
Chapter 1 

Notions of Instability 

1.1. Introduction 

A number of accidents and structure deteriorations are due to an unstable 
behavior. The accident of the Tacoma Narrows Bridge, Figure 1.1, forms a typical 
example. On airplanes, the flutter phenomenon, the instability due to flexibility of 
the lifting surfaces and aerodynamic forces, limits the performance. The stability 
check is part of the design objectives for mechanical systems, such as static or 
fatigue strength check. 

 

Figure 1.1. Tacoma Narrows Bridge Destruction 
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Instability can be intuitively defined such that, if a system is placed out of its 
equilibrium position, it leaves this position whatever the initial conditions may be 
(divergence). Otherwise, the system is defined as stable [BON 94, BIE 92, ROS 84, 
ROC 71]. 

This intuition can be mathematically converted using the solution of the 
differential system formed by the equations of motion. Consider a mechanical 
system with n parameters, noted qi, such that: 

{ }i iq q (t) i 1, , n= ∈ K  [1.1] 

The most frequently used notion of stability is that resulting from the Lyapunov 
theory. Two initial close conditions give close motions in the case of stable motion. 
With regards to unstable motions, two initial close conditions give increasingly 
separated motions. 

Let ( ) ( ){ }q t ,q t&  and ( ) ( ){ }ˆ ˆq t ,q t&  be two distinct motion states resulting from 

close initial conditions { }0 0q ,q& and{ }0 0ˆ ˆq ,q& . The motion will be said to be stable in 

the sense of Lyapunov if λ can be made correspondent to any ε arbitrarily small and 
positive, such that: 

{ }i0 i0 i0 i0ˆ ˆq -q , q -q  i 1, , n< λ < λ ∈&& K
 

results in: 

{ }i i i iˆ ˆ q (t)-q (t) , q (t)-q (t) i 1, ,n when t 0< ε < ε ∈ >&& K
 

Moreover, if i i i i
t t

ˆ ˆ lim q (t)-q (t) 0 and lim q (t)-q (t) 0
→+∞ →+∞

= =&& , the motion is said to 

be asymptotically stable. 

Two methods can then be distinguished to determine the stability of a system: a 
direct method and an indirect method. 

For these methods, it is necessary to determine the differential equations which 
govern the system motion by using conventional mechanics tools: general theorems, 
Lagrange equations, principle of virtual powers, etc. 
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1.1.1. Lyapunov’s Direct Method 

Stability in the sense of Lyapunov can be seen like a mathematical expression of 
a basic finding: if the total energy of a system dissipates continuously, then this 
system, whether linear or not, stationary or not, tends to return to its equilibrium 
position. 

Consider the following system of differential equations: 

{ } n
1 nx f (x) x x , , x= = ∈� … \  [1.2] 

which admits equilibrium state x=0, with f(0)=0. 

According to the Lyapunov’s theorem, equilibrium state x = 0 is stable if a 
scalair function exists, noted U(x) and termed Lyapunov function, such that: 

(1) U(0) 0
(2) U(x) 0 x 0, x
(3) U(x) 0 x 0, x

⎧ =
⎪ > ∀ ≠ ∈Ω⎨
⎪ ≤ ∀ ≠ ∈Ω⎩ &

 [1.3] 

Ω is a region of Rn around 0. 

Moreover, if inequality [1.3] is replaced with U(x)<0 & , then the equilibrium 
state is asymptotically stable. 

It should be noted that function U(x) is considered as being dependent on t 
through x, hence: 

n n

i i
i 1 i 1

U UU(x) x f
xi xi= =

∂ ∂= =
∂ ∂∑ ∑& &  [1.4] 

This theorem is a sufficient stability condition but does not guide the user in the 
choice of the Lyapunov function and does not allow for any conclusion if such a 
function is not found. A Lyapunov candidate function is a positive-definite function, 
the decrease of which is tested around the equilibrium point. The study of the 
methods allowing for the construction of a Lyapunov candidate function for a given 
system was the reason for a lot of material. The quadratric forms are the most 
commonly used, specially the positive-definite functions which are first integrals 
(i.e., the time derivative is nil) of the idealized system (for example, the total energy 
of an ideally conservative mechanical system). 
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This method can be illustrated through the example of a mass-spring system, 
Figure 1.2. Assume that the actions of the spring and damper are nonlinear, such 
that: 

( )3
spring mass 0 1

0 1

damper mass

F k x k x x
where k ,k ,c 0

F c x x x
→

→

⎧ = − +⎪ >⎨
= −⎪⎩

r r

r r
& &

 [1.5] 

m
x

x(t)

 

Figure 1.2. Modeling of a Single-Degree-of-Freedom System in Translation 

Application of the fundamental principle of dynamics to solids gives the 
following equation of motion: 

( )3
0 1m x c x x k x k x= − − +&& & &  [1.6] 

The following Lyapunov function is chosen: 

( )x2 3
0 10

2 2 4
0 1

1U(x) m x k x k x dx
2
1 1 1m x k x k x
2 2 4

= + +

= + +

∫&

&

 [1.7] 

The derivative of the potential function is then: 

3
0 1U(x) m x x k x x k x x= + +& & && & &  [1.8] 

The following is obtained using equation [1.6]: 

( ) 2U(x) c x x x c x x= − = −& & & & & &  [1.9] 
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Lyapunov function [1.7] is positive and derivative function [1.9] is negative, thus 
showing that the system is asymptotically stable. 

1.1.2. Lyapunov’s Indirect Method 

The indirect method concerns the local stability of nonlinear systems. This is an 
intuitive approach: a nonlinear system behaves as an approximated linear system by 
assuming that the parameters of this system do not much vary around the 
linearization point. 

Assume that the system responds to the following behavior equation: 

( )
( )

x f x,u

u g x, t

=⎧⎪
⎨

=⎪⎩

&
 [1.10] 

where: 

– x: state variables, 

– u: system commands. 

Function f can be linearized to the first order; the following is obtained: 

( )2O
x 0 x 0
u 0 u 0

f fx x u f x,u
x u= =

= =

⎛ ⎞ ⎛ ⎞∂ ∂= + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
&  [1.11] 

( )2O
f x, u  

orders higher than the first order. 

A linearized function of the system behavior around point x=0 and u=0 can then 
be obtained, by: 

x A x B u= +&  [1.12] 

where: 

x 0 x 0
u 0 u 0

f fA and B
x u= =

= =

⎛ ⎞ ⎛ ⎞∂ ∂= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

All the conventional methods, associated with linear systems and presented in 
the remainder of the chapter, can then be applied. 
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The interest of these analysis methods, known as Lyapunov’s methods, is to 
assess the stability of a system without integrating the differential equations which 
describe its behavior. The drawback is that they only provide sufficient conditions 
and that nothing can be concluded if the condition is not met. For the same reasons, 
they may provide a pessimistic (or conservative) result. 

In the case of linear systems, some techniques are derived from the Lyapunov 
theorem. The latter may provide a necessary and sufficient condition for stability, 
Figure 1.3. We intend to present a number of techniques that we will use further on 
in the next chapters. 

 
Any systems 

Linear systems 

State system Transfer function

Eigenvalues Analytical methods: Routh,...
Graphical methods: Black chart,...

Special case
Conservative systems

Lejeune Dirichlet 

Lyapunov direct method 

Lyapunov indirect 
method 

 

Figure 1.3. Summary of System Stability Analysis Methods 

We are going to distinguish modeling based on single-degree-of-freedom 
systems, sufficient to analyze some phenomena, and modeling which use several 
degrees of freedom, often requiring heavier analysis and calculation means. 

Among all types of instability, we are going to distinguish between self-
sustaining instabilities and parametric instabilities. 

Self-sustaining instabilities concern coupled systems. Two classes of problem 
can be observed: 
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– one system, generally defined as being the primary system, is naturally stable. 
Coupling with the secondary system is such that, in some cases, the energy initially 
injected into the system by the external disturbance generates divergent, hence 
unstable vibrations; 

– the primary system is naturally unstable. The secondary system can be defined 
so as to render the vibrations convergent and hence stable. 

 Energy: external disturbance

VibrationPrimary
system

Excitation 

Secondary
system

 

Figure 1.4. Schematization of a System With Self-Sustained Vibrations 

A great number of industrial problematics corresponds to such behaviors. A few 
examples are developed in the next chapters. Self-sustained vibrations can be merely 
illustrated by the flutter phenomenon, coupling between a flexible structure, airplane 
wing for instance, and aerodynamic forces, Figure 1.5. For some airfoil and relative 
speed configurations, the system has a stable or unstable behavior. 

 Energy: fluid (air)

Airfoil deformation (Vibration) Primary system 
Excitation 

Secondary system 

Airplane wing

Fluid 
(air) 

Incidence
variation

 

Figure 1.5. Self-Sustained Vibrations – Case of Flutter 
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Parametric instabilities result from time variation of the system parameters 
(mass, stiffness, etc.). This case can be illustrated by the conventional example of a 
child on a swing who cyclically squats down or stands up to increase or decrease the 
swing amplitudes, Figure 1.6. As the position of his center of gravity varies, there is 
a variation frequency where the system is unstable, which is the objective in this 
example: the child wants to increase his swing amplitudes. 

 

G

g

G

 

Figure 1.6. Parametric Vibrations – Example of Swing 

1.2. Comparison of Notions of Resonance and Instability 

The notions of vibratory resonance and instability are unfortunately sometimes 
mixed up: in both cases, they lead to great amplitudes and then to structure 
deterioration. However, the behavior mechanism is different, and the determination 
criteria are not obtained by the same methods. We propose to interpret and 
differentiate the resonance and instability phenomena through the analysis of the 
forces involved in a system. 

1.2.1. Notion of Resonance 

By definition, the notion of resonance results from the analysis of the response of 
a system to an imposed excitation: this is known as forced response. For example, 
consider a system consisting of a mass, a spring and a viscous damper, both having a 
linear behavior, Figure 1.7. The system is excited by an external action F(t). 
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Figure 1.7. Modeling of a Single-Degree-of-Freedon System With Linear Behavior 

Assuming that there is no spring prestress, the differiental equation which 
governs the system motion is written as follows: 

m x c x k x F(t)+ + =&& &  [1.13] 

m, c, k positive magnitudes. 

The solution of this differential equation corresponds to the superimposition of 
the solution of the general (or homogeneous) system xg and a particular solution xp: 

g px(t) x (t) x (t)= +  [1.14] 

General solution xg may be of the overdamped, critical or underdamped type. In 
all of these cases, provided that m, c and k are positive, the system is stable. 
Damping ratio ξ and eigenfrequency ωp are usually defined such that: 

p

c=
2 k m

k
m

⎧ξ⎪
⎪
⎨
⎪ω =⎪⎩

 [1.15] 

The system type will be specified according to the damping ratio: 

if 1 overdamped or pseudo-periodic system
if 1 critical system
if 1 underdamped or non-periodic system

ξ < ⇒⎧
⎪ ξ = ⇒⎨
⎪ ξ > ⇒⎩

 [1.16] 
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Depending on the system type, and introducing constants A, B or ϕ which 
depend on the initial conditions, solution xg(t) to the homogeneous system can be 
written: 

( )
( ) ( )

p

p

2 2
p p

t 2
g p

t
g

1 t 1 t
g

if 1 x (t) A e sin 1 t

if 1 x (t) A B t e

if 1 x (t) A e B e

−ξω

−ω

−ω ξ+ ξ − −ω ξ− ξ −

⎧ ⎛ ⎞ξ < ⇒ = ω − ξ + ϕ⎜ ⎟⎪ ⎝ ⎠⎪⎪ ξ = ⇒ = +⎨
⎪
⎪ ξ > ⇒ = +⎪⎩

 [1.17] 

The shape of response xg(t) if the system is moved away from its equilibrium 
position, with no external excitation, enables the effect of damping to be analyzed, 
Figure 1.8. 

