
Chapter 4 

Self-Sustaining Instability for Rotating Shafts 

4.1. Introduction to Self-Sustaining Instability 

Present technical breakthroughs focus on increased rotational speed of machines. 
The essential problem of machines rotating at substantial speeds is the control of 
reactions in the bearings through appropriate balancing [KRY 03]. There is another 
source of vibrations which gives rise to dynamic instability and is termed self-
sustaining instability (self-excited vibrations). 

The first examples of such type of instability were observed at the beginning of 
the last century, in turbocompressors for blast furnaces, and chemical industry 
[EHR 99, VAN 88]. Such instabilities result in shaft bending vibrations at 
nonsynchronous frequencies (not corresponding to the shaft rotational speed) for 
operating speeds higher than the 1st critical bending frequency. 

When there is no vibration monitoring, instability may cause damage to the 
machine. Often, the vibration amplitude is limited by a nonlinear effect, and a limit 
cycle is reached. Physically, the limit cycle is due to the fact that the increased 
vibration amplitude results in rotating parts contacting non-rotating components, 
which led to limit the amplitude through damping. Under such conditions, damage 
to components or even destruction is frequently observed. 

Self-sustaining instability of the rotor induced delayed development of 
turbomachines for the industry and specially aviation. For a long time, theoretical 
nonunderstanding of the phenomenon led the manufacturers to only perform 
experimental analysis. It was observed that two types of damping had to be 
distinguished for rotating systems: internal damping and external damping. 
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Internal damping is related to the dissipation due to a relative motion between 
rotating parts.  

Such type of damping is encountered for several connections, such as splines, 
clampings, sealing components placed in the rotating reference system, etc. (See 
Figure 4.1). 

Slipping area

 

Figure 4.1. Internal Damping for Connection With Bearings 

External damping is caused by energy dissipation due to a relative displacement 
of a system component rotating with the stationary reference system (the frame, 
often), Figure 4.2. 

 

Figure 4.2. External Damping for Connection With Bearings 

The presence of internal damping and the instability phenomenon were 
correlated by experimentation. In the same way, it was observed that external 
damping reduces the risk of instability. 

Amortissement externeExternal damping
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As regards self-induced vibrations related to internal damping, the energy which 
sustains vibrations is provided by an external source, Figure 4.3.  

 

Figure 4.3. Schematization of Self-Sustaining Instability 

This will be the case of the engine which drives a compressor, or hot gases 
which provide energy to the power turbine stage of a turbojet engine.  

This energy source causes divergent vibrations through a system inherent 
mechanism. Self-induced vibrations differ from forced vibrations: the force which 
causes instability is caused by the motion itself and not by an external force.  

It can be observed that, if the exciting source disappears, vibrations carry on, 
contrary to what happens for a forced excitation. 
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Figure 4.4. Case of Internal Damping for a Turbine 
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The difference between forced vibration and unstable self-induced vibration can 
be illustrated by the example of a hard-bearing balancing machine, Figure 4.5 
[KRY 03]. 

 

Figure 4.5. Hard-Bearing Balancing Machine 

 

Figure 4.6. Balancing Machine Bearing Setup  

Key to Figure 4.6: 

– m: rotating mass, 

– M: suspended mass, 
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– k: suspension stiffness, 

– e: eccentricity, 

– Ω: rotational speed. 

Let ωp be the eigenfrequency and λ the reduced damping defined by: 

p
k
M

ω =      
cr

c c
c 2 k M

λ = =  [4.1] 

By using the setup proposed in Figure 4.6, it can be demonstrated that the 
amplitude of the relative displacement is given by [KRY 03]: 

 [4.2] 

where: 

 [4.3] 

 

Figure 4.7. Amplitude of Relative Motion Versus Rotational Speed 
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For very low rotational speeds (ωr<<1), the relative displacement is very low. 
The shaft is hardly deformed. Conversely, the reactions at bearings exist and can be 
measured in order to perform the balancing operation. It can thus be shown that, for 
the case of forced vibrations, the excitation force exists (unbalance) independently 
of the shaft motion. In this case, the shaft does not vibrate despite the presence of the 
excitation force. 

