from simple string dissection to performing sophisticated computations over DNA
sequences.

6.4 LIST RELATED

In this section, we shall examine a variety of functions that act upon lists. Conse-
quently, we shall assume that the namespace of the List module has been opened:

> open List;;

These functions are often polymorphic and typically make use of either recursion
and pattern matching or higher-order functions. These concepts can all be very useful
but are rarely seen in current scientific programs.

6.4.1 count

The ability to count the number of elements in a list for which a predicate returns
true is sometimes useful. A function to perform this task may be written most
simply in terms of filter and length:

> let count f list =

val count : ('a - > bool) - > 'a list - 5 int
length (filter f list);;

For example, the following counts the number of elements that are exactly divisible
by three (0 ,3 ,6 and 9):

> count (fun x - 5 x % 3 = 0) [O . . 91;;
val it : int = 4

However, the subexpression filter f list in this definition of the count
function is generating an intermediate list unnecessarily. Consequently, this imple-
mentation of the count function can be deforested as described in section 8.4.4.1.

A faster count function might exploit the laziness ofthe Seq . f i 1 ter function:

> let count f list =

val count : ('a - > bool) - > seq<'a> - > int
Seq.length (Seq.filter f list);;

Note that this function is generic over the container type: it can be applied to
arrays, sets and so on as well as lists.

160 SIMPLE EXAMPLES

Using the more specific List . f old-lef t function will be faster still because
it avoids the overhead of laziness:

> let count f xs =

val count : (‘a - > bool) - > ‘a list - 5 int
fold - left (fun n x - > if f x then n+l else n) 0 xs;;

The count function can also be written using pattern matching:

let rec count-aux n f = function
1 [I - > n
1 h::t when f h - > count-aux (n+l) f t
I -::t - 5 count-aux n f t;;

val count-aux : int - > (’a - > bool) - > ‘a list - 5 int

> let count list = count-aux 0 list;;
val count : (‘a - z bool) - 5 ’a list - z int

However, this is more verbose than the fold-based implementation.

6.4.2 positions

The ability to prepend elements to lists indefinitely makes them the ideal data structure
for many operations where the length of the output cannot be determined easily. Let
us examine a function which composes an arbitrary length list as the result.

A function pos i t ions that returns the positions of elements satisying a predicate
function f may be written in many different ways. For example:

> let positions f list =

let cons-if (p, ps) h =

let -, ps = fold-left cons-if (0, [I) list
rev ps; ;

val positions : (‘a - > bool) - > ’a list - > int list

The nested auxiliary function cons-i f accumulates the current index p and
the list ps of positions satisfying the predicate function f. The positions function
folds the cons-if function over the list, starting with an accumulator containing
the index zero and the empty list. The final index is ignored and the positions
function returns the reverse of the list of positions ps as it has been accumulated in
reverse order (the first element to satisfy the predicate was prepended onto the empty
list in the initial accumulator).

Like count, the positions function is useful for general purpose list dissec-
tion.

p+l, if f h then p::ps else ps

6.4.3 f old- to

Consider a higher-order function f old-to that folds partway through a list, return-
ing the accumulator and the remaining tail. This function may be written:

LIST RELATED 161

let rec fold-to i f accu list =

match i, list with
I 0 , t - 5 accu, t
I i, h::t - > fold-to (i-1) f (f accu h) t
I -, [I - > accu, [I ;;

val fold-to :

int - > ('a - > 'b - > 'a) - > 'a - > 'b list - >
'a * 'b list

Note that this function returns an empty tail list if the index was out of bounds.

6.4.4 inser t

Consider a function to insert an element at a given index in a list. This can be written
elegantlyintermsofthe fold-to function,usingthe built-inList . rev-append
function:

> let insert x i list =

let rfront, back =

rev-append rfront (x: :back) ; ;
fold - to i (fun t h - > h: :t) [I list

val insert : 'a - 5 int - > 'a list - > 'a list

For example, inserting 100 into the list [0 . . .9] such that it appears at index 5 :

> insert 100 5 [O . . 91 ;;
val it : int list = [O ; 1; 2; 3; 4; 100; 5; 6 ; 7 ; 8; 91

This function is useful when performance is not a problem but the T(i) complexity
ofthis function renders it unsuitable for repeated insertions at random positions. Ifthis
functionality is required to be efficient then either the insertions should be amortized
or the list should be replaced with a more suitable data structure.

6.4.5 chop

Consider a function to chop a list into two lists at a given index i , returning the two
halves of the input list which we shall refer to as thefront and the back lists. As this
function terminates in the middle of the list, it is most easily written using pattern
matching rather than in terms of the higher-order functions provided in the List
module.

The chop function may be written succinct in terms of the fold-to function,
accumulating the front list in reverse:

> let chop i list =

let rfront, back =

rev rfront, back; ;
fold-to i (fun t h - > h::t) [I list

val chop : int - > 'a list - > 'a list * 'a list

162 SIMPLE EXAMPLES

For example, the chop function may be used to split the list [0 . . . 101 into the
lists [0 . . .4] and [5 . . . lo]:

> chop 5 [O . . 101;;
val it : int list * int list =

([O ; 1; 2 ; 3; 41, [5 ; 6; 7; 8 ; 9; 101)

Writing the chop function in terms of the naturally tail recursive fold-to
function encouraged us to write a tail recursive chop function. Factoring out tail
recursive higher-order functions like fold-to is a good way to improve clarity in
order to keep many functions tail recursive.

This chop function can be used as a basis for more sophisticated list processing
functions.

6.4.6 dice

Consider a function called dice that splits a list containing nm elements into n
lists of m elements each. This function may be written in tail recursive form by
accumulating the intermediate lists in reverse:

let rec dice-aux accu m list =

match fold-to m (fun t h - > h::t) [I list with
I rfront, [I - > rev-map rev (rfront : : accu)
I rfront, back - > dice-aux (rfront : : accu) m back;;

val dice-aux :

‘a list list - > int - > ’a list - > ‘a list list

The dice function may then be written in terms of the dice-aux function by
applying the empty list as the accumulator:

> let dice m list =

val dice : int - > ’a list - > ’a list list
dice-aux [I m list;;

For example, the dice function may be used to dice the list [l . . .9] into 3 lists
containing 3 elements each:

> dice 3 [1 . . 91 ;;
val it : int list list =

“1; 2; 31; [4 ; 5; 61; 1 7 ; 8 ; 911

Note that the action performed by dice can be reversed using the flatten
function in the List module:

> flatten [[l; 2; 31 ; [4 ; 5 ; 61 ; [7 ; 8 ; 911 ;;
val it : int list = 11; 2; 3; 4; 5; 6; 7; 8 ; 91

The dice function could be used, for example, to convert a stream of numbers
into 3D vectors represented by lists containing three elements.

LIST RELATED 163

6.4.7 apply-at

The ability to alter the ith element of a list using a given function is sometimes useful.
As the ith element of a list may be reached by traversing the previous i elements, this
task can be done in O(i) time complexity. A function to perform this task may be
written in terms of the f old-to function (described in section 6.4.3) by replacing
the head of the back list before appending the front list in reverse order using the
r ev-app end function:
> let apply-at f i list =

match fold - to i (fun t h - > h::t) [I list with
I rfront, h::back - > rev-append rfront (f h::back)
I -, [I - > invalid-arg 'lapply_at1l;;

val apply-at : ('a - 5 'a) - > int - > 'a list - > 'a list

list with its previous value plus twenty:

val it : int list = [O; 1; 2 ; 3 ; 4; 2 5 ; 6 ; 7 ; 8 ; 91

very useful when manipulating lists.

For example, the following replaces the 6th element (at the index 5) of the given

apply-at ((+) 2 0) 5 [O . . 9 1 ; ;

Provided performance is unimportant, functions like this apply-at function can be

6.4.8 sub

Another function found in the Array module but not in the List module is the
sub function. This function extracts a subset of consecutive elements of length len
starting at index i. A tail-recursive equivalent for lists may be written:
> let sub i len list =

let () , after-i = fold-to i (fun () - - > 0) () list
fst (chop len after-i);;

val sub : int - 5 int - 5 'a list - > 'a list

list at len, giving the result as the front list (extracted using the f st function).

5 sub 3 4 [O . . 9 1 ; ;
val it : int list = [3; 4; 5 ; 61

Just as Array. sub can be useful, so this sub function can come in handy
in many different circumstances. However, the asymptotic complexity of this list
sub function is worse than for arrays because this function must traverse the first
i + len elements.

This implementation takes the back list after chopping at i and then chops this

For example, the 4-element sublist from i = 3 of the list [0 . . .9] is the list [3 . . .6] :

6.4.9 e x t r a c t

A function similar to the apply-at function (described in section 6.4.7) but which
extracts the ith element of a list, giving a 2-tuple containing the element and a list

164 SIMPLE EXAMPLES

without that element, can also be useful. As for apply-at, the extract function
may be written in terms of the f old-<o function:

> let extract i list =

match fold - to i (fun t h - > h::t) [I list with
I rfront, h::back - 5 h, rev-append rfront back
I -, [I - > invalid-arg Ilextractll;;

val extract : int - > 'a list - 5 'a * 'a list

For example, extracting the element with index five from the list [O . . .9] gives the
element 5 and the list [0 . . . 4 , 6 . . .9]:

> extract 5 [O . . 91 ; ;
val it : int * int list =

(5 , [O ; 1; 2; 3 ; 4; 6 ; 7 ; 8 ; 91)

This function has many uses, such as randomizing the order of elements in lists.

6.4.10 shuffle

This function can be used to randomize the order ofthe elements in a list, by repeatedly
extracting randomly chosen elements to build up a new list:

let rand = new System.Random;;
val rand : System.Random

> let rec shuffle-aux n accu = function
I [I - 5 accu
1 t - >

let h, t = extract (Random.int n) t
shuffle-aux (n-1) (h :: accu) t;;

val shuffle-aux : int - > 'a list - > 'a list - > 'a list

This auxiliary function shuf f le-aux counts down the length and accumulates
the resulting list, so the shuffle function can be written by applying the precom-
puted list length and the empty list:

let shuffle list =

shuffle-aux (length list) [I list;;
val shuffle : 'a list - > 'a list

For example, applying the shuffle function to the list (0. . .9} gives a permu-
tation containing the elements 0 . . . 9 in a random order:

> randomize [O ; 1; 2; 3; 4; 5 ; 6 ; 7 ; 8 ; 91;;
val it : int list = [6; 9; 8 ; 5 ; 1; 0 ; 3; 2; 7 ; 41

This function is useful in many situations. For example, the programs used to
measure the performance of various algorithms presented in this book used this
shuffle function to evaluate the necessary tests in a random order, to reduce
systematic effects of garbage collection. However, the slow random access to lists

LIST RELATED 165

renders the asymptotic complexity of this function O(n2). As we shall see in the
next section, arrays can provide an O(n) shuffle.

6.4.1 1 transpose

A function to transpose a rectangular list of lists is easily written in terms of pattern
matching:

> let rec transpose = function
I (- :: -) :: - as xss - >

map hd xss : : transpose (map tl xss)

val transpose : ’a list list - 5 ’a list list
I - - > [I ; ;

This function maps the hd function over the list of lists to obtain the first row of
the transpose and prepends this onto the transpose of the remaining rows obtained
by mapping the t 1 function over the list of lists. Unlike the Array2 module, the
representation of a matrix as a list of lists does not restrict the number of columns in
each row to a constant and, consequently, invalid data can be given to functions that
expect rectangular input, such as this transpose function. In this case, improperly-
shaped input will cause the hd function to raise an exception when it is applied to an
empty list.

For example, the transpose of the matrix:

(; ; ;)y 3 6 9 ; ;)
7 8 9

> transpose “1; 2; 3 1 ; [4 ; 5 ; 6 1 ; [7; 8 ; 9 1 1 ; ;
val it : int list list =

“1; 4 ; 71 ; [2; 5 ; 8 1 ; [3 ; 6 ; 911

Many more sophisticated functions also act upon lists of lists, including combina-
toric functions.

6.4.12 combinations

A function that computes the combinations that arise from composing lists with one
element taken from each list in a given list of lists may be written:

let rec combinations = function
I [I - > “ 1 1
I hs : : tss - 5

[for h in
€or ts
h : :

val combinations :

hs
in combinations tss - >

ts I ; ;
#seq<‘a> list - > ’a list list

166 SIMPLE EXAMPLES

This combinat ions function prepends each head element onto each tail com-
bination. Note that the use of comprehensions resulted in a generalization: the input
to the combinations function is actually a list of sequences rather than a list of
lists, i.e. the type #seq< ‘ a> list.

For example, the following lists all combinations taken from the sets (1 ,2 ,3) ,
(4,5,6) and (7,8,9):

> combinations “1; 2 ; 31 ; 14; 5 ; 61 ; [7 ; 8 ; 911 ;;
val it : int list list =

“1; 4 ; 7 1 ; [I; 4 ; 8 1 ; [l; 4 ; 91 ; [l; 5 ; 7 1 ;
[l; 5 ; 8 1 ; [l; 5 ; 91; [l; 6 ; 7 1 ; [l; 6 ; 8 1 ;
[l; 6 ; 9 1 ; [2 ; 4 ; 7 1 ; [2 ; 4 ; 8 1 ; [2 ; 4 ; 9 1 ;
[2 ; 5 ; 7 1 ; [2 ; 5 ; 8 1 ; [2 ; 5 ; 9 1 ; [2 ; 6 ; 7 1 ;
[2 ; 6 ; 8 1 ; [2 ; 6 ; 91 ; [3 ; 4 ; 7 1 ; [3 ; 4 ; 8 1 ;
[3; 4 ; 9 1 ; [3 ; 5 ; 71 ; [3 ; 5 ; 8 1 ; [3 ; 5; 91 ;
[3 ; 6 ; 7 1 ; [3 ; 6 ; 8 1 ; [3 ; 6 ; 911

Combinations are one of the two most important combinatoric functions. The
other is permutations.

6.4.13 distribute

The ability to compute all permutations of a list is sometimes useful. Permutations
may be computed using a simple recurrence relation, by inserting the head of a list
into all positions of the permutations of the tail of the list. Thus, a function to permute
a list is most easily written in terms of a function which inserts the given element
into the given n-element list at all n + 1 possible positions. This function is called
di s t r i bu t e :

5 let rec distribute e = function
I [I - 5 “e l l
I x : : xs‘ as xs - >

(e : : xs) : :

[for xs in distribute e xs‘ - >
x :: xs I ; ;

val distribute : ‘a - > ’a list - 5 ‘a list list

This distribute function operates by prepending an answer, the element e
prepended onto the given list 1, onto the head of the given list prepended onto each
of the distributions of the element e over the tail t of the given list.

For example, the following inserts the element 3 at each of the three possible
positions in the list [1 ; 2 1 :
> distribute 3 [l; 21 ;;
val it : int list list =

“ 3 ; 1; 21 ; [I; 3 ; 21 ; 11; 2 ; 333

Permutations may be computed using this distribute function.

LIST RELATED 167

6.4.1 4 permute

A function to permute a given list may be written in terms of the distribute
function:

> let rec permute = function
I e : : t - > flatten (map (distribute e) (permute t))
1 [I - 5 “ 1 1 ; ;

val permute : ’a list - > ’a list list

This permute function then operates by distributing the head of the given list

For example, there are 3! = 6 permutations of three values:
over the permutations of the tail.

> permute [l; 2 ; 31 ;;
val it : int list list =

[3 ; 1; 2 1 ; [3 ; 2 ; 1 1 1
“1; 2 ; 31; [2 ; 1; 3 1 ; [2 ; 3 ; 1 1 ; 11; 3 ; 2 1 ;

The permute function has many uses, including the combinatorial optimization
of small problems. However, the permute function has O(n x n!) complexity. For
n = 10, this function takes over 16s. Consequently, this function is not suitable
for large combinatorial problems and, in fact, such problems can be very difficult or
practically impossible to solve. Combinatorial optimization will be discussed in one
of the complete examples in chapter 12.

6.4.15 Power set

The power set of a set A is the set of all subsets of A. This may be computed using
a simple function:

let rec powerset = function
I [I - > “ 1 1
I h::t - >

[for t in powerset t
for t in [t; h::t] - >

t 1 ; ;
val powerset : ‘a list - > ’a list list

For example, the subsets of the set { 1,2,3} are:

> powerset [1 ; 2 ; 3 1 ;;
val it : int list list =

[[I ; [I] ; [2 1 ; [l; 2 1 ; [3 1 ; [I ; 3 1 ; [2 ; 3 1 ; [I ; 2 ; 311

This is an elegant use of the list comprehension syntax offered by F#.

168 SIMPLE EXAMPLES

6.5 ARRAY RELATED

Although arrays are currently overused in scientific computing, they are well suited
to certain situations. Specifically, situations where memory is tight or where random
access is a performance bottleneck.

6.5.1 rotate

The ability to rotate the elements of an array can sometimes be of use. This can be
achieved by creating a new array, the elements of which are given by looking up the
elements with rotated indices in the given array:
> let rotate i a =

let n = Array.length a
[Ifor k in 0 . . n - 1 - >

let k = (k + i) % n
a. [if k < 0 then n + k else k] I] ;;

val rotate : int - 5 ’a array - > ‘a array

example, rotating two places to the left:
> rotate 2 [l o ; 1; 2 ; 3; 4 ; 5 ; 6 ; 7 ; 8 ; 911 ; ;
val it : int array = 112; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 0 ; 1 1 1

Rotating right can be achieved by specifying a negative value for i. For example,
rotating right three places:
rotate (- 3) “ 0 ; 1; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 1 1 ; ;

val it : int array = [(7 ; 8; 9 ; 0 ; 1; 2; 3 ; 4 ; 5 ; 611

Considering this function alone, the performance can be improved significantly
by rotating the array elements in-place, by swapping pairs of elements. This can
be regarded as a deforesting optimization (see section 8.4.4.1). However, the more
elegant approach presented here can be refactored in the case of many subsequent
rotations (and other, similar operations) such that no intermediate arrays need be
created.

This function creates an array with the elements of a rotated left by i. For

6.5.2 swap

A function to swap the ith and jth elements of an array may be written:
> let swap (a : ’a array) i j =

let t = a. [il
a. [i] < - a. [j]
a. [j l < - t;;

val swap : ‘a array - > int - > int - > unit

value () of type unit.
Note that this function swaps the elements in-place and, consequently, returns the

HIGHER-ORDER FUNCTIONS 169

This function can be used as the basis of many algorithms that permute the contents
of an array, such as sorting algorithms.

6.5.3 except

A useful function in the context of array manipulation takes integers i E { 0 . . . n - 1)
and j E (0 . . . n - 2) and returns the jth index that is not i :

> let except i j =

val except : int - > int - > int
if j < i then j else j + 1;;

The except function can be used to shuffle array elements.

6.5.4 shuffle

The order of the elements in an array can be randomised in-place by swapping each
element with with a randomly-chosen element. A function to perform this operation
as a side effect may be written in terms of the swap function and the Random module
presented in section 9.4:

> let shuffle a =

let n = Array.length a
for i = 0 to n - 1 do

val shuffle : ‘a array - 5 unit

Note that we are careful to choose any element at random such that an element
may be swapped with itself. Although it is tempting to swap with other elements,

swap a i (Random.int n) ; ;

;m, e.g. when shuffling a two-element array. this would lead to determin

> let a = [I1 . . 9

val a : int array

> shuffle a;;
val it : unit = ()

> a;;
val it : int array

For example:

1 ;;

= [15; 4; 7 ; 3; 9; 1; 2; 6; 811

This function can be used in a wide variety of random algorithms and is particularly
useful when performance is important.

6.6 HIGHER-ORDER FUNCTIONS

As we have already hinted, aggressively factoring higher-order functions can greatly
reduce code size and sometimes even lead to a better understanding of the problem.
In this section, we shall consider various different forms of higher-order functions
which can be productively used to aid brevity and, therefore, clarity.

170 SIMPLE EXAMPLES

6.6.1 Tuple related

Functions to perform operations such as map over tuples of a particular arity are also
useful. For example, the following implements some useful functions over 2-tuples:

> let iter-2 f (a, b) =

f a
f b;;

val iter-2 : ('a - > unit) - > 'a * 'a - 5 unit

> let map-2 f (a, b) =

val map-2 : ('a - > 'b) - > 'a * 'a - 5 'b * 'b
> let fold left-2 f accu (a, b) =

val fold-left-2 :

f a, f b;;

f (f a& a) b;;

('a - > 'b - > 'a) - > 'a - > 'b * 'b - > 'a

Such functions can be used to reduce code size in many cases.

6.6.2 Generalized products

The vector dot product is a specialized form of inner product. The inner and outer
products may, therefore, be productively written as higher-order functions which can
then be used as a basis for more specialized products, such as the dot product.

The inner product is most easily written in terms of a f old-lef t2 function. In
the interests of generality, we shall begin by defining a fold-left2 function for the
Seq type:

> let fold-left2 f accu xs ys =

Seq.zip xs ys
I > Seq.fold (fun accu (x, y) - > f accu x y) accu;;

val fold-left2 :

('a - > ' b - > 'c - > 'a) - > 'a - > #seqc'b> - >

An inner product that is generalized over types, functions and even container type

#seqc'c> - > 'a

may then be written in terms of this f old-lef t 2 function:

> let inner base f xs ys g =

fold - left2 (fun accu x y - 5 g accu (f x y))
base xs ys;;

val inner :
'a - > ('b - > 'c - > 'd) - 5 #seqc'b> - > #seqc'c> - >

For example, the same inner function may be used to compute the dot product

inner 0 (*) [l; 2; 31 [2; 3; 41 (+) ; ;

('a - > 'd - > 'a) - > 'a

of a pair of int lists:

HIGHER-ORDER FUNCTIONS 171

val it : int = 2 0

float lists:

> inner 0.0 (*) L1.0; 2 . 0 ; 3 . 0 1 L2.0; 3 . 0 ; 4 .01

val it : float = 20.0
(+) ; ;

and even float arrays:

inner 0 . 0 (*) [(I.o; 2 . 0 ; 3 . 0 1 1 L (2 . 0 ; 3 . 0 ; 4 . 0 1 1

(+) ; ;
val it : float = 2 0 . 0

Using the Seq type, even the outer product can be generalized over data structure:

> let outer f xs ys =

seq { for x in xs - >
seq { for y in ys - >

f X Y 1 1 ; ;
val outer :

(‘a - > ’b - 5 ‘c) - > #seq<’a> - 5 #seq<’b> - >

seq<seq<‘cz >

The outer product of two vectors is a matrix:

(1 , 2 , 3) @ (2 , 3 , 4) = 4 6 8 (: :
The generalized outer function can be used to compute this outer product on many

container types including float lists:

> outer (*) [1 .0 ; 2 . 0 ; 3 .01 [2 .0 ; 3 . 0 ; 4.01;;
val it : seq<seq<float>>

= seq [seq [2 . 0 ; 4 .0 ; 6 . 0 1 ; seq L3.0; 6 . 0 ; 9 . 0 1 ;
seq L4.0; 8.0; 1 2 . 0 1 1

Aggressive factoring of higher-order functions can be very useful in the context
of numerical computation.

This Page Intentionally Left Blank

CHAPTER 7

VISUALIZATION

The ability to visualize problems and data can be of great use when trying to un-
derstand difficult concepts and, hence, can be of great use to scientists. Perhaps the
most obvious application of visualization in science is in the study of molecules,
particularly biological molecules. However, a great many other problems can also
be elucidated through the use of visualization, particularly real-time and interactive
graphics which can go well beyond the capabilities of the previous generation of
static, made-for-print graphics.

This chapter introduces two tools that are essential for the development of sophis-
ticated graphical applications on the Windows platform:

0 Windows Forms for writing graphical user interfaces (GUIs).

0 Managed DirectX for generating high-performance, real-time and interactive

These tools are then used to develop a library that allows easy-to-use graphical
applications to be spawned seamlessly from the F# interactive mode, and an example
stand-alone graphical application for visualizing scientific data.

Several of the complete example programs presented in chapter 12 use the scene
graph library developed in this chapter.

graphics.

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

173

174 VISUALIZATION

7.1 WINDOWS FORMS

A great deal is expected of modern computer programs. They should provide a
graphical user interface that presents the necessary information to the user in a clear
and comprehensible way.

Fortunately, Windows Forms provides an easy way to create graphical user in-
terfaces. Using Visual Studio, GUIs can be designed using drag and drop and the
generated C# code can be edited to provide the necessary functions, responding to
events such as button clicks in order to provide the required interface. In many cases,
only a simple GUI is required and, in such cases, this can be achieved without the
benefit of a GUI designer.

This section explains how simple GUIs can be created by writing only F# code.
In particular, how GUIs can be spawned from the F# interactive mode in order to test
and tweak them.

7.1.1 Forms

The most fundamental construct in Windows Forms is the form. Definitions provided
by .NET that are related to Windows Forms are in the namespace:

open System.Windows.Forms;;

A blank form can be created by a single line of code, calling the constructor of the
.NET Form class and setting some properties of the form to make it visible and give
it a title:

> let form = new Form(Visible=true, Text="First form") ;;
val form : Form

The resulting form is shown in figure 7.1.
Setting the TopMost property ensures that the form stays as the top-most window:

> form.TopMost < - true;;
val it : unit = ()

This is useful when developing applications from the F# interactive mode, as the
interactive session can be used to develop the form that is shown on top.

Graphical user interfaces inside forms are composed of controls, such as labels,
text boxes and even web browsers. The layout ofcontrols on a form is often a function
of the size of the form. The size of a form is accessible in two different ways. The
total size of the form including window decorations (the title bar, scroll bars and so
on) can be obtained using:

val it : Size = {Width=300, Height=300} . . .

The area available for controls is often a more important quantity and is called the
client rectangle. The size of the client rectangle is slightly smaller than the size of
the entire form:

form.Size;;

WINDOWS FORMS 175

Figure 7.1 A blank Windows form.

> form.ClientSize;;
val it : Size = {Width=292, Height=260} . . .

In order to make a useful GUI, controls must be added to the form.

7.1.2 Controls

Creating and adding controls to forms is also easy. A control is created by calling
the appropriate constructor, for example a button:

let button = new Button(Text="A button") ;;
val button : Button

The control can then be added to the form using the form's Controls. Add
member:

form.Controls.Add(button) ;;
val it : unit = (1

The resulting form is shown in figure 7.2.

7.1.3 Events

For a suite of controls laid out on a form to be useful, the controls must be connected
to functions that are executed when events occur, such as the clicking of a button.
This is achieved by adding functions as event handlers.

The button in the previous example does nothing when it is clicked. To make the
button click perform an action, a function called an event handler must be added to

176 VISUALIZATION

Figure 7.2 A form with a single control, a button.

the but ton. C1 ick event. In F#, the event handler can be an anonymous function.
For example, to close the form when the button is clicked:

> button.Click.Add(fun - - > form.Close0);;
val it : unit = 0

Constructing controls and registering event handlers in this style allows GUIs to be
composed with relative ease and, in particular, to be developed from an F# interactive
session.

7.1.4 Bitmaps

Before delving into fully-fledged DirectX programming, it is worth taking a peek
at the functionality provided by simple bitmaps rendered using Windows Forms.
Bitmaps can be used to render a variety of simple, raster-based images. In this
section we shall outline a simple programmatic bitmap renderer before using it to
render a cellular automaton.

Many relevant definition are in the following namespaces:

> open System;;
> open Drawing;;
> open Windows.Forms;;

In this case, the bitmap will have 24 bits-per-pixel (bpp):

> let format = Imaging.PixelFormat.Format24bppRgb;;
val format : 1maging.PixelFormat

A bitmap can be created to cover the client area of a form and filled using the
given function f :

WINDOWS FORMS 177

let bitmap-of f (r : Rectangle) =

let bitmap = new Bitmap(r.Width, r.Height, format)
f bitmap
bitmap; ;

val bitmap-of : (Bitmap - > unit) - > Rectangle - 5 Bitmap

changes:
An event handler can used used to replace the bitmap when the size of the form

let resize f (b : Bitmap ref) (w : #Form) - =

b := bitmap-of f w.ClientRectangle
w.Invalidate0 ;;

val resize :
(Bitmap - > unit) - > Bitmap ref - > #Form - > ‘b - > unit

An event handler can be used to draw the bitmap into the window:

> let paint (b : Bitmap ref) (v : #Form)
(e : PaintEventArgs) =

let r = e.ClipRectangle
e.Graphics.DrawImage(!b, r, r, GraphicsUnit.Pixe1);;

val paint :

Bitmap ref - > #Form - > PaintEventArgs - 5 unit

The following function creates a form, a bitmap and registers handlers for resizing,
painting and key press (to close the form if the escape key is pressed):

> let make-raster f =
let form = new Form(Visible=true)
let bitmap = ref (bitmap-of f form.ClientRectangle)
form.Resize.Add(resize f bitmap form)
form.Paint.Add(paint bitmap form)
form.KeyDown.Add(fun e - >

form; ;
if e.KeyCode = Keys.Escape then form.Close())

val make-raster : string - > (Bitmap - > unit) - > Form

The make-raster function can be used as the basis of many programs that
require simple bitmap output. Rendering is left entirely up to the user using the
function f to draw into the bitmap as necessary.

7.1.5 Example: Cellular automata

One application ideally suited to rendering into bitmaps is cellular automata. In
Stephen Wolfram’s seminal work “A New Kind of Science”, he studies a simple but
remarkably unpredictable 1 D cellular automaton called rule 30 where each generation
is a row of cells that are in one of two states.

The two states of a cell may be represented by a variant type:

178 VISUALIZATION

> type cell = A 1 B ; ;

and its two neighbours in the current generation. Rule 30 may be written:

> let rule30 a b c =

A rule computes the state of a cell in the next generation given the state of the cell

match a, b, c with
I B , B , - I B, A, B I A, A, A - > A
1 - - > B;;

val rule30 : cell - > cell - > cell - > cell

A generation may be evolved into the next generation by mapping a rule over
triples of neighbouring cells in the current generation, assuming cells outside to be
in the state A:

> let rec evolve-aux rule = function
I a::(b::c:: - as t) - >

I [a; b] - > [rule a b A; rule b A A]
I [a] - > [rule A a A; rule a A A]
I [] - > [rule A A A] ;;

rule a b c : : evolve-aux rule t

val evolve-aux :

(cell - > cell - > cell - > ’a) - > cell list - > ’a list

The auxiliary function evo lve-aux that computes the next generation is finished
by prepending the left-most cell and padding the previous generation with a cell in
state A before passing it to the evolve-aux function:

> let evolve rule list =

val evolve :

evolve-aux rule (A : : A : : list);;

(cell - > cell - > cell - > ‘a) - > cell list - > ’a list

Cells in state A will be drawn in white and cells in state B will be drawn in black:

> let color-of-cell = function
I A - 5 Color.White
I B - 5 Color.Black;;

val color-of-cell : cell - > Color

the center of the bitmap and filling the pixel if it is visible:
A single cell is drawn by shifting the x coordinate to “grow” the generations from

let set (bitmap : Bitmap) y x c =

let x = bitmap.Width / 2 - y + x
if 0 <= x && x < bitmap.Width then
bitmap.SetPixel(x, y, color-of-cell c);;

val set : Bitmap - > int - 5 int - > cell - > unit

cell in each row:
The whole bitmap is drawn by evolving a generation for each row and filling each

WINDOWS FORMS 179

Figure 7.3 A thousand generations of the rule 30 cellular automaton.

let draw rule bitmap =

let aux gen y =

List.iteri (set bitmap y) gen
evolve rule gen

ignore (Seq.fold aux [B] (0 . . bitmap.Height - 1)) ;;
val draw :

(cell - 5 cell - > cell - > cell) - > Bitmap - > unit

Finally, a form rendering this bitmap may be created using the make-raster

let form = make-raster (draw rule30);;

The resulting visualization is illustrated in figure 7.3.

function defined in the previous section:

val form : Form

7.1.6 Running an application

If the above code is compiled into an application and run the program will quit
immediately and close the window. To get the desired behaviour, the main thread of
the program should block until the form is closed. This is achieved by calling the
Application. Run function.

If a program spawns a single window, or if there is a clear master window in
the GUI design, a compiled application may block until a specific form is closed by
calling:

Application.Run(form)

where form is the master window.

180 VISUALIZATION

Alternatively, the Application. Exit function may be used to exit a program
explicitly. Such a program can be run by supplying the value of type unit to the Run
member, rather than a form:

Application. Run ()

In many cases it is desirable to provide an F# program such that it can be executed
either from an interactive session or compiled into a program and run. In such cases,
the #if preprocessor directive can be used to select code depending upon the way
in which the program is run by testing either COMPILED or INTERACTIVE:

#if COMPILED
Application.Run(form)
#endif

This allows identical code to be used both in the interactive mode and compiled
to standalone executable.

More advanced applications require the ability run separate windows concurrently.
This requires the use of threading and will be discussed in more detail later in this
chapter, in the context of spawning visualizations from F# interactive sessions, in
section 7.2.5.

7.2 MANAGED DIRECTX

The defacto standard for high-performance graphics on the Windows platform is
DirectX. Microsoft provide a high-level interface to DirectX from .NET, known as
Managed DirectX.

Despite being a high-level interface, programs using Managed DirectX must
contain a significant amount of "boiler plate" code that is required to get anything
working. This common code is presented here in the form of a reusable library
written in F# that allows visualizations to be spawned from the F# interactive mode.

