
Chapter 2 

Rotor/Structure Coupling: 
Examples of Ground Resonance 

and Air Resonance 

2.1. Introduction to Ground Resonance 

The phenomenon known as “ground resonance” is one of the most important and 
dangerous problems that may arise on a helicopter, Figure 2.1 [COL 58, BRA 76]. 
This is self-sustained coupling between the motion of the blades and the motion of 
the aircraft on its landing gear. The latter may become unstable depending on the 
value of the rotor speed; it has been observed that rotating systems, when standing 
on a flexible support, may be subject to destructive instability [NAH 84]. 

 

Figure 2.1. Disastrous Effects of Ground Resonance (photo: Ken Haan) 
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The first aircraft showing such instability were the gyroplanes and first 
helicopters, in the form of violent roll oscillations and, less frequently, pitch 
oscillations.  

The latter appear when the aircraft is on ground, Figure 2.2. This phenomenon is 
improperly called “ground resonance” since it does not involve vibratory resonance 
but instable behavior. 
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Figure 2.2. Actor Elements of Ground Resonance 

This instability is caused by coupling of the motion of the blades in the plane of 
rotation (termed lag motion) and the motion of the fuselage, usually about the roll 
axis, Figure 2.2.  

The motion of the fuselage will result in displacement of the rotor head, thus 
causing the blades to move. The blades will then, under the effects of inertia, act on 
the fuselage which in turn will move. Figure 2.3 illustrates this coupling. 
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Figure 2.3. Schematizion of Fuselage/Rotor Coupling 

Such instability appears under certain conditions only. When taken separately 
from the rotor, the fuselage has an eigenfrequency ωf and each blade has a lagging 
eigenfrequency ωδ. In a stationary reference system, for a rotor rotating at Ω, the 
excitation frequency due to the lag motion and seen by the fuselage is Ω-ωδ. A 
necessary condition for ground resonance, expressing the equality between the rotor 
excitation frequency and the fuselage eigenfrequency, can be written as follows: 

f δω = Ω − ω  [2.1] 
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As this condition is not sufficient, damping must be taken into account. Given 
that the mode damping and frequencies are a function of the rotor rotational speed, 
their change in relation to the latter is usually analyzed, Figure 2.4. 

To this end, a diagram is drawn to represent the rotor and fuselage frequencies as 
a function of the rotor rotational speed Ω, and used to analyze the rotational speed 
leading to coupling through curve crossing. 
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Figure 2.4. Ground Resonance Diagram. Frequency and Damping Change 
as a Function of Rotor Rotational Speed 

A second diagram shows the change in structure and rotor mode damping, and is 
used to assess the unstable character of coupling. 
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The rated rotor speed ΩN must of course be avoided as it coincides with unstable 
coupling.  

To this end, fuselage frequency ωf or lagging frequency ωδ can be modified. The 
most conventional solution then consists in modifying: 

– the rotor characteristics through the stiffness of the lag adapter located between 
the rotor hub and the blade in order to prevent any coincidence within the rotor 
operating envelope, Figure 2.5, or 

– the landing gear characteristics in order to set the eigenfrequencies of the 
fuselage bearing standing on its landing gear. 
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Figure 2.5. Effect of Stiffness of Lead-Lag Damper (Adapter) 

It would also be possible to modify adapter damping, Figure 2.6.  

Nevertheless, from a technical point of view, effectiveness is obtained more 
easily through stiffness than through damping. 

There are therefore two methods to prevent ground resonance: 

– increase damping; 

– modify stiffness. 
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Figure 2.6. Effect of Damping on Lag Adapter 

The following measurements show how, on a helicopter, the pilot can 
(voluntarily in this case) cause the ground resonance phenomenon to occur. The 
helicopter definition parameters have been modified from the certified version for 
this purpose. The pilot actuates the cyclic control stick in roll, thus causing blade 
lagging, Figure 2.7 and Figure 2.8. Stiffness of the lag adapter drops and the 
instability phenomenon occurs. This only remaining possibility for the pilot to stop 
coupling is then to take off. 
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Figure 2.7. Experimental Highlighting of Ground Resonance 
(Rotor definition parameters voluntarily modified) 
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The action of the pilot consists in moving the cyclic pitch stick circularly in the 
rotor rotation direction. The movement must be applied at the frequency 
corresponding to the roll mode of the aircraft on ground. 

 

Figure 2.8. Pilot Action on Control Stick 

It can be experimentally observed that excitation of the fuselage reduces the 
eigenfrequency of the aircraft on its landing gear. 

This frequency change can be observed on the graph of Figure 2.9 which 
schematizes coupling. 

Owing to the nonlinearity of stiffness, several stiffness values can be obtained as 
a function of the amplitude of the excitation that the pilot applies to the control stick. 
Small movements give high stiffness values, and large amplitudes give low stiffness 
values. The measurements proposed show slow divergence generated by the pilot 
actuating the control in longitudinal and lateral directions. 

The usual indicator of “good stability” is the measurement of the vibration 
amplitude halving time. In the case of ground resonance, the indicator used is the lag 
adapter movement amplitude, Figure 2.10. These results were obtained on an 
experimental aircraft; the measurement points show good correlation with 
simulation. The stiffness drop was obtained through the excitation level at the 
control stick, characteristic of nonlinearity specific to the viscoelastic materials used. 
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Figure 2.9. Schematization of Ground Resonance Occurrence 

As divergence is extremely rapid, the time to take off is very short. After takeoff, 
coupling disappears. The damper initial stiffness is regained, which enables the pilot 
to land again without danger.  

These experimental tests are performed on an aircraft deliberately modified. 
Under normal operating conditions, the stability margins are substantial enough to 
protect against this type of phenomenon. 
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Figure 2.10. Effect of Lagging Stiffness on Damping 

2.2. Ground Resonance Modeling 

2.2.1. Minimum Degree-of-Freedom Model 

2.2.1.1. Definition of Degrees of Freedom 

The physical observation of ground resonance showed that such phenomenon 
results from coupling of the lag motion of the blades and the roll or pitch motion of 
the fuselage.  

We propose to build a model from a minimum number of degrees of freedom. 

2.2.1.1.1. Lag Motion 

The connection between the blade and the rotor hub gives the possibility of 
having a relative flap or lag blade motion regardless of the technology used (hinged 
or rigid rotor). Only the lag motion is considered in this case. 
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Figure 2.11. Blade Lag Motion 

The following reference systems are defined: 

– ( )g 0 0 0R O, x , y , zr r r
 Galilean reference system related to ground, 

– ( )0 0 0 0R A , x , y , zr r r  reference system related to the fuselage, 

– ( )1 1 1 1R A , x , y , zr r r  reference system related to the hub, 

– ( )pi i pi pi piR B ,x ,y ,zr r r
 reference system related to blade No. i. 

A and Bi respectively define the pivot connecting centers in the blade rotation 
plane, and Gi the center of gravity of blade No. i. The degree of freedom between 
blade No. i and the hub is termed lag, and is defined by: 

 [2.2] 

The pilot actuates the flight controls until obtaining angle θi so as to modify the 
blade incidence and thus cause the blade lift to vary. 

Hub rotation is controlled at constant speed Ω and each blade is equidistributed. 
The following is then noted for blade No. i: 

 [2.3] 
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2.2.1.1.2. Lateral Motion and Longitudinal Motion 

The motion of the fuselage on its landing gear is such that, for small movements, 
displacement of the rotor head (point A) is assumed to be within a plane 
perpendicular to the axis of rotor rotation. 

