
Chapter 12

Derivative-Free Nonlinear Kalman
Filtering for PMSG Sensorless Control

12.1. Introduction

State estimation of nonlinear electric power generators using filters is a
significant topic in the area of mechatronics because it can provide improved
methods for sensorless control and fault diagnosis of such electromechanical
systems. In the design of nonlinear controllers for power generators, it is
important to measure all state variables needed to generate a feedback control
law. In case of state variables for which direct measurement is technically
difficult or costly, estimation can be performed with nonlinear filtering
methods [LIN 10, JIA 01, DEL 01, ANE 07, MAH 12]. This chapter proposes
derivative-free nonlinear Kalman filtering for sensorless control of permanent
magnet synchronous generators (PMSGs).

For nonlinear electric power generators, and under Gaussian noise,
the extended Kalman filter (EKF) is frequently applied for estimating the
non-measurable state variables through the processing of input and output
sequences [KAM 99, BAS 93, HAR 02, NG 03]. The EKF is based on
linearization of the dynamical system using Taylor series expansion [XIO 08,
RIG 07, RIG 01, RIG 08, RIG 09]. Although EKF is efficient in several
estimation problems, it is characterized by cumulative errors due to the
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local linearization assumption and this may affect the accuracy of the state
estimation or even risk the stability of the observer-based control loop.

It is also known that we can attempt transformation of the PMSG model
into the canonical (Brunovsky) form through the application of the Lie-algebra
theory. By using such differential geometric methods, it is possible to arrive
at a description of the system in the linear canonical form if the relative
degree of the system is equal to the order of the system. After transformation
to the canonical form, state estimation with the use of a linear system is
possible. However, this linearization procedure requires the computation of
Lie derivatives (partial derivatives on the vector fields describing the system
dynamics), which can be a cumbersome computation procedure.

Aiming at finding more efficient state estimation methods for the model
of the PMSG (with reference to the Lie algebra-based state estimator design),
in this chapter a derivative-free approach to Kalman filtering is introduced.
In the proposed derivative-free Kalman filtering method, the system is first
subject to a linearization transformation that is based on the differential flatness
theory and then state estimation is performed by applying the standard Kalman
filter recursion to the linearized model. Unlike the Lie algebra-based estimator
design method, the proposed approach provides estimates of the state vector
of the PMSG without the need for derivatives and Jacobians calculation. By
avoiding linearization approximations, the proposed filtering method improves
the accuracy of estimation of the system state variables, and results in smooth
control signal variations and in minimization of the tracking error of the
associated control loop [RIG 10, RIG 11a, RIG 11b].

Differential flatness theory is currently a main topic in nonlinear dynamical
systems [RUD 03, SIR 04, RIG 11c]. To find out if a dynamical system is
differentially flat, the following should be examined: (1) the existence of
the so-called flat output, that is a new variable which is expressed as a
function of the system’s state variables. The flat output and its derivatives
should not be coupled in the form of an ordinary differential equation
(ODE); (2) the components of the system (that is state variables and control
input) should be expressed as functions of the flat output and its derivatives
[LEV 11, FLI 99, LAR 07]. In certain cases, the differential flatness theory
enables transformation to a linearized form (canonical Brunovsky form) for
which the design of the controller becomes easier. In other cases, by showing
that a system is differentially flat, we can easily design a reference trajectory
as a function of the so-called flat output and can find a control law that assures
tracking of this desirable trajectory [FLI 99, VIL 07].
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This chapter analyzes differential flatness of the PMSG model and its
resulting description in the Brunovksy (canonical) form [MAR 99]. At a
second stage and with the use of the linearized model, Kalman filtering is
proposed for estimating the non-directly measurable elements of the state
vector of the power generator. To enable efficient operation of the power
generator under variable mechanical input power (torque), the Kalman filter
is extended towards a disturbances estimator. This enables us to estimate
simultaneously both the state vector of the generator and the unknown
mechanical input power (torque). Finally, state estimation-based control is
applied to assure that the rotation speed of the generator tracks a predefined
reference set point. The aggregate control input is generated by including in
the state-feedback control law a term that is based on the estimation of the
unknown input power and of its derivatives and which compensates for the
effects of variation of this input power.

The structure of the chapter is as follows: in section 12.2, the dynamic
model of the PMSG is analyzed. In section 12.3, it is shown how with the
application of Lie algebra theory we can obtain a description of the generator’s
dynamics in the linear canonical form and based on such a linearization
procedure we can design a state estimator for the system. In section 12.4,
it is shown how with the use of the differential flatness theory and without
the computation of partial derivatives and Jacobian matrices we can obtain
again a description of a nonlinear dynamical system in the linear canonical
form. In section 12.5, it is shown that the PMSG is a differentially flat system
and its nonlinear model can be transformed into an equivalent linear canonical
form. Through this linearization, it becomes possible to apply derivative-free
nonlinear Kalman filtering for obtaining an estimate of the non-measurable
elements of the PMSG’s state vector. In section 12.6, methods for robust
state estimation based on unknown input observers are analyzed. In section
12.7, it is shown how the derivative-free nonlinear Kalman filter can be
generalized in the form of a disturbances estimator, thus enabling simultaneous
estimation of both the non-measurable elements of the generator’s state vector
and the unknown input power (torque). In section 12.8, the proposed state
estimation-based control scheme for the power generator is evaluated with the
use of simulation experiments. Finally, in section 12.9, concluding remarks
are stated.

12.2. Dynamic model of the permanent magnet synchronous generator

It is considered that the third-order model PMSG is connected to the power
grid as shown in Figure 12.1, thus forming the model of a single machine
infinite bus (SMIB) system.
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Figure 12.1. PMSG connected to the power grid according to the single
machine infinite bus (SMIB) model

The PMSG mechanical dynamics can be represented as follows:

δ̇ = ω − ω0

[12.1]
ω̇ = − D

2J
(ω − ω0) +

ω0

2J
(Pm − Pe)

where δ is the turn angle of the generator’s rotor, ω is the rotation speed of the
rotor with respect to synchronous reference, ω0 is the synchronous speed of the
generator, J is the moment of inertia of the rotor, Pm is the mechanical input
torque to the generator that is associated with the mechanical input power, D
is the damping constant of the generator and Te is the electrical torque that is
associated with the generated active power. Moreover, the following variables
are defined: Δδ = δ−δ0 and Δω = ω−ω0 with ω0 denoting the synchronous
speed.