4.2. Modeling of Effect of Internal Damping on Rotating Systems 

The purpose of this section is to propose a simple physical explanation for better 
understanding of this phenomenon and giving a sizing criterion. 

The phenomenon described in this chapter is characterized by vibratory 
oscillations not synchronous with the shaft rotational speed. Under this condition, 
rotary bending of the shaft is observed. Using a strain gage installed on the shaft, 
bending deformation is observed at a frequency differing from the rotation 
frequency and precession frequency. 

This phenomenon mainly arose with the arrival of light constructions which, for 
optimization criteria, are sized to operate above their first critical frequency 
(supercritical speed). Appearance of this instability is independent of the balancing 
condition of the rotating system. 

4.2.1. Instability Origins 

Damping internal to a rotating structure is due to: 

– friction between several parts making up the rotating section. The mechanism 
may present a relative displacement or play which, when associated with friction, 
results in instability under some conditions, Figure 4.8. This may be encountered in 
incorrect clampings, spline- or key-type couplings with play, etc., or 

– damping of the materials constituting the rotor. Such effects are often 
considered as negligible compared to the effects of the first type if any. 

The first type of damping should be modeled by dry friction. Such modeling has 
the drawback of complexifying the model and calculations. For an easier analytical 
approach, in this study, internal friction is modeled by Newtonian viscous damping. 
This model offers sufficient approximation of the behavior to understand the 
mechanism and derive rules. 

The second type of damping is modeled by viscous damping. 
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Contrary to other forms of instability, this one is not intuitive. We intend to give 
a first simple illustration of this phenomenon, by using the De Laval rotor model. 
Then, we will define a sizing criterion using a flexible shaft model. 

 

Figure 4.8. Rotating System With Relative Displacement 

4.2.2. Highlighting Instability 

4.2.2.1. Force Due to Internal Damping 

The De Laval rotor model, Figure 4.9, also known as “Jeffcott’s Rotor”, is 
sufficient to illustrate the origin of the instability due to internal damping [EHR 99, 
VAN 88]. 

The rotating system consists of a flexible shaft whose inertia effects are 
negligible, and a rotor disk considered as undeformable. In this section, center of 
inertia G does not necessarily correspond to rotation coincidence point A. 

It was shown that, under the single effect of unbalance, the trajectory of center of 
inertia G was a circle traveled at the same frequency as the rotor rotation frequency, 
Figure 4.10 [KRY 03]. We have a synchronous gyrational motion. 

Spline connections
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Figure 4.9. Rotating System Modeling – De Laval Rotor 

 

Figure 4.10. Synchronous Precession Motion 

Let us consider the De Laval rotor of Figure 4.9. If a deflection is imposed to the 
shaft, this results in conventional distribution of stresses with a compression area 
and an extension area, Figure 4.11. 
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Figure 4.11. Stress Distribution for a Bending Shaft 

It can be observed that, if the “shaft rotates” about the theoretical rest axis at 
speed Ω, the distribution will remain the same regardless of the angular position, 
Figure 4.12. The normal stress on a facet of normal z is then constant [KRY 03]. 

 

Figure 4.12. Stress Distribution During Precession Motion 

In some cases, an asynchronous motion can be observed from center of 
rotation A. This motion may initiate by an external action, even temporary, which 
tends to accelerate or slow down the rotational motion of point A. The two rotational 
speeds are then different, Figure 4.13. 
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Figure 4.13. Asynchronous Precession Motion 

Let us show that this speed difference induces a force which, depending on its 
sign, can increase (unstable system) or decrease (stable system) this speed 
difference. It is necessary to introduce the coordinates of a point in the rotating 
reference system in order to define the model of this mechanical action. 

Let (x, y) be the coordinates of center of inertia G in stationary reference 
system R0. Then set: 

 [4.4] 

Let (u, v) be the coordinates of this point in rotating reference system RΩ, and 
then set: 

 [4.5] 

With the rotor rotating at constant speed Ω, the following relations are shown by 
projection: 

 [4.6] 

From relation [4.6] and using complex notations [4.4] and [4.5], it can be shown 
that: 

 [4.7] 
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This reference system change is necessary since it is observed that internal 
damping is modeled in rotating reference system RΩ whereas it is necessary to 
analyze its effect in stationary reference system R0. 