 

Ratio 

Time (s)

 

Figure 1.8. Response to a Discrete Input – Effect of Damping 

In the case of a harmonic excitation F(t), particular solution xp(t) of equation 
[1.13] is also harmonic, phase-shifted by ϕ, such that: 

( ) ( ) ( )0 p 0F(t) F sin t x t x sin t= Ω → = Ω + ϕ  [1.18] 
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In this case, amplitude x0 and phase shift ϕ of the response are shown to be 
defined by: 

( )

0
0 2 22

p p

p
2

p

F1x
k

1 2

2
tan

1

⎧ =⎪
⎛ ⎞⎪ ⎛ ⎞⎛ ⎞ ⎛ ⎞Ω Ω⎜ ⎟⎪ − + ⎜ ξ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎪ ω ω⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎪

⎨ Ω
⎪ − ξ

ω⎪ ϕ =⎪
⎛ ⎞⎪ Ω− ⎜ ⎟⎪ ⎜ ⎟ω⎝ ⎠⎩

 [1.19] 

Amplitude transfer function H, ratio x0/F0, can be plotted as a function of 
excitation frequency Ω, Figure 1.9. 

Damping ratio 

Resonance 

 

Figure 1.9. Transfer Function for Several Damping Ratio Values 

By definition, resonance frequency Ωr corresponds to the transfer function 
maximum (if any). Thus, for a damping ratio ξ less than 70.7%, the resonance 
frequency is defined by: 

2
r p 1 2Ω = ω − ξ

 [1.20] 
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Damping ratio ξ has a significant effect on the amplitude as regards the resonant 
frequency, Figure 1.9. These amplitudes are not divergent. However, if damping is 
low, excessively large vibration amplitudes may lead to system breakage. The 
structure behavior to resonance can be interpreted by using a representation in the 
complex plane, similar to the notion of Fresnel rotating vector. Thus set the 
following in complex coordinates: 

( ) ( )
( ) ( ) ( )

i t
0 0

i i t
p 0 p 0

F t F sin t F F e

x t x sin t x x e e

Ω

ϕ Ω

= Ω → =

= Ω + ϕ → =
 [1.21] 

By this variable change, equation of motion [1.13] becomes [BIE 92]: 

( ) ( ) ( )2 i i t i i t i i t i t
0 0 0 0

Excitationeffects of inertia damping effects stiffness effects

m x e e i c x e e k x e e F eϕ Ω ϕ Ω ϕ Ω Ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤− Ω + Ω + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1424314444244443 14444244443 144424443

 [1.22] 

The plot of all effects, perceived as forces, in the complex plane enables several 
behaviors to be analyzed depending on whether the observation point is before or 
beyond resonance, Figure 1.10. 

 

Re

Im 

F 0 
Ω t 

k x0

c Ω  x0

m Ω 2 x0
(effects of inertia)

(damping effects)

(stiffness effects)

ϕ 

 

Figure 1.10. Fresnel Representation in Complex Plane 

1.2.1.1. Behavior Before Resonance 

Significantly before resonance, the excitation frequency is such that: Ω<<ωp. 
Behavior equation [1.22] is then reduced to: 

2m− Ω i c+ Ω( ) ( )i i t i t
0 0

Excitation

k x e e F eϕ Ω Ω+ =
14243

 [1.23] 
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The Fresnel representation shows that the external excitation force is mainly 
opposed to the effects of stiffness. It should be noted that angle ϕ is close to 0, the 
displacement is quite in phase with the excitation. 

Re

Im 

F 0 
Ω t 

k x0
(stiffness effects)

ϕ  

Ω<<ωp 

(damping effects)(effects of inertia)

 

Figure 1.11. Fresnel Representation in Complex Plane - Ω<<ωp 

1.2.1.2. Behavior at Eigenfrequency 

The excitation frequency is assumed to be such that: Ω�ωp. Behavior equation 
[1.22] is then reduced to: 

2m− Ω i c k+ Ω +( ) ( )i i t i t
0 0

Excitation

x e e F eϕ Ω Ω=
14243  [1.24] 

Re

Im 

F 0 
Ω t 

k x 0 
c Ω  x0

m Ω 2 x0
(effects of inertia)

(damping effects)

(stiffness effects)

ϕ   

Ω=ωp 

 

Figure 1.12. Fresnel Representation in Complex Plane - Ω<<ωp 
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The Fresnel representation shows that the external excitation force is mainly 
opposed to the effects of damping. The effects of inertia and stiffness cancel each 
other out. Low damping is sufficient for a low-amplitude external force to cause 
large amplitudes of motion and hence damage to the structure. The displacement is 
in phase quadrature (90° phase shift) with the excitation. 

1.2.1.3. Behavior Beyond Resonant Frequency 

The excitation frequency is assumed to be such that: Ω>>ωp. Behavior equation 
[1.22] is then reduced to: 

2m i c− Ω + Ω k+( ) ( )i i t i t
0 0

Excitation

x e e F eϕ Ω Ω=
14243  [1.25] 

The Fresnel representation shows that the external excitation force is mainly 
opposed to the effects of inertia. The displacement is in phase opposition (180° 
phase shift) with the excitation. 

 

Re

Im

F0

Ω t 

m Ω 2 x0
(effects of inertia)

ϕ 

(damping effects)

(stiffness effects) 

Ω >> ω p   

 

Figure 1.13. Fresnel Representation in Complex Plane - Ω>>ωp 

1.2.1.4. Typical Blade Forced Response 

The blades of a helicopter rotor are generally linked to the hub by the equivalent 
of a balljoint. Each blade has three degrees of freedom, each having a function, are 
identified as pitch θ, lag δ and flap β, Figure 1.14. 
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Figure 1.14. Helicopter Blade Motion Parameterization 

Equation setting of the lag motion of a blade shows that, in forward flight, the 
aerodynamic forces create a periodic excitation whose frequency corresponds to the 
rotation frequency. 

VM, blade/helicopter

VM, blade/helicopter 

V helicopter/air

V helicopter/air 

 

Figure 1.15. Definition of Blade Speed on Helicopter 

The air relative speed at a given point of the blade is defined as being the 
combination of the rotational motion of the blade in relation to the hub, and the 
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uniform translational motion of the helicopter. The airstream is assumed to be 
stationary and the blade moving in a plane perpendicular to the axis of rotation. 
Speed U(r) can thus be defined as being the radial component of the blade/air 
relative speed at a point M. As a first approximation, this speed is a function of the 
azimuth, such that: 

( )U(r) r V sin (t) where (t) t= Ω + ψ ψ = Ω  [1.26] 

where: 

– V: helicopter forward speed, 

– Ω: rotor rotational speed, 

– r: longitudinal position of point M considered. 

Using almost static modeling, the aerodynamic lift forces are expressed by: 

( )

( )( )

( )

2
p

2
p

2
2 2

p

1dF aero blade a C U
2
1 a C r Vsin t
2

1 Va C r 1 sin t
2 r

→ = ρ

= ρ Ω + Ω

⎛ ⎞
= ρ Ω + Ω⎜ ⎟Ω⎝ ⎠

 [1.27] 

where: 

p

: fluid (air) density
a : airfoil chord

C : lift coefficient

⎧ ρ
⎪
⎨
⎪
⎩

 [1.28] 

Aircraft forward speed V, where the lift is significant, is very low compared to 
the linear speed of the airfoil point considered (Ω r).  

The aerodynamic force expression can be broken down into a Fourier series, 
showing that the blade is stressed at all the successive harmonics of the rotational 
speed. 

Consider the primary harmonic at 1 Ω, with Ω being the rotor rotational speed 
[KRY 03], the equation of blade lag motion can be written in the following form: 

( )aI c K M sin tδ δδ + δ + δ = Ω&& &  [1.29] 
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Where I is the blade lagging inertia, Kδ is the stiffness, and cδ the damping 
generated by the lead-lag damper, Figure 1.16. Ma corresponds to the amplitude of 
the moment of the aerodynamic forces. 

 

Figure 1.16. Lead-lag damper Integrated with a Helicopter Rotor 

x

y

Ω t

x1

x2

δ Ma

Kδ

c

 

Figure 1.17. Lead-lag Motion of a Helicopter Blade 

Lead-lag damper 
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The lead-lag damper (or adapter) is sized according to several criteria. In 
particular, resonance at 1 Ω must be avoided through adapter stiffness kδ and 
damping cδ. The damping ratio is low enough, in this type of application, to mix up, 
for this criteria, the values of resonant frequency Ωr and eigenfrequency ωp: 

2
r p p1 1 2ξ << → Ω = ω − ξ ≈ ω  [1.30] 

As a matter of fact, it is necessary to analyze the eigenfrequency value ωp of the 
rotor for an excitation at 1 Ω, as well as for its harmonics. 

The eigenfrequency and damping ratio for the lag motion are given by: 

p
K

eigenfrequency
I

c
damping ratio

2 K I

δ

δ

δ

⎧
ω =⎪
⎪
⎨
⎪ξ =
⎪⎩

 [1.31] 

It is usual and more convenient to define the characteristics related to Ω, i.e.: 

p
p

p

reduced lagging frequency

c
c reduced damping

2 I
δ

ω⎧
ω =⎪ Ω⎪
⎨
⎪ =
⎪ ω⎩

 [1.32] 

0 0.5 1 1.5 2
ωp/

Fully articulated 

Rotors soft in-

Rotors stiff in-plane 

Excitation harmonics  

Figure 1.18. Lag Frequency Setting as Regards Rotational Speed 
and Related Harmonics 

Technologically, there are several possibilities to set the eigenfrequency through 
Kδ as regards frequency Ω. 
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For hinged rotors, or fully articulated, the reduced frequency is set between 
0.3/0.5. 

For non-hinged rotors, hingeless or bearingless, the reduced lag frequency is set 
to 0.7/0.8 (soft in-plane), or to 1.4/1.6 (stiff in-plane). 

Using equation [1.29], we can show that the dynamic lag response is of the 
following form: 

( )i t
0(t) e Ω +ϕδ = δ  [1.33] 

We show that the greater the damping, the lower the vibration amplitude, 
Figure 1.19. 

 

Figure 1.19. Effect of Reduced Damping on Vibration Amplitudes 

A method to size the damping as a function of the stiffness consists in defining a 
ratio, noted R, between the equivalent moment of the adapter and the moment 
created by the external force.  

The following is thus shown: 

( )
( ) ( )

24 2
p p

2 22 2
p p

2 c
R

1 2 c

ω + ω
=

ω − + ω
 [1.34] 

Reduced eigenfrequency  

Reduced damping   
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A value of R can thus be determined for a stiffness value of Kδ, and the reduced 
damping can thus be obtained as a function of the reduced frequency, [1.35]: 

( )
( )
22 2 4

p p
2 2
p

1 R
c

4 1 R

ω − − ω
=

ω −
 [1.35] 

We thus obtain curves R represented in Figure 1.20. 

 

Figure 1.20. Reduced Lag Frequency and Reduced Damping Compromise  
for Several Values of R 

To reduce the amplitude of the response, observe that it is possible to: 

– increase damping; 

– space the eigenfrequency from the excitation frequency. 

For a reduced frequency of 1 and zero damping, the amplitude is infinite.  

By increasing damping, the figure shows that, for 7% damping, the amplification 
is 5 (point A) whereas, for 45% damping, the amplification is only 1.25 (point B). 

Reduced damping  

Reduced frequency  

R infinite  
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On a helicopter rotor, in order to have low amplification of the excitation forces, 
the first lagging mode is usually set below 0.7 Ω, Figure 1.20. 

The force diagram can be represented as a function of the rotor rotation 
frequency, before, after or upon resonance. 

Re

Im

Ma/I ωδ
2 δ0

Ω<<ωp

−Ω2 δ0
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Im
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ωδ
2 δ0

Ω=ωp 

Re

Im

Ma/I

ωδ
2 δ0

Ω>>ωp

2 α ωδΩ  δ0

2 α ωδΩ  δ0

2 α ωδΩ  δ0

−Ω2 δ0

−Ω2 δ0

 

Figure 1.21. Fresnel Representation in Complex Plane for a Lagging Blade 
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1.2.2. Notion of Instability 

The notion of stability is defined by studying the free response of the system. 

