
F# for Scientists

Jon Harrop
Flying Frog Consultancy Ltd.

Foreword by Don Syme

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

F# for Scientists

This Page Intentionally Left Blank

F# for Scientists

Jon Harrop
Flying Frog Consultancy Ltd.

Foreword by Don Syme

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ
07030, (201) 748-601 1, fax (201) 748-6008, or online at http:l/www.wiley.com/go/permission.

Limit of LiabilitylDisclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited
to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Harrop, Jon D.
F# for scientists /Jon Harrop.

p. cm.
Includes index.
ISBN 978-0-470-242 11-7 (cloth)

1. F# (Computer program language) 2. Functional programming (Computer science) 3. Science-Data
processing. I. Title.

QA76.73.Fl63H37 2008
005.1 ' 1 u c 2 2 2008009567

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To my family

This Page Intentionally Left Blank

Contents in Brief

Introduction

Program Structure

Data Structures

Numerical Analysis

Input and Output

Simple Examples

Visualization

Optimization

Libraries

10 Databases

11 lnteroperability

12 Complete Examples

Bibliography

1

37

63

113

127

141

173

199

225

249

267

281

325

vii

This Page Intentionally Left Blank

CONTENTS

Foreword

Preface

Acknowledgments

List of Figures

List of Tables

Acronyms

1 Introduction

1.1 Programming guidelines
1.2
1.3 Benefits of F#
1.4 Introducing F#

A brief history of F#

1.4.1 Language overview
1.4.2 Pattern matching
1.4.3 Equality
1.4.4 Sequence expressions

xix

xxi

xxiii

xxv

XXXl

xxxiii

1

2
2
3
3
4

15
24
26

ix

X CONTENTS

1.4.5 Exceptions
1.5 Imperative programming
1.6 Functional programming

1.6.1 Immutability
1.6.2 Recursion
1.6.3 Curried functions
1.6.4 Higher-order functions

2 Program Structure

2.1 Nesting
2.2 Factoring

2.2.1 Factoring out common subexpressions
2.2.2 Factoring out higher-order functions

2.3 Modules
2.4 Objects

2.4.1 Augmentations
2.4.2 Classes

2.5.1 Combinators
2.5.2 Maps and folds

2.6.1 Creating an F# project
2.6.2 Building executables
2.6.3 Debugging
2.6.4 Interactive mode
2.6.5 C# interoperability

2.5 Functional design patterns

2.6 F# development

3 Data Structures

3.1 Algorithmic complexity
3.1.1 Primitive operations
3.1.2 Complexity

3.2.1 Array literals
3.2.2 Array indexing
3.2.3 Array concatenation
3.2.4 Aliasing
3.2.5 Subarrays
3.2.6 Creation

3.2 Arrays

27
29
31
31
32
33
35

37

38
38
39
39
42
44
44
46
49
49
52
53
54
54
56
56
58

63

64
64
65
69
69
70
70
71
72
72

CONTENTS xi

3.3

3.4

3.5

3.6

3.7
3.8
3.9
3.10

3.2.7 Iteration
3.2.8 Map
3.2.9 Folds
3.2.10 Sorting
3.2.1 1 Pattern matching
Lists
3.3.1 Sorting
3.3.2 Searching
3.3.3 Filtering
3.3.4 Maps and folds
3.3.5 Pattern matching
Sets
3.4.1 Creation
3.4.2 Insertion
3.4.3 Cardinality
3.4.4 Set-theoretic operations
3.4.5 Comparison
Hash tables
3.5.1 Creation
3.5.2 Searching
3.5.3 Insertion, replacement and removal
3.5.4 Higher-order functions
Maps
3.6.1 Creation
3.6.2 Searching
3.6.3 Higher-order functions
Choosing a data structure
Sequences
Heterogeneous containers
Trees
3.10.1 Balanced trees
3.10.2 Unbalanced trees
3.10.3 Abstract syntax trees