7.2.1 Handling DirectX devices

All programs that use DirectX must begin with declarations to include the appropriate
directory:

> #I @"C:\WINDOWS\Microsoft.NET\DirectX for Managed
Code\l . 0.2902.0" ; ;

and import the relevant DLLs:

> #r @IfMicrosof t . DirectX. dll" ; ;
#r @11Microsoft.DirectX.Direct3D.dll";;

> #r @11Microsoft.DirectX.Direct3DX.dl111;;

Graphics-related functions make heavy use of several namespaces, which can be
productively opened to improve clarity:

MANAGED DIRECTX 181

open System;;
> open Drawing;;
open Windows.Forms;;

> open Microsoft.DirectX;;
> open Direct3D;;

The properties of a DirectX device are dictated by a set ofpresentparameters”:

> let presentparamso =

let p = new PresentParameters(Windowed=true)
p.SwapEffect < - SwapEffect.Discard
p.EnableAutoDepthStenci1 < - true
p.AutoDepthStenci1Format < - DepthFormat.D24S8
[I p 1 1 ; ;

val presentparams : unit - > Presentparameters array

A DirectX device with these present parameters can be created by calling the
constructor of the Device class:

let make-device (form : #Form) =

let dtype = DeviceType.Hardware
let flags = CreateF1ags.HardwareVertexProcessing
new Device(0, dtype, form, flags, presentparamso);;

val make-device : #Form - > Device

As .NET libraries such as DirectX are written in an object oriented style, this
style can be adopted in the F# code that interfaces with these libraries. In this case,
a minimal Viewer class is used to provide a form with no background using the
implicit-constructor form of class declaration described in section 2.4.2.2:

> type Viewer() =

inherit Form ()
override form.OnPaintBackground - = 0;;

In effect, we shall be specializing the Form class in order to implement the
functionality of a DirectX viewer. However, rather than adopting the C# style of
writing one large class, we shall instead opt to develop several small functions that
can be retrofitted onto this minimal Viewer class to provide the desired functionality.

A higher-order paint callback can be used to perform mundane tasks including
calling the render function to render the scene, which is passed as an argument to
paint:

> let paint (form : #Form) render (device : Device) - =

try
device.TestCooperativeLevel0
device. Beginscene ()
render device

I7Note that the homonym “present” in the context of DirectX typically means “show” rather than “now”.

182 VISUALIZATION

device. EndScene ()

device. Present ()
form. Invalidate ()

I : ? DeviceLostException - > ()

I : ? DeviceNotResetException - >

with

device.Reset(presentParams0);;
val paint :

#Form - > (Device - 5 unit) - > Device - > 'b - 5 unit

Note the use of the : ? construct to handle exceptions generated outside F#.
The complexity of this paint function is due to the fact that managed DirectX

requires us to handle situations where the DirectX device is left corrupted by another
application (a device reset) or lost entirely.

A Viewer object and DirectX device can be created and initialized using a
higher-order make-viewer function:

> let make-viewer title render =

let form = new Viewer(Text=title, Visible=true)
form.MinimumSize < - form.Size
let device = make-device form
form.Paint.Add(paint form render device)
form.Resize.Add(fun - - > form.Invalidate0)
form.KeyDown.Add(fun e - >

form. Invalidate ()
form; ;

if e.KeyCode = Keys.Escape then form.Close0)

val make-viewer : string - 5 (Device - > unit) - > Viewer

This function is careful to constrain the minimum size of the window because
managed DirectX will crash if a device is shrunk too much.

By default, the contents of a window are redrawn when the window is enlarged
but not when it is shrunk. In order to redraw the window whenever it is resized, the
Res i ze event is made to invalidate the form. The KeyDown event is used to close
the form if the escape key is pressed.

A minimal DirectX renderer that simply clears the display to a specified color can
now be run from only 3 lines of code. The render function clears the target buffer
of the device to a given color:

let render (device : Device) =

let target = ClearFlags.Target
device.Clear(target, Color.Cora1, l.f, 0);;

val render : Device - > unit

The make-viewer function can then be used to create a blank form by providing
the title and render function:

> let form = make-viewer render;;

MANAGED DIRECTX 183

Figure 7.4 A DirectX viewer that clears the display to a single color (called “coral”).

val form : Viewer

The resulting window is illustrated in figure 7.4.

7.2.2 Programmatic rendering

DirectX is designed for programmatic rendering, where programs explicitly invoke
the DirectX API to get a scene rendered. This section describes how the DirectX API
can be invoked directly from F# code. Programmatic rendering has the advantage that
all aspects of rendering can be completely controlled and, consequently, programs
can be tweaked to improve performance. Later in this chapter, we shall introduce
a simpler way to visualize data using declarative rendering from an F# interactive
session.

In the simplest case, programmatic rendering can be broken down into per-pixel
buffers, vectors, vertices, projections, views and the rendering of primitives. Each of
these topics will now be discussed before moving onto more sophisticated subjects.

7.2.2.7 Buffers A DirectX device provides up to three different kinds of pixel
buffer: the target buffer for pixel colors, the z-buffer to store depth values and the
stencil buffer for per-pixel clipping. The paint event will almost always clear all
three buffers and, consequently, it is usehl to factor out a value representing all three
buffers:

> let all - buffers =

Enum.combine
[ClearFlags.Target;
ClearF1ags.ZBuffer;
ClearFlags.Stenci1 I ; ;

184 VISUALIZATION

val all-buffers : ClearFlags

This value will be used in future functions.

7.2.2.2 Vectors and vertices The native 64-bit float type of F# is more
accurate than the native 32-bit format of DirectX (float 32). Trading performance
for simplicity, the DirectX Vector3 type can be constructed using an F# function
that handles float values:

> let vec(x, y, z) =

let f = Float32.of-float
new Vector3(f x, f y, f 2) ; ;

val vec : float * float * float - 5 Vector3

In the interests of simplicity, we shall use a single Vertex type that encapsulates
the coordinate, normal vectorz and color information for every vertex:

> type Vertex = CustomVertex.PositionNormalCo1ored;;

An F#-friendly constructor for the Vertex type may be written in curried form:

> let vertex (c : Color) (nx, ny, nz) (x, y, z) =

let c = c.ToArgb0
let f = Float32.of-float
new Vertex(f x, f y, f z, f nx, f ny, f nz, c);;

val vertex :

Color - 5 (float * float * float) - >
(float * float * float) - > Vertex

The order of the parameters to the curried vertex function have been chosen
such that partial application of this function is as useful as possible. Specifically,
whole objects are likely to share a single color, which can be partially applied first.
Individial faces may be composed of several triangles sharing a single normal vector,
which can be partially applied next. Finally, the vertex coordinate is applied to obtain
a Vertex value.

The following function creates a Vertex from two coordinates:

> let vertex2 color (x, y) =

vertex color (0.0, 0.0, -1.0) (x, y, 0.0);;
val vertex2 : Color - > float - > float - 5 Vertex

These functions will be used to compose programs that render geometry using
DirectX.

7.2.2.3 Orthographic projection An orthographic projection can be used to
visualize 2D scenes. The following show2 d combinator initializes an orthographic
projection before calling the given render function:

> let show2d render (device : Device) =

let near, far = -1.0€, 1.0f

MANAGED DIRECTX 185

val

let vp = device.Viewport
let w, h = float32 vp.Width, float32 vp.Height
device.Transform.Projection < -

device.Clear(ClearFlags.Target, Color.White, far, 0)
device.RenderState.Lighting < - false
device.RenderState.Cul1Mode < - Cull.None
device.RenderState.ZBufferEnable < - false
render device;;
show2d : (Device - 5 unit) - 5 Device - > unit

Matrix.OrthoLH(w, h, near, far)

This combinator sets the near and far clipping planes to z = -1 and z = 1,
respectively, in anticipation of vertex coordinates on the plane z = 0. The viewport
is set to &w/2 and i h / 2 where w and h are the width and height of the DirectX
device (the whole of the client rectangle of the window), i.e. the coordinates in the
scene are measured in pixels and the origin is the center of the window. The buffers
are cleared and lighting and culling are disabled before the render function is called
to render the current scene.

As DirectX is primarily used to render 3D scenes that often contain closed meshes
of triangles, it provides the ability to neglect triangles that are back-facing as an
optimization. A triangle is deemed to be back-facing or front-facing depending on
whether its vertices are listed in clockwise or counter-clockwise order from the point
of view of the camera. In the 2D case, this backface culling is not usually useful, so
our show2d combinator disables this default behaviour.

7.2.2.4 Perspective projection Rendering graphics in 3D is only slightly
more difficult than the 2D case but is often more useful. Setting up 3D visualization
typically requires perspective projection and lighting. This section defines several
functions that can be used to simplify the task of programming 3D graphics in F#.

The aspect ratio of the display must be determined in order to create a 3D perspec-
tive projection. This can be obtained via the viewport of the DirectX device using
the following function:

let aspect (device : Device) =

let vp = device.Viewport
float32 vp.Width / float32 vp.Height;;

val aspect : Device - 5 float32

A perspective projection is quantified by a field of view (FOV), the distances of
near and far clipping planes from the camera and the positions of the camera, target
(that the camera points at) and the up-direction of the camera:

> type perspective =

{
fov: float32;
aspect: float32;
near: float32;

186 VISUALIZATION

far: float32;
camera: Vector3;
target: Vector3;
up: Vector3;

1 ; ;
We shall use the following default values:

> let perspective-default =

{ fov = 0.8f; aspect = 0.0f;
near = 0.01f; far = 1OO.Of;
camera = vec(-l.O, 2.0, -4.0);
target = vec(0.0, 0.0, 0 . 0) ;
up = vec(0.0, 1.0, 0 . 0) };;

val perspective-default : perspective

device:
> let perspective p (t : Transforms) =

The following function sets a perspective projection and view in the DirectX

t .Projection < -
Matrix.PerspectiveFovLH(p.fov, ~.aspect,

p.near, p.far)
t .View i-
Matrix.LookAtLH(p.camera, p-target, p.up);;

val perspective : perspective - 5 Transforms - > unit

show3d combinator before it calls the given render function:
> let show3d render (device : Device) =

let p = { perspective-default with
aspect = aspect device }

perspective p device.Transform
device.Clear(al1-buffers, Color.White, p.far, 0)
device.Lights.[O].Direction <- vec(l.0, -1.0, 2.0)
device. Lights. [01 . Enabled < - true
render device;;

The Projection and View matrices of the DirectX device are setup by the

val show3d : (Device - > unit) - > Device - 5 unit

This function is suitable for displaying objects at the origin and of roughly unit
radius. A single light is set. Note that culling defaults to backface culling, so triangles
are only visible from one side.

In order to render a 2D or 3D scene it is necessary to provide the show2d or
show3d functions with a render function that can render primitives onto the
device.

7.2.2.5 Rendering primitives Modern graphics hardware is capable of ren-
dering a variety of primitives (see figure 7.5). All non-trivial objects, such as spheres
and cylinders, must be approximated using these primitives.

MANAGED DIRECTX 187

Figure 7.5
number of vertices required to describe a geometry.

Abutting triangles can be amortised into triangle fans and strips to reduce the

Triangle strips and fans are used as more space efficient representations of abutting
triangles, requiring n+2 vertices to describe n triangle rather than 3n vertices required
when triangles are specified individually. Although this is a productive optimization,
we shall restrict ourselves to the rendering of individual triangles in this chapter in
the interests of simplicity.

Table 7.1 DirectX primitive drawing functions.

Direct from vertex array Indirected through index array

Ordinary arrays DrawUserPrimitives DrawIndexedUserPrimitives
Compiled arrays Drawprimitives DrawIndexedPrimitives

Primitives can be drawn by calling one of several members of the Device class:

0 DrawUserPrimitives

0 DrawIndexedUserPrimitives

Drawprimitives

0 DrawIndexedPrimitives

These four functions have different properties (see table 7.1).
The DrawUserPrimitives and DrawIndexedUserPrimitives func-

tions render primitives from a vertex array specified as a native .NET (or F#) array.
These functions are less efficient but easier to use.

The Drawprimit ives and DrawIndexedPrimitives functions render
primitives from compiled vertex arrays. These functions are more efficient but more
complicated and harder to use. Specifically, these functions require the vertex array
to be in a compiled form and, in particular, the properties of the compiled form can
be set such that the vertex data actually resides on the graphics card, dramatically
increasing performance for static vertex data.

In the interests of simplicity, we shall use only the Drawuserprimitives
function in the remainder of this chapter.

188 VISUALIZATION

The F# programming language can provide more compile-time assurances than
the Managed DirectX API currently provides. Specifically, the vertex and index data
passed to these functions is not statically typed. In order to catch errors at compile
time, we shall wrap the Drawuserprimitives function in a statically typed
function to render individual triangles:

> let draw-triangles (device : Device)
(vertex : Vertex array) =

device.VertexFormat c - Vertex.Format
let prim = PrimitiveType.Triang1eList
let n = Array.length vertex / 3
device.DrawUserPrimitives(prim, n, vertex);;

val draw-triangles : Device - 5 Vertex array - > unit

triangles.

with:

> let form =

This function expects a vertex array containing 3 n vertices, 3 for each of n

A window visualizing a triangle can be spawned from the F# interactive mode

let render device =

[I -100.0, -100.0; 0 . 0 , 100.0; 100.0, -100.0 11
I > Array.map (vertex2 Color.BurlyWood)
15 draw-triangles device

show2d render
I > make-viewer I1Trianglel1 ; ;

val form : Form

The result is illustrated in figure 7.6.

7.2.3 Rendering an icosahedron

The 12 vertices of an icosahedron are given by:

let vertices =
let r, y = sin(Math.PI / 3-01, cos(Math.PI / 3.0)
let f g x = r * g(f1oat x * Math.PI / 5.0)
let aux n y i =

Array.concat
vec(f sin (2*i + n), y, f cos (2*i + n)))

[[Ivec(O.O, 1.0, 0 . 0) 1 1 ;
Array.init 5 (aux 0 y) ;
Array.init 5 (aUX 1 (-y)) ;
[Ivec(O.O, -1.0, 0 . 0) (I I ;;

val vertices : Vector3 array

The 20 triangular faces of an icosahedron are given in terms of those vertices by:

> let faces =

MANAGED DIRECTX 189

Figure 7.6
projection.

A triangle rendered programmatically and visualized using an orthographic

let rl i = 1 + (1 + i) % 5
let r2 i = 6 + (1 + i) % 5
[for i in 0 . . 4 - > 0, rl i, rl(i + 1) 3 @

[for i in 0 . . 4 - > rl(i + I), rl i, r2 i]
[for i in 0 . . 4 - > rl(i + I), r2 i, r2(i + 1) I @

[for i in 0 . . 4 - 5 r2(i + I), r2 i, 11 I ; ;
val faces : (int * int * int) list

The following t ri-of -f ace function converts the color and vertices of a trian-
gular face from the icosahedron into a vertex array ready for rendering:

> let tri-of-face (c : Color) (v : Vector3 array)
(i, j , k) =

let i, j , k = v. [il, v. [j l , v. [kl
let n = Vector3.Normalize(i + j + k)
let v r = new Vertex(r, n, c.ToArgb())
[I v i; v j ; v k I];;

val tri-of-face :

Color - > Vector3 array - > int * int * int - >

A complete vertex array for the icosahedron may then be created by concatenating
the result of mapping the tri-of-f ace function over the faces of the icosahedron:

> let triangles =

Vertex list

faces
I > List.map (tri-of-face Color.BurlyWood vertices)
I > Array.concat;;

190 VISUALIZATION

Figure 7.7 A DirectX viewer that draws an icosahedron.

val triangle : Vertex array

This demo can be animated to make it more interesting. The simplest way to
define an animation in a functional programming language is to make the scene a
function of time. The elapsed time can be obtained from a running stopwatch:

> let timer = new System.Diagnostics.Stopwatch0;;
val timer : Diagnostics.Stopwatch

> timer. Start () ; ;

The rendering function simply sets the world transformation matrix to a rotation
about the y-axis and then draws the triangles from the vertex array:

> let render-icosahedron (device : Device) =

let t = float32 timer.ElapsedMilliseconds / le3f
device.Transform.Wor1d < - Matrix.RotationY t
draw-triangles device triangles;;

val render-icosahedron : Device - > unit

visualize the icosahedron:
The make viewer function and show3d combinator may then be used to

let form =

show3d render-icosahedron
I > make-viewer tlIcosahedronll ; ;

val form : Viewer

The result is illustrated in figure 7.7.
As this example has demonstrated, animated 3D graphics can be visualized with

little effort in F#. However, these examples used F# code to render a scene program-

MANAGED DIRECTX 191

matically. Visualizations typically have so much in common that the only variable is
the data itself. Consequently, declarative rendering is prolific in scientific computing.

7.2.4 Declarative rendering

A scene can be represented by a single value, a data structure, that conveys all of the
necessary information about the positions and colors of triangles in the scene. This
allows scenes to be visualized without any programming. In a functional language,
the value representing a scene may contain functions and, in particular, may be a
function of time to facilitate animation.

This section describes additional code that can be used to allow real-time, animated
2D and 3D graphics to be visualized as easily as possible from the F# interactive
mode, by describing scenes as values. Although this is a comparatively small amount
of library code, the functionality of the library actually exceeds the functionality
provided by several expensive commercial packages.

The type of value used to represent a scene is known as a scene graph.

7.2.4.1

> type scene =

Scene graph In F#, a variant type can be used to represent a scene:

I Triangles of (Vector3 * Vector3 * Vector3) list
I Color of Color * scene
I Transform of Matrix * scene
I Group of.scene list;;

In this case, there are four different kinds of scene graph node. The Triangles
constructor represents a set oftriangles as a list of 3-tuples of 3D vectors. The Color
constructor allows the color of triangles given in the child scene to be overriden.
The Transform constructor allows a matrix transformation (such as a rotation or
scaling) to be applied to the child scene. Finally, the Group constructor allows
separate scenes to be composed.

A simple scene containing a single triangle can now be described very succinctly
in terms of the scene variant type:

> Triangles
[vec(-l.O, 0.0, 0 . 0 1 ,
vec(0.0, 1.0, 0 .01 ,
vec(l.0, 0.0, 0 . 0) 1 ; ;

val it : scene = Triangles.. .

As we shall see, the ability to visualize a scene defined in this way is extremely
useful, particularly in the context of scientific computing.

7.2.4.2 Rendering a scene graph In the interests of generality, we shall
continue to use the Vert ex type that includes position, normal and color information
for every vertex. However, the scene type does not allow normal vectors and colors
to be defined per vertex.

192 VISUALIZATION

The following function converts a triangle from the scene graph representation
into a vertex array suitable for rendering:

> let triangle (c : Color) (PO, pl, p2) =

let pol, p02 = pl - PO, p2 - PO
let n = Vector3.Normalize(Vector3.Cross(pOl, p02))
Array.map (vertex c n) [\PO; pl; ~211;;

val triangle :

Color - > Vector3 * Vector3 * Vector3 - > Vertex array

A Trans form node of a scene can be rendered using a combinator that multiplies
the current World transformation matrix by the transformation matrix m of the node,
calls the given function k and restores the World matrix before returning:

> let transform (device : Device) color m k scene =

let world = device.Transform.Wor1d
device.Transform.Wor1d < - Matrix.Multiply(world, m)
try k device color scene finally
device.Transform.Wor1d < - world;;

val transform :

Device - 5 'a - 5 Matrix - >
(Device - > 'a - > 'b - > unit) - > 'b - > unit

The draw-triangles and transform functions can be used to draw an

let rec draw (device : Device) color = function

arbitrary scene:

I Triangles tris - >

Array.concat (List-map (triangle color) tris)
(> draw-triangles device

I Color(color, scene) - > draw device color scene
I Transform(m, scene) - >

I Group ts - > List.iter (draw device color) ts;;
transform device color m draw scene

val draw : Device - > Color - > scene - > unit

Note that the draw function passes itself to the transform combinator in order
to recurse through a Transform node in the scene graph.

In most cases, this library will be unnecessarily inefficient. However, modern
graphics hardware is very fast and will be more than capable of rendering quite
complicated scenes using this library.

7.2.5 Spawning visualizations from the F# interactive mode

Declarative scene graphs are most useful if the F# interactive mode is made to spawn
a new window visualizing the scene whenever a computation results in a value of the
type scene. This effect can be achieved by supplementing a running F# interactive
session with pretty printers that spawn a separate thread to handle the visualization

MANAGED DIRECTX 193

of a value. Threading is essential here to ensure that separate visualizations run
concurrently. If visualizations are not spawned on separate threads then unwanted
interactions between visualizations will occur, such as only the window in focus
being refreshed. Threading is discussed in much more detail in section 9.3.

> let printer scene =

The following function spawns a window visualizing a scene:

let thread =

new System.Threading.Thread(fun () - >
(fun device - > draw device Color-Black scene)
I > show3d
(> make-viewer I1F# visualization"
I > Application.Run)

thread.SetApartmentState(ApartmentState.STA)
thread. Start (1
T1<scene>lT; ;

val animatedgrinter : (unit - 5 scene) - > string

The first definitionnested inside this printer function definesavariable thread
that is an unstarted thread. When the thread is started (in the penultimate line), a
new concurrent thread of execution will be created and the body of the anonymous
function that was passed to the Thread constructor will be evaluated in that new
thread of execution. This body creates a new Viewer object and uses the Run
member to start a Windows Forms message loop and run the form as an application.

This formulation is absolutely essential for the correct working of the printer
function because a Windows form must only be accessed directly from the thread on
which it was created. If the form is accidentally created on the current thread but
accessed on the new thread (including being passed to the Run member) then the
program will not achieve the desired effect.

The next line requests that the new thread uses single-threaded apartment state,
which is a requirement of a Windows form. The thread is then started and the

The printer function can be registered with an F# interactive session using the
Addprinter method of the f si object:

fsi.AddPrinter(printer);;

Any expressions entered into the F# interactive mode that evaluate to a value of
the type scene such that the F# interactive mode tries to print the value now results
in a new window being spawned that visualizes the value.

Entering a value of the type scene now spawns a new window visualizing the
scene, such as the black triangle in the following example:

> Triangles

scenen1 string is returned for the interactive session to print.

[vec(-1.0, -1.0, O . O) ,
vec(0.0, 1.0, -1.O),
vec(l.0, -1.0, 0 . 0) 1 ; ;

val it : scene = <scene>

194 VISUALIZATION

Writing functions to generate and manipulate scene graphs is much easier than
writing correct programmatic renderers. The remainder of this chapter demonstrates
some of the many ways that this simple library can be leveraged to produce useful
visualizations.

7.3 TESSELATING OBJECTS INTO TRIANGLES

In the general case, mathematically-simple objects, such as spheres, are remarkably
difficult to render on modern graphics hardware.

When visualizing a biological molecule, each atom might be represented by an
individual sphere. There are likely to be tens of thousands of such spheres in a single
image. Consequently, each sphere must be decomposed into only a few triangles, or
the graphics system will be overwhelmed and the visualization will be too slow. A
simple tesselation, such as an icosahedron may well suffice in this case.

In contrast, a cartographic application might use a single sphere to represent an
entire planet. The single sphere must be decomposed into many triangles for the
resulting tesselation to be accurate enough to give the illusion of being a sphere.
However, the sphere cannot be uniformly subdivided, or the tesselation will contain
too many triangles on the far side of the sphere and too few on the near side. Thus,
this application requires an adaptive tesselation, where the sphere is decomposed into
triangles as a function of the view of the sphere that is required.

In this book, we shall consider only simple, uniform tesselations that suffice for
the required applications. Objects such as circles and spheres can be uniformly
tesselated easily. Moreover, the task of subdividing coarse meshes to obtain more
accurate meshes is ideally suited to recursive functions. As we shall see, many topics
in computer graphics can be solved elegantly and succinctly in F#.

7.3.1 Spheres

Spheres can be tesselated by recursively subdividing the triangular faces of an icosa-
hedron and pushing new vertices out onto the surface of the sphere.

First, we extract the faces of an icosahedron as a list of 3-tuples of vectors:
let triangles =

[for i, j , k in faces - >
vertices. [i] , vertices. [j 1 , vertices. [kl 1 ; ;

val triangles : (Vector3 * Vector3 * Vector31 list

malizing the result to push the new vertex out onto the surface of the unit sphere:
> let split-edge(p, q) =

val split-edge : Vector3 * Vector3 - > Vector3

splitting the three edges:

The following function splits an edge by averaging the end coordinates and nor-

Vector3 .Normalize ((p + q) * 0.5f) ; ;

The following function splits a triangular face into four smaller triangles by

TESSELATING OBJECTS INTO TRIANGLES 195

Figure 7.8 Progressively more refined uniform tesselations of a sphere, obtained by
subdividing the triangular faces of an icosahedron and normalising the resulting vertex
coordinate vectors to push them onto the surface of a sphere.

196 VISUALIZATION

> let split-face t (a, b, c) =

let d = split-edge(a, b)
let e = split-edge(b, c)
let f = split-edge(c, a)
[a, d, f; d, b, e; e, c, f; d, e, fl;;

val split-face :

(Vector3 * Vector3 * Vector3) - 5

(Vector3 * Vector3 * Vector3) list

Mapping the split - face function over a sequence of triangles subdivides a
coarse tesselation into a finer one:

> let subdivide triangles =

val subdivide :
List.flatten(List.map split-face triangles);;

(Vector3 * Vector3 * Vector3) list - 5

(Vector3 * Vector3 * Vector3) list
Finally, the following function returns the nth tesselation level of a sphere as a list

of triples of vertex coordinates using the nest combinator from section 6.1.1 :

let sphere n =

nest n subdivide triangles;;
val sphere : int - > (Vector3 * Vector3 * Vector31 list

tesselations of a sphere:

> [for n in 0 . . 3 - >

val it : (unit - > scene) list

The following expression spawns four visualizations of progressively more refined

Color(Color.Salmon, Triangles(sphere n)) I;;

= [<scene>; <scene>; <scene>; <scene>]

The resulting visualizations are illustrated in figure 7.8.

7.3.2 3D function plotting

A function of two variables can be tesselated into a 3D mesh of triangles using a
variety of different techniques. The simplest approach is to uniformly sample the
function over a grid and convert each grid square into a pair of triangles.

The following higher-order plot function samples a function f over a continuous
range [ZO, 2 1 1 and [ZO, ,211 to generate a scene graph ready for rendering:

> let plot n f x0 xl z 0 zl =

let g i j =

let x = xo + (X I - xo) * float i / float n
let z = z o + (Z I - z o) * float j / float n
vec(x, f x z , z)

[for i in 0 . . n-1

TESSELATING OBJECTS INTO TRIANGLES 197

Figure 7.9 3D surface plot of y = sin(r + 3z) / r where T = 5 d m .

for j in 0 . . n-1 - >

let h n m = g (i + n) (j + m)
[h O 0, h O 1, h l 1; h O 0, h l 1, h l 0 3 I

I > List.flatten
(> Triangles;;

val plot :

int - > (float - > float - > float) - > float - > float - >
float - > float - 5 scene

The following example function represents f (z , z) = sin(r + 32) where T =

5 d m :
> l e t f x z =

let r = 5.0 * sqrt(x * x + z * z)
sin(r + 3.0 * x) / r;;

val f : float - > float - 5 float

This function f can be tesselated and visualized by applying it to the plot
function with suitable parameters:

Color(Color.Red, plot 255 f -3.0 3.0 -3.0 3 . 0) ; ;
val it : unit - > scene = <scene>

The result is illustrated in figure 7.9.
The samples provided in this chapter illustrate the basic use of Windows Forms

and Managed DirectX for visualization. This allows simple visualizations to be
created and even spawned independently from F# interactive sessions. However,
the construction of a library capable of abstracting away the complexity involved in
optimizing scene graphs and all threading issues when simulations are to be performed

198 VISUALIZATION

concurrently with visualizations is substantially more difficult. Fortunately, this has
already been done by the commercial “F# for Visualization” library from Flying Frog
Consultancy. One of the complete examples with visualizations from chapter 12 will
use this library.

CHAPTER 8

0 PTI M I ZAT I0 N

Thanks to advances in computer technology, performance is no longer a concern
for the majority of programs. However, many applications exist, particularly in the
context of scientific computing, where performance is still important. In such cases,
programs can be optimized to run faster by exploiting knowledge about the relative
performance of different approaches.

This chapter examines the most important techniques for optimizing F# programs.
The overall approach to whole program optimization is to perform each of the fol-
lowing steps in order:

1. Profile the program compiled with automated optimizations and running on
representative input.

2. Of the sequential computations performed by the program, identify the most
time-consuming one from the profile.

3. Calculate the (possibly asymptotic) algorithmic complexity of this bottleneck
in terms of suitable primitive operations.

4. If possible, manually alter the program such that the algorithm used by the
bottleneck has a lower asymptotic complexity and repeat from step 1.

F# for Scientisb. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

199

200 OPTIMIZATION

5. If possible, modify the bottleneck algorithm such that it accesses its data
structures less randomly to increase cache coherence.

6. Perform low-level optimizations on the expressions in the bottleneck.

The mathematical concept of asympotic algorithmic complexity (covered in sec-
tion 3.1) is an excellent way to choose a data structure when inputs will be large,
i.e. when the asymptotic approximation is most accurate. However, many programs
perform a large number of computations on small inputs. In such cases, it is not clear
which data structure or algorithm will be most efficient and it is necessary to gather
quantitative data about a variety of different solutions in order to justify a design
decision.

In its simplest form, performance can be quantified by simply measuring the time
taken to perform a representative computation.

We shall now examine different ways to measure time and profile whole programs
before presenting a variety of fundamental optimizations that can be used to improve
the performance of many F# programs.

8.1 TIMING

Before detailing the functions provided by F# and .NET to measure time, it is
important to distinguish between two different kinds of time that can be measured.

Absolute time or real time, refers to the time elapsed in the real world, outside the
computer.

CPU time is the amount of time that CPUs have spent performing a computation.

As a CPU’s time is typically divided between many different programs, CPU time
often passes more slowly than absolute time. For example, when two computations
are running on a single CPU, each computation will see CPU time pass at half the
rate of real time. However, if several CPUs collaborate to perform computation then
the total CPU time taken may well be longer than the real time taken.

The different properties of absolute- and CPU-time make them suited to different
tasks. When animating a visualization where the scene is a function of time, it is
important to use absolute time otherwise the speed of the animation will be affected by
other programs running on the CPU. When measuring the performance of a function
or program, both absolute time and CPU time can be useful measures.

8.1.1 Absolute time

The .NET class System.Diagnostics. Stopwatch can be used to measure
elapsed time with roughly millisecond (0.001s) accuracy. This can be productively
factored into a time combinator that accepts a function f and its argument x and
times how long f takes to run when it is applied to x, returning a 2-tuple of the time
taken and the result of f x:

TIMING 201

> let time f x =

let timer = new System.Diagnostics.Stopwatch()
timer. Start ()
try f x finally
printf IITook %dms" timer.ElapsedMil1iseconds;;

val time : ('a - > 'b) - > 'a - > float * 'b

CPU time can be measured using a similar function.

8.1.2 CPU time

The F# Sys . time function returns the CPU time consumed since the program
began, and it can also be productively factored into a curried higher-order function
c pu- t ime :

let cpu-time f x =

let t = Sys.time()
try f x finally
printf IITook %fs" (Sys.time() - . t);;

val cpu-time : ('a - > 'b) - > 'a - > float * 'b
CPU time can be measured with roughly centisecond (0.01s) accuracy using this

function.

8.1.3 Looping

Many functions execute so quickly that they take an immeasurably small amount of
time to run. In such cases, a higher-order loop function that repeats a computation
many times can be used to provide a more accurate measurement:

> let rec loop n f x =

if n 0 then
f x I > ignore
loop (n - 1) f x;;

val loop : int - > ('a - > 'b) - > 'a - > 'b

For example, extracting the llth element of a list takes a very short amount of
time:

> time (List.nth 10) [l . . 1001 ;;
Took Oms
val it : int = 11

> time (loop 1 0 0 0 0 0 0 (List.nth 10)) [l . . 1001;;
Took 567ms
val it : int = 11

The former timing only allows us to conclude that the real time taken to fetch
the loth element is < 0.001ms. The latter timing over a million repetitions allows

202 OPTIMIZATION

us to conclude that the time taken is around 0 .567 ,~ . The latter result is still
erroneous because efficiency is often increased by repeating a computation (i.e. the
first computation is likely to take longer than the rest) and the measurement did not
account for the time spent in the loop function itself.

The time spent in the loop function can also be measured and turns out to be only
3% in this case:

> time (loop 1000000 (fun 0 - > 0)) 0;;
Took 17ms
val it : int = 11

The difference between real- and CPU-time is best elucidated by example.

8.1.4 Example timing

The time and cpu-t ime combinators can be used to measure the absolute- and
CPU-time required to perform a computation. In order to highlight the slower-passing
of CPU time, we shall wrap the measurement of absolute time in a measurement of
CPU time. Building a set from a sequence of integers is a suitable computation:

> cpu-time (time Set.of-seq) (seq (1 . . IOOOOOO});;
Took 4719ms
Took 4.671875s
val it : Set<int> = seq [I; 2; 3; 4; . . . I

The inner timing shows that the conversion of a million-element list into a set
took 4.791s of real time. The outer timing shows that the computation and the inner
timing consumed 4.67s of CPU time. Note that the outer timing returned a shorter
time span than the inner timing, as CPU time passed more slowly than real time
because the CPU was shared among other programs.

Timing a variety of equivalent functions is an easy way to quantify the perfor-
mance differences between them. Choosing the most efficient functions is then the
simplest approach to writing high-performance programs. However, timing individ-
ual functions by hand is no substitute for the complete profiling of the time spent in
all of the functions of a program.

8.2 PROFILING

Before beginning to optimize a program, it is vitally important to profile the program
running on representative inputs in order to ascertain quantitative information on any
bottlenecks in the flow of the program.

8.2.1 8-queens problem

Although profiling is most useful when optimizing large programs that consist of
many different functions, it is instructive to look at a simple example. Consider a

PROFILING 203

program to solve the 8-queens problem. This is a logic problem commonly solved
on computer science courses. The task is to find all of the ways that 8 queens can be
placed on a chess board such that no queen attacks any other.