To illustrate the notion of stability, we consider the self-sustained vibrations for 
the case where the external actions are proportional to the speed: in some cases, the 
latter may be opposed to natural damping of the structure. 

Take again the example of a single-degree-of-freedom structure, Figure 1.7, 
whose differential equation of motion is of the following form: 

extm x c x k x F (t)+ + =&& &  [1.36] 

Assume that the external forces, proportional to the speed, are of the following 
form: 

extF (t) x= α &  [1.37] 

The structure behavior can be interpreted by using a representation in the 
complex plane: 

( ) p tx t x A e→ = ∈^  [1.38] 

Thus, equation [1.36] becomes: 

( ) ( ) ( )2 i i t i i t i i t i t
0 0 0 0

Excitationeffects of inertia damping effects stiffness effects

m x e e i c x e e k x e e F eϕ Ω ϕ Ω ϕ Ω Ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤− Ω + Ω + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 1424314444244443 14444244443 144424443  [1.39] 

The latter equation shows that, in the complex plane, there is a phase shift 
between the effects of inertia, the damping effects and the stiffness effects associated 
with the argument of complex p [BIE 92]. Note: 

arg(p)θ =  [1.40] 

All the forces can thus be drawn in the complex plane. Observe that the 
excitation is opposed to the damping effects and thus, depending on the value of 
coefficient α, may generate instability. In this case, inertia and stiffness have little 
effects. 
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Figure 1.22. Representation in Complex Plane 

1.3. Instability Due to Self-Sustained Excitation 

In order to analyze the stability of systems, several methods associated with the 
modeling type used can be distinguished. 

Within the scope of mechanics or automatic control, the state representation is 
widely used. This concept was systematically introduced by R.E. Karman, and 
developed for the first spatial applications at the beginning of the 1960s. The state 
representation is an internal representation based on the state concept and applicable 
to time-variant and (or) nonlinear systems. In the studies exposed further on, only 
the systems which can be studied using linear models of the time-invariant type (LTI 
system) are considered. The latter are represented by a system of linear differential 
equations with constant coefficients. 

It is sometimes necessary, or preferable, to use external models (of the 
input/output type) which use the minimum information to model the system 
behavior. This will be the case when the behavior of a structure is experimentally 
studied using vibratory measurements. In this case, we also consider the case of 
linear time-invariant systems (LTI). We will essentially use the models based on the 
notion of transfer functions. The latter models are represented by a transfer function 
for the single-input/single-output (SISO) systems and a transfer matrix for the multi-
input/multi-output (MIMO) systems. 
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1.3.1. Multiple-Degree-of-Freedom Systems 

1.3.1.1. Use of a Time Approach or State System 

The mechanical systems studied are usually governed by second-order 
differential equations derived from the principles of mechanics (general theorems, 
Lagrange equation method, etc.) [DUT 97]. In the case of small movements about an 
equilibrium position, the equations of motion can be linearized and then written in a 
matrix form of the following type: 

X X X F+ + =M C K�� �  [1.41] 

1.3.1.1.1. Method of Poles 

Consider any matrices M, C and K a priori. Matrix M will then be assumed to 
be invertible. In most cases, matrix M results from the kinetic energy which is a 
positive-definite quadratic form. In this case, matrix M is symmetrical. Vector X 
represents the position vector, of dimension n corresponding to the number of 
degrees of freedom, such that: 

{ }1 2 nX q (t),q (t), ,q (t)= …  [1.42] 

The most general method consists in using the method proposed by the 
automation engineers and which uses a state representation. To this end, the 
following matrix is introduced first: 

1 1− −⎡ ⎤− −
= ⎢ ⎥
⎣ ⎦

M C M K
A

I 0
 [1.43] 

where: 

– A: matrix, known as state matrix, of dimension [2n,2n], 

– I: unit matrix of dimension [n,n], 

– O: zero matrix of dimension [n,n]. 

From equation [1.41], the following system is obtained: 

FΘ = Θ+A Β�
 [1.44] 
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With state vector Θ of dimension 2 n: 

{ }T
1 2 n 1 2 n

X
q (t),q (t), , q (t),q (t),q (t), , q (t)

X
⎧ ⎫

Θ = =⎨ ⎬
⎩ ⎭

�
� � �… …  [1.45] 

and: 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

-1M
B

0
 [1.46] 

The stability study is reduced to the study of the sign of real parts ak of 
eigenvalues sk of matrix A: stability is ensured when all the real parts of the 
eigenvalues are negative or zero [BIE 92]. 

Re(s)

Im(s)

Instability area

sk=ak+i bkbk

ak

 

Figure 1.23. Eigenvalues in Complex Plane and Stability Area 

Depending on the values of imaginary part bk of the eigenvalues, the system can 
be oscillating or not. The type of motion, stable/unstable or oscillating or not, can be 
graphically analyzed in the Nyquist plane, Figure 1.24. 
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Figure 1.24. Eigenvalues in Nyquist Plane and Stability Area 

The notion of dominant poles simplifies the study of the time response of a 
complex system [DUT 97]. All the eigenvalues (poles) of a stable linear system are 
contained in the left portion of the Nyquist plane. The dominant poles are the poles 
closest to the imaginary axis. 

Im(s)

Instability area

x x

x

x

x

Dominant poles

Re(s)

 

Figure 1.25. Notion of Dominant Poles 



Notions of Instability     27 
 

 

The study of the system can then be reduced to an equivalent system only 
presenting these poles. 

Let us take the case of a complex system such as the helicopter can be. The latter 
is subjected to mechanical and aerodynamic vibations. Several subassemblies can be 
distinguished: the rotor, the fuselage and the power system. We can illustrate the 
notion of dominant poles from an instability phenomenon due to rotor/structure 
coupling (“ground resonance”). 

The helicopter is subjected to aeroelastic coupling between all subassemblies. In 
order to prevent vibrations, the designers introduce a connection element, the lag 
adapters, between the blade and the rotor. This study is more detailed in Chapter 2. 
Here we will only retain the essential elements to illustrate the notion of dominant 
poles. 

The following parameters are involved: 

– x, y, z: fuselage center-of-gravity location with respect to the Galilean 
reference system, 

– αx, αy, αz: fuselage rotation (roll, pitch, yaw), 

– δi, βi: lag and flap angle of blade i, 

– θi: rotation of power system components. 

Which gives 19 independent kinematic parameters in total. 

βi(t)

δi(t)

θmo(t)
x1

x2

x3

A

B

x0

y0

z0 z2

y1

z3

Rotor hub

Blade

 

Figure 1.26. Blade Reference Systems 



28     Mechanical Instability 
 

A

O

G
zg

xg

yg x0

y0

z0

αx

αz

αy

 

Figure 1.27. Fuselage Reference Systems 

The system of dynamic behavior equations is then written in the following form 
[MAL 97]: 

X X X F+ + =M C K&& &
 [1.47] 

X represents the position vector including the 19 parameters. Vector F represents 
the control vector. The notion of dominant poles can be used to simplify the model. 

Tail 
rotor 

Main rotor 

Tail 
rotor 

Main 
rotor 

MGB 

Engine 1

Engine 2 

Engines 1 and 2 

MGB 

 

Figure 1.28. Reference Systems Related to Fuselage Simplified Kinematic System 
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Figure 1.29. Poles of Helicopter on Ground Within 0-5 Hz Range 

The poles of the complete system are obtained using the state system 
representation: 

X X
F

XX

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
A B

&& &

&
 [1.48] 

The poles of the transfer system correspond to eigenvalues si of A. Simply 
observe the position of the poles in the complex plane to derive the system stability. 
Demonstrated in Chapter 2, the result shows that there are dominant poles. 

During testing and analysis of the transfer functions of each parameter, it was 
demonstrated that resonance occurs at a frequency of 2.8 Hz for the modes with a 
high lag component. Result found by modeling, mode 1 is unstable, Figure 1.29. 

The dominant poles can be determined in this case by studying the mode 
deformation. Thus, for each eigenvalue si, the associated eigenvector Vi can be 
determined. 

To this end, solve equation:  

( ) [ ]i i -s V = 0A I  [1.49] 

In order to determine the dominant poles, look at the amplitude of the 
eigenvector associated with each parameter. The result thus obtained for modes 1, 2 
and 3 is illustrated in Figure 1.30. 
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Modes 1 and 2 are modes of coupling between the fuselage (roll and motion 
along y) and the cyclic flap and lag motions of the rotor. The first one is unstable 
and the second one is highly damped. 

Mode 3 is a mode of coupling between the components of the power system and 
the collective lag motion of the blades. 

To study the rotor stability, we could merely use an equivalent model only 
representing the motions of the rotor head (due to y and αx) coupled to the cyclic lag 
motions (δ1c and δ1s). These variables will be used in the chapter dealing with the 
instabilities due to rotor/structure coupling (Chapter 2). 

    x   y    z αx  αy  αz  δ1c δ1s β1c β1s  δo βo θmo θbtpθra θ1 θ2

Mode 1: unstable  
2.8 Hz frequencyamplitude

displacements Rotations

    x   y    z αx  αy αz  δ1c δ1s β1c β1s  δo  βo θmo θbtpθra θ1 θ2 

Mode 2: stable  
2.77 Hz frequencyamplitude

    x   y    z αx  αy  αz  δ1c δ1s β1c β1s  δo βo θmo θbtpθra θ1 θ2

Mode 3: stable  
2.78 Hz frequencyamplitude

 

Figure 1.30. Modal Deformations of Rotor/Structure Coupling 
(Case of Ground Resonance) 
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1.3.1.1.2. FPM (Force Phasing Matrix) Method 

A matrix analysis method can be used [BIE 92] to determine the degrees of 
freedom which couple together and make the system unstable. As a rule, the system 
behavior equation has the following form: 

X X X F+ + =M C K�� �
 [1.50] 

The solution of the homogeneous system of equations [1.50] has the following 
form: 

k

n
s t

k
k 1

X e
=

= Φ∑  [1.51] 

where: 

k

k k

s complex eigenvalues
complex eigenvectors associated with s

⎧
⎨Φ⎩

 [1.52] 

If the general solution is injected into the dynamics equation with no excitation, 
the behavior equation becomes: 

( ) k

n
s t2

k k k k k
k 1

s s e 0
=

Φ + Φ + Φ =∑ M C K  [1.53] 

System which can be broken down into n equations of the following form, for 
each mode k: 

( ) ( ) ( )( )
n

2
kj k k kj k k kj kj j j

j 1

m s c s k 0
=

Φ + Φ + Φ =∑  [1.54] 

Each equation is a combination of an effect of inertia, a damping force and a 
stiffness force with an excitation force noted fk: 

( ) ( ) ( )
( )

k

2
kk k k kk k k kk kk k k

2
kj k kj k kj k j

j k

f

m s c s k

(m s c s k ) 0
≠

Φ + Φ + Φ +

+ + + Φ =∑…
�������������	������������


 [1.55] 

This equation can be represented in the complex plane. Note θk the argument of 
eigenvalue sk. 
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Figure 1.31. Representation of Mode n in Complex Plane 

As angle θk is less than 90°, it can be observed that the real parts of the stiffness, 
damping and inertia effects are negative. Part fn has a real part which can be positive 
or negative, and can therefore be opposed to the damping effect or go in the same 
direction. For the nth degree of freedom, we will say that, if fn has a positive real 
part, it is destabilizing; otherwise, it is stabilizing for this degree of freedom. 