The generator’s electric dynamics is described by [LIN 10, JIA 01,
DEL 01, ANE 07] and [MAH 12]:

Ėq =
1

Tdo

(Ef − Eq) [12.2]

where Eq is the quadrature-axis transient voltage of the generator, Eq is the
quadrature axis voltage of the generator, Tdo is the direct axis open-circuit
transient time constant of the generator and Ef is the equivalent voltage in the
excitation coil.
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The algebraic equations of the synchronous generator are given by

Eq =
xdΣ

xdΣ

Eq − (xd − xd)
Vs

xdΣ

cos(Δδ)

Iq =
Vs

xdΣ

sin(Δδ)

Id =
Eq

xdΣ

− Vs

xdΣ

cos(Δδ) [12.3]

Pe =
VsEq

xdΣ

sin(Δδ)

Qe =
VsEq

xdΣ

cos(Δδ)− V 2
s

xdΣ

Vt = (Eq −XdId)
2 + (XdIq)

2

where xdΣ = xd + xT + xL, xdΣ
= xd + xT + xL, xd is the direct-axis

synchronous reactance, xT is the reactance of the transformer, xL is the
reactance of the transmission line, Id and Iq are direct and quadrature axis
currents of the generator, Vs is the infinite bus voltage, Qe is the generator
reactive power delivered to the infinite bus, and Vt is the terminal voltage of
the generator.

Substituting the electrical equations of the PMSG given in equation [12.3]
into the equations of the electrical and mechanical dynamics of the rotor given
in equations [12.1] and [12.2], respectively, the complete model of the SMIB
model is obtained:

δ̇ = ω − ω0

ω̇ = − D

2J
(ω − ω0) + ω0

Pm

2J
− ω0

1

2J

VsEq

xdΣ

sin(Δδ) [12.4]

Ėq = − 1

Td

Eq +
1

Tdo

xd − xd

xdΣ

Vscos(Δδ) +
1

Tdo

Ef

where Td =
xdΣ

xdΣ
Tdo is the time constant of the field winding.
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The previously analyzed SMIB model of the PMSG is described by a
nonlinear state space model of the form

ẋ = f(x) + g(x)u [12.5]

where the state vector x is defined as

x = Δδ Δω Eq

T
[12.6]

The vector fields f(x) and g(x) are defined as

f(x) =

⎛⎜⎜⎜⎜⎜⎝
ω − ω0

− D

2J
(ω − ω0) + ω0

Pm

2H
− ω0

1

2J

VsEq

xdσ

sin(Δδ)

− 1

Td

Eq +
1

Tdo

xd − xd

xdσ

Vscos(Δδ)

⎞⎟⎟⎟⎟⎟⎠ [12.7]

g(x) = 0 0
1

Tdo

T

[12.8]

with control input u = Ef , the field voltage (equivalent voltage in the
excitation coil) and measurable output the rotation speed of the rotor

y = h(x) = δ − δ0 [12.9]

12.3. Lie algebra-based design of nonlinear state estimators

12.3.1. Relative degree for nonlinear systems

The nonlinear model of the PMSG given in equation [12.4] is in an affine
in-the-input form, that is

ẋ(t) = f(x) + g(x)u
[12.10]

y(t) = h(x)

where x∈Rn is the state vector, u∈R is the control vector, y∈R is the output
vector, f(x) and g(x) vector fields that belong in Rn and h(x) is the scalar
function of x. It will be shown that a state estimator for the nonlinear model
of the PMSG can be derived using Lie algebra, which introduces a change of
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coordinates (diffeomorphism) that enables us to write a nonlinear system into
an equivalent linear form. Next, the following definitions from the Lie algebra
theory are used [KHA 96]:

Lie derivative: For a given differentiable scalar function h(x) of x =
[x1, x2, x3, · · ·xn]

T and a vector field f(x) = [f1, f2, f3, · · · , fn]T , the Lie
derivative of function h(x) along the vector field f(x) is a new scalar function
defined by Lfh(x) which is obtained as follows:

Lfh(x) =
∂h(x)

∂x
f(x) =

n

i=1

∂h(x)

∂xi
fi(x) [12.11]

Relative degree: If the Lie derivative of the function Lr−1
f h(x) along

vector field g(x) is not equal to zero in a neighborhood Ω, that is

LgL
r−1
f h(x)=0 [12.12]

then it is said that the system has relative degree r in Ω.

The relative degree of the system is a parameter to take into account in
the design of controllers or observers for nonlinear dynamical systems. If the
relative degree of a system is equal to its order n, then the system is exactly
linearizable. If r < n, then the system is partially linearizable.

12.3.2. Nonlinear observer design for exactly linearizable systems

Under the condition r = n, we have [KHA 96]:

LgL
1−1
f h(x) = LgL

2−1
f h(x) = · · · = LgL

n−2
f h(x) = 0

[12.13]
LgL

n−1
f h(x)=0

Next, a change of coordinates is performed as follows:

z1 = y = h(x) = L1−1
f h(x) [12.14]

Moreover, it holds

ż1 =
∂h(x)

∂x
ẋ [12.15]
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Substituting the system’s dynamics into equation [12.15], we get

ż1 =
∂h(x)

∂x
f(x) +

∂h(x)

∂x
g(x)·u

= L2−1
f h(x) + LgL

1−1
f h(x)u [12.16]

According to the condition about the relative degree of the system, it holds
LgL

1−1
f h(x) = 0 and from equation [12.16], we get

ż1 = Lfh(x) = z2 [12.17]

In a similar way

ż2 = L2
fh(x) = z3
· · ·
· · ·

żn−1 = Ln−1
f h(x) = zn

[12.18]