As this program makes heavy use of lists, it is useful to open the namespace of
the List module:

> open List;;

position (and vice versa) may be written:

> let rec safe (XI, yl) (x2, y2) =

xl <> x2 && yl <> y2 &&

A function safe that tests whether one position is safe from a queen at another

x2 - xl <> y2 - yl && xl - y2 <> x2 - yl;;
val safe : int * int - 5 int * int - > boo1

A list of the positions on a n x n chess board may be generated using a list
comprehension:

> let ps n =

[for i in 1 . . n
for j in 1 . . n - >

i, j I ; ;
val ps : int - > (int * int) list

A solution, represented by a list of positions of queens, may be printed to the
console by printing a character for each position on a row followed by a newline, for
each row:

> let print n qs =

for x in 1 . . n do
for y in 1 . . n do

printf I1\nl1 I I - *

printf ll%sll (if mem (x, y) qs then I1Q1I else l l . l l)

val print : int - 5 (int * int) list - > unit

Solutions may be searched for by considering each safe position ps and recursing
twice. The first recursion searches all remaining positions, returning the accumulated
solutions accu. The second recursion adds a queen at the current position q and
filters out all positions attacked by the new queen before recursing:

let rec search f n qs ps accu =

match ps with
I [I when length qs = n - > f qs accu
I [I - 5 accu
1 q::ps - >

search f n qs ps accu;;
15 search f n (q::qs) (filter (safe q) p s) ; ;

val search :
((int * int) list - > 'a - > 'a) - > int - >

204 OPTIMIZATION

Figure 8.1
solving the queens problem on an 11 x 11 board.

Profiling results generated by the freely-available NProf profiler for a program

(i n t * i n t) l ist - > (i n t * i n t) l i s t - > ' a - 5 ' a

The search function is the core of this program. The approach used by this
program, to recursively filter invalid solutions from a set of possible solutions, is
commonly used in logic programming and is the foundation of some languages
designed specifically for logic programming such as Prolog.

All solutions for a given board size n can be folded over using the search
function. In this case, the fold prints each solution and increments a counter, finally
returning the number of solutions found:

> l e t solve n =

l e t f qs i =

p r i n t n gs
i + l

search f n [I (ps n) 0 ; ;
va l solve : i n t - 5 i n t

The problem can be solved for n = 8 and the number of solutions printed to the
console (after the boards have been printed by the fold) with:

p r i n t f "%d solut ions\n1 ' (so lve 8) ;;

This program takes only 0.15s to find and print the 92 solutions for n = 8. To
gather more accurate statistics in the profiler, it is useful to choose a larger n. Using

ALGORITHMIC OPTIMIZATIONS 205

n = 11, compiling this program to an executable and running it from the NProf
profiler gives the results illustrated in figure 8.1.

The profiling results indicate that almost 30% of the running time of the whole
program is spent in the List , length function. The calls to this function can be
completely avoided by accumulating the length nqs of the current list qs of queens
as well as the list itself:
let rec search f n nqs qs ps accu =

match ps with
I [I when nqs = n - > f qs accu
I [I - 5 accu
I q::ps - >

search f n nqs qs ps accu
I > search f n (nqs + 1) (q::qs)

(filter (safe q) ps) ;;
val search :

((int * int) list - > ’a - > ’a) - > int - > int - 5

(int * int) list - > (int * int) list - > ‘a - > ‘ a

The solve function just initializes with zero length nqs as well as the empty
list:
> let solve n =

let f qs i =

print n qs;
i + l

search f n 0 [I (ps n) 0;;
val solve : int - > int

This optimization reduces the time taken to compute the 2,680 solutions for
n = 11 from 34.8s to 23.6s, a performance improvement of around 30% as expected.

Profiling can be used to identify the performance critical portions of whole pro-
grams. These portions of the program can then be targeted for optimization. Algo-
rithmic optimizations are the most important set of optimizations.

8.3 ALGORITHMIC OPTIMIZATIONS

As we saw in chapter 3, the choice of data structure and of algorithm can have a huge
impact on the performance of a program.

In the context of program optimization, intuition is often terribly misleading.
Specifically, given the profile of a program, intuition often tempts us to perform
low-level optimizations on the function or functions that account for the largest pro-
portion of the running time of the program. Counter intuitively, the most productive
optimizations often stem from attempts to reduce the number of calls made to the
performance-critical functions, rather than trying to optimize the functions them-
selves. Programmers must always strive to “see the forest for the trees” and perform
algorithmic optimizations before resorting to low-level optimizations.

206 OPTIMIZATION

I o Set

0 List

x Array

Figure 8.2
array data structures containing n elements.

Measured performance (time t in seconds) of m e m functions over set, list and

If profiling shows that most of the time is spent performing many calls to a
single function then, before trying to optimize this function (which can only improve
performance by a constant factor), consider alternative algorithms and data structures
which can perform the same computation whilst executing this primitive operation
less often. This can reduce the asymptotic complexity of the most time-consuming
portion of the program and is likely to provide the most significant increases in
performance.

For example, the asymptotic algorithmic complexity (described in section 3.1) of
finding an element in a container is O(log n) if the container is a set but O(n) for
lists and arrays (see table 3.3). For large n, sets should be much faster than lists
and arrays. Consequently, programs that repeatedly test for the membership of an
element in a large container should represent that container as a set rather than as a
list or an array.

An extensive review of the performance of algorithms used in scientific computing
is beyond the scope of this book. The current favourite computationally-intensive
algorithm used to attack scientific problems in any particular subject area is often
a rapidly moving target. Thus, in order to obtain information on the state-of-the-
art choice of algorithm it is necessary to refer to recently published research in the
specific area.

Only once all attempts to reduce the asymptotic complexity have been exhausted
should other forms of optimization be considered. We shall consider such optimiza-
tions in the next section.

8.4 LOWER-LEVEL OPTIMIZATIONS

The relative performance of most data structures is typically predicted correctly by
the asymptotic complexities for n > lo3. However, program performance is not
always limited by a relatively small number of accesses to a large container. When

LOWER-LEVEL OPTIMIZATIONS 207

performance is limited by many accesses to a small container. In such cases, n << lo3
and the asymptotic complexity does not predict the relative performance of different
kinds of container. In order to optimize such programs the programmer must use a
database of benchmark results as a first indicator for design and then optimize the
implementation by profiling and evolving the program design to use the constructs
that turn out to be most efficient in practice.

As F# is an unusual language with unusual optimization properties, we shall
endeavour to present a wealth of benchmark results illustrating practically important
“swinging points” between trade-offs.

The predictability of memory accesses is an increasingly important concern when
optimizing programs. This aspect of optimization is becoming increasingly important
because CPU speed is increasing much more quickly than memory access speed and,
consequently, the cost of stalling on memory access is growing in terms of the amount
of computation that could have been performed on-CPU in the same time. In a high-
level language like F#, the machine is abstracted away and the programmer is not
supposed to be affected by such issues but F# is also a high-performance language
and, in order to leverage this performance, it can be useful to know why different
trade-offs occur in terms of the underlying structures in memory.

The remainder of this chapter provides a great deal of information, including
quantitative performance measurements, that should help F# programmers to opti-
mize performance-critical portions of code.

8.4.1 Benchmarking data structures

The point at which asymptotic complexity ceases to be an accurate predictor ofrelative
performance can be determined experimentally. This section presents experimental
results illustrating some of the more important trade-offs and quantifying relevant
performance characteristics on a test machine’*.

Measuring the performance of functions in any setting, other than those in which
the functions are to be used in practice, can easily produce misleading results. Al-
though we have made every attempt to provide independent performance measure-
ments, effects such as the requirements put upon the garbage collector by the different
algorithms are always likely to introduce systematic errors. Consequently, the per-
formance measurements which we now present must be regarded only as indicative
measurements.

Figure 8.2 demonstrated that asymptotic algorithmic complexity is a powerful
indicator of performance. In that case, testing for membership using Set . mem was
found to be over 106x faster than L i s t . mem for n = lo6. However, the relative
performance of lists, arrays and sets was not constant over n and, in particular, arrays
were the fastest container for small n. Figure 8.3 shows the ratio of the times taken
to test for membership in small containers. For n < 35, arrays are up to twice as fast
as sets.

“The test machine is a dual core 2.2GHz AMD Athlon64, 400MHz FSB and 2Gb of RAM.

208 OPTIMIZATION

1.4

1.2

-:
-

1 . 0 " ' " " " ' " " " " " " " ' " " " " ' " l o g 9
0 5 10 15 20 25 30 35

Figure 8.3 Relative time taken t = ts/ta for testing membership in a set (t s) and an array
(ta) as a function of the number of elements n in the container, showing that arrays are up to
2x faster for n < 35.

I Set

0 List

x Array

Figure 8.4
Array. copy and Set. of-array data structures containing n elements.

Measured performance (time t in seconds per element) of L i s t . of-array,

As this example illustrates, benchmarking is required when dealing with many
operations on small containers.

Figure 8.4 illustrates the time taken to create a list, array or set from an array. Array
creation is fastest, followed by list creation and then set creation. For lo3 elements
on the test machine, creating a list element takes 16ns, an array element takes 6ns and
a set element takes 1 . 9 ~ ~ . Moreover, array creation takes an approximately-constant

LOWER-LEVEL OPTIMIZATIONS 209

Figure 8.5
list, array and set data structures containing n elements.

Measured performance (time t in seconds per element) of i t e r functions over

time per element regardless of the size of the resulting array whereas list and set
creation takes longer per element for larger data structures, i.e. the total time taken
to create an n-element list or set is not linear in n.

Although tests for membership and the set theoretic operations (union, intersection
and difference) are asymptotically faster for sets than for lists and arrays, the fact that
set creation is likely to be at least 300 x slower limits their utility to applications that
perform many elements lookups for every set creation. In fact, we shall study one
such application of sets in detail in chapter 12.

Figure 8.5 illustrates the time taken to iterate over the elements of lists, arrays and
sets. Iterating over arrays is fastest, followed by lists and then sets.

Iterating over a list is 4x slower than iterating over an array. The performance
degredation for lists and sets when n is large is a cache coherency issue. Like most
immutable data structures, both lists and sets allocate many small pieces of memory
that refer to each other. These tend to scatter across memory and, consequently,
memory access becomes the bottleneck when the list or set does not fit on the CPU
cache. In contrast, arrays occupy a single contiguous portion ofmemory, so sequential
access (e.g. i t e r) is faster for arrays. For example, iterating over a set is 8x slower
than iterating over an array for n = lo3 and 15x slower for n = lo6.

Figure 8.6 illustrates the time taken to perform a left fold, summing the elements
of a list, array or set in forward order. The curves are qualitatively similar to figure 8.5
forthe i terfunctionsbut f o l d - l e f t isupto lox slowerthan i t e r .

Figure 8.7 illustrates the time taken to perform a right fold, summing the elements
of a list, array or set. Left and right folds perform similarly for arrays and sets but lists
show slightly different behaviour due to the stacking of intermediate results required
to traverse the list in reverse order. Specifically, fold-right is 30% slower than
f o l d - l e f t for lists.

210 OPTIMIZATION

-24.0 ; o

-24.5 ;

I 1

Figure 8.6
functions over list and array data structures containing n elements.

Measured performance (time t in seconds per element) of the f old-lef t

Figure 8.7
functions over list, array and set data structures containing n elements.

Measured performance (time t in seconds per element) of the f old-right

LOWER-LEVEL OPTIMIZATIONS 21 1

Figure 8.8
2005.

Controlling the optimization flags passed to the F# compiler by Visual Studio

These benchmark results may be used as reasonably objective, quantitative evi-
dence to justify a choice of data structure. We shall now examine other forms of
optimization, in approximately-decreasing order of productivity.

8.4.2 Compiler flags

The simplest way to improve the performance of an F# program is to instruct the F#
compiler to put more effort into optimizing the code. This is done by providing an
optimization flag of the form -0of f , -01, - 0 2 or -03 where the latter instructs
the compiler to try as hard as possible to improve the performance of the program.

In Visual Studio, the optimization setting for the compiler is controlled from the
Project Dproject Properties ... dialog box (illustrated in figure 8.8).

As a last resort, program transformations performed manually should be consid-
ered as a means of optimization. We shall now examine several different approaches.
Although we try to associate quantitative performance benefits with the various ap-
proaches, these are only indicative and are often chosen to represent the best-case.

21 2 OPTIMIZATION

8.4.3 Tail-recursion

Straightforward recursion is very efficient when used in moderation. However, the
performance of deeply recursive functions can suffer. Performance degradation due
to deep recursion can be avoided by performing tail recursion [161.

If a recursive function call is not tail recursive, state will be stored such that it may
be restored after the recursive call has completed. This storing, and the subsequent
retrieving, of state is responsible for the performance degradation. Moreover, the
intermediate state is stored on a limited resource known as the stack which can be
exhausted, resulting in StackOverf 1owExcept ion being raised.

Tail recursion involves writing recursive calls in a form which does not need
this state. Most simply, a tail call returns the result of the recursive call directly,
i.e. without performing any computation on the result.

For example, a function to sum a list of arbitrary-precision integers may be written:

let rec sum = function
I [I - 5 01
I h::t - > h + sum t;;

Summing lo4 elements takes 2ms:

> time sum 111 . . 1000011 ;;
Took 2ms
val it : bigint = 500050001

Val sum : bigint list - > bigint

Attempting to sum lo5 elements exhausts stack space:

> time sum [1I . . lOOOOOI1
Process is terminated due to StackOverflowException

The result of the recursive call sum t in the body of the sum function is not
returned directly but, rather, has h added to it to create a new value that is then
returned. Thus, this recursive call to sum is not a tail call.

The sum function can be written in tail recursive form by accumulating the sum
in an argument and returning the accumulator when the end of the list is reached:

> let rec sum-tr-aux (accu : bigint) = function
I [I - > accu
I h::t - > sum-tr-aux (h + accu) t;;

val sum-tr-aux : bigint - > bigint list - > bigint

The signature of the auxiliary function sum-t r-aux is not the same as that of
sum, as it must now be initialized with an accumulator of zero. A tail recursive
sum-tr function can be written in terms of sum-tr-aux by applying zero as the
initial accumulator:

> let sum-tr list =
sum-tr-aux 01 list;;

val sum-tr : int list - > int

LOWER-LEVEL OPTIMIZATIONS 213

As this sum - tr function is tail recursive, it will not suffer from stack overflows
when given long lists:
> time sum-tr [11 . . 100001]
Took 8ms
val it : bigint = 500050001

> time sum-tr [1I . . 1OOOOOI]
Took 47ms
val it : bigint = 50000500001

> time sum-tr [1I . . lOOOOOOI] ;;
Took 196ms
val it : bigint = 5000005000001

inputs. However, many functions are naturally written in a non-tail-recursive form.

as:

As we have seen, non-tail-recursive functions are not robust when applied to large

For example, the built-in List. fold-right function is most simply written

let rec fold-right f list accu =

match list with
I [I - 5 accu
I h::t - > f h (fold-right f t accu);;

val fold-right : ('a - > 'b - > 'b) - > 'a list - > 'b - > 'b

This form is not tail recursive. The built-in List. fold-right function is
actually tail recursive, and tries to be efficient, but it still has an overhead compared
to the List. fold-left function (see figures 8.6 and 8.7). The reason for this
overhead stems from the fact that the f old-le f t function considers the elements
in the list starting at the front of the list whereas the f old-right function starts
at the back. On a container that allows random access, such as an array, there is
little difference between considering elements in forward or reverse order. However,
the primitive operation used to decompose a list presents the fist element and the
remaining list. Consequently, looping over lists is more efficient in forward order
than in reverse order.

Many standard library functions suffer from the inefficiency that results from
having been transformed into the more robust tail recursive form. In the List
module, the fold-right, map, append and concat functions are not naturally
tail recursive.

8.4.4 Avoiding allocation

Although the .NET platform is based upon a common language run-time (CLR) that
allows seamless interoperability between programs written in different languages,
the platform has been optimized primarily for the C# language. As a conventional
imperative language, C# programs have a typical value lifetime distribution that is
significantly different to that of most functional programs. Specifically, functional
programs often allocate huge numbers of short-lived small values and standalone

214 OPTIMIZATION

List.map f (List.map f 1) List.map (fun e - > f (f e)) 1

Figure 8.9 Deforestation refers to methods used to reduce the size of temporary data, such
as the use of composite functions to avoid the creation of temporary data structures illustrated
here: a) mapping a function f over a list 1 twice, and b) mapping the composite function f o f
over the list 1 once.

functional programming languages like OCaml are optimized for this [1 11. As .NET
is not optimized for this, allocation in F# is more expensive and, consequently,
optimizations that avoid allocation are correspondingly more valuable when trying
to make F# programs run more quickly.

8.4.4.7 Deforesting Functional programming style often results in the creation
of temporary data due to the repeated use of maps, folds and other similar functions.
The reduction of such temporary data is known as deforestation. In particular, the
optimization of performing functions sequentially on elements rather than containers
(such as lists and arrays) in order to minimize the number of temporary containers
created (illustrated in figure 8.9).

For example, the Shannon entropy H of a vector v representing a discrete proba-
bility distribution is given by:

n

i=l

This could be written in F# by creating temporary containers, firstly ui = lnvi
and then wi = uiwi and finally calculating the sum H(v) = xi wi:
> open L i s t ; ;
> l e t entropy1 v =

fold-left (+) 0 . 0 (map2 (*) v (map log v)) ;;

LOWER-LEVEL OPTIMIZATIONS 21 5

val entropyl : float list - > float

This function is written in an elegant, functional style by composing functions.
However, the subexpressions map log v for u and map2 (*) v (. . .)

for w both result in temporary lists. Creating these intermediate results is slow.
Specifically, the O(n) allocations of all of the list elements in the intermediate results
is much slower than any of the arithmetic operations performed by the rest of this
function.

Fortunately, this function can be completely deforested by performing all of the
arithmetic operations at once for each element, combining the calls to +, * and log
into a single anonymous function:

> let entropy2 v =

val entropy2 : float list - 5 float
fold-left (fun h v - > h + v * log v) 0.0 v;;

Note that this function produces no intermediate lists, i.e. it performs only O(1)

The deforested entropy2 function is much faster than the entropyl function.
allocations.

For example, it is N 14 x faster when applied to a 107-element list:

> time entropyl [1.0 . . 1 0 0 0 0 0 0 0 . 0] ; ;
Took 13971ms
val it : float = 7.809048631e+14

> time entropy2 [1 . 0 . . ~ 0 0 0 0 0 0 0 . 0 1 ; ;
Took 1045ms
val it : float = 7.809048631e+14

Deforesting can be a very productive optimization when using eager data structures
such a lists, arrays, sets, maps, hash tables and so on. However, the map2 and map
functions provided by the Seq module are lazy: rather than building an intermediate
data structure they will store the function to be mapped and the original data structure.
Thus, a third variation on the entropy function is deforested and lazy:

let entropy3 v =

Seq.map2 (*) v (Seq.map log v)
I > Seq.fold (+) 0 . 0 ; ;

val entropy3 : #seq<float> - > float

The performance of a lazy Seq-based implementation is between that of the
deforested and forested eager implementations:

time entropy3 r 1 . 0 . . 1 0 0 0 0 0 0 0 . 0 1 ;;
Took 6140ms
val it : float = 7.809048631e+14

Lazy functions are usually slower than eager functions so it may be surprising that
the lazy entropy3 function is actually faster than the eager entropyl function
in this case. The reason is that allocating large data structures is proportionally

21 6 OPTIMIZATION

much slower than allocating small data structures. As the Seq .map function is
lazy, the entropy3 function never allocates a whole intermediate list but, rather,
allocates intermediate lazy lists. Consequently, the lazy ent ropy3 function evades
the allocation and subsequent garbage collection of a large intermediate data structure
and is twice as fast as a consequence.

The lazy implementation can also be deforested:

let entropy4 v =

Seq.fold (fun h v - > h + v * log v) 0.0 v;;
val entropy4 : #seq<floatz - > float

but not as fast as the deforested eager implementation:

> time entropy4 [1.0 . . 10000000.01;;
Took 2167ms
val it : float = 7.809048631e+14

The deforested eager ent ropy2 function is the fastest implementation because it
avoids the overheads of both intermediate data structures and laziness. Consequently,
this style should be preferred in performance-critical code and, fortunately, it is easy
to write in F# thanks to first-class functions and the built-in function composition
operators.

8.4.4.2 Avoid copying Explicit declarations of compound data structures al-
most certainly entail allocation. Consequently, a simple approach to avoiding copying
is to write performance-intensive rewrite operations so that they reuse previous values
rather than rebulding (copying) them.

For example, the following function contracts a pair where either element is zero
but incurs a copy by explicitly restating the pair x , y even when the input is being
returned as the output:

> let f = function

This deforested lazy implementation is faster than the forested lazy implementation

I 0, - 1 - I 0 - 5 0, 0
I x, Y - > x, y;;

val f : int * int - > int * int
This function is easily optimized by returning the input as the output explicitly

let f = function

rather than using the expression x , y:

1 0 , - I - I 0 - 5 0, 0
1 a - > a;;

val f : int * int - > int * int
The second match case no longer incurs an allocation by unnecessarily copying

the input pair.
Referential equality (described in section 1.4.3) can be used to avoid unneces-

sary copying. This typically involves checking if the result of a recursive call is
referentially equal to its input.

LOWER-LEVEL OPTIMIZATIONS 21 7

Consider the following implementation of the insertion sort:

> let rec sort1 = function
I [I - > [I
I x::xs - >

match sortl xs with

I y::ys when x > y - > y::sortl(x::ys)
I ys - > x::ys;;

val sortl : 'a list - > 'a list

In general, this is an adequate sort function only for short lists because it has
O(n2) complexity where n is the length of the input list. However, if the sortl
function is often applied to already-sorted lists then this function is unnecessarily
inefficient because it always copies its input.

The following optimized implementation uses referential equality to spot when
the list x : : xs that is being reconstructed and returned will be identical to the given
list and returns the input 1 i s t directly when possible:

let rec sort2 = function
I [I - > [I
I x::xs as list - >

match sort2 xs with
I y::ys when x y - > y::sort2(x::ys)
I ys - 5 if xs == ys then list else x::ys;;

This approach used by the sort2 function avoids unnecessary copying and can
improve performance when the input list is already sorted or when insertions are
required near the front of the list.

val sort2 : 'a list - 5 'a list

8.4.5 Terminating early

Algorithms may execute more quickly if they can avoid unnecessary computation
by terminating as early as possible. However, the trade-off between any extra tests
required and the savings of exiting early can be difficult to predict. The only general
solution is to try premature termination when performance is likely to be enhanced
and revert to the simpler form if the savings are not found to be significant. We shall
now consider a simple example of premature termination as found in the core library
as well as a more sophisticated example requiring the use of exceptions.

The for all function in the List module is an enlightening example of an
early-terminating function. This function applies a predicate function p to elements
in a list, returning true if the predicate was found to be true for all elements and
false otherwise. Note that the predicate need not be applied to all elements in the
list, as the result is known to be false as soon as the predicate returns false for
any element. The f or-a1 1 function may be written:
> let rec for-all1 p = function

I [I - > true

218 OPTIMIZATION

I h::t - 5 p h && for-all1 p t;;
val for-all1 : ('a - > bool) - 5 'a list - > bool

The premature termination of this function is not immediately obvious. In fact,
the && operator has the unusual semantics of in-order, short-circuit evaluation. This
means that the expression p h will be evaluated first and only ifthe result is true will
the expression f or-a1 11 p t be evaluated. Consequently, this implementation of
the f or-all function can return f a1 se without recursively applying the predicate
function p to all of the elements in the given list.

Moreover, the short-circuit evaluation semantics of the && operator makes the
above function equivalent to:

> let rec for-all1 p = function
I [I - > true
I h::t - 5 if p h then for-all1 p t else false;;

val for - all1 : ('a - > bool) - > 'a list - > bool

the call f or-a1 1 p t is returned without being acted upon).

on the first element takes under 5011s:

> [1 . . 10001

Took 5ms
val it : bool = false

Consequently, these f or-all functions are actually tail recursive (the result of

These implementations of the f or-a1 1 function are very efficient. Terminating

I > time (loop ~ O O O O O (for-alll ((< >) I)));;

Terminating on the 1000th element takes 11ps:

1s time (loop I O O O O O (for-all1 ((< >) 1 0 0 0))) ;;
> [l . . 10001

Took 1144ms
val it : bool = false

These performance results will now be used to compare an alternative exit strategy:

A similar function may be written in terms of a fold:
exceptions.

> let for-all2 p list =

val for-all : ('a - 5 bool) - > 'a list - 5 bool

the list, i.e. it will not terminate early.

catching an exception:

> let for-all3 p list =

List.fold-left (&&) true list;;

However, this f or-a1 1 2 function will apply the predicate p to every element of

The fold-based implementation can be made to terminate early by raising and

try
let f b h = p h && raise Exit

LOWER-LEVEL OPTIMIZATIONS 21 9

List.fold - left f true list
with

1 Exit - >
false; ;

val for-all3 : ('a - > bool) - > 'a list - 5 bool

Indeed, there is now no reason to accumulate a boolean that is always true. The
function can be written using i ter or a comprehension instead of a fold:

> let for-all4 p list =

try
for h in list do

true
if not (p h) then raise Exit

with
I Exit - >

false; ;
val for-all4 : ('a - 5 bool) - 5 'a list - > bool

This function has recovered the asymptotic efficiency of the original f or-a1 11
function but the actual performance of this f or-a1 14 h c t i o n cannot be determined
without measurement. Indeed, as exceptions are comparatively slow in .NET the
exception-based approach is likely to be significantly slower when the exception is
raised and caught.

When terminating on the first element, the performance is dominated by the cost
of raising and catching an exception. The time taken to return at the first element is
29ps:

> [l . . 10001 ;;
1 > time (loop I O O O O O (for-all4 ((< >) 1))) ;;

Took 2862ms
val it : bool = false

Terminating on the 1000th element takes 43ps:

> [1 . . 10001;;
1s time (loop ~ O O O O O (for-all4 ((< >) 1 0 0 0))) ;;

Took 4269ms
val it : bool = false

In the latter case, a significant amount of other computation is performed and
the performance cost of the exception is not too significant. Consequently, the
for - a114 function is 4x slower than the original f or-all1 function. However,
if the flow involves a small amount of computation and an exception, as it does in
the former case, then the exceptional route is 6 0 0 ~ slower. This is such a signifi-
cant performance difference that the standard library provides alternative functions
for performance critical code that avoid exceptions in all cases. For example, the
assoc and find functions in the List module have try-assoc and tryf ind

220 OPTIMIZATION

alternatives that return an option result to avoid raising an exception when a result is
not found.

8.4.6 Avoiding higher-order functions

In F#, applying functions as arguments can lead to slower code. Consequently,
avoiding higher-order functions in the primitive operations of numerically-intensive
algorithms can significantly improve performance.

For example, a function to sum an array of floating point numbers may be written
in terms of a fold:

> let suml a =

val suml : float array - > float
Array.fold-left (+) 0.0 a;;

Alternatively, the function may be written using an explicit loop rather than a fold:

let sum2 a =

let r = ref 0.0
for i = 0 to Array.length a - 1 do

!r;;
r := !r + a. [il

val sum2 : float array - 5 float

Clearly, the fold has significantly reduced the amount of code required to provide

The overhead of using a higher-order function results in the suml function exe-
the required functionality.

cuting significantly more slowly than the sum2 function:

> let a = Array.init 10000000 float;;
val a : float array

> time suml a;;
Took 376ms
val it : float = 4.9999995e13

> time sum2 a;;
Took 104ms
val it : float = 4.9999995e13

In this case, the sum2 function is 3 . 6 ~ faster than the suml function. In fact,
performance can be improved even more by using a mutable value.

8.4.7 Use mutable

The mutable keyword can be used in a let binding to create a locally mutable
value. Mutable values are not allowed to escape their scope (e.g. they cannot be
used inside a nested closure). However, mutable values can be more efficient than
references.

LOWER-LEVEL OPTIMIZATIONS 221

For example, the previous section detailed a function for summing the elements of
a float array. The fastest implementation used a reference for the accumulator
but this can be written more efficiently using a mutable:

let sum3 a =

let mutable r = 0.0
f o r i = 0 to Array.length a - 1 do
r < - r + a. [i]

r;;
val sum3 : float array - > float

Using a mutable makes this sum3 function 2 . 7 ~ faster than the fastest previous
implementation sum2 that used a reference:

time sum3 a;;
Took 39ms
val it : float = 4.9999995e13

The combination of avoiding higher-order functions and using mutable makes
this sum3 function 9 . 6 ~ faster than the original suml.

8.4.8 Specialized functions

Particularly in the context of scientific computing, F# programs can benefit from
the use of specialized high-performance functions. This includes some complicated
numerical algorithms for matrix and Fourier analysis, which will be covered in
chapter 9, but the F# standard library also provides some fast functions for common
mathematical values.

elements and provides operators that are considerably faster than equivalent functions
from the Array module:

> let a, b = [Il.O . . lOOO.Ol1, “1.0 . . lOOO.Ol1;;
val a : float array
val b : float array

5 time (loop 100000 (Array.map2 (+) a)) b

Took 5744ms
val it : unit = ()

> (vector a, vector b)

The built-in vect or type implements arbitrary-dimensionality vectors with float

(> ignore;;

(> time (loop 100000 (fun (a, b) - > a + b))
I > ignore;;

Took 2014111s
val it : unit = ()

In this case, vector addition is 2 . 9 ~ faster using the specialized vector addition.

222 OPTIMIZATION

xo yo x1 1 y1 x2 yz x3 y3

Figure 8.10
of indirection.

An array of tuples or records containing pairs of float values incurs a level

Figure 8.11
directly into the array. This is often the most efficient representation.

A s truct can be used to completely unbox the float values,. placing them

8.4.9 Unboxing data structures

Typically in functional languages, most values are boxed. This means that a value
is stored as a reference to a different piece of memory. Although elegant in pro-
viding efficient referential transparency, unnecessary boxing can incur significant
performance costs.

For example, much of the efficiency of arrays stems from their elements occupying
a contiguous portion of memory and, therefore, accesses to elements with similar
indices are cache coherent. However, if the array elements are boxed, only the
references to the data structures will be in a contiguous portion of memory (see
figure 8.10). The data structures themselves may be at completely random locations,
particularly if the array was not filled sequentially. Consequently, cache coherency
may be very poor.

For example, computing the product of an array of complex numbers is unnec-
essarily inefficient when the numbers are represented by a (float * float)
array (see figure ??). A s t ruct is often more efficient as this avoids all unboxing
(see figure 8.1 1).

A function to compute the product of an array of complex numbers might be
written over the type (float * float 1 array, where each element is a 2-
tuple representing the real and imaginary parts of a complex number:

let product1 zs =

let mutable re = 1.0
let mutable im = 0.0
for i = 0 to Array.length zs - 1 do

let zr, zi = z s . [il
let r = re * zr - im * zi
and i = re * zi + im * zr
re < - r

LOWER-LEVEL OPTIMIZATIONS 223

im < - i
re, im;;

val product1 : (float * float) array - > float * float

To avoid boxing completely, the complex number can be stored in a struct:

> type Complex = struct
val re : float
val im : float
new(x, y) = { re = x; im = y)

end; ;

A more efficient alternative may act upon values of the type Complex array:

let product2 (z s : Complex array) =

let mutable re = 1.0
let mutable im = 0.0
for i = 0 to Array.length z s - 1 do
let r = re * z s . [i] .r - im * zs. [i] .i
and i = re * zs. [i] .i + im * zs. [i] .r
re < - r
im < - i

re, im;;
val product2 : Complex array - 5 float * float

Benchmarking these two functions compiled to native code with full compiler
optimizations and acting upon randomly shuffled 224-element arrays, we find that
the tuple-based product1 function takes 1.94s to complete and the struct-based
product2 function takes only 0.25s.

8.4.1 0 Eliminate needless closures

The definition of a local function or the partial application of a curried function can
create a closure. This functionality is not provided by the .NET platform and, con-
sequently, F# must distinguish between the types of ordinary functions and closures
to remain compatible. The type of a closure is bracketed, so ’ a - ’ b becomes
(‘a - > ‘b).

For example, both of the following functions compute the next integer and may
be used equivalently in F# programs but the former is an ordinary function (like a
C# function) whereas the latter is a closure that results from partial application of the
curried + function:

> let succl n =

n + 1;;
val succl : int - > int

let succ2 =

(+) 1;;
val succ2 : (int - > int)

224 OPTIMIZATION

Closures encapsulate both a function and its environment (such as any partially
applied arguments). Consequently, closures are heavier than functions and the cre-
ation and invocation of a closure is correspondingly slower. In fact, the F# compiler
translates a closure into an object that encapsulates the environment and function.

8.4.1 1 lnlining

The F# programming language provides an in1 ine keyword that provides a simple
way to inline the body of a function at its calls sites:

let f x y = x + y;;

let inline f x y = x + y;;

(static member (+) : ^a - > ^b - > ^c)

The body of the function marked inline will be inserted verbatim whenever
the function is called. Note that the type of the inlined function is very different.
This is because ordinary functions require ad-hoc polymorphic functions such as the
+ operator to be ossified to a particular type, in this case the default type int. In
contrast, the inlining of the function in the latter case allows the body of the function
to adopt whatever type is inferred from any context it is inserted into individually.
Hence its type requires only that a + operator is defined in the context of the call site.

The performance implications of inlining vary wildly, with numeric code often
benefitting from judicious inlining but the performance of symbolic code is often
deteriorated by inlining.

val f : int - > int - > int

val f : ^a - > ^b - 5 ^c when ^a :

8.4.1 2 Serializing

The F# input value and output-value functions or the standard .NET seri-
alization routines themselves can be used to store and retrieve arbitrary data using a
binary format. However, at the time of writing these routines in the .NET library are
not optimized and require as much space as a textual format and often take several
times as long as a custom parser to load. In particular, the current .NET serialization
implementation has quadratic complexity when serializing data structures containing
many shared functions. This includes the serialization of data structures that contain
INumeric implementations, such as the F# vector and matrix types.

Consequently, programs with Performance limited by I 0 may be written more
efficiently by handling custom formats, such as textual representations of data (parsed
using the techniques described in chapter 5) or even using a custom binary format.
CPU performance has increased much more quickly than storage performance and, as
a consequence, data compression can sometimes be used to improve I 0 performance
by reducing the amount of data being stored in exchange for a higher CPU load.

Having examined the many ways F# programs may be optimized, we shall now
review existing libraries which may be of use to scientists.