From these different representations, matrices, termed force phasing matrices or 
FPMs, can be defined: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

j k
ijk

i iik

j k
ijk

i iik

j k
ijk

i iik

P Re m
c

P Re m
c

P Re m
c

⎡ ⎤⎛ ⎞⎡ ⎤α
⎢ ⎥⎜ ⎟⎡ ⎤ ⎢ ⎥= − ⊗⎣ ⎦ β⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎡ ⎤β
⎢ ⎥⎜ ⎟⎡ ⎤ ⎢ ⎥= − ⊗⎣ ⎦ β⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎡ ⎤γ
⎢ ⎥⎜ ⎟⎡ ⎤ ⎢ ⎥= − ⊗⎣ ⎦ β⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

M

C

K

 [1.56] 

where: 

( ) ( )
( ) ( )
( ) ( )

2
j k jk k

j k jk k

j jk k

s

s

α = Φ

β = Φ

γ = Φ

 [1.57] 
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The interest of this method, which uses force phasing matrices, lies in the 
possibility of identifying the paths of energy flow causing mechanism instability. To 
this end, it is necessary to: 

– identify the most active degrees of freedom from the information given by the 
eigenvectors for the unstable modes involved; 

– search for the greatest positive value in the force phasing matrices involving 
the most active degree of freedom identified in the preceding step. These elements 
are the drivers for the unstable motion. 

We propose to illustrate the application of this method through the case of 
flap/lag coupling. 

The reference systems and parameterization are indicated in Figure 1.32. 

Control link rod 

 

Figure 1.32. Blade Motion Parameterization 

It can be shown that the linearized equations of blade flap and lag motion, for 
small angles, are given by [KRY 03]: 

2

2
0

²
8 8

2 2 0δ δ

γ Ω γ Ω⎧β + β + Ω β = θ⎪
⎨
⎪δ + λ ω δ + ω δ + Ω β β =⎩

&& &

&& & &
 [1.58] 
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where: 

0

blade lagging eigenfrequency blade Lock number
 rotor rotation speed  blade lagging damping ratio

 pitch angle  blade coning

δωγ ⎧⎧
⎪ ⎪Ω λ⎨ ⎨
⎪ ⎪θ β⎩ ⎩  

It can be observed through the equations that there is coupling due to effects of 
inertia which will affect the lag motion; this coupling is associated with the Coriolis 
effects ( 02 Ω β β& ).  

There is also coupling due to Coriolis effects in the flap equation (- 02 Ω β δ& ) but 
these effects are negligible and have not been considered. 

Referring to reference system R1 related to the hub, the effects of inertia appear 
as a force known as Coriolis force. This force can be illustrated by the motion of an 
ice cube sliding with no friction over a disk subjected to constant rotation Ω. The ice 
cube is launched toward the center at a speed V0.  

If the disk is stopped, the path is a straightline and its speed is uniform; no action 
is opposed to its motion. If the disk is rotating, it can be observed that the path is not 
rectilinear but deviated: these are the Coriolis effects, Figure 1.33. 

>=0

V0

> non nul

V0

V0

trajectoireTrajectory 

Non-zero  

Figure 1.33. Illustration of Coriolis Effects 
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The blade pitch θ is controlled through a control link rod. The kinematics of this 
control is such that a flap or lag motion results in a pitch change.  

Assume that this behavior is almost static and linear, characterized by Kβ and Kδ. 
These couplings are due to the rotor kinematics design [KRY 03].  

For example, for the pitch-lag coupling, Figure 1.34, the bank angle of the pitch 
control rod reduces the pitch for a forward lag motion when Kδ is positive. As 
regards kinematic flap-pitch coupling when the blade moves up, the pitch is 
reduced; this is the negative pitch-flap coupling. For a stabilizing effect on the 
helicopter, usually, pitch-flap coupling is negative and pitch-lag coupling is positive. 
The values are relatively low so as not to alter the rotor behavior. The coupling 
values are below 0.2 for the main rotor, and below 0.7 for the tail rotor. 

 Ω

Pitch control
 rod  

Lead-lag hinge 

K

 

δ

 

>0

 

Figure 1.34. Pitch-Flap and Pitch-Lag Coupling 

Thus, this coupling is modeled through the following form: 

(t) K (t) K (t)β δθ = β + δ  [1.59] 

Thus, equations [1.58] are written in the following form: 

2

2
0

² ²K K 0
8 8 8

2 2 0

β δ

δ δ

γ Ω γ Ω γ Ω⎧ ⎛ ⎞β + β + Ω − β − δ =⎜ ⎟⎪ ⎝ ⎠⎨
⎪δ + λ ω δ + ω δ + Ω β β =⎩

&& &

&& & &
 [1.60] 
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The system of equations can have the following matrix form: 

X X X+ + =C K 0&& &
 

where: 

2

20

² ²K K0 8 88
2 2 0

β δ

δ δ

γ Ω γ Ω⎛ ⎞⎛ ⎞γ Ω⎛ ⎞ Ω − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Ω β λ ω⎝ ⎠ ω⎝ ⎠

C K  [1.61] 

X
β⎧ ⎫

= ⎨ ⎬δ⎩ ⎭
 [1.62] 

The search for eigenvalues sk is done by studying: 

( )kdet s 0− =K I  [1.63] 

And the search for eigenvectors Φk by: 

( )k ks 0− Φ =K I  [1.64] 

For this type of mechanism, it is useful to know parameters Kδ and Kβ which 
ensure stability for a given rotor. The following data are used: 

0

=19 rad/s
10

10%
7

26 rad/s

δω⎧
γ =⎧⎪λ =⎨ ⎨β = °⎩⎪Ω =⎩

 [1.65] 

If parameters Kδ and Kβ are zero, it can be shown that the eigenvalues of the 
system have a negative real part and, consequently, the system is stable: 

1

2

K =0 s 01.89 i 18.8
K =0 s 16.25 i 20.3

δ

β

⎧ = − +⎧⎪ ⇒⎨ ⎨ = − +⎪ ⎩⎩
 [1.66] 

The system can be analyzed for an unstable case. For example, let: 

1

2

K =-1 s 00.7 i 17.6 (unstable mode)
K =-1.5 s 18.8 i 37.2

δ

β

⎧ = + +⎧⎪ ⇒⎨ ⎨ = − +⎪ ⎩⎩
 [1.67] 
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Parameter scanning can be used to assess the effect of parameters Kδ and Kβ on 
system stability, Figure 1.35. The values usually applied to the rotor are very low 
while allowing for remaining within the stability area. 

Instable

Instable

Stable

Kδ

Kβ

 

Figure 1.35. Rotor Stability Area. Plotting of Real Parts 
of Eigenvalues Versus Kδ and Kβ 

1.3.1.2. Use of Transfer Functions 

Whenever the system responds to a causal behavior, it can be represented by 
Figure 1.36. 

 

Figure 1.36. Schematization of a Transfer Function of a System 

F(p)

system

X(p)H(p)=
X(p)
F(p)
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The relation between the cause (mechanical action) and the effect (vibration) can 
be set in the form of a ratio of two polygons of degrees m and n, respectively, 
through the Laplace transform of the system transfer function: 

( )
( )

m
m 1 0

n
n 1 0

b p ... b p bN(p)H(p)
D(p) a p ... a .p a

+ + +
= =

+ + +
 [1.68] 

1.3.1.2.1. Routh (or Routh-Hurwitz) Algebraic Criterion 

By Routh criterion is meant algebraic criterion used to assess the stability of a 
system from the coefficients of denominator D(p) of its transfer function.  

This criterion is very effective since it is not necessary to compute the roots of 
polynomial D(p). 

This criterion results from a method used to count down the number of roots 
with positive or zero real part of polynomial D(p).  

This method is itself derived from the study of the Hurwitz polynomials, and 
consists in forming Table 1.1. 

pn an an-2 an-4 … a2 a0  … a3 a1 

pn-1 an-1 an-3 an-5 … a1   … a2 a0 

pn-2 bn-2 bn-4 bn-6 … if n pair   if n odd 

pn-3 cn-3          

…           

p1           

p0           

Table 1.1. Routh Table 

The first column is known as the pivot column. The first row contains the 
coefficients of pn-2k terms, in order of decreasing powers.  

The second row contains the coefficients of pn-1-2k terms, and ends according to 
the parity of n. 
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The next rows are completed in compliance with the following formation laws: 

n n 2 n n i
n 2 n i

n 1 n 3 n 1 n i 1n 1 n 1

n 1 n jn 1 n 3
n 3 n j

n 2 n j 1n 2 n 4n 2 n 2

a a a a1 1b b
a a a aa a

a aa a1 1c c
b bb bb b

− −
− −

− − − − −− −

− −− −
− −

− − −− −− −

− −= =

− −= =  [1.69] 

If necessary, an empty box is taken as equal to zero. The rows are computed until 
the first column is completed. 

The criterion wording is as follows: the system is stable if and only if all the 
terms of the first column are strictly positive. 

Among the method properties, the following will be retained: 

– there as as many roots with positive real part as sign changes in the first 
column; 

– rows of zeros appear to indicate the existence of pure imaginary roots (in 
pairs). In this case, which corresponds to an oscillating system, the table is continued 
by replacing the zero row with the coefficients obtained by deriving the polynomial 
reconstituted from the upper row, the pure imaginary roots being the imaginery roots 
of this bisquare polynomial reconstituted. 

This criterion can be used to know whether a system is stable or not in simple 
and quick way. It provides information on stability but not on robustness of this 
stability. The transfer function expression must be known to implement the latter. 

In the case of a polynomial of order 3, the criterion result can be stated more 
simply: 

3 2
3 2 1 0D(p) = a p  + a p  + a p + a  [1.70] 

The Routh criterion then comes down to the sufficient conditions for stability: 

3 2 2 1 3 0 0a >0 a >0 a a -a a >0 a >0  [1.71] 

In the same way, in the case of a polynomial of order 4: 

4 3 2
4 3 2 1 0D(p) = a p  +a p  + a p  + a p + a  [1.72] 
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The Routh criterion comes down to the following sufficient conditions: 

( ) 2
4 3 2 1 3 0 2 1 3 0 3 1 4 0a >0 a >0 a a -a a >0 a a -a a a -a a >0 a >0  [1.73] 

The results of this criterion are used when developing examples in the next 
chapters. 

1.3.1.2.2. Graphical Nyquist Criterion 

Some criteria originate from the study of the isochronous transfer function: the 
excitation is of the harmonic type. The transfer function is thus a function of 
frequency ω. 

 

Figure 1.37. Schematization of a System Isochronous Transfer Function 

By definition, the Nyquist locus is a polar curve parameterized with frequency ω. 
It corresponds to the plot of the transfer locus in the complex plane, the Cartesian 
coordinates of which are Re(ω) and Im(ω). The curve is always oriented in the 
increasing ω direction. 

The Nyquist criterion resulting from the Cauchy’s theorem is used to study the 
zeros of the denominator of transfer function H(ω). We propose to use the simplified 
left-hand criterion. 

By representing the Nyquist locus of the open-loop transfer function, we can 
know the stability of the closed-loop system.  

To this end, simply interpret the graphs represented in Figures 1.38 and 1.39 
while checking that, for each pole, the curve passes on the right of point (-1,0) in the 
Nyquist plane, known as critical point. 

F(ω )

system

X( ω )H(ω)
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Im(H(ω))

-1
Re(H(ω))

ω

 

Figure 1.38. Graphical Representation of Nyquist Locus 

REMARK.– The number of encirclements about –1 is the number of strictly 
positive real roots. Example given in Figure 1.39. 

Im(H(ω))

-1
Re(H(ω))

Im(H(ω))

-1
Re(H(ω))

Unstable 
system 

Stable 
system 

 

Figure 1.39. Simplified Nyquist Criterion: Left-Hand Criterion 

If the system studied is multivariable and described by its transfer matrix G(ω), 
the closed-loop system is stable if and only if, when ω describes the Nyquist 
contour, the number of encirclements about the origin and counterclockwise of 
equation det(I+G(ω)) is equal to the number of open-loop unstable modes. 

G(ω)
+

-

 

Figure 1.40. Schematization of a Closed-Loop System 
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1.3.1.2.3. Graphical Black Criterion 

Due to the fact that the modulus and phase of the transfer function of a system 
are often accessed experimentally, it is more convenient to use the Black-Nichols 
chart. 