4.2.2.1.1. Structural Damping 

Structural damping mentioned herein is dry friction between several rotating 
components. This may specially be due to the connection between the disk hub and 
the shaft. 

Generally, dry friction does not depend on the size of the slipping surfaces, but is 
directly proportional to the force normal to the plane of the contact surface. 

In practice, it can be observed that not only the dry friction force is opposed to 
the relative speed but also is a function of the relative speed of the two slipping 
components, noted V, Figure 4.14. 

Resisting force

v

 

Figure 4.14. Dry Friction Behavior 

Let us consider the spline connection, Figure 4.15. When the shaft is deformed, 
slipping appears at the splines. The slipping speed is then associated with shaft 
deflection ξ at the splines. 
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Figure 4.15. Effect of Deflection on Relative Motion 

Experience of this type of phenomenon thus leads us to model the effect of 
internal damping by an action of the following type: 

 [4.8] 

In the case of small motions, which is sufficient to determine whether the motion 
is stable or unstable, the effect of internal damping is modeled by an action of the 
Newtonian viscous fluid type of the following form: 

 [4.9] 

Let us attempt to express this force as a function of z, hence from [4.9] and [4.7]: 

 [4.10] 

Which gives, by reverting to Cartesian coordinates (x,y):  

 [4.11] 
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The following can be observed: 

– terms ic x− and ic y−  correspond to damping which can be modeled by 
dashpots working along x and y; 

– terms ic xΩ  and ic y− Ω  are a function of the displacement, hence 
comparable to stiffness; they also depend on the rotational speed. They are known as 
cross-coupled stiffness. Most often in works, these terms are modeled by 45° 
stiffness values [EHR 99, VAN 88], Figure 4.16. 

 

Figure 4.16. Cross-Coupled Stiffness Modeling 

This representation is not physical at all and may be open to misinterpretation.  

Cross-coupled stiffness acts perpendicularly to the shaft displacements (a 
displacement along the x-axis induces a force along the y-axis, and this is why 
cross-coupled stiffness is represented at 45°).  

Moreover, even though this representation uses known mechanical parameters 
{K, C}, the latter do not necessarily correspond to actual components. It can indeed 
be observed that one of the stiffness values is negative. 

It was demonstrated that, for a flexible shaft not balanced, the trajectory of the 
center of inertia is a circle of radius e [KRY 03].  

Let us attempt to illustrate that, if for any reason the system moves away from its 
equilibrium position, the previously described internal force may make the system 
unstable. 
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Figure 4.17. De Laval Rotor Setup 

The coordinates of the mass center in the stationary reference system versus the 
trajectory radius are given by: 

 [4.12] 

Thus, the following can be written from the definition of forces [4.11]: 

 [4.13] 

Or else: 

 [4.14] 

By expressing the forces in rotating reference system R(O,u,v,z) : 

 [4.15] 
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Figure 4.18. Internal Forces 

Then: 

 [4.16] 

The radial force which causes centering is therefore zero. The tangential force 
can be either stabilizing (opposed to the motion) or destabilizing (motive) depending 
on its sign. 

Physically, the rotor is subjected to two forces: 

– a force from the dashpots. It is opposed to the rotational motion of the mass 
and limits the amplitude increase. This part is represented by part i whirlc e− ω ; 

– an excitation force due to cross-coupled stiffness. It is directed in the same 
direction as mass rotation, and increases the amplitude, term ic e Ω . If this force 
becomes greater than the force from damping, the amplitude constantly increases 
and the system becomes unstable. 

This illustration shows that, depending on the sign of ( )whirlω − Ω , internal 
damping may cause a destabilizing force to appear. 
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4.2.2.2. Effect of Shaft Material Damping 

It can be observed that, for a gyrational motion not synchronous with the shaft 
eigenrotation, there is cyclic variation of the normal stresses associated with the 
facet of normal z as a function of its position, Figure 4.19. 