CHAPTER 9

LIBRARIES

A great deal of time and effort has been put into existing software. Many libraries
have resulted from years of development and the ability to reuse this work is essential.
There are two different forms of library of interest to the F# programmer:

0 .NET libraries

0 Native libraries

The .NET platform is famous for providing a wealth of library functions, particularly
in the contexts of web and GUI programming. These libraries will be of interest
to F# programmers primarily for the useful functionality that they provide, such as
graphing tools. Many third party libraries are available for the .NET platform and we
shall endeavour to cite those that we have found to be most useful and of the highest
quality.

The term native library refers to platform-specific libraries that typically predate
the .NET platform. The few remaining native libraries that have not been succeeded
by .NET libraries are desirable primarily because they offer exceptionally high per-
formance.

This chapter describes built-in functionality provided with the .NET platform as
well as the use of both .NET and native libraries.

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

225

226 LIBRARIES

9.1 LOADING .NET LIBRARIES

On the .NET platform, extra functionality is typically provided in the form of a
Dynamically Linked Library (DLL). These files have the suffix ".dll" and can be
loaded into an F# interactive session or referenced from a compiled F# program
using the #r directive. For example, the following loads the "XYGraph.dll" library:

#r llXYGraph.dllll; ;

A set of directories is searched for this file and F# complains if it fails to find the
DLL. The search can be expanded to include other directories using the #I directive.
For example, the following adds the directory "C:\Program Files" to the search path:

> #I @ " C : \Program Files" ; ;

Compiled programs can also specify search paths and DLLs using - I and - r
compile-line arguments.

9.2 CHARTING AND GRAPHING

Although the .NET platform does not bundle any charting or graphing tools there are
a wide variety of libraries available, both open source and commercial products.

We have found the ComponentXtra l ibrar ie~ '~ to be simple to use and powerful
enough to be useful in many situations. Moreover, their tools are free except for
the saving and printing capabilities. The XYGraph class draws a 2D graph into a
Windows form.

An object of the class XYGraph is a Windows Forms control and can be added
into a form:

> let form = new Form(Text="Sine wave", Visible=true) ; ;
val form : Form

> let graph =

val graph : componentXtra.XYGraph

> form.Controls.Add(graph);;

new componentXtra.XYGraph(Dock=DockStyle.Fill);;

The labels on the graph are properties that can be set:

> graph.XtraTitle c- "Sine waveu1; ;

> graph. XtraLabelX c - "x" , I * *

> graph.XtraLabelY < - "sin x" ; ;

A series can be added to the graph using the AddGraph method:

> let g =

THREADS 227

Figure 9.1 The XYGraph tool from ComponentXtra.

let dash = Drawing2D.DashStyle.Solid
graph.AddGraph("", dash, Color.Red, 1, false);;

val g : int

passing this handle and the new coordinates to the AddVa lue method:
The int result is a handle to this series. Points can be added to the series by

for x in O.Of . . 0.01f . . 6.29f do
graph.AddValue(g, x, sin y) ; ;

Finally, the graph must be redrawn with the new points:

> graph. DrawAll () ; ;

The resulting 2D graph is illustrated in figure 9.1.

9.3 THREADS

Many applications can benefit from the ability to execute threads of program concur-
rently. On the .NET platform, this functionality is provided by threading.

The design of concurrent programs and the use of threading on the .NET platform
is a huge topic fraught with perils. Consequently, this chapter aims only to provide the
reader with a basic understanding of threading on the .NET platform and to provide
some useful higher-order functions that can be used to improve the performance of
F# programs whilst avoiding as many pitfalls as possible.

Concurrency serves three different uses that have different properties and, conse-
quently, require different support:

228 LIBRARIES

1. CPU bound computation, e.g. dividing a long running computation between
two CPUs to double performance.

2. Non-CPU bound computation, e.g. downloading many protein sequences over
the internet without wasting time waiting for one download to finish before
beginning another.

3. Interactivity, e.g. using a multithreaded GUI to ensure that the user interface of
an application continues to function while the application is processing data.

CPU-bound computations are best suited to one thread for each CPU whereas non-
CPU bound computations benefit from having a number of threads that is unrelated to
the number of CPUs, chosen to be a trade-off between sufficient parallelism and the
overhead of context switching between threads. Multithreaded GUIs require more
sophisticated use of low-level threading constructs.

The following sections begin by detailing the basic use of .NET threads before
presenting functions to handle both CPU-bound and non-CPU-bound computations
safely and easily.

9.3.1 Thread safety

Determinism is a vitally important property of most programs. In the context of
threading, a function that is careful to ensure determinism in the context of parallel
execution is referred to as being thread safe. Designing functions to be thread safe is
arbitrarily difficult and, consequently, containing this complexity is essential if large
programs are to run correctly.

Consider a program that spawns two threads that execute in parallel, adjusting a
counter. The first thread decrements the counter and the second thread increments
the counter. All things being equal, we might expect the counter to be either - 1 , O or
1 at any given time. However, this is not the case for two reasons:

0 CPU time may not be divided equally between the two threads by the 0s.
0 Increment and decrement are not atomic operations, so the value of the counter

may be adjusted by one thread while the other thread is in the middle of an
increment or decrement.

The unequal division of CPU time can be accounted for by queuing operations
for execution rather than dividing them equally between threads. Each thread of
computation executes tasks from the queue. If one thread is given more CPU time
then it will consume more tasks from the queue, keeping all CPUs busy and making
more efficient use of CPU time.

The latter problem is more subtle and can be solved using some low-level con-
structs. Specifically, threads can be synchronized to ensure that certain operations
(increment and decrement in this case) are executed atomically by only one thread at
a time. This is achieved by wrapping the non-atomic operation in a lock, a low-level
construct that excludes other threads from executing the code at the same time. In

THREADS 229

this case, the increment and decrement would be wrapped in locks that depended
upon a single value, thus precluding one thread from incrementing while the other
was decrementing and vice-versa.

The remainder of this section introduces the fundamental threading constructs
provided by the .NET platform before describing how useful higher-order functions
can be composed from these constructs and reused in F# programs to simplify the
use of concurrency in many scientific programs.

9.3.2 Basic use

Threading is provided via classes from the System. Threading namespace:

> open Systern.Threading;;

Concurrent threads of computation can be spawned by constructing a Thread
object with a function f to execute and calling its Start method to begin execution.
The following higher-order spawn function begins executing the given function f
concurrently on a separate thread:

> let spawn (f : unit - > unit) =

let thread = new Thread(f)
thread. Start ()

thread; ;
val spawn : (unit - 5 unit) - > Thread

After the spawn function is invoked, another computation is running concurrently.
In most cases, the main thread will want to pause until the spawned thread completes,
e.g. to read the result of the completed thread. This is achieved by calling the Join
method of the Thread object that was returned by the spawn function.

The following execute function spawns several threads and waits for them all
to complete before returning:

let execute n f =

spawn f (I
[(for i in 1 . . n - >

I > Array.iter (fun t - 5 t.Join());;
val execute : int - 5 (unit - > unit) - > unit

In the context of functional programming, the single most important improvement
that can be made to the spawn and execute functions is to create variants that
allow values fed through functions that execute concurrently. This requires the type
of the function f to be generalized from unit - > unit to ' a - > ' b.

This improvement hints at what is perhaps the single most useful parallel program-
ming construct in scientific computing: the parallel higher-order map function. This
function applies a given function to each element of an array, executing applications
concurrently.

A naive implementation of a parallel map can be written using the minimal
threading functionality already discussed:

230 LIBRARIES

> let map f a =

let b = Array.map (fun - - 5 None) a
let f i x = spawn (fun (1 - > b. [i] < - Some(f x))
for thread in Array.mapi f a do

Array.map 0ption.get b;;
thread. Join ()

val map : (‘a - > ‘b) - > ’a array - > ’b array

This implementation spawns one thread for each element of the input array a.
Each thread fills the corresponding element of the array b with its result. As the
type of the result is not known, the intermediate array b contains option types that
are initially set to None. All of the threads are started and then all of the threads are
joined, pausing the main thread until every spawned thread has completed. When
all of the threads have completed the array b contains only Some values, which are
extracted using the Opt ion. get function to return the final result.

There is a trade-off between the performance improvement due to concurrent
execution distributed across more than one CPU and the overheads involved in this
parallel map function:

Boxing and unboxing of the option type.

Thread creation and handling.

Context switching if there are more threads than free CPUs.

Repeated iteration over the input array.

However, even this naive implementation can give a significant performance improve-
ment when the input array contains one element for each CPU, the computations take
roughly-equal time and the time taken is much longer than the overheads.

For example, computing the 40th Fibonacci number using the fib function (given
at the beginning of section 6.1.4) takes 2.6s:

> time fib 40;;
Took 2606ms
val it : int = 102334155

Performing the same computation twice using the sequential Array. map func-
tion takes just over twice as long, as expected:

> time (Array.map fib) [(40; 4011 ;;
Took 5336ms
val it : int array = “102334155; 10233415511

Exploiting two CPUs using the parallel map function improves performance over
the sequential map by 70% in this case:

time (map fib) 1140; 4011;;
Took 3138ms

THREADS 231

val it : int array = [1102334155; 102334155(]

However, applying this naive parallel map to a long array of quick computations
increases the relative cost of this function’s overheads. Consequently, the parallel
map function can also be much slower than a sequential map, at least four orders
of magnitude slower when mapping single increments over each element of a lo4-
element array:

> time (Array.map ((+) 1)) [I1 . . lOOOOl1 ;;
Took Oms
val it : unit = ()

time (map ((+) 1)) [/ I . . 1000011;;
Took 9797ms
val it : unit = ()

Using a smaller number of threads and synchronizing their access to the input array
greatly improves the worst-case performance of this parallel map. Implementing this
improved parallel map requires the use of .NET thread synchronization constructs.

9.3.3 Locks

Two of the deficiencies of the naive parallel map can be addressed by distributing
the element-wise computations over a small number of threads. Using fewer threads
reduces the overheads of thread creation and handling and greatly improves worst-
case performance, broadening the utility of the parallel map function.

A lock is as a way to mutually exclude threads from performing certain tasks
concurrently, such as incrementing a counter. Exactly this functionality can be used
to synchronise a small number of threads to process array elements concurrently,
each thread consuming the next available element until no elements remain.

A section of code is most elegantly locked using the higher-order function lock:

> lock;;
val it : obj - > (unit - 5 ’a) - 5 ‘a

This function waits until the given object is unlocked, then locks it, executes the
given function and unlocks the object before returning. Thus, a thread safe increment
of an int ref called n may be written:

lock n (fun () - > incr n)

This leads to a more efficient implementation of the parallel map that uses a small
number of threads, each of which use a shared counter to keep track of the next
unmapped element in the array. The task of incrementing the counter and returning
the next unmapped element (if any) may be written:

> let next i n () =

incr i
Some (!i - 1) ;;

i f !i = n then None else

232 LIBRARIES

val next : int re€ - 5 int - > unit - > int option

maps a single element and looks for the next unmapped element:
The parallel map itself spawns threads executing a loop function which repeatedly

let map max-threads f a =

let n = Array.length a
let b = Array.create n None
let i = ref 0

let rec apply i =

b. [il < - Some(f a. [il 1
loop ()

and loop0 =

execute max-threads loop
Array.map 0ption.get b;;

0ption.iter apply (lock i (next i n)

Val map : int - > ('a - 5 'b) - z 'a array - > 'b array

available CPU or core:

> let cpu-map f a =

val cpu-map : ('a - 5 'b) - > 'a array - > 'b array

faster than the previous implementation:

> time (cpu-map ((+) 1)) [I I . . I O O O ~] I > ignore;;
Took 5ms
val it : unit = ()

This cpu map function is quite efficient and distributes computation as evenly
as possible whilst remaining safe. Consequently, this is the parallel map of choice
for scientific applications that value simplicity over performance. The overheads of
this parallel map implementation are primarily the creation of local threads and the
synchronization between those threads.

For CPU-bound operations, this map should be invoked with one thread for each

map System.Environment.ProcessorCount f a;;

In the worse case described above, this implementation is three orders of magnitude

9.3.4 The thread pool

The previous implementation of parallel map distributed computations over its own
set of threads. A set of threads that serves this purpose is known as a thread pool and
the .NET platform actually provides a global thread pool that typically contains 25
worker threads and is accessed via the Threadpool namespace.

The advantage of using a global thread pool is that the worker threads have
already been created, removing this overhead from the parallel map function. The
disadvantage is lack of safety: functions that use the threadpool recursively can
deadlock threads in the threadpool and the global threadpool has substantial overheads
for queueing so it is typically much slower to use.

THREADS 233

The QueueUserWorkItem method can be used to queue computations on the
global thread pool directly. Asynchronous delegates provide an alternative, and often
easier, way to execute computations concurrently using the threadpool.

9.3.5 Asynchronous delegates

A delegate is the .NET representation of a type-safe function pointer. In F#, a closure
can be converted into a delegate using the System. Converter class.

Delegates provide asynchronous invocationvia BeginInvoke and EndInvoke
methods. The former queues the delegate in the thread pool, applying any arguments,
and the latter waits for it to complete and recovers its return value.

A parallel map that uses the global thread pool by invoking asynchronous delegates
may be written:

> let global-map f a =

let d = new System.Converter<’a, ‘bs(f)
Array.map (fun x - > d.BeginInvoke(x, null, null)) a
I > Array.map (fun a - 5 d.EndInvoke(a));;

val global-map :

int - 5 (’a - 5 ’b) - 5 ‘a array - > ’b array

This implementation of a parallel map is faster than the previous implementation
when the total time taken to perform the whole map is small (< lms) because the
time taken to execute the previous map implementation is dominated by the thread
creation. However, this implementation is significantly slower in almost all other
cases because it queueing jobs for the threadpool is slower and there are many more
threads in the global threadpool than CPUs so the computations are constantly context
switched between.

Perhaps more importantly, this global-map function handles exceptions by
reraising them on the main thread whereas the previous cpu-map function will give
undefined behaviour because it makes no attempt to handle exceptions.

9.3.6 Background threads

On the .NET platform, applications have background threads and foreground threads.
The difference between background and foreground threads relates to the termination
of the application. An application is terminated when all of its foreground threads
complete, i.e. any outstanding background threads are terminated automatically.

The IsBackground property can be used to mark a thread as a background
thread:

> thread.IsBackground < - true;;

This allows branch computations to be quit automatically and is of particular
importance in the context of visualization, where computations should be performed
in background threads to ensure that the application ends when the user interface is
closed.

234 LIBRARIES

9.4 RANDOM NUMBERS

The System. Random class provided by .NET can be used to generate uniformly-
distributed int and float random numbers. A friendlier interface can be obtained
by creating a global random number generator and providing some useful functions
to use it:

> module Random =

let rand = new System.Random0
let int n = rand.Next (n)
let float x = x * rand.NextDouble();;

The int and float functions in this Random module generate uniformly-
distributed random int and float values, respectively. The results lie in the range
[0, z) where z is the function argument.

For example, random floats uniformly distributed between 0 and 3 may be gener-
ated using:

> Random.float 3.0; ;
val it : float = 1 . 6 3 9 5 6 0 8 4 3

This Random module is an OCaml-compatible replacement ofthe System. Random
class and will be used in the remainder of this book.

9.5 REGULAR EXPRESSIONS

Particularly with the advent of bioinformatics, a growing number of scientific appli-
cations are manipulating strings as well as numbers. The F# string type provides
simple access to Unicode strings and can be used to perform a variety of simple ac-
tions. However, many applications benefit from sophisticated and specialized forms
of pattern matching that are designed to act upon strings.

We have already discussed the concept of regular expressions in the context of the
f s 1 ex lexer generator, in section 5.5.1.

Definitions relating to .NET regular expressions are held in the namespace:

> open System.Text.Regu1arExpression.s;;

We shall now examine some of the functionality provided by a simple regular
expression before presenting a complete program to compute the frequencies of
different words in a text document.

The Regex class can be used to create an object representing a given regular
expression. For example, the following regular expression matches any sequence of
one or more whitespace characters:

> let whitespace = new Regex(@lr\s+l1) ; ;
val whitespace : Regex

to automate the escaping of back-
slashes in a string. The alternative would be to omit the @ and escape the strings

Note that we have used the notation @ I 1 . . .

VECTORS AND MATRICES 235

manually, which is more tedious and error-prone: " \ \s+l l . This will be more
beneficial for longer, more complicated regular expressions.

This .NET object of type Regex has several member functions that can be used
to manipulate strings by finding substrings that match this regular expression.

For example, the Replace member function finds all substrings that match the
regular expression and replaces them with the given string. The Replace member
function of the whitespace object can therefore be used to collapse whitespace
in a string by replacing all sequences of one or more whitespace characters with a
single space:

> let collapse-whitespace string =

val collapse-whitespace : string - > string

new string with sequences of whitespace replaced by single spaces:

> collapse-whitespace l l T ~ ~ many\n spaces. ; ;
val it : string = l l T ~ ~ many spaces."

whitespace.Replace(string, ; ;

Applying this function to a string containing superfluous whitespace produces a

The same is-whitespace object can be used to split a string into whitespace-
separated substrings using the Spl it member:

> whitespace. Split (" T o o many spaces. I!) ; ;
val it : string = [IT1Too1I; "manyT1; "spaces."lI

This simple example has illustrated the basic functionality of .NET regular ex-
pressions. This functionality can be used to dissect simple file formats to interpret
textual data.

9.6 VECTORS AND MATRICES

The F# standard library provides efficient functions for handling arbitrary-dimensionality
vectors and matrices, including specialized versions for vectors and matrices with
float elements. Vectors are considered to be column vectors by default. Row
vectors are also supported and are distinguished from column vectors by the type
system, to improve correctness.

Vectors and matrices of floats can be constructed from sequences and sequences
of sequences using the vector and matrix functions, respectively:

> let r = vector [2 .0 ; 3.01 ;;
val e : Math.vector

> let m = matrix "0.0; 1.01; [-1.0; 0.011;;
val m : Math.matrix

Arithmetic operators are provided for vectors and matrices. Vector addition:

r + r;;
val it : vector = vector [4 . 0 ; 6.01

236 LIBRARIES

Scaling:
> 3 . 0 $ * r;;
val it : vector = vector L6.0; 9 .01

Matrix multiplication:
> m * m;;
val it : Matrix<float> =

matrix “-1.0; 0 . 0 1 ; LO.0; - 1 . 0 1 1

Transformation of a column vector by premultiplying a matrix:
m * r;;

Transformation of a row vector by postmultiplying a matrix:
val it : vector = vector L3.0; -2.01

> Math.Vector.Transpose r * m;;
val it : vector = vector [- 3 . O ; 2.01

Many scientific problems can be phrased in terms of vector-matrix algebra. Thus,
the ability to handle vectors and matrices can be instrumental in writing scientific
programs. In particular, the ability to perform some complicated computations on
them (e.g. finding the eigenvalues of a matrix) can be pivotal in scientific programs.
Such computations are often prone to numerical error and, therefore, can be tedious
to program robustly. Interfacing to existing libraries that implement this functionality
is covered later in this chapter.

9.7 DOWNLOADING FROM THE WEB

The Worldwide Web (WWW) contains a wealth of information for scientists, much
of it in a form that can be downloaded and analyzed by machine. Indeed, even the
structure of the Web has been the subject of scientific research. Naturally, the .NET
platform provides all of the tools required to tap this resource quickly and easily.

Definitions relating to networking and the internet are held in the System. Net
class and definitions relating to I 0 are held in the System. I0 namespace. The
.NET libraries provide access to the Web such that programs can download files over
an internet connection. A file to download a given URL by passing a stream to a
function k may be written in terms of these classes:

let download (vrl : string) k =

let request = System.Net.WebRequest.Create(ur1)
let response = request.GetResponse()
use stream = response.GetResponseStream0
k stream;;

val download : string - > (1O.Stream - 5 ‘a) - > ‘a

The function k is given the open stream and is expected to read everything it needs
from the stream before returning, as the stream will be closed when the continuation
returns.

COMPRESSION 237

The simplest continuation simply reads the stream into a string:

> let string-of-stream (stream : #System.IO.Stream) =

val string-of-stream : #IO.Stream - > string

For example, we can download the Google home page with:

(new System.IO.StreamReader(stream)).ReadToEnd();;

> download llhttp://www.google.comll string-of-stream;;
val it : string

= llchtml>chead>cmeta http-equiv=\"content-type . . .
This makes F# and, in particular, the F# interactive mode a powerful tool for

scientists analyzing data available on the web.

9.8 COMPRESSION

The .NET standard library includes functions for compressing and uncompressing
streams. Many on-line resources store information in compressed form and these
functions can be used to uncompress the data ready for analysis.

The System. 10. Compression namespace contains definitions relating to
data compression. The following gunzip function can be used to decompress a
stream representing compressed data stored in the GZip format (commonly found on
Unix systems):

> open System;;

let gunzip (stream : #IO.Stream) =

let mode = 1O.Compression.CompressionMode.Decompress
new IO.Compression.GZipStream(stream, mode);;

val gunzip : #IO.Stream - > 1O.Compression.GZipStream

This function is used to decompress downloaded data in future example programs.

9.9 HANDLING XML

The .NET standard library includes many data structures and algorithms for manip-
ulating data stored in the XML format. On-line scientific databases are increasingly
using the XML format.

Definitions relating to XML are found in the Sys tem . Xml class.

9.9.1 Reading

Data in the XML format can be read from a stream, such as the streams generated
by the download and gunz ip functions defined above, into an object of the class
XmlDocument by constructing such an object and invoking its Load method on
the stream.

238 LIBRARIES

For example, a function to load an XML document from a stream (such as a GZip
stream) may be written:

open System;;

> let xml-of-stream stream =

let doc = new Xml.XmlDocument()
doc.Load(stream : > 1O.Stream)
doc; ;

val xml-of-stream : #IO.Stream - > Xm1.XmlDocument

We shall use this function in future examples dealing with XML.

9.9.2 Writing

Once created, an XML document doc can be written to a stream in XML format
simply by invoking the Save method of the doc object. For example, the following
prints doc to the console in XML format:

doc. Save (stdout) ; ;

The ability to load and save XML documents using the .NET libraries is particu-
larly useful given the increasing amount of scientific data found on the web in XML
format. However, the F# programming language has many features that make it ide-
ally suited to tree manipulation, including the manipulation of XML data. In order
to leverage these language features, it is useful to translate the .NET representation
of XML into a native F# variant type.

9.9.3 Declarative representation

The object-oriented approach used by the System. Xml library is not ideal for
visualizing in the F# interactive mode or dissecting using pattern matching. Conse-
quently, it is often beneficial to rewrite XML into a declarative form. A variant type
can be used to represent XML data in a more F#-friendly way:

> type xml =

I Element of string *
(string * string) list *
xml list

I Text of string;;
For example, the XML snippet:

<doc name= "My document 5

</doc>
<title>This is a document</title>

will be represented by the F# value:

Element (lldocll,

CALLING NATIVE LIBRARIES 239

[flnamell,
[Element (lltitletl,

"My document " 1 ,

11 I

[Text "This is a document"]) 3)

Values of the XmlNode and XmlElement types can be converted to the F#
variant type xml using the following pair of mutually-recursive functions:

> let rec node (n : Xml.XmlNode) = match n.NodeType with
I Xml.Xm1NodeType.Element - 5

I Xml.Xm1NodeType.Text - > Text n.InnerText
I - - > invalid-arg "node"

Element(elt.LocalName,

element (n : ? > Xml.XmlElement)

and element elt =

[€or attrib in elt.Attributes - >

attrib.Name, attrib.Value I ,
[€or child in elt.ChildNodes - 5

node child I) ; ;

val node : Xml.XmlNode - > xml
val element : Xml.XmlElement - 5 xml

Note the use of the downcast operator : ? > to convert a node from the parent
XmlNode class to the derived XmlElement class.

An XML document doc of the type XmlDocument can be converted into a value
of the type xml by applying this element function to its DocumentElement
property:

element doc.DocumentElement

The declarative representation of an XML document as a value of the F# type xml,
rather than an inheritance hierarchy of objects, allows functions to dissect XML data
using pattern matching. This concept is taken a step further in chapter 10 by using
active patterns to dissect an object-oriented representation directly without having to
copy it into an F# variant type.

9.10 CALLING NATIVE LIBRARIES

The main advantage of native-code libraries is that they can provide much better
performance than .NET libraries. However, this performance comes at a grave cost
in terms of safety. Native-code libraries can cause all-manner of problems when used
incorrectly, including random crashing. Consequently, native code libraries should
be used only when their functionality is not available via a safer route (i.e. a .NET
library) or when performance is critical. In the interests of correctness, the amount
of unsafe code should be minimized and thoroughly checked before use.

A binding is a piece of code that describes how an external function or program
can be invoked from within the host language (F#). In this case, bindings are F#

240 LIBRARIES

libraries that include references to external native code libraries. The simplest form
of binding details the name library of the DLL, the function f u n c l inside the
DLL and the C signature of the function including its namefuncz in F#:

[<DllImport (@ ” library. dll (I , Ent ryPoint = l1 f uncl
extern double * f u n c 2 (args) ;

> I

Note that the System. Runtime. Interopservices namespace contains
the definition of D11Import.

For example, the following F# snippet links to the library mylib. dll, binding the
function f ibtoanF#functioncalledext-f ib whichhasasignature int - > int:

[<DllImport (@llmylib.dllll, EntryP~int=~lfib~~) >]
extern int ext-f ib (int n) ;

For detailed information about writing bindings to native-code libraries, refer to
the F# manual.

9.1 1 FOURIER TRANSFORM

The ability to compute a numerical approximation to the Fourier transform of a signal
is of fundamental importance in scientific computing. A great deal of computer
science research has been directed at this area and the latest Fast Fourier Transform
(FFT) algorithms are capable of transforming n uniform samplings of a signal into
Fourier space in O (n log n) time and with O(e) mean error.

The FFT algorithm is based upon non-trivial results from number theory. Specifi-
cally, the logarithm in the complexity of the FFT stems from the recursive subdivision
of the n-element input vector into :-element subvectors where p is a small prime fac-
tor of n. When n does not have any small prime factors (e.g. when n itself is prime),
the algorithm expands the input into a larger m-element vector where m > 2n such
that m has many small prime factors and can then be subdivided efficiently. Although
the performance follows an n log n trend, the results for individual n are strongly
dependent upon the factorization of n and, consequently, appear “noisy”. The vari-
ation in performance between consecutive n can be as much as a factor of four and,
consequently, larger values of n can actually be significantly faster.

9.1 1.1 Native-code bindings

The FFTW library, developed at MIT, is the best freely-available FFT implementation.
This section details minimal bindings to the FFTW library.

The Fourier transform and inverse Fourier transform are referred to as forward
and backward transforms:

> type direction = Forward I Backward;;
Searching possible factorizations can take as long as the FFT itself but factorization

plans can be reused when computing many FFTs of the same length. Two of

FOURIER TRANSFORM 241

search algorithms implemented by FFTW allow a factorization plan to be estimated
from general performance information or calculated more accurately by making real
performance measurements:

> type precalc = Estimate I Measure;;

and provides functions to allocate and free aligned memory:

> open System.Runtime.1nteropServices;;

> [<DllImport (@"libfftw3-3 .dllIl,
Entry Point = f f t w-ma 1 1 o c) > 3

extern double *fftw-rnalloc(int size);;
val fftw-malloc : int - > double nativeptr

> [< D11 Irnpor t (@ 1 i b f f t w3 - 3 . dl 1 II ,
EntryPoint="f ftw - free") > I

extern void fftw-free(doub1e *data);;
val fftw - free : double nativeptr - > unit

Factorization plans are created by the f f tw_plan-df t-ld function:

> [<D11 Import (@ 1 i b f f t w3 - 3 . dl 1 It ,

extern void *plan-dft-ld-(int n, double *i, double *o,

In the interests of performance, FFTW aligns data to CPU-friendly boundaries

EntryPoint="f ftw_plan-dft-ld") > I

int sign, int flags) ;;
val plan-dft-ld- :

int - 5 double nativeptr - > double nativeptr - >

Note that this function has been bound to the F# function plan-df t-ld- where
the final underscore is taken to indicate an unsafe binding. The i and o arguments
are the input and output vectors and the return value (declared to be of the C type
void *) is an FFTW "plan".

The sign and flag arguments to the plan-df t-ld- function can be derived
from direction and precalc values:

> let plan-dft-ld n i o d e =

int - > int - 5 nativeint

let d =

match d with
I Forward - > -1
I Backward - > 1

match e with
I Estimate - > 64
I Measure - > 0

let flags =

plan-dft-ld-(n, i, 0 , d, flags + 1);;
val plan-dft-ld :

int - > double nativeptr - 5 double nativeptr - >

242 LIBRARIES

direction - 5 precalc - > nativeint

Note that the flags variable always has bit 1 set, allowing FFTW to alter the

The execute function is the only thread-safe function provided by FFTW and
input array.

it computes the FFT for a given plan.

[<D 11 Import (@ IT 1 i b f f t w3 - 3 . dl 1 ,

extern void execute(void *plan) ;;
Entrypoint = f f tw-execute 'I) >]

val execute : nativeint - > unit

9.1 1.2 Interface in F#

The following function creates an FFTW-compatible array to store n complex num-
bers, returning both the native pointer to the array and the Nat iveArray itself:

> let make n =

let ptr = fftw-malloc(l6 * n)
let na = NativeArray.FromPtr(ptr, n)
ptr, na;;

val make : int - > double nativeptr * NativeArray<double>
Note that the argument to f f tw-malloc is the size of the array in bytes. In this

case there are 8 bytes per float and two floats per complex number.
The following function sets the ith element of the native array a to the complex

number z :

let set (a : NativeArraycdouble>) i (z : Complex) =

a. [2*i] c - z.r
a. [2*i + 13 c - 2.i;;

val set : NativeArraycdoubles - > int - > Complex - > unit

number:

> let get (a : NativeArraycdouble>) i =

Math.Complex.Create(a. [2*il, a. [2*i + 11) ; ;

val get : NativeArraycdouble> - > int - > Complex

The following function gets the ith element of the native array a as a complex

Rather than deleting factorization plans, we shall memoize them indefinitely in a
hash table for later reuse:

> let plan =

memoize (fun (n, d, e) - >
let ptr, array = make n
a, plan-dft-ld n ptr ptr d e);;

val plan :

(int - 5 direction - > precalc - 5

FOURIER TRANSFORM 243

NativeArray<double> * nativeint)
A Fourier transform can be computed in the given direction using a controllable

amount of precomputation for the factorization by creating a plan, copying the vector
into the plan, applying the execute function and copying the data back out:

> let fft direction effort a =

let n = Array.length a
if n=O then [I I] else
let array, plan = plan n direction effort
Array. iteri (set array) a
execute plan
let s = complex (1.0 / sqrt(f1oat n)) 0.0
Array.init n (fun i - > s * get array i);;

val fft :

direction - > precalc - > Complex array - > Complex array

Finally, we can define some easy-to-use functions for computing the Fourier
transforms of complex arrays:

let fourier = fft Forward Estimate;;
val fourier : Complex array - > Complex array

> let ifourier = fft Backward Estimate;;
val fourier : Complex array - 5 Complex array

The library functions can then be used.

9.1 1.3 Pretty printing complex numbers

In the interests of clarity, let us define and register a pretty printer for the Complex
type:

let chop x =

if abs x < sqrt epsilon-float then 0.0 else x;;
val chop : float - > float

> let string-of-complex (z : Complex) =

match chop z.Rea1, chop z.Imag with

I r, 0 . 0 - > sprintf II%g1I r
I 0 . 0 , i - > sprintf I1%gi1l i
1 r, i when i < 0.0 - > sprintf "%g - %gill r (-1)
I r, i - > sprintf lI%g + %gill r i;;

I 0 . 0 , 0 . 0 - 5 " 0 "

val string-of-complex : Math.Complex - > string

> fsi.AddPrinter(string-of-complex);;
val it : unit = ()

Complex numbers are now chopped and pretty printed in a much more concise
way.

244 LIBRARIES

1

0.5

-0.5

-1
a)

- ~ ~ ~ : - -5 .5 TTS
-7.5
-10

Figure 9.2 Fourier series of a discretely sampled sine wave, showing: a) the samples uT
T E [0,16) and Fourier series sin(gT), and b) the corresponding Fourier coefficients ws
computed numerically using FFTW.

9.1 1.4 Example use

As an example, the following creates a 16-element array a containing four repeats of
(0,1,0, -1):

> let a =

[I for i in o . . 1 5 - 5

complex (float i / 2.0 * Math.PI I > sin) 0.0 I]
val a : Complex array

> a;;
val it : Complex array =

[l o ; 1; 0; -1; 0; 1; 0; -1; 0; 1; 0; -1; 0; 1; 0; -111

This discrete sampling is illustrated in figure 9.2a. We shall now calculate the
functional form of the Fourier series via the numerically computed series found using
FFTW.

Taking the samples to be unit-separated samples, the Nyquist frequency is aY =

i. The signal a may be considered to be a sampling of a real-valued sinusoid
A sin(2rvr) with amplitude A = 1 and frequency v = ;wy = i.

The FFT of a is:

> fourier a;;
val it : Complex [I =

[l o ; 0; 0; 0 ; -2i; 0; 0; 0; 0; 0; 0; 0; 2i; 0; 0; 011

Each element v, of this array may be taken to represent the frequency v(s) =
swy/n and amplitude A = i v s of Fourier components in the signal. As we are
dealing with Fourier series, the indices s are periodic over n. Consequently, we
may productively interpret the second half of this result as representing negative
frequencies, as illustrated in figure 9.2b.

In this case, the only non-zero elements are v4 = -8i and 2112 = 8i. This shows
that the signal can be represented as the sum of two plane waves which, in fact, partly

METAPROGRAMMING 245

cancel to give a sine wave:

as expected.

error of 10-l~:

> ifourier (fourier a);;
val it : Complex [I =

Also, the inverse FFT of the FFT of a recovers the original a to within a numerical

[l o ; 1; 0; -1; 0; 1; 0; -1; 0; 1; 0; -1; 0; 1; 0; -113

This FFT library allow the Fourier series of large data sets with up to three
dimensions to be computed efficiently.

