
Chapter 6

Parallel Wrists: Limb Types, Singularities
and New Perspectives

This chapter reviews the criteria to identify the limb architectures suitable
for parallel wrists (PWs) and the instantaneous kinematics of PWs. Special
attention will be given to the use of the screw theory and of the displacement
groups. The relationship between the limb architecture and the resulting PW
mobility will be discussed. The main results reported in the literature about
the singularity analysis of PWs will be summarized and the problem of
characterizing the kinetostatic performances of PWs will be addressed.
Eventually, innovative wrist architectures, recently proposed, will be
presented.

6.1. Limb architectures and mobility analysis

PWs are parallel manipulators (PMs) with three degrees of freedom (DoF)
where the end-effector motion can only be spherical. In PWs, the end-effector
is connected to the frame through a number, n, of kinematic chains (limbs).

For a long time, there have been only two architectures of PWs diffusely
studied in the literature: the 3-RRR wrist [GOS 89, GOS 94, GOS 95,
ALI 94] and the S-3UPS wrist [INN 93, WOH 94]. The 3-RRR wrist
(Figure 6.1) has three limbs of type RRR (R stands for revolute pair) with all
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the revolute pair axes converging toward a single point of the frame (the
center of the end-effector spherical motion). The S-3UPS wrist (Figure 6.2)
has three limbs of type UPS (U, P and S stand for universal joint, prismatic
pair and spherical pair, respectively) and a fourth limb that is constituted by a
spherical pair that directly connects the end-effector and the frame.

Figure 6.1. The 3-RRR wrist

Figure 6.2. The S-3UPS wrist

Since 2000 [KAR 00], the interest in PWs has increased by following the
increasing attention that the academic and industrial worlds paid to the PMs
with lower mobility. This renewed interest in the PWs led to lot of new PW
architectures appearing in the literature (see, for instance, [KAR 00, DIG 01a,
DIG 01b, KAR 02, DIG 04a, KON 04a, KON 04b, KAR 04, KAR 06]). The
analysis of this literature reveals that there are many techniques to generate
limb architectures suitable for PWs. Such techniques can be collected into
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three sets: (1) the techniques that use the screw theory, (2) the techniques that
use group theory and (3) other techniques less general than screw and group
theories.

In the following sections, these approaches to the problem of identifying
PW limbs will be presented and discussed.

6.1.1. Use of the screw theory

6.1.1.1. Basic concepts

By introducing a reference point O (pole), a straight line, (P,u), passing
through a point P and with the direction of the unit vector u, and two scalar
coefficients, named q (signed magnitude) and p (pitch), whose product,
k (= q p), is always a finite real number, a screw can be geometrically defined as
the following six-dimensional vector:

ˆ q
p ( )
 

=  + − × 

u
$

u P O u
[6.1]

The set of screws with the same pole, O, constitutes a vector space where
the rules of the sum of two screws can be immediately deduced from the
rules of the sum of two three-dimensional vectors.

According to the physical meaning given to q and to the line (P, u), a
screw can represent either a rigid body motion (in this case, the screw is
named twist) or a system of forces (in this case, the screw is named wrench).

If q is the signed magnitude of a rigid body angular velocity, ωω, that is
equal to q u, and the line (P, u) is the instantaneous screw axis of an
infinitesimal motion, the screw (twist) will represent the instantaneous
motion of a rigid body since it has the following kinematic meaning:

t
O

ˆ  
=  
 

ω
$

v
[6.2]

where vO is the velocity that the pole O would have if it was fixed to the rigid
body.

If q is the signed magnitude of the resultant force F (= q u) of a force
system, and the line (P, u) is Poinsot’s central axis of the same force system,
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the screw (wrench) will represent the force system since it has the following
static meaning:

w
O

ˆ  
=  
 

F
$

M
[6.3]

whereMO is the resultant moment about the pole O of the force system.

The reciprocal product, t w
ˆ ˆ ,$ $ between a twist, t

ˆ ,$ of the set of the

twists with pole O (motion space) and a wrench, w
ˆ ,$ of the set of the

wrenches with pole O (wrench space) is defined as follows:

t w O O
ˆ ˆ = ⋅ + ⋅$ $ F v M ω [6.4]

The reciprocal product has the commutative and the distributive
properties. It has the physical meaning of instantaneous virtual power that the
system of forces, represented by w

ˆ ,$ introduces into a mechanical system

that performs the instantaneous rigid motion represented by t
ˆ .$

A twist, t
ˆ ,$ is said to be reciprocal to a wrench, w

ˆ ,$ and vice versa if

their reciprocal product, t w
ˆ ˆ ,$ $ is equal to zero. Since, for an instantaneous

motion compatible with the joint, the instantaneous virtual power introduced
by the reaction forces of a passive frictionless joint is zero, it can be stated
that, in a passive frictionless joint, the wrench that represents the reactions in
the joint is reciprocal to the twist that represents the instantaneous relative
motion between the links connected by the joint.

6.1.1.2. Identification of PW limbs

Let us consider a generic PM without actuators (i.e. all the joints are
passive joints) where the end-effector is connected to the frame through n
limbs (Figure 6.3), and call mi the connectivity1 of the ith limb (i = 1, …, n).

1 The connectivity of a limb is the number of DoF that the end-effector would have, if
it was connected to the frame only by that limb. If the limb is a serial kinematic chain,
its connectivity will be equal to the number of joint variables of the limb. Such a
number is also equal to the number of one DoF kinematic pairs, the limb would have,
if all its multiple DoF pairs were transformed into a serial kinematic chain with one
DoF pairs.
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Hereafter, without losing generality, all the limbs will be assumed serial
kinematic chains.