 

Figure 4.19. Stress Variation for an Eigenrotation 

Owing to the shaft precession at speed ωwhirl, the cyclic variation frequency for 
point A is defined such that: 

 [4.17] 

The materials usually used for shafts (metallic) most often comply with a linear-
elastic behavior law (Hook’s law). However, for this special case, material damping 
must also be taken into account. The shaft is considered as a viscoelastic material. 

Simple modeling of the relation between deformation and stress in a viscoelastic 
material is given by the Kelvin-Voigt model. 
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Figure 4.20. Kelvin-Voigt Material Behavior Model 

Let us illustrate the behavior of a bending shaft on its first bending mode using 
the Kelvin-Voigt model. 

The following behavior relations are deduced from this model: 

 [4.18] 

where: 

– E: Young’s modulus, 

– η: damping coefficient. 

 

Figure 4.21. Behavior Modeling for First Bending Mode 

ε

σσ

Ε

η

k

c

E

t

σ = ε⎧
⎪
⎨ ∂εσ = η = η ε⎪ ∂⎩

me

ke ce

M



218     Mechanical Instability 

The behavior law which models the shaft deformation behavior therefore is: 

 [4.19] 

For a harmonic behavior, the following can be shown: 

 [4.20] 

where: 

 

Which gives the following transfer function: 

 [4.21] 

The phase shift induced by the material behavior is such that: 

 [4.22] 

It can be observed that, when the frequency is low, the phase shift due to the 
material viscous behavior is negligible.  

If the frequency is high, the phase shift between stresses and deformations 
increases and is no longer negligible. 

As the phase shift is negative, the stresses are in phase advance in relation to the 
deformations.  

This means that, when the shaft is deformed, the associated stress occurs ahead 
of time. 

4.2.2.3. Effect of Stress Variation Frequency 

The preceding study showed that, depending on the frequency of the deformation 
cyclic variations, the stress response was not the same. 
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Let us note ω the frequency corresponding to the cyclic variation of deformation 
at a point of the shaft with: 

 [4.23] 

Two cases can then be observed. Either ω is small and this corresponds to Ω 
close to ωwhirl, or ω is great (which corresponds to Ω greater than ωwhirl). 

 

Figure 4.22. Stability According to Ω and ωwhirl 

4.2.2.3.1. Small ω 

In this case, Ω<ωwhirl. Stresses and deformations are in phase. The zero-
deformation and stress axes are merged (the deformation axis is imposed by the 
shaft deflection). The shaft stresses create an elastic force perpendicular to the zero-
stress axis. 

 

Figure 4.23. Stabilizing Restoring Force 

In this case, the elastic restoring force is directed to the center and tends to make 
the shaft return to its original position. It takes no part in destabilization. 
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4.2.2.3.2. Great ω 

In this case, Ω>>ωwhirl is frequent. The phase shift then increases and may be 
great. The phase shift will physically result in an angular shift between the zero-
deformation and stress axes. As the zero-deformation axis is imposed by the shaft 
deflection, the axis which rotates about the neutral axis is the zero-stress axis. 
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Figure 4.24. Destabilizing Effect of Shaft Internal Damping 

Subsequent to rotation of the zero-stress axis, the elastic restoring force changes 
direction and a destabilizing component tangential to the motion appears.  

The shaft internal damping can then take part in shaft stabilization or 
destabilization. 

4.2.2.4. Conclusion 

The cyclic changes to the shaft stresses create a phase shift between the 
deformations and stresses; this phase shift causes creation of a destabilizing force 
which tends to increase the shaft rotational speed, thus favoring instability.  

Other phenomena, such as gravity or a stationary lateral force, may also cause 
cyclic changes to the stresses and deformations, and favor instability. 

The axial slip for the first mode can be defined by the setup proposed in 
Figure 4.25. 
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Figure 4.25. Deformation Setup for First Bending Mode 

The length for the first deformation mode is given by: 

 [4.24] 

By limiting to the first order, it can then be shown that: 
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For the first bending mode, the deformation can be expressed by: 
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It can then be shown that: 
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The axial shortening is obtained as a function of the radial deflection. It may 
induce friction in the connections and thus internal friction. 