9.12 METAPROGRAMMING

The generation of explicit subprograms is a form of metaprogramming. The F#
programming language makes metaprogramming easy for two reasons:

1. The F# language is derived from languages that were designed to manipulate
programs.

2 . The .NET platform provides light-weight code generation, allowing its inter-
mediate language (IL) to be generated and invoked at run-time.

One of the most important aspects of metaprogramming is partial specialization.
This refers to the generation of specialized subprograms that can perform a task more
efficiently than a generic program.

Metaprogramming is currently available via the direct generation of IL code and
via a high-level interface provided by the LINQ library in .NET 3.

9.12.1 Emitting IL code

Definitions relating to IL code generation are contained in the following namespaces:

> open System;;

> open System.Re€lection;;

246 LIBRARIES

> open System.Reflection.Emit;;

returns an int can be created with:

> let dm =

A dynamically-generated function called f that accepts one int parameter and

new DynamicMethod (' I f I ! ,

(type int) ,
[I (type int) 1 1 ,
(type obj)) ; ;

An object used to generate the IL code for this new function can be obtained with:

let il = dm.GetILGenerator0;;

val dm : DynamicMethod

val il : ILGenerator

IL code is a stack-based bytecode, meaning that the expression (x + 2) x 3 is
represented by commands to push argument zero (2) and the constant 2, followed by
an add to consume the two stack entries and push the value of x + 2 :

> il .Emit (OpCodes . Ldarg, 0) ; ;
val it : unit = ()

> il.Emit(OpCodes.Ldc-14, 2) ; ;
val it : unit = ()

> il .Emit (OpCodes .Add) ; ;
val it : unit = ()

Then push 3 and consume two stack entries with a multiply:

> il.Emit(OpCodes.Ldc-14, 3);;
val it : unit = ()

> il .Emit (OpCodes .Mul) ; ;
val it : unit = ()

Finally, return with the value on the top of the stack:

il.Emit(OpCodes.Ret);;
val it : unit = ()

This completes the definition of a new function. The function can be invoked
using the Invoke method and supplying an ob j array of the arguments. For
example, 3(z + 2) = 21 for x = 5:

> (dm.Invoke(nul1, [Ibox 5 1 1) : ? > int);;
val it : int = 21

Direct generation of IL code is harder and more error prone than using a high
level library. However, the high-level libraries available at the time of writing lack
some important features that may impede the use of metaprogramming in scientific
computing.

METAPROGRAMMING 247

9.12.2 Compiling with LINQ

The LINQ project is a new part of .NET that provides metaprogramming as a way
to improve cross-language interoperability and, in particular, database querying.
Amongst other things, this library provides a simple abstract syntax tree representa-
tion of expressions and a compiler that can convert these high-level abstract syntax
trees into IL code.

At the time of writing, the LINQ project installs into its own directory:

> #I @lIC:\Program Files\LINQ Preview\BinlI;;

The following DLL contains the required functionality:

> #r llSystem.Query.dllll; ;

The following namespaces contain relevant definitions:

open System;;

open System.Expressions;;

The following .NET delegate type can be used to represent a function type for
single-argument functions:

> type (‘a, ’b) fn = delegate of ‘a - > ‘b;;

In the interests of clarity, we use the following abbreviation:

> type E = Expression;;

The following int function creates a constant integer expression:

> let int (n : int) = E.Constant (n) ; ;
val int : int - 5 ConstantExpression

The two following binary operators + : and * : are used to compose expressions
representing arithmetic operations:

> let (+ :) f g = E.Add(f, g);;
val (+ :) :

> let (* :) f g = E.Multiply(f, g);;
val (* :) :

#Expression - > #Expression - > BinaryExpression

#Expression - 5 #Expression - 5 BinaryExpression

A compiled delegate representing the X-expression z -+ (z + 2) x 3 may be
generated with:

> let f : fn<int, intz =

let x = E.Parameter((type Int32), llxll)
(E.Lambda((x + : int 2) * : int 3, x)).Compile();;

val f : (int, int) fn

Note the type annotation for f is required for this example to work.

248 LIBRARIES

The generated delegate function f can be invoked with its argument using the
Invoke method with

> f . Invoke (5) ; ;
val it : int = 21

Metaprogramming can be used in scientific computing to improve the performance
of many algorithms such as low-dimensional vector and matrix manipulation and
wavelet/Fourier transforms.

CHAPTER 10

DATABASES

An increasing amount of scientific data, information and literature is available on
the internet in the form of scientific databases. Unlike their industrial counterparts,
on-line scientific databases are typically exposed either as repositories of XML data
or in the form of remote procedure calls (RF'Cs) that can be invoked over the internet
as web services.

Of the scientific disciplines, the life sciences are currently by far the most advanced
in terms of on-line databases. This is primarily due to the explosion in bioinformatics-
related data, most notably DNA and protein sequences, that may now be interrogated
over the internet.

The .NET framework was specifically designed to cater for the requirements of
on-line databases, XML data and web services. Consequently, on-line scientific
databases can be accessed quickly and efficiently from F# programs by leveraging
the .NET framework. This chapter describes the use of existing .NET functionality
to interrogate two of the most important scientific databases in the life sciences: the
Protein Data Bank (PDB) and GenBank.

F# for Scientists. By Jon Hmop
Copyright @ 2008 John Wiley & Sons, Inc

249

250 DATABASES

10.1 PROTEIN DATA BANK

The PDB provides a variety of tools and resources for studying the structures of bi-
ological macromolecules and their relationships to sequence, function, and disease.
The PDB is maintained by the Research Collaboratory for Structural Bioinformat-
ics (RCSB), a non-profit consortium dedicated to improving the understanding of
biological systems function through the study of the 3-D structure of biological
macromolecules.

10.1.1 Interrogating the PDB

The PDB provides a simple web interface that allows compressed XML files con-
taining the data about a given protein to be downloaded over the web. This section
describes how the XML data for a given protein may be downloaded and uncom-
pressed using F# functions that are designed to be as generic as reusable as possible.

Each protein in the PDB has a four character identifier. The following function
converts such an identifier into the explicit URL of the compressed XML data:

let pdb name =

f tp : / / f t p . rc sb . org +
ll/pub/pdb/data/structures/divided/XML/ll +
String-sub name 1 2 + ll/fl + name + I1.xml.gz1l;;

val pdb : string - > string

The XML data are compressed in the GZip format. So the XML data for a given
protein may be downloaded and uncompressed by combining the pdb and gunzip
(see section 9.8) and xml-of-stream (see section 9.9) functions into a single
download function:

> let download protein =

let url = pdb protein
let request = System.Net.WebRequest.Create(ur1)
let response = request.GetResponse0
use stream = response.GetResponseStream0
gunzip stream
I > xml-of-stream;;

val download : string - 5 System.Xml.XmlDocument

This download function can be used to obtain the XML data for an individual
protein:

> let doc = download lllhxnll; ;

val doc : System.Xml.XmlDocument

The resulting value is stored in the object-oriented representation of XML data
used by the .NET platform, referred to as the System. Xml . XmlDocument type.
This native .NET data structure allows XML data to be constructed and dissected
using object-oriented idioms.

PROTEIN DATA BANK 251

The default printing of XML data in F# interactive sessions as nested sequences
is of little use:

> doc; ;
val it : System.Xml.Xm1Document
= seq

[seq [I ;
seq

[seq . . .

Consequently, an pretty printer for XML data is very useful when dissecting XML
data interactively using F#.

10.1.2 Pretty printing XML in F# interactive sessions

The XmlDocument type represents a whole XML document and includes global
metainformation about the data itself and the method of encoding. XML data is
essentially just a tree and, ideally, we would like to be able to visualize this tree in
interactive sessions and dissect it using pattern matching.

Nodes in an XML tree are derived from the base type XmlNode. The two most
important kinds of node are Element and Text nodes. In XML, an Element
node corresponds to a tag such as <br / > and a Text node corresponds to verbatim
text such as "Title" in <hl>Title</hl>.

As described in section 2.6.4.3, pretty printers can be installed in a running
interactive session to improve the visualization of values of a certain type. In this
case, we require a pretty printer for XML documents and nodes:

> fsi.AddPrinter(fun (xml : System.Xml.XmlNode) - >
xml.OuterXm1);;

Viewing an XML tree in the interactive session now displays the string represen-
tation of the XML:

> doc; ;
val it : System.Xml.XmlDocument =

<?xml version=Ill. 0 " encoding="UTF-8"?><PDBx: . . .
This pretty printer makes it much easier to dissect XML data interactively using

F#.

10.1.3 Deconstructing XML using active patterns

XML data could be examined elegantly using pattern matching by translating a .NET
XML tree of objects into an F# variant type (as discussed in section 9.9) and then
dissecting the tree using pattern matching. However, the creation of an intermediate
tree is wasteful.

A much more efficient way to dissect XML data is to use one of the unique features
of F# called active patterns or views. Active patterns allow a non-F# data structure,

252 DATABASES

such as the object-oriented .NET representation of an XML node, to be viewed as if it
were a native F# variant type. This is achieved by defining active pattern constructors
(in this case called Element and Text) that present the .NET data structure in a
form suitable for pattern matching.

Before defining the active pattern, we define an element function that extracts
the tag name, attributes and child nodes from an Element node:
> let element (elt : System.Xml.XmlE1ement) =

elt.LocalName,
seq { for attrib in elt.Attributes - 5

attrib.Name, attrib.Value } ,
seq { for child in elt.ChildNodes - 5

child } ; ;
val element :

System.Xml.XmlElement - >
string * seqcstring * string> *
seqcSystem.Xml.XmlNode>

The following defines two active patterns called Element and Text that match
the respective kinds of XML node using the : ? construct to detect the run-time type
of an object:
> let ((ElementlTextl) (n : System.Xml.Xm1Node) =

match n with
I : ? System.Xml.XmlElement as n - >

Element (element n)
1 n - > Text n.InnerText;;

val (IElementlTextl :

System.Xml.XmlNode - >
Choicec(string * seqcstring * string> *

The following acids-of-xml function uses the active pattern in sequence
comprehensions to extract the amino-acid sequence from the given XML document
for a protein:
> let acids-of-xml (doc : System.Xml.XmlDocument) =

seq<System.Xml.XmlNode>),string>

let cs = doc.DocumentElement.Chi1dNodes
seq { for Element (llentity-poly-seqCategoryll, -, cs)

in cs
for Element (llentity_poly-seqll, attribs, -1

in cs

acid } ; ;
for llmon-idll, acid in attribs - >

val acids-of-protein : System.Xml.XmlNode - > seqcstring>

This is a beautiful example of the power and flexibility of active patterns and the
comprehension syntax. The lines of this function represent progressively more fine-
grained dissections of the XML document. The ent ity-poly-seqcategory

PROTEIN DATA BANK 253

tag is extracted first followed by the nested entitygoly-seq tag and, finally,
the attribute called mon-id that contains the amino acid sequence. By wrapping
the whole function in a single sequence comprehension syntax { . . . }, all of the
matching attributes in the nested tag are listed sequentially with minimal effort.

The function can be used in combination with the previous functions to extract
the amino-acid sequence of a given PDB protein directly from the on-line database:

> acids-of-xml doc;;
val it : seq<string> =

seq [llHIS1l ; IIARGII; "ASN'l; IISERlI ; . . .]

This makes F# an extraordinarily powerful tool for the interactive analysis of PDB
data. However, this example would not be complete without describing how easily
the data structures involved can be visualized in a GUI to make data dissection easier
than ever before.

10.1.4 Visualization in a GUI

The tree-based representation of XML data is ideally suited to graphical visualization
using the ubiquitous TreeView Windows Forms control. This is the same control
used to provide the default tree representation of disc storage on the left hand side of
Windows Explorer.

Windows Forms programming makes heavy use of the following namespace:

> open System.Windows.Forms;;

We begin by creating a new Windows form:

> let form =

val form : Form

> form.TopMost < - true;;
val form : Form

new Form (Visible=true, Text="Protein data") ; ;

and adding an empty TreeView control to it, making sure that the control expands
to fill the whole window:

let tree = new TreeView(Dock=DockStyle.Fill);;
val tree : TreeView

> form.Controls.Add(tree);;
val it : unit = ()

The following function traverses the tree representation of an XML data struc-
ture using the active patterns Element and Text defined above, accumulating a
TreeNode ready for insertion into the Treeview:

> let rec treeview-of-xml = function
I Text string - > new TreeNode(string)
I Element(tag, attribs, cs) - >

254 DATABASES

Figure 10.1
XML document from the Protein Data Bank.

Using a Windows Forms TreeView control to visualize the contents of an

let parent = new TreeNode(tag1
€or n in cs do

parent ; ;
parent.Nodes.Add(treeview-of-xml n) I > ignore

val treeview-of-xml : XmlNode - > TreeNode

> (root : > System.Xml.Xm1Node)
I > treeview-of-xml
I > tree.Nodes.Add;;

The result is shown in figure 10.1. Even a minimal GUI such as this can be instru-

val it : unit = ()

mental in interactive data dissection, greatly accelerating the development process.

10.2 WEB SERVICES

The term “web services” refers to any service provided on-line by a remote computer.
Typically, a web service is a programmatic way to interrogate the contents of a
database held on the remote server. In some cases, web services are used to combine
and process information from various sources.

The Simple Object Access Protocol (SOAP) is by far the most popular way
to access web services. A SOAP API consists of a variety of dynamically-typed
functions known as remote procedure calls (RPCs) that can be used to request
information from a web service. SOAP APIs are typically encapsulated in a single
definition using a format known as the Web Service Definition Language (WSDL).
A WSDL description of a SOAP API may be automatically compiled into statically-

WEB SERVICES 255

typed function definitions, making it easier to avoid type errors when using web
services.

The use of web services in F# revolves around the use of web references in C#,
creating a C# DLL and linking to it from an F# program. The process of creating C#
DLLs and referencing them from F# code was described in section 2.6.5.

To add a web reference to a C# DLL project, right click on “References” in
Solution Explorer and select “Add Web Reference...”. Paste the URT, of the WSDL
file into this window and click “GO”. Once the WSDL file has been downloaded
and examined, Visual Studio gives an overview of the API described by the file.
Adding a WSDL web reference to a project causes Visual Studio to autogenerate
thousands of lines of C# source code implementing the whole of the API provided
by that web service (the description of which was in the WSDL file). By compiling
the autogenerated C# code into a .NET DLL and linking to it from F#, web services
can be used from F#.

10.2.1

As a very simple initial example, create a Visual Studio solution composed of a
C# DLL and an F# program referencing the DLL (following the description in
section 2.6.5) and add a web reference to the URL:
http://www.xmethods.com/sd/TemperatureService.wsdl

DLL and then open its namespace:

US temperature by zip code

Now build the C# DLL and use the #r directive in the F# code to load the C#

#r “ClassLibraryl .dll“; ;

> open ClassLibraryl;;

This web service simply provides a getTemp function that returns the current
temperature in Fahrenheit as a float in the region of a US zipcode given as a
string.

A new instance of the Temperatureservice class must be created in order
to use this web service:

let server =

new net.xmethods.www.TemperatureService0;;
val server : Temperatureservice

This class provides the getTemp function as a member. Invoking this member
function causes the remote procedure call to be made to the SOAP web service
hosted at xmethods . com and should return the temperature in Beverly Hills in the
following case:
> server.getTemp(1’9021011) ; ;

val it : float32 = 52.0f

This is a minimal example demonstrating the creation of a C# DLL, the use of
web references and the interoperability between F# and C# to use some of the C#
tools from F# programs.

256 DATABASES

10.2.2 Interrogating the NCBI

The National Center for Biotechnology Information (NCBI) was established in 1988
as a national resource for molecular biology information. The NCBI creates public
databases, conducts research in computational biology, develops software tools for
analyzing genome data, and disseminates biomedical information.

The NCBI web service enables developers to access Entrez Utilities using SOAP.
Programmers may write software applications that access the E-Utilities in F#. The
WSDL file describing the E-Utilities SOAP interface is available at the following
URL:

http://www.ncbi.nlm.nih.gov/entrez/eutils/soap/eutils.wsdl

This web reference can be made accessible from F# by following the same proce-
dure as before and creating an instance of the eUt i 1 sservice class:

> let serv =

val serv : gov.nih.nlm.ncbi.eutils.eUti1sService
new gov.nih.nlm.ncbi.eutils.eUtilsService();;

Member functions of this serv object with names of the form run-e*-MS may
be used to interrogate the NCBI databases in a variety of ways from the Microsoft
platform. The NCBI web service is more comprehensive and correspondingly more
complicated than the previous examples. These functions essentially ask the database
a question and the object returned is loaded with many different forms of metadata,
including the parameters of the call itself, as well as the answer to the question.

The run-eInf o-MS member function of the serv object can be used to obtain
general information regarding the web service:

> let res = serv.run-eInfo-MS(llll, I 1 l 1 , t l l l) I I * .

val res : gov.nih.nlm.ncbi.eutils.eInfoResu1tType

In particular, the DbLi s t property of the result re s contains a list of the databases
available:

> res.DbList;;
val it : gov.nih.nlm.ncbi.euti1s.DbListType
= CSWebServiceClient.gov.nih.nlm.ncbi.euti1s.DbListType

{Items = [I I1pubmedf1 ; "protein" ; llnucleotidell ;

"nuccore" ; llnucgssll ; "nucest" ;
llstructureT1 ; I1genome1l ; Ilbooksll;
llcancerchromosomesll ; I1cdd1l ; llgapll ;

I1domainsl1 ; "gene" ; Ilgenomeprj ; I1gensat" ;
I1geol1 ; "gds1I ; l1homologeneI1 ; II journals" ;
l1mesh1l ; I1ncbisearch1l ; llnlmcatalogll ;

l1ornial1 ; l1ornirn1l ; llpmcll ; !!popset ;
llprobell ; llproteinclustersll ; I1pcassayl1 ;
llpccompoundll ; "pcsubstance" ; llsnpll ;

taxonomy" ; toolkit ; I1unigene1l ;

WEB SERVICES 257

llunistsll 11 ; }
This list of databases spans a range of different topics within molecular biology,

including literature (pubmed), proteins and DNA sequences (nucleotide).

70.2.2.7 €Search The web service for the ESearch utility allows users to per-
form searches on the databases to find database records that satisfy given criteria.

For example, the Protein database can be searched for proteins that have a molec-
ular weight of 200,020:
> let res =

serv. run-eSearch-MS (llproteinll,
11200020 [molecular+weightl I

I 1 1 1 IIII I l l 1 I I I I 1111 I I I I 1111 1111

11 11 I1 11

I I I I I I I I

I IO I I I 11151i IIII I I I I) . .
I I I , , I

val it : eutils.eSearchResu1tType

by the search:
> res.IdList;;
val it : string array =

The result res is an object that encapsulates the IDS of the four proteins found

[I " 1 6 7 6 6 7 6 6 " ; " 4 7 5 8 9 5 6 " ; " 1 6 4 2 2 0 3 5 " ; " 4 1 0 4 8 1 2 " I]
The re s object also carries a variety of meta information including the parameters

of the search:
> res; ;
val it : gov.nih.nlm.ncbi.euti1s.eSearchResultType =

gov.nih.nlm.ncbi.eutils.eSearchResu1tType
{Count = 11411;
ERROR = null;
ErrorList = null;
IdList = [I I116766766l1 ; " 4 7 5 8 9 5 6 " ; 1116422035";

QueryKey = null;
QueryTranslation = 11000200020 [molecular weight] l l;

RetMax = 11411;
RetStart = l lO1l ;

Translationset = [1 1 I ;
Translationstack =

"GROUP" I] ;
WarningList = null;
WebEnv = null;}

"41048121' I] ;

[Igov.nih.nlm.ncbi.eutils.TermSetType;

The ESearch utility is the most general purpose way to interrogate the database
and, consequently, it is the most useful approach. For example, repeated searches
might be used to determine the distribution of the molecular weights of proteins in
the database for different kinds of protein.

258 DATABASES

70.2.2.2 €Fetch utility The web service to the EFetch utility retrieves specific
records from the given NCBI database in the requested format according to a list of
one or more unique identifiers.

For example, fetching the record from the taxonomy database that has the ID
9,685:

> let res = serv.run-eFetch-MS ("taxonomy", I 1 9 6 8 5 l 1 ,
1111 1 1 1 1 1 1 1 1 1111 1 1 1 1 1111

I , , I I I

1111 1 1 1 1 1111 I 0 1 1111 " ") . .

val res : gov.nih.nlm.ncbi.eutils.eFetchResu1tType

Once again, the result re s encapsulates information about the database record that
was fetched. In this case, the following three properties of the res object describe
the result:

> res.TaxaSet. [O] .ScientificName;;
val it : string = "Felis catuso1

> res . TaxaSet . [01 .Division; ;
val it : string = llMammalslf

res .TaxaSet. [O] .Rank; ;
val it : string = I1speciesf1

These properties of the response res show that this record in the taxonomy
database refers to cats.

As the EFetch utility fetches specific records, its use is much more limited than
the ESearch utility. However, fetching specific database records is much faster than
searching the whole database for all records satifying given criteria.

I , , I I I ,

10.3 RELATIONAL DATABASES

Thus far, this chapter has described how F# programs can interrogate a variety of
third party repositories of information in order to mine them for relevant data. Many
of these repositories are actually stored in the form of relational databases exposed
via web services. Relational database technology has many advantages such as
simplifying and optimizing searches and, in particular, handling concurrent reads
and writes by many different users or programs. This technology is ubiquitous in
industry and is used to store everything from interactive data from company websites
to client databases. Consequently, Microsoft have developed one of the world's most
advanced database systems available, in the form of SQL Server. Moreover, this
software is freely available in a largely-unrestricted form. So SQL Server can be a
valuable tool for scientists wanting to maintain their own repositories of information.

This section describes how instances of SQL Server can be controlled from F#
programs using Microsoft's ADO.NET interface. However, exactly the same ap-
proach can be used to manipulate and interrogate many other relational database
implementations including Firebird.NET, MySql and Oracle. There is a vast body of
literature with more detailed information on relational databases [25, 151.

RELATIONAL DATABASES 259

The relational database interfaces for SQL Server are provided in the following
two namespaces:

> open System.Data;;

> open System.Data.SqlC1ient;;

Before a database can be interrogated, a connection to it must be opened.

10.3.1 Connection to a database

Databases are connected to using "connection strings". Although these can be built
naively using string concatenation, that is a potential security risk because incorrect
information might be supplied by the user and injected into the database by the
application. So programmatic construction of connection strings is more secure. The
SqlConnect ionst ringbilder class provides exactly this functionality:

let connString = new SqlConnectionStringBuilderO;;
val connString : SqlConnectionStringBuilder

The following lines indicate that we're accessing a database hosted by SQL Server
Express using its integrated security feature (the connection might be rejected if we
don't specify this):

> connString.DataSource < - @".\SQLEXPRESS";;
val it : unit = ()

> connString.1ntegratedSecurity c- true;;
val it : unit = 0

The following lines create a SqlConnec t ion object that will use our connection
string when opening its connection to the database:

> let conn = new SqlConnectionO;;
val conn : SqlConnection

> conn.ConnectionString c - connString.ConnectionString;;
val it : unit = ()

The connection is actually opened by calling the Open member of the SQL
connection:

> conn. Open () ; ;
val it : unit = 0

An open database connection can be used to interrogate and manipulate the
database.

10.3.2 Executing SQL statements

The Simple Query Language (SQL) is actually a complete programming language
used to describe queries sent to databases such that they may be executed quickly

260 DATABASES

and efficiently. Given that SQL is a text-based language, it is tempting to construct
queries by concatenating strings and sending the result as a query. However, this is a
bad idea because this approach is insecure*'. Specifically, injecting parameters into a
query by concatenating strings will fail if the parameter happens to be valid SQL and,
worse, the parameter might contain SQL code that results in data being deleted or
corrupted. The safe alternative is to construct SQL queries programmatically using
the SqlCommand class.

> let execNonQuery conn s =

The following function can be used to execute SQL statements:

let comm =

t rY

with e - >

new SqlCommand(s, conn, CommandTimeout=lO)

comm.ExecuteNonQuery0 15 ignore

printf "Error : %A\n" e ; ;
val execNonQuery : SqlConnection - > string - > unit

For example, we can now create our database using the SQL statement CREATE
DATABASE:

> execNonQuery conn "CREATE DATABASE chemicalelementsll;;
val it : unit = ()

Similarly, we can create a database table to hold the data about our chemical

execNonQuery conn "CREATE TABLE Elements (

elements:

Name varchar (5 0) NOT NULL,
Number int NOT NULL,
Weight float NOT NULL,
PRIMARY KEY (Number)) l1 ; ;
val it : unit = ()

The SQL type varchar (n) denotes a sting with a maximum length of n. Note
that we are using the atomic number as the primary key for this table because this
value uniquely identifies a chemical element.

The following SQL statements add two rows to our database table, for Hydrogen
and Helium:
> execNonQuery conn "INSERT INTO Elements
(Name, Number, Weight)
VALUES ('Hydrogen', 1, 1.O08)l1;;
val it : unit = ()

> execNonQuery conn "INSERT INTO Elements (Name, Number,
Weight)

20Even if the database is private and will not be subjected to malicious attacks it can still be corrupted
accidentally.

RELATIONAL DATABASES 261

VALUES ('Helium', 2, 4.003)''
val it : unit = ()

In addition to manipulating a database using SQL statements, the contents of a
database can be interrogated using SQL expressions.

10.3.3 Evaluating SQL expressions

We can query the database to see the current contents of our table using the following
function:

> let query() =

let query =

seq { let conn-string = connString.ConnectionString
IISELECT Name, Number, Weight FROM Elements"

use conn = new SqlConnection(conn-string)
do conn .Open ()
use comm = new SqlCommand(query, conn)
use reader = comm.ExecuteReader0
while reader. Read () do

yield (reader.GetString 0,
reader.GetInt32 1,
reader.GetDouble 2) }; ;

val query : unit - > seq<string * int * float>

Note the use of an imperative sequence expression to enumerate the rows in the
database table and dispose of the connection when enumeration of the sequence is
complete. The reader object is used to obtain results for given database columns of
the expected type. In this case, columns 0, 1 and 2 contain strings (chemical names),
ints (atomic numbers) and double-precision floats (atomic weights).

Executing this query returns the data for Hydrogen and Helium from the database
as expected:

query0 ; ;

seq [(ltHydrogenu1, 1, 1.006); (llHeliumll, 2, 4 . 0 0 3)]

Accessing databases by encoding SQL commands as stings is fine for trivial, rare
and interactive operations like creating the database itself but is not suitable for more
sophisticated use. To perform significant amount of computation on the database,
such as injecting the data we downloaded from the web service, we need to access
the database programmatically.

val it : seqcstring * int * float> =

10.3.4 Interrogating the database programmatically

The SqlDataAdapter acts as a bridge between a DataSet and SQL Server for
retrieving and saving data:

262 DATABASES

> let dataAdapter = new SqlDataAdapterO;;
val dataAdapter : SqlDataAdapter

A Dataset is an in-memory cache of data retrieved from a data source. The
following function queries our database and fills a new DataSet with the results:

> let buildDataSet conn query =

dataAdapter.SelectCommand < -

let dataset = new Dataset()
new SqlCommandBuilder(dataAdapter) (> ignore
dataAdapter.Fil1 dataset (5 ignore
dataset; ;

new SqlCommand(query, conn)

val buildDataSet : SqlConnection - > string - > DataSet

For example, the following query finds all rows in the database table Elements
and returns all three columns in each:

> let dataset =

buildDataSet conn

val dataset : DataSet
"SELECT Name, Number, Weight from Elementstt;;

The following extracts the DataTable ofresults from this DataSet and iterates
over the rows printing the results:

let table = dataSet.Tables.Item 0;;
val table : DataTable

> for row in table.Rows do
printf lt%A\nl1 (row. Item "Name11,

row. Item ItNumberlt,
row. Item ItWeighttt) ; ;

(llHydrogen", 1, 1.008)
(llHeliumll, 2, 4.003)
val it : unit = ()

Note how the value of the field with the string name field in the row row is
obtained using row. 1 t emjeld.

In addition to programmatically enumerating over the results of a query, the
DataSet can be used to inject data into the database programmatically as well. The
following creates a new row in the table and populates it with the data for Lithium:

> let row = table .NewRowO ; ;
val row : DataRow

> row. Item I1Namet1 c- llLithiumll; ;

val it : unit = ()

> row.Item qlNumberll c- 3;;
val it : unit = ()

RELATIONAL DATABASES 263

> row.Item I1Weightl1 c - 6.941;;
val it : unit = 0
> table.Rows.Add row;;
val it : unit = 0

This change can be uploaded to the database using the Update member of the
SqlDataAdapter:

> dataAdapter.Update dataset;;
val it : int = 1

The return value of 1 indicates that a single row was altered.
Querying the database again shows that it does indeed now contain three rows:

> query0 ; ;
val it : seq<string * int * float>
= seq [(llHydrogenll, 1, 1.008) ; ("Helium", 2, 4.003) ;

(llLithiumlT, 3, 6.941) 1

Databases are much more useful when they are filled by a program.

10.3.5 Filling the database from a data structure

Now we're ready to inject data about all of the chemical elements into the database
programmatically. We begin by deleting the three existing rows to avoid conflicts:
> execNonQuery conn "DELETE FROM Elements";;
val it : unit = ()

The following loop adds the data for each element (assuming the existence of a
data structure elements that is a sequence of records with the appropriate fields)
to the table and then uploads the result:
> for element in elements do

let row = table.NewRow0
row. Item l1Narne1l < - element .name
row. Item llNumberll < - element .number
row. Item llWeightll < - element .weight
table.Rows.Add row;;

val it : unit = ()

> dataAdapter.Update dataset I > ignore;;
val it : unit = (1

The database now contains information about the chemical elements from this
data structure.

10.3.6 Visualizing the result

As an industrial-strength platform, .NET naturally makes it as easy as possible to
visualize the contents of a database table.

264 DATABASES

We begin by creating a blank Windows Form:

> open System.Windows.Forms;;

> let form = new Form(Text=llElementsll, Visible=true) ; ;
val form : Form

As usual, forcing the form to stay on top is useful when developing in an interactive
session:

form.TopMost c - true;;
val it : unit = 0

database table in order to visualize it interactively:
The DataGrid class provides a Windows Forms control that can be bound to a

let grid = new DataGrid(DataSource=table);;
val grid : DataGrid

> grid.Dock c - DockStyle.Fil1;;
val it : unit = ()

Note that the grid was bound to our database table and its dock style was set to fill
the whole form when it is added:

> form.Controls.Add grid;;
val it : unit = ()

This tiny amount of code produces the interactive GUI application illustrated in
figure 10.2.

10.3.7 Cleaning up

One of the key advantages of using a database is persistence: the contents of the
database will still be here the next time we restart F# or Visual Studio or even the
machine itself. However, we inevitably want to delete our rows, tables and databases.
This line deletes the Elements table:

execNonQuery conn "DROP TABLE Elements";;

And this line deletes the database itself:

execNonQuery conn "DROP DATABASE chemicalelementsI1;;

This chapter has shown how web services can be consumed easily in F# programs
by reusing the capabilities provided for C#, and how databases can be created and
used from F# programs with minimal effort.

Web applications and databases are the bread and butter of the .NET platform and
a great many C# and Visual Basic programs already use this technology. However,
F# is the first modern functional programming language to provide professional-
quality web and database functionality and, consequently, is opening new avenues

val it : unit = 0

val it : unit = ()

RELATIONAL DATABASES 265

Figure 10.2
DataGrid control.

Visualizing the contents of a SQL Server database using the Windows Forms

266 DATABASES

for combining these techniques. Functional programming will doubtless play an
increasingly important role in web and database programming just as it is changing
the way we think about other areas of programming.

CHAPTER 11

INTEROPERABILITY

Modem scientific computing often requires many separate components to interact.
These components typically use different styles, are written in different languages
and sometimes even run on separate platforms or architectures. The F# programming
language provides a unique combination of expressive power and easy interoperabil-
ity. This chapter is devoted to explaining just how easily F# allows programs to
interact with other systems and even other platforms across the internet.

Due to the wide variety of different software used by scientists, a breakdown
of the different approaches to interoperation is useful as the exact use of each and
every package is beyond the scope of this book. This chapter illustrates how COM
and .NET applications can be interoperated with using three of the most important
applications: Microsoft Excel, The Mathwork’s MATLAB and Wolfram Research’s
Mathematica.

11.1 EXCEL

The .NET platform is based upon the Common Language Runtime (CLR). The
primary benefit of this design is the astonishing ease with which different .NET
programs can interoperate. The simultaneous and interactive use of Microsoft’s

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

267

268 INTEROPERABILITY

Excel spreadsheet application and the F# programming language is no exception.
The only non-trivial aspect of interoperating with other .NET applications from
.NET languages like F# is the use of dynamically typed interfaces in many cases,
including the interfaces to Microsoft Office applications such as Excel.

Microsoft Office is an almost ubiquitous piece of software, found on most of the
world’s desktop computers. Among the components of Office, Microsoft Excel is
probably the most valuable for a scientist. Spreadsheets are deceptively powerful
and Excel’s unique graphical user interface facilitates the construction of compli-
cated computations in a purely functional form of programming. However, when
computations become too time consuming or complicated, or require the use of more
advanced programming constructs and data structures, solutions written in Excel
can be productively migrated to more suitable tools such as the F# programming
language. The pairing of F# and Excel rivals the capabilities of many expensive
technical computing environments for practical data acquisition and analysis and the
ability to interoperate between F# and Excel is pivotal.

This section explains just how easily F# and Excel can interoperate by injecting
data from F# programs directly into running Excel spreadsheets and reading results
back.

11.1.1 Referencing the Excel interface

The interface required to use Excel is in the “ExceLdll” file. This is already on the
search path for DLLs, so it can be loaded in a single line:

> #r ItExcel. dll” ; ;

In Office 2003, the interface is held in the Excel namespace:

> open Excel;;

LaterversionofOfficeusetheMicrosoft .Off ice. Interop. Excel names-
pace.