Figure 6.3. Parallel manipulator with n limbs

If only the ith limb connected the end-effector to the frame, the
instantaneous virtual motion of the end-effector would be represented by a
twist, t ,i

ˆ ,$ that can be expressed as follows:

i

t ,i ij t ,ij
j 1,m

ˆ ˆ
=

= α$ $ [6.5]

where αij is the virtual rate of the jth joint variable of the ith limb; whereas

t ,ij$̂ is the twist that represents the motion, the end-effector would have, if all
the αik for k = 1, …, (j − 1), (j + 1), …, mi were equal to zero and αij was
equal to 1. The explicit expressions of the t ,ij$̂ twists depend on the
architecture and the configuration of the ith limb.

The force systems that the ith limb can exert on the end-effector are, of
course, represented by wrenches, w,i

ˆ ,$ that are all reciprocal to t ,i
ˆ .$ The

generic wrench w,i$̂ can be represented through a base of six independent

screws, b$̂ for b = 1, …, 6, as follows:

w,i i b b
b 1,6

ˆ ˆ
=

= β$ $ [6.6]

where βib for b = 1, …, 6 are scalar coefficients.
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By using [6.5] and [6.6], the reciprocity of w,i$̂ and t ,i$̂ yields the
following analytic condition:

i

ij i b b t ,ij
j 1,m b 1,6

ˆ ˆ( ) 0
= =

 
α β = 

 
  $ $ [6.7]

Since the αij coefficients can take any arbitrary value, condition [6.7] can
be satisfied if and only if the following mi conditions are matched:

i b b t ,ij
b 1,6

ˆ ˆ( ) 0
=

β = $ $ j = 1, …, mi [6.8]

If the ith limb architecture is known, condition [6.8] is a system of mi
linear equations in the six βib coefficients. Provided that singular limb
configurations are not considered, system [6.8] concludes that, if the
connectivity mi is greater than or equal to six, all the βib coefficients must be
zero (i.e. the ith limb does not apply forces2 to the end-effector). Therefore,
only limbs with connectivity mi less than six can actually constrain the end-
effector motion.

According to [6.8], if mi is less than six, there will be (6 – mi) coefficient
βib that can be freely chosen in expression [6.6]. Therefore, the set of all the

w,i$̂ wrenches constitutes a screw system of order (6 – mi), which can be
analytically expressed as follows:

i

w,i i k ik
k 1,(6 m )

ˆ ˆ
= −

= γ$ $ [6.9]

where γik for k = 1, …, (6 – mi) are free coefficients, and the ik$̂ are a set of
(6 – mi) independent screws obtained by introducing the solutions of system
[6.8] into expression [6.6].

The force systems that all the limbs apply to the end-effector are
represented by the following wrench system:

i

e i k ik
i 1,n k 1,(6 m )

ˆ ˆ
= = −

= γ $ $ [6.10]

2 External loads (gravity, inertia forces, etc.) applied to the limb’s links are not
considered, and all the joints are considered passive in the analyses that bring to
identify a limb architecture.
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The PM is a PW if and only if the wrench system [6.10] coincides with
the third-order screw system,

P

ˆ ,F$ that collects all the wrenches that

represent a force, FP, with line of action passing through the center of the
spherical motion, P. In order to make e$̂ coincide with

P

ˆ ,F$ the following

relationship must hold:

s
ik ik,s

s 1,3 s

ˆ
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= δ  − × 


u
$

P O u
i = 1, …, n; k = 1, …, (6 – mi) [6.11]

where δik,s for s = 1, …, 3 are suitable coefficients, and us for s = 1, 2, 3 are a
set of three mutually orthogonal unit vectors.

In addition to [6.11], if the PW is non-overconstrained3, the following
condition must hold too:

i
i 1,n

(6 m ) 3
=

− = [6.12]

Provided that the limbs (redundant limbs) with mi equal to six or greater
than six are not considered; relationship [6.12] reveals that the non-
overconstrained PWs without redundant limbs can be collected into two sets:
(1) the PWs with three limbs with connectivity five, and (2) the PWs with
two limbs: one with connectivity four and the other with connectivity five.

Once the connectivity and the topology of the ith limb are chosen, the
generic expressions of the ik$̂ can be computed by solving system [6.8].
Such expressions will contain the geometric parameters and the joint
variables of the limb. And, by imposing that the computed ik$̂ expressions
satisfy relationship [6.11], the geometric conditions (i.e. the manufacturing
and mounting conditions) that a limb with the chosen topology must satisfy
to be used as a PW limb are found.

Such a technique is general and can be used to answer the questions such
as “which are the PW limbs with only prismatic and revolute pairs?”. This

3 Parallel manipulators whose DoF number is greater than (equal to) the DoF
number computed through the Grübler–Kutzbach rule are called overconstrained
(non-overconstrained).
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and other related problems have been investigated with this technique in
[KON 04a].

6.1.2. Use of the group theory

6.1.2.1. Basic concepts

A group is a set, say {A}, with an associative binary operation, •, so
defined that (1) a1•a2 always exists and is an element of {A} for any couple,
a1 and a2, of elements of {A}, (2) the identity element, e, of the operation • is
an element of {A} and (3) each a∈{A} has an inverse element a–1∈{A}.

The set of rigid body displacements (motions), {D}, is a six-dimensional
group where the associative binary operation, •, is the composition law of
two displacements. The generic element of {D} or of one out of its subgroups
can be analytically represented by the screw identifying the finite or
infinitesimal motion belonging to the subgroup. The dimension of a
displacement subgroup is the number of independent scalar parameters that,
in the analytic expression of the generic element’s screw, must be varied to
generate all the screws of the subgroup.

In addition to the identity subgroup, {E}, that corresponds to the absence
of motion, {D} contains 10 motion subgroups [HER 78, HER 99] with
dimensions greater than zero and less than six:

(1) Subgroups of dimension 1:

(i) Linear translation subgroup, {T(u)}, that collects all the translations
parallel to the unit vector u. As many {T(u)} as unit vectors, u, can be
defined. A prismatic pair with sliding direction parallel to u physically
generates the motions of {T(u)}.

(ii) Revolute subgroup, {R(P, u)}, that collects all the rotations around
an axis (rotation axis) passing through point P and parallel to the unit vector
u. As many {R(P, u)} as rotation axes, (P, u), can be defined. A revolute pair
with rotation axis (P, u) physically generates the motions of {R(P, u)}.