The fuselage is thus modeled by a two-degree-of-freedom mass representing the 
motion of point A along direction x0 and y0 [JAN 88, NAH 84, YOU 74, SMI 93, 
HAT 98], Figure 2.13. 
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Figure 2.12. Rotor Head Lateral and Longitudinal Motions 
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Figure 2.13. Rotor Head Motion Planar Modeling 
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The degrees of freedom and associated parameterization can thus be represented 
in the form of a graph of connections, Figure 2.14. 
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Figure 2.14. Parameterization and Connection Graph 
for Simplified Ground Resonance Study 

2.2.1.2. Setting Up Equations 

The equations of motion are obtained by the Lagrange’s method. For this study, 
we will then use: 

( ) ( ) ( ) ( ) ( )
i

g g p g g
q g

i i i i

T / R T / R E / R D / RdL / R : 0
dt q q q q

⎡ ⎤∂ Σ ∂ Σ ∂ Σ ∂ Σ
Σ − + + =⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦  
[2.4]

 

where: 

– T(Σ/Rg): Galilean kinetic energy of system Σ; 

– p p gE (F / R ) : Galilean potential function of actions deriving from a potential; 

– d gD(F / R ) : Galilean dissipation function. 

2.2.1.2.1. Kinetic Energy 

By definition: 

g g g
i

T( / R ) T(fus / R ) T(blade i / R )Σ = +∑  [2.5] 
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where: 

( )

( )
g

g

2
g fus G fus/R

2
g M blade/Rblade

1T fus / R M V
2

1T blade / R V dm
2

∈

∈

⎧ =⎪⎪
⎨
⎪ =
⎪⎩ ∫  [2.6] 

The mass characteristics are defined by: 

– Fuselage: apparent fuselage mass: Mx along x and My along y 

– Blade: it is compared to a linearly distributed mass with a linear density ρ.  

Let us note: 

p length

s length

2

length

m dr (blade mass)

m r dr (laggingstatic moment)

r dr (lagging moment of inertia)

⎧ = ρ
⎪
⎪ = ρ⎨
⎪
⎪Ι = ρ
⎩

∫
∫
∫

 [2.7] 

Adapter Contribution 

Installed between the hub and the blade, the lag adapter induces stiffness and 
damping. All adapters mounted on a rotor are assumed to be identical. 

The adapter stiffness behavior is modeled by a perfect torsion spring with 
angular stiffness Kδ. Afterward, the potential function associated with the 
mechanical action of the lag adapters in the motion of Σ in relation to Rg is: 

g

4
2

Adapters / Rp i
i 1

1E ( ) K
2 δ

=

= δ∑  [2.8] 

The adapter damping behavior is modeled by a viscous-type angular damper 
with characteristic cδ: 

g

4
2

Adapters / R i
i 1

1D( ) c
2 δ

=

= δ∑  [2.9] 

Landing Gear Contribution 

The nose and tail landing gear legs also induce stiffness and damping. 
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Figure 2.15. Helicopter Tail Landing Gear 

The landing gear behavior is assumed to be linear for the small displacements 
studied, i.e.: 

2 2
p g x y

1 1E (Landing gear / R ) K x K y
2 2

= +  [2.10] 

The dissipation function due to the landing gear forces is equal to: 

2 2
g x y

1 1D(Landing gear / R ) C x C y
2 2

= +  [2.11] 

2.2.1.2.2. Equations of motion 

The Lagrange’s equations can be applied to obtain the equations of motion. We 
have the following for each blade: 

( ) ( ) ( )2
i i s i s i s iI c K e m m sin x m cos y 0δ δ δδ + δ + + Ω δ − Ψ + Ψ =&& & && &&  [2.12] 

For the fuselage: 

( ) ( ) ( )

( ) ( ) ( )

2
x x x s i i i i i

i

2
y y y s i i i i i

i

M x C x K x m sin 2 cos 0

M y C y K y m cos 2 sin 0

⎧ + + − δ − Ω δ ψ − Ω δ ψ =
⎪
⎨

+ + + δ − Ω δ ψ − Ω δ ψ =⎪
⎩

∑

∑

&& &&& &

&& &&& &
 [2.13] 
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2.2.1.2.3. Coleman Transformation 

For equation solving, we propose a method based on the Coleman’s work, in 
order to transform the system into a system of linear differential equations with 
constant coefficients.  

Consisting in changing variables, this transformation uses the special matrix 
forms and enables non-constant terms to be eliminated. 

For each variable related to the blade δi, θi, the following variable change is 
done: 

( ) ( )
( ) ( ) ( )

i
i 0 1c i 1s i cp

i
i 0 1c i 1s i cp

(t) (t) (t) cos (t) (t) sin (t) (t) ( 1)

(t) (t) (t) cos (t) (t) sin (t) (t) 1

⎧δ = δ + δ Ψ + δ Ψ + δ −⎪
⎨

θ = θ + θ Ψ + θ Ψ + θ −⎪⎩
 [2.14] 
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Figure 2.16. Pilot Actions on Flight Controls � Collective and Cyclic Stick Inputs 

The value of θ0 corresponds to the collective variation of the blade incidence; the 
pilot can act on this value through the collective pitch stick (2, Figure 2.16).  

The values of θ1s and θ1c correspond to an azimuthal variation which can be 
obtained by acting on the blade cyclic pitch stick (1, Figure 2.16). On the helicopter, 
the value of θcp is always set to zero. 

All parameters δ0, δ1c, δ1s and δcp can be physically interpreted. 
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Collective Lag Motion  δ0(t) 

It can be observed that each blade i undergoes this motion at the same time. 
Under the effects of inertia due to the motion at  δ0(t), center of the hub A and center 
of inertia G of the blades remain coincident. 
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Figure 2.17. Blade Collective Lag Motion 

We can show that we have: 

N

0 i
i 1

( t) ( t)
=

δ = δ∑  [2.15] 

Motion at δ1c 

The motion at δ1c shifts the center of inertia G of the blades from the center of 
rotation A which excites the fuselage in lateral motion along y. 

We can show that we have: 

( )
N

1c i i
i 1

( t) ( t) cos (t)
=

δ = δ Ψ∑  [2.16] 
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Figure 2.18. Blade Cyclic Lag Motion Rotor Lateral Shift 

Motion at δ1s 

The motion at δ1s shifts the center of gravity G of the blades, which generates a 
longitudinal motion along x. 
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Figure 2.19. Blade Cyclic Lag Motion Rotor Longitudinal Shift 
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We can show that we have: 

( )
N

1s i i
i 1

( t) ( t) sin ( t)
=

δ = δ Ψ∑  [2.17] 

Motion at δcp 

δcp is the shear motion. 

We can show that we have: 

( )
N

i
1cp i

i 1

( t) 1 (t)
=

δ = − δ∑  [2.18] 

Using the Coleman transformation for a four-blade rotor gives the following 
system of equations: 

( )
( )
( )

( )

2
0 0 s 0

2 2
1c 1c 1s s 1c 1s s

2 2
1s 1s 1c s 1s 1c s

2
cp cp s cp

I K e m 0

I 2 I K e m I m y 0

I 2 I K e m I m x 0

I K e m 0

δ δ

δ δ δ

δ δ δ

δ δ

⎧ δ + λ δ + + Ω δ =
⎪
⎪ δ + λ δ + Ω δ + + Ω − Ω δ + λ Ω δ − =⎪
⎨

δ + λ δ − Ω δ + + Ω − Ω δ − λ Ω δ + =⎪
⎪

δ + λ δ + + Ω δ =⎪⎩

&& &

&& & & &&

&& & & &&

&& &

 [2.19] 
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Figure 2.20. Blade Lagging Shear Motion 
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It can be observed that the equations of collective lag δ0 and differential lag δcp 
are decoupled. For both of these modes, the rotor center of inertia G is not displaced. 
There are no effects of inertia to excite the structure. 