Before Excel can be used from other .NET languages such as F#, a handle to a
running instance of Excel must be obtained. This is most easily done by creating a
new instance of Excel and keeping the handle to it:

let app = new ApplicationClass(Visib1e = true);;

In order to manipulate a spreadsheet, a workbook must be either loaded from file

val app : Applicationclass

or created afresh.

11.1.2 Loading an existing spreadsheet

A spreadsheet related to a given F# project is typically stored in the same directory
as the source code of the F# project:

> let file = -SOURCE-DIRECTORY- + @lt\Example.xlslt;;

EXCEL 269

val file : string

A spreadsheet file (“Example.xls” in this case) can be loaded into the running
instance of Excel using2’ :

> let workbook =

let u = System.Reflection.Missing.Va1ue
app.Workbooks.Open(file, u, u , u , u , u , u ,

u, u , u, u, u, u, u, u) ; ;
val workbook : Workbook

This makes it easy to use F# and Excel both interactively and concurrently by
storing the spreadsheets and programs together in the same directory.

11.1.3 Creating a new spreadsheet

For simple examples or temporary uses of Excel from F#, the creation of a new
spreadsheet inside Excel can be automated by F# code:

> let workbook =

val workbook : Workbook
app.Workbooks.Add(X1WBATemplate.xlWBATWorksheet);;

Once a spreadsheet has been loaded or created in Excel, it can be manipulated
from F#.

11.1.4 Referring to a worksheet

In order to edit the cells in a particular worksheet it is necessary to obtain a reference
to the worksheet itself. This is done by extracting the sequence of worksheets from
the workbook and then choosing the appropriate one, such as the first one:

let worksheet =

workbook.Worksheets. [box 11 : ? > Worksheet;;
val worksheet : Worksheet

Note the use of box to convert a statically-typed F# value 1 into a dynamically-
typed .NET class ob j and : ? > to perform a run-time type tested downcast from the
obj class to the Worksheet class.

This worksheet object provides member fimctions that allow a wide variety of
properties to be set and actions to be invoked. The remainder of this section is devoted
to using the Cell s member of this object to get and set the values of spreadsheet
cells, the simplest way for F# programs to interact with Excel spreadsheets.

2’The F# designers have indicated that it will be possible to omit the “u” arguments in a later release of
the language.

270 INTEROPERABILITY

Figure 11.1 An Excel spreadsheet with cell values generated from a F# interactive session.

11.1.5 Writing cell values into a worksheet

The expression worksheet. Cells. Item (i, j) gives the contents of the cell
in the ith row and jth column. For example, (i, j) = (3,5) corresponds to the cell
E3 in the spreadsheet. Note that the rows and columns are indexed starting from one
rather than zero.

The following curried set function for setting a cell in a worksheet is very useful:

> let set (j : int) (i : int) v =

val set : int - 5 int - > 'a - > unit
worksheet.Cells.Item(i, j) < - box v;;

Note the use of box to a given dynamically-typed value and the use of explicit
type annotations, restricting i and j to be of the type int, to improve static type
checking of subsequent F# code.

The argument order of this set function was chosen such that the column index
can be partially applied first, because accessing a column (rather than a row) is the
most common mode of use for functions that access spreadsheet cells.

> €or i in 1 . . 10 do
set 1 i i
set 2 i (i*i);;

The resulting two-column spreadsheet is illustrated in figure 1 1.1.
When spreadsheet cells are set in this way, Excel automatically updates everything

in the spreadsheet as required and there is no need to call an explicit update function.

EXCEL 271

11.1.6 Reading cell values from a worksheet

The writing of cell values to a worksheet was simplified by the interface automatically
casting reasonably-typed values into the appropriate form for Excel. Reading values
from a worksheet is slightly more complicated because the values are run-time typed
and, before an F# program can perfom any computations upon them, they must be
cast to an appropriate static type.

The following curried get function reads a worksheet cell:

> let get (j : int) (i : int) =

val get : int - > int - > obj
(worksheet.Cells.Item(i, j) : ? > Range) .Value2;;

Note that the return type of this function is ob j . This is the universal class in
.NET, the class that all other classes derive from. Consequently, the fact that a value
is of the ob j class conveys almost no information about the value. Before values
such as the result of calling this get function can be used in F# programs, they must
be cast into a static type such as int, float or string.

For example, this get function may be used to read the contents of the cell B5:

> get 2 5;;
val it : obj = 25.0

The result is correctly displayed as a float by the F# interactive session but the

The following get-f loat function uses the previously-defined get function
type must be ossified before the value can be used in F# programs.

and casts the result into a floating point number:

let get-float j i =

get j i : ? > float;;
val get-float : int - 5 int - > float

For example, the value of the spreadsheet cell B5 is now correctly converted into
a float:

get-float 2 5;;

A NullRef erenceExcept ion is thrown when attempting to get the float

val it : float = 25.0

value of an empty cell because empty cells are represented by the nu1 1 value:

> get-float 3 1;;
System.Nul1ReferenceException: Object reference not set
to an instance of an object.

An InvalidCastException is thrown when attempting to get the float
value of a cell that contains a value of another type because the run-time type
conversion in : ? > fails. For example, when trying to extract a string using the
get-f loat function:

> set-float 3 1 llfooll ; ;

272 INTEROPERABILITY

val it : unit = (1

> get - float 3 1; ;
System.Inva1idCastException: Specified cast is not
valid.

The ability to read and write cells in Excel spreadsheets from F# programs is the
foundation of practical interoperation between these two systems. The practical ap-
plications facilitated by this ease of interoperability are far more than the capabilities
of either Excel or F# alone.

This section has not only described interoperation with Excel in detail but has also
paved the way for interoperating with other .NET applications, including Microsoft
Word. All .NET applications provide similar interfaces and are just as easy to use
once the implications of dynamically-typed interfaces and run-time type casting are
understood.

11.2 MATLAB

The Windows platform is home to a wide variety of scientific software. Many of these
applications have not yet been updated for the .NET era and provide slightly more
old-fashioned interfaces. By far the most common such interface is the Component
Object Model (COM). This is in many ways a predecessor to .NET. This section
describes the use of COM interfaces from .NET programming languages like F#,
with a particular focus on one of the most popular applications among scientists and
engineers: MATLAB.

MATLAB is a high-level language and interactive environment designed to enable
its users to perform computationally intensive tasks more easily than with traditional
programming languages such as C, C++, and Fortran.

The easiest way to use MATLAB from F# is via its Component Object Model
(COM) interface. The Type Library Importer (t lbimp) command-line tool converts
the type definitions found within a COM type library into equivalent definitions in a
common language runtime assembly suitable for .NET. The output is a binary file (an
assembly) that contains runtime metadata for the types defined within the original
type library. You can examine this file with tools such as ildasm. The tlbimp
command-line tool is part of the Microsoft .NET SDK.

11.2.1 Creating a .NET interface from a COM interface

From a DOS prompt, the following command enters the directory of the MATLAB
“mlapp.tlb” file and uses Microsoft’s tlbimp tool to create a .NET DLL implementing
the MATLAB interface:

C:\> cd I1C:\Program File~\MATLAB\R2007a\bin\win32\~~

C:\> IIC:\Program Files\Microsoft.NET\SDK\v2.O\Bin\
tlbimp.exeI1 mlapp. tlb

MATLAB 273

The same procedure can be used to compile DLLs providing .NET interfaces to
many COM libraries.

11.2.2 Using the interface

In F#, the directory containing the new “MLApp.dl1” file can be added to the search
path in order to load the DLL:

> #I TIC:\Program File~\MATLAB\R2007a\bin\win32\~~;;

> #r IIMLApp . dl 1 II ; ;

A fresh instance of MATLAB can be started and a handle to it obtained in F#
using:

> let matlab = new MLApp.MLAppClass0;;
val matlab : MLApp.MLAppClass

Once the .NET interface to MATLAB has been created, loaded and instantiated in
F# the two systems are able to interoperate in a variety of ways. The simplest form
of interoperability is simply invoking MATLAB commands remotely from F#. This
can be useful for creating diagrams but the interface also allows arbitrary data to be
transferred between the two systems by reading and writing the values of MATLAB
variables.

11.2.3 Remote execution of MATLAB commands

The new MATLAB instance can be controlled by invoking commands from F# by
passing a string to the Execute member function ofthe mat lab class. For example,
the following creates a simple 2D function plot:

> matlab.Execute I1x = O:O.O1:2*pi; plot (x, sin(x)) I 1 ; ;

val it : string = I I1I

The result is illustrated in figure 1 1.2.

11.2.4 Reading and writing MATLAB variables

In addition to being able to interactively invoke commands in MATLAB from F#,
the ability to get and set the values of MATLAB variables from F# programs is also
useful. The following functions get and set MATLAB variables of arbitrary types:

> let get name =

val get : string - > obj

> let set name value =

val set : string - > ’a - 5 unit

matlab.GetVariable (name, I1baseT1) ; ;

matlab. PutWorkspaceData (name, llbasell, value) ; ;

274 INTEROPERABILITY

Figure 11.2 A plot of sin(z) created in MATLAB by an F# program.

As this interface is dynamically typed and the MATLAB language supports only a
small number of types, it is useful to provide some get and set functions with specific
types, most notably float for numbers and float [, I for vectors and matrices:

> let get-float name =

val get-float : string - > float

get name : ? > float [, I ;;

get name : ? > float;;

let get-vecmat name =

val get-vecmat : string - > float [, I

Numbers can be set directly using the set function but matrices of the .NET type
float [,] require explicit construction because there are no literals for this type
in the F# language. In this context, a function to convert an arbitrary sequence of
sequences into a 2D .NET array is useful:

let array2-of a =

let a = Array.of-seq (Seq.map Array.of-seq a)
Array2. init (Array. length a) (Array. length a. [O])

val array2-of : #seq<'b> - > 'c [, I when 'b : > seq<'c>
(fun i j - 5 a. [il. [j l) ;;

For example, setting the variable 'u to the row vector (1,2,3) in MATLAB from
F#:

> set "v" (array2-of [[1.0; 2.0; 3.0 1 I) ; ;

val it : float [, I = [I [11.0; 2.0; 3 . 0 1 1 11
get-vecmat l1vl1. I , .

MATHEMATICA 275

The ability to invoke arbitrary commands in MATLAB as well as read and write
variable names allows new F# programs to interoperate seamlessly with existing
MATLAB programs and provides a new dimensionality to the function of these
systems.

11.3 MATHEMATICA

This technical computing environment from Wolfram Research is particularly useful
for symbolic computation as it is built around a fast term rewriter with a huge stan-
dard library of rules for solving mathematical problems symbolically. Interoperability
between Mathematica and F# is particularly useful in the context of numerical pro-
grams written in F# that involve the computation of symbolic expressions generated
by Mathematica. This is most easily achieved using the excellent .NET-link interface
to Mathematica that allows .NET programs to interoperate with Mathematica.

11.3.1 Using .NET-link

The .NET-link interface to Mathematica 6 may be loaded directly as a DLL:

> #light; ;

> #I @"C:\Program Files\Wolfram Research\Mathematica\
G.O\SystemFiles\Links\NETLink";;

> #r llWolfram.NETLink.dllll; ;

The interface is provided in the following namespace:

> open Wolfram.NETLink;;

The definitions in this namespace allow Mathematica kernels to be spawned and
interoperated with to perform symbolic computations and extract the results in sym-
bolic form. This is particularly useful in the context of high-performance evaluation
of symbolic expressions because Mathematica excels at manipulating mathematical
expressions and F# excels at high-performance evaluation of symbolic expressions.

The F# definitions pertaining to these symbolic expressions use definitions from
the Math namespace:

> open Math;;

A variant type can be used to represent a symbolic expression:

type expr =

I Integer of int
I symbol of string
I ArcTan of expr
I Log of expr
I Tan of expr
I Plus of expr * expr

276 INTEROPERABILITY

I Power of expr * expr
I Times of expr * expr
1 Rational of expr * expr;;

The following function converts a string and sequence of expressions into a func-
tion expression, handling the associativities of the operators when building expression
trees:

> let rec func h t =

match h, t with
I l1ArcTana1, [f] - > ArcTan f

I llTanll, [f] - > Tan f
I llPlusll, [I - 5 Integer 0
I (olTimesll I I1Powerl1), [I - 5 Integer 1
I (llPlusll I I1Timesf1 I "Power"), [f] - > f

I llTimesll, [f; gl - > Times(f, g)
I IlPower11, If; gl - > Power(f, g)
I (llPlusll 1 llTimesll as h), f: :fs - >

I llPowerll, fs - >

I llRationalll, [p; q] - > Rational(p, q)
I h, - - > invalid-arg("func + h) ;;

I "Log", [fl - > Log f

I "Plus", [f; 91 - 5 Plus(f, 9)

func h [f; func h fsl

List.fold1 - right (fun f g - > func h [f; 91) fs

val func : string - z expr list - > expr

The following function tries to read a Mathernatica expression, using the f unc
function to convert the string representation of function applications used by Mathe-
rnatica into the appropriate constructor of the expr type:

> let rec read (ml : IKernelLink) =
match ml.GetExpressionType() with
I ExpressionType.Function - >

let args = ref 0
let f = ml.GetFunction(args)
func f [for i in 1 . . !args - > read m11

I ExpressionType.1nteger - > Integer(ml.GetInteger0)
1 ExpressionType.Symbo1 - > Symbol(ml.GetSymbol())
I ExpressionType.Rea1 - > invalid-arg "read real"
I ExpressionType.String - > invalid-arg "read stringf1
I ExpressionType.Boo1ean - > invalid-arg "read boolT1
I - - > invalid-arg tlreadll ; ;

val read : Wolfram.NETLink.IKerne1Link - > expr

The following mma function spawns a new Mathernatica kernel and uses the link
to evaluate the given expression and read back the symbolic result:

MATHEMATICA 277

> let mma (expr : string) =

let ml = MathLinkFactory.CreateKernelLink()

t rY
ml.WaitAndDiscardAnswer()
ml .Evaluate (expr)
ml.GetFunction(ref 0) I > ignore
read ml

ml .Close (; ;

finally

val mma : Wolfram.NETLink.IKerne1Link - 5 string - > expr

This function is careful to discard the handshake message inserted after the link
is made and the Returnpacket function call that wraps a valid response.

Although spawned kernels can be reused, the performance overhead of spawning a
custom Mathematica kernel is insignificant for our example and this approach evades
problems caused by incorrectly parsed results introducing synchronization problems
with the kernel. The get Expr member provides a higher-level interface that replaces
our use of getFunction and friends. However, at the time of writing the Expr
representation provided by Mathematica is designed to allow symbolic expressions to
be composed and injected into Mathematica rather than extracted from Mathematica,
which is the application of our example. Thus, we use the lower-level interface.

For example, adding two symbols in Mathematica and reading the symbolic result
back gives a value of the variant type expr in F#:

> mma "a+b" ; ;
val it : expr = Plus (Symbol tlall,Symbol libti)

manipulated very simply and efficiently by F# programs.
As we have already seen, symbolic expressions represented in this form can be

11.3.2 Example

Consider the result of the indefinite integral:

f(x) = J V G G d x

Mathematica is able to take this integral symbolically but is slow to evaluate the
complicated resulting expression. Moving the symbolic result into F# allows it to be
evaluated much more efficiently:

let f = mma "Integrate [Sqrt [Tan[xl I , XI I ,

The resulting expression is quite complicated:

val f : expr

> f;;
val it : expr
= Times

278 INTEROPERABILITY

(Rational (Integer 1,Integer 2),
Times
(Power (Integer 2,Rational (Integer -l,Integer 2)),
Plus
(Times
(Integer -2,

Mathematica is able to evaluate this expression for complex values of x 360,000
times in 26 seconds. A simple F# function is able to evaluate this expression much
more efficiently.

Evaluating this expression in F# requires several functions over complex numbers
that are provided by the F# standard library and some functions that are not:

> open Math.Complex;;

The pow function raises one complex number to the power of another and may be
written in terms of exp and log:

> let pow zl 22 =

val pow : Complex - > Complex - 5 Complex
exp(z2 * log zl) ; ;

The arc tangent of may be expressed as:

ln(x + i y) tan-' (E) = -i d w

let atan2 x y =

-onei * log((x + onei * y) / sqrt (x * x + y * y)) ; ;
val atan2 : Complex - > Complex - 5 Complex

> let atan z =

val atan : Complex - > Complex
atan2 one z;;

A value of the expr type may be evaluated in the context of a mapping from
symbol names to complex values implemented by subst using the following eval
function:

> let rec eval subst f =

match f with
1 ArcTan f - > atan(eva1 subst f)
1 Log f - > log(eva1 subst f)
I Plus(f, g) - > eval subst f + eval subst g
I Power(f, g) - > pow (eval subst f) (eval subst g)
I Times(f, g) - 5 eval subst f * eval subst g

MATHEMATICA 279

I Rational(p, q) - > eval subst p / eval subst q
I Tan f - > tan(eva1 subst f)
I Integer n - > complex (float n) 0 . 0
I Symbol s - > subst s ; ;

val eval : (string - > Complex) - > expr - > Complex

-0.036 + 1.22i as expected:

> eval (function

Evaluating the example expression f in the context z = 0.1 + 0.3i gives f (z) =

I "x" - > complex 0.1 0.3
I - - > zero) f;;

val it : Complex = -0.03561753878r+l.22309153i

The following function computes the same tabulation of complex values of this
symbolic expression that Mathematica took 26s to evaluate:

> let gen f =

[Ifor x in -3.0 . . 0 . 0 1 . . 3.0 - 5

[Ifor y in - 3 . 0 . . 0 . 0 1 . . 3 . 0 - >

eval (function
I llxfl - 5 complex 0.1 0.1

I _ - z zero) f 11 11
val gen : expr - > Math-complex array array

Despite its simplicity, the F# evaluator is able to evaluate the same result 3 . 4 ~
faster than Mathematica:

let data = time gen f;;
Took 7595ms

Given that Mathematica is specifically designed for manipulating symbolic ex-
pressions, it might be surprising that such a considerable performance improvement
can be obtained simply by writing what is little more than part of Mathematica's
own expression evaluator in F#. The single most important reason for this speed
boost is the specialization of the F# code compared to Mathematica's own general-
purpose term rewriter. The representation of a symbolic expression as a value of the
expr type in this F# code only handles nine different kinds of expression whereas
Mathematica handles an infinite variety, including arrays of expressions.

Moreover, the F# programming language also excels at compiler writing and
the JIT-compilation capabilities of the .NET platform make it ideally suited to the
construction of custom evaluators that are compiled down to native code before being
executed. This approach is typically orders of magnitude faster than evaluation in a
standalone generic term rewriting system like Mathematica.

The marriage of Mathematica's awesome symbolic capabilities with the perfor-
mance and interoperability of F# makes a formidable team for any applications where
complicated symbolic calculations are evaluated in a computationally intensive way.

This Page Intentionally Left Blank

CHAPTER 12

COMPLETE EXAMPLES

This chapter details several complete programs that demonstrate some of the most
importants forms of scientific computing whilst also leveraging the elegance of the
F# language and the power of the .NET platform.

12.1 FAST FOURIER TRANSFORM

The program developed in this section combines a core concept in scientific comput-
ing with a core concept in computer science:

0 Spectral analysis: computing the Fourier transform.

0 Divide and conquer algorithms.

The Fourier transform is one of the most essential tools in scientific computing, with
applications in all major branches of science and engineering as well as computer
science and even mathematics. This section describes the development of an efficient
implementation of the Fourier transform known as the Fast Fourier Transform (FFT).

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

281

282 COMPLETE EXAMPLES

12.1.1 Discrete Fourier transform

In its simplest form, the Fourier transform fk of a signal f n may be written:

N-1

n=O

This direct summation algorithm is referred to as the Discrete Fourier Transform
(DFT) and is composed of O (N 2) operations, i.e. this algorithm has quadratic
asymptotic time complexity.

This naive algorithm may be implemented as a simple F# function:

#light; ;

> open System;;

open Math;;

let dft ts =

let N = Array.length ts
[Ifor k in 0 . . Array-length ts - 1 - >

let mutable z = Complex.zero
for n=O to N-1 do
let w =

z < - z + ts. [nl * complex (cos w) (sin w)
2.0 * Math-PI / float N * float n * float k

211 ;;
val dft : Complex array - > complex array

For example, the df t function correctly computes the Fourier series of a sine
wave:

> [I for i in 0 . . 15 - >

complex (float i / 8.0 * Math.PI I > sin) 0.011
15 dft;;

“ 0 ; 8i; 0; 0; 0; 0 ; 0 ; 0 ; 0 ; 0; 0 ; 0 ; 0; 0; 0; -8i11

This output assumes the use of the pretty printer for complex numbers given in

However, this implementation is very slow, taking 5.8s to compute a simple 212-

[I for n in 1 . . 4096 - >

I > time (ignore < < dft);;

As we shall see, the performance of this implementation can be greatly improved

val it : complex array =

section 9.1 I .3.

point DFT:

complex (float n) 0 . o I I

Took 5792ms

upon.

FAST FOURIER TRANSFORM 283

12.1.2 Danielson-Lanczos algorithm

As always, algorithmic optimizations are the best place to search for performance
improvements. In this case, the naive O (N 2) algorithm may be replaced by an
O(N log N) divide-and-conquer algorithm when N is an integral power of two.
This algorithm, often referred to as the radix-2 Fast Fourier Transform (FFT) has
been the foundation of numerical Fourier transforms for at least 200 years. The FFT
algorithm splits an n-point FFT into two in-point FFTs composed of the even- and
odd-indexed elements, respectively, as follows:

N--1

n=O

A N - l AN-1

n=O n=O

27rz k The prefactors e - 7 are complex roots of unity and are called twiddle factors.
Using conventional rearrangements, this algorithm may be decomposed into an

initial shuffle of the input followed by a sequence of traversals over the input data.
The sort and subsequent rewrites of the array are most easily written in terms of

swaps and in-place rewrites, both of which may be elegantly added to the built-in
Array module:

module Array =

let swap (a : 'a array) i j =

let t = a. [il
a. [i] < - a. [j]
a. [jl < - t

let apply f a =

for i = O to Array-length a-1 do
a. [il c - f a. [il ;;

module Array : begin
val swap : 'a array - > int - > int - > unit
val apply : ('a - > 'a) - > 'a array - > unit

An initial sort can reorder the elements of the input array in lexicographic order
by the bits of their indices. This may be implemented as a simple F# function that
uses bit-wise integer operations:

end

let bitrev a =

let n = Array.length a
let mutable j = 0
for i=O to n-2 do

if icj then Array.swap a i j
let rec aux m j =

284 COMPLETE EXAMPLES

let m = m/2
let j = 7 m
if j &&& m = 0 then aux m j else j

I A,.,.

j < - aux n j;;
val bitrev : 'a array - > unit

The inner loop of the algorithm operates on a Complex array and is easily
written in F# using its overloaded operators to handle complex arithmetic:

> let fft-aux (a : Complex array) n j sign m =

let w =

let t = Math.PI * float (sign * m) / float j
complex (cos t) (sin t)

let mutable i = m
while i < n do
let ai = a. [il
let t = w * a. [i + jl
a. [i] < - ai + t
a. [i + jl < - ai - t
i < - i + 2*j;;

val fft-aux :

Complex array - 5 int - > int - > int - > int - 5 unit

The following fft-pow2 function uses the bitrev and loop functions to
compute the FFT of vectors with lengths that are integral powers of two:

let fftgow2 sign a =

let n = Array.length a
bitrev a
let mutable j = 1
while j < n do
for m = 0 to j - 1 do

j < - 2 * j;;
fft-aux a n j sign m

val fftsow2 : int - > Complex array - > unit

The previous example of a 212-point transform that took 5.8swith the naive O (N 2)
algorithm now only takes 0.009s:

> [I for n in 1 .. 4096 - >

complex (float n) 0.0 I]
I > time (ignore < < fftgow2 I) ;;

Took 9ms

In fact, this divide-and-conquer algorithm is so much faster that it can solve
problems that were completely infeasible with the previous implementation:

> [I for n in 1 . . 1 0 4 8 5 7 6 - >

complex (float n) 0 . 0 I I

FAST FOURIER TRANSFORM 285

I > time (ignore < < fft-pow2 1) ;;
Took 4781ms

However, this implementation can only be applied when N is an integral power
of two.

12.1.3 Bluestein’s convolution algorithm

The Fourier transform of an arbitrary-length signal may be computed by rephrasing
the transform as a convolution and zero padding the convolution up to an integral
power of two length. Note that zero padding a convolution is exact.

The DFT may be expressed as a convolution:

n=O

N-1

n=O

where:

The factors egn2 can be compiled into an array:

let bluestein-sequence n =

let s = Math.PI / float n
[Ifor k in 0 . . n-1 - 5

let t = s * float(k * k)
complex (cos t) (sin t) 11 ;;

val bluestein-sequence : int - > complex array

The following function gives the next power of two above the given number:

> let rec next-pow2 = function
I 0 - > 1
I n - > 2 * nextsow2 (n / 2) ;;

val next-pow2 : int - > int

Padding is accomplished using the following function:

> let pad n nb (w : complex array) = function
I i when i < n - > w. [i l
I i when i > nb - n - > w. [nb-i]

286 COMPLETE EXAMPLES

I - - 5 Complex.zero
val pad : int - > int - > complex array - > int - > complex

These can be combined to compute the Fourier transform of an arbitrary length
signal in-place by zero padding its convolution up to an integral power of two and
using the f f t-pow2 function:

> let bluestein a =

let n = Array.length a
let nb = pow2_atleast(2*n - 1)
let w = bluestein-sequence n
let y = pad n nb w I > Array-init nb

let b = Array.create nb Complex.zero
for i=O to n-1 do

fft-pow2 (-1) y

b. [i] < - Complex.conjugate w. [il * a. [i]
f f t ~ 0 ~ 2 (-1) b
let b = Array.map2 (*) b y
fft-pow2 1 b
let nbinv = complex (1.0 / float nb) 0.0
for i=O to n-1 do
a. [i] < - nbinv * Complex. conjugate w. [i] * b. [i] ; ;

val bluestein : Complex array - 5 unit

For the forward transform, the real and imaginary parts are exchanged using the
following swapri function:

> let swapri a =

val swapri : complex array - > unit
Array.apply (fun z - > complex z.i z.r) a;;

The following isgow2 function tests if a number is an integral power of two

let isgow2 n =

using the fact that only such numbers share no bits with their predecessor:

n &&& n-1 = 0;;
val isjow2 : int - > boo1

integers using the i s-pow2 function:
For example, filtering out the powers of two from a sequence of consecutive

List.filter is-powa [I . . 10001;;

[l; 2; 4; 8; 16; 32; 64; 128; 256; 5121

These routines may be combined to compute an arbitrary FFT:

val it : int list =

> let fft sign a =

let n = Array.length a
if is-pow2 n then fft-pow2 sign a else

FAST FOURIER TRANSFORM 287

if sign=l then swapri a
bluestein a
if sign=l then swapri a;;

val fft : int - > Complex array - 5 unit

This f f t function may be applied to arbitrary-length complex arrays to compute
the Fourier transform in O(N log N) time using the given sign to determine the
direction of the transform. Consequently, it is productive to wrap this function in
fourier and ifourier functions that compute forward and reverse transforms
using the appropriate signs:

> let fourier a =

fft 1 a;
a; ;

val fourier : Complex array - > Complex array

> let ifourier a =

fft (-1) a;
a;;

val ifourier : Complex array - > Complex array

not because they are out-of-place transforms.
Note that these functions return the input array because this is often useful and

12.1.4 Testing and performance

The new f ourier function is most easily tested by comparing its input with that of
the df t function on random input:

val rand : System.Random

> let a =

let rand = new System.Random0;;

[(for i in 0 . . 14 - 5

complex
(rand. NextDouble ())
(rand.NextDouble (1) 11 ; ;

val a : Complex array

fourier (Array.copy a)
I > Seq.map2 (-) (dft (Array.copy a))
I > Seq.map Complex.magnitude;;
I > Seq-fold max 0.0;;

val it : complex
= 1.754046975e-14

The maximum numerical error of 1.75 x

This implementation remains very fast:

introduced by the more efficient
fourier function is clearly very small.

z [[for n in 1 . . 4096 - 5

288 COMPLETE EXAMPLES

complex (float n) o . o)]
I > time (ignore < < fourier) ; ;

[Ifor n in 1 . . 1048576 - >

I > time (ignore < < fourier) ;;

Took 9ms

complex (float n) 0 . 0 1 1

Took 4781ms

> [Ifor n in 1 . . 1048575 - >
complex (float n) 0 . 0 1 3

I > time (ignore < < fourier) ; ;

Despite having a smaller number of elements, the 220 - 1 length transform takes
longer than the 220 length transform because algorithm resorts to three separate 2n+1
length transforms instead.

As we have seen, the FFT is an excellent algorithm to introduce many of the
most important concepts covered in the earlier chapters of this book. In particular,
algorithmic optimization is a source of enormous performance improvements in this
case.

Took 30227ms

12.2 SEMI-CIRCLE LAW

The program developed in this section combines two related subjects that are both
core concepts in scientific computing:

0 Linear algebra: eigenvalues.

0 Random matrix theory.

The importance of linear algebra is widely known. Many naturally occurring phe-
nomena can be modelled in terms of vectors and matrices. Most notable, perhaps,
is the representation of quantum-mechanical operators as matrices, the eigenvalues
of which are well known to have special importance [lo]. Solving matrix problems
can require various different forms of matrix manipulation, particularly forms of
factorization. For example, one prevelant task is the computation of eigenvalues that
we examine here. The eigenvalues of a Hamiltonian quantify the energy levels of the
physical system.

Random matrix theory is a fascinating branch of mathematics dedicated to studying
the properties of matrices with elements drawn from known probability distributions.
Predictions about eigenvalue correlations and distributions are of great practical
importance and random matrix theory has been responsible for several laws that
turned out to be far more widely applicable than expected [2, 191.

In this section, we present an F# program that generates random matrices and uses
a library to compute their eigenvalues before compiling the eigenvalue distribution
and visualizing the results in Excel.

SEMI-CIRCLE LAW 289

12.2.1 Eigenvalue computation

As discussed in chapter 9, the defacto-standard library for linear algebra on the .NET
platform is the Extreme Optimization library from Numeric Edge. Consequently, we
shall use this library to handle the generated matrix and compute its eigenvalues.

> #light; ;

> #I @lIC:\Program Files\Extreme Optimization\
Numerical Libraries for .NET\bin";;

> #r llExtreme.Numerics.dll";;

Before using the Extreme Optimization library, the DLL must be loaded:

Routines for handling symmetric matrices and computing their eigenvalues are in
the following namespace:

> open Extreme.Mathematics.LinearA1gebra;;

n x n matrix with elements taken randomly from the set { -1,l):
The following eigenvalues function computes the eigenvalues of a symmetric

let eigenvalues n =

let m = new SymmetricMatrix(n)
let rand = new System.Random()
for i=O to n-1 do
for j=i to n-1 do
m.Item(i, j) < - float (2*rand.Next (2) - 1)

m.GetEigenvalues () ; ;

val eigenvalue : int - > Generalvector

The It em property for the Symme t r i cMa t r ix class is overloaded and F# is
unable to resolve the overload so the a . [i] < - x syntax cannot be used. This
problem is circumvented by calling a . It em (i) < - x directly.

The eigenvalue solver in this library is so fast that a relatively large matrix can be
used:
> let eigs = eigenvalues 1024;;
val eigs : Complex.ComplexGenera1Vector

default value 0 for unspecified elements:
> let get (m : Map<'a, ints) i =

The following get function can be used to fetch an element from a map using the

try

with
I Not-found - >

m. [il

0;;
val get : Map<'a,int> - > 'a - 5 int

This simple and asymptotically efficient implementation of a sparse container
(e.g. a vector in this case) is adequate here because the collation of results is not

290 COMPLETE EXAMPLES

performance critical. However, high-performance programs requiring faster sparse
vector and matrix routines would benefit significantly from using an implementation
such as that provided by the Extreme Optimization library.

The following inc function increments an element in a sparse map:

> let inc m i =

val inc : Map<'a,int> - > 'a - > Map<'a,int>
Map.add i (1 + get m i) m;;

The following function accumulates the distribution of elements in a vector:

let density-of (seq : Generalvector) =

let aux m x =

Seq.fold aux Map.empty seq
I > Map.to-array;;

x + 0 . 5 I > floor I > inc m

val density-of : Generalvector - 5 (float * int) array

The distribution of the eigenvalues eigs of the matrix is then given by:

let density = density-of eigs;;
val density : (float * int) array

The results are most easily visualized by injecting them directly into a running
Excel spreadsheet.

12.2.2 Injecting results into Excel

The simplest way to visualize the results generated by this program is using Excel.
Fortunately, the Excel automation facilities provided by .NET make it very easy to
inject results from an F# program directly into the cells of an Excel spreadsheet, as
described in chapter 1 1.

The appropriate assembly must be loaded:

r

The relevant functions are in the following namespaces:

Exc e 1 . dl 1 'I ; ;

> open Excel;;

> open System.Reflection;;

Injecting results into a spreadsheet requires an application class, workbook and
worksheet:

> let app = new ApplicationClass(Visib1e = true);;
val app : ApplicationClass

A new workbook may be created with:

> let workbook =

app.Workbooks.Add(X1WBATemplate.xlWBATWorksheet) ;;

FINDING N ~ ~ - N E A R E S T NEIGHBORS 291

val workbook : Workbook

The first worksheet in the spreadsheet is given by:

> let worksheet =

val worksheet : -Worksheet
(workbook.Worksheets. [box 13 : ? > - Worksheet);;

The following function allows a cell in the spreadsheet to be set:

> let set i j v =

val set : 'a - 5 'b - > 'c - > unit
worksheet.Cells.Item(j, i) < - box v;;

The following line iterates over the density of eigenvalues, filling in the spreadsheet
cells with the value and density of eigenvalues:

density
1s Seq.iteri (fun j (a, b) - >

set 1 (j + l) a
set 2 (j + l) b);;

Excel can then be used to analyze and visualize the data.