(iii) Helical subgroup, {H(P, u, p)}, that collects all the helical motions
with axis (P, u) and finite pitch p that is different from zero and constant. As
many {H(P, u, p)} as sets of helix parameters, (P, u, p), can be defined. A
helical pair (hereafter denoted with H) with helix parameters (P, u, p)
physically generates the motions of {H(P, u, p)}.
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(2) Subgroups of dimension 2:

(i) Planar translation subgroup, {T(u1, u2)}, that collects all the
translations parallel to a plane perpendicular to u1 × u2 where u1 and u2 are
two orthogonal unit vectors. As many {T(u1, u2)} as unit vectors u1 × u2 can
be defined.

(ii) Cylindrical subgroup, {C(P, u)}, that collects all the motions
obtained by combining a rotation around a rotation axis (P, u) and a
translation parallel to the unit vector u. As many {C(P, u)} as (P, u) axes can
be defined. A cylindrical pair (hereafter denoted with C) with axis (P, u)
physically generates the motions of {C(P, u)}.

(3) Subgroups of dimension 3:

(i) Spatial translation subgroup, {T}, that collects all the spatial
translations. Only one subgroup {T} can be defined.

(ii) Spherical subgroup, {S(P)}, that collects all the spherical motions with
center P. As many {S(P)} as P points can be defined. A spherical pair (hereafter
denoted with S) with center P physically generates the motions of {S(P)}.

(iii) Planar subgroup, {G(u1, u2)}, that collects all the planar motions with
motion plane perpendicular to u1 × u2 where u1 and u2 are two orthogonal unit
vectors. As many {G(u1, u2)} as unit vectors u1× u2 can be defined.

(iv) Pseudo-planar subgroup, {Y(u1, u2, p)}, that collects all the
motions obtained by combining a planar translation belonging to {T(u1, u2)}
with a helical motion belonging to {H(P, u1 × u2, p)}.

(4) Subgroups of dimension 4:

(i) Schoenflies subgroup, {X(u1, u2)}, that collects all the motions
obtained by combining a planar translation belonging to {T(u1, u2)} with a
cylindrical motion belonging to {C(P, u1 × u2)}.

A kinematic chain is called a mechanical bond when it connects one rigid
body to another so that the relative motion between the two bodies is
constrained. A mechanical bond is called mechanical generator when all the
allowed relative motions between the two bodies belong to only one of the 10
subgroups of {D}.

6.1.2.2. Identification of PW limbs

If the end-effector was connected to the frame only by the ith limb, the
generic element, li, of the set, {Li}, of the displacements, the end-effector can
perform, could always be expressed as follows:
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i ii i1 i2 i (m 1) iml a a a a−= • • • • [6.13]

where aij for j = 1, …, mi is a generic element of the set, {Aij}, of the
displacements that the jth joint4 of the ith limb allows.

The existence of relationship [6.13] between the elements of {Li} and the
elements of the mi sets, {Aij}, can be reminded by introducing the following
notation:

i ii i1 i2 i (m 1) im{L } {A } {A } {A } {A }−= • • • • [6.14]

The set, {M}, of the displacements that the end-effector of a PM with n
limbs can perform is a connected subset of the intersection of all the {Li}
sets, that is:

i
i 1,n

{M} {L }
=

⊂  [6.15]

If {M} is a subset of a spherical subgroup, {S(P)}, then the PM is a PW.
Therefore, in order that the ith limb can be a PW limb, the existence of a
connected subset, {Si}, of {Li}, which is a subset of the spherical subgroup,
{S(P)}, too, is necessary. By imposing this condition, PW limbs can be
identified; whereas, by imposing that {M} is a subset of {S(P)}, PW
architectures can be identified.

This scheme has been used in [KAR 00, KAR 02, KAR 04, KAR 06] to
identify PW limbs and PW architectures.

6.1.3. Other approaches

Many other approaches have been used to demonstrate that specific PM
topologies could be used as PW architectures. In this section, some of them
are presented.

An approach different from the previous approaches has been used in
[DIG 01a, DIG 01b]. This approach uses the velocity loop equations. The use
of the velocity loop equations consists of exploiting the kinematic properties
of the n limbs for writing n times both the end-effector angular velocity, ωω,

4 It has been assumed that the limb’s joints are numbered from the frame to the end-
effector.
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and the velocity, vP, of the end-effector point, P, which is a candidate for
being the center of the end-effector’s spherical motion. By doing so, n
expressions of the couple of vectors (ωω, vP) are obtained where the ith
expression, i = 1, …, n, is a linear combination of the joint rates of the ith
limb. The analysis of these (ωω, vP) expressions is sufficient to determine the
geometric conditions that each limb has to satisfy in order to make (1) all the
n expressions compatible, and (2) the velocity vP equal to zero. Since this
approach deduces geometric conditions by analyzing the instantaneous end-
effector motion, the characteristics of the finite end-effector motion are stated
by demonstrating that those conditions are sufficient to warrant an infinite
sequence of instantaneous motion of the same type provided that no singular
configuration is encountered.

The use of the velocity loop equations could be used as a general
technique to find and/or enumerate PW topologies, but its implementation for
this aim is much more complex than the implementation of the methods
presented in the previous subsection. On the other hand, it gives many more
pieces of information, about the instantaneous behavior of a specific
architecture, than other methods, and it is specially recommended to find all
the PW singularities since it considers all the joint rates of the PW.

Di Gregorio [DIG 04a] demonstrated that, if three non-aligned points of a
rigid body are constrained to move on concentric spheres, the rigid body will
be constrained to perform only a spherical motion. This demonstration can be
used for finding PW architectures by assembling limbs that constrain an end-
effector point to lie on a sphere. In [DIG 04a], it was used to propose the
3-RRS wrist (Figure 6.4).

