
3
Modelling and Simulation
of Mixed Systems

3.1 Introduction
The majority of technical systems are mixed; i.e. they incorporate components from
various fields, such as electronics, mechanics, software and other domains. This
raises significant design problems because hitherto design methodologies and the
associated design tools have usually been developed for a single field only. This
means that the overall function of the system cannot be investigated until the pro-
totype construction phase. However, by the time this stage is reached, changes to
the design have already become very expensive and time-consuming. The consid-
eration of virtual prototypes, which allow virtual experiments to be performed on a
computer by simulation, offers an elegant solution to the problem described above.

This chapter introduces the consideration of the simulation of mixed systems by
describing common ground and differences between electronics and mechanics in
Section 3.2. This lays the foundation for the modelling and simulation of electro-
mechanical systems.

This chapter also describes various approaches to the modelling of mechatronic
and micromechatronic systems. One possibility is to transfer mechanical models
into the form of electronic models (and vice-versa). This permits the consideration
of the mechanics in a electronics simulator (and vice-versa), see Section 3.3. Thus
half of the modelling problem can take place using standard methods. On the other
hand, this raises the question of how to formulate electronics within the modelling
world of mechanics (and vice versa). For the transformation of mechanics into
a circuit simulator the use of hardware description languages is the method of
choice. This approach — the main theme of this work — will be discussed in detail
in Chapters 4–6. Before hardware description languages became widely accepted
in recent years, equivalent circuits were often developed to describe the behaviour
of mechanical components. Relatively few attempts were made to consider elec-
tronics along with mechanics in a mechanical simulator. Although some mechanical
simulators permit the inclusion of simple components such as capacitors, resistors

Mechatronic Systems Georg Pelz
 2003 John Wiley & Sons, Ltd ISBN: 0-470-84979-7

40 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

or inductances, the consideration of active components or entire circuits has hith-
erto only been realised in experiments. One possible reason for this is that when
developing mechanical parts of the system it is often sufficient to describe the
electronics in abstract form using controller equations and thereby to avoid the
circuit level.

There are also some approaches that attempt to model the entire electro-
mechanical system as a unit without any preference for electronics or mechanics.
These methods include bond graphs, block diagrams, and modelling languages
such as Modelica. Despite the elegance of these description forms it is generally
found that neither the electronics nor the mechanics can be modelled with the usual
standard procedures, see Section 3.4.

Finally, the possibility of coupling together simulators for different domains
represents a further approach to solving the problem. This could, for example,
occur systematically with the aid of a simulator backplane, as is often created for
pure electronics. Typical applications for this are the coupling of circuit and logic
simulators or the distribution of simulations on a parallel computer or a cluster
of workstations. However, simulator coupling is associated with a whole range of
problems: Firstly the resulting simulator package is unwieldy, it is often difficult
to operate, and licences are required for all of the individual simulators. Secondly,
the problems associated with synchronisation between two very heterogeneous
simulator cores are even more severe, see Section 3.5.

At this point it should be re-emphasised that this work deals with the simulation
of mixed systems. Electro-mechanical components will be considered only within
the context of the system.

3.2 Electronics and Mechanics

3.2.1 Introduction

The following section will investigate the common ground and differences between
electronics and mechanics and the associated models. For this purpose the mod-
elling of the two domains will be considered on the level of an abstraction, see
Figure 3.1. On the lowest level we find the consideration of electrical and mag-
netic fields and of the mechanical continuum. In electronics such considerations
are required exclusively for the design of components, e.g. transistors, and this
approach is known as device simulation. In the present context, however, we are
interested in systems and therefore this type of simulation can be disregarded.
Above this we find circuit simulation, which considers net lists of electronic com-
ponents. In digital circuits we can convert continuous voltage levels into discrete
values, such as 0 and 1, thereby significantly accelerating the simulation. Using
digital electronics we can build processors on which software runs, which can
itself act as an abstraction level. In mechanics, on the other hand, it has hitherto

3.2 ELECTRONICS AND MECHANICS 41

Mechanical continua

Digital electronics

Software

Electronics Mechanics

Electronic
components

Electric/magnetic
fields

A
bs

tr
ac

tio
n

Rigid/elastic
bodies

Figure 3.1 Levels of abstraction for electronic and mechanical models

only been possible to differentiate between two levels of abstraction, the contin-
uum level and the level of multibody systems in which rigid and elastic bodies are
each considered as a unit. In particular, we cannot neglect the continuum level for
the consideration of systems since an electro-mechanical transformation, e.g. sen-
sors and actuators, occasionally cannot be abstracted to the multibody level. The
demonstrators from the chapter on micromechatronics are a good example of this.

3.2.2 Analogies

Analogies on the level of electronic components and mechanical bodies repre-
sent the predominant theme running through the joint consideration of electronics
and mechanics. By this we mean that electronics and mechanics can be described
using equations that have the same structure. This is also made clear by the fact
that the equations from both mechanics and electronics can be derived from the
Lagrange principle, see Maißer and Steigenberger [252] and Section 6.2.2. ‘Lan-
grange approach’. The analogies between electronics and mechanics will first be
explained by means of an example, see Ogata [300]. The diagram on the left-hand
side of Figure 3.2 shows a simple mass-spring-damper system.