12.2.3 Results

A famous result of random matrix theory is the semi-circle law of eigenvalue densities
for random n x n matrices from the Gaussian Orthogonal Ensemble (GOE):

Although the derivation of the semi-circle law only applies to GOE matrices, the
distributions of the eigenvalues found by this program (for Mij = fl) are also
well approximated by the semi-circle law. The results of this program, illustrated in
figure 12.1, demonstrate this.

12.3 FINDING NTH-NEAREST NEIGHBORS

The program developed in this section combines four important algorithmic concepts
that are commonly encountered in scientific computing:

0 Set-theoretic operations: union, intersection and difference.

0 Graph-theoretic operations: n"-nearest neighbours.

0 Implicit data structures: finite data represent an infinite graph.

0 Dynamic programming: a form of divide and conquer that handles overlapping
subproblems.

292 COMPLETE EXAMPLES

Figure 12.1
square matrix Mij = f l with n = 1024, showing the computed eigenvalue distribution.

The approximately semi-circular eigenvalue density P(A) for a dense, random,

0 High-performance real-time interactive visualization that runs concurrently
with the main computation.

The graph-theoretic problem of finding the nth-nearest neighbours allows useful
topological information to be gathered from many forms of data produced by other
scientific computations. For example, in the case of simulated atomic structures,
where topological information can aid the interpretation of experimental results when
trying to understand molecular structure. Such topological information can also be
used indirectly, in the computation of interesting properties such as the decomposition
of correlation functions over neighbour shells [5] , and shortest-path ring statistics [7].

We shall describe our unconventional formulation of the problem of computing
the @-nearest neighbours of atoms in an atomic structure simulated under peri-
odic boundary conditions before describing a program for solving this problem and
presenting demonstrative results.

12.3.1 Formulation

The notion of the nth-nearest neighbours N: of a vertex i in a graph is rigorously
defined by a recurrence relation based upon the set of first nearest neighbours NJ =
Ni of any atom i:

n = O
n = l

((u ~ ~ ~ : - ~ N’) \q-’> \ c - ~ n L 2

FINDING N T H - ~ ~ ~ ~ ~ ~ ~ NEIGHBORS 293

Figure 12.2 Conventionally, atoms are referenced only by their index i E I[={1 . . . N }
within the supercell. Consequently, atoms i , j E JI at opposite ends of the supercell are
considered to be bonded.

As a recurrence relation, this computational task naturally lends itself to recursion.
As this recurrence relation only makes use of the set-theoretic operations union
and difference, the F# data structure manipulated by the recursive function is most
naturally a set (described in section 3.4).

In order to develop a useful scientific program, we shall use an infinite graph to
represent the topology of a &dimensional crystal, i.e. a periodic tiling. Computer
simulations of non-crystalline materials are typically formulated as a crystal with
the largest possible unit cell, known as the supercell. Conventional approaches to
the analysis of these structures reference atoms by their index i E II ={ 1 . . . N }
within the origin supercell. Edges in the graph representing bonded pairs of atoms
in different cells are then handled by treating displacements modulo the supercell
(illustrated in figure 12.2). However, this conventional approach is well-known to
be flawed when applied to insufficiently large supercells [7, 81, requiring erroneous
results to be identified and weeded out manually.

Instead, we shall choose to reference atoms by an index i = (io, i i) where i, E Zd
and ii E II. This explicitly includes the offset i, of the supercell as well as the index
ii within the supercell (illustrated in figure 12.3). Neighbouring vertices in the graph
representing the topology are defined not only by the index of the neighbouring vertex
but also by the supercell containing this neighbour (assuming the origin vertex to be
in the origin supercell at { O } d) .

294 COMPLETE EXAMPLES

Figure 12.3 We use an unconventional representation that allows all atoms to be indexed
by the supercell they are in as well as their index within the supercell. In this case, the pair of
bonded atoms are referenced as ((0 , 0), ii) and ((1,0), ij), i.e. with i in the origin supercell
(0,O) and j in the supercell with offset (1 , O) .

FINDING NTH-NEAREST NEIGHBORS 295

We shall now develop a complete program for computing the nth-nearest neigh-
bours of a given vertex with index i from a list of lists ri of the indices of the
neighbours of each vertex.

12.3.2 Representing an atomic configuration

A common design pattern in programs that include lexers and parsers involves the
parser and main program depending upon the definition of a core data structure. This
pattern is most elegantly implemented by placing the definition of the data structure
in a separate compilation unit that both the parser and the main program dependupon.

In this case, the data structure used to represent an atomic configuration must be
shared between the parser and main program. Consequently, this data structure is
defined in a separate compilation unit called “model.fs”:

module Model

type coord = { index: int; offset: vector }
type vertex =

type t = { supercell: vector; vertices: vertex array }

The coord type represents a vertex in the infinite graph with the given integer
index into the vertex array and the given supercell offset vector. The elements of the
offset vector are integers but are stored as floating point numbers in this case simply
because subsequent computations are made easier by the use of the uniform, built-in
vector type.

The vertex type represents a vertex in the origin supercell of the graph and is
quantified by the vector coordinate of the vertex and its set of neighbors.

The type t represents a complete model structure with the given supercell dimen-
sions and array of vertices in the origin tile.

{ position: vector; neighbors: Setccoord> }

12.3.3 Parser

The format read by this program is in Mathematica syntax. Although the lexer and
parser could handle their input in a generic way, performance can be significantly
improved by specializing them to the particular structure of expression used to rep-
resent a model in order to avoid creating a large intermediate data structure, i.e. this
is a deforesting optimization.

The parser begins by opening the Model module to simplify the use of its data
structures:

% {

% }
open Model

The types and values of tokens are then defined:

%token <floats REAL

296 COMPLETE EXAMPLES

%token COMMA OPEN CLOSE

The start point of the grammar and the type returned by its action are defined
before the grammar itself is described:

%start system

%type ct> system
% %

In this case, the grammar is most easily broken down into vectors, neighbors, ver-
tices and a whole system. A vector is taken to be a 3D vector written in Mathematica’s
List syntax:

vec3 :

I OPEN REAL COMMA REAL COMMA REAL CLOSE
{ vector [$ 2 ; $4; $61 }

I

A neighbor is composed of its position and index, again represented by nested
Mathematica lists:

neighbor:
I OPEN vec3 COMMA REAL CLOSE

{ { offset = $2; index = int $4 - 1 } }
I

Note the use of the overloaded int function to convert a value of any suitable

The neighbors of a vertex are simply a list of comma separated values:
type into an int .

neighbors: { [I }
I neighbor { [$ 1 1 }
I neighbor COMMA neighbors { $1 : : $3 }
,

Similarly, a vertex and list of vertices are a vector position and sequence of
neighbors and a comma-separated list, respectively:

vertex :

I OPEN vec3 COMMA OPEN neighbors CLOSE CLOSE
{ { position = $2; neighbors = set $5 } }

,

vertices :
I vertex { [$I] }
I vertex COMMA vertices { $1 : : $3 }
I

Note the use of the set function to convert any sequence into a Set.
Finally, a whole system is composed of the supercell dimensions (as a vector) and

a list of vertices:

FINDING N~H-NEAREST NEIGHBORS 297

system:
I OPEN vec3 COMMA OPEN vertices CLOSE CLOSE

{ { supercell = $2; vertices = Array.of-list $5 } }

The grammatical structure of the format could have been parsed generically into
a more general purpose data structure and then dissected by F# functions in the main
program but this task is better suited to the optimizing compilation of grammars by
a parser generator such as f syacc.

I

12.3.4 Lexer

The lexer is very simple, handling only numbers, commas and braces.
The lexer uses the definitions of tokens from the parser:

open Parser

A regular expression real handles both integers (sequences of digits) and frac-
tional numbers (with a decimal point) and also permits a preceding minus sign for
negative numbers:
let space = [’ ‘ ‘\t‘ ‘\r’ ’ \n ’ l
let digit = [’ 0 ’ - ‘ 9 ’ 1

let real = ‘ - ’ ? (digit+ I digit+ ’ . ‘ digit*)

particular example.

possible way:
rule token = parse
I space { token lexbuf }
I real { REAL(Lexing.lexeme lexbuf I > float))
I ’ ’ { COMMA }
I ’i‘ { OPEN }
I ’ } ’ { CLOSE }

I
1

More sophisticated regular expressions could be used but these suffice for this

The lexer itself simply reduces a character stream to lexical tokens in the simplest

The first case in this lexer matches whitespace using the space regular expression
and calls the token rule of the lexer recursively in order to ignore the whitespace and
return the next valid token. The second case matches the real regular expression
and converts the matched string into a float and stores it in a Real token. The
three final cases convert characters into tokens.

12.3.5 Main program

The main program in “nth.fs” provides an Nth module that parses an input file and
computes the neighbors of a vertex:

298 COMPLETE EXAMPLES

#light

The following file is used for input:

let filename =

- SOURCE - DIRECTORY - + @I1\cfg-100k-aSi. txt"

The parser is used to convert the input file into the definition of a model structure:

let system =
use stream = System.IO.File.OpenRead filename
use reader = new System.IO.BinaryReader(stream)
let lexbuf = Lexing.from-binary-reader reader

try

with
I Parsing.Parse-error - >

Mmaparse.system Mmalex.token lexbuf

let p = Lexing.lexeme-endg lexbuf
eprintf "Error at line %d\n" p.Line
exit 1

In the event of a grammatical error in the input file, the Parse-error exception
is raised by the parser. Handling this exception and printing out a descriptive error
message makes this program more user friendly.

The core of the program is the function that computes the nth-nearest neighbours.
This functionality relies upon the definition of the model type from the Model
module:

open Model

The core of the program is simplified by some simple auxiliary functions. The first
such function displaces a vertex from the origin supercell into a different supercell:

let displace i j =

{ j with offset = i.offset +].offset }

This displace function is used when looking up the neighbor j of a given
vertex i in any supercell via the neighbors of its mirror image in the origin supercell,
in order to displace it to the appropriate supercell.

Next, a unions function that computes the n-ary union of a sequence of sets:

let unions : (seq<Set<coordss - > Set<coords) =

Seq.fold Set.union Set.empty

As this is a form of dynamic programming, the nth function is ideally suited to
memoization:

let memoize f =

let m = Hashtbl.create 1
fun k - >

match Hashtbl.tryfind m k with

FINDING N ~ ~ - N E A R E S T NEIGHBORS 299

I Some f-k - > f-k
I None - >

let f-k = f k
m. [k] < - f - k

f -k

Finally, the nth function itself is almost a direct implementation of the math-
ematical definition of nth-nearest neighbors that returns the singleton set for the
0 -nearest neighbor of any vertex, looks up the nearest neighbours for n = 1 and
breaks the general problem into smaller but overlapping subproblems for n > 1:

th

let rec nth =

memoize (fun n - >

memoize (fun i - 5

match n with
I o - > Set-singleton i
I 1 - >

system.vertices. [i.index] .neighbors
) > Set.map (displace i)

let sl, s2 = nth (n-1) i, nth (n-2) i
unions (Seq.map (nth 1) sl) - s2 - sl))

This example clearly demonstrates the brevity of the F# programming language,
with a complete lexer, parser and computational algorithm fitting in such a tiny
amount of code. However, the F# programming language is unique in combining
this brevity with incredible expressiveness and performance. This is most easily
demonstrated by including a real-time interactive visualization of the results that is
updated as they are computed.

I n - 5

12.3.6 Visualization

The simplest way to handle this and many other forms of vizualization is using the
F# for Visualization library from Flying Frog Consultancy.

The following preamble is required to reference libraries and open relevant names-
paces:

#I "C:\Program Files\Reference Assemblies\Microsoft\
Framework\v3 . 0
#R "C:\Program Files\FlyingFrog\FlyingFrog.Graphics.dllll

open System.Windows.Media
open System.Windows.Media.Media3D
open FlyingFrog.Graphics3D

The following line of code spawns a concurrent visualization that may be trans-
parently updated, with all thread-related issues handled automatically by the F# for
Visualization library:

300 COMPLETE EXAMPLES

let viz = Show(Group [I)

This visualization will represent each ofthe nth-nearest neighbors as a tiny sphere:

let sphere = Shape(Sphere.make 0, Brushes.White)

The argument to the Sphere. make function dictates the level of tesselation
(as described in chapter 7) and, in this case, a coarse tesselation is used as this is
satisfactory for displaying large numbers of small spheres.

Any vertex may be chosen as the origin and, in this case, the vertex with zero
index in the origin supercell is used:

let i = {offset=vector [O . O ; 0.0; 0.01; index=O}

The following posit ion function computes the actual 3D coordinates of a vertex
from its index and supercell offset:

let position c =

system.vertices. [c.index] .position +
system.supercel1 . * c.offset

Note the use ofthe . * operator for element-wise multiplication of a pair of vectors.
The following plot function computes the nth-nearest neighbours of the vertex

i, builds a scene graph with a sphere at the position of each vertex and sets the scene
graph as the current scene for the visualization that was spawned using the Scene
property of the vi z object:

let plot n =

let ns = nth n i
let at c =

let r = position c - position i
let r = 0.02 * r
let move = TranslateTransform3D(r. [O], r. [l] , r. [2])
let scale = ScaleTransform3D(O.O5, 0.05, 0 . 0 5)
Transform(scale.Value * move.Value, sphere)

viz.Scene < - Group(Seq.map at ns)

An animation of the nth-nearest neighbors up to n = 40 may then be visualized
using:

for n in 0 . . 40 do
plot n

Finally, the following function is used to join the GUI thread with the main thread
to keep the whole application alive until the visualization is closed:

FlyingFrog.Graphics.Run()

This is all of the code required to produce a high-performance real-time interactive
3D visualization of the results, illustrated in figure 12.4.

LOGISTIC MAP 301

Figure 12.4
silicon [11 rendered using the F#for Visualization library.

The 50th-nearest neighbour shell from a 105-atom model of amorphous

12.4 LOGISTIC MAP

The program developed in this section combines two useful concepts found in scien-
tific computing:

0 Chaotic behaviour from a simple system.

0 Simple visualization.

The logistic map is a polynomial mapping that illustrates how chaotic behaviour
can arise from very simple dynamics. The logistic map is described by a single
mathematical definition:

x,+1 = WL(1- 2,)

where x, is the population at time n, r is a positive constant.
This simple relationship captures two effects from population biology:

0 reproduction where the population will increase at a rate proportional to the
current population when the population size is small.

0 starvation (density-dependent mortality) where the growth rate will decrease
at a rate proportional to the value obtained by taking the theoretical "carrying
capacity" of the environment less the current population.

The following program simulates the logistic map and visualizes the results as simply
as possible, using only Windows Forms. Although it is a complete Windows Forms

302 COMPLETE EXAMPLES

application, this program can be run directly from an F# interactive session without
any batch compilation.

The program is written in the #light syntax and opens two namespaces to simplify
the subsequent code:

> #light; ;

open System.Drawing;;

> open System.Windows.Forms;;

A generic pixel format is used for the form even though the output of this program
is monochrome:

let format = Imaging.PixelFormat.Format24bppRgb;;
val format : 1maging.PixelFormat

The bi tmap-of function creates a new bitmap with the dimensions of the given
rectangle r and applies the given function f to fill the bitmap:

let bitmap-of draw (r : Rectangle) =

let bitmap = new Bitmap(r.Width, r.Height, format)
draw bitmap
bitmap; ;

val bitmap-of : (Bitmap - > unit) - > Rectangle - > Bitmap

The resize function is an event-driven callback that replaces the given bitmap
reference b, filling it in using the higher-order bitmap-of function and redraws
the given form w:

> let resize f (b : Bitmap ref) (w : #Form) - =

b := bitmap-of f w.ClientRectang1e
w. Invalidate (; ;

val resize :

(Bitmap - > unit) - > Bitmap ref - > #Form - 5 'b - > unit

The paint function is an event-driven callback that draws the bitmap b onto a
form using its event argument e:

> let paint (b : Bitmap ref) (v : #Form)
(e : PaintEventArgs) =

let r = e.ClipRectangle
e.Graphics.DrawImage(!b, r, r, GraphicsUnit.Pixe1);;

val paint :

Bitmap ref - > #Form - > PaintEventArgs - > unit

The make-raster function creates a form and a bitmap and registers the
resize, paint and key down callbacks:

let make-raster title f =
let form = new Form(Text=title, Visible=true)
let bitmap = ref (bitmap - of f form.ClientRectangle)

REAL-TIME PARTICLE DYNAMICS 303

form.Resize.Add(resize f bitmap form)
form.Paint.Add(paint bitmap form)
form.KeyDown.Add(fun e - >

form; ;
if e.KeyCode = Keys.Escape then form.Close())

val make-raster : string - > (Bitmap - > unit) - 5 Form

the next may be written:
>let f r x =

val f : float - 5 float - > float

The function that determines the evolution of a population from one time step to

r * x * (1.0 - x);;

The draw function is responsible for filling in the pixels of the bitmap and will

let draw (bitmap : Bitmap) =

be invoked when it is passed as the argument to the bitmap-of function:

let w, h = bitmap.Width, bitmap.Height
for j = O to h-1 do
for i=O to w-1 do
bitmap.SetPixel(i, j , Color.White)

let r = 2.4 + float i / float w * 1.6
€or j = O to h-1 do
let y = (float j + 0.5) / float h
let y = nest 1000 (f r) y
let j = int-of-float ((1.0 - y) * float h)
bitmap.SetPixel(i, j , Color.Black);;

for i=O to w-1 do

val draw : Bitmap - 5 unit

This draw function uses the nest combinator from section 6.1.1.
Finally, a Windows form visualizing the logistic map may be created using the

make-raster function:
> let form = make-raster "Logistic map" draw;;
val form : Form

The result is illustrated in figure 12.5.
The functions that make up this program could have been simplified slightly by

defining the draw function first and calling it explicitly from the functions relating
to the paint callback. However, this would prevent reuse of the code. Specifically,
parameterizing the bitmap-of function used to fill the bitmap over the draw
function that does the filling allows different draw functions to be used.

12.5 REAL-TIME PARTICLE DYNAMICS

The program developed in this section combines two useful concepts found in scien-
tific computing:

304 COMPLETE EXAMPLES

Figure 12.5 Chaotic behaviour of the logistic map.

0 Simulation of particle dynamics.

0 High-performance real-time interactive visualization that runs concurrently
with the main computation.

The following program simulates dynamics of a system of non-interacting particles
and visualizes the results interactively and in real time using the F# for Yisualization
library. Although this is a complete GUI application, this program can be run directly
from an F# interactive session without any batch compilation.

The program begins by referencing the F# for Yisualization library:

#light
#I IlC:\Program Files\Reference Assemblies\Microsoft\
Framework\v3 . 0 II

#I @I1C: \Program Fi1es\FlyingFrog1l
#R @“FlyingFrog.Graphics .dll1I

The following namespaces are opened in order to simplify the subsequent code:

open System.Windows.Media
open System.Windows.Media.Media3D
open FlyingFrog.Graphics3D

The particles will bounce around on a 3D surface quantified by the following
function:

let f x z =

let r = 5.0 * sqrt(x*x + z * z)

REAL-TIME PARTICLE DYNAMICS 305

let sinc = function
I 0 . 0 - > 1.0
I x - > sin x / x

sinc r + 0.01 * sin x + 3e-3*r*r - 1.12

The position and velocity of each particle are encapsulated in the following record
type:

type particle = { p: Vector3D; v: Vector3D }

All of the particles have the same radius:

let size = 0.015

The following function creates a new randomly-placed particle:

let rand = new System.Random()
let spawn - =

let f 0 = rand.NextDouble0 * 0.02 - 0.01
{ p = Vector3D(f (1 , 3.0, f 0);
v = Vector3D(O.O, 0.0, 0.0) }

The current state of the particle system is represented by an array:

let state = Array.init 100 spawn

Gravity is quantified by the following vector:

let gravity = Vector3D(O.O, -1.0, 0.0)

Air resistance is quantified by the following number:

let air-loss = 0.9

Energy lost by collision with the floor is quantified by the following number:

let bounce-loss = 0.99

When the dynamics of a particle are integrated over a time span that includes a
collision, the simulation will be subdivided down to time spans below the following
value:

let max-dt = le-3

The following numbers are the minimum velocity and minimum height, below
which particles will be respawned to keep the simulation interesting:

let min-v2, min-h = le-3, le-3

The following function integrates the equations of motion for a single particle a
for a time step of length dt, including acceleration due to gravity and damping of
the velocity:

let rec update dt ({p=p; v=v} as a) =

let p = p + dt * v + 0.5 * dt*dt * gravity

306 COMPLETE EXAMPLES

let v = air-loss * * dt * (v + dt * gravity)
Note how the record fields p and v are extracted in a pattern match along with the

The height of particle above the floor at the 5 , z coordinate of the particle is used
record a itself using a named subpattern (see section 1.4.2.2).

to test for impact:

let height = p.Y - f p.X p.Z - size
if v.LengthSquared < min-v2 && height < min-h then

else
spawn ()

if height >= 0.0 then { p = p; v = v } else
if dt > max-dt then

let f = update (dt / 2.0)
f (f a)

else
let n = surface-normal f (p.X, p.Z)
let d = Media3D.Vector3D.DotProduct(n, v)
if d 0.0 then {p=p; v=v} else

{ p = p; v = bounce-loss * (v - 2.0 * d * n) }

In particular, if the time interval dt spanning a collision is greater than max-dt
then the time interval is recursively bisected. This is a seemingly-trivial addition that
is very easily implemented in F#. However, this part of the algorithm is of critical
importance. The time integrator is exact to within numerical error for quadratic
behaviour and very accurate for the slightly-damped ballistic behaviour of a flying
particle but wildly inaccurate for collisions, when the velocity of the particle is
instantaneously replaced at some interim moment in time. By recursively bisecting
time intervals that span collisions, the collision is limited to a single short time interval
where the error in time integration is much smaller. Real scientific simulations of
particle systems often use similar tricks to greatly improve the accuracy of the
simulation with minimal adverse effect on performance [8].

The F# for Visualization library is specifically designed to handle real-time simu-
lations and, consequently includes an accurate timer. This timer is represented by a
curriedfunctiondelta-timer. Applyingthefirst argument () to delta timer
returns a function that gives the time since it was last invoked. Consequently, this
delta-timer function can be used to create many independent timers. In this
case, we need only one:

let dt = FlyingFrog.Timer.delta-timer()

The following function calculates a transformation matrix that will be used to scale
a scene graph representing a unit sphere to the size of a particle and then translate it
to the particle’s position in 3D space:

let particle p =

ScaleTransform3D(size, size, size).Value *
TranslateTransform3D(p.p) .Value

REAL-TIME PARTICLE DYNAMICS 307

The Show3D constructor from the F# for Visualization library spawns a visualiza-
tion that runs concurrently with the current thread. In this case, the scene is initially
empty:

let g = Show(Group [I)

each particle in the simulation:

let sphere =

The following scene graph is a smooth icosahedron that will be used to visualize

let color = System.Windows.Media.Brushes.White
Shape (Sphere. make 0, color)

The following scene graph is a tesselation of a relevant part of the floor that will
be used in the visualization:

let floor =

let s = -3.0, 3.0
let color = System.Windows.Media.Brushes.Red
Shape(plot3d 128 f s s , color)

The following function simulates the particle dynamics by looping indefinitely
and repeatedly replacing the scene graph that is being rendered by the concurrent
visualization:

let simulate0 =

while true do
System.Threading.Thread.Sleep(30)
let particles =

[Ifor p in state - 5

Transform(partic1e p, sphere) I]
g.Scene < - Group[Group particles; floor]
let dt = dt (1
for i=O to state.Length-1 do
state. [i] < - update dt state. [i]

The simulation is run in a new background thread:

let thread = new System.Threading.Thread(simu1ate)
thread.IsBackground < - true
thread. Start ()

As the simulation thread is a background thread and the visualization thread is (by
default) a foreground thread, the program will run until the visualization is closed
by the user, at which point the foreground visualization thread will die and the
background simulation thread will be terminated.

Finally, the following function is used to join the GUI thread with the main thread
to keep the whole application alive until the visualization is closed:

FlyingFrog.Graphics.Run()

let simulator =

308 COMPLETE EXAMPLES

Figure 12.6
bouncing on a 3D surface.

Real-time interactive simulation and visualization of non-interacting particles

REAL-TIME PARTICLE DYNAMICS 309

The result is illustrated in figure 12.6.

This Page Intentionally Left Blank

Appendix A

Troubles hooting

This appendix details many of the problems commonly encountered by new F#
programmers.

A.l VALUE RESTRICTION

One problem encountered when using an F# interactive session is the value restriction,
which requires types to be completely defined.

The simplest example impeded by the value restriction is the definition of a
reference to an empty list:

z let x = ref [I ;;

Type inference has inferred the signature

Either define 'x' as a simple data term, make it a

_ _ _ _ ̂ ^stdin(2,4): error: FS0030: Value restriction.

val x : '-a list ref

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

31 1

31 2 TROUBLESHOOTING

function, or add a type constraint to instantiate the
type parameters.

The empty list has the well-defined type ' a 1 is t but a reference to the empty
list does not have a well-defined type because the empty list might be replaced by
a non-empty list, in which case the elements must be of a specific type, the type of
which has not been defined. In this case, the value restriction protects the programmer
from accidentally setting the reference to an int 1 is t in one part of the program
but a float list in another part of the program.

This problem can always be addressed by adding a type annotation to constrain
the type of the value. In this case, we might know that the list will contain int
values, so we annotate accordingly to make the F# interactive session happy:

> let x : int list ref = ref [I ;;
val x : int list ref

The problem occurs mainly when executing parts of a program being developed
in an F# interactive session.

A.2 MUTABLE ARRAY CONTENTS

If an array is initialized from a reference value using the Array. create function
then the reference is shared between every element of the array. For example, the
following creates an array containing 3 elements, all of which are the same reference
to an integer:

> let a = Array-create 3 (ref 0);;
val a : int ref array

Assigning the reference from any element causes all elements to be assigned:

a. [OI := 7;;
a;;

[({contents = 7}; {contents = 7}; {contents = 7}1]

This problem is most easily solved by using the Array. init function to create

val it : int ref array =

the array, specifying a function that returns a new reference at each invocation:

> let a = Array.init 3 (fun - - > ref 0);;
val a : int ref array

or using a comprehension:

> let a =

[Ifor i in o . . 2 - >
ref 011 ;;

Every array element now contains its own mutable value:

> a. [OI := 7; a;;

NEGATIVE LITERALS 31 3

val it : int ref array =

[I{contents = 7 } ; {contents = o}; {contents = o } (]

This caveat applies to any instantiation of an array with mutable elements, includ-
ing arrays of hash tables.

A.3 NEGATIVE LITERALS

As a special case, floating point literals that are arguments do not need to be bracketed.
Forexample,f (-1.0) (- 2 . 0) maybewrittenf - 1 . 0 - 2 . 0 .

Although very useful, this syntax is currently somewhat fragile. In particular,
the positions of spaces are important. For example, the following is interpreted
incorrectly as a function application rather than a subtraction:

> 1.0-2.0;;
stdin(3,O): error : FS0003: This is not a function and
cannot be applied. Did you f o r g e t a I ; ' or 'in'?

F# understood that to mean 1 . 0 (- 2 . 0) , i.e. applying - 2 . 0 as an argument.
This example must therefore be spaced out:

> 1.0 - 2.0;;
val it : float = -1.0

Consequently, it is good style to add spaces between operators when possible, in
order to disambiguate them.

A.4 ACCIDENTAL CAPTURE

Closures are local function definitions that can capture local variables. Captured
variables are stored inside the closure by the F# compiler and are referred to as the
environment of the closure. This is a powerful form of automated abstraction and is
one of the cornerstones of fhctional programming.

This form of abstraction has an important caveat that F# programmers should be
aware of. The environment of a closure can accidentally capture important variables
such as file handles and keep them alive for longer than expected. This should not be
a problem for well written programs as external resources such as file handles should
always be closed explicitly via the use construct but programmers often succumb to
the temptation of abusing the garbage collector for the release of external resources.
This can cause leaks if closures capture references that keep the resources alive.

A.5 LOCAL AND NON-LOCAL VARIABLE DEFINITIONS

Although similar in appearance, the let keyword is used in two different ways
and this can be invasive when using the traditional syntax. Specifically, non-nested
(outermost):

31 4 TROUBLESHOOTING

let . . . = . . .
constructs make new definitions in the current namespace whereas nested:

let . . . = . . . in

constructs make local definitions.
The difference between nested and non-nested definitions can sometimes be con-

fusing. For example, the following is valid F# code (written in traditional syntax for
clarity) that defines a variable a:

> let a =

let b = 4 in
b * b ; ;

val a : int = 16

In contrast, the following tries to make a non-local definition for a within the
nested expression forb, which is invalid:

> let b = 4 in

Syntax error
let a = b * bL;

This is one of the trivial sytactic mistakes often made when learning F#.

A.6 MERGING LINES

The #light syntax option circumvents some of the problems with the traditional
syntax but also introduces new problems. For example, the following is intended to
be read as a pair of separate lines:

let links = getwords > > List.filter ((=) "href")
google I > links

ALT+ENTER) gives an error because the compiler actually interprets the code as:

let links =

Attempting to evaluate these two lines at once (by selecting them both and pressing

getwords List. filter ((=) "href")
google I > links
This ambiguity can be resolved in various ways but the simplest solution is to use

the ; ; token to delimit the blocks of code.

A.7 APPLICATIONS THAT DO NOT DIE

Multithreaded GUI applications sometimes suffer from the problem that a worker
thread continues executing unnecessarily after all user-visible functionality has dis-
appeared when an application is closed. This can be addressed by marking the worker

BEWARE OF “IT 31 5

thread as a background thread using the IsBackground property of the Thread
object.

A.8 BEWARE OF “IT”

Evaluation of an expression rather than a definition in an interactive session yields a
response of the form:

val it : . . .

As you may have guessed, this actually defines a variable it to have the value
resulting from the evaluation, i.e. it may be used to refer to the last result.

This can be very useful. However, it will overwrite any variable called it that
you have defined and it is a tempting variable name to use when referring to an
iterator.

This Page Intentionally Left Blank

Glossary

A-function an anonymous function.
Abstract Syntax Tree the data structure representing a symbolic expression or

program, with operators at nodes and values (typically symbols or numbers) at the
leaves. ('

a type with a visible name but hidden implementation. Abstract
types are created by declaring only the name of the type in a module signature,
and not the complete implementation of the type as given in the module structure.

a variable used to build the result of a computation. The concept of an
accumulator underpins the fold algorithm (introduced on page 40). For example,
in the case of a function which sums the elements of a list, the accumulator is the
variable which holds the cumulative sum while the algorithm is running.

Abstract type

Accumulator

ADO.NET
Algorithm

part of the .NET framework that deals with database programming.
a mathematical recipe for solving a problem. For example, Euclid's

method is a well-known algorithm for finding the largest common divisor of two
numbers.

a flat container which provides random access to its elements in O(1)
time-complexity. See section 3.2.

Array

ASP.NET
Associative container

part of the .NET framework that deals with web programming.
a container which represents a mapping from keys to values.

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc.

317

318 GLOSSARY

Asymptotic complexity an approximation to the complexity of an algorithm,
derived in the limit of infinite input complexity and, typically, as a lower or upper
bound. For example, an algorithm with a complexity f(n) = 3 + 3n + n2 has an
asymptotic complexity O(n2). See section 3.1.

a tree data structure in which the maximum variation in depth is
restricted. See section 3.10.1 for a brief discussion.

an arbitrary-precision integer type. Slower to use than an ordinary i n t
but can represent arbitrarily-large numbers.

a tree data structure in which all non-leaf nodes contain exactly two
binary trees.

Balanced tree

Big int

Binary tree

C#
Cache
Cache hit
Cache miss the slow process of fetching data to fill the cache when a request is

made for data not already in the cache.
Cache coherent improving the locality of memory accesses in order to improve

the effectiveness of caching, e.g. by replacing random accesses with sequential
accesses.

a set-theoretic form of outer product. For example, the
Cartesian cross product of the set A = {a , b } with the set B = {c, d, e} is the set

a type of object that may encapsulate related value and type definitions.

an object-oriented programming language for the .NET platform.
an intermediate store used to accelerate the fetching of a subset of data.

the quick process of retrieving data which is already in the cache.

Cartesian cross product

ofpairs A x B = { (a , c) , (a , 4 , (a1 e) , (b , c) , (4 4, (4 e)}.
class
Closure

Compile-time
Compiler

Complexity

a function or object value that may capture variables from its environment
such as a partially-applied curried function.

while a program is being compiled.
a program capable of transforming other programs. For example, the

f sc compiler transforms F# source code into executable machine code.
a quantitative indication of the growth of the computational require-

ments (such as time or memory) of an algorithm with respect to its input. Algo-
rithmic complexity is described in section 3. l .

the : : operator. When used in a pattern, h : : t is said to decapitate a list,
binding h to the first element of a list (the head) and t to a list containing the
remaining elements (the tail). When used in an expression, h : : t prepends the
element h onto the list t. See sections 3.3 and 6.4 for example uses of the cons
operator.

Container a data structure used to store values. The values held in a data structure
are known as the elements ofthe data structure. Arrays, lists and sets are examples
of data structures.

Curried function any function that returns a function as its result. See sec-
tion 1.6.3.

Data structure a scheme for organizing related pieces of information.

Cons

GLOSSARY 319

Decapitate

Delegate

splitting a list into its first element (the head) and a list containing the
remaining elements (the tail).

a .NET construct similar to a function value in functional programming
except that the type of a delegate must be explicitly declared. Delegates are not
directly related to F# but may be used during interop with .NET libraries written
in other languages, such as C#.

a collection of application programming interfaces for handling tasks
related to multimedia, especially game programming and video, on Microsoft
platforms.

the declaration of a function value that refers to variables defined in
the local scope captures those variables. The variables captured by a closure are
referred to as its environment.

a programming construct which allows the flow of execution to be
altered by the raising of an exception. Execution then continues at the most
recently defined exception handler capable of dealing with the exception. See
section 1.4.5.

a non-hierarchical data structure representing a collection of values
(elements). For example, arrays and lists.

first-in first-out semantics for a container, where the first value inserted into
a container will be the next value removed from it.

an int and a (possibly implicit) scaling. Used to represent real-valued
numbers z E R approximately, with a constant absolute error.