Once a PW limb has been identified, other PW limbs can be generated.
Indeed, by connecting two adjacent links of a PW limb, for instance the links
joined by the jth joint, through a kinematic chain that, together with the jth
joint, yields a single loop with one DoF, the added kinematic chain does not
modify the type of motion that the end-effector can perform. Moreover, the
configuration of the one DoF loop built around the jth joint is uniquely
determined by the jth joint variable, and vice versa, the relative pose between
the links is uniquely determined by the configuration of the added kinematic
chain. Thus, the added chain is able to keep the mobility constraint, between
the two links, due to the jth joint and, if the jth joint is replaced by that chain,
the resulting limb architecture is a new PW limb. This procedure has been
used in [KON 04b].
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Figure 6.4. The 3-RRS wrist

Finally, new PW architectures can be obtained by adding limbs with
connectivity 6 to already identified parallel or serial wrist architectures. The
added limbs can contain actuated joints, the same as those already present in
the original wrist architecture. Therefore, such a practice can be used to
redistribute the actuators in a more convenient way. This principle can be
seen as the one that generated the S-3UPS wrist (Figure 6.2) from a simple
spherical pair that connects the end-effector to the frame.

6.1.4. Conclusion

Many architectures for PW limbs have been recently proposed by using
either the screw theory or the group theory. Nevertheless, these are not the
only tools that identify architectures suitable for being PW limbs. Moreover,
once a limb architecture or a PW architecture has been identified, simple
reasoning can be used to generate new limb architectures or new PW
architectures.

6.2. Singularities and performance indices

Singularities are manipulator configurations where the relationship
(input–output instantaneous relationship) between the rates of the actuated
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joint variables and the characteristic vectors5 of the end-effector’s
instantaneous motion fails [GOS 90, MA 91, ZLA 95]. According to the
input–output instantaneous relationship [GOS 90], they are of three types:
(1) singularities of the inverse kinematic problem, (2) singularities of the
direct kinematic problem and (3) singularities both of the inverse and of the
direct kinematic problems.

Type 1 singularities occur when at least one of the input variable rates
(actuated joint rates) is undetermined even though all the output variable rates
(end-effector’s motion characteristics {ωω, vP}) are assigned. All the
manipulator configurations where the end-effector reaches the border of the
workspace are type 1 singularities, and finding type 1 singularities is one way
to determine the workspace border. From a static point of view, in type 1
singularities, at least one component of output torque (force), applied to the
end-effector, is equilibrated by the manipulator structure without applying
any input torque (force) in the actuated joints.

Type 2 singularities occur when at least one component of end-effector’s
motion characteristics, {ωω, vP}, is undetermined even though all the actuated
joint rates are assigned. These singularities may be present only in PMs and
fall inside the workspace. From a static point of view, in type 2 singularities,
an (finite or infinitesimal) output torque (force), applied to the end-effector,
needs at least one infinite input torque (force) in the actuated joints to be
equilibrated. Since, long before the input torque (force) becomes infinite, the
manipulator breaks down, type 2 singularities must be found during the
design phase and avoided during operation.

This singularity classification has been extended in [ZLA 95] by taking
into account the rates of the non-actuated joints.

In the literature [DIG 01a, DIG 01b, ZLA 01, DIG 02, ZLA 02,
DIG 04b], the possibility of changing the type of motion the end-effector
performs, in correspondence of particular type 2 singularities (constraint
singularities) has been highlighted. Constraint singularities affect only PMs
with lower mobility where the limbs’ connectivity is greater than the
manipulator’s DoF. PWs are particular PMs with lower mobility. Therefore,
PWs may have constraint singularities, that is configurations where the end-
effector is no longer constrained to perform spherical motions.

5 The characteristic vectors of the instantaneous motion of a rigid body are the rigid
body’s angular velocity, ωω, and the velocity, vP, of a rigid body point, P.
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This section reviews the main results reported in the literature about the
singularity analysis of PWs and addresses the problem of characterizing the
kinetostatic performances of PWs.

6.2.1. Singularity analysis of PWs

The singularity analysis is the determination of all the singularities of a
manipulator. In the configuration space of a manipulator (joint space or
operational space), the geometric locus collecting all the points that identify
manipulator singularities is named as the singularity locus.

According to the above-reported definitions, singularities are related to
the input–output instantaneous relationship; thus, the implementation of the
singularity analysis reduces itself to discuss such a relationship.

6.2.1.1. Analytical determination of the singularity loci

The input–output instantaneous relationship of a PM with lower mobility
can be deduced by using the velocity loop equations [DIG 01a, DIG 01b,
DIG 02]. Such a technique consists of two step: (1) the analytic calculus of a
number of different expressions of the end-effector motion characteristics,
{ωω, vP}, equal to the limb number, say n (such a calculus considers each limb
separately as it acted on the end-effector by itself); and (2) the elimination of
all the rates of the non-actuated joint variables from the 6n scalar equations
obtained in the previous step.

By doing so, the following input–output instantaneous relationship is
obtained for a generic three DoF PM:

P

    
=    

    


ωW V H
q

vT U G
[6.16]

where q is the time derivative of the three-dimensional vector, q, which
collects the three actuated joint variables, qi for i = 1, 2, 3. H, G, T, U, V and
W are 3 × 3 matrices that depend on the mechanism configuration (i.e. on q).
Such matrices can be seen as triplets of three-dimensional column vectors
defined by the following formulas ([⋅]T stands for transpose of [⋅]):

H = [h1, h2, h3]; G = [g1, g2, g3]; T = [t1, t2, t3]T [6.17a]

U = [u1, u2, u3]T; V = [v1, v2, v3]T;W = [w1, w2, w3]T [6.17b]
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In a PW, if the center of the end-effector spherical motion is chosen as
point P, the matrices T and G become null matrices, and relationship [6.16]
becomes [DIG 01a]:

3 3 3 3P× ×

    
=    

    


W V Hω
q

0 U 0v
[6.18]

where 03 × 3 is the 3 × 3 null matrix. The homogeneity of the equations of
system [6.18] allows the normalization of the ui and wi vectors for i = 1, 2, 3
(see definition [6.17b] of matrices U and W). Therefore, without losing
generality, it will be assumed that the ui and wi vectors are unit vectors.