Again, using the property of the system’s relative degree that we have
LgL

n−1
f h(x)=0, we obtain

żn = Ln
fh(x) + LgL

n−1
f h(x)u = α(x) + b(x)u = v [12.19]

where α(x) = Ln
fh(x), b(x) = LgL

n−1
f h(x) and v = α(x) + b(x)u. After

this change of coordinates, the system can be written as

ż = Az +Bu [12.20]

where

z = φ(x) =

⎛⎜⎜⎜⎜⎝
h(x)

Lfh(x)
· · ·
· · ·

Ln−1
f h(x)

⎞⎟⎟⎟⎟⎠ [12.21]
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while matrices A,B appearing in the previous state-space equation are given
by

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠
B = 0 0 · · · 0 1

T

[12.22]

The state observer for the transformed system of equation [12.20] is

˙̂z = Aẑ +Bv +K(y − h(x̂)) or
˙̂z = Aẑ +B[α(x̂) + b(x̂)u] +K(y − h(x̂)) or
˙̂z = Aẑ +B[α(φ−1(ẑ)) + b(φ−1(ẑ))u] +K(y − h(φ−1(ẑ)))

[12.23]

It is also possible to express the state observer using a nonlinear model, that
is

˙̂x = f(x̂) + g(x̂)u+ L(y − h(x̂)) [12.24]

It will be shown that the nonlinear observer’s gain L is now given by

L = (Jφ(x̂))
−1K [12.25]

where matrix Jφ(x̂) is the Jacobian of the new coordinates z1, · · · , zn, which
is obtained after the nonlinear change of coordinates, and K is the observer’s
gain computed for the linearized equivalent of the system of equation [12.23].
The observer gain K for the linearized system can be obtained through the
Kalman filter recursion. We have that

dẑ =

⎛⎜⎜⎝
dh(x̂)

dLfh(x̂)
· · ·

dLn−1
f h(x̂)

⎞⎟⎟⎠ = Jφ(x̂)dx̂ [12.26]

or equivalently

˙̂z = Jφ(x̂) ˙̂x [12.27]
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It holds that the Jacobian matrix of φ(x̂) with respect to x̂ can be written as

Jφ(x̂) =
∂φ(x̂)

∂x̂
[12.28]

Using the state observer dynamics described in equation [12.24], we have

∂φ(x̂)

∂x̂
˙̂x =

∂φ(x̂)

∂x̂
f(x̂) +

∂φ(x̂)

∂x̂
g(x̂)u+

∂φ(x̂)

∂x̂
L(x̂)(y − h(x̂)) [12.29]

Considering that for the first row of the Jacobian matrix it holds φ(x̂) =
h(x̂), we have

∂h(x̂)

∂x̂
˙̂x =

∂h(x̂)

∂x̂
f(x̂) +

∂h(x̂)

∂x̂
g(x̂)u+K(y − h(x̂)) [12.30]

or equivalently

˙̂z1 = Lfh(x̂) + Lgh(x̂)u+K1(y − h(x̂)) [12.31]

Moreover, it holds Lgh(x̂) = 0, and Lfh(x̂) = ẑ2, and thus we obtain

˙̂z1 = ẑ2 +K1(y − h(x̂)) [12.32]

In a similar manner, we have

˙̂z2 = ẑ3 +K2(y − h(x̂))

· · ·
˙̂zn−1 = ẑn +Kn−1(y − h(x̂))

[12.33]

Additionally, using that LgL
n−1
f =0, we can finally write

˙̂zn = α(φ−1(ẑ)) + b(φ−1(ẑ))u+Kn(y − h(x̂)) [12.34]

where α(φ−1(ẑ)) = Ln−1
f h(x̂) = Ln−1

f h(φ−1(ẑ)), and b(φ−1(ẑ)) =

LgL
n−1
f h(x̂) = LgL

n−1
f h(φ−1(ẑ)). Using the previous notation, we obtain

the formulation of the nonlinear estimator’s gain L as a function of the
observation gain K for the linearized equivalent of the system described in
equation [12.23]. Thus, we finally get equation [12.25]

(Jφ(x̂))L = K⇒L = (Jφ(x̂))
−1K [12.35]
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12.3.3. Linearization of PMSG dynamics using Lie Algebra

The nonlinear dynamical model of the PMSG was described in equations
[12.5]–[12.9]. The linearization procedure with the use of Lie algebra gives:

z1 = L0
fh(x) = h(x) = Δδ [12.36]

z2 = L1
fh(x) =

∂h

∂x1

∂h

∂x2

∂h

∂x3
·
⎛⎝f1
f2
f3

⎞⎠ ⇒ [12.37]

z2 = x2 = Δω

z3 = L2
fh(x) =

∂z2
∂x1

∂z2
∂x2

∂z2
∂x3

·
⎛⎝f1
f2
f3

⎞⎠ ⇒ [12.38]

z3 = f2 = − D

2J
(ω − ω0) + ω0

Pm

2J
− ω0

2J

VsEq

xdΣ

sin(Δδ)

Moreover, according to the previous analysis, it holds

ż3 = L3
fh(x) + LgL

2
fh(x)u [12.39]

where

L3
fh(x) =

∂z3
∂x1

∂z3
∂x2

∂z3
∂x3

·
⎛⎝f1
f2
f3

⎞⎠ ⇒

L3
fh(x) = (−ω0

2J

Vs

xdΣ

x3cos(x1)ẋ1)− D

2J

−D

2J
x2 + ω0

Pm

2J

−ω0

2J

Vs

xdΣ

x3sin(x1)
1

Td

x3 +
1

Tdo

xd − xd

xdΣ

cos(x1) ⇒ [12.40]

L3
fh(x) = (

D

2J
)2ẋ1 − ω0

D

2J

Pm

2J
+

D

(2J)2
ω0

Vs

xdΣ

x3sin(x1)

+
ω0

2J

Vs

xdΣ

1

Td

x3sin(x1)− ω0

2J

Vs

xdΣ

1

Tdo

xd − xd

xdΣ

Vscos(x1)sin(x1)

− ω0

2H

Vs

xdΣ

x3cos(x1)x2
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Finally, in an equivalent manner, we obtain