The differential equation describing the system is as follows:

mẍ + bẋ + kx = F (3.1)

First we have to find out which variables can be identified as being analogous with
one another. One possibility is to associate forces with currents and velocities with
voltages. In order to construct an analogue circuit, let us now consider the mechan-
ical system more closely. In this all forces act upon the mass, i.e. upon a point, and
correspondingly add up to zero. In electronics this corresponds with the situation

42 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

m

k

x

b

F

i

L R

Cis L R C

iL iR iC

us us

Figure 3.2 Mechanical system and two analogue circuits

in which all currents of analogue components meet at a node and also add up to
zero there. Thus the circuit shown at the centre of Figure 3.2 represents an analogy
with the mechanical system. Using Kirchhoff’s current law the following is true:

iL + iR + iC = is (3.2)

where

iL = 1

L

∫
us dt, iR = us

R
, iC = Cu̇s (3.3)

So equation (3.2) becomes:

1

L

∫
us dt + us

R
+ Cu̇s = is (3.4)

The magnetic flux ψ has the following relationship to the voltage us:

ψ̇ = us (3.5)

Since voltage us is analogous to velocity, ψ , as an integral of the voltage, represents
deflection. Thus equation (3.4) can be formulated as follows:

Cψ̈ + 1

R
ψ̇ + 1

L
ψ = is (3.6)

The structure of this equation exactly corresponds with equation (3.1). Capacitance
is linked to mass here, damping to the inverse of resistance and the spring constant
to the inverse of inductance. Lastly, the current is of the source corresponds with
the activating force F.

Alternatively, we can also associate forces with voltages and velocities with
currents. In this case the voltages, as the counterpart to the currents, must add
up to zero and therefore must be arranged in a loop, see the right-hand side of

3.2 ELECTRONICS AND MECHANICS 43

Figure 3.2. The following applies:

Li̇s + Ris + 1

C

∫
isdt = us (3.7)

If we formulate the equation with the aid of charge q, it becomes:

Lq̈ + Rq̇ + 1

C
q = us (3.8)

This equation too corresponds with the structure of equation (3.1). Now, however,
the inductance is linked to the mass, the resistance to the damping, and the spring
constant to the inverse of capacitance. The voltage us of the source is associated
with the activating force F here.

We can thus differentiate between two types of analogy, which differ from
one another primarily in the assignment of variables and basic elements. The
force–current analogy that we investigated first has the advantage that it retains
the structure of the mechanical system, see Crandall et al. [75]. Parallel circuits
remain parallel circuits, series circuits remain series circuits. Kirchhoff’s current
and voltage laws apply accordingly, i.e. forces/currents at a node and (relative)
velocities/voltages in a loop cancel each other out. The two Kirchhoff’s analo-
gies do not apply, if — as in the second case — forces and voltages are identified
as analogous. Table 3.1 shows the most important relationships for the force-
current analogy.

3.2.3 Limits of the analogies

The analogies described above are based upon linear relationships. However, this
circumstance often cannot be guaranteed. For example, the Stokes’ friction or
viscous friction has a linear relationship with velocity in a first approximation and
can thus be represented as a resistance. However, this is very definitely not the case
for the Coulomb friction. Here we can differentiate between two states of static
and sliding friction, for which different coefficients of friction apply. Furthermore,
the Coulomb friction is not dependent upon velocity but on another variable — the
perpendicular force. The Newton friction of bodies moved quickly through a fluid
finally depends upon a few parameters, such as the frontal area, the drag coefficient
and the density of the fluid, but above all on the square of the velocity. In order to
construct an analogy for the Coulomb friction we need a resistance controlled via
the normal force, i.e. via the corresponding current, which switches the coefficient
of friction in an event-oriented manner upon the transition from static to sliding
friction and vice versa. The Newton friction of bodies moved through a fluid, on the
other hand, can best be represented as a resistance with a quadratic characteristic.
We have thus already dealt with a good proportion of the components normally
considered in analogue electronics.

The transition from one-dimensional to three-dimensional mechanics represents
the limit of the consideration of analogies. The analogies can no longer be used

44 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

Table 3.1 Analogies between analogue electronics, translational and rotational mechanics

Analogue electronics Translational mechanics Rotational mechanics

Current Force Torque
i F M

Voltage Velocity Angular velocity
u v ω

Coil Spring Torsion spring

u(t) = L · d

dt
i(t) v(t) = 1

k
· d

dt
F(t) ω(t) = 1

k
· d

dt
M(t)

Capacitor Inertia Rotational inertia

i(t) = C
d

dt
u(t) F(t) = m

d

dt
v(t) M(t) = J

d

dt
ω(t)

Resistor Damping Rotational damping

i(t) = 1

R
· u(t) F(t) = b · v(t) M(t) = b · ω(t)

Electrical power
dissipation at resistor
P(t) = u(t) · i(t)

Mechanical power
dissipation due to
damping
P(t) = v(t) · F(t)

Mechanical power
dissipation due to
damping
P(t) = ω(t) · M(t)

Magnetic energy
T(t) = 1

2 Li2(t)

Elastic energy

T(t) = 1

2
· 1

k
F2(t)

Elastic energy

T(t) = 1

2
· 1

k
M2(t)

Electrostatic energy
T(t) = 1

2 Cu2(t)
Kinetic energy
T(t) = 1

2 mv2(t)
Kinetic energy
T(t) = 1

2 Jω2(t)
Transformer
i1 · u1 = i2 · u2

i1 = αi2

u1 = 1

α
u2

Lever
F1 · v1 = F2 · v2

F1 = αF2

v1 = 1

α
v2

Gear
M1 · ω1 = M2 · ω2

M1 = αM2

ω1 = 1

α
ω2

Sum of all currents
at a node is zero

Sum of all forces at a point
is zero

Sum of all moments at a point
is zero

Sum of all voltages in
a closed loop is zero

Sum of all relative velocities
in a closed loop is zero

Sum of all relative angular
velocities in a closed loop is zero

in this case, see Crandall et al. [75]. This becomes clear intuitively if we look
at the example of a robotic arm. In the calculation of kinematics and dynamics,
three-dimensional translational movements and triaxial rotational movements are
calculated independently of one another. There is no parallel to this in electron-
ics. Furthermore, analogies in the sense described are defined exclusively for the
consideration of concentrated components and continuous quantities. Continuum
mechanics, digital electronics and software thus remain outside their scope and
must be considered separately.

3.2.4 Differences between electronics and mechanics

In what follows the primary differences between electronics and mechanics will
once again be briefly summarized, see also Cellier [62].

