4

Modelling in Hardware
Description Languages

4.1 Introduction

For hardware description languages (HDL) — as for every other method of describ-
ing a system — the following two questions are raised:

e What can be modelled using this description method?

e What can be achieved using this description?

This is illustrated on the basis of Figure 4.1. On the left-hand side we see the
domains that are significant in our context, which are to be modelled in hardware
description languages. Digital and analogue electronics should be unproblematic
because hardware description languages were originally developed for precisely
this purpose. Question marks stand next to the domains of multibody mechanics,
continuum mechanics and software; the modelling of these domains using hardware
description languages is investigated in this book. Furthermore, some approaches
should be mentioned at this point that attempt to automatically translate further
description forms into hardware description languages. The work of Maillot and
Wendling [246], in which state diagrams are depicted in VHDL, is worth mention-
ing here. Sax et al. [359] transfer MATRIXx descriptions from classical control
technology into VHDL-AMS. Overall, hardware description languages, and in par-
ticular VHDL-AMS, appear to be capable of serving as a general exchange format
for models.

The question remains of what we can undertake using a system model in a
hardware description language. This is shown on the right-hand side of Figure 4.1.
Initially it is possible to specify and design using hardware description languages
with the resulting models being available for documentation purposes in both cases.
Furthermore, such a description can be directly simulated without any intermediate

Mechatronic Systems Georg Pelz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-84979-7

64 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

Hardware
Description
Languages

Specification

library IEEE;
use IEEE.std_logic_1164.all;

entity compare is
port(a, b: in
std_logic_vector (0 to 7);
eq: out
std_logic) ;
end compare;

architecture cmp of compare is

begin

eq <= '1' when (a = b)
else '0' ;

end cmp;

Formal
verification

int i,
for (i=1 i<argv, i++)
) peiat FEE et

Figure 4.1 Fields of application of hardware description languages

stages, which facilitates the validation of the specifications and the verification of
the designs. In the medium term formal verification or automatic synthesis of
designs may also be possible, both of which currently tend to be the exclusive
preserve of digital electronics.

Hardware description languages offer a whole range of advantages in relation to
other approaches. For example, the problem of simulating mixed systems is moved
from the simulator or programming level to the modelling level. It is thus no longer
a question of implementing a tool that can execute an appropriate simulation.
Instead, models have to be developed that describe the components of the system.
The great advantage of this is that tried and tested simulators are available. This
means that the corresponding functionalities, such as the building up and solving
of equation systems, the co-simulation of digital and analogue system components
or the representation of the results do not need to be re-implemented.

The second great advantage of hardware description languages lies in the fact
that both the behaviour and the structure of a system or component can be for-
mulated. Furthermore, this can occur on extremely different levels of abstraction.
This allows hardware description languages to be implemented very flexibly. In
particular, entire design sequences can be executed almost entirely using hardware
description languages. This means that each design step primarily represents the
transformation of one hardware description into another hardware description. This
avoids undesirable losses due to the need to support various data formats. Further-
more, it is possible to simulate on all levels at any time and thus immediately
investigate the correctness of a design step.

The most important fields of application of hardware description languages will
be outlined in the sections that follow. These fields are specification, documenta-
tion, design, simulation, formal verification and synthesis. Furthermore, the syntax

4.2 FIELDS OF APPLICATION 65

and semantics of hardware description languages will be represented based upon
the example of the IEEE standard 1076.1 (VHDL-AMS) passed in March 1999.
This lays the foundation for the subsequent chapter on modelling.

4.2 Fields of Application

4.2.1 Formulation of specification and design

A formalised circuit description on a behavioural level, such as that provided by a
hardware description language, represents the precise specification and documen-
tation of a circuit. In many cases informal paper specifications are associated with
problems, for example, if certain operating states are not predicted and are thus
not specified. These difficulties are avoided by using a formal, programme-like
specification. With such a specification it is generally immediately clear if a sys-
tem is incompletely or even contradictorily specified. Furthermore, the hardware
description language is available for reference in all cases of dispute. In such a
case a simulation should be capable of clearing up all doubt. Furthermore, this
route automatically provides an entry into a universal design sequence. On the
basis of abstract descriptions, increasingly detailed representations are developed
or generated, descriptions which can be verified against one another. In this man-
ner both the actual design problem and the problem of consistency between the
textual specifications of a performance specification and the developed system can
be addressed.