LgL
2
fh(x) =

∂z3
∂x1

∂z3
∂x2

∂z3
∂x3

·
⎛⎝g1
g2
g3

⎞⎠ ⇒
[12.41]

LgL
2
fh(x) = −ω0

2J

1

Tdo

Vs

xdΣ

sin(x1)

Defining the control input for the linearized system v = L3
fh(x) +

LgL
2
fh(x)u, the state-space model can be written in the following linear

canonical (Brunovsky) form:⎛⎝ż1
ż2
ż3

⎞⎠ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠⎛⎝z1
z2
z3

⎞⎠+

⎛⎝0
0
1

⎞⎠ v [12.42]

12.4. Differential flatness for nonlinear dynamical systems

12.4.1. Definition of differentially flat systems

Differential flatness is a structural property of a class of nonlinear systems,
denoting that all system variables (such as state vector elements and control
inputs) can be written in terms of a set of specific variables (the so-called flat
outputs) and their derivatives. The following nonlinear system is considered:

ẋ(t) = f(x(t), u(t)) [12.43]

The time is t∈R, the state vector is x(t)∈Rn with initial conditions x(0) =
x0 and the input is u(t)∈Rm. Next, the properties of differentially flat systems
are given [RUD 03, SIR 04, RIG 11c, LEV 11, FLI 99, LAR 07, VIL 07]:

The finite dimensional system of equation [12.43] can be written in the
general form of an ODE, that is Si(w, ẇ, ẅ, · · · , w(i)), i = 1, 2, · · · , q.
The term w is a generic notation for the system variables (these variables are,
for instance, the elements of the system’s state vector x(t) and the elements
of the control input u(t)) while w(i), i = 1, 2, · · · , q are the associated
derivatives. Such a system is differentially flat if there are m functions y =
(y1, · · · , ym) of the system variables and of their time derivatives, that is
yi = φ(w, ẇ, ẅ, · · · , w(αi)), i = 1, · · · ,m satisfying the following two
conditions [RIG 08, FLI 99, MAR 99]:
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1) There does not exist any differential relation of the form
R(y, ẏ, · · · , y(β)) = 0 which implies that the derivatives of the flat output
are not coupled in the sense of an ODE, or equivalently, it can be said that the
flat output is differentially independent.

2) All system variables (that is the elements of the system’s state vector w
and the control input) can be expressed using only the flat output y and its time
derivatives wi = ψi(y, ẏ, · · · , y(γi)), i = 1, · · · , s. An equivalent definition
of differentially flat systems is as follows:

DEFINITION.– The system ẋ = f(x, u), x∈Rn, u∈Rm is differentially flat if
there exist relations

h : Rn×(Rm)
r+1→Rm,

φ : (Rm)r→Rn and
ψ : (Rm)r+1→Rm

[12.44]

such that

y = h(x, u, u̇, · · · , u(r)),
x = φ(y, ẏ, · · · , y(r−1)), and
u = ψ(y, ẏ, · · · , y(r−1), y(r)).

[12.45]

This means that all system dynamics can be expressed as a function of the
flat output and its derivatives; therefore, the state vector and the control input
can be written as

x(t) = φ(y(t), ẏ(t), · · · , y(r)(t)), and
u(t) = ψ(y(t), ẏ(t), · · · , y(r+1)(t))

[12.46]

It is noted that for linear systems the property of differential flatness is
equivalent to that of controllability. Next, an example is given to explain the
design of a differentially flat controller for finite dimensional systems of known
parameters.

EXAMPLE.– Flatness-based control for a nonlinear system of known
parameters. Consider the following model [LAR 07]:

ẋ1 = x3 − x2u
ẋ2 = −x2 + u
ẋ3 = x2 − x1 + 2x2(u− x2)

[12.47]
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The candidate flat output is y1 = x1 +
x2
2

2 . Thus, we get:

y1 = x1 +
x2
2

2
y2 = ẏ1 = (x3 − x2u) + x2(u− x2) = x3 − x2

2

y3 = ẏ2 = ÿ1 = x2 − x1 + 2x2(u− x2)− 2x2(u− x2) = −x1 + x2

v = ẏ3 = y
(3)
1 = −x3 + x2u− x2 + u = −x2 − x3 + u(1 + x2)

[12.48]

It can be verified that property 1 holds, that is there does not exist any
differential relation of the form R(y, ẏ, · · · , y(β)) = 0, and this implies that
the derivatives of the flat output are not coupled. Moreover, it can be shown
that property 2 also holds, that is the components w of the system (elements
of the system’s state vector and control input) can be expressed using only the
flat output y and its time derivatives wi = ψi(y, ẏ, · · · , y(γi)), i = i, · · · , s.

For instance, to calculate x1 with respect to y1, ẏ1, ÿ1 and y
(3)
1 , the relation

of ÿ1 is used, that is:

x2
1 + 2x1(1 + ÿ1) + ÿ21 − 2y1 = 0 [12.49]

from which two possible solutions are derived, that is x1 = −(1 + ÿ1 −
1 + 2(y1 + ÿ1)) and x1 = −(1 + ÿ1 + 1 + 2(y1 + ÿ1)). Keeping the

biggest of these two solutions, we obtain:

x1 = −(1 + ÿ1) + 1 + 2(y1 + ÿ1)

x2 = ÿ1 + x1

x3 = ẏ1 + ÿ21 + 2x1ÿ1 + x2
1 [12.50]

u =
y31 + ÿ21 + ÿ1 + ẏ1 + x1 + 2x1ÿ1 + x2

1

1 + x1 + ÿ1

The computation of the equivalent model of the system in the linear
canonical form is summarized as follows: by finding the derivatives of the
flat output, we get a set of equations that can be solved with respect to the
state variables and the control input of the initial state-space description of the
system. First, the binomial of variable x1 given in equation [12.49] is solved
providing x1 as a function of the flat output and its derivatives. Next, using the
expression for x1 and equation [12.50], state variable x2 is also written as a
function of the flat output and its derivatives. Finally, using the expressions for
both x1 and x2 and equation [12.50], state variable x3 is written as a function
of the flat output and its derivatives. Thus, we can finally express the state
vector elements and the control input as a function of the flat output and its
derivatives, which completes the proof about differential flatness of the system.
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From equation [12.50], it can be concluded that the initial system of
equation [12.47] is indeed differentially flat. Using the flat output and its
derivatives, the system of equation [12.47] can be written in Brunovsky
(canonical) form:⎛⎝ẏ1