The analysis of relationship [6.18] reveals that the end-effector is
constrained to perform an infinitesimal (elementary) spherical motion if and
only if matrix U is not singular. Indeed, only under this condition, the last
three equations of system [6.18], that is:

U vP = 0 [6.19]

have the only solution

vP = 0 [6.20]

that warranties the spherical motion.

Since matrix U is singular, if and only if its determinant is equal to zero,
the values of q that satisfy the following singularity condition

det(U) = 0 [6.21]

identify PW configurations where the type of motion of the end-effector may
be non-spherical. Thus, such configurations are constraint singularities.
Equation [6.21] is the analytical expression of the singularity locus that
collects all the joint space points6 that correspond to constraint singularities
of the PW.

If condition [6.21] is matched, system [6.19] has an infinite number of
solutions for vP (i.e. the velocity vP is undetermined), even though the

6 The vector of the actuated-joint variables, q, is the position vector that locates the
points of the joint space.
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actuated joint rates, ,q are assigned. According to the above-reported
singularity classification, this kinematic condition makes constraint
singularities belong to the set of the type 2 singularities7.

By using the set theory, it can be demonstrated that constraint
singularities may occur only in PM with lower mobility where all the limbs
have a connectivity that is greater than the PM DoF (see [DIG 06] for
details). Therefore, the PWs that have at least one limb with connectivity
equal to three, like (see [GOS 95]) the 3-RRR (Figure 6.1) or the S-3UPS
(Figure 6.2), have no constraint singularities.

Another criterion for avoiding constraint singularities is the use of PW
architectures that have a constant and non-singular U matrix, like the 3-RRS
wrist [DIG 04a] (Figure 6.4).

Out of constraint singularities, the input–output instantaneous relationship
[6.18] reduces itself to the following relationship8:

W ωω = H q [6.22]

The analysis of [6.22] brings to the conclusion that: (1) if and only if
matrix W is singular, the end-effector’s angular velocity, ωω, is not
determined, even though the actuated joint rates, q , are assigned (i.e. a type
2 singularity occurs), and (2) if and only if matrix H is singular, the actuated
joint rates, ,q are not determined, even though the end-effector’s angular
velocity, ωω, is assigned (i.e. a type 1 singularity occurs).

Because of the indetermination of ωω, the type 2 singularities identified by
condition (1) are also named rotation singularities [DIG 01a, DIG 01b,
DIG 02, DIG 04b].

From an analytic point of view, the singularity condition (1) yields:

det(W) = 0 [6.23]

7 Because of the indetermination of vP, the constraint singularities of PWs are also
named translation singularities [DIG 01a, DIG 01b, DIG 02, DIG 04b].
8 Relationship [6.22] had been erroneously considered the complete input–output
instantaneous relationship before the presence of constraint singularities was
highlighted in the literature.
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whereas the singularity condition (2) yields:

det(H) = 0 [6.24]

Equations [6.23] and [6.24] are the analytical expressions of two
singularity loci that collect all the joint space points that correspond,
respectively, to the rotation singularities, and to the type 1 singularities.

6.2.1.2. Geometric interpretation of the singularity conditions

Definition [6.17b] of matrix U allows system [6.19] to be split into the
following three scalar equations:

ui ⋅ vP = 0 i = 1, 2, 3 [6.25]

From a kinematic point of view, the ith equation [6.25] shows that the
velocity vP has no component parallel to the vector ui, which, in other words,
means that the end-effector point P cannot translate along the direction of the
vector ui. Since the ui vectors for i = 1, 2, 3 identify three directions along
which the translation of P is forbidden, if the ui vectors are linearly independent,
point P cannot perform any elementary translation (i.e. condition [6.20] holds),
otherwise it can translate along directions that are orthogonal to all the ui
vectors. The ui vectors are linearly dependent if and only if they are all
parallel to a unique plane. This geometric condition is analytically expressed
as follows:

u1 ⋅ u2 × u3 = 0 [6.26]

Because of definition [6.17b] of matrix U, condition [6.26] coincides with
condition [6.21], and it is its geometric counterpart.

Out of the constraint singularities, the end-effector motion is spherical,
and system [6.22] is the input–output instantaneous relationship to be
considered. Such a system is not singular, if and only if it states a one-to-one
relationship between ωω and .q Since system [6.22] is linear and
homogeneous with respect to ωω and q , ωω is determined (i.e. type 2
singularities do not occur), if and only if the only solution of system [6.22]
for ωω is the null vector when the actuated joints are locked (i.e. q is equal to
zero). On the other hand, q is determined (i.e. type 1 singularities do not
occur), if and only if the only solution of system [6.22] for q is the null
vector when the end-effector is locked (i.e. ωω is equal to zero).
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When the actuated joints are locked, definition [6.17b] of matrix W
allows system [6.22] to be split into the following three scalar equations:

wi ⋅ ωω = 0 i = 1, 2, 3 [6.27]

From a kinematic point of view, the ith equation [6.27] shows that the
end-effector’s angular velocity ωω has no component parallel to the vector wi,
which, in other words, means that the end-effector cannot rotate around an
axis parallel to the vector wi and passing through P. Since the wi vectors for
i = 1, 2, 3 identify three directions around which the end-effector rotation is
forbidden, if the wi vectors are linearly independent, the end-effector cannot
perform any elementary rotation (i.e. ωω must be equal to the null vector),
otherwise it can rotate around an axis passing through P and orthogonal to all
the wi vectors. The wi vectors are linearly dependent if and only if they are all
parallel to a unique plane. This geometric condition is analytically expressed
as follows:

w1 ⋅ w2 × w3 = 0 [6.28]

Because of definition [6.17b] of matrix W, condition [6.28] coincides
with condition [6.23], and it is its geometric counterpart.