3.3 MODEL TRANSFORMATION 45

With the exception of high-frequency circuits, electronics can be considered
exclusively in topographic form in the simulation. The precise geometry is unim-
portant or can be considered using simple parameters. This is not the case in
mechanics, where three components of translation and three components of rotation
have to be taken into account.

Furthermore, translation and rotation cannot be considered independently of one
another, as illustrated by gyroscopic forces such as the Coriolis force.

A whole range of reference systems are relevant to the description of position,
movement and acceleration. We have the inertial system and various fixed body
reference systems, the origins of which may lie approximately at the centre of
gravity or at the coupling points. In electronics there is only a reference voltage
(ground) as the ‘inertial system’, and voltage or current arrows as fixed-component
‘reference systems’.

In electronics, and in particular in microelectronics, we sometimes have some
tens of millions of components. In mechanics, at most, a few tens to a few hun-
dreds of basic elements, e.g. rigid bodies, joints, springs, etc. have to be taken
into account.

The movements of mechanical bodies are typically subject to a whole range of
limitations. Mechanical stops are one example. Springs can only be extended up to
a certain degree. Elastic bodies deform under the effects of force. Similar effects
can also be found in electronics but they are far less prominent than is the case
in mechanics.

3.3 Model Transformation

3.3.1 Introduction

We can now specify a class of simulators and use this as the basis for the description
of models in the other domains. In principle, the basic simulator should be sought
out on the basis of the focal point of the desired investigation. In what follows we
will describe approaches based upon circuit simulators, logic or Petri net simulators,
multibody simulators, and finite-element simulators.

3.3.2 Circuit simulation

Introduction

In a circuit simulator the formulation of transformed models classically takes place
in a hardware description language. This approach is the main theme of the present
work and will be described comprehensively in the following chapters. Alterna-
tively, it is also possible to draw up equivalent circuit diagrams for mechanical
components. We can initially differentiate between two possibilities here. Firstly,

46 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

we can use the analogies introduced in Section 3.2.2 to associate electronic com-
ponents with basic mechanical elements. The other option is to model not the
mechanics itself, but rather the differential equations that describe the mechanics.

Analogy approach

In order to consider the analogies we must first refer to Section 3.2.2. The force/current
analogy is normally used. In addition to the basic elements, other mechanical phe-
nomena such as Coulomb friction have to be considered. These require behavioural
modelling based upon sources that can be controlled by arbitrary mathematical func-
tions. Such voltage and current sources are available in PSpice, for example. This
represents a rudimentary form of modelling in a hardware description language.

Yli-Pietilä et al. [431] use this method to investigate mechatronic systems such
as a linear drive. They model a DC motor with an electronic control system and a
mechanical load. The same approach is further elaborated by Scholliers and Yli-
Pietilä in [369] and applied to other examples, such as a double pendulum. In
[368] Scholliers and Yli-Pietilä introduce a whole library of such models, which
expand the field of application of a circuit simulator such as Spice in the direction
of mechatronics.

Examples for the use of equivalent circuit diagrams in micromechatronics are
supplied, for example, by Antón et al. [13] (pressure sensor elements), Garverick
and Mehregany [111] (micromotors), or Lo et al. [236] (resonators).

Modelling of differential equations using equivalent circuits

As an alternative to the analogy approach described above we can also find an
equivalent circuit for the underlying system of equations. In principle, this pro-
cedure is similar to the construction of a rudimentary analogue computer from
electronic components. In this context we can differentiate between explicit and
implicit methods, see Bielefeld et al. [31]. In the explicit version the values of the
state variables are represented as voltages in the network. In this, the highest time
derivative of each state variable is set depending upon lower derivatives and other
state variables using a controlled voltage source. In addition, there are integrators,
see the left-hand side of Figure 3.3, which again provide the low derivatives in the
form of voltages, see Herbert [139]. As an alternative to this, the implicit method,
see Paap et al. [312], solves a set of n equations in the form:

f(x, ẋ, t) = 0 (3.9)

where x represents a vector of n unknowns. As in Herbert [139] the states are
represented as node voltages. Each equation is defined by a current from a voltage-
controlled current source. This sets the input current of the differentiator in the

3.3 MODEL TRANSFORMATION 47

Uin

U*inGint

Gint = 1uS

U = x

R*ID

R = 1Ohm

U = x

ID

UD = 0V

I = ID

DifferentiatorIntegrator

U = dx/dtU = dx/dt

Cint = 1uF

Cdiff = 1F

Figure 3.3 Equivalent circuits for integrator and differentiator

right-hand side of Figure 3.3 to the value f(x, ẋ, t). The circuit simulator ensures
that no current flows into the differentiator and thus solves the differential equation.

It is also worth mentioning that the, somewhat tiresome, process of converting
a system of differential equations has been automated using the MEXEL CAE tool,
see Pelz et al. [322]. A model transformer reads in the differential equation system,
simplifies it if necessary, and then writes out a Spice net list in explicit or implicit
formulation.

3.3.3 Logic/Petri net simulation

Introduction

Predicate/transition networks (Pr/T networks), see [115] represent an extension of
Petri nets and are often used for the modelling of software and/or digital elec-
tronics. They permit a system description on a very abstract level in which the
use of hierarchies permits particularly compact representations. The strength of
Pr/T networks lies in the effective consideration of parallel processes. Brielmann
et al. [46], [47], [48] and Kleinjohann et al. [199] introduce methods for describ-
ing mechanics and other physical domains, plus the associated interfaces using
the resources of the Pr/T networks. Such model transformations thus provide the
option of describing and simulating mixed systems in a consistent manner. The
representation of the hardware description language VHDL in a coloured Petri net
by Olcoz and Colom in [301] shows that Petri net simulation and logic simulation
are not so very different from each other, which means that the events portrayed
in the following section could well be achieved on the basis of digital hardware
description languages.