This illustration highlighted causes and effects on the instability phenomena due 
to internal damping. Nevertheless, sizing criteria cannot be derived from it. Let us 
try to do so in the following paragraphs. 

4.2.3. Stability Criterion for a Flexible Shaft 

To illustrate the stability criterion determination approach, let us use a flexible 
shaft associated with a rigid rotor disk, noted S [LAN 97]. 
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Figure 4.26. Flexible Shaft Model for Instability Phenomena 

Let us assume the following: 

– the rotor disk swivel angles, θ and ψ, are considered as small; 

– this assumption is sufficient to determine whether the motion is unstable or 
not; 

– rotational speed Ω is constant; 

– the effects of gravity are negligible in relation to the effects of other 
mechanical actions. 
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4.2.3.1. Setting Up Equations 

Let 0 0 0 0R (H, x , y , z )  be the stationary reference system, and R (A, x , y , z )Ω Ω Ω Ω  
the rotating reference system related to the shaft. The rotations are defined in 
Figure 4.27. 

Let us set up the equations of motion from the Lagrange equations. 

As the angles are small, it can be assumed that point A moves in a plane 
perpendicular to axis z0. Its coordinates are noted (u,v,l) in the stationary reference 
system: 

 [4.29] 

 

Figure 4.27. Reference Systems Associated With Rotor Disk 

4.2.3.1.1. Kinetic Energy 

The system kinetic energy is due to the disk and shaft. The kinetic energy of 
disk S takes the following form: 

 [4.30] 

0 0 0OA u x v y l z= + +

θ

z0

θ

y0
x0

y1

z1

ψ

ψ

y1

z1

x1
x2

zΩ

Ω

x2

xΩ

y2
yΩ

Ω

z2

( ) ( )2
g A S / R S / R A S / R

1 1T S / R M V I (S)
2 2∈= + Ω ⋅ Ω



224     Mechanical Instability 

As the rotor has revolution properties, its inertia matrix is given by: 

 [4.31] 

Now, we have the following: 

 [4.32] 

Then we show that: 

 [4.33] 

For small motions, developing to the second order gives: 

 [4.34] 

The shaft kinetic energy has an influence on the stability problem. To this end, 
the following setup is used. 

 

Figure 4.28. Flexible Shaft Setup for Instability Phenomena 
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The position of point M is noted by: 

 [4.35] 

The solid section of very small thickness dl is such that the inertia matrix is 
compared to the following form: 

 [4.36] 

Thus, the shaft kinetic energy is expressed as follows: 
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Parameters x, y, α and β are a function of position z. Their values will depend on 
the way the shaft will be deformed. In practice, this depends on the vibration 
frequency considered. 

Let us study the first bending mode whose deformation h(z) is known for a shaft 
on two mounts of length L. 

Let us set: 

 [4.38] 

Angles α and β are considered as small, and approximated by: 
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It can be observed that the rotor disk parameters, at abscissa 1 along the axis, 
become: 

 [4.40] 

 [4.41] 

Then, by making the variable change, the following kinetic energy expression is 
obtained: 

 [4.42] 

and: 
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 [4.43] 

It can then be observed that: 

 [4.44] 

Where: 

 [4.45] 

4.2.3.1.2. Potential Function 

The potential function due to elastic deformation of the shaft is given by: 

 [4.46] 
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where: 

– E: Young’s modulus, 

– I: shaft inertia. 

Using the variable change [4.38] and [4.39], it can be shown that: 

 [4.47] 

where: 

 

4.2.3.1.3. Internal Damping 

Internal damping is modeled by two dashpots placed at position Li. 

 

Figure 4.29. Cross-Coupled Stiffness Modeling 

We have: 

 [4.48] 
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4.2.3.1.4. External Damping 

External damping is modeled by two dashpots placed at le along directions x and 
y. The dissipation function is then: 

 [4.49] 

where C’e is the external damping coefficient. 