The Black-Nichols locus represents the transfer locus in a plane whose abscissa 
is the argument of the frequency response in degrees (φ(ω) deg) and whose ordinate 
is the modulus of the frequency response in decibels. The curve of the transfer locus 
in the Nichols-Black plane is also a curve parameterized with frequency ω and must 
therefore be graduated accordingly. It is therefore always oriented in the increasing 
ω direction, Figure 1.41. 

The major advantage of such a representation is related to the additivity property 
of the amplitude expressed in decibels, and of the phase. This allows for easy 
graphical representation of the transfer function products. 

20 log(H(ω))

ϕ(ω)

ω

 

Figure 1.41. Graphical Representation of Nichols-Black Locus 

1.3.1.3. Energy Consideration 

In the particular case of a mechanical system where all forces, including 
interforces, other than the connection forces, are derived from a potential, an 
analytical criterion can be used without having to develop the linearized equations of 
motion. The philosophy of the method lies in the mathematical extension of a 
fundamental observation of physics: “if the total energy of a system is dissipated 
continuously, then the system (whether linear or nonlinear) will have to finally meet 
an equilibrium point”. Stability can be analyzed by a single scalar function 
corresponding to the total energy. 
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The basic procedure consists in generating a scalar function (Lyapunov function) 
of the energy type for the dynamic system, and examining the relevant time 
derivative (Lyapunov derivative). A conclusion about stability can thus be drawn 
without having to use the explicit solution of the nonlinear differential equations. 

Here we propose the analysis of a special case: the Lejeune-Dirichlet’s theorem. 

1.3.1.3.1. Lejeune-Dirichlet’s Theorem 

This theorem expresses a sufficient condition of stability for special assumptions. 

The parameters kinematically independent of the system whose stability is to be 
defined are noted qi. All connections are assumed to be perfect. All forces, including 
interforces, other than the connection actions, are derived from a function noted U. 

If Lagrange function L0 admits a strict local minimum at qie, the position defined 
by qie is a stable parametric equilibrium: 

( ) ( )0 g gL / R T / R UΣ = Σ +  [1.74] 

where: 

– U: force function of the mechanical actions, 

– T: Galilean kinetic energy of the system. 

From the preceding theorem, we can say that, in the case of a strict equilibrium, 
with respect to a Galilean reference system, the equilibrium position is a stable 
equilibrium position if the force function presents a strict local minimum. 

The equilibrium positions are thus defined as follows: 

i ie
i q q

U 0 i
q =

⎞∂ = ∀⎟∂ ⎠  [1.75] 

Stability is ensured if: 

i ie j je

2

i j q q ,q q

U 0 i, j
q q

= =

⎞∂ > ∀⎟⎟∂ ∂ ⎠  [1.76] 

This condition is a sufficient but not necessary condition. 
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1.3.1.3.2. Typical Application 

Consider the conventional case of a two-parameter system represented in 
Figure 1.42. 

G

g

O

θ2

θ1

L

d

 

Figure 1.42. Typical Two-Degree-of-Freedom System 

Search for the equilibrium positions and related stability.  

To this end, express the potential energy as follows: 

( )
( ) ( )

g

1 1 2

U gravity / R mg OG Cst

mg L sin d sin Cst

→ Σ = − ⋅ +

= + θ + θ + θ +⎡ ⎤⎣ ⎦

uuurr

 [1.77] 

The equilibrium positions are defined by: 

( ) ( )

( )

1 1 2
1

1 2
2

U mg L cos d cos

U mg d cos

∂⎧ = + θ + θ + θ⎡ ⎤⎣ ⎦⎪∂ θ⎪
⎨ ∂⎪ = + θ + θ
⎪∂ θ⎩

 [1.78] 

i.e.: 

( ) ( )

( )

1e 2e

1e 2e

1e 1e 2e
1 ,

1e 2e
2 ,

U 0 L cos d cos 0

U 0 cos 0

θ θ

θ θ

⎧ ⎞∂ = ⇒ θ + θ + θ =⎡ ⎤⎪ ⎟ ⎣ ⎦∂θ ⎠⎪
⎨

⎞∂⎪ = ⇒ θ + θ =⎟⎪∂θ ⎠⎩

 [1.79] 
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The following is thus obtained: 

1e

1e 2e

k
2 with k and l odd

l
2

π⎧θ =⎪⎪
⎨ π⎪θ + θ =
⎪⎩

 [1.80] 

It is thus possible to check that solutions (π/2.0) and (-π/2.0) are equilibrium 
positions.  

The second derivatives can then be defined: 

( ) ( )

( )

( )

2

1 1 22
1

2

1 22
2
2

1 2
1 2

U mg L sin d sin

U mg d sin

U m g d sin

⎧ ∂ = − θ + θ + θ⎡ ⎤⎪ ⎣ ⎦∂ θ⎪
⎪

∂⎪ = − θ + θ⎨
∂ θ⎪

⎪ ∂⎪ = − θ + θ
⎪∂ θ ∂ θ⎩

 [1.81] 

For equilibrium position (π/2.0), the following is obtained: 

[ ]
2

2
1 ,0

2
2

2
2 ,0

2
2

1 2 ,0
2

U m g L d 0

U m g d 0

U mg d 0

π

π

π

⎧
⎞⎪ ∂ = − + <⎟⎪ ⎟∂ θ ⎠⎪

⎪
⎪ ⎞∂⎪ = − <⎟⎨ ⎟∂ θ⎪ ⎠
⎪
⎪ ⎞∂⎪ = − <⎟⎟⎪∂ θ ∂ θ ⎠⎪⎩

 [1.82] 
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The criterion does not allow to draw a conclusion about stability of this position. 
For equilibrium position (-π/2.0), the following is obtained: 

[ ]
2

2
1 ,0

2
2

2
2 ,0

2
2

1 2 ,0
2

U m g L d 0

U m g d 0

U mg d 0

π−

π−

π−

⎧
⎞⎪ ∂ = + >⎟⎪ ⎟∂ θ ⎠⎪

⎪
⎪ ⎞∂⎪ = >⎟⎨ ⎟∂ θ⎪ ⎠
⎪
⎪ ⎞∂⎪ = >⎟⎟⎪∂ θ ∂ θ ⎠⎪⎩

 [1.83] 

The criterion allows to conclude that this position is stable. 

1.3.2. Single-Degree-of-Freedom System 

This chapter deals with a mechanical system having a single degree of freedom, 
noted q(t), which may be either a translational motion or a rotational motion. The 
principles of mechanics (general theorems or others) can be used to define a 
linearized equation of motion which usually takes the following form: 

( )a q(t) b q(t) c q(t) F(t) a 0+ + = >�� �  [1.84] 

Coefficient a represents the mass or inertia depending on whether the solid is 
moving by translation or rotation. This magnitude can therefore be considered as 
being positive. Coefficients b and c may have different origins: action of a spring, 
gravity, damper, aerodynamic forces, etc. 

F(t) represents, when existing, the part of the mechanical actions which is not 
related to position q(t). For dynamics engineers, it forms the forced excitation. 

The direct method to define the stability consists in searching for the solution to 
differential equation [1.84] without the second member (homogeneous system). The 
latter has the following general form: 

r tq(t) A e r= ∈^  [1.85] 
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Since this solution must verify the differential equation without the second 
member, r must be the solution to the following characteristic equation: 

2a r b r c 0+ + =  [1.86] 

The type of solution depends on the sign of determinant Δ: 

2
2 2 b cb 4a c a 4

a a
⎛ ⎞⎛ ⎞Δ = − = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [1.87] 

1.3.2.1. Non-Oscillatory Instability 

1.3.2.1.1. Definition of a Stability Criterion 

Consider the case of the positive or zero determinant. This implies: 

2b c4
a a

⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

 [1.88] 

It is then possible to show that characteristic equation [1.86] has two solutions 
defined by: 

( )i
b0 r r

2a
− ± ΔΔ ≥ ⇒ = ∈\  [1.89] 

Motion q(t) is thus defined by: 

1 2r t r tq(t) A e B e= +  [1.90] 

Constants A and B are defined by the initial conditions. It can be observed that 
the motion is of the exponential type. Stability is ensured whatever the initial 
conditions if the values of r1 and r2 are negative or zero. As the value of a is always 
positive, this comes down to: 

0
stable

b b

Δ ≥⎧⎪ ⇒⎨
− ≤ Δ ≤⎪⎩

 [1.91] 
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1.3.2.1.2. Special Case: Without Damping 

We propose to analyze the case of a system where the differential equation is of 
the following form: 

( )a q(t) c q(t) 0 a 0+ = >��  [1.92] 

The stability criterion then gives: 

c 0 stable≤ ⇒  [1.93] 

In this case, it can be seen that value c is negative. Some work talk about 
“negative stiffness”. 

1.3.2.1.3. Typical Illustration 

We propose to illustrate the preceding case through the example in Figure 1.43. 

xg

G

A

O

yg

x1

y1 θ

g

 

Figure 1.43. Inverted Pendulum System 

The parameter setting used is as follows: 

1

1

OA L y

OG y

⎧ =⎪
⎨

= λ⎪⎩

JJJG G
JJJG G  [1.94] 

We can use the fundamental principle of dynamics to show that the equation of 
small motions about the equilibrium position θe=0 is written: 

( )I K L m g 0θ + − λ θ =��  [1.95] 
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The stability criterion then gives: 

( )K L m g 0 K L m g stable− λ ≤ ⇒ ≤ λ ⇒  [1.96] 

It can thus be observed that, if the action of the spring prevails over the action of 
gravity, the system is stable, or else it is unstable. 

1.3.2.2. Oscillatory Instability 

1.3.2.2.1. Definition of a Stability Criterion 

Consider the case of the strictly negative discriminant. This implies: 

2b c4
a a

⎛ ⎞ <⎜ ⎟
⎝ ⎠

 [1.97] 

In this case, the solutions of characteristic equation [1.86] are: 

b0 r i
2a 2a

Δ
Δ < ⇒ = − ±

 [1.98] 

In this case, the stability can be defined from the sign of the real part of solutions 
ri. As the value of a is positive, we deduce the stability criterion: 

0
stable

b 0
Δ <⎧

⇒⎨ >⎩  

Some works talk about “negative damping” to define instability in this case. 

1.3.2.2.2. Typical Illustration 

The typical illustration used in this case is demonstrated with further details in 
Chapter 5.  

It can be shown that the vibratory motion of an airfoil perpendicularly to an 
airstream causes the incidence between air and airfoil to vary. This variation results 
in variations of aerodynamic forces proportional to the vibration velocity.  
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Figure 1.44. Modeling of an Airfoil in an Airstream 

It can thus be shown that the equation of motion of the airfoil can be written as 
follows: 

2
x D0 y0

1 1m y c S U C y k y S U C
2 2

⎛ ⎞+ − ρ + = − ρ⎜ ⎟
⎝ ⎠

&& &  [1.99] 

In this case, the discriminant is calculated as follows: 

2

x D0
1c S U C 4 m k
2

⎛ ⎞Δ = − ρ −⎜ ⎟
⎝ ⎠

 [1.100] 

The values involved in this type of application imply that this discriminant is 
negative. Under such conditions, instability may occur from a given speed.  

It is necessary not to exceed a wind velocity such that: 

x D0

D0

1 cstable c S U C 0 U 12 SC
2

⇒ − ρ ≥ ⇒ ≤
ρ  [1.101] 

1.3.2.3. Stability Analysis by Phase Diagram 

Let the single-degree-of-freedom system whose nonlinear behavior equation, 
generally resulting from the fundamental principle of dynamics for mechanics 
problems, be written: 

x f (x,x) 0+ =&& &  [1.102] 

k

U
(wind) 

c

y

m
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Among the solutions specific to this equation, we will retain the fixed points x0, 
or equilibrium positions, which correspond to states not dependent on time. They are 
obtained by solving: 

0f (x ,0) 0=  [1.103] 

From these specific solutions, it is useful to analyze the stability of these 
equilibrium positions. To this end, we use a state representation by setting: 

1

2

x x
x x
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭ &  [1.104] 

Equation [1.102] is thus written in the following form: 

1 1 1 2 1 2

2 2 1 2 2 1 2

x f (x ,x ) x x
x f (x ,x ) x f (x ,x )

= =⎧ ⎧
⇒⎨ ⎨= = −⎩ ⎩

& &

& &  [1.105] 

We can illustrate, in very simplistic way, the notions of stability and instability 
of a fixed point through the phase diagram, representation of x2 versus x1.  