By using definition [6.17a] of matrix H, system [6.22] can be written as
follows ( T

1 2 3[q ,q ,q ]≡q    ):

W ωω = i i
i 1,3

q
=
 h [6.29]

Moreover, singularity condition [6.24], which identifies the type 1
singularities, can be rewritten as follows:

h1 ⋅ h2 × h3 = 0 [6.30]

Condition [6.30] shows that a type 1 singularity occurs if and only if the
three hi vectors, for i = 1, 2, 3, are all parallel to a unique plane. When this
condition occurs, the direction that is normal to all the hi vectors is given by
the cross product of any couple of non-parallel hi vectors, say n ≡ h1 × h2.
Thus, the dot product of the vector equation [6.29] by n yields, after
rearrangements:

ωωT b = 0 [6.31]
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where

b =WT n [6.32]

Equation [6.31] shows that, when condition [6.30] is satisfied, the end-
effector’s angular velocity cannot assume any direction since it must be
orthogonal to the vector b. The existence of motion limitations on the end-
effector identifies a manipulator configuration that is located at the borders of
the workspace. Therefore, equation [6.30] is the analytic expression of the
workspace borders in the manipulator’s configuration space (joint space or
operational space).

6.2.2. Kinetostatic performances

Every relationship of the instantaneous (first-order) kinematics has a
static interpretation that can be determined through the virtual work principle.
That is why the static interpretation of the input–output instantaneous
relationship of a manipulator, sometimes, is referred to as kinetostatics
[ANG 03].

6.2.2.1. Statics of PWs

By considering only the PW skeleton (i.e. the PW without generalized
torques applied in the active joints), the virtual work principle yields the
following relationship:

F ⋅ vP + MP ⋅ ωω = 0 [6.33]

where F and MP are resultant force and resultant moment about the pole P,
respectively, of an external force system that is applied to the end-effector
and is balanced by the reactions that all the limbs9 exert on the end-effector.
vP and ωω are any set of end-effector’s motion characteristics compatible with
the end-effector constraints (virtual motion characteristics).

Since the end-effector’s constraints are analytically expressed by the
instantaneous input–output relationship, the virtual motion characteristics are
any set {ωω, vP} that satisfies relationship [6.18].

9 No external load (gravity, inertia forces, etc.) is applied to the limbs’ links, all the
kinematic pairs are non-actuated (passive) and frictionless.
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According to [6.18], ωω is practically free to assume any value, whereas vP
must follow the vector equation [6.19]. Therefore, equation [6.33] can be
satisfied (i.e. the manipulator skeleton is in equilibrium) if and only if F and
MP have the following analytic expressions:

MP = 0 [6.34a]

F = i i
i 1,3=

α u [6.34b]

where αi, for i = 1, 2, 3, are three coefficients whose values must be
computed through [6.34b] once the value of F is assigned.

Expressions [6.34] reveal that the PW skeleton can equilibrate a force
system that is equivalent to a unique force with line of action passing through
the center, P, of the end-effector spherical motion. Moreover, the detailed
static analysis of any real case (see, for instance, [DIG 04b]) reveals that the
loads applied on the limbs’ links are proportional to the αi coefficients.

By solving [6.34b] with respect to the αi coefficients, the following
explicit expressions of these coefficients result in:

j k
i

i j k

⋅ ×
α =

⋅ ×
F u u
u u u

i, j, k ∈{1, 2, 3⏐i ≠ j, i ≠ k, j ≠ k} [6.35]

Since the absolute value of the denominator of expression [6.35]
coincides with the absolute value of det(U), the more det(U) is near to zero
(i.e. the more a PW configuration is near to a constraint singularity), the
greater the absolute values of the αi coefficients are (i.e. the greater the loads
on the limbs’ links are).

By considering the PW with generalized torques applied in the active
joints, the virtual work principle yields the following relationship:

F ⋅ vP + MP ⋅ ωω = ττ ⋅ q [6.36]

where ττ is a three-dimensional vector collecting the three generalized torques,
τi for i = 1, 2, 3. q is any vector of actuated joint rates compatible with the
constraints (virtual rates of the actuated joint variables). F,MP, vP and ωω have
the same meaning as they have in [6.33].
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By choosing F according to [6.34b], the first term at the left-hand side of
[6.36] is identically equal to zero. Moreover, out of constraint singularities,
the input–output instantaneous relationship reduces itself to vector equation
[6.29]. Thus, equation [6.36] is identically satisfied if and only if:

ττ = H T W −T MP [6.37a]

F = i i
i 1,3=

α u [6.37b]

Since the explicit expression ofW −T is:

[ ]TT
2 3 3 1 1 2

1 2 3

1 , ,− = × × ×
⋅ ×

W w w w w w w
w w w

[6.38]

the right-hand side of [6.37a] has a common factor that is the reciprocal of
det(W). As a result, the more det(W) is near to zero (i.e. the more a PW
configuration is near to a rotation singularity), the greater the values of the
generalized torques, τi for i = 1, 2, 3, are.

6.2.2.2. Performance indices

Characterizing the kinetostatic performances is important in order to
compare different architectures during the design of a new manipulator.

The above-reported static analysis highlights that the force transmission
from the end-effector to the links and to the actuators depends on the
manipulator configuration. Thus, the indices devised to measure these
manipulator performances must be configuration dependent, whereas
the overall performances of the architecture can be measured by means
of suitable averages on the workspace of the configuration-dependent
indices.

In the literature, many indices were proposed to measure the kinetostatic
performances of serial manipulators (see [ANG 03] for references), and,
successively, adapted to PMs [GOS 91, GOS 95, ZAN 97].