Then: 

 [4.50] 

 

Figure 4.30. External Damping Modeling 

4.2.3.1.5. Equations of motion 

The Lagrange equations are: 

 [4.51] 
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Then: 

 [4.52] 

4.2.3.2. Definition of a Stability Criterion 

Let us analyze the system stability by observing the type of solution of the 
system of equations [4.52]. 

Let us set: 

 [4.53] 

Then, by adding up the two system equations [4.52], we have: 

 [4.54] 

where: 

 

The solution is assumed to be of the following form: 

 [4.55] 

From the roots of characteristic equation [4.54], we obtain stability conditions. 
Simply study the sign of their real part. 

The roots of characteristic equation [4.54] are: 

 [4.56] 

Remind that: 

 [4.57] 

[ ]
[ ]

e 1 e 2 e 1 i e 1 i 2

e 2 e 1 e 2 i e 2 i 1

M q J q K q C C q C q 0

M q J q K q C C q C q 0

⎧ − Ω + + + + Ω =⎪
⎨

+ Ω + + + − Ω =⎪⎩

1 2u q i q= +

( ) ( )e e e iM u C i J u K i C u 0+ + Ω + − Ω =

i eC C C= +

rtu U e=

[ ] ( )

[ ] ( )

2
e e e e i

1
e

2
e e e e i

2
e

i J C C i J 4 M K i C
r

2 M

i J C C i J 4 M K i C
r

2 M

⎧ Ω − + + Ω − − Ω⎪ =
⎪⎪
⎨
⎪ Ω − − + Ω − − Ω
⎪ =
⎪⎩

2 2 2 2a b a a b aa ib i
2 2

+ + + −± = ±



230     Mechanical Instability 

 [4.58] 

where: 

 

The stability condition is such that the real parts of all roots are zero or negative. 

It can then be observed that the following is necessary: 

 [4.59] 

That is, by simplifying: 

 [4.60] 

This condition can then be expressed from rotational speed Ω: 

 [4.61] 

That is: 

 [4.62] 
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It can be observed that the motion pseudoperiod is given by the imaginary parts 
of roots [4.56]. Thus we have: 

 [4.63] 

where: 
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4.2.3.3. Case of a Drive Shaft 

4.2.3.3.1. Stability Criterion Special Features 

Let us analyze the result for a drive shaft featuring no rotor, Figure 4.31. 

 

Figure 4.31. Deflection of a Single Shaft on its First Bending Mode 

From the preceding results, it can be shown that the stability criterion is written: 

 [4.64] 

The following can be observed: 

– instability occurs in the supercritical envelope for the first shaft bending mode, 
Ωins>Ωc; 

– external damping plays a stabilizing role (stability limit speed increased); 

– internal damping reduces the stability limit speed. 
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There are several methods to improve stability: 

– increase the system eigenfrequency, 

– reduce internal damping, 

– increase external damping. 

The first method requires modification of the system (replacement of bearings, 
reduction of turbine mass, etc.) and causes modification of the critical frequencies at 
the risk of resonance in operating area. The second method is limited; it is possible 
to reduce internal damping by reducing the clearances between all parts making up 
the turbine, but it cannot be completely eliminated. The last method is the simplest 
one and is commonly used in aviation to improve stability of engines. 

4.2.3.3.2. Simplified Example 

Let us analyze a single shaft with the following geometric data: 

– length L: 400 mm, 

– inside diameter D: 58.5 mm, 

– thickness e: 1.7 mm 

Modeling by a beam on two mounts

Splines
(source of internal damping)

 

Figure 4.32. Hollow Shaft Modeled by a Beam on Two Mounts 

The material used is steel with the following characteristics: 

– Young’s modulus: 210 MPa, 

– density: 7800 kg/m3. 
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The system studied changes between 0 and 10,000 rad/s during operation. 

Dampings were evaluated from tests intended to measure the instability 
frequencies for several spline lengths.  

The dampings for this application were identified such as: 

– internal damping Ci: 1100 N/ms-1, 

– external damping Ce: 440 N/ms-1. 