4 Numerical Analysis

4.1 Number representation
4.1.1 Machine-precision integers
4.1.2 Machine-precision floating-point numbers

72
73
73
75
75
75
76
76
78
78
80
82
82
83
83
83
84
84
85
86
86
87
87
88
89
90
91
92
92
93

100
101
110

113

113
113
114

xii CONTENTS

4.2 Algebra
4.3 Interpolation
4.4 Quadratic solutions
4.5 Mean and variance
4.6 Other forms of arithmetic

4.6.1 Arbitrary-precision integer arithmetic
4.6.2 Arbitrary-precision rational arithmetic
4.6.3 Adaptive precision

5 Input and Output

5.1 Printing

5.2 Generic printing
5.3
5.4 Serialization
5.5 Lexing and parsing

5.1.1 Generating strings

Reading from and writing to files

5.5.1 Lexing
5.5.2 Parsing

6 Simple Examples

6.1.1 Nest
6.1.2 Fixed point
6.1.3 Within
6.1.4 Memoize
6.1.5 Binary search

6.2.1 Heaviside step
6.2.2 Kronecker &function
6.2.3 Gaussian
6.2.4 Binomial coefficients
6.2.5 Root finding
6.2.6 Grad
6.2.7 Function minimization
6.2.8 Gamma function
6.2.9 Discrete wavelet transform

6.1 Functional

6.2 Numerical

6.3 String related
6.3.1 Transcribing DNA

117
119
120
122
123
123
124
125

127

127
128
129
130
131
132
133
137

141

141
142
142
142
143
147
147
147
148
148
149
151
151
152
154
155
157
157

CONTENTS xiii

6.4

6.5

6.6

6.3.2 Word frequency
List related
6.4.1 count

6.4.2 posit ions

6.4.3 fold-to

6.4.4 insert

6.4.5 chop

6.4.6 dice
6.4.7 apply-at

6.4.8 sub

6.4.9 extract

6.4.10 shuffle

6.4.1 1 transpose
6.4.12 combinations

6.4.13 distribute
6.4.14 permute

6.4.15 Power set
Array related
6.5.1 rotate

6.5.2 swap

6.5.3 except

6.5.4 shuffle
Higher-order functions
6.6.1 Tuple related
6.6.2 Generalized products

158
159
159
160
160
161
161
162
163
163
163
164
165
165
166
167
167
168
168
168
169
169
169
170
170

7 Visualization

7.1 Windows Forms
7.1.1 Forms
7.1.2 Controls
7.1.3 Events
7.1.4 Bitmaps
7.1.5 Example: Cellular automata
7.1.6 Running an application

7.2.1 Handling DirectX devices
7.2.2 Programmatic rendering
7.2.3 Rendering an icosahedron

7.2 Managed DirectX

1 73

174
174
175
175
176
177
179
180
180
183
188

XiV CONTENTS

7.2.4 Declarative rendering 191

7.2.5 Spawning visualizations from the F# interactive mode 192
7.3 Tesselating objects into triangles 194

7.3.1 Spheres 194
7.3.2 3D function plotting 196

8 Optimization 1 99

8.1

8.2

8.3
8.4

Timing
8.1.1 Absolute time
8.1.2 CPU time
8.1.3 Looping
8.1.4 Example timing
Profiling
8.2.1 %queens problem
Algorithmic optimizations
Lower-level optimizations
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8.4.10
8.4.1 1

8.4.12

Benchmarking data structures
Compiler flags
Tail-recursion
Avoiding allocation
Terminating early
Avoiding higher-order functions
Use mutable
Specialized functions
Unboxing data structures
Eliminate needless closures
Inlining
Serializing

9 Libraries

9.1 Loading .NET libraries
9.2 Charting and graphing
9.3 Threads

9.3.1 Thread safety
9.3.2 Basic use
9.3.3 Locks
9.3.4 The thread pool
9.3.5 Asynchronous delegates

200
200
20 1
20 1
202
202
202
205
206
207
21 1
212
213
217
220
220
22 1
222
223
224
224