The coupled equations are the following: 

( )
( )

( )

( )

2 2
1c 1c 1s s 1c 1s s

2 2
1s 1s 1c s 1s 1c s

x p x x s 1s

y p y y s 1c

I c 2 I K e m I c m y 0

I c 2 I K e m I c m x 0

NM N m x C x k x m 0
2
NM N m y C y k y m 0
2

δ δ δ

δ δ δ

⎧ δ + δ + Ω δ + + Ω − Ω δ + Ω δ − =
⎪
⎪ δ + δ − Ω δ + + Ω − Ω δ − Ω δ + =
⎪⎪
⎨ + + + + δ =⎪
⎪
⎪ + + + − δ =
⎪⎩

&& & & &&

&& & & &&

&&&& &

&&&& &

 [2.20] 

The system can be canonized in the following form: 

( )
( )

2 2
1c 1c 1s 1c 1s c

2 2
1s 1s 1c 1s 1c c

2
x x x dx 1s

2
y y y dy 1c

2 2 2 S y 0

2 2 2 S x 0

x 2 x x S 0

y 2 y y S 0

δ δ δ δ δ

δ δ δ δ δ

⎧δ + λ ω δ + Ω δ + ω − Ω δ + λ ω Ω δ − =
⎪
⎪δ + λ ω δ − Ω δ + ω − Ω δ − λ ω Ω δ + =⎪
⎨

+ λ ω + ω + δ =⎪
⎪

+ λ ω + ω − δ =⎪⎩

&& & & &&

&& & & &&

&&&& &

&&&& &

 [2.21] 

With the following modal characteristics and coupling terms: 

( )

( )

( )

( )

( )

( )

( )

2
s

2
s

yx
x y

x p y p

x y
x y

x p x y p y

s
c

s
dy

y p

s
dx

x p

K e m
I
c

2 I K e m

kk
M N m M N m

C C

2 M N m K 2 M N m K

mS
I

N mS
2 M N m

N mS
2 M N m

δ
δ

δ
δ

δ

⎧ + Ωω =⎪
⎪
⎨
⎪λ =
⎪ + Ω⎩

⎧⎧
ω = ω =⎪⎪ + +⎪⎪ ⎪
⎨ ⎨
⎪ ⎪λ = λ =⎪ ⎪+ +⎪⎩ ⎩
⎧
⎪ =⎪
⎪
⎪ =⎨ +⎪
⎪
⎪ =

+⎪⎩  
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2.2.2. Stability Criteria 

The stability criteria can be defined from the preceding system of equations. 
Only coupling between the motion along y and the motion at δ1c and δ1s of the blades 
is considered here. Let us consider the system under free speed: 

( )
( )

2 2
1c 1c 1s 1c 1s c

2 2
1s 1s 1c 1s 1c

2
y y y dy 1c

2 2 2 S y 0

2 2 2 0

y 2 y y S 0

δ δ δ δ δ

δ δ δ δ δ

⎧δ + λ ω δ + Ω δ + ω − Ω δ + λ ω Ω δ − =
⎪⎪δ + λ ω δ − Ω δ + ω − Ω δ − λ ω Ω δ =⎨
⎪

+ λ ω + ω − δ =⎪⎩

&& & & &&

&& & &

&&&& &

 [2.22] 

Set: 

M X C X K X F+ + =&& &  [2.23] 

where: 

( )
( )

1c

1s

c

dy

y y

2 2

2 2

2
y

0
X F 0

0y

1 0 S
M 0 1 0

S 0 1

2 2 0
C 2 2 0

0 0 2

2 0

K 2 0

0 0

δ δ

δ δ

δ δ δ

δ δ δ

δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤λ ω Ω
⎢ ⎥= − Ω λ ω⎢ ⎥
⎢ ⎥λ ω⎣ ⎦
⎡ ⎤ω − Ω λ ω Ω
⎢ ⎥
⎢ ⎥= − λ ω Ω ω − Ω
⎢ ⎥

ω⎢ ⎥⎣ ⎦  

The characteristic equation used to evaluate stability is given by: 

( )2det M p C p K 0+ + =  [2.24] 
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It can be observed that, if coupling between the rotor and the fuselage is 
negligible, and rotor damping is negligible, the following simplified system is then 
obtained: 

( )
( )

2 2 2

2 2 2

p 2 p
det 0

2 p p

δ

δ

⎛ ⎞⎡ ⎤+ ω − Ω Ω
⎜ ⎟⎢ ⎥ =
⎜ ⎟⎢ ⎥− Ω + ω − Ω⎣ ⎦⎝ ⎠

 [2.25] 

Which gives the following characteristic equation: 

( )( ) ( )
2 22 2 2p 2 p 0δ+ ω − Ω + Ω =  [2.26] 

Let: 

( ) ( )24 2 2 2 2 2p 2 p 0δ δ+ ω + Ω + ω − Ω =  [2.27] 

The possible roots are: 

( )
( )

*
1 1

*
2 2

p i and p

p i and p
δ

δ

= Ω − ω

= Ω + ω  [2.28] 

The frequencies are usually little modified by coupling and damping. A first 
coupling condition can therefore be defined: 

yδΩ − ω = ω  [2.29] 

The following can also be assumed upon coupling, at the stability limit:  

( )yp i i i δ= ω ≈ ω ≈ Ω − ω  [2.30] 

Thus, equation [2.24] is written: 

( ) ( )
( ) ( )

2 2 2 2
c

2 2 2

2 2 2
dy y y y

p 2 p 2 p S p

det 2 p p 2 p 0 0

S p 0 p 2 p

δ δ δ δ δ

δ δ δ δ δ

⎡ ⎤+ λ ω + ω − Ω + λ ω Ω −
⎢ ⎥
⎢ ⎥− + λ ω Ω + λ ω + ω − Ω =
⎢ ⎥

− + λ ω + ω⎢ ⎥⎣ ⎦  

 [2.31] 
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Thus, the stability condition due to the negative character of the real part of the 
zeros of the determinant, is written: 

( ) ( )2

y c dy 2
y

1 S S
8

δ δ
δ

δ

ω − Ω Ω − ω
λ λ ≥

ω ω
 [2.32] 

By taking again the parameters previously defined in [2.21], the stability 
criterion can be written: 

( )
( )22

s
y

yy p

mN 1
16 I M N m

δ
δ

δ

⎡ ⎤ Ω − ω⎛ ⎞Ωλ λ ≥ −⎢ ⎥ ⎜ ⎟ω ω+⎢ ⎥ ⎝ ⎠⎣ ⎦
 [2.33] 

For a lagging rigid rotor (ωδ>Ω), the right term is negative, the system is always 
stable whatever the damping the system may have.  

For a lagging flexible rotor (ωδ<Ω), the product of lag damping λδ and support 
damping λy must be greater than a critical value which depends on the 
characteristics of the system, specially stiffness of the adapters through ωδ and 
structure eigenfrequency ωy. 

 

Figure 2.21. Lag Damper Damping Coefficient Versus Lagging Frequency 
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It was observed that the damping required is a function of lagging frequency ωδ 
and support eigenfrequency ωy. Higher damping is however necessary for the low 
lagging frequencies ωδ typical to hinged rotors.  