Definition of Predicate/Transition nets

Pr/T nets consist of places, transitions, and directional edges between these. Places
can contain identifiable markings, which represent the state of the network. If a
marking is sufficiently high at the inputs of a transition and if these satisfy any
additional conditions, then the transition can ‘fire’. In this case the markings in

48 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

question are cleared from the input places, new markings are generated at the
output places and predefined actions may be performed where applicable. Such a
network can be formulated in very compact form using the tools of predicate logic,
e.g. in the Prolog language, see Negretto [295]. In this connection, a marking at a
place conveys the information that a predicate assigned to that place is fulfilled. In
order also to correctly take account of the timing of the individual components it
is necessary to add in a concept of time. So in [47] two delays are assumed for a
transition. One relates to the period of time for which the markings must be present
at the input places before the associated transition can fire. The other describes the
time that elapses between the firing of the transition and the generation of the
output markings.

Modelling of discrete relationships

Let us now clarify how a Pr/T net works on the basis of a small example from
[46], see Figure 3.4. On the left-hand side a piece of code is represented at the start
of which some variables are initialised. There follows a loop, in the body of which
various arithmetic operations are performed. The termination condition for the loop
is located at the end of the loop and is based upon a comparison of two variables.
In the centre and at the right-hand side of Figure 3.4 Pr/T nets are represented
in different states. The variant in the middle shows the initial occupation of the
markings and thus the situation after initialisation. The two calculations are located

p1 p2

[1,2]

<a,b> <c,d>

e = b*d

<a,c> <d,e>

p3 p4

f = a*c

<f,c>

p5

<f,c>

e<c

<e,d>

<c,d><e,f>

t3

t2

t1

[17,5]

p1 p2

[1,2]

<a,b> <c,d>

e = b*d

<a,c> <d,e>

p3 p4

f = a*c

<f,c>

p5

<f,c>

e<c

<e,d>

<c,d><e,f>

t3

t2

t1

[17,5]

[1,17] [5,10]

a:=1;

b:=2;

c:=17;

d:=5;

repeat

 e:=b*d;

 b:=a*c;

 a:=e;

until (a>c)

Figure 3.4 Modelling of digital behaviour using Pr/T nets

3.3 MODEL TRANSFORMATION 49

in the transitions t1 and t2. Transition t3 compares the corresponding values. If the
newly calculated a is less than c, then the values are once again entered into places
p1 and p2, which represent the input places of the loop. Otherwise the calculation
of the loop is broken off and further transitions that are not shown can fire. The
diagram on the right-hand side of Figure 3.4 shows a state in which the transition
t1 has already fired for the first time. Accordingly, the new values of a and c
have been entered at place p3 and the new values of d and e have been entered
at place p4. Other constructs of a programming language can be depicted in the
same manner.

Modelling of continuous relationships

Continuous relationships are classically modelled using differential equations that
can be either linear or nonlinear. Let us now model such equations on the basis of
Pr/T nets using the event-oriented modelling introduced in the previous section. A
solution for linear differential equations on the basis of the Z transformation was
proposed by Brielmann and Kleinjohann [46]. In what follows we will, however,
predominantly consider nonlinear systems. This property can have two causes:
firstly, nonlinearity can arise as a result of discontinuities; secondly, it may be
caused by nonlinear functions in the system equations [47]. The first case is very
simple to solve. Here only the current equation has to be activated, which can be
performed by simply distinguishing between cases. The example from Figure 3.4
illustrates this state of affairs. The termination condition at the end of the loop
corresponds with such a case differentiation. More difficult is the realisation of
the other variant. In [47] it is proposed to put the equations together step-by-step
from linear components, meaning that here too a swapping of linear components
would be necessary. Furthermore, the differential equations have to be numerically
integrated, which is achieved using the Euler principle:

ẋ(t) ≈ x(t + h) − x(t)

h
(3.10)

where h is the time step of the integration. Now if the differential equation of
interest is

ẋ(t) = f(x, t) (3.11)

the integration formula is found to be

x(t + h) ≈ h · ẋ(t) + x(t) = h · f(x, t) + x(t) (3.12)

which, along with an additional function g(x,u,t) to determine the outputs, can be
directly represented on a Pr/T net, see Figure 3.5.

50 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

y(t):=g(x,u,t)

x(t+h):=
 x(t)+h*f(x,u,t)

<y(t)>

y_kp3<x(t)>

p5

<x(t)>

fd= (h,h)

<x(t)>

p7
init

<x(t+h)>

<u(t)>
p3

<u(t)>

p1

u(t)

p2
<u(t)>

<u(t)>
<x(t)>

p4init

<x(t+h)>

<u(t)>

x_i

Figure 3.5 Modelling of a nonlinear differential equation using a Pr/T network

3.3.4 Multibody simulation

Introduction

In this section two approaches will be introduced: Firstly the equations of electron-
ics will be obtained using the Lagrange principle, so that they can be seamlessly
incorporated into a multibody simulator based upon the Lagrange principle. The
other method is based upon object orientation, thus allowing the non-mechanical
components to be modelled more or less independently of the system as a whole.

Electronic modelling using the Lagrange approach

In [253] Maißer describes a principle that uses the Lagrange approach from mechan-
ics in order to find model equations for the electronics of a mechatronic system. In
this manner the electronics can be easily incorporated into the multibody simulator,
which may also be based upon the Lagrange equations. Mechanics and electronics
are thus modelled using a unified approach and simulated as a whole system.

Object-oriented approach

This section introduces an approach that combines modelling on a component
level with the automatic creation of a system model. As in software development
this ‘local’ procedure is called object-orientation. Such approaches are naturally
particularly well suited for describing nonmechanical parts of the system in a form
that is suitable for a multibody simulator.

Kecskeméthy [185] and [186] as well as Risse et al. [346] describe a simulation
environment for mechatronic systems that includes the electronics of a controller.
This takes place in the form of abstract controller equations, developed using a

3.3 MODEL TRANSFORMATION 51

suitable tool, e.g. MATLAB/Simulink. In this connection a class of controllers
is prepared in [346] that includes continuous, proportional, discrete and mixed
controllers. Simple, electronic components can also be described on the same basis.
The underlying equations are added to the equations of motion of mechanics, and
the equations of sensors and actuators, and are then solved as a whole.

