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Foreword 

Computational science is one of the wonders of the modem world. In almost all 
areas of science the use of computational techniques is rocketing, and software has 
moved from being a supporting tool to being a key site where research activities are 
performed. This has meant a huge increase in the importance of controlling and 
orchestrating computers as part of the daily routine of a scientific laboratory, from 
large teams making and running the computers performing global climate simulations 
to the individual scientist/programmer working alone. Across this spectrum, the 
productivity of teams and the happiness of scientists depends dramatically on their 
overall competency as programmers, as well as on their skills as researchers within 
their field. So, in the last 30 years we have seen the continued rise of that new 
profession: the scientijicprogrammer. A good scientific programmer will carry both 
epithets with pride, knowing that programming is a key foundation for a successful 
publication record. 

However, programming cultures differ widely, and, over time, gaping divides can 
emerge that can be to the detriment of all. In this book, Dr. Harrop has taken great 
steps forward to bridging three very different cultures: managed code programming, 
scientijicprogramming and functionalprogramming. At a technical level, each has its 
unique characteristics. Managed code programming, epitomized by .NET and Java, 
focuses on the productivity of the (primarily commercial) programmer. Scientific 
programmers focus on high performance computations, data manipulation, numerical 

xix 



XX FOREWORD 

computing and visualization. Functional programming focuses on crisp, declarative 
solutions to problems using compositional techniques. The challenge, then, is to 
bring these disparate worlds together in a productive way. 

The language F#, which Dr. Harrop uses in this book, itself bridges two of these 
cultures by being a functional language for the .NET platform. F# is an incredibly 
powerful language: the .NET libraries give a rich and solid foundation of software 
functionality for many tasks, from routine programming to accessing web services 
and high performance graphics engines. F# brings an approach to programming 
that routinely makes even short programs powerful, simple, elegant and correct. 
However Dr. Harrop has gone a step further, showing how managed code functional 
programming can revolutionize the art of scientific programming itself by being 
a powerful workhorse tool that unifies and simplifies many of the tasks scientific 
programmers face. 

But what of the future? The next 20 years will see great changes in scientific 
programming. It is customary to mention the ever-increasing challenges of parallel, 
concurrent, distributed and reactive programming. It is widely expected that future 
micro-processors will use ever-increasing transistor counts to host multiple process- 
ing cores, rather than more sophisticated microprocessor designs. If computations can 
be parallelized and distributed on commodity hardware then the computing resources 
that can be brought can be massively increased. It is well known that successful 
concurrent and distributed computing requires a combination of intelligent algorithm 
design, competent programming, and core components that abstract some details of 
concurrent execution, e.g. databases and task execution libraries. This needs a lan- 
guage that can interoperate with key technologies such as databases, and parallelism 
engines. Furthermore, the ability to declaratively and crisply describe solutions to 
concurrent programming problems is essential, and F# is admirably suited to this 
task. 

The future, will, however, bring other challenges as well. Truly massive amounts 
of data are now being generated by scientific experiments. Web-based programming 
will become more and more routine for scientific teams: a good web application can 
revolutionize a scientific field. Shared databases will soon be used in almost every 
scientific field, and programmatic access to these will be essential. F# lends itself 
to these challenges: for example, it is relatively easy to perform sophisticated and 
high-performance analysis of these data sources by bringing them under the static 
type discipline of functional programming, as shown by some of the samples in this 
book. 

You will learn much about both programming and science through this book. 
Dr. Harrop has chosen the style of F# programming most suited to the individual 
scientist: crisp, succinct and efficient, with a discursive presentation style reminiscent 
of Mathematica. It has been a pleasure to read, and we trust it will launch you on a 
long and productive career as a managed code, functional scientific programmer. 



Preface 

The face of scientific computing has changed. Computational scientists are no longer 
writing their programs in Fortran and competing for time on supercomputers. Scien- 
tists are now streamlining their research by choosing more expressive programming 
languages, parallel processing on desktop machines and exploiting the wealth of 
scientific information distributed across the internet. 

The landscape of programming languages saw a punctuation in its evolution at the 
end of the 20th century, marked by the advent of a new breed of languages. These 
new languages incorporate a multitude of features that are all designed to serve a 
single purpose: to make life easier. Modern programming languages offer so much 
more expressive power than traditional languages that they even open up new avenues 
of scientific research that were simply intractable before. 

The next few years will usher in a new era of computing, where parallelism 
becomes ubiquitous. Few approaches to programming will survive this transition, 
and functional programming is one of them. 

Seamlessly interoperating with computers across the world is of pivotal importance 
not only because of the breadth of information now available on-line but also because 
this is the only practicable way to interrogate the enormous amount of data available. 
The amount of genomic and proteinomic data published every year continues to grow 
exponentially, as each generation of technology fuels the next. 

xxi 



xxii PREFACE 

Only one mainstream programming language combines awesome expressive power, 
interoperability and performance: F#. This book introduces all of the aspects of the 
F# programming language needed by a working scientist, emphasizing aspects not 
covered by existing literature. Consequently, this book is the ideal complement to a 
detailed overview of the language itself, such as the F# manual or the book Expert 
F#[25]. 

Chapters 1-5 cover the most important aspects of F# programming needed to start 
developing useful F# programs. Chapter 6 ossifies this knowledge with a variety 
of enlightening and yet simple examples. Chapters 7-1 1 cover advanced topics 
including real-time visualization, interoperability and parallel computing. Chapter 
12 concludes the book with a suite of complete working programs relevant to scientific 
computing. 

The source code from this book is available from the following website: 
http://www.ffconsultancy.com/products/fsharp-for-scientists/ 

J. D. HARROP 

Cambridge, UK 

June, 2008 
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and normalising the resulting vertex coordinate vectors to push 
them onto the surface of a sphere. 

3D surface plot of y = sin(r + 3x)/r where T = 5 d m .  

Profiling results generated by the freely-available NProf profiler 
for a program solving the queens problem on an 11 x 11 board. 

Measured performance (time t in seconds) of mem functions over 
set, list and array data structures containing n elements. 

Relative time taken t = ts/ta for testing membership in a set ( t s )  
and an array (ta) as a function of the number of elements n in the 
container, showing that arrays are up to 2 x faster for n < 35. 

Measured performance (time t in seconds per element) of 
List. of-array, Array. copy and Set .of-array data 
structures containing n elements. 

Measured performance (time t in seconds per element) of iter 
functions over list, array and set data structures containing n 
elements. 

Measured performance (time t in seconds per element) of 
the f old-lef t functions over list and array data structures 
containing n elements. 

Measured performance (time t in seconds per element) of the 
fold - right functions over list, array and set data structures 
containing n elements. 

Controlling the optimization flags passed to the F# compiler by 
Visual Studio 2005. 

Deforestation refers to methods used to reduce the size of 
temporary data, such as the use of composite functions to avoid 
the creation of temporary data structures illustrated here: a) 
mapping a function f over a list 1 twice, and b) mapping the 
composite function f o f over the list 1 once. 
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