Assuming that there is correspondence between frequencies (ωδ−Ω=ωy) and that 
the blade mass (N mp) is negligible in relation to the structure mass (My), the 
criterion takes a form known as Coleman’s form: 

22
s

y
y

mN 1
16 I Mδ

δ

⎡ ⎤ ⎛ ⎞Ωλ λ ≥ −⎢ ⎥ ⎜ ⎟ω⎢ ⎥ ⎝ ⎠⎣ ⎦
 [2.34] 

2.2.3. Energy Analysis 

The energy origin of this behavior can be understood by analyzing the effect of 
the turbine. 

Energy : engine

Displacement
Rotor

Excitation

Fuselage
 

Figure 2.22. Self-Sustained Vibrations in Ground Resonance 

The diagram of the control linkage generally installed on helicopters is given in 
Figure 2.23. 

The rotor rotational speed is directly determined by the characteristics of the free 
turbine. The free turbine provides the rotor with a torque Cm and the aerodynamic 
forces provide a resisting torque Cr. The theorem of dynamic moment applied to the 
hub, noted S, projected on the axis of rotation, can be used to write: 

( )O g 0 m rS / R z C Cδ ⋅ = −
r r

 [2.35] 
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Figure 2.23. Helicopter Powerplant 
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Figure 2.24. Hub Behavior Modeling 
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In the case of ground resonance, the rotor center of inertia oscillates around the 
rotor center of rotation. For a four-blade rotor, we have: 

( ) ( )
4 4

i i i
i 1 i 1

1 ROG OG cos i 1 x sin i 1 y
4 4 2 2= =

π π⎛ ⎞ ⎛ ⎞= = δ + − + δ + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
uuur uuur r r

 [2.36] 

The following is thus obtained in the case of small motions: 

[ ] [ ]1c 0 1s 0 G 0 G 0
ROG (t) x (t) y x x y y
4

= δ + δ = +
uuur r r r r

 [2.37] 

The following can thus be written: 

( ) ( )( )0 G,S / Rg 0Goδ hub / Rg z = δ hub / Rg + OG m A z⋅ ∧ ⋅
r r r uuuur ur r

 ( )G G G G G= I  ψ + m x y + y x&& && &&  [2.38] 

The equilibrium equation in terms of torque then gives: 

( )G G G G G m rI m x y y x C Cψ + + = −&& && &&  [2.39] 

It can be observed that, for maintaining a rotational speed constant, it is 
necessary to have an engine torque counter the inertia effects: 

( )m r G G G GC C m x y y x= + +&& &&  [2.40] 

The governing system maintains the rotational speed constant, and the turbine 
supplies the energy necessary for instability. 

2.3. Active Control of Ground Resonance 

2.3.1. Active Control Algorithm 

The lag dampers can be simplified or even removed for some rotor concepts by 
using an active control system [REI 91, STR 95, STR 87, SMI 93, MAL 97].  

We propose to show the performance of such a system to eliminate the instability 
of the “ground resonance” type. 
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2.3.1.1. Physical Principles Involved 

The idea consists in placing vibration sensors on the structure, and having 
actuators capable of creating forces in the structure so as to make the system stable.  

Both of these components are coupled to a control system which computes in 
real time the signal to be applied to the actuators. 

There are several possible actuators. The landing gear or lag adapters can be 
controlled by modifying their stiffness in real time or using the blade control system 
which would modify the rotor/fuselage coupling through the aerodynamic forces, 
Figure 2.25. 

 

3
Incidence des pales

1
train d'atterrissage

2
Adaptateur de traînée

Blade incidence 

Lead-lag damper

Landing gear  

Figure 2.25. Ground Resonance Active Control Strategies 

We propose to develop the method which consists in using the blade control 
system (servocontrols), Figure 2.26 and Figure 2.27.  

It is necessary to make sure that this control system is capable of reacting 
appropriately within the controlled frequency band, and that there is no interference 
with the conventional control system. 
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Figure 2.26. Sensors and Actuators Used for Ground Resonance Active Control 
Through Control of Blade Incidence 
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Figure 2.27. Ground Resonance Active Control Schematic 

It can be observed that, for modifying the coupling between blade lagging and 
fuselage rolling, choosing this possibility enables the natural coupling between blade 
flapping and lagging to be used.  
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Flapping is controlled by the pitch control. The previously developed equations 
are not sufficient; it is necessary to introduce the blade flapping motion as well as 
modeling of the aerodynamic forces. 

The choice of measurements representative of vibrations was dictated for reasons 
of simplicity and reliability.  

The control law to be generated was chosen of the single-variable type. The 
phenomenon representative parameter retained is roll measurement through a remote 
accelerometer, Figure 2.28. 
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Figure 2.28. Location of Sensor (Remote Accelerometer) 
for Active Control of Ground Resonance 

2.3.1.2. Knowledge Model Equations 

The preceding equation setting-up must be repeated by introducing the coupling 
associated with the blade flapping motion, Figure 2.29. 
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Figure 2.29. Blade Flap-Lag Motion 

The number of degrees of freedom retained is 10 for a four-blade system, 
Figure 2.30. 
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Figure 2.30. Parameterization and Connection Graph by Allowing for Flapping 

The aerodynamic forces play an important role since they act on the blade flap-
lag motion.  

The aerodynamic action is assessed by its screw at B, center of the flap-lag 
connection.  
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That is: 

{ }
Aero

blade

A Aero
blade A

R dF
aero blade :

M AM dF

⎧ ⎫=
⎪ ⎪→ ⎨ ⎬
⎪ ⎪= ∧
⎩ ⎭

∫
∫

r r

uur uuuur r  [2.41] 

Only the effects of lift on the airfoil are considered. That is: 

2
aero zp M ,air / blade p

1dF a c V z dr
2

= ρ
r r r  [2.42] 

where: 

– ρ: air density, 

– a: airfoil chord, 

– czp: local lift coefficient. 

The lift coefficient czp is assumed to be within the operating interval, linear 
function of angle of incidence i. 

 

X0

Ψ i

Y0

Z0

δ i
X2i

X1

Z2i

Z1

β i

Xpi
M

M
Y3

Z3

dFaero

θ
VAir/Blade α

Zp

φ

 

Figure 2.31. Definition of Aerodynamic Forces on a Blade 
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Considering the magnitudes involved and neglecting the induced speed, the 
approximation on the expression of the linear speed of a blade point can be done: 

M,blade/air i 1 1V r z r y≈ − β + Ω
r r r&  [2.43] 

where: 

– r: position of point M at the attachment point, 

– Ω: hub rotational speed. 

The incidence of the airstream on the blade, noted α, can be defined through 
linear approximation: 

i
i i

r
r

βα = θ − φ ≈ θ −
Ω

&
 [2.44] 

Thus, the lift expression is defined by: 

p p i
zp i

C C
c

∂ ∂ ⎛ ⎞⎛ ⎞ ⎛ ⎞ β= α = θ −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ α ∂ α Ω⎝ ⎠ ⎝ ⎠ ⎝ ⎠

&
 [2.45] 

Cp∂
∂ α

 is assumed to be constant along the blade. By neglecting the second-order 

terms, it can be shown that: 

p 2 2i
aero i p

C1dF a r z
2

∂ ⎛ ⎞⎛ ⎞ β
= ρ θ − Ω⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ α Ω⎝ ⎠ ⎝ ⎠

&r r
 [2.46] 

Set γ, Lock number, which represents a ratio between the aerodynamic forces 
and the inertia forces, coefficient largely used in aeronautical industry, such that: 

p 4Ca R
I

∂⎛ ⎞
γ = ρ ⎜ ⎟∂ α⎝ ⎠

 [2.47] 

where R is the rotor radius. 