3.3.5 Finite-element simulation

One possibility for system simulation using a FE simulator is to fuse the equation
system of electronics together with the equation system of finite elements. The
resulting equations include the sought-after unknowns from electronics and me-
chanics. The complete system can thus be processed using a standard solver.

Particularly important in this context is the work of Bedrosian [22], who ex-
panded a finite element simulator for the calculation of electromagnetic fields so
that it could process both analogue circuits and also the kinematics of rigid bodies.
A significant aspect of this is to obtain a few desirable properties of FE matrices.
So in contrast to the matrix for the finite elements, the system matrix would be
neither positive definite nor sparse. Bedrosian therefore insists upon a separate
consideration of the matrices for the individual domains, which requires a suitable
iteration in order to obtain a consistent solution for the system as a whole.

3.3.6 Evaluation of the model transformation

The introduction of analogue hardware description languages has caused interest
in equivalent circuits for mechanical components to fall sharply. This is primarily
because a hardware description language is significantly more flexible in its for-
mulation. This is true particularly for components for which the analogies provide
no direct parallel. Furthermore, the overview is quickly lost if it is unclear what
the equivalent voltages and currents represent.

In principle, the modelling of continuous relationships on an event-oriented
basis — for example using digital logic or a Pr/T network — is nothing unusual.
Every simulator for analogue processes that is run on a digital computer has the
same fundamental problem to solve. The difference in the present case is that the
basic functions of the simulation, such as the integration procedure or the automated
selection of a suitable step size, have to be modelled fully by the user, which firstly
can be very cumbersome and secondly presumably raises a performance problem.

When discussing the simulation of mechatronic systems in a multibody simula-
tor it is particularly worth mentioning the elegant solution of Maißer [253], which
models the electronics according to the Lagrange principle, so that the resulting
equations are compatible with multibody simulation, which is also based upon
the Lagrange approach. However, the lack of any significant libraries of transis-
tor models and the fact that digital electronics and software are disregarded, are
problematic.

52 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

For the variant of model transformation on the basis of a FE simulator, the field
of application of a corresponding solution is only a little wider than that of the
FE simulator. This is also emphasised by the fact that there is comparatively little
literature in this field.

3.4 Domain-Independent Description Forms

In this section approaches will be described that cannot be classed as an expansion
of the tools in a certain domain. The most important representatives here are
bond graphs, block diagrams and modelling languages such as Modelica, Dymola
or ACSL.

3.4.1 Bond graphs

The bond graph approach, see for example Karnopp and Rosenberg [180] or Thoma
[398], fundamentally rests upon the same principles as the analogies in electronics
and mechanics, see Section 3.2.2. However, there is one significant difference. In
the analogies, currents were generally identified with forces/moments and voltages
with velocities, so that an analogy in the form of an equivalent circuit has the same
structure as the original system. This is true because according to Kirchhoff’s laws,
currents and forces add up to zero at a node and voltages and relative velocities
add up to zero in a closed loop.

By contrast, in the bond graphs, the following classifications are made. Voltages
are normally associated with forces/moments and called effort, currents are asso-
ciated with velocities/angular velocities and called flow. The elements used in the
bond graph approach can be divided into one, two and three-port networks. The
one-port networks are the so-called C, I and R elements, which in electronics cor-
respond with capacitors, inductors and resistors and in mechanics correspond with
springs, masses and dampers, see Table 3.2. In addition there are sources for effort
and flow. Transmission elements and gyrators are defined as two-port networks.
The former transmit effort to effort or flow to flow in a fixed or variable relation-
ship to one another; the latter put the effort, on the one hand, into a relationship
with the flow, on the other (and vice versa). Transmission elements can thus be
transformers, gears or levers for small deflections. A gyrator could for example
describe a DC motor. The three-port networks finally represent serial or parallel
junctions (s-junction, p-junction). The one, two and three-port networks are linked
together by half arrows, so-called bonds, which each bear an effort and a flow. The
direction of the arrow shows the direction of the positive power flow. The work
done is found by the product of effort and flow. In addition to the half arrows of
the bonds there are also connections with a full arrow, in which either the effort
or the flow is neglected. These connections carry information, but no energy.

The calculation of bond graphs first of all requires the drawing up of a suitable
system of equations, which is generally explicitly formulated. This means that the

3.4 DOMAIN-INDEPENDENT DESCRIPTION FORMS 53

Table 3.2 Assignment of magnitudes and elements in bond graphs

Bond graphs Electronics Mechanics, translational Mechanics, rotational

Effort Voltage Force Torque
Flow Current Velocity Angular velocity
C element Capacitor Spring stiffness Torsional spring stiffness
I element Inductor Mass inertia Moment of inertia
R element Resistor Damping, translational Damping, rotational
Transmission element Transformer Lever, pulley block Gears

a:bm1 m2

k3

F4

p pTF
(a:b)

I C

I

1

2

3

4 6SF 5

Figure 3.6 Bond graph of a simple mechanical system

equations take the form of instructions, and this fact requires a consideration of the
causality of the system. Therefore, cause and effect have to be specified for each
element. If we take any C, I or R element we can ask whether the effort causes
the flow or vice versa. Both are possible and there are equations for both cases,
which can be used in a system of equations if required. Overall, it is a question of
creating continuous chains of cause–effect relationships, which can be illustrated
by a suitable sequence of assignments. In the case of algebraic loops this cannot
be achieved, so additional measures are necessary.

In what follows, a few examples of bond graphs will be presented. Figure 3.6
shows the bond graph of a simple mechanical system, which consists of two masses,
a spring and a lever. In addition to I and C elements the bond graph contains a
flow source, which represents the force F4 and is designated SF. The transmission
element TF represents the lever, which sets a ratio (a : b).