ẏ2
ẏ3

⎞⎠ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠⎛⎝y1
y2
y3

⎞⎠+

⎛⎝0
0
1

⎞⎠ v [12.51]

Therefore, a transformation of the system into a linear equivalent is
obtained and then it is straightforward to design a controller based on linear
control theory. Thus, given the reference trajectory [x∗

1, x
∗
2, x

∗
3]

T, we can find
the transformed reference trajectory [y∗1 , ẏ

∗
1 , ÿ

∗
1 ]

T and select the appropriate
control input v that succeeds tracking. Knowing v, the control u of the initial
system can be found.

12.4.2. Classes of differentially flat systems

Main classes of nonlinear differentially flat systems are [MAR 99]:

1) Affine in-the-input systems: the dynamics of such systems is given by:

ẋ = f(x) +
m

i=1

gi(x)ui [12.52]

From equation [12.52], we can notice that the above state equation can also
describe MIMO dynamical systems. Without loss of generality, it is assumed
that G = [g1, · · · , gm] is of rank m. In a case where the flat outputs of
the aforementioned system are only functions of states x, then this class of
dynamical systems is called 0-flat. It has been proved that a dynamical affine
system with n states and n− 1 inputs is 0-flat if it is controllable.

2) Driftless systems: these are systems of the form

ẋ =
m

i=1

fi(x)ui [12.53]

For driftless systems with two inputs, that is

ẋ = f1(x)u1 + f2(x)u2 [12.54]

flatness holds, if and only if the rank of matrix Ek+1: = {Ek, [Ek, Ek]}, k≥0
(with E0: = {f1, f2} and [Ek, Ek]: = {[X,Y ], X, Y ∈Ek} denoting a Lie
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bracket) is equal to k + 2 for k = 0, · · · , n − 2. It has been proved that a
driftless system, which is differentially flat, is also 0-flat (which means that the
flat output is a function of only the elements of the state vector of the initial
nonlinear system).

Moreover, for flat systems with n states and n− 2 control inputs, that is

ẋ =
n−2

i=1

uifi(x) x∈Rn [12.55]

the flatness property holds if controllability also holds. Furthermore, the
system is 0-flat if n is even.

12.4.3. Differential flatness and transformation into the canonical form

The classes of systems for which the application of differential flatness
theory results into a canonical form have to be defined. Transformation
into the Brunovksy form can be succeeded for systems that admit static
feedback linearization (that is a change of coordinates for both the system
state variables and the system’s control input). Single-input differentially
flat systems admit static feedback linearization and therefore can be finally
written in the Brunovsky form. For flat multi-input systems, necessary and
sufficient conditions that allow an endogenous transformation into Brunovsky
coordinates can be also stated [MAR 99, RIG 11].

In particular, for the case of a single-input differentially flat dynamical
system, we have:

ẋ = fs(x, t) + gs(x, t)(u+ d̃), x∈Rn, u∈R, d̃∈R [12.56]

where fs(x, t), gs(x, t) are nonlinear vector fields that define the system’s
dynamics, u denotes the control input and d̃ denotes additive input
disturbances. Knowing that the system of equation [12.56] is differentially flat,
the next step is to try to write it into a Brunovsky form. The selected flat output
is again denoted by y. Then, as analyzed in section 12.4, for the state variables
xi of the system of equation [12.56], it holds

xi = φi(y, ẏ, · · · , y(r−1)), i = 1, · · · , n [12.57]

while for the control input, it holds

u = ψ(y, ẏ, · · · , y(r−1), y(r)) [12.58]
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Introducing the new state variables y1 = y and yi = y(i−1), i = 2, · · · , n,
the initial system of equation [12.56] can be written in the Brunovsky form:⎛⎜⎜⎜⎜⎜⎜⎝

ẏ1
ẏ2
· · ·
· · ·
ẏn−1

ẏn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
y1
y2
· · ·
· · ·
yn−1

yn

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
· · ·
· · ·
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ v [12.59]

where v = f(x, t)+g(x, t)(u+d̃) is the control input for the linearized model,
and d̃ denotes additive input disturbances.

12.5. Differential flatness of the PMSG

It will be shown that the dynamic model of the PMSG is a differentially
flat one, that is it holds that all state variables and its control inputs can be
written as functions of the flat output and its derivatives. Moreover, it will be
shown that by expressing the elements of the state vector as functions of the
flat output and its derivatives, we obtain a transformation of the PMSG model
into the linear canonical (Brunovsky) form.

Defining the state vector of the PMSG as x = [Δδ,Δω,Eq]
T , we have that

ẋ1 = x2

ẋ2 = − D

2J
x2 + ω0

Pm

2J
− ω0

2J

Vs

xdΣ

x3sin(x1) [12.60]

ẋ3 = − 1

Td

x3 +
1

Tdo

xd − xd

xdΣ

Vscos(x1) +
1

Tdo
u

The flat output is chosen to be y = x1. Therefore, it holds

x1 = y [12.61]

x2 = ẏ [12.62]

while from the second row of equation [12.60], we have

ÿ = − D

2J
ẏ + ω0

Pm

2J
− ω0

2J

Vsx3

xdΣ

sin(y) [12.63]
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Thus, for x1=±nπ (where n = 0, 1, 2, · · · ), we obtain

x3 =
ω0

Pm

2J − ÿ − D
2J ẏ

ω0

2J
Vsx3

xdΣ

sin(y)
, or [12.64]

x3 = fa(y, ẏ, ÿ)

From the third row of equation [12.60], we have

u = Tdo[ẋ3 +
1

Td

x3
1

Tdo

xd − xd

xdΣ

Vscos(x1)], or [12.65]

u = fb(y, ẏ, ÿ)

Therefore, all state variables and the control input of the PMSG can be
written as functions of the flat output and its derivatives, and the PMSG model
is a differentially flat one.