Thus, as a first approximation, the aerodynamic force screw can be expressed by: 
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{ }

2
i

i 2i

2
i

A i 1
A

4 IR z
3R 8

aero blade :
IM y
8

⎧ ⎫⎛ ⎞βγ Ω= θ −⎪ ⎪⎜ ⎟⎜ ⎟Ω⎪ ⎪⎝ ⎠→ ⎨ ⎬
⎛ ⎞βγ Ω⎪ ⎪= − θ −⎜ ⎟⎪ ⎪⎜ ⎟Ω⎝ ⎠⎩ ⎭

&r r

&uur r
 [2.48] 

Through the expression of this screw, it can be observed that the aerodynamic 
actions have an effect on the moment about the flapping axis and an effect on the 
resultant along axis 2iz . 

The moment expression shows that pitch θ will generate flapping which couples 
to lagging through effects of inertia (Coriolis effects); this is a first means to act on 
the system stability. 

The resultant will cause fuselage rolling through the rotor hub/blade hinge; this 
is a second means to modify the system stability. 

2.3.1.2.1. Effect Through Pitch/Flap/Lag Coupling 

The equations of motion can be obtained by applying the Lagrange’s equations. 
The following is obtained for each blade: 

( ) ( )i i i 0 i s i s i

2
2

i i i i

I c K 2 I m sin x m cos y 0

I II I
8 8

δ δ⎧ δ + δ + δ − Ω β β − Ψ + Ψ =
⎪
⎨ γ Ω γ Ωβ + β + Ω β = θ⎪
⎩

&& & & && &&

&& &  [2.49] 

Observe that the flap/lag coupling term is obtained by effects of inertia known as 
Coriolis effects. The coupling involved in the flapping equation was neglected. In 
the lagging equation, this term is not negligible; the system can be made stable by 
increasing the flapping motion through the pitch, with damping added to that 
provided by the lag adapter. 

It is useful to analyze the blade flapping behavior for a pitch actuation. It is 
specially necessary to check that it is not necessary to apply too much pitch θ in 
order to provide substantial flapping motions. 

To this end, we propose drawing of the flapping/pitch transfer function for a 
sinusoidal actuation from the flapping equation written in the following form: 

2
2

i i i i8 8
γ Ω γ Ωβ + β + Ω β = θ&& &  [2.50] 
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Thus set: 

j t
i i0

j t
i i0

(t) e

(t) e

ω

ω

⎧β → β⎪
⎨

θ → θ⎪⎩
 [2.51] 

The isochronous transfer function expressed with reduced frequency u is then: 

( ) i0

2i0

1H u
8 1 u j u

8

u

⎧ ⎛ ⎞
⎪ ⎜ ⎟β γ= =⎪ ⎜ ⎟γ⎪ θ ⎜ ⎟− +⎨ ⎝ ⎠⎪

ω⎪ =⎪⎩ Ω

 [2.52] 
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Figure 2.32. Pitch/Flapping Relation Transfer Function H(u) 
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Within the framework of ground resonance, the phenomenon is at a frequency 
close to 0.5 Ω. 

It can be observed that, in this area, without applying a great pitch angle (and 
thus preventing blade stalling), it is possible to apply a flapping motion with enough 
amplitude to interfere with the blade lagging motion. The existing phase shift will be 
taken into account in the active control feedback loop. 

The following is always obtained for the fuselage as a first approximation: 

( ) ( ) ( )

( ) ( ) ( )

2
x x x s i i i i i

i

2
y y y s i i i i i

i

M x C x K x m sin 2 cos 0

M y C y K y m cos 2 sin 0

⎧ + + − δ − Ω δ ψ − Ω δ ψ =
⎪
⎨

+ + + δ − Ω δ ψ − Ω δ ψ =⎪
⎩

∑

∑

&& &&& &

&& &&& &  [2.53] 

The following variable change is done again for each blade-related variable δi, βi 
and θi: 

( ) ( )
( ) ( )
( ) ( )

i
i 0 1c i 1s i cp

i
i 0 1c i 1s i cp

i 0 1c i 1s i

(t) (t) (t) cos (t) (t) sin (t) (t) ( 1)

(t) (t) (t) cos (t) (t) sin (t) (t) ( 1)

(t) (t) (t) cos (t) (t) sin (t)

⎧δ = δ + δ Ψ + δ Ψ + δ −
⎪⎪β = β + β Ψ + β Ψ + β −⎨
⎪θ = θ + θ Ψ + θ Ψ⎪⎩

 [2.54] 

Then, the coupled equations are written in the following form: 

( )

( )

( )

2 2 s
1c 1c 1s 1c 1s 0 1c

2 2 s
1s 1s 1c 1s 1c 0 1s

2 2

1c 1c 1s 1s 1c

2 2

1s 1s 1c 1c 1s

x p

m2 2 2 2 y 0
I

m2 2 2 2 x 0
I

2
8 8 8

2
8 8 8

M N m

δ δ δ δ δ

δ δ δ δ δ

δ + λ ω δ + Ω δ + ω − Ω δ + λ ω Ω δ − Ω β β − =

δ + λ ω δ − Ω δ + ω − Ω δ − λ ω Ω δ − Ω β β + =

γ Ω γ Ω γ Ωβ + β + Ω β + β = θ

γ Ω γ Ω γ Ωβ + β − Ω β − β = θ

+

&& & & & &&

&& & & & &&

&& & &

&& & &

&&

( )

x x s 1s

y p y y s 1c

Nx C x k x m 0
2
NM N m y C y k y m 0
2

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ + + + δ =
⎪
⎪

+ + + − δ =⎪
⎩

&&&

&&&& &
 

 [2.55] 
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These equations show that the Coriolis effects and the aerodynamic forces are 
the important structure factors to achieve high efficiency on stability: 

– for the Coriolis effects, as rotor rotational speed Ω is defined from other 
criteria, rotor preconing β0 may be a significant factor and is integrated as from rotor 
design; 

– as regards aerodynamic forces, Lock number γ is of importance but is usually 
defined to be effective during rotor control. 

2.3.1.2.2. Effect of Flapping on Roll 

We propose to analyze the effect of the pitch control on roll directly through 
flapping.  

To this end, the model is limited to the roll motion of the fuselage, flapping 
motion of the blades and rotational motion of the rotor. 
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yg
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Figure 2.33. Action of a Blade on Rotor and Parameterization 

When isolating one blade, the resultant theorem gives: 

gG,blade/ R aero blade hub bladem A R R→ →= +  [2.56] 
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Thus, the part of the resultant which acts on the fuselage in roll can be assessed 
by: 

gblade hub 0 aero blade 0 G,blade/R 0R z R z m A z→ →⋅ = ⋅ − ⋅  [2.57] 

We thus show, for the aerodynamic forces, that: 

2
i

aero blade 0 i
4 IR z

3R 8→

⎛ ⎞βγ Ω⋅ = θ −⎜ ⎟Ω⎝ ⎠  [2.58] 

And, for the effects of inertia: 

g gG,blade/ R 0 M,blade/ R 0
blade

s
blade

m A z A dm z

r dm m

⋅ = ⋅

= β = β

∫

∫
 [2.59] 

Thus: 

( )

2
i

blade hub 0 i s i

2

i i s i

4 IR z m
3R 8

4 I 4 I m
3R 8 3R 8

→

⎛ ⎞βγ Ω⋅ = θ − − β⎜ ⎟Ω⎝ ⎠
⎛ ⎞ ⎛ ⎞γ Ω γ Ω= θ − β − β⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 [2.60] 

The actions of the blade on the hub are the superimposition of the aerodynamic 
forces related to the pitch and flapping, and of the effects of inertia. 