Figure 3.7 shows a simple circuit and the associated bond graphs. This again
includes the flow source SF. However, this now describes a current source. The
transmission element TF is also present and represents the transformer.

5SF TFp s

C

R R

I

(a:b)C1
R2

L3

R4

(a:b)

1

2

I5
5

3

4

6

Figure 3.7 Bond graph of a simple electrical system

54 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

3.4.2 Block diagrams

Block diagrams are often used in control technology and, like bond graphs, rep-
resent a form of structural modelling, see Cellier [62]. However, this type of
representation primarily shows the structure of equations, whereas the structure of
the system tends to be found indirectly from the structure of the equation system.

Block diagrams include blocks and directional connections between the blocks.
These connections describe signals, which are converted into other signals by
the blocks. In addition there are taps and summing points, so that the important
elements of block diagrams can be fully represented in Figure 3.8.

In what follows, modelling using block diagrams will be illustrated on the basis
of a simple example. For this purpose we will consider the circuit on the left-hand
side of Figure 3.9. This can be described on the basis of the following equations:

i1 = u1

R1
, i2 = u2

R2

ı̇L = uL

L1
, u̇C = iC

C1

u1 = U0 − uC, u2 = uC, uL = u1 + u2

i0 = i1 + iL, iC = i1 − i2 (3.13)

If the above equations are translated into blocks, connections and summations, we
obtain the block diagram on the right-hand side of Figure 3.9. The main problem

(a) (b)

f(x,y)

x

y f(x,y)

(c) (d)

Σ
+

−

x

y

x−y

Figure 3.8 Basic elements of block diagrams: Connection (a), block (b), tap (c) and sum-
mer (d)

R1

R2

C1

U0

L1

0

2

1

Σ

Σ ΣΣU0 u1

u2

+
+ 1/L1

1/C1

1/R2

i2

i1 ic uc

i0

iL +
+

+
−

−

1/R1

uL+

Figure 3.9 Block diagram of an electronic circuit

3.4 DOMAIN-INDEPENDENT DESCRIPTION FORMS 55

here is that the structure of the circuit no longer corresponds with the structure of
the block diagram.

3.4.3 Modelling languages for physical systems

Languages such as ACSL [2], DSL [227], Dymola [90], [310] or Modelica [94],
[272] in particular deserve a mention. All these languages support the description of
physical systems. In what follows we will investigate Modelica in particular, as this
language includes the most up-to-date research results and furthermore is currently
being expanded to a standard, see [272] and [273]. An excellent introduction to
object-oriented modelling of mixed systems in general and of Modelica in particular
can be found in Otter [308].

Modelica is a language for the modelling of physical systems and was developed
specifically in order to support the exchange of models and the development of
libraries. Modelica does not insist upon an exclusively causal modelling, in which
cause and effect of every component have to be determined even before the sim-
ulation. The description of the models can also take place in the form of genuine
equations and not on the basis of assignments. Modelica supports the description of
continuous systems, which can be calculated on the basis of differential-algebraic
equation systems (DAE). In addition there are constructs for dealing with disconti-
nuities, which may occur in mechanical stops, or static to sliding friction transitions.
In principle it is also possible to use the discontinuities to describe event-oriented
processes, e.g. transitions in a state graph or the movement of markings in a Petri
net, but this possibility is limited by the underlying equation solver.

In principle, Modelica can be compared with an analogue hardware description
language, see also Tiller et al. [400]. Both structural and behavioural modelling is
possible. A particularly prominent feature of Modelica is object-orientation, which
is used, for example, to declare a model — or to be specific a model class — once
and instance it many times, with the option of setting certain parameters indi-
vidually for each instance. Similar concepts also exist in hardware description
languages, such as VHDL, with the possibilities of instancing and configuration.
Modelica also offers the option of transmission between model classes, so that
more complex model classes can easily be traced back to simpler ones.

To illustrate modelling in Modelica the description for an electronic circuit will
be given in what follows, see Figure 3.10 and [273].

The associated Modelica model is represented in Hardware description 3.1, with
key words shown in bold type. After the declaration of the circuit model the com-
ponents along with their main parameters are declared. At this level the equation

section specifies only the connectivity of the circuit.

model circuit
Resistor R1 (R=10);
Capacitor C (C=0.01);
Resistor R2 (R=100);

56 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

R1 = 10 R2 = 100

C1 = 0.01

AC = 220

L1 = 0.1

~

Figure 3.10 Electronic circuit as an example of a Modelica model

Inductor L (L=0.1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end circuit;

Hardware description 3.1 Modelica model of the circuit from Figure 3.10

Thus the components such as resistors, capacitors, etc. remain to be described,
see Hardware description 3.2. These are successively built up via the model of a
pin and the model of an electrical component with two terminals. One interesting
feature here is the use of inheritance in the transition from the model with two
terminals to the component. Using the key word extends the roles of voltage and
current and Kirchhoff’s current laws are loaded into the component model and
do not need to be formulated there again. An electrical component can thus be
simply described by its constituent equation. In the case of the capacitor, the time
derivative of voltage is designated by the function der().

type Voltage = Real (unit="V");
type Current = Real (unit="A");
...
connector Pin
Voltage v;
flow Current i;

end Pin;
...
partial model TwoPin "Parent class of the element with 2 elec.

pins"

3.4 DOMAIN-INDEPENDENT DESCRIPTION FORMS 57

Pin p, n;
Voltage v;
Current i;

equation
v = p.v -n.v;
0 = p.i + n.i;
i = p.i

end TwoPin;
...
model Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real R (unit="Ohm") "Resistance"

equation
R*i = v;

end Resistor;
model Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real C (unit="F") "Capacitance"

equation
C* der(v) = i;

end Capacitor;
...