225

226
226
227
228
229
23 1
232
233

CONTENTS XV

9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.1 1

9.12

9.3.6 Background threads
Random numbers
Regular expressions
Vectors and matrices
Downloading from the Web
Compression
Handling XML
9.9.1 Reading
9.9.2 Writing
9.9.3 Declarative representation
Calling native libraries
Fourier transform
9.1 1 . 1 Native-code bindings
9.1 1.2 Interface in F#
9.1 1.3
9.1 1.4 Example use
Metaprogramming
9.12.1 Emitting IL code
9.12.2 Compiling with LINQ

Pretty printing complex numbers

233
234
234
235
236
237
237
237
238
238
239
240
240
242
243
244
245
245
247

10 Databases

10.1 Protein data bank
10.1.1 Interrogating the PDB
10.1.2
10.1.3
10.1.4 Visualization in a GUI

Pretty printing XML in F# interactive sessions
Deconstructing XML using active patterns

10.2 Web services
10.2.1
10.2.2 Interrogating the NCBI

10.3.1 Connection to a database
10.3.2 Executing SQL statements
10.3.3 Evaluating SQL expressions
10.3.4 Interrogating the database programmatically
10.3.5
10.3.6 Visualizing the result
10.3.7 Cleaning up

US temperature by zip code

10.3 Relational databases

Filling the database from a data structure

249

250
250
25 1

25 1

253
254
255
256
258
259
259
26 1

26 1
263
263
264

xvi CONTENTS

11 lnteroperability

11.1 Excel
1 1.1.1
1 1.1.2
1 1.1.3
1 1.1.4
1 1.1.5
1 1.1.6

1 1.2.1
1 1.2.2 Using the interface
1 1.2.3
1 1.2.4

1 1.3 Mathematica

Referencing the Excel interface
Loading an existing spreadsheet
Creating a new spreadsheet
Referring to a worksheet
Writing cell values into a worksheet
Reading cell values from a worksheet

Creating a .NET interface from a COM interface

Remote execution of MATLAB commands
Reading and writing MATLAB variables

11.2 MATLAB

1 1.3.1 Using .NET-link
11.3.2 Example

12 Complete Examples

12.1 Fast Fourier transform
12.1.1 Discrete Fourier transform
12.1.2 Danielson-Lanczos algorithm
12.1.3 Bluestein’s convolution algorithm
12.1.4 Testing and performance

12.2.1 Eigenvalue computation
12.2.2 Injecting results into Excel
12.2.3 Results

12.3 Finding nth-nearest neighbors
12.3.1 Formulation
12.3.2 Representing an atomic configuration
12.3.3 Parser
12.3.4 Lexer
12.3.5 Main program
12.3.6 Visualization

12.4 Logistic map
12.5 Real-time particle dynamics

12.2 Semi-circle law

267

267
268
268
269
269
270
27 1
272
272
273
273
273
275
275
277

281

28 1
282
283
285
287
288
289
290
29 1
29 1
292
295
295
297
297
299
301
3 03

Appendix A: Troubleshooting 311

CONTENTS xvii

A. 1
A.2
A.3
A.4
A S
A.6
A.7
A.8

Glossary

Bibliography

Index

Value restriction
Mutable array contents
Negative literals
Accidental capture
Local and non-local variable definitions
Merging lines
Applications that do not die
Beware of “it”

31 1
3 12
313
313
313
3 14
314
315

317

325

329

This Page Intentionally Left Blank

Foreword

Computational science is one of the wonders of the modem world. In almost all
areas of science the use of computational techniques is rocketing, and software has
moved from being a supporting tool to being a key site where research activities are
performed. This has meant a huge increase in the importance of controlling and
orchestrating computers as part of the daily routine of a scientific laboratory, from
large teams making and running the computers performing global climate simulations
to the individual scientist/programmer working alone. Across this spectrum, the
productivity of teams and the happiness of scientists depends dramatically on their
overall competency as programmers, as well as on their skills as researchers within
their field. So, in the last 30 years we have seen the continued rise of that new
profession: the scientijicprogrammer. A good scientific programmer will carry both
epithets with pride, knowing that programming is a key foundation for a successful
publication record.