The blade flapping behavior equation is: 

2
2

i i i i
I II I
8 8

γ Ω γ Ωβ + β + Ω β = θ&& &  [2.61] 
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For a harmonic excitation, set: 

j t
i i0

j t
i i0

(t) e

(t) e

ω

ω

⎧β → β⎪
⎨

θ → θ⎪⎩
 [2.62] 

The isochronous transfer function expressed with reduced frequency u is then: 

i0 i0
2

1
8 1 u j u

8

⎛ ⎞
⎜ ⎟γβ = θ⎜ ⎟γ⎜ ⎟− +
⎝ ⎠

 [2.63] 

That is, for the hinge force: 

2
p p 2

0 i0 i0 s i0

aero inertia

I I4 4R j m
3R 8 3R 8

R R

⎡ ⎤⎛ ⎞γ Ω γ Ω⎛ ⎞
⎡ ⎤= θ − ω β + ω β⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

= +

 [2.64] 

We can show that aerodynamic force Raero is zero at excitation frequency Ω 
(u=1). Only the effects of inertia act on the fuselage.  

Using equations [2.65], [2.66]: 

2 22
p p

aero i0 i0
2

I I4 1 u 4R G(u)
3R 8 3R 81 u j u

8

u

⎧ ⎛ ⎞
⎪ ⎛ ⎞ ⎛ ⎞⎜ ⎟γ Ω γ Ω−= θ = θ⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟γ⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠− +⎜ ⎟⎨ ⎝ ⎠⎪

ω⎪ =⎪⎩ Ω

 [2.67] 

where: 

2

2

1 uG(u)
1 u j u

8

⎛ ⎞
⎜ ⎟−= ⎜ ⎟γ⎜ ⎟− +
⎝ ⎠

 [2.68] 
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The total action in the link can be written as: 

( ) 22

0 i0
2

s

1 A 1 u4 IR
3R 8 1 u j u

8
3 R mu A

4 I

⎧ ⎡ ⎤⎛ ⎞
⎪ ⎢ ⎥⎜ ⎟+ −⎛ ⎞γ Ω= θ⎪ ⎢ ⎥⎜ ⎟⎜ ⎟ γ⎪ ⎝ ⎠ ⎢ ⎥⎜ ⎟− +⎨ ⎢ ⎥⎝ ⎠⎣ ⎦⎪

ω⎪ = =⎪ Ω⎩

 [2.69] 

Note: 

( ) 2

2

1 A 1 u
K(u)

1 u j u
8

⎛ ⎞
⎜ ⎟+ −

= ⎜ ⎟γ⎜ ⎟− +
⎝ ⎠

 [2.70] 
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Figure 2.34. Function G(u) 

Within the framework of “ground resonance”, the phenomenon is at a frequency 
close to 0.5 Ω. In this area, it can be observed that the transfer function presents 
amplification. This is why, without applying a great pitch angle (and thus preventing 
blade stalling), it is possible to apply a flapping motion with enough amplitude to 
counter the roll motion. The existing phase shift will be taken into account in the 
active control feedback loop. 

The system stability can be controlled through the effects on lagging and 
flapping hub loads, through the pitch inputs and hence flapping and lead-lag 
response. 
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Figure 2.35. Transfer Function of Forces in Flapping Hinge 
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Figure 2.36. Effect of Flapping in Ground Resonance Active Control 

2.3.1.3. Method Retained 

There are several control laws to stabilize the system. We propose to develop 
only two. The first one allows to work from the model which uses the displacement 
of the rotor head but requires several variables to be observed.  

The second one, which uses only one variable, has been retained and used during 
testing. 
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2.3.1.3.1. Method Based on Two Parameters 

A first method consists in measuring variables X and Y which represent the 
displacement of the rotor head. The injected signal is then a function of both of these 
variables. A law can for example be established from the speed and acceleration, 
which allows to define setpoint values related to Active Control (AC). The latter 
supplement the setpoints related to the pilot or autopilot (AP): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1c|AC XP XS X YP YS Y

1s|AC XP XS X YP YS Y

K X K X cos K Y K Y sin

K X K X sin K Y K Y cos

⎧θ = + α + + α⎪
⎨

θ = − + α + + α⎪⎩
 [2.71] 

It can thus be shown that, by integrating the active control laws, the system 
equations become: 

( )

( )

( ) ( ) ( ) ( )

2 2 s
1c 1c 1s 1c 1s 0 1c

2 2 s
1s 1s 1c 1s 1c 0 1s

2

1c 1c 1s 1s

m2 2 2 2 y 0
I

m2 2 2 2 x 0
I

2
8 8

δ δ δ δ δ

δ δ δ δ δ

δ + λ ω δ + Ω δ + ω − Ω δ + λ ω Ω δ − Ω β β − =

δ + λ ω δ − Ω δ + ω − Ω δ − λ ω Ω δ − Ω β β + =

γ Ω γ Ωβ + β + Ω β + β

2

XP X YP Y XS X YS Y

+

γΩ- K cos α x + K sin α y + K cos α x + K sin α y
8

&& & & & &&
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&& & & K

& & && &&

( ) ( ) ( ) ( )
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2
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⎪
⎪
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⎪
⎪

⎡ ⎤βρ Ω⎪ + − +β =⎢ ⎥Ω⎣ ⎦⎩

XP XS Y
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[2.72] 
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This method has the advantage of showing the active control feasibility and is 
widely developed in material, and presents the drawback of using parameters not 
easily measurable and being hard to adjust. 

An alternative consists in using a linear combination by using only two 
parameters of gain K1 and K2.  

The two magnitudes measured are upstream filtered by a band-pass filter, 
Figure 2.37. 

This system was used for testing on a 10-ton helicopter by measuring the roll and 
a remote acceleration. 

  Vertical
acceleration

Gain
K1

Gain
K2/Ω

Σ 
 

  
Roll angular
acceleration

Gain
K2

Gain
-K1 Ω

Σ 

U1

U2

Pitch control

Band-pass
filter

Band-pass
filter

Roll control
 

Figure 2.37. Active Control Method Through Roll and Remote Acceleration 

The main interest of this system is the easy location in the architecture of the 
helicopter autopilot.  

Moreover, it allowed very good aircraft stability convergence to be obtained 
after pilot cyclic input: the phenomenon is completely controlled, Figure 2.38. 
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Figure 2.38. Effectiveness of Active Control Through 
Roll and Remote Acceleration 
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2.3.1.3.2. Method Based on One Measured Parameter 

From the equations, it can be observed that, for affecting stability, the commands 
can be used at θ1c or θ1s or both. The latter possibility allows the effect of the 
feedback law to be increased. A 90° phase shift must simply be provided in order to 
be in phase on the excitation. Thus, the command from the Active Control (AC) 
computer is defined such that: 

Phase shifter

θ1c|CA

θ1s|CA

AC Law

−π/2

 

Figure 2.39. Phase Shifter for Command at θ1s|AC 

In order to define a control algorithm, we chose to use a single measured variable 
(off-centered acceleration) and a pitch control variable, which is the cyclic pitch 
combination, Figure 2.40.  

The latter is superimposed on the autopilot. 

 

DPhase shifter
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++

+
+

Τ1s|CA

Τ1c|PA

Τ1s|PA

AP : AutoPilot
AC : Active Control

Τ0|PA

AC Law

Servocontrol

−π/2

θ0

θ1c
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Figure 2.40. Use of Cyclic Control and Servocontrol for Active Control 
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For this study, the feedback law principle adopted is as follows: the measured 
signal is filtered at the frequency concerned by a band-pass filter, then amplified by 
a factor K and phase-shifted by a value φ, Figure 2.41. 