Hardware description 3.2 Model of the components from Hardware description 3.1

3.4.4 Evaluation of domain-independent
description forms

From the examples shown above it is clear that bond graphs can describe both
analogue electronics and mechanics (and also a range of further domains) in com-
pact and graphic form. However, if we go beyond unidimensional mechanics and
passive electronics there are significant problems to be solved. Although the mod-
elling of transistors is also possible in principle using bond graphs, a meaningful
simulation of circuits of substantial complexity remains the exclusive preserve of
a dedicated circuit simulator. The same applies for three-dimensional multibody
mechanics. Moreover, bond graphs are in principle limited to continuous systems,
so that digital electronics and software cannot be illustrated using classical bond
graphs, or at least this cannot be done efficiently. Furthermore, every element must
be assigned a fixed causality prior to the simulation. This causality may alter dur-
ing a simulation, for example, if an electric motor becomes a generator, so that
such systems cannot be simply investigated using bond graphs. The same applies
in principle for block diagrams.

Domain-independent languages, and Modelica in particular, are broadly compa-
rable with analogue hardware description languages. However, they don’t have the
model basis of a circuit simulator. Furthermore, the event-oriented field is much

58 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

weaker in comparison to hardware description languages in general, and VHDL-
AMS in particular, so that digital electronics or software, as is demonstrated by
Scherber and Müller-Schloer in [360], require the coupling of appropriate simula-
tors to the equation solver that underlies the language.

Perhaps the most important objection against domain-independent description
forms lies in the fact that it is necessary to start modelling up from scratch in
every domain. Alternatively, if we build up from a circuit or multibody simulator,
a large part of the system is already covered by the best available methodology.

3.5 Simulator Coupling

3.5.1 Introduction

The option of simulator coupling tackles the problem highlighted above in a
straightforward manner. Appropriate simulators are already available for the vari-
ous domains in the system and in the ideal case these would only have to exchange
their current simulation results. The use of simulator coupling can protect invest-
ments in models and facilitate the use of the best available simulator for a field.
However, simulator coupling is also associated with a whole range of problems.
For example, it generally requires access to the internals of the simulators involved,
which means that if commercial simulators are to be considered, the co-operation
of the provider in question is required. Furthermore, the coupled simulation forms
a very intricate software package, which is difficult to get to grips with. Perhaps
the most important disadvantage, however, lies in the synchronisation of two nor-
mally very different simulator cores. In the coupling of analogue electronics and
mechanics, differential equations are solved in both cases. However, their origin,
nature and formulation are very different. Furthermore, this form of co-simulation
is also associated with convergence problems, particularly in the case of a strong
coupling between two analogue solvers.

3.5.2 Simulator backplane

When coupling two simulators, the principle of ‘simulator backplane’ represents a
particularly systematic solution, see also Jorgensen and Odryna [171] or Maliniak
[255]. This principle is equally suited to the coupled simulation of exclusively
continuous, exclusively event-oriented or mixed systems. In principle, the simu-
lator backplane is a standardised procedure, see Kemp [187], for the inclusion of
simulators into an overall simulation, see Figure 3.11 from Zwoliński et al. [441].
The main task of a backplane is to undertake a partitioning of the design data
before the actual simulation and to assign the individual parts of the simulators in
question. The backplane also looks after the synchronisation between the linked
simulators and the exchange of data. In the ideal case the backplane also has a
unified user interface with the associated output tools, but this tends to be rare.

3.5 SIMULATOR COUPLING 59

Synchroni-
sation

User

Simulator

Solver
interface

Display of
outputsDesign

data

User
interface

Display
tool

Figure 3.11 Structure of a simulator backplane

Otherwise, the corresponding settings in the individual simulators are used, which
often leads to confusion. The data exchange between the backplane and the sim-
ulators can take place by means of an IPC interface.1 This does not necessarily
require that all simulators are processed on the same workstation. The load can be
distributed across various computers as long as the synchronisation does not pre-
vent this. However, the cost of communication via this comparably slow interface
has to be borne. Faster simulations are generally achieved by the binding together
of backplane and simulators into an overall programme. This is particularly true
if a great deal of communication via the backplane is expected as a result of a
strong coupling between domains in the simulated system, because in this case the
addressing of a simulator from the backplane becomes a function call.

As for the general case of simulator coupling, the main problem of the back-
plane lies in the handling of the synchronisation between the simulator cores.2

We can make an initial differentiation here between two classical approaches: the
conservative, see Chandy and Misra [65], [66], and the optimistic, see Jefferson
[168], Jefferson and Sowizral [169].

The conservative approach allows simulator A to proceed only for a time period
in which it can be proven that no events sent out from other simulators are expected.
These events would have to be taken into account in the simulation of A and
consequently the simulation has to wait for them. In the conservative approach,
simulator A is thus safe to proceed for this time period. In the extreme case, this
conservative approach is called the ‘lockstep’ algorithm,3 in which a fixed time

1 IPC (inter process communication), communication between processes on the level of the operating
system.

2 The same problem also emerges in the parallelisation of simulations, see Fujimoto [107], where here
the same simulator cores are synchronised on different processors.

3 Other authors, such as Le Marrec et al. [218] or Olcoz et al. [302] describe the ‘Lockstep’ synchroni-
sation as the specification of a global real time so that all participating simulators may each proceed their
local time up to the global time.

60 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

interval is specified for all participating simulators. Particularly for systems with
very different time constants this hinders an efficient processing of the simulation.
In recent years a whole range of simulator couplings have been developed in the
form of variations on the conservative method, e.g. Bechtold et al. [20], Buck et al.
[52], Patterson [316], Sung and Ha [392], Todesco and Meng [402], Zwoliński
et al. [441], although frequent task changes between simulators can still gives rise
to performance problems in these approaches.

In the optimistic case, every simulator processes its internal events until no more
activity can be determined, which in the ideal case is by far the most efficient way.
Unfortunately, it may occur that another simulator generates an event for the first
in this period. Then all of the first simulator’s results from the moment in question
must be discarded. To achieve this the simulator in question must perform a leap
backwards (timewarp) and then start again at the time point in question. Depend-
ing upon the system under consideration this is associated with a high storage
requirement for the saving of old states. Furthermore, depending upon the nature
of the system under investigation, these timewarps can themselves become a per-
formance problem. Normally, however, electronics simulators [402] and mechanics
simulators do not provide the option of performing a timewarp, so that only the con-
servative approach and variations upon it remain. However, this is not necessarily
the case for the co-simulation of hardware and software, see Chapter 5.