Internal damping is due to friction of the splines on the shaft, Figure 4.32.  

Stability condition [4.64] gives a stability limit frequency equal to 50 Hz. 

 

Figure 4.33. Response Time Spectrum in Starting Phase, 
Acceleration Measured on Casing 

In order to prevent the effect of internal damping due to the splines, the solution 
found consists in introducing a deformable component, Figure 4.34. 
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Figure 4.34. Technical Solution to Prevent Self-Sustaining Instability 

Shaft shortening caused by bending deformation is taken up by a deformable 
component. This type of solution dissipates very little energy compared to the other 
solution. 

4.2.3.4. Dynamic Shaft Adaptation, Example of a Turbine 

The internal combustion turbine, the compressor and turbine rotors of which are 
secured to the same shaft, is termed single-shaft turbine. Correct efficiency is 
provided only when the rotational speed of the assembly is close to a defined rated 
speed. 

Reduction of the rotational speed reduces the air flow and compression ratio. The 
effective efficiency as well as the torque and power are decreased. Thus, a single-
shaft turbine has no starting torque. For this type of turbine, it is necessary, during 
starting, to be provided with an electric starter. 

From a given rotational speed, fuel is injected into the combustion chamber, and 
the fuel flow is ignited by the plug spark. Burnt gases start supplying the turbine 
and, from a given rotational speed, the turbine power becomes higher than the 
compressor power. The turbocompressor starts accelerating up to the rated rotational 
speed. The power variation is obtained through variation of the flow of fuel fed to 
the combustion chamber. 

The single-shaft turbine badly withstands load fluctuations. The idea is then to 
separate the two functions: the compressor turbine (gas generator) on one side, and 
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the useful power turbine (free turbine) on the other side. The free turbine power is 
caused to match the receptor by varying the gas generator speed. 

This type of system provides a starting torque which is usually sufficient. A 
twin-shaft turbine well withstands power fluctuations. Thus, under half-load, the 
efficiency is still 80%-90% of the full-load efficiency. 

Using substantial rotational speeds leads to the technical problems of stability as 
regards vibrations of bending shafts as well as governing. Let us illustrate the 
problem of a two-stage free turbine. 

 

Figure 4.35. Two-Stage Turbine Technology 

The turbine consists of one shaft and two disks, Figure 4.35. 

4.2.3.4.1. Calculation of Instability Critical Speed on First Bending Mode 

The structure deformation is assumed to be sinusoidal: 

 [4.65] 

where L is the length between the nodes of the first shaft bending mode. 

It can be shown that: 

 [4.66] 
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and: 

 [4.67] 

By assuming that the rotor disks are at 0.4 L and 0.6 L distances, respectively, 
we have: 

 [4.68] 

The system has the geometric data defined in Figure 4.36. 

 

Figure 4.36. Modeling of a Rotor Disk and Shaft 
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For the rotor disks, take: 

G

x ,y ,z

M 53 kg
1.251 0 0

I (disk) 0 1.251 0
0 0 2.496

Ω Ω Ω

=⎧
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 [4.69] 

For the shaft: 
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 [4.70] 

As the bearings are located at the bending vibration nodes, they induce no 
external damping. Only external damping caused by external actions (gases) has 
been considered. 

Then we show that: 

-1 -1
e i

7
e

e
6 2

e

C 1100 N/ms C 440 N/ms

K 4.8310 N/m
M 125.43 kg

J 6.55 10 kg m−

⎧ = =
⎪

=⎪
⎨

=⎪
⎪ =⎩

 [4.71] 

Stability criterion [4.62] thus becomes: 

2173 rad/s 20, 750 rpmΩ < =  [4.72] 

The instability appearance speed is below the operating speed (23,000 rpm). The 
next paragraph shows a solution to prevent this type of problem while maintaining a 
high rotational speed. 



238     Mechanical Instability 

4.2.3.4.2. Positioning of Rigid Modes 

Like all rotating structures, the turbine has rigid modes (deformation is due to 
connecting components like bearings) and deformation modes of the rotating section 
(bending mode for our concern), Figure 4.37. 