Next, the following change of variables is performed: y1 = y, y2 = ẏ,
y3 = ÿ. It also holds

ẏ3 = y(3) = ẍ2 ⇒
[12.66]

y(3) = − D

2J
ẋ2 − ω0

2H

Vs

xdΣ
ẋ3sin(x1)− ω0

2J

Vs

xdΣ
x3cos(x1)ẋ1

By substituting ẋ2 and ẋ3 from the second and third rows of equation
[12.60], respectively, and after intermediate operations, we obtain

y(3) = fc(y, ẏ, ÿ) + gc(y, ẏ, ÿ)u [12.67]

where

fc(y, ẏ, ÿ) = (
D

2J2 )ẏ − ω0
D

2J

Pm

2J
+ ω0

D

(2J)2
Vs

xdΣ

x3sin(ẏ)

+
ω0

2J

Vs

xdΣ

1

Td

x3sin(y)− [12.68]

−ω0

2J

Vs

xdΣ

1

Tdo

xd − xd

xdΣ

Vscos(y)sin(y)− ω0

2J

Vs

xdΣ

x3cos(y)ẏ

gc(y, ẏ, ÿ) = −ω0

2J

1

Tdo

Vs

xdΣ

sin(y) [12.69]
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Thus, the system can be written in the following linear canonical
(Brunovsky) form:⎛⎝ẏ1

ẏ2
ẏ3

⎞⎠ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠⎛⎝y1
y2
y3

⎞⎠+

⎛⎝0
0
1

⎞⎠ v [12.70]

while the new control input for the linearized system is v = fc(y, ẏ, ÿ) +
gc(y, ẏ, ÿ)u. It can be noticed that the linearized equivalent of the system that
is obtained after applying differential flatness theory is the same with the one
obtained after applying the Lie algebra-based method.

The controller design for the linearized system described in equation
[12.70] is carried out using common pole placement methods. Since the
overall system dynamics is described by the differential equation

y(3) = v [12.71]

a suitable feedback control law that makes the flat output track a desirable set
point yd(t) is given by

v = y
(3)
d (t)− k1(ÿ(t)− ÿd(t))− k2(ẏ(t)− ẏd(t))− k3(y(t)− yd(t)))

[12.72]
The control input that is finally applied to the PMSG is given by

u(t) = g−1
c (t)[v(t)− fc(t)] [12.73]

The control law of equation [12.72] results in the closed-loop dynamics

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 [12.74]

By selecting the feedback control gains k1,k2 and k3 such that the
associated characteristic polynomial p(s) = s3+k1s

2+k2s+k3 is a Hurwitz
one, that is it has poles in the left complex semi-plane, we have that the tracking
error converges asymptotically to zero

limt→∞e(t) = 0⇒limt→∞y(t) = yd(t) [12.75]

Because the flat output converges to the desirable set point and because all
state variables x1,x2 and x3 are expressed as functions of the flat output and
its derivatives, we have that the state variables also converge to the desirable
set points and therefore efficient control of the PMSG is achieved.

Moreover, for the linearized equivalent of the system, we can perform
state estimation with the use of the standard Kalman filter recursion and can
compute also the state vector elements that are not directly measurable (i.e. ω
and Eq).
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12.6. Robust state estimation-based control of the PMSG

12.6.1. Unknown input observers

The previous method for PMSG controller design was based on the
assumption that the mechanical input power (torque) Pm that is applied
to the PMSG can be directly measured and that this input torque is a
constant or piecewise constant variable. However, this is not always the
case since the measurement of Pm may be technically difficult while Pm

maybe a time-varying signal (e.g. mechanical excitation due to wind, steam
or water flow). In the latter case, we can consider variable Pm as an external
disturbance to the generator’s model. The simultaneous estimation of the
non-measurable elements of the PMSG state vector (that is ω and Eq) as well as
the estimation of the disturbance term (input torque Pm) is possible if using a
disturbance estimator is used [COR 05, COR 06, CHE 00, GUP 11, MIK 06].

A first type of disturbance estimator is the unknown input observer. This is
applied to dynamical systems of the form

ẋ = Ax+B(u+ we)

z = Cx
[12.76]

while the disturbance dynamics is given by

ḋ = Afd

we = Cfd
[12.77]

Then, the unknown input observer provides a state estimate of the extended
state vector

˙̂x
˙̂
d

=
A BCf

0 Af

x̂

d̂
+

B
0

u+K(z − Cx̂) [12.78]

In the generic case, we can assume that the disturbances vector we varies
dynamically in time. However, in several cases, it suffices to assume a constant
or piecewise constant disturbance ẇe(z) = 0, where Af = 0 and Cf = 1. The
observer’s gain can be obtained through the standard Kalman filter recursion.

12.6.2. Perturbation observer

The perturbation observer is an extension of the unknown inputs observer
that takes into account not only external disturbances but also parametric
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uncertainties. In the discrete-time form, the system dynamics is given by

x(k + 1) = Ax(k) +Bu(k) + wf (k)

z(k) = Cx(k)
[12.79]

while the disturbance dynamics is given by

d(k) = Afd(k − 1) +Bf (B
+(x̂(k)−Ax̂(k − 1))− u(k − 1))

ŵf (k) = Cfd(k) [12.80]

x̂(k + 1) = Ax̂(k) +B(u(k) + ŵf (k) + L(z(k)− Cx̂(k))

where B+ is the Moore–Penrose pseudo-inverse of matrix B. The unknown
input can represent traditional external disturbances and model uncertainties,
that is wf = we +ΔAxk +ΔBuk.