In order to understand the static meaning of the indices used for PWs, the
concept of manipulability measure introduced in [YOS 85] will be briefly
recalled.
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By using relationship [6.37a], a manipulating ability (manipulability)
ellipsoid that identifies all theMP values corresponding to a unit generalized-
torque vector, ττ, can be defined as follows:

xT J J T x = 1 [6.39]

where

x = PM
τ

[6.40a]

J =W −1 H [6.40b]

Since matrix J depends on the manipulator configuration, the shape of the
ellipsoid [6.39] depends on the manipulator configuration. In particular, the
lengths of the semi-axes are equal to the reciprocals of the absolute values of
the J eigenvalues, the directions of the ellipsoid axes are given by the
directions of the J eigenvectors, and the volume of the ellipsoid is
proportional to the reciprocal of the product of all the J eigenvalues, which is
equal to det(J).

The lengths of the semi-major and of the semi-minor axes of the
manipulability ellipsoid give the maximum and the minimum values,
respectively, of the ratio (mechanical advantage (MA)) between the
magnitudes of MP and ττ. The manipulability ellipsoid highlights that, in
general, the MA depends on the mechanism configuration and on the
direction ofMP. The manipulator configurations where the eigenvalues of the
J matrix are all equal have an MA that does not depend on the direction of
MP. Such configurations are named isotropic [ANG 03], and are
characterized by the fact that their manipulability ellipsoid is a sphere. A PW
with at least one isotropic configuration is named isotropic.

The distortion of the isotropic condition at a generic PW configuration
can be measured by the following index (dexterity)10

min

max

( ) λζ =
λ

J [6.41]

10 Definition [6.41] is a particular case of the following more general definition of
dexterity [GOS 95] as inverse of the condition number of J:

1

1( )
−

ζ =J
J J

[6.42]

where ⋅ denotes a norm of its matrix argument.
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where λmin and λmax are the minimum and the maximum absolute values of
the eigenvalues of matrix J.

Moreover, at the parity of an ellipsoid shape (i.e. of dexterity), the greater
the volume of the manipulability ellipsoid, the higher the MA values in any
direction are. Such a kinetostatic property can be measured by the following
“manipulability measure” [YOS 85]:

T( ) det( )μ =J J J [6.43]

Since the determinant of the product of two square matrices is equal to the
product of the determinants of the two matrices, definition [6.43] states that
the “manipulability measure”, μ, is equal to the absolute value of det(J). And,
definition [6.40b] makes it possible to state that det(J) is equal to the ratio
between det(H) and det(W). As a result, definition [6.43] can be given in the
following alternative way:

det( )
( )

det( )
μ =

H
J

W
[6.44]

The “manipulability measure”, μ, ranges from zero to infinity and is
inversely proportional to the ellipsoid volume. Definition [6.44] highlights
that μ is equal to zero (i.e. the MA is equal to infinity) where det(H) is equal
to zero (i.e. at the workspace borders (see singularity condition [6.24])),
whereas it is equal to infinity (i.e. the MA is equal to zero) where det(W) is
equal to zero (i.e. when a rotation singularity occurs (see singularity
condition [6.23])). This result brings us to conclude that, from a static point
of view, a PW must work far from the workspace borders and the rotation
singularities. Finally, it is worth noting that, since the three wi vectors (see
definitions [6.17b]) are unit vectors, the PW configurations that are the
farthest from rotation singularities are characterized by the fact that the
absolute value of det(W) is equal to one (i.e. the three wi vectors are mutually
orthogonal (recall that det(W) is equal to w1 ⋅ w2 × w3).

Both the dexterity and the manipulability measure characterize the force
transmission, from the actuators to the end-effector, at a given PW
configuration. In order to characterize the kinetostatic properties of a PW
architecture, a global dexterity, ζav, and a global manipulability measure, μav,
can be defined as follows:
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Q
av

Q

( ) dQ

dQ

ζ
ζ =





J
[6.45]

Q
av

Q

( ) dQ

dQ

μ
μ =





J
[6.46]

where Q denotes the workspace of the PW.

So far, the defined indices take into account only the force transmission
between end-effector and actuators (i.e. relationship [6.37a]). The force
transmission between the end-effector and the PW skeleton is ruled by
relationship [6.37b], which brings to relationship [6.35] for the αi
coefficients. Relationship [6.35] can be alternatively written as follows:

αα = U −T F [6.47]

where

αα = [α1, α2, α3]T [6.48]

If, as usual [DIG 04b], the αi coefficients are signed magnitudes of loads
applied to the limbs’ links, the resting ability (restability) of the PW skeleton
can be characterized through the following restability ellipsoid:

yT U −1 U −T y = 1 [6.49]

where

y = F
α

[6.50]

Since matrix U depends on the PW-skeleton configuration, the shape of
the ellipsoid [6.49] depends on the PW-skeleton configuration. In particular,
the lengths of the semi-axes are equal to the absolute values of the U
eigenvalues, the directions of the ellipsoid axes are given by the directions of
the U eigenvectors and the volume of the ellipsoid is proportional to the
product of all the U eigenvalues, which is equal to det(U).
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The lengths of the semi-major and of the semi-minor axes of the
restability ellipsoid give the maximum and the minimum values, respectively,
of the ratio (passive mechanical advantage (PMA)) between the magnitudes
of F and αα. The restability ellipsoid highlights that, in general, the PMA
depends on the PW-skeleton configuration and on the direction of F. The
PW-skeleton configurations where the eigenvalues of the U matrix are all
equal have a PMA that does not depend on the direction of F. Such
configurations uniformly distribute the force F among the links of the PW
skeleton, and are characterized by the fact that their restability ellipsoid is a
sphere.

The distortion of the uniform distribution condition at a generic
configuration can be measured by the following redistribution index:

min

max

( ) ηξ =
η

U [6.51]

where ηmin and ηmax are the minimum and the maximum absolute values of
the eigenvalues of matrix U.