DirectX

Environment

Exception

Flat container

FIFO

Fixed point

Float
Floating point

Folds

Function

Functional programming

Functional language

Functor

the type of a double-precision IEEE floating-point number.
a number representation commonly used to approximate real-

valued numbers z E R. See section 4.1.2.
a higher-order function which applies its function argument to an accumu-

lator and each element of a container. Introduced on page 40.

a mapping from input values to output values which may be described
implicitly as an algorithm or explicitly, e.g. by a pattern match.

a style of programming that emphasizes the use of
functions.

a programming language that provides first-class lexical
closures.

a construct that maps modules to modules. Used extensively in the ML
family of languages but not directly supported by F#, which uses object-orientation
to solve the same problem.

the process of identifying data that are no longer accessible to
a running program, disposing of them and reclaiming the resources they required.

a data structure composed of vertices, and edges that link pairs of vertices.
Used to model networks such as links between websites and metabolic pathways
in cells.

Garbage collection

Generic programming
Graph

the use of polymorphic functions and types.

320 GLOSSARY

Hash a constant-sized datum computed from an arbitrarily complicated value.
Unequal hashes implies inequality but equal hashes do not imply equality. Most
often used to accelerate searching by culling values with different hashes from the
search, such as when searching for a key in a hash table.

a data structure providing fast random access to its elements via their
associated hash values. See section 3.5.

Hash table

Head
Higher-order function

the element at the front of a list. See section 3.3.
any function which accepts another function as an argu-

ment. For example, f is a higher-order function in the definition f(g, x) = g(g(2))
because g must be a function (as g is applied to x and then to g(z)). See sec-
tion 1.6.4.

a data structure capable of storing several elements of
different types. See section 3.9.

a data structure (container) capable of storing several
elements of the same type. For example, an array of integers is a homogeneous
container because an array is a data structure containing elements of a single type,
in this case integers.

Imperative programming a style of programming in which the result of a com-
putation is generated by statements which act by way of side-effects, as opposed
to functional programming.

a homonym with different meanings in different contexts and disciplines.
In the context of numerical algorithms,an “iterative algorithm” means an algorithm
designed to produce an approximate result by progressively converging on the
solution. More generally, the word iterative is often used to describe repetitive
algorithms, where a single repeat is known as an iteration.

Impure functional language a language, such as F#, that provides both functional
and imperative programming constructs.

Int a type which exactly represents a contiguous subset of the integers Z. See
section 4.1.1.

Interactive mode a way of executing F# code piece by piece, in contrast to
compiling an F# program into an executable.

I 0 input and output operations, such as printing to the screen or reading from disc.
Lazy evaluation an evaluation strategy where expressions are only evaluated when

their result in needed. Antonym of strict. F# provides several lazy constructs,
most notably the Seq module and the lazy function.

in the context of tree data structures, a leaf node is a node containing no
remaining trees.

converting a character stream into a token stream. For example, recognising
the keywords in a language before parsing them.

last-in first-out semantics for a container, where the last value inserted into
a container will be the next value removed from it. A stuck is a LIFO container.

Heterogeneous container

Homogeneous container

Iteration

Leaf

Lex

LIFO

Linked List see list.

GLOSSARY 321

List a flat container providing prepend and decapitation in O(1) time-complexity.
In F#, these are performed by the : : operator, known as the cons operator. A list
is traversed by repeated decapitation. See section 3.3.

0 A data structure implementing a container which allows key-values pairs to be
inserted and keys to be subsequently mapped onto their corresponding values.
See sections 3.5 and 3.6.

Maps either a container or a higher-order function:

0 Ahigher-orderhnction/mup f { l o , . . . ,&-I} + { f (l o) , . . . , f(Zn-l)} which
acts upon a container of elements to create a new container, the elements of
which are the result of applying the given function f to each element li in the
given container. Sometimes known as inner map.

Module a construct which encapsulates definitions in a structure and, optionally,
allow the externally-visible portion of the definitions to be restricted to a subset
of the definitions by way of a signature. See section 2.3.

a module interface, declaring the types, exceptions, variables
and functions which are to be accessible to code outside a module using the
signature.

the body of a module, containing definitions of the constituent
types, exceptions, variables and hnctions which make up the module.

a single, possibly not-yet-known, type.

Module signature

Module structure

Monomorphic
Mutable can be altered.
Native code

.NET

the result of compiling a program into the machine language (machine
code) understood natively by the CPU.

the core of Microsoft’s next generation platform, combining seamless inter-
operability between programs written in different languages with a comprehensive
suite of libraries.

Object
Object-oriented programming the creation of objects, which encapsulate func-

tions and data, at run-time. In particular, the use of inheritance to specify relation-
ships between types of object.

the act of understanding something formally. Parsing often refers to the
recognition of grammatical constructs. See section 5.5.2.

the specialisation of a program or function to part of its input
data. For example, given a function to compute xn for any given floating-point
number x and integer n, generating a function to compute x3 for any floating-point
number 5 is partial specialising the original to n = 3.

a programming language construct provided by F# (and other
members of the ML family) that allows a value to be compared against a sequence
of patterns in order to determine the course of action. In particular, pattern match-
ing facilitates the destructuring of values of a compound type into its subvalues,
such as extracting branches from a tree. See section 1.4.2.

an instantiation of a class as a value.

Parse

Partial specialisation

Pattern matching

322 GLOSSARY

Persistence the ability to reuse old data structures without having to worry about
undoing state changes and unwanted interactions. An advantage of functional
programming.

a CPU architecture (e.g. ARM, MIPS, AMD, Intel) and operating system
(e.g. IRIX, Linux, Mac 0 s X, Windows XP).

one of any type. In particular, polymorphic functions are generic
over the types of at least one of their arguments. Variant types can be generic over
polymorphic type-arguments.

a low-level function or operation, used to formulate the time-
complexity of an algorithm. See section 3.1.1.

a language (like Haskell) that prohibits the use of
side effects.

a product type with named fields. For example, a record of type:
{ x: float; y : float } canhaveavalue {x=l.o; y=2.0}.

a slow and inaccurate form of garbage collection where the
number of references to each value is stored and values are deallocated only if
their reference count reaches zero. This fails to account for cyclic data structures
where reference counts never reach zero even though the structure is unreachable
and should be deallocated.

Platform

Polymorphic

Primitive operation

Purely functional language

Record

Reference counting

Regular Expression
Regexp
Root

Run-time
Search tree

a form of pattern matching.
common abbreviation of regular expression.

in the context data structures, the root is the origin of the data structure, from
which all other portions may be accessed.

while a program is being executed.
a tree where the order of subtrees reflects an ordering of the values

in the tree, allowing subtrees to be culled when searching for a particular value
or range of values. In F#, the Set and Map modules provide implementations of
sets and maps based upon balanced binary search trees. Section 3.13 describes
the use of unbalanced search trees in computational science.

any result of an expression apart from the value which the expression
returns, e.g. altering a mutable variable or performing 10.

Side-effect

Signature see Module signature.
Source code
Stack either:

the initial, manually-entered form of a program.

0 a data structure providing LIFO access.

a limited resource provided by the operating system designed for the storage of
local variables during function recursion. Overuse of the system stack during
recursion is made possible by tail recursion in F#.

Static typing completely type checking at compile-time such that no type checking
is required at run-time.

GLOSSARY 323

Strict

Structure see Module structure.
struct
Tail
Tail call

Tail recursion
Time-complexity

Thread

Tree

expressions are evaluated immediately and the resulting value is used in
subsequent operations. Antonym of lazy.

an unboxed representation in .NET, similar to a class.
the remainder of a list without its front element.

a function call whose result is returned immediately (with subsequence
computation or exception handling).

a recursive function where the recursive calls are tail calls.
complexity of the time taken to execute an algorithm, specified

as the number of times a set of primitive operations are performed.
a construct used to represent a computation such that threads may be

executed concurrently to achieve parallelism.
a recursive data structure represented by nodes which may contain further

trees. The root node is the node from which all others may be reached. Leaf
nodes are those which contain no further trees. Trees are traversed by examining
the child nodes of the current node recursively.

a product type with unnamed elements. Tuples represent elements in the set
ofthe Cartesian cross product ofthe sets of element types in the tuple. For example,
the 2-tuple of floating-point numbers (x, y) of the type float * float is
typically used to represent the set R x R.

the set of possible values of a variable, function argument or result, or the
mapping between argument and result types of a function.

explicitly listed sets of possible values. See section 1.4.1.3.
an object-oriented .NET programming language that focuses on ease

a p l e

'Qpe

Variant type
Visual Basic

of use.

This Page Intentionally Left Blank

Bibliography

1. Gerard T. Barkema and Normand Mousseau. High-quality continuous random
networks. Phys. Rev. B, 62:4985,2000.

2. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S . S . M. Wong.
Random-matrix physics - spectrum and strength fluctuations. Rev. Mod. Phys.,
53:385, 1981.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, USA., 2001.

4. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm.
Pure Appl. Math., 41:909, 1988.

5. S. R. Elliott. Thephysics and chemistry of solids. John Wiley & sons, New York,
USA, 2000.

6. T. Fischbacher, T. Klose, and J. Plefka. Planar plane-wave matrix theory at
the four loop order: Integrability without bmn scaling. J. High Energy Phys.,
2005(02), 2005.

7. D. S. Franzblau. Computation of ring statistics for network models of solids.
Phys. Rev. B, 44(10):49254930,199 1.

325

326 BIBLIOGRAPHY

8. D. Frenkel and B. Smit. Understanding Molecular Simulation from Algorithms
to Applications. Academic Press, New York, USA, 1996.

9. Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architec-
ture for the FFT. In Proc. IEEE Intl. Con$ on Acoustics, Speech, and Signal
Processing, volume 3, pages 1381-1384, Seattle, WA, May 1998.

10. Stephen Gasiorowicz. Quantumphysics. John Wiley and Sons, London, England,
2003.

1 1. J. D. Harrop. OCamZ for Scientists. Flying Frog Consultancy, Cambridge, UK,
2005.

12. Jon D. Harrop. Balanced binary search trees. The F#.NETJournal, 2007.

13. Jon D. Harrop. Combinator heaven. The F#.NETJournal, 2007.

14. Jon D. Harrop. Language-oriented programming: The term-level interpreter.
The F#.NETJournal, 2007.

15. Jon D. Harrop. Quick introduction to web services and databases. The F#.NET
Journal, 2007.

16. Jon D. Harrop. Tail recursion. The F#.NET Journal, 2007.

17. Donald E. Knuth. The Art of Computer Programming. Addison Wesley, Boston,
MA, USA, 1997.

18. C. J. Lanczos. A precision approximation of the gamma function. J. SIAM
Numer. Anal. Ser B, 1:86-96,1964.

19. P. A. Lee and T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod.
Phys., 57:287, 1985.

20. S. Mallat. Multiresolution approximations and wavelet orthonormal bases of
L2(R). Transactions of the American Mathematical Society, 3 15(1):69-87,
1989.

21. S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet
representation. IEEE Trans. on Putt. Anal. and Mach. Intel., 1 1 (7):674-693,
1989.

22. Robert Pickering. Foundations of F#. APress, Berkeley, CA, USA, 2007.

23. W. Rankin and J. Board. A portable distributed implementation of the parallel
multipole tree algorithm. In IEEE Symposium on High Performance Distributed
Computing, pages 17-22, Los Alamitos, 1995. IEEE Computer Society Press.

24. Jonathan Shewchuck. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18(3):305-363,
1997.

BIBLIOGRAPHY 327

25. Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#. APress, Berkeley,
CA, USA, 2007.

This Page Intentionally Left Blank

INDEX

.NET, 44
#light syntax option, 4
Array module

append function, 70
concat function, 70, 188, 189, 192
copy function, 71, 287
create function, 232, 286
fold-left function, 74, 102, 220
fold-right function, 74
init function, 72, 102, 188, 220, 243,

274, 286
iteri function, 243
iter function, 72, 229
length function, 168, 169, 188, 220-

223, 232, 243, 274, 282, 283
map2 function, 221, 286
mapi function, 230
map function, 154, 188, 192, 230-233
of-list function, 297
of-seq function, 274
sort function, 75, 158
sub function, 72
to-list function, 74

add function, 86
create function, 144

Hashtbl module

F# for Scientists. By Jon Harrop
Copyright @ 2008 John Wiley & Sons, Inc

find function, 86, 144
iter function, 87
replace function, 86, 144

assoc function, 11 1
filter function, 143, 286, 314
fold-left2 function, 79
fold-left function, 81, 104, 143,

fold-right function, 81, 95, 97
init function, 41
iter function, 81
map function, 81

add function, 89, 290
empty value, 89
find function, 89, 289
fold function, 89
iter function, 90
remove function, 90

List module

218, 219

Map module

Mat chFai lureExcept ion exception, 20
Microsoft.FSharp.Core.Operators,

Option module

Seq module

42

get function, 232

329

330 INDEX

concat function, 158
countBy function, 158
filter function, 158
fold function, 95, 97, 122, 123, 131,

iteri function, 291
length function, 122, 130, 159
map2 function, 215, 287
map function, 92, 130, 133, 158, 287
take function, 130
to-array function, 158
zip function, 170

add function, 83
cardinal function, 83
di f f function, 84
empty value, 82
inter function, 84
of-array function, 208
of-seq function, 202
singleton function, 83
subset function, 84
to-list function, 83
union function, 84

170, 179, 216, 287, 290

Set module

Stopwatch class, 51, 201
String module

concat function, 114
lowercase function, 158
split function, 130
sub function, 250

mapi function, 152
Vector module

apply function, 283
eval function, 11 1
expand function, 112
expr type, 110
f ixedqoint combinator, 142
float type, 115
fold-range function, 40
int type, 114
invalid-arg function, 80
memoize function, 144, 150
nest combinator, 142
product-range function, 40
rewrite combinator, 11 1
set function, 83
sum-range function, 39
swap function, 283
try . . . finally . . . construct, 51, 151,

unbox3 function, 23
within, 143
'a option type, 11
' a ref type, 30

192, 201, 277

Addprinter member, 58
Array module

Exit exception, 29
Failure exception, 29
FloatRange module, 43
Hashtbl module

f old-lef t function, 92

copy function, 90
of-seq function, 85

IndexOutOfRangeExcept ion exception,

Inval id-argument exception, 29
Item property, 45, 86, 89, 289
List module

assoc function, 77
combine function, 79
filter function, 78
f ind-all function, 77
find function, 77
fold-left2 function, 79
fold-left function, 92, 160, 213
fold-right2 function, 79
fold-right function, 213
map2 function, 78
mem function, 77
partition function, 78
sort function, 76

add function, 89
of-list function, 89

77

Map module

NaN value, 1 16
Seq module, 92

filter function, 92, 159
fold function, 92
map function, 92

Make function, 82
mem function, 207

Sphere. make function, 300
Stopwatch class, 51, 190, 200
String module

Set module

map function, 157
split function, 133

TreeView control, 253
Vector3 type, 184
ZeroLength exception, 28
bin-tree type, 99
box function, 48
complex-of-number function, 93
decr function, 30
downsample function, 80
failwith function, 29
f ixedgoint combinator, 147, 153
floating regular expression, 134

INDEX 331

for loop, 31
fslex tool, 133
function construct, 17
if expression, 12
incr function, 30
invalid-arg function, 29
ipow-1 function, 34
ipow function, 15, 64, 66
leaf-count function, 94
let binding, 6
lines-of-f ile function, 130
match construct, 15
nest combinator, 147, 196, 303
norm function, 28
number type, 93
obj class, 48
pairs function, 18
particle type, 102
print-newline function, 4
printf function, 127
raise function, 27
rec keyword, 14
sqr function, 7, 13
time combinator, 51
try . . . finally . . . construct, 29
try construct, 27
use binding, 8
vec2 class, 44-47
while loop, 30

Abstract syntax tree, 110, 137, 140, 247
Accumulator, 104
Active pattern, 24, 251
Adaptive precision arithmetic, 125
Algebra, 117
Allocate, 143, 209, 213, 215, 216, 241
Amino acid, 252, 253
Animation, 190, 200, 300
Anonymous function, 13
Arbitrary-precision integer arithmetic, 123
Arbitrary-precision rational arithmetic, 124
Arithmetic, 5, 117
Array, 12, 26, 69

alias, 71
concatenation, 70
creation, 72
index, 70
literal, 69
pattern match, 75
sort, 75
subarray, 72

Aspect ratio, 185
Association list, 77
Associative, 117

Augmentations, 44
Automatic generalization, 10

Background thread, 307
Balanced tree, 94
Binary search, 147
Binary tree, 10, 99
Binomial, 149
Bitmap, 176
Board, 203, 204
Boolean, 6
Bottleneck, 103, 168, 199, 200, 202, 209
Box, 48
Build, 54

C, 1, 31
C++, 1, 31
C#, 1, 31
Cache, 64, 144, 200, 209, 222, 262
Callback, 181, 302, 303
Camera, 185
CAML, 2
Cardinal, 83
Cartesian product, 8
Cellular automata, 177
Character, 6
Chart, 226
Class, 46
Clipping plane, 185
Closure, 152, 220, 223, 224, 233, 313
Color, 182-184, 189, 191
Combinations, 165
Combinator, 49
Comments, 4
Common subexpression, 14
Complexity

algorithm, 64
asymptotic, 65
primitive operation, 64

Comprehension, 26, 41, 119, 120, 166, 167,
203, 219, 252, 253, 312

nested, 27

strings, 6
Concatenate

Concurrent, 32, 193, 198
Console, 55, 203, 204, 238
Constructor

explicit, 46
implicit, 47

Coordinate, 184
CPU time, 20&202, 228
Curried function. 33

Data compression, 237
Data structure, 63, 91

332 INDEX

sorted, 82
Debug mode, 54
Debugging, 56
Decapitate, 76
Deforest, 159, 168, 214-216
Design pattern, 49
DirectX, 180

buffer, 183
device, 181
primitives, 186
vector, 184

Discrete wavelet transform, 155
DNA, 157, 159, 249, 257
Duplicate, 82
Dynamic programming, 146
Dynamically linked library, 58

DirectX, 180

Eigenvalue, 289
Encapsulate, 42
Entropy, 214, 215
Equality, 24

reference, 25
structural, 24

FS0001, 5
FS0003, 313
FS0018, 19
FS0030, 31 1

Error

Evaluate, 1 11
Event, 175, 182
Excel, 267
Exception, 27

Executable, 54
Explicit constructor, 46
Exponent, 66
exponent, 135
Expression, 110
Extensible, 76
Extract, 163

argument, 27

F# distribution, 53
F# for Visualization, 198, 299, 301, 304
Factoring

common subexpressions, 39
higher-order functions, 39

Factoring code, 14
Fibonacci, 143, 230
Field of view, 185
File

opening, 130
Filter, 26, 78
Floating point, 114, 135

Floating-point, 5
Flying Frog Consultancy, 198, 299
Fold, 52, 73
Force, 101
Format specifier, 127
Fortan, 1
Fortran, 31
Function, 7, 13

cum, 33
higher order, 35
nested, 14, 38

Function minimization, 152
Function plot

3D, 196
Functional programming, 3 1

Gamma function r (z) , 154
Gaussian, 148
Generalized product, 170
Generics, 10
Getter, 44
Golden ratio, 142
Grad V, 151
Gradient descent, 152
Graph, 119, 226, 227, 292, 293, 295, 300
Graphical user interface, 173, 228, 253, 264
Guard, 26
Gzip format, 237, 250

Haar wavelet, 155
Hash, 85
Hash table, 84
Heaviside step function, 147
Higher-order function, 35

Icosahedron, 188
IEnumerable, 92
Immutable, 31, 75, 82, 87
Imperative, 29
Implicit constructor, 47
In-place modification, 30, 69, 75, 168, 169,

283, 286
Indexing, 45
Infix, 5, 12, 111, 139
Inline, 224
Input, 132
Integer, 1 13
Integers, 5
Interactive mode, 3, 56

prompt, 3
Interactive session, 5, 7, 11, 51, 56-58, 128,

131, 136, 174, 176, 180, 183,
192, 193, 251, 264, 270, 302,
304, 311, 312

Interoperability, 58

INDEX 333

Interpolation, 119
Intersection, 43

function, 116, 296
operator, 5, 6, 46, 110, 284

Java, 31

Kronecker &function. 148

Lambda abstraction, 13
Lazy, 92, 130, 133, 158-160, 215, 216
LCF theorem prover, 2
Lexing, 132
List, 12, 26, 75

association list, 77
membership, 77
pattern match, 80
search, 76

Loop, 30, 32

Magic number, 2
Managed DirectX, 180
Mantissa, 66, 114, 117, 135

data structure, 87
higher-order function, 52, 73, 78

Map

Marshal, 131
Mathematica, 56
Matlab, 56
Mean value, 122
Membership, 42, 77, 78, 91, 206-209
Memoize, 51, 143-146, 150, 242, 298

Metaprogramming, 49, 112, 245-248
Metric, 107
ML, 2
Module, 42

Mutable, 29, 84

recursive function calls, 144

loading, 57

Record field, 29
reference. 30

Nested function, 14, 38
Node, 10, 93, 100, 101, 104, 107, 110, 139,

Normal vector, 184
Number

191, 192, 239, 251, 252

floating point, 114
integer, 11 3

Numerical derivative, 35

Object, 44
Object oriented, 44, 48, 181
OCaml, 2, 24, 25, 214, 234
Orthographic projection, 184
Overload

default, 7

Parallel, 32, 228-233

Parsing, 132
Partial application, 34, 97, 147, 153, 184, 223,

Particle, 63, 101-108, 110, 303-306
Particle system, 105
Partition, 104
Pascal’s triangle, 149
Pattern, 16

guard, 18
named subpattern, 18
or-pattern, 18
variables, 17

Pattern match, 15, 80
exhaustive, 20
parallel, 23
redundant, 21
style, 20

pattern match, 23

224, 270

Performance, 52, 65, 68, 88, 99, 109, 144,
149, 152, 187, 205, 206, 208-
210, 227, 239, 279, 288, 295

profile, 205
Permute, 167
Perspective projection, 185
Pickle, 131
Polymorphic, 6, 74, 84, 89, 95, 148, 159, 224
Polynomial, 66
Position, 191
Power set, 167
Prepend, 12, 74, 75
Present parameters, 18 1
Pretty print, 58
Print, 127
Profile, 199, 200, 202, 204, 205
Protein, 157, 228, 249, 250, 252, 253, 257

Quadratic
solutions, 120

Random, 164
Random number, 102
Record, 8
Recurrence relation, 33, 150
Recursion, 32

function, 15
type, 10

Reference, 30
Referential transparency, 32
Regular expression, 134, 135, 157, 158, 234,

297
Release mode, 54

334 INDEX

Rendering
declarative, 191
programmatic, 183

Root finding, 151
Run-time tyye test, 48

Scene graph, 173, 191, 192, 194, 196, 197,
300

Search, 76
Sequence expression, 26, 130
Serialize, 131, 224
Set

Setter, 44
Shadow

definition, 7
Shuffle, 164
Single threaded, 71, 88
Sort, 75, 76
Spawn, 58, 173, 174, 179, 180, 188, 192,

193, 196, 197, 228, 229, 232,

data structure, 82

275-277, 299, 307
Sphere, 186, 194-196, 300
SQL, 258
Standard deviation, 123
Step size, 26
Stream, 92, 13G-133, 135, 136, 162,236-238,

250, 297
String, 6, 128
Subdivide, 63, 110, 194, 196, 240
Symbolic, 110

Tail recursion, 142, 162, 212, 213
Target, 185
Term rewriting, 11 1, 279
Tesselate, 63, 194-197, 300
Thread, 179, 180, 192, 193, 197, 227-233,

Thread pool, 232, 233
Thread safe, 32, 228, 231, 242
Timer, 51
Token, 132
Transcription, 157
Transform, 73, 111, 155, 19G192, 211, 213,

Transpose, 165
Tree

n-ary, 94
balanced, 94
binary, 99
unbalanced, 10 1

299, 307, 314

236, 240, 281

Triangle, 187
Tuple, 8
TYPe

bool, 6
b y t e , 6
c h a r , 6
f l o a t , 5
i n t , 5
s t r i n g , 6
u n i t , 4
cast, 5
constructor, 9
inference, 7
product types, 8
Sum types, 9

Union, 43

Variable, 6
Variance, 122
Variant type, 9
Vector, 8, 184
Vertex, 184
Vertex array, 187-190, 192, 295
Visual Studio, 53

project, 54
solution, 53
solution explorer, 54, 58, 255

253, 300, 303, 309
Visualization, 173, 179, 192, 196-198, 200,

F# for Visualization, 198, 299, 301, 304

warning
FS0025, 19, 20, 22
FS0026, 21
FS0062, 25

Wavelet, 155
Windows Forms, 174

button, 175
control, 175

Word counter, 131
Word frequency, 158

XML, 237

	F# for Scientists
	CONTENTS
	Foreword
	Preface
	Acknowledgments
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Programming guidelines
	1.2 A brief history of F#
	1.3 Benefits of F#
	1.4 Introducing F#
	1.4.1 Language overview
	1.4.2 Pattern matching
	1.4.3 Equality
	1.4.4 Sequence expressions
	1.4.5 Exceptions

	1.5 Imperative programming
	1.6 Functional programming
	1.6.1 Immutability
	1.6.2 Recursion
	1.6.3 Curried functions
	1.6.4 Higher-order functions

	2 Program Structure
	2.1 Nesting
	2.2 Factoring
	2.2.1 Factoring out common subexpressions
	2.2.2 Factoring out higher-order functions

	2.3 Modules
	2.4 Objects
	2.4.1 Augmentations
	2.4.2 Classes

	2.5 Functional design patterns
	2.5.1 Combinators
	2.5.2 Maps and folds

	2.6 F# development
	2.6.1 Creating an F# project
	2.6.2 Building executables
	2.6.3 Debugging
	2.6.4 Interactive mode
	2.6.5 C# interoperability

	3 Data Structures
	3.1 Algorithmic complexity
	3.1.1 Primitive operations
	3.1.2 Complexity

	3.2 Arrays
	3.2.1 Array literals
	3.2.2 Array indexing
	3.2.3 Array concatenation
	3.2.4 Aliasing
	3.2.5 Subarrays
	3.2.6 Creation
	3.2.7 Iteration
	3.2.8 Map
	3.2.9 Folds
	3.2.10 Sorting
	3.2.11 Pattern matching

	3.3 Lists
	3.3.1 Sorting
	3.3.2 Searching
	3.3.3 Filtering
	3.3.4 Maps and folds
	3.3.5 Pattern matching

	3.4 Sets
	3.4.1 Creation
	3.4.2 Insertion
	3.4.3 Cardinality
	3.4.4 Set-theoretic operations
	3.4.5 Comparison

	3.5 Hash tables
	3.5.1 Creation
	3.5.2 Searching
	3.5.3 Insertion, replacement and removal
	3.5.4 Higher-order functions

	3.6 Maps
	3.6.1 Creation
	3.6.2 Searching
	3.6.3 Higher-order functions

	3.7 Choosing a data structure
	3.8 Sequences
	3.9 Heterogeneous containers
	3.10 Trees
	3.10.1 Balanced trees
	3.10.2 Unbalanced trees
	3.10.3 Abstract syntax trees

	4 Numerical Analysis
	4.1 Number representation
	4.1.1 Machine-precision integers
	4.1.2 Machine-precision floating-point numbers

	4.2 Algebra
	4.3 Interpolation
	4.4 Quadratic solutions
	4.5 Mean and variance
	4.6 Other forms of arithmetic
	4.6.1 Arbitrary-precision integer arithmetic
	4.6.2 Arbitrary-precision rational arithmetic
	4.6.3 Adaptive precision

	5 Input and Output
	5.1 Printing
	5.1.1 Generating strings
	5.2 Generic printing

	5.3 Reading from and writing to files
	5.4 Serialization
	5.5 Lexing and parsing
	5.5.1 Lexing
	5.5.2 Parsing

	6 Simple Examples
	6.1 Functional
	6.1.1 Nest
	6.1.2 Fixed point
	6.1.3 Within
	6.1.4 Memoize
	6.1.5 Binary search

	6.2 Numerical
	6.2.1 Heaviside step
	6.2.2 Kronecker δ-function
	6.2.3 Gaussian
	6.2.4 Binomial coefficients
	6.2.5 Root finding
	6.2.6 Grad
	6.2.7 Function minimization
	6.2.8 Gamma function
	6.2.9 Discrete wavelet transform

	6.3 String related
	6.3.1 Transcribing DNA
	6.3.2 Word frequency

	6.4 List related
	6.4.1 count
	6.4.2 positions
	6.4.3 fold_to
	6.4.4 insert
	6.4.5 chop
	6.4.6 dice
	6.4.7 apply_at
	6.4.8 sub
	6.4.9 extract
	6.4.10 shuffle
	6.4.11 transpose
	6.4.12 combinations
	6.4.13 distribute
	6.4.14 permute
	6.4.15 Power set

	6.5 Array related
	6.5.1 rotate
	6.5.2 swap
	6.5.3 except
	6.5.4 shuffle

	6.6 Higher-order functions
	6.6.1 Tuple related
	6.6.2 Generalized products

	7 Visualization
	7.1 Windows Forms
	7.1.1 Forms
	7.1.2 Controls
	7.1.3 Events
	7.1.4 Bitmaps
	7.1.5 Example: Cellular automata
	7.1.6 Running an application

	7.2 Managed DirectX
	7.2.1 Handling DirectX devices
	7.2.2 Programmatic rendering
	7.2.3 Rendering an icosahedron
	7.2.4 Declarative rendering
	7.2.5 Spawning visualizations from the F# interactive mode

	7.3 Tesselating objects into triangles
	7.3.1 Spheres
	7.3.2 3D function plotting

	8 Optimization
	8.1 Timing
	8.1.1 Absolute time
	8.1.2 CPU time
	8.1.3 Looping
	8.1.4 Example timing

	8.2 Profiling
	8.2.1 8-queens problem

	8.3 Algorithmic optimizations
	8.4 Lower-level optimizations
	8.4.1 Benchmarking data structures
	8.4.2 Compiler flags
	8.4.3 Tail-recursion
	8.4.4 Avoiding allocation
	8.4.5 Terminating early
	8.4.6 Avoiding higher-order functions
	8.4.7 Use mutable
	8.4.8 Specialized functions
	8.4.9 Unboxing data structures
	8.4.10 Eliminate needless closures
	8.4.11 Inlining
	8.4.12 Serializing

	9 Libraries
	9.1 Loading .NET libraries
	9.2 Charting and graphing
	9.3 Threads
	9.3.1 Thread safety
	9.3.2 Basic use
	9.3.3 Locks
	9.3.4 The thread pool
	9.3.5 Asynchronous delegates
	9.3.6 Background threads

	9.4 Random numbers
	9.5 Regular expressions
	9.6 Vectors and matrices
	9.7 Downloading from the Web
	9.8 Compression
	9.9 Handling XML
	9.9.1 Reading
	9.9.2 Writing
	9.9.3 Declarative representation

	9.10 Calling native libraries
	9.11 Fourier transform
	9.11.1 Native-code bindings
	9.11.2 Interface in F#
	9.11.3 Pretty printing complex numbers
	9.11.4 Example use
	9.12 Metaprogramming
	9.12.1 Emitting IL code
	9.12.2 Compiling with LINQ

	10 Databases
	10.1 Protein data bank
	10.1.1 Interrogating the PDB
	10.1.2 Pretty printing XML in F# interactive sessions
	10.1.3 Deconstructing XML using active patterns
	10.1.4 Visualization in a GUI

	10.2 Web services
	10.2.1 US temperature by zip code
	10.2.2 Interrogating the NCBI

	10.3 Relational databases
	10.3.1 Connection to a database
	10.3.2 Executing SQL statements
	10.3.3 Evaluating SQL expressions
	10.3.4 Interrogating the database programmatically
	10.3.5 Filling the database from a data structure
	10.3.6 Visualizing the result
	10.3.7 Cleaning up

	11 lnteroperability
	11.1 Excel
	11.1.1 Referencing the Excel interface
	11.1.2 Loading an existing spreadsheet
	11.1.3 Creating a new spreadsheet
	11.1.4 Referring to a worksheet
	11.1.5 Writing cell values into a worksheet
	11.1.6 Reading cell values from a worksheet

	11.2 MATLAB
	11.2.1 Creating a .NET interface from a COM interface
	11.2.2 Using the interface
	11.2.3 Remote execution of MATLAB commands
	11.2.4 Reading and writing MATLAB variables
	11.3 Mathematica
	11.3.1 Using .NET-link
	11.3.2 Example

	12 Complete Examples
	12.1 Fast Fourier transform
	12.1.1 Discrete Fourier transform
	12.1.2 Danielson-Lanczos algorithm
	12.1.3 Bluestein’s convolution algorithm
	12.1.4 Testing and performance

	12.2 Semi-circle law
	12.2.1 Eigenvalue computation
	12.2.2 Injecting results into Excel
	12.2.3 Results

	12.3 Finding nth-nearest neighbors
	12.3.1 Formulation
	12.3.2 Representing an atomic configuration
	12.3.3 Parser
	12.3.4 Lexer
	12.3.5 Main program
	12.3.6 Visualization

	12.4 Logistic map
	12.5 Real-time particle dynamics

	Appendix A: Troubleshooting
	A. 1 Value restriction
	A.2 Mutable array contents
	A.3 Negative literals
	A.4 Accidental capture
	A.5 Local and non-local variable definitions
	A.6 Merging lines
	A.7 Applications that do not die
	A.8 Beware of “it”

	Glossary
	Bibliography
	Index