However, programming cultures differ widely, and, over time, gaping divides can
emerge that can be to the detriment of all. In this book, Dr. Harrop has taken great
steps forward to bridging three very different cultures: managed code programming,
scientijicprogramming and functionalprogramming. At a technical level, each has its
unique characteristics. Managed code programming, epitomized by .NET and Java,
focuses on the productivity of the (primarily commercial) programmer. Scientific
programmers focus on high performance computations, data manipulation, numerical

xix

XX FOREWORD

computing and visualization. Functional programming focuses on crisp, declarative
solutions to problems using compositional techniques. The challenge, then, is to
bring these disparate worlds together in a productive way.

The language F#, which Dr. Harrop uses in this book, itself bridges two of these
cultures by being a functional language for the .NET platform. F# is an incredibly
powerful language: the .NET libraries give a rich and solid foundation of software
functionality for many tasks, from routine programming to accessing web services
and high performance graphics engines. F# brings an approach to programming
that routinely makes even short programs powerful, simple, elegant and correct.
However Dr. Harrop has gone a step further, showing how managed code functional
programming can revolutionize the art of scientific programming itself by being
a powerful workhorse tool that unifies and simplifies many of the tasks scientific
programmers face.

But what of the future? The next 20 years will see great changes in scientific
programming. It is customary to mention the ever-increasing challenges of parallel,
concurrent, distributed and reactive programming. It is widely expected that future
micro-processors will use ever-increasing transistor counts to host multiple process-
ing cores, rather than more sophisticated microprocessor designs. If computations can
be parallelized and distributed on commodity hardware then the computing resources
that can be brought can be massively increased. It is well known that successful
concurrent and distributed computing requires a combination of intelligent algorithm
design, competent programming, and core components that abstract some details of
concurrent execution, e.g. databases and task execution libraries. This needs a lan-
guage that can interoperate with key technologies such as databases, and parallelism
engines. Furthermore, the ability to declaratively and crisply describe solutions to
concurrent programming problems is essential, and F# is admirably suited to this
task.

The future, will, however, bring other challenges as well. Truly massive amounts
of data are now being generated by scientific experiments. Web-based programming
will become more and more routine for scientific teams: a good web application can
revolutionize a scientific field. Shared databases will soon be used in almost every
scientific field, and programmatic access to these will be essential. F# lends itself
to these challenges: for example, it is relatively easy to perform sophisticated and
high-performance analysis of these data sources by bringing them under the static
type discipline of functional programming, as shown by some of the samples in this
book.

You will learn much about both programming and science through this book.
Dr. Harrop has chosen the style of F# programming most suited to the individual
scientist: crisp, succinct and efficient, with a discursive presentation style reminiscent
of Mathematica. It has been a pleasure to read, and we trust it will launch you on a
long and productive career as a managed code, functional scientific programmer.

Preface

The face of scientific computing has changed. Computational scientists are no longer
writing their programs in Fortran and competing for time on supercomputers. Scien-
tists are now streamlining their research by choosing more expressive programming
languages, parallel processing on desktop machines and exploiting the wealth of
scientific information distributed across the internet.

The landscape of programming languages saw a punctuation in its evolution at the
end of the 20th century, marked by the advent of a new breed of languages. These
new languages incorporate a multitude of features that are all designed to serve a
single purpose: to make life easier. Modern programming languages offer so much
more expressive power than traditional languages that they even open up new avenues
of scientific research that were simply intractable before.

The next few years will usher in a new era of computing, where parallelism
becomes ubiquitous. Few approaches to programming will survive this transition,
and functional programming is one of them.