In addition to the synchronisation between two simulator cores, the question
of the convergence of the solution also requires some consideration. This is par-
ticularly relevant for the coupling of two analogue cores, see Klein and Gerlach
[196]. The reason for this lies in the back-coupling between the two simulator
cores, which we will call A and B here. A maps its input xA to its output yA

using a function fA. B does the same with the function fB. In the simplest case,
the Gauss–Seidel iteration, the rule for the (k+1)th iteration step is:

xk+1
B = yk

A = fA(xk
A)

xk+1
A = yk+1

B = fB(xk+1
B)

(3.14)

In this case oscillations may occur. In the worst case the iteration does not converge
at all. Numerically more demanding methods, such as, for example, the Newton
procedure, tend to converge better, but are not universally applicable due to the
costly calculation of the required Jacobi matrices, see [196].

3.5.3 Examples of the simulator coupling

Introduction

In what follows the options and limitations of simulator coupling will be illustrated
in more detail on the basis of a few examples from mechatronics and micromecha-
tronics. This description will include the direct coupling between two simulators
as well as the systematic consideration of several simulators with a backplane.

3.5 SIMULATOR COUPLING 61

Mechatronics

In [302] Olcoz et al. describe the coupling of the VHDL simulator VSS with
the mechanics simulator COMPAMM. Sensors and actuators are incorporated at
the interface between electronics and mechanics and these are characterised by a
pair of corresponding variables — one for each of the two simulator sides. The
correspondence of such pairs is achieved by an interface written in C and C + +.
The mechanics simulators can thus be operated using a fixed or variable time
interval. In the former case the synchronisation between electronics and mechanics
takes place at discrete, evenly distributed points in time that are specified by the
fixed interval of the mechanics. In the latter case the mechanics simulator proceeds
by a time interval and then informs the electronics simulator that it may proceed to
this point. After confirmation from the electronics simulator the sequence begins
again from the start.

A further approach for the coupling of simulators is mentioned by Scholliers in
[367]. This approach emphasises the coupling of multibody mechanics, analogue
electronics and control technology. ADAMS, PSpice and MATLAB/Simulink are
the simulators used. The simulation process is centrally controlled and a fixed
increment thereby specified. The application considered is a controlled drive and
the mechanical load is a mechanism described in ADAMS. The actuator is a direct
current motor described in the form of Spice components, whereas the PI controller
exists on a purely functional level in MATLAB/Simulink.

Le Marrec et al. [218] describe a coupling between C routines, the VHDL
simulator VSS and MATLAB/Simulink using a co-simulation bus that exchanges
data between the individual simulators. The simulation can take place on two
levels. Firstly, simulation can be purely functional, with electronics, mechanics,
and software being investigated for the application under consideration. In the
other case, the timing has to be taken into account too, necessitating a processor
model in VHDL for the software. In this case the problem is merely that of the
co-simulation of electronics and mechanics. The approach described is illustrated
on the basis of two examples, an electronic accelerator pedal for an electric car
and the control of a hydraulic suspension system for a car.

In [360] Scherber and Müller-Schloer proposed a simulator backplane that rep-
resents a mechanism for the linking of very different simulators. The approach is
based upon a unified model for the heterogeneous components involved. These are
termed actuators; their interfaces are called ports; every two ports can be linked
by a channel. The access mechanisms are always the same. Thus the interfacing
of a component and its simulation is unified without having to make limitations
with regard to the nature or function of the actuators. A scheduler decides which
actuators shall be executed when and for how long by means of a priority anal-
ysis. In this manner a software simulator, a simulator for finite state machines, a
simulator for the Modelica language — see Section 3.4.3–and MATLAB/Simulink
were connected together.

62 3 MODELLING AND SIMULATION OF MIXED SYSTEMS

Micromechatronics

In [121] Götz et al. produce a coupling between a finite element simulator and a
circuit simulator. The idea consists of calculating the deformation of a pressure
sensor structure using a finite element simulator and using the results to determine
changes of piezo resistances. The circuit simulator is then used to determine the
output of the read-out circuit. This consists primarily of a frequency modulation.
Using this process the mechanical structure can be optimised very simply. How-
ever, the feedback of the electronics on the mechanics and any dynamic effects of
the mechanics have not been taken into account.

A coupling between a FE simulator (ANSYS) for continuum mechanics and
the circuit simulator PSpice for analogue electronics is proposed by Dötzel and
Billep [86] and Klein et al. [198]. The applications used here are the simulation
of micromirrors [86] and force sensors [198]. However, details of the coupling are
not given in either case.

3.5.4 Evaluation

In simulator coupling the performance of the coupled tool is beneficial because
the optimal modelling method can be selected for each field. This reduces the
total modelling cost incurred, whilst the validation of the models can utilise the
results within the domain in question. Further domains can be taken into account
by linking in appropriate simulation tools. On the other hand, simulator coupling
leads to problems in the operation of the simulator package and in handling the
data flow at the interface. The simulators involved must be suitably synchronised
with one another. The simulation time is typically very high due to the necessary
iterations for each time interval. Finally, convergence problems may occur if there
is strong coupling between the subsystems.

3.6 Summary

Various approaches to the modelling and simulation of mechatronic and micro-
mechatronic systems have been considered in this chapter. We can differentiate
between three groups of methods: model transformation, modelling in a domain-
independent form, and simulator coupling. There are currently two options on
offer that allow us to cover the whole spectrum of analogue electronics, digital
electronics, software, multibody mechanics and continuum mechanics. These are
simulator coupling and the universal modelling in hardware description languages,
which will be described comprehensively in what follows.