Moreover, at the parity of the ellipsoid shape (i.e. of ξ value), the greater
the volume of the restability ellipsoid is, the higher the PMA values in any
direction are. Such a kinetostatic property can be measured by the following
restability index:

T

1( )
det( )

ν =U
UU

[6.52]

that can be alternatively defined as follows:

1( )
det( )

ν =U
U

[6.53]

Since the three ui vectors (see definitions [6.17b]) are unit vectors, the
absolute value of det(U) (remind that det(U) is equal to u1 ⋅ u2 × u3) ranges
from 0 at a constraint singularity (i.e. where singularity condition [6.21] is
satisfied) to one at a configuration where the three ui vectors are mutually
orthogonal. As a result, the ν index ranges from one to infinity and is
inversely proportional to the ellipsoid volume. This result brings us to
conclude that, from a static point of view, a PW skeleton must work far from
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constraint singularities. Finally, it is worth noting that, the PW configurations
that are the farthest from constraint singularities are characterized by the fact
that the absolute value of det(U) is equal to one.

In order to globally characterize the kinetostatic properties of a PW
skeleton, a global redistribution index, ξav, and a global restability index, νav,
can be defined as follows:

Q
av

Q

( ) dQ

dQ

ξ
ξ =





U
[6.54]

Q
av

Q

( ) dQ

dQ

ν
ν =





U
[6.55]

6.2.3. Conclusion

Instantaneous kinematics and statics are two sides of the same model:
kinetostatics. Every relationship that is stated through the analysis of the
instantaneous kinematics of a mechanism has a static meaning, too. Such a
meaning can be deduced through the virtual work principle.

The input–output instantaneous relationship of a PM is the reference
relationship for the introduction of the concept of singularity and for the
classification of the PM singularities.

The input–output instantaneous relationship of a PW can be written in the
general case, and the singularity conditions of PWs can be deduced both in
analytical and geometrical form. The static meaning of the matrices that
appear in the input–output instantaneous relationship is known together with
the static interpretation of the singularity conditions.

Eventually, in the literature, kinetostatics has been exploited for
proposing indices that characterize PWs’ performances. Here, such indices
have been discussed and integrated by proposing new indices that
characterize the static efficiency of the PW skeleton.
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6.3. New perspectives

Underactuated manipulators are able to position their end-effector in a
workspace whose dimensionality11 is greater than the number of actuators.
Such a feature can be obtained by reducing the practicable paths that the
end-effector can perform to move between two any end-effector poses of
the workspace. Making the manipulator instantaneous DoF lower than its
configuration DoF is a necessary condition to obtain a reduction of
practicable paths. Since non-holonomic constraints are able to introduce
this difference between instantaneous and configuration DoF, their
introduction, in a manipulator architecture, is a way to obtain underactuated
manipulators.

The roller–sphere contact is a non-holonomic constraint that constrains
the sphere to rotate around axes that lie on the plane located by the roller axis
and the sphere center. Rotations around axes that lie on a fixed plane are
sufficient to make a rigid body assume any orientation. This fact was
exploited by Stammers et al. [STA 91, STA 92] to conceive an underactuated
wrist where two actuated rollers in contact with a sphere controlled
the orientation (i.e. three configuration DoF) of an end-effector fixed to the
sphere.

Grosch et al. [GRO 10] highlighted that, in “ordinary” (i.e. non-
underactuated) manipulators, the substitution of passive spherical (S) pairs
with as many non-holonomic spherical (nS) pairs yields underactuated
manipulators that practically have the same workspace of the ordinary
manipulators that have generated them. In [DIG 11], this substitution of S
pairs with nS pairs was used to obtain 10 novel types of underactuated PWs
from S-3UPS12 wrists (Figure 6.2). The so-deduced underactuated PWs have
the same workspace as the S-3UPS “ordinary” wrists that generated them,
even though their hardware is simpler, but, due to their reduced instantaneous
DoF, they cannot perform tracking tasks.

11 In a manipulator, the workspace’s dimensionality is the minimum number of
geometric parameters necessary to locate the end-effector in the operational space. If
the manipulator is not redundant, such a number will coincide with the configuration
(or finite) degrees of freedom (DoF) [ANG 03] of the manipulator, which is the
minimum number of geometric parameters necessary to uniquely identify the
manipulator configuration [ORE 08]. It may be different from the instantaneous DoF,
also called velocity DoF [ANG 03], of the same manipulator.
12 The underscore indicates an actuated pair.
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The use of nS pairs was first proposed in [BEN 08]. Any S pair can be
transformed into an nS pair (Figure 6.5) by introducing, in parallel with the S
pair, a sphere–roller contact, whose sphere is a spherical shell, fixed to one of
the two joined links and having the center coincident with the center of the S
pair, whereas the roller is hinged on the other link (see [DIG 11, GRO 10] for
details and constructive schemes). In Figure 6.5, the S pair is constituted by
three revolute pairs in series, whose axes intersect one another at the same
point; such a point is the center both of the S pair and of the nS pair. Because
of the static friction, the sphere–roller contact forbids rotations around axes
perpendicular to the plane (axes’ plane (AP)), which the sphere center and the
roller axis lie on. As a result, the relative motion of the two links joined by an
nS pair can only be a rotation around an axis passing through the nS center
and lying on the AP.

Figure 6.5. A manufacturing scheme for passive nS pairs, proposed
in [DIG 11] (R stands for revolute pair): the nS center is the sphere center,
and the axes’ plane (AP) of this nS pair is the plane containing the roller

axis and the sphere center

Three of the 10 underactuated PWs proposed in [DIG 11] contain only
one nS pair: the (nS)-2SPU (Figure 6.6), the S-(nS)PU-SPU (Figure 6.7) and
the S-(nS)PU-2SPU (Figure 6.8) underactuated PWs. These three PWs have
been studied in depth [DIG 12a, DIG 12b, DIG 12c]. Such studies showed
that their position analyses can be solved with simple formulas and that their
kinetostatics is as simple as the kinetostatics of the S-3UPS that generated
them. All these features brought us to conclude that they are a valid alternative
to “ordinary” PWs when the wrist must not perform tracking tasks.
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Figure 6.6. Underactuated parallel wrist of type (nS)-2SPU

Figure 6.7. Underactuated parallel wrist of type S-(nS)PU-SPU

Figure 6.8. Underactuated parallel wrist of type S-(nS)PU-2SPU
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