Seamlessly interoperating with computers across the world is of pivotal importance
not only because of the breadth of information now available on-line but also because
this is the only practicable way to interrogate the enormous amount of data available.
The amount of genomic and proteinomic data published every year continues to grow
exponentially, as each generation of technology fuels the next.

xxi

xxii PREFACE

Only one mainstream programming language combines awesome expressive power,
interoperability and performance: F#. This book introduces all of the aspects of the
F# programming language needed by a working scientist, emphasizing aspects not
covered by existing literature. Consequently, this book is the ideal complement to a
detailed overview of the language itself, such as the F# manual or the book Expert
F#[25].

Chapters 1-5 cover the most important aspects of F# programming needed to start
developing useful F# programs. Chapter 6 ossifies this knowledge with a variety
of enlightening and yet simple examples. Chapters 7-1 1 cover advanced topics
including real-time visualization, interoperability and parallel computing. Chapter
12 concludes the book with a suite of complete working programs relevant to scientific
computing.

The source code from this book is available from the following website:
http://www.ffconsultancy.com/products/fsharp-for-scientists/

J. D. HARROP

Cambridge, UK

June, 2008

Acknowledgments

I would like the thank Don Syme, the creator of F#, for pioneering research into
programming languages and for thrusting the incredibly powerful ML family of
languages into the limelight of mainstream software development.

Xavier Leroy, everyone at projet Cristal and the Debian package maintainers for
making OCaml so practically useful.

Stephen Elliott and Sergei Taraskin and their group at the University of Cambridge
for teaching me how to be a research scientist and letting me pursue crazy ideas when
I should have been working.

Ioannis Baltopoulos and Enrique Nell for proofreading this book and giving es-
sential feedback.

J. D. H.

xxiii

This Page Intentionally Left Blank

List of Figures

2.1 The f old-range function can be used to accumulate the result
of applying a function f to a contiguous sequence of integers, in
this case the sequence [1,9).

2.2 Developing an application written entirely in F# using Microsoft
Visual Studio 2005.

2.3 Visual Studio provides graphical throwback of the type
information inferred by the F# compiler: hovering the mouse
over the definition of a variable r in the source code brings up a
tooltip giving the inferred type of r.

2.4 A project’s properties page allows the compiler to be controlled.

2.5 The Add-in Manager is used to provide the F# interactive mode.

2.6 Creating a new C# class library project called ClassLibraryl
inside a new solution called In te rop .

2.7 Creating a new F# project called Pro j ect 1 also inside the
I n t e r o p solution.

40

53

54

55

57

59

59

xxv

xxvi LIST OF FIGURES

2.8

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Setting the startup project of the Interop solution to the F#
project Pro j ect 1 rather than the C# project ClassLibraryl
as a DLL cannot be used to start an application.

Complexities of the ipow-1 and ipow-2 functions in terms of
the number T(n) of multiplies performed.

Complexities of the ipow-2 function in terms of the number
of multiplies performed, showing: exact complexity T(n)
(dots) and lower- and upper-bounds algorithmic complexities
log,(n) - 1 5 T(n) 5 2(1+ log, n) for n > 1 (lines).

Measured performance of the ipow-1 and ipow-2 functions
which have asymptotic algorithmic complexities of @(n) and
O(ln n), respectively.

Arrays are the simplest data structure, allowing fast, random
access (reading or writing) to the ith element 'd i E { 0 . . . n - 1)
where n is the number of elements in the array. Elements cannot
be added or removed without copying the whole array.

The higher-order Array. init function creates an array
ai = f (i) for i E (0 . . . n - l} using the given function f .

The higher-order Array. map function creates an array
containing the result of applying the given function f to each
element in the given array a.

The higher-order Array. f old-lef t function repeatedly
applies the given function f to the current accumulator and the
current array element to produce a new accumulator to be applied
with the next array element.

Lists are the simplest, arbitrarily-extensible data structure.
Decapitation splits a list li i E { 0 . . . n - 1) into the head element
h and the tail list ti i E (0. . . n - 2).