Phase shifter

AC Law

Amplifier
Band-pass filter

Measured
signal K φ

 

Figure 2.41. Law Principle Retained for Active Control of Ground Resonance 
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Figure 2.42. Transfer Function of Feedback Loop 
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The system uses second-order Butterworth filters (12 dB/octave). The signal 
from the accelerometer is filtered in a band-pass filter, the cutoff frequency of which 
is the ground resonance frequency.  

It is then phase-shifted by another filter, the cutoff frequency of which is 
adjusted to obtain the desired phase delay.  

This type of corrector was used for a prototype system. For an industrialized 
system, filters of lower order will be preferred.  

A typical overall law is presented in Figure 2.42. 

The whole control system can be summarized as follows: 

Band-pass filterGainPhase shift

θ1c

θ1s

θ0

Τ1c

Τ1s

Τ0

γz

−π/2

servocontrol
Fuselage

+
Rotor

φ K

 

Figure 2.43. Active System Overall Diagram 

2.3.2. Performance Indicators 

Simply select a gain K and a phase φ which stabilizes the system in order to find 
the correct system setting. 

It can be observed, by simulation, that there is a possible setting range to remove 
the instability. A typical stability area is given in Figure 2.44.  
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This example was built from data of an existing helicopter. 

Gain KPhase φ
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Figure 2.44. Stability Envelope Versus Active Control Setting Parameters 

 

Figure 2.45. Effect of Parameter K - φ Frozen on Vibratory Behavior - Roll Example 
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In order to define the best setting within the stability area, it was chosen to 
analyze the frequency response on the system parameters.  

The roll example is given in Figure 2.45. 

It can be observed that, by causing parameter K to change, with phase shift φ 
frozen, and remaining within the stability area, the mode is removed at 2.8 Hz. The 
risk is to cause two other modes to appear. 

The compromise consists in assessing the setting allowing for the best 
smoothing. 

2.3.3. Implementation of Active Control 

Tests must be carried out to check the simulation results and analyze the 
compatibility with the control system. 

Two test phases are required: bench tests and then flight tests. 

The test bench is used to cause a great number of parameters to change, and test 
several control laws without involving the flight crew.  

The flight tests are used to integrate the system with the aircraft and definitely 
validate the concept. 

2.3.3.1. Simulation and Ground Tests 

The tests on a specific test bench allowed for better understanding of the 
phenomena involved. 

The test bench consists of a rotor and a frame representing the fuselage. The 
rotor mechanical assembly (control system, adapters, etc.) is present. An actuator is 
used to excite the structure so as to initiate ground resonance.  

A safety actuator locks the system when the remote acceleration exceeds a 
threshold. 

Among other things, this test bench is used to modify the modal characteristics 
of the frame so as to get a potential instability situation. 



138     Mechanical Instability 

Safety
actuator

Actuator

Engine

 

Figure 2.46. Schematization of Test Bench for Active Control With No Safety System 

 

Figure 2.47. Ground Resonance Test Bench 

The tests allowed to define a test bench configuration intended to obtain slow 
divergence, Figure 2.48. As instability occurred, a safety actuator started operating 
to make the system stable. 
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Figure 2.48. Test Bench Instability Observed Through Measurement of Acceleration γz 

The bench tests are used to correlate the observations made through the 
simulations. Specially by validating law principles and possible settings. 

Acceleration 
  ShutDown (safe setting)

Uncontrolled  

Frequency [Hz]  

Figure 2.49. Comparison of Gain K Setting on Acceleration γz 

2.3.3.2. Tests on Helicopter 

Tests on helicopter allowed to validate the control law retained during the bench 
tests. The purpose of these tests was to validate whether settings are stable or 
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unstable, Figure 2.50 and Figure 2.51. It can be observed that the cases of predicted 
stability correspond to those obtained during testing. 

Areas obtained by computation

Stable test
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Figure 2.50. Tests of Ground Resonance Active Control 
on Helicopter Effect of Gain 
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Figure 2.51. Tests of Ground Resonance Active Control 
on Helicopter Effect of Phase 

Measurement of the following time magnitudes shows that the system detects the 
appearance of instability; the setpoint then allows the system to be made stable. 
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Figure 2.52. Tests of Ground Resonance Active Control on Helicopter. 
Flight Tests for Several Phase and Gain Values 
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Figure 2.52. (Continued) Tests of Ground Resonance Active Control on Helicopter. 
Flight Tests for Several Phase and Gain Values 
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2.4. Air Resonance 

2.4.1. Phenomenon Description 

We propose to first explain the air resonance phenomenon qualitatively. The 
latter has a behavior very close to ground resonance since such instability 
corresponds to coupling between the rotor and the structure. The difference lies on 
the origins of the fuselage modes. 

This phenomenon may appear in the case of steep turn in flight. In such a 
configuration, the pilot needs to apply more pitch control for higher lift in order to 
compensate for the effects of inertia and remain at a constant altitude. Rotor coning 
increases, and coupling between flapping and lagging by the Coriolis effects, as 
presented in the ground resonance description, increases.  

As the fuselage has pendulous modes, the instability due to rotor/structure 
coupling may thus exist in practice, specially because of the fuselage morphology, 
through coupling between the cyclic lag motion and the roll motion of the fuselage. 

 

β

Incidence
change

Fuselage roll excitation

Generation of
rotor head forces

Aircraft roll oscillation

 

Figure 2.53. Air Resonance Description 

In a turn, as a small disturbance may be caused by the pilot movement, a wind 
gust is sufficient to make the aircraft oscillate in roll. 



144     Mechanical Instability 

2.4.2. Modeling and Setting Up Equations 

The equations used for ground resonance cannot be directly used. The ground 
resonance phenomenon is related to the motion of the rotor head, whereas the air 
resonance phenomenon is a fuselage pendulous motion. It is thus necessary to 
introduce the roll and pitch motions as well as the translational motions of the 
fuselage. 

The fuselage is considered as an undeformable solid, the mass and inertial 
characteristics of which at the center of inertia are known. There are no fuselage 
deformation modes within the envelope studied (1 to 5 Hz). The blades are assumed 
to be rigid: the modes of blade deformation on helicopters studied have frequencies 
higher than about 15 Hz. The blades are compared to beams having the longitudinal 
axis as revolution axis. All blades are identical. 

2.4.2.1. Parameterization 

System Σ studied consists of the fuselage and N blades. The parameters used to 
define the fuselage motion are the displacements of the center of gravity and the 
three roll, pitch and yaw rotations defined in Figure 2.54. 

yg
xg

zg

A

O

Roll

Pitch

G

Yaw

 

Figure 2.54. Fuselage Degrees of Freedom Associated With Air Resonance Study 

The angles are defined by the rotation of intermediate reference systems. The 
Galilean reference system is noted Rg, the fuselage reference system is noted R0. Ru 
and Rv are intermediate reference systems. 
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With: 

( )
( )

( )
( )

g g g g u u u u

v v v v0 0 0 0

R O, x , y , z R G, x , y , z

R G, x , y , zR G, x , y , z

⎧ = =⎧⎪ ⎪
⎨ ⎨

== ⎪⎪ ⎩⎩

r r r r r r

r r rr r r  [2.73] 

The angles are noted: 

 [2.74] 

As for the modeling of the ground resonance study, the connection of the blades 
to the rotor mast is modeled by a balljoint, one rotation of which is imposed by the 
pilot (eigenrotation of the blade about its longitudinal axis which corresponds to the 
incidence control). The other two possible rotations are the lag motion δi and flap 
motion βi. The blade reference system is noted R3: 

( )3 3 3 3R A, x , y , z= r r r  [2.75] 

These angles are defined by: 

( ) ( )
( ) ( )

i 1 2 1 2

i 2 3 2 3

δ x , x y , y

β x , x z ,z

= =⎧⎪
⎨

= =⎪⎩

r r r r

r r r r
 [2.76] 

The lag adapter modeling, used within the scope of ground resonance, is 
retained. 