12.6.3. Extended state observer

The extended state observer uses a canonical form, so the unmodeled
dynamics appear at the disturbance estimation part. The system’s description
in the canonical form is given by

x
(n)
1 = f(x, t, u, wf ) + bmu

z = x1 [12.81]

x = x1 ẋ1 · · · x(n−1)
1

T

⎛⎜⎜⎜⎜⎜⎝
˙̂x1

· · ·
˙̂xn−1

˙̂xn

˙̂
f

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
x̂2

· · ·
x̂n

f̂ + bmu
0

⎞⎟⎟⎟⎟⎠+K(x1 − x̂1) [12.82]

The extended state observer can be also modified to take into account
derivatives of the disturbance

x
(n)
1 = f(x, t, u, wf ) + bmu

z = x1

x = x1 ẋ1 · · · x(n−1)
1

T

[12.83]

F = f ḟ · · · f (h−1) T
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and now the state and disturbance observer takes the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˙̂x1

· · ·
˙̂xn−1

˙̂xn

˙̂
F1

· · ·
˙̂
Fh−1

˙̂
Fh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂2

· · ·
x̂n

f̂ + bmu

F̂2

· · ·
F̂h

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+K(x1 − x̂1) [12.84]

The latter form of the extended state observer described in equation [12.84]
enables to track various types of disturbances. For example, h = 1 allows
the estimation of disturbance dynamics defined by its first-order derivative,
and h = 2 allows the estimation of disturbance dynamics defined by its
second-order derivative.

12.7. Estimation of PMSG disturbance input with Kalman filtering

12.7.1. State estimation with the derivative-free nonlinear Kalman filter

It was shown that using differential flatness theory, the initial nonlinear
model of the PMSG can be written in the canonical form:⎛⎝ẏ1

ẏ2
ẏ3

⎞⎠ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠⎛⎝y1
y2
y3

⎞⎠+

⎛⎝0
0
1

⎞⎠ v [12.85]

Thus, we have a linear model of the form

ẏf = Afyf +Bfv
[12.86]

zf = Cfyf

where yf = [y1, y2, y3]
T and matrices Af ,Bf ,Cf are in the canonical form

Af =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ Bf =

⎛⎝0
0
1

⎞⎠ CT
f =

⎛⎝1
0
0

⎞⎠ [12.87]
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where the measurable variable y1 = δ is associated with the turn angle of
the rotor. For the previous model, and after carrying out discretization of
matrices Af , Bf and Cf with common discretization methods, we can perform
linear Kalman filtering using equation [12.98] and equation [12.99]. This is
derivative-free nonlinear Kalman filtering for the model of the generator,
which, unlike EKF, is performed without needing the computation of Jacobian
matrices and does not introduce numerical errors due to approximative
linearization with Taylor series expansion [RIG 11a, RIG 11b, RIG 12a].

12.7.2. Kalman filter-based estimation of disturbances

Up to now, the mechanical input torque of the generator, which has been
denoted by Pm, was considered to be constant or piecewise constant while it
has been also considered that it is possible to measure it. Now it is assumed
that the mechanical input torque varies in time, and in that case the aggregate
disturbance input exerted on the generator’s model is

Tm = −ω0
D

(2J)2
Pm +

ω0

2J
Ṗm [12.88]

It is also assumed that the dynamics of the disturbance term Tm is defined
by its n-th order derivative T

(n)
m . Considering now that after expressing the

system’s state variables as functions of the flat outputs and their derivatives,
the PMSG’s dynamics is given by

y(3) = fc(y, ẏ, ÿ) + gc(y, ẏ, ÿ)u+
1

2H
Ṗm or

y(3) = v − ω0
D

(2J)

2

Pm +
ω0

2J
Ṗm or [12.89]

y(3) = v − Tm

where

fc(y, ẏ, ÿ) =
D

2J2 ẏ − ω0
D

2J

Pm

2J
+

D

(2J)2
ω0

Vs

xdΣ

x3sin(ẏ)

+
ω0

2J

Vs

xdΣ

1

Td

x3sin(y) [12.90]

−ω0

2J

Vs

xdΣ

1

Tdo

xd − xd

xdΣ

Vscos(y)sin(y)− ω0

2H

Vs

xdΣ

x3cos(y)ẏ
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gc(y, ẏ, ÿ) = − D

2M

ω0

Tdo

Vs

xdΣ

sin(y) [12.91]⎛⎝ẏ1
ẏ2
ÿ3

⎞⎠ =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠⎛⎝y1
y2
y3

⎞⎠+

⎛⎝0
0
1

⎞⎠ v − ω0
D

(2J)2
Pm +

ω0

2J
Ṗm [12.92]

Next, the state vector of the model of equation [12.92] is extended
to include as additional state variables the disturbance input Tm and its
derivatives. Then, in the new state-space description, we have z1 = y1,
z2 = y2, z3 = y3, z4 = Tm = −ω0

D
(2J)2Pm+ ω0

2J Ṗm, z5 = Ṫm, and z6 = T̈m.
Without loss of generality, the disturbance input dynamics is assumed to be
described by its third-order derivative ż6 = T

(3)
m . Using the previous definition

of state variables, we have the matrix equations

ż = Ã·z + B̃·ṽ [12.93]

where the control input is

ṽ = v T
(3)
m

T

[12.94]

with

Ã =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ B̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0
0 0
1 0
0 0
0 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎠ C̃T =

⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ [12.95]

where the measurable state variable is z1. Because the dynamics of the
disturbance input are taken to be unknown in the design of the associated
disturbances’ estimator, we have the following dynamics:

ż = Ão·z + B̃o·ṽ +K(Coz − Coẑ) [12.96]

where K∈R6×1 is the state estimator’s gain and

Ão =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ B̃o =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0
0 0
1 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ C̃T
o =

⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ [12.97]
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It can be confirmed that the disturbance observer model of the
PMSG defined in equation [12.97] is observable. Defining the discrete-time
equivalents of matrices Ão, B̃o and C̃o as Ãd, B̃d, and C̃d, respectively, a
derivative-free nonlinear Kalman filter can be designed for the aforementioned
representation of the system dynamics. The associated Kalman filter-based
disturbance estimator is given by [RIG 12].