A stable fixed point attracts the paths in all directions of space whereas the 
unstable fixed point repels them in at least one direction. 

x1

x2

x1

x2

x1

x2

Stable fixed point Unstable fixed point 

Unstable fixed 
points

 

Figure 1.45. Illustration of Notion of Stability and Instability 
Through Phase Diagram 
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The equation can be analyzed through a geometric approach by causing the 
dynamics to appear in the form of a trajectory in the phase diagram, trajectory which 
obviously depends on the initial conditions.  

The set of possible trajectories is known as phase portrait. An initial condition xi, 
which defines the initial energy, determines a single trajectory. 

In the absence of dissipation, any system, linear or not, has a permanent rating, 
provided that it is not in equilibrium position. The motion amplitude is a direct 
function of the energy given to the system. 

In the presence of dissipation, in order to obtain self-sustained motions, the 
energy loss must be compensated for by dissipation through external sources which 
maintain the considered system out of equilibrium. 

x1

x2

x1

x2

Stable oscillating
trajectory

Stable convergent
trajectory xi

xi

x1

x2

xi
x1

x2

Trajectory with limit cycle 

xi

Unstable divergent
trajectory

xi :  Initial state

x0 :  Fixed point

x0

x0

x0

x0

 

Figure 1.46. Illustration of Possible Trajectories in Phase Plane 
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When the system is moved away from its equilibrium point and when motions, 
saturating in periodic permanent rating, start developing, we talk about limit cycle in 
the phase space.  

For a stable conservative system, the motion amplitude is a function of the 
energy contained in the initial conditions. This is not the case of the limit cycles. 

Let us consiter again the case of flutter, the equation of which [1.99] can be 
written as follows: 

equ 0m y c y k y F+ + =&& &
 [1.106] 

where: 

equ x D0
1c c S U C
2

⎛ ⎞= − ρ⎜ ⎟
⎝ ⎠  

The sign of cequ then defines the stability. From the formalism proposed, the 
following is obtained: 

( )
1 2

0
2 2 1 1 2

x x
Fc kx x x f x ,x

m m m

=⎧
⎪
⎨ = − − + =⎪⎩

�

�  [1.107] 

It can be observed that there is a fixed point: 

0
0 0

Ff (x ,0) 0 x
k

= ⇒ =  [1.108] 

The system resolution can be used to establish the trajectory in the phase 
diagram, Figure 1.47. 
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Figure 1.47. Trajectory in Phase Diagram for a Pendulum Damped 
Around the Stable Equilibrium Position 

1.4. Parametric Instability 

1.4.1. General Case 

The preceding stability criteria have been determined in the case of systems of 
differential equations with constant coefficients. This is not always the case. We 
may be brought to study the stability of linear systems whose equations have 
nonconstant coefficients of the following type: 

m(t) x (t) x (t) x 0+ α + β =�� �  [1.109] 

1.4.2. Mathieu’s Equation 

In a number of cases, we can use the Mathieu’s equation which is of the 
following form: 

( )
2

2

d x d x cos( ) x 0
d d

+ α + β + γ τ =
τ τ

 [1.110] 

This type of equation requires special solutions, the stability of which can be 
studied as a function of pair β and γ. 
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Figure 1.48. Stability Area of Mathieu’s Equations 

Among the mechanical problems usually encountered, the Mathieu’s equation is 
often met in the following form: 

( )2
0 0x 2 x cos( t) x 0+ λ ω + ω + ε ω =�� �

 [1.111] 

Let us consider the case where damping is nil, λ=0. For this type of equation, we 
seek to define sability as a function of parameters ω, ω0 and ε: 

( )2
0x cos( t) x 0+ ω + ε ω =��

 [1.112] 

By transformation, we can set the equation in the form of a state system: 

y y= A�  [1.113] 

where: 

2
0

x 0 a(t)
y a(t) cos( t)

x 1 0
−⎡ ⎤ ⎡ ⎤= = = ω + ε ω⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
A

�
 [1.114] 

Function a(t) is a periodic function. This equation can be solved piece by piece, 
by approximating matrix A such that: 

0 a(t)
1 0

−⎡ ⎤= ⎢ ⎥
⎣ ⎦

A
��  [1.115] 
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where: 

( )

2
0

2
0

2
0

2 2cos if 0 t
2 n n

2 2 2cos 3 if t 2
a(t) 2 n n n

2 2cos 2n 1 if t 2
2 n n

⎧ ⎛ ⎞π πω + ε ω ≤ ω <⎪ ⎜ ⎟
⎝ ⎠⎪

⎪ ⎛ ⎞π π π⎪ ω + ε ω ≤ ω <⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪
⎪ ⎛ ⎞π πω + ε ω + ≤ ω < π⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

�

#
 [1.116] 

The approximation made can be represented by the graph in Figure 1.49. 

T/n

T t

ω0
2+ε

a(t)

a(t)

ω0
2−ε

ω0
2

 

Figure 1.49. Piecewise Approximation of a Function 

In the case where there is no damping (λ=0) and ε<<1, the stability criterion is 
reduced to: 

2
0
2

1unstable  
4

ω
⇔ ≈

ω
 [1.117] 

Criterion which is reduced to: 

( )0unstable 2 if 0⇔ ω = ω λ =  [1.118] 



Notions of Instability     57 
 

 

Unstable

Unstable

Unstable 

 

Figure 1.50. Stability Area of Mathieu’s Parametric Equation 

In the more general case, with non-zero damping and any ε, the stability area can 
be defined graphically by Figure 1.51. 
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|γ|
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Figure 1.51. Stability and Instability Area in Mathieu’s Equation 

1.4.3. Typical Application 

The notion of parametric stability can be illustrated by the study of the lag 
motion of a blade with a nonlinear stiffness. In this system, let us consider a linear 
stiffness k(t), varying with time. 
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Figure 1.52. Typical Helicopter Blade and Nonlinear Lag Adapter 

Stiffness k(t) is assumed to be expressed by: 

( )0k(t) k cos t= ω  

1.4.3.1. Equation Setting 

The equation of motion of the blade at δ(t), while neglecting structure damping, 
is: 

( )2
s 0I m e k cos( t) 0δ + Ω + ω δ =&&

 [1.119] 

where: 

– I: blade lagging inertia, 

– ms: blade static moment, 

– e: eccentricity, 

– Ω: rotor rotational speed. 

We obtain a differential equation of the Mathieu type. 

1.4.3.2. Stability Study 

The preceding equation can be written in the following form: 

( )2
0 1 cos( t) 0δ + ω + ε ω δ =&&

 [1.120] 
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where: 

2
2 s
0

0 0
2 2
0 s

m e
I

k k
I m e

⎧ Ωω =⎪
⎪
⎨
⎪ε = =
⎪ ω Ω⎩

 [1.121] 

In the case studied, ε is a positive magnitude. 

When placing in the situation where (ω/ω0)=1, the system is always unstable 
whatever the value of ε. For a positive ε, the value of ω must differ from ω0, as 
shown in Figure 1.53. 

 

Figure 1.53. Stability Area of Mathieu’s Parametric Equation 

Let us now study the case where ω = 0.25 ω0. In this condition n = 1, the system 
is unstable. This instability can be explained as follows: according to this relation, 
when n = 1, the frequency of the disturbances applied to the system is twice the 
system eigenfrequency. 

Integer n can thus be characterized as being the order of parametric resonance of 
the system. Thus, when n = 1, we have a first-order parametric resonance system. 
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In the case of an active control system with cyclic stiffness variation, it is 
necessary to study the effect on stability as shown in the preceding example. 

1.5. Summary of Methods Used to Ensure or Increase the Stability of a System 

When a structure is unstable, it is necessary, in most cases, to find a means to 
make it stable. To this end, we can either modify the system structurally or control 
stability through an external actuator. 

The first way of solution concerns the passive methods. The latter consist, 
depending on the system, in modifying the stiffness, damping or mass distribution.  

Thus, very intuitively, the engineers of the airplane of Lindbergh, The Spirit of 
Saint Louis, saw, as from the first tests, the necessity of rigidifying the wings so as 
to avoid flutter (floating-type instabilities), and thus lead to the success we know. 

The second way of solutions concerns the active methods. The latter consist, 
from sensors and actuators, in controlling the structure so as to make the system 
stable. This will be the case, for example, of a torsional system where the behavior 
can be made stable by a feedback system; through the measurement of the torque 
transmitted by a shaft, the quantity of fuel injected into the engine can be modified. 

It is not sufficient for a system to be stable, it must be sufficiently stable. It is 
essential to define criteria in order to judge the margins as regards instability. 

1.5.1. Notion of Degrees of Stability 

1.5.1.1. Pole Location Method 

The principle is to determine a control such that the system poles of the transfer 
function of the closed-loop system are suitably located in the complex plane and 
meet specifications, among other things, of stability. 

As the poles of the transfer function are the eigenvalues of the state matrix, the 
purpose is therefore to achieve a servomechanism which suitably modifies the 
system state matrix. 

The eigenvalues must have strictly negative real parts for the stability to be 
ensured. 
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1.5.1.2. Graphical Criterion: Stability Margin 

The study of robustness of a corrector is generally made in the frequency domain 
where the gain and phase margins or else the modulus and delay margins are 
defined. Robustness is then a quantitative notion which defines the distance to 
instability [DUT 97]. 

A system is particularly all the more stable that its locus of open-loop transfer 
passes far from the critical point. To quantify this aspect, we define the following 
stability margins: gain margin and phase margin. 

The stability margins can be defined in either the Nyquist plane, or the Black 
plane or the Bode diagrams. In practice, the Black plane and Bode diagrams are 
more used as there is direct access to the modulus and phase of a system 
experimentally. 

1.5.1.2.1. Illustration of Instability and Effect of Phase Shift 

Here we propose to understand what makes a system unstable in order to 
introduce the notion of phase margin and gain margin. 

180° delay
r(t)  b(t)  e(t)=r(t) -b(t)  

b(t) 

+ 
-

 

 

Figure 1.54. Modeling of a Servomechanism Causing Self-Sustained Oscillations 

Let us imagine an input r(t) corresponding to one half-period of a sinusoid such 
that: 

( )

Tif t 0 or if t  then  r(t) 0
2

Tif 0 t  then  r(t) Asin t
2

⎧ < > =⎪⎪
⎨
⎪ ≤ ≤ = ω
⎪⎩

 [1.122] 

where: 

2
T
πω =
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Figure 1.55. Time Representation of Command r(t) 

Within the scope of the servomechanism proposed in Figure 1.54, signal r(t) will 
undergo a 180° delay. Output signal b(t) will therefore be the same as input signal 
r(t) but offset to the right by one half-period.  

Hence: 

( )
( )

b(t) A sin t

r(t) b(t) A sin t

= ω − π⎧⎪
⎨

− = − ω − π⎪⎩
 [1.123] 

when: 

T t T
2

≤ ≤  [1.124] 

The time change of all variables will have the form represented in Figure 1.56. 

Firstly, initial signal r(t) is offset by T/2, in other words, undergoes a 180° phase 
shift, to give b(t). 