 

Figure 4.37. Modeling of a Shaft and Associated Rotor With Bearings 

Optimization of the shaft line consists in determining the structure parameters in 
order to position the operating speed range between the rigid body modes and the 
first bending mode [EHR 99, VAN 88].  

This has several advantages: 

– in practice, this arrangement provides a large operating speed range free from 
any vibration resonance; 

– this approach offers the possibility of preventing multiplane balancing at high 
speed since the system usually only requires balancing of the rigid body type at low 
speed. This may represent a precious advantage for the manufacture and 
maintenance of a machine series-produced and widely used; 

– provided that the system is not required to be used at the first critical bending 
speed or close to it, this arrangement enables roller bearings to be used while 
avoiding complications resulting from addition of bearing dampers. 

L
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Figure 4.38. First Three Shaft Modes 

Positioning of the critical speeds of rigid body modes Ω1 and Ω2 is also 
important. 

For a turbine, they are usually positioned before the machine operating area, 
Figure 4.39. 

It will be necessary to check that the vibrating motion amplitude, upon changing 
from the rigid modes to the starting phase, is compatible with bearing operation. 

In order to adjust these rigid frequencies and the structure external damping, it is 
possible to insert a deformable component between the bearing outer ring and the 
frame so as to adjust the eigenfrequencies of the system (squirrel cage) and a 
Squeeze Film Damper (SFD) which, during the relative motions, will provide the 
system with the necessary damping, Figure 4.40. 
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Figure 4.39. Positioning of Eigenmodes 

 

Figure 4.40. Squirrel Cage Damping System and 
Squeeze Film Damper - Schematic Diagram 
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Sizing of the squirrel cage is essential. Excessively rigid, it will act as a recess; 
excessively flexible, the SFD rings may contact each other and transmit the forces to 
the frame. The squirrel cage acts as stiffness in series with the bearing stiffness, 
Figure 4.41. 

 

Figure 4.41. Schematization of Squirrel Cage 

In practice, 30% of the absolute displacements of the shaft are expected to be due 
to the bearing (z2), and 70% to the deformable component (z1). The cage motions in 
relation to the frame must be great to make the damping effect significant. To this 
end, the value of K1 is determined to obtain such a distribution. 

Whole deformation Δz is equal to: 

 [4.73] 

That is, the following objective: 
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As the springs are in series, equivalent stiffness K is given by: 

 [4.75] 
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That is: 

 [4.76] 

That is: 

 [4.77] 

There are limits not to be exceeded for damping. If damping is excessive, the 
damper is considered as rigid and transmits all forces to the frame. In the contrary 
case, if it is too low, its efficiency is nil. The elements to be considered are: 

– length: L, 

– inside diameter: D, 

– radial clearance (film thickness): c, 

– oil viscosity: μ, 

– oil density: ρ. 

 

Figure 4.42. Method to Provide External Damping - SFD System 
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Experience allows for the definition of technological criteria as regards the 
choice of some parameters. Thus: 

– the geometric parameters of the damper are dependent on the turbine. The 
dampers are usually of small lengths such that L/D <0.5; 

– the clearance between the bearing and the outer ring must be very low to limit 
the effect of inertia and air ingestion: c < 0.25 mm typically; 

– the lubricating oil present in the engine will be used as far as possible to obtain 
the damping film. This oil has a kinematic viscosity of 3 cSt at 60°C and a density of 
950 kg/m3. 

All these requirements provide an initial base to calculate the damping 
coefficients for each type of damper. Other requirements would also have to be 
considered, specially as regards feasibility, maintenance and cost. 

Figure 4.43 indicates the damping coefficient values as a function of eccentricity. 

 

Figure 4.43. Damping Versus Eccentricity 

As previously indicated, damping generated by the SFD is between the results 
obtained with cavitation and without cavitation. Fixed damping is sought but SFD 
damping depends on eccentricity; optimum damping is reached between 0.57 and 
0.75. It is essential to know whether sufficient eccentricity can be reached to obtain 
the desired damping. 
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