The displacement vector, or system deformation, is termed X for system Σ, 
hence comprising the fuselage and the blades: 

{ }T
x y z 1 N 1 NX  = x y z α α α δ δ β βK K  [2.77] 

Let a vector have 6+2 N dimensions in the case of an N-blade rotor. Each 
component is noted qi. 
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2.4.2.2. Setting Up Equations 

Equation setting is done by the Lagrange formalism, [2.4]. To this end, use the 
definition of kinetic energy, potential energy and generalized forces by integrating 
the new degrees of freedom. For information only: 

( ) ( ) ( ) ( ) ( )g g g g

i

/ R / R Adap / R Adap / Rp
q a

i i i i

T T E Dd Q F
dt q q q q

Σ Σ⎡ ⎤∂ ∂ ∂ ∂
− + + =⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∑& &

 [2.78] 

T(Σ/Rg), Galilean kinetic energy of system Σ: 

( ) ( )

( )
g

g

2
g fus G fus/R 0/g G 0/g

2
g M blade/Rblade

1 1T fus / R M V I fus
2 2

1T blade / R V dm
2

∈

∈

⎧ = + Ω ⋅ Ω⎪⎪
⎨
⎪ =
⎪⎩ ∫

 [2.79] 

Ep(Adap/Rg), Galilean potential function, and D(Adap/Rg), Galilean dissipation 
function due to the lag adapter: 

g

g

N
2

Adapters / Rp i
i 1

N
2

Adapters / R i
i 1

1E ( ) K
2

1D( ) c
2

δ
=

δ
=

⎧ = δ⎪⎪
⎨
⎪ = δ
⎪⎩

∑

∑
 [2.80] 

Qqi(Fa), generalized forces of aerodynamic forces: 

( )g
Aero/R gi

M,blade No.k/R
Air bladeq blade No.k

k i

V
Q ( ) dF

q
→

∂
= ⋅

∂∑∫
r

r

&
 [2.81] 

The system of equations obtained is linearized around the equilibrium position. 
For the helicopter in a turn at stabilized speed, the equilibrium position vector is 
given by: 

{ }T
0 x 0 y0 z 0 ip ip ip ip0 0 0= α α α −δ −δ −β −βX K K  
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where: 

– αx0, αy0, αz0: static angular positions, 

– ))1i(
2

tsin())1i(
2

tcos( 0s10c1pip −π+Ωδ+−π+Ωδ+δ=δ , 

– ))1i(
2

tsin())1i(
2

tcos( 0s10c1pip −π+Ωβ+−π+Ωβ+β=β . 

The linearized system of equations has nonconstant coefficients. Owing to the 
rotation of the blades in relation to the fuselage, the mass, damping and stiffness 
matrices contain terms functions of the blade azimuth of the cos(ψi) and sin(ψi) 
form, where Ψi corresponds to the blade azimuth, with the following for blade No. i: 

i t (i 1)
2
πΨ = Ω + −  [2.82] 

As within the scope of ground resonance, the transformation known as Coleman 
transformation is used, i.e.: 

( ) ( )
( ) ( )
( ) ( )

i
i 0 1c i 1s i cp

i
i 0 1c i 1s i cp

i 0 1c i 1s i

cos sin ( 1)

cos sin ( 1)

cos sin

⎧δ = δ + δ Ψ + δ Ψ + δ −
⎪⎪β = β + β Ψ + β Ψ + β −⎨
⎪θ = θ + θ Ψ + θ Ψ⎪⎩

 [2.83] 

In the case of a four-blade rotor, the displacement and control vectors become: 

{ }
{ }

T
x y z 0 1c 1s cp 0 1c 1s cp

T
0 1c 1s

X  = x y z⎧ α α α δ δ δ δ β β β β⎪
⎨

Θ = θ θ θ⎪⎩  
 [2.84] 

From experience, some couplings between parameters are negligible. The 
following is thus retained: 

{ }
{ }

T
x y 1c 1s 1c 1s

T
1c 1s

X  =⎧ α α δ δ β β⎪
⎨

Θ = θ θ⎪⎩
 [2.85] 

The model which represents the vibratory behavior of the helicopter in a turn 
under pitch actuations is given by the following system of differential equations with 
constant coefficients: 

X X X+ + = ΘM C K H&& &  [2.86] 
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By adding a trivial equation, the system takes the following form: 

1 1 1X M C X M K X M H
X X

− − −⎧ = − − + Θ⎪
⎨

=⎪⎩

&& &

& &
 [2.87] 

The state vector is defined by: 

X
x

X
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

&  [2.88] 

In the case of a four-blade rotor, this vector is of dimension 12. With: 
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( )

( )

( )

( )

xx equi s 0 c

yy equi s 0 c

s 0

s 0

c

c

2
p 2

equi s p 0 s s 0 s

NI N I 0 h m I 0 0 C
2

N0 I N I 0 h m I C 0
2

N Nh m I 0 I 0 0 0
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2
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⎢ ⎥
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The problem is then formulated by means of the Duncan’s transformation.  
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By making this new variable change [2.88], the following equation of state is 
obtained: 

x A x B= + Θ&  [2.89] 

where: 

[ ] [ ]
1 1 1M C M K M H

A B
I 0 0

− − −⎡ ⎤ ⎡ ⎤− −
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 [2.90] 

Analyzing the eigenvalues and eigenvectors of A will give information on the 
structure behavior.  

Specially to define the stability through the real parts, and the positioning of the 
vibration frequencies through the imaginary parts. 

2.4.2.3. Mode and Stability Analysis 

For a helicopter of medium class, the system eigenvalues, whose real part 
represents damping, and imaginary part the mode eigenfrequency, can be 
represented in the complex plane. 

The air resonance behavior is observed: when actuating the control stick in 
longitudinal direction (q1c), the helicopter responds in roll along the axis of lowest 
inertia.  

The roll rate is a parameter of observation used in the active control loop; its 
response level can be observed through the transfer function in comparison with 
other parameters, Figure 2.56. 

2.4.3. Active Control of Air Resonance 

The system used for this type of resonance is similar to that set up for ground 
resonance. 

The tests were performed in configuration of turn at stabilized speed and 
constant altitude in order to cause coupling between the rotor and fuselage to appear. 
This study was achieved with viscoelastic adapters, with the pilot generating an 
excitation through the stick. 
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Figure 2.55. Air Resonance Simulation Test Comparison 

The transfer functions of all parameters are used to determine the action to be 
made in order to cause the phenomenon to appear. From the analysis of all results, it 
was retained that the cyclic controls (U1c and U1s) are the most effective to activate 
the mode due to coupling between the rotor and fuselage. 
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It can be observed that the measurable parameters representative of this mode are 
roll αx, pitch αy and displacements x, y of the fuselage. Roll parameter αx is the 
most representative. 

Frequency [Hz] Frequency [Hz]  

Figure 2.56. Transfer Functions for Cyclic Control Excitation U1c 
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Figure 2.57. Schematization of Air Resonance Active Control System 
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Figure 2.58. Air Resonance Open-Loop and Closed-Loop Transfer Function 

The other parameters have amplitudes too low to be retained, or are not easily 
accessible for measurement. 