Then, signal b(t) returns to the subtractor through the unitary feedback loop. In 
passing, its sign changes. We therefore have: 

( ) ( )r(t) b(t) A sin t A sin t− = − ω − π = ω  [1.125] 

when: 

3 TT t and so on...
2

≤ ≤  [1.126] 
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Figure 1.56. Time Change of All Variables in the Case 
of Self-Sustained Oscillations 

The system produces self-sustained oscillations; two conditions are necessary for 
this purpose: 

– the system must not change the initial amplitude, in other words, the gain must 
be zero: 

( ) ( )( ) ( )G 20 log M 0dB M 1ω = ω = ⇔ ω =  [1.127] 

– the offset must be equal to one half-period, i.e., to a 180° phase shift: 

( ) 180φ ω = °  [1.128] 

Let us examine what happens when the gain is not zero by taking two cases. 
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CASE 1.– M(ω)=0.5 

t 

r(t) 

t 

b(t) 

e(t)=r(t)-b(t) 

t 

2
T  T  

2
T  T  

 

Figure 1.57. Time Change of All Variables in the Case 
of Signal Attenuation 

Firstly, initial signal r(t) undergoes a phase shift of T/2, and has its amplitude 
reduced by half. 

Then, signal b(t) returns to the subtractor through the unitary feedback loop. In 
passing, its sign changes and it is again in phase, except that its amplitude is no 
longer the same. The signal will therefore be reduced again, and so on, until 
reaching zero. 
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CASE 2.– M(ω)=2.0 

 

t 

r(t) 

t 

b(t) 

e(t)=r(t)-b(t) 

t 

2
T  T  

2
T  T  

 

Figure 1.58. Time Change of All Variables in the Case 
of Signal Divergence 

Firstly, initial signal r(t) undergoes a phase shift of T/2, and has its amplitude 
doubled. 

Then, signal b(t) returns to the subtractor through the unitary feedback loop. In 
passing, its sign changes and it is again in phase, except that its amplitude has 
doubled. The signal will therefore be doubled again, and so on, until the system no 
longer resists. The output has diverged. 

Intuitively, we can show that, if M(ω)<1, the system is stable and the equilibrium 
position is regained, and if M(ω)>1, the system is unstable, the signal diverges. 

From these few examples, we can realize that the 180° phase shift is critical. In 
practice, the notion of gain margin and phase margin is used to move as far as 
possible from this domain. 
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1.5.1.2.2. Analysis of Stability Margins in Nyquist Plane 

The phase and gain margins at the Nyquist locus are defined as follows: 

– phase margin mϕ is the difference between the phase of the point of the OLTF 
of modulus 1 (draw a circle of origin O and radius 1, all points of this circle have a 
modulus equal to 1) and the phase of the -180° critical point; 

– the inverse of gain margin mg is measured along the real axis, between the 
imaginary axis and the point of intersection of the OLTF with the real axis (the 
phase is equal to -180° at this point). Just convert this difference to dB to obtain the 
gain margin.  

 

  increasing ω

0

Im

Re1-1
 

 mg

 m ϕ  

 

Figure 1.59. Phase and Gain Margins on Nyquist Diagram 

System stability is more certain when this curve fully remains within the radius 1 
circle. But having an integrator in the loop is sufficient for the locus to go out of the 
circle when the frequency tends to 0. However, it is sometimes necessary to have an 
integrator in the control loop in order to have an input equal to the output. 

1.5.1.2.3. Analysis of Stability Margins through Bode Diagram 

The Bode representation of an open-loop transfer function comprises two curves 
as a function of frequency ω: the first one represents its modulus expressed in dB, 
and the second one its phase. 
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Here is again the notion of phase margin mϕ, that is the safety margin prior to 
reaching 180° once the zero gain is reached, and the notion of gain margin mg which 
will give the safety margin prior to reaching 0 dB for a phase shift of 180°. 

to

to

 

Figure 1.60. Phase and Gain Margins on Bode Diagram 

1.5.2. Main Corrector Systems 

As previously said in the introduction, on some systems, it is necessary to ensure 
stability through an active method. For this purpose, a controller is used, with which 
other roles can be associated, such as to guarantee the static and dynamic accuracy, 
to get desired response times; criteria which are applicable only when the system is 
stable. 

Control
law

Actuator System

Capteur

e(t) ε(t)
+ -

ec(t)

(reference) (error)

 

disturbance

 

Figure 1.61. Modeling of a Feedback System 

The closed-loop control principle is illustrated in Figure 1.61 which defines the 
feedback control structure. Term “closed-loop system” is then used by opposition to 
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open-loop systems. A closed-loop system checks that the system response 
corresponds to the reference input whereas an open-loop system controls without 
checking the effect of its action. The closed-loop control systems are thus preferable 
when non-modelizable disturbances and/or unpredictable parameter variations are 
present, which is the case of most of the cases developed in the next chapters. 

The inverted pendulum system, highly used as an educational tool and very 
widely used to test the system control algorithms, is an example which illustrates 
feedback stabilization. The acrobat uses vision as a means to measure the pendulum 
position, and the motion of his body as an actuator. This system is similar to the 
system of inverted pendulum positioned on a trolley. 

 
Juggler - acrobat 

Inverted pendulum  

Figure 1.62. Illustration of Inverted Pendulum 

This type of application allows for the implementation of several strategies to 
make the system stable. Several criteria condition the success of a strategy: has the 
system a behavior which can be linearized, have we enough information on the 
structure motion, what is the type and quality of the information measured? 

The following can thus be mentioned: robust methods, fuzzy logic methods, as 
well as neural network system methods. 

The robust methods, through state feedback or transfer function, of the PID type 
or others, are used to reinject a disturbance with contrary effects through the 
measurement of one or more magnitudes of the system. Generally, the principle 
consists in amplifying, deriving or integrating the measured value. 

Fuzzy logic is very close to the “everyday” human thought process. It assesses 
the input variables (fuzzification) as well as the output variables, and prescribes a set 
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of rules intended to determine the outputs versus the inputs (defuzzification). Fuzzy 
logic proves to be effective for the complex systems in which modeling is difficult, 
even impossible, for the systems having many continuous or discontinuous 
inputs/outputs and nonlinear responses, or when human observation has created 
inputs or rules for the system control. 

Actuator System

Sensor

e(t)
ε(t)

+ -

ec(t)

(reference)
(error)

(measured signal)
Defuzzification

Application
of rules

Fuzzification

 

Figure 1.63. Fuzzy Logic Control 

We will only develop robust control techniques to provide the desired 
performance. Robustness is a qualitative aspect. It characterizes the capability of a 
servomechanism to maintain its performance despite the changes in the operating 
conditions.  

Numerical controllers have a number of advantages but are not very robust when 
considering the truncation errors which accumulate and may be amplified. 

1.5.2.1. Architecture of Robust State Feedback Correctors 

Series correction is the most commonly used. It acts on both stability and 
accuracy, in fixed setpoint control as well as follow-up control. Parallel correction 
does not allow for the introduction of an integration. It mainly acts on stability.  

It is also used to linearize the parallel element. The anticipating or predictive 
correction, whose compensators are not easily achieved, does not act on stability but 
compensates for the error due to the reference magnitude or that due to a disturbing 
magnitude.  

In the complex cases where several disturbances occur, including some which 
cannot be measured, the implementation of compensators is tedious and imperfect. 
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In the following example, a transfer function corrector Hc is series-connected to 
the system defined by Hs. 

E(p)
S(p)Hc Hs

System
-+

Corrector

 

Figure 1.64. Series-Connected Corrector 

Figure 1.65 below shows an element Hc of the corrector which is parallel-
connected. 

E(p)
S(p)H1 Hs-+

Hc

corrector

-+

V

 

Figure 1.65. Parallel-Connected Corrector 

1.5.2.2. Several Types of Corrector 

The purpose of this part is to give the basic elements of robust correctors. The 
schematization used is given in Figure 1.66. 

e(t)
s(t)Hc Hs

System
-+

Corrector

ε(t) x(t)

 

Figure 1.66. Schematization of Unitary Feedback Servomechanism 
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1.5.2.2.1. Proportional Corrector (P) 

The proportional action represents the minimum action essential to a correction. 
It corresponds to a constant gain introduced in the action system of the closed-loop 
system. In this case, the function of the corrector is to set up the following law: 

px(t) k (t)= ε  [1.129] 

The transfer function of the proportional P corrector is given by: 

cp p
X(p)H (p) k

(p)
= =

ε  [1.130] 

If gain kp is less than 1, attenuation increases stability by lowering the gain curve 
but to the detriment of accuracy. If gain kp is greater than 1, the accuracy is 
increased to the detriment of stability (reduction of gain margin and phase margin). 
An excessively high gain may lead to instability. 

The main effect of the P corrector on the closed-loop system consists in: 

– ensuring a given permanent rating error; 

– imposing a given response time. 

The following example, simplified, illustrates the principle of proportional P 
control by using the mechanical energy, based on the principle of the Watt’s 
governor; system specially used to control turbomachines, Figure 1.67. 

Ω+Δωt

Watt’s
system

Q

δ 

-
+ corrector turbine

δ0 ε 
injector

x

 

Figure 1.67. Location of a Corrector in a Turbine Control System 
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x

Ω+Δωtε

Centrifugal force

d

L

δ0

x  

Figure 1.68. Governing With Flyweight System - Schematic 

Under the action of the centrifugal effects and calibration spring, the flyweight 
system finds an equilibrium position function of the speed, Figure 1.68: 

( )2 2
0 0 t 0 0 1 t

1 t

K K K
K

δ + ε = Ω + Δω ⇒ δ + ε ≈ Ω + Δω
⇒ ε ≈ Δω  [1.131] 

The lever arm system enables proportional amplification of the displacement to 
be obtained: 

dx(t) (t)
L

= ε  [1.132] 
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It can thus be shown that a small speed variation causes a small displacement of 
the extension rod according to a proportional law. This rod controls the quantity of 
fuel injected into the turbine combustion chamber: 

1 t t
dx(t) K K
L

⎛ ⎞= Δω = Δω⎜ ⎟
⎝ ⎠

 [1.133] 

The following example illustrates the principle of P control by using the 
electrical energy. 

R1

R
Ue Us

+

-

R2

 

Figure 1.69. Proportional Corrector Setting-up - Electrical Energy 

Using the nodal laws and mesh laws, the following can be established: 

2
s e

1

RU U
R

= −  [1.134] 

Thus, the transfer function of this corrector can be defined as follows: 

s 2
cp p

e 1

U (p) RH (p) k
U (p) R

= = = −  [1.135] 
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1.5.2.2.2. Proportional-Integral Corrector (PI) 

 

 

Figure 1.70. Transfer Function of an Integrator I Corrector 

a) Pure Integrator Corrector (I) 

The function of a pure integrator is to establish the following input/output law: 

t
0

i i

d x(t) 1 1(t) x(t) ( ) d
d t T T

= ε ⇒ = ε τ τ∫  [1.136] 
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Thus, the transfer function of an integrator is generally written as follows: 

ci
i

X(p) 1H (p)
(p) T p

= =
ε  [1.137] 

This transfer function can be analyzed through the Bode diagram (Figure 1.70). 

Let us take again the case of a turbomachine control system associated with 
another type of control. 

x

Ω+Δωtε

Centrifugal force
δ0 HP

 

Figure 1.71. Integration-Type Control - Mechanical System - Schematic 

The piston system, by neglecting its inertia and frictions, has a behavior equation 
which can be expressed by: 

i i

d x(t) 1 1(t) p X(p) (p)
d t T T

= ε ⇒ = ε  [1.138] 

The value of Ti depends on the fluid pressure, restriction, spring and piston 
surface area.  

The transfer function of this corrector can be defined as follows: 

ci
i

X(p) 1H (p)
(p) T p

= =
ε  [1.139] 
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The following example illustrates the principle of integral I control by using the 
electrical energy. 

R1

RUe Us

+

-

C

 

Figure 1.72. Proportional Corrector Setting-up - Electrical Energy 

Using the nodal laws and mesh laws, the following can be established: 

s e
1

1U (p) U (p)
R C p

= −  [1.140] 

Thus, the transfer function of this corrector can be defined as follows: 

s
ci

e 1

U (p) 1H (p)
U (p) R C p

= = −  [1.141] 

b) Proportional-Integrator Corrector (PI) 

The integrator corrector is generally associated with a proportional corrector: 

t
p 0

i

1x(t) k (t) ( ) d
T

⎛ ⎞
= ε + ε τ τ⎜ ⎟

⎝ ⎠
∫  [1.142] 

The transfer function of this type of corrector is thus: 

cpi p
i

X(p) 1H (p) k 1
(p) T p

⎛ ⎞
= = +⎜ ⎟ε ⎝ ⎠

 [1.143] 
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Figure 1.73. Transfer Function of a Proportional-Integrator PI Corrector 

It is thus possible to cumulate both effects, integrator and proportional, on the 
control system of a turbomachine. 