Measured performance (time t in seconds) for inserting key-value
pairs into hash tables and functional maps containing n - 1
elements. Although the hash table implementation results in
better average-case performance, the 0 (n) time-complexity
incurred when the hash table is resized internally produces much
slower worst-case performance by the hash table.

A perfectly-balanced binary tree of depth x = 3 containing
2"+l - 1 = 15 nodes, including the root node and 2" = 8 leaf
nodes.

60

67

68

68

69

72

73

74

76

88

94

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

5.1

6.1

7.1

7.2

7.3

7.4

LIST OF FIGURES xxvii

“coral”). 183

The result of inserting an integer counter into each node of the tree
depicted in figure 3.10 using the counted-ptree-of-tree
function.

An unbalanced binary tree with the remaining depth stored in
every node.

A maximally-unbalanced binary tree of depth x = 7 containing
2x + 1 = 15 nodes, including the root node and x + 1 = 8 leaf
nodes.

An unbalanced binary tree used to partition the space T E [0, 1)
in order to approximate the gravitational effect of a cluster of
particles in a system.

Measured performance of the tree-based approach relative to a
simple array-based approach for the evaluation of long-range
forces showing the resulting fractional error 6 = 10 - EI/E vs
time taken t = ttree/tarray relative to the array-based method.

Values i of the type int, called machine-precision integers,
are an exact representation of a consecutive subset of the set of
integers i E [1 . . . u] c Z where 1 and u are given by min-int
and max-int, respectively.

Values of the type float, called double-precisionfloating-poinl
numbers, are an approximate representation of real-valued
numbers, showing: a) full-precision (normalized) numbers
(black), and b) denormalized numbers (gray).

Accuracy of two equivalent expressions when evaluated using
floating-point arithmetic: a) fi(x) = - 1 (solid line),
and b) fi(x) = x/(l + m) (dashed line).

Parsing character sequences often entails lexing into a token
stream and then parsing to convert patterns of tokens into
grammatical constructs represented hierarchically by a tree data
structure.

The first seven rows of Pascal’s triangle.

A blank Windows form.

A form with a single control, a button.

A thousand generations of the rule 30 cellular automaton.

A DirectX viewer that clears the display to a single color (called

96

98

100

106

109

114

1 I5

119

132

149

175

176

179

LIST OF FIGURES xxviii

7.5

7.6

7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Abutting triangles can be amortised into triangle fans and strips
to reduce the number of vertices required to describe a geometry.

A triangle rendered programmatically and visualized using an
orthographic projection.

A DirectX viewer that draws an icosahedron.

Progressively more refined uniform tesselations of a sphere,
obtained by subdividing the triangular faces of an icosahedron
and normalising the resulting vertex coordinate vectors to push
them onto the surface of a sphere.

3D surface plot of y = sin(r + 3x)/r where T = 5 d m .

Profiling results generated by the freely-available NProf profiler
for a program solving the queens problem on an 11 x 11 board.

Measured performance (time t in seconds) of mem functions over
set, list and array data structures containing n elements.

Relative time taken t = ts/ta for testing membership in a set (t s)
and an array (ta) as a function of the number of elements n in the
container, showing that arrays are up to 2 x faster for n < 35.

Measured performance (time t in seconds per element) of
List. of-array, Array. copy and Set .of-array data
structures containing n elements.

Measured performance (time t in seconds per element) of iter
functions over list, array and set data structures containing n
elements.

Measured performance (time t in seconds per element) of
the f old-lef t functions over list and array data structures
containing n elements.

Measured performance (time t in seconds per element) of the
fold - right functions over list, array and set data structures
containing n elements.

Controlling the optimization flags passed to the F# compiler by
Visual Studio 2005.

Deforestation refers to methods used to reduce the size of
temporary data, such as the use of composite functions to avoid
the creation of temporary data structures illustrated here: a)
mapping a function f over a list 1 twice, and b) mapping the
composite function f o f over the list 1 once.

187

189

190

195

197

204

206

208

208

209

210

210

21 1

214