Measurement update:

K(k) = P−(k)C̃T
d [C̃d·P−(k)C̃T

d +R]−1

ẑ(k) = ẑ−(k) +K(k)[z(k)− C̃dx̂
−(k)] [12.98]

P (k) = P−(k)−K(k)C̃dP
−(k)

Figure 12.2. Schematic diagram of the Kalman filter loop

Time update:

P−(k + 1) = Ãd(k)P (k)ÃT
d (k) +Q(k)

[12.99]
ẑ−(k + 1) = Ãd(k)ẑ(k) + B̃d(k)ṽ(k)

To compensate for the disturbance terms, it suffices to use in the control
loop the modified control input, which actually removes the effects of the
external disturbance variable Tm.

v∗ = v − T̂m or v∗ = v − ẑ4 [12.100]
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12.8. Simulation experiments

To evaluate the performance of the proposed nonlinear control scheme,
which uses Kalman filtering to estimate the non-measurable state vector
elements of the PMSG and the external disturbances, simulation experiments
have been carried out. Different rotation speed set points had been assumed.
Moreover, different input torques (mechanical input power profiles) have been
considered to affect the PMSG dynamic model (SMIB model). The control
loop used in the PMSG control is shown in Figure 12.3.

Figure 12.3. Control loop for the PSMG comprising a
flatness-based nonlinear controller and a Kalman filter-based disturbances

estimator

First, the case of measurable piecewise constant mechanical input
power (torque) was examined. It was assumed that the input torque could
be measured and could be directly used in the controller’s design. The
derivative-free nonlinear Kalman filter enabled the estimation of specific
elements of the state vector, such as ω and Eq . The associated results about
the tracking performance of the control loop are shown in Figures 12.4 and
12.5. The desirable set point is denoted by a continuous line, the real value of
the state variable is denoted by a dashed line and the estimated value of the
state variable in shown in dotted line. The units of the PMSG state variables
have been expressed in a per unit (p.u.) system. We can observe that the
proposed sensorless control scheme for the PMSG succeeds fast and accurate
convergence to the desirable set points.
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a) b)

Figure 12.4. Sensorless control of the PMSG under measurable mechanical
input torque in the case of speed reference set point 1: a) convergence of the

real and estimated values of the angular speed difference Δω and b)
convergence of the real and estimated values of the quadrature axis voltage Eq

a) b)

Figure 12.5. Sensorless control of the PMSG under measurable mechanical
input torque in the case of speed reference set point 2: a) convergence of the

real and estimated values of the angular speed difference Δω and b)
convergence of the real and estimated values of the quadrature axis voltage Eq
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a) b)

Figure 12.7. Sensorless control of the PMSG under non-measurable (piecewise
constant) mechanical input torque in the case of speed reference set point 2:

a) convergence of the real and estimated values of the angular speed difference Δω
and b) convergence of the real and estimated values of the quadrature axis voltage Eq

a) b)

Figure 12.8. Estimation of the non-measurable (piecewise constant) input torque
in sensorless control of the PMSG through the processing of rotor angle
measurements: a) in the case of speed reference set point 1 and b) in the

case of speed reference set point 2
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a) b)

Figure 12.9. Sensorless control of the PMSG under non-measurable (time varying)
mechanical input torque in the case of speed reference set point 1: a) convergence of
the real and estimated values of the angular speed difference Δω and b) convergence

of the real and estimated values of the quadrature axis voltage Eq

a) b)

Figure 12.10. Sensorless control of the PMSG under non-measurable (time varying)
mechanical input torque in the case of speed reference set point 2: a) convergence of
the real and estimated values of the angular speed difference Δω and b) convergence

of the real and estimated values of the quadrature axis voltage Eq
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a) b)

Figure 12.11. Estimation of the non-measurable (time varying) input torque in
sensorless control of the PMSG: a) in the case of speed reference set point 1

and b) in the case of speed reference set point 2

12.9. Conclusions

A new method for state estimation-based (sensorless) control of the PMSG
is proposed. The method makes use of the differential flatness theory that
enables us to transform the initial nonlinear model of the generator into a linear
canonical (Brunovsky) form. To show that the PMSG model is a differentially
flat model, the rotor’s turn angle is chosen to be the flat output and it is shown
that all elements of the generator’s state vector and the control input can
be written as functions of the flat output and its derivatives. This procedure
permits us to introduce a change of state variables (diffeomorphism) and to
write the initial nonlinear model of the generator into the linear canonical
form. For the linearized equivalent of the system, it is possible to design
a state feedback controller with the use of pole-placement methods. Unlike
linearization with the use of Lie derivatives, the flatness-based linearization
approach does not require the computation of partial derivatives of the
elements of the state vector or the computation of Jacobian matrices.

There are two particular issues in the design of the PMSG controller:
(1) there are certain elements in the generator’s state vector that are not
directly measurable and (2) there may be variations in the mechanical input
power (torque) and it may also be impractical or costly to measure this input
power. To address point 1, a new nonlinear Kalman filtering approach is
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introduced. The method is called derivative-free nonlinear Kalman filtering
and consists of implementation of the standard Kalman filter recursion on
the linearized equivalent of the PMSG model, which is obtained with the
use of the differential flatness-based transformation. The fast computation
features of the derivative-free nonlinear Kalman filter enable the estimation
of non-measurable state vector elements in real time, while the accuracy of the
provided state estimation is very satisfactory.

To address point 2, the derivative-free nonlinear Kalman filter is redesigned
in the form of a disturbance estimator. The state vector of the disturbance
estimator contains both the state vector elements of the linearized equivalent
of the PMSG and new state vector elements that stand for the unknown
mechanical input (torque) and its derivatives. Using the aforementioned
disturbance observer, we can obtain estimates of both the non-measurable
elements of the state vector (e.g. rotation speed and quadrature-axis transient
voltage of the rotor) and estimates of the unknown disturbance input (which is
due to external mechanical torque) and of its time derivatives.

To maintain the operating characteristics of the generator (e.g. rotation
speed) unchanged despite variations in the input power, the initial state
feedback controller of the PMSG is complemented by additional elements
based on the disturbance input estimates that actually compensate for the
unknown input effects. The considered disturbance estimator also makes it
possible to compensate for the effects of parametric changes and modeling
uncertainties in the PMSG dynamics. The efficiency of the proposed state
estimation-based (sensorless control) of the PMSG is evaluated through
simulation experiments.
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