The behavior law related to the rod is obtained using the properties of the 
triangle, by: 

( )1
dx x

d L
= ε − + ε

+
 [1.144] 
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Figure 1.74. PI-Type Control - Mechanical System - Schematic 

The relation related to the slide valve system, is given by: 

1 i 1
i

d x 1 x (t) p T x(p) x (p)
d t T

= ⇒ =  [1.145] 

By removing slide valve motion x1, the following is thus obtained: 

( )
p

i

L
kdx(p) (p) (p)

d L T p 1T p 1
d

= ε = ε
+ ++

 [1.146] 

where: 

( )
i p

d L LT T k
d d
+

= =  [1.147] 
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Thus, the transfer function of this corrector can be defined as follows: 

p
cpi

kX(p)H (p)
(p) T p 1

= =
ε +  [1.148] 

The following example illustrates the principle of PI control by using the 
electrical energy. 

R3

R Us

+

-

C
R1

R
Ue

+

-

R2 R4

 

Figure 1.75. Proportional Corrector Setting-up - Electrical Energy 

The transfer function of this corrector can be defined as follows: 

2 4
cpi p

1 3 4 i

R R 1 1H (p) 1 k 1
R R R C p T p

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 [1.149] 

1.5.2.2.3. Proportional-Derivative Corrector (PD) 

a) Pure Differentiator Corrector (D) 

The control law has the following form: 

d
d (t)x(t) T

d t
ε=  [1.150] 

This type of corrector is purely theoretical, a physical system cannot have a 
numerator of a degree greater than the degree in the denominator. The theoretical 
transfer function would be: 

cd d
X(p)H (p) T p

(p)
= =

ε  [1.151] 
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Figure 1.76. Transfer Function of a Differentiator D Corrector 

b) Proportional-Differentiator Corrector (PD) 

The derivation function is associated with a proportionality function. The control 
law is given by: 

p d
d (t)x(t) k (t) T

d t
⎛ ⎞ε= ε +⎜ ⎟
⎝ ⎠

 [1.152] 

The transfer function of this PD corrector is: 

( )cpd p d
X(p)H (p) k 1 T p

(p)
= = +

ε  [1.153] 

The PD corrector causes a gain and phase increase toward the high frequencies. 
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Figure 1.77. Transfer Function of a Proportional-Differentiator PD Corrector 

The following example illustrates the principle of PD control by using the 
electrical energy. 

R3

Us

+

-

C
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R
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+

-

R2 R4

 

Figure 1.78. Proportional Corrector Setting-up - Electrical Energy 
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The transfer function of this corrector can be defined as follows: 

( ) ( )2 4
cpi 4 p d

1 3

R RH (p) 1 R C p k 1 T p
R R

= + = +  [1.154] 

c) Phase-Advance Corrector 

The proportional-derivative corrector (PD) cannot be physically achieved. It is 
replaced with a phase-advance corrector which has an identical effect within a wide 
frequency band. The transfer function of the phase-advance corrector has the 
following form: 

( )
( )

d
c p

d

1 a T pX(p)H (p) k a 1
(p) 1 T p

+
= = >

ε +  [1.155] 

The interest of this corrector is that it does not too much modify the behavior at 
low and high frequencies while adding a positive phase around a critical operating 
point. 

This type of corrector produces a maximum phase ϕa at frequency ωm, which are 
expressed by: 

m

a

1
a
a 1sin( )
a 1

⎧ω =⎪ τ⎪
⎨

−⎪ ϕ =⎪ +⎩

 [1.156] 

Or else: 

a

a

1 sin( )a
1 sin( )

+ ϕ=
− ϕ

 [1.157] 

These relations are very useful for the phase-advance controller design which is 
often related to the phase and gain margin specifications. 
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Figure 1.79. Transfer Function of a Phase-Advance Corrector 

1.5.2.2.4. Proportional-Integral-Derivative Corrector (PID) 

The interest of the PID corrector is to combine the effects of the PD and PI 
correctors. The control law has the following form: 

t
p d0

i

1 d (t)x(t) k ( ) d (t) T
T d t

⎛ ⎞ε= ε τ τ + ε +⎜ ⎟
⎝ ⎠

∫  [1.158] 

The transfer function of this type of corrector can be written as follows: 

cpid p d
i

X(p) 1H (p) k 1 T p
(p) T p

⎛ ⎞
= = + +⎜ ⎟⎜ ⎟ε ⎝ ⎠

 [1.159] 

For a satisfactory setting of Ti and Td, the increase of the static accuracy due to 
the integration of PI can be observed. The PD effect improves dynamic accuracy and 
stability. Adjustment of a PID is usually complex, practical adjustment methods give 
good results. 
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Hcd=T d p
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Figure 1.80. PID-Type Corrector 

1.5.2.3. Corrector Performance 

Adjustment of the correctors is not limited to system stabilization. The quality of 
a system can be assessed through its performance: accuracy, exceedance, rapidity, 
etc. The latter can be assessed by studying the response to an echelon excitation. 

 

 

0 

exceedance  

accuracy
 

Response time at x%
  

time

 

e(t)
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Figure 1.81. System Performance Data on an Echelon Excitation 

1.5.2.3.1. Accuracy 

The accuracy measures the difference, under steady-state conditions, between 
setpoint e(t) and output s(t). The smaller the difference ε, the more accurate the 
system. 
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Exceedance: the exceedance measures the difference between the highest output 
value and the setpoint. If the exceedance is too great, problems of resistance may 
occur. 

Response time or rapidity: rapidity can consider two times, the response time 
which usually measures the time for the system to reach 95% of its value under 
steady-state conditions. Another time which can be considered is the rise time which 
corresponds to the time for the system to reach the setpoint for the first time. 

Effect of phase on rapidity: the phase shift, for a sine-wave signal, is the shift 
between the input signal and the output signal. In other words, it notes the delay of 
the output with respect to the input. The smaller this phase shift, the more rapid the 
system reaction. Hence the interest of some correctors which add phase (PD). These 
correctors derive the input signal so as to transmit a very high signal to the system. 

As a matter of fact, the derivation of an echelon is a frequency rapidly sensed by 
the system. 

Similarly, the higher the phase when the gain is zero, the greater the chances of 
obtaining oscillations. Merely take a second-order system and observe that, when 
damping decreases, the phase shift significantly increases after the resonance peak, 
and there are oscillations. These oscillations are explained by the fact that the system 
is not very rapid and has some inertia. 

But if damping is excessively increased, some rapidity is lost. 

1.5.2.3.2. Accuracy 

Accuracy is a characteristic sought for the system. The interest of setting the 
system in closed-loop configuration is to attempt to fight against any causes of 
alteration of the accuracy through the measurement of the difference. In order to 
analyze the accuracy, it is necessary to represent the system by a diagram with 
equivalent unitary feedback, the input and output are of the same type, Figure 1.82. 

e(t) s(t)
-+

ε(t)
correcteur système

 

Figure 1.82. Diagram With Equivalent Unitary Feedback 

Corrector System 
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The transfer function is noted H(p) such that: 

( )
2 n

0 1 2 n
2 m

0 1 2 m

a a p a p a pH(p)
p b b p b p b pα

+ + + +=
+ + + +

K

K
 [1.160] 

where n  α+m. 

The position error, or static error, is computed from the Laplace transform final 
value theorem: 

st stt p 0

E(p)lim (t) e lim p
1 H(p)→∞ →

⎛ ⎞ε = ε ⇒ = ⎜ ⎟+⎝ ⎠
 [1.161] 

The static error therefore depends on the type of input (step, ramp, parabolic, 
etc.) and the class of the transfer function (value α), Table 1.2. The system static 
gain is noted e0: 

0
0

0

ae
b

=  [1.162] 

 Input Step Ramp Parabolic 

Class  
1E(p)
p

=  2

1E(p)
p

=  3

1E(p)
p

=  

Class 0 0α =  
0

1
1 e+

 ∞ ∞ 

Class 1 1α =  0 
0

1
e

 ∞ 

Class 2 2α =  0 0 
0

1
e

 

Table 1.2. System Accuracy Versus System Class and Input Type 

REMARK.– If these errors have no finite values ( ±∞ ), this means that the output 
diverges and the system is unstable. 
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Figure 1.83. Static and Tracking Errors 

1.5.2.3.3. Rapidity or Response Time 

The response time corresponds to the time to reach, subsequent to a sudden 
variation of the setpoint (step), the setpoint to within x% and no longer leave it. 
Generally, the response time is defined at 5%. 

Let us take the example of a second-order system, the transfer function of which 
is: 

0

2
2

0 0

eH(p) 2 11 p p
= λ+ +

ω ω
 [1.163] 

The closed-loop transfer function is given by: 

BF

2BF
2

0BF 0BF

KS(p) H(p)
2 1E(p) 1 H(p) 1 p p

= = λ+ + +
ω ω

 [1.164] 

where: 

0
BF

0

0BF 0 0

BF
0

eK
1 e

1 e

1 e

⎧ =⎪ +⎪⎪ω = ω +⎨
⎪ λ⎪λ =
⎪ +⎩

 [1.165] 

It can be observed that the closed-loop system is also a second-order system. 
Damping ratio λBF has a value lower than that of damping ratio λ. 
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If damping λ is greater than 70.7%, closed-loop setting can improve the response 
time. 

In order to evaluate the response time at x%, it is necessary to assess, from the 
transfer function, the time response to an echelon excitation when λBF<1: 

( )BF OBFt 2
BF 0BF BF2

BF

1s(t) K 1 e sin 1 t
1

−λ ω
⎛ ⎞
⎜ ⎟= − ω − λ + θ
⎜ ⎟− λ⎝ ⎠

 [1.166] 

( )
2
BF

BF

1
with tan

− λ
θ =

λ
.

 

Thus, the response time at 2% is about: 

2%
BF 0BF

4t =
λ ω

 [1.167] 

1.5.2.3.4. Exceedance 

Exceedance only concerns systems of at least the second order. The latter can be 
defined by the time to reach its first maximum. For the example of the second order 
proposed, and by derivation of time function [1.166], the following can be shown: 

dep 2
0BF BF

t
1
π=

ω − λ  [1.168] 

The value reached is thus: 

tan
dep 0s e e

π−
θ=

 [1.169] 

1.5.2.3.5. Summary of Static Gain on Performance 

It has been observed that a second-order closed-loop system gives another 
second-order system [GRO 01].  

Moreover: 

– if gain e0 increases, KBF tends to 1, hence toward good accuracy, but then λBF 
decreases, and the system is significantly less damped; 
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– if looking at the frequency responses of the closed-loop transfer function 
(CLTF), it can be observed that the cutoff frequency increases, the phase margin 
decreases: damping reduction is found again. 

 

Gain increases
 

Phase margin decreases 

 

ω 

-180° 

ωc1 ωωc2

Gain [dB]

Phase shift [°]

 

Figure 1.84. Frequency Responses of Second-Order Closed-Loop System 

To conclude, the stability margin and exceedance limitation, in closed loop 
configuration, are improved by a decrease of the open-loop static gain, whereas 
rapidity and accuracy are altered.  

Conversely, an increase of the open-loop static gain improves rapidity and 
accuracy in closed-loop configuration, but makes the system less stable and 
increases exceedance. 

The reader can make again the connection between all configurations on the 
transfer function as a function of damping, Figure 1.85.  
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Figure 1.85. Bode Diagram as a Function of Damping 

 

Figure 1.86. Response to a Step as a Function of Damping 

Time (t) 