4.2.2 Validation of specifications and verification
of designs

The use of simulations for the validation of specifications and for the verification
of designs of mechatronic and micromechatronic systems is the main theme of
this work. A simulator exists for virtually all hardware description languages and,
for some, several simulators are even available. The simulation of digital hardware
description languages has developed from logic simulation, whilst the simulation of
analogue hardware description languages has developed from circuit simulation.
Hardware description languages that include both digital and analogue compo-
nents are represented on an appropriate ‘mixed mode’ simulator, which spares the
user from having to think about the coupling between digital and analogue sim-
ulator cores. Nevertheless, this interface is indispensable because the simulation
procedures for digital and analogue fields are very different, see Sections 2.7.2
and 2.7.3.

As an alternative to simulation we can also use the methods of formal verification
in the digital field. In general, the motivation for this is that the simulation of
systems almost always remains incomplete because it is not possible to play through

66 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

all combinations of input values in a simulation, for reasons of running time. Formal
verification makes it possible to mathematically prove the equivalence between two
descriptions or the existence of certain circuit properties.

Both simulation and formal verification are normally tied to a system description
in a given hardware description language. Conversely, the formulation of a system
in a hardware description language often facilitates the use of appropriate tools.

4.2.3 Avutomatic synthesis

As indicated above, the design of a circuit often consists of an incremental refine-
ment of a hardware description language. The theory and corresponding software
tools are well developed in this field, particularly for the digital hardware descrip-
tions. The transition from the register-transfer level to a gate net list in particular
is automated as standard even now. In general, further synthesis tools are con-
nected with this, which convert the gate net list into a standard cell layout, a gate
array layout, or a programme description for a FPGA. Thus the manual part of
the design sequence for digital circuits is often completed as early as the register
transfer level.

4.3 Characterisation of Hardware Description
Languages

At first glance a hardware description language is similar to a programming lan-
guage such as C or Pascal. Models are formulated as text in a hardware description
language, with a range of key words being attributed special importance. Further-
more, a predefined syntax must be adhered to. After parsing, syntactically correct
models are translated into an intermediate format upon which the simulation can
then be run. However, there are also important differences between hardware
description languages and programming languages. For example, a programme
normally runs sequentially, i.e. only one instruction is ever processed before a cer-
tain point in time. This is not acceptable for the description of hardware. All gates
of a logic circuit in principle work in parallel. In hardware description languages
this state is accounted for by the fact that instructions are normally processed in
parallel. Certain areas of a hardware description that are reserved for sequential
instructions represent the exception to this rule. In this area the typical instru-
ments of a procedural programming language are available, such as ‘if-then-else’
constructs, loops or ‘case’ instructions.

As mentioned above, a hardware description language provides the option of
describing both the behaviour and the structure of a circuit. The main difference
between behaviour and structure will be explained briefly in what follows. The

4.3 CHARACTERISATION OF HARDWARE DESCRIPTION LANGUAGES 67

addition of four numbers can be unambiguously described in terms of their function
as follows:

y=a+b+c+d; “4.1)

The order in which the expression is evaluated is unimportant here since the
commutative law for addition applies. However, if the addition is considered on
the structural level then the sequence can no longer be neglected. For example, the
following two alternatives exist:

y=(a+b)+ (c+d); (4.2)
y=((@a+b)+c)+d; 4.3)

Corresponding realisations by adders are shown in Figure 4.2. It turns out that
the realisation of the expression shown on the left is completed more quickly than
that on the right since only two adding stages have to be run in this case.

Formulation on a behavioural level can thus significantly reduce the complexity
of a circuit description. Higher operations such as addition, subtraction, multi-
plication, represent a few hundreds or even a few thousands of gates. Thus the
readability of such a description is significantly greater than that of other circuit
descriptions. Furthermore, the reuse of descriptions that were originally developed
in a different context is made easier.

Finally, hardware description languages generally open up the option of con-
sidering the individual parts of a circuit in different abstractions, see Figure 4.3.
Thus circuits or systems can be fully simulated if each of their modules possesses
an abstract behavioural description. This initially offers an efficiency gain com-
pared to a complete simulation of the finished design. Furthermore, as time goes
on the individual blocks can be refined during the design process, until the design
has achieved the required level of abstraction for the individual parts. In particu-
lar, refinements by several circuit developers can be implemented independently

)

Figure 4.2 Two versions of an adder for four numbers

68 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

Module 1

| Modute 2 | | Module 3 |

Submodule 1| |Submodule 2| |Submodule 3| [submodule 4| |submodute 5| |Submodule 6

Figure 4.3 Simulation on a mixed abstraction level

of one another. Due to this ‘interlacing’ of the engineering work in the sense of
simultaneous engineering, the design time for more complex systems can be kept
within reasonable limits. Methods for the partitioning of engineering work will
become increasingly important in the future because the organisational manage-
ment of more complex, strongly coupled systems will increasingly be the factor
that limits feasibility.

4.4 Languages

Many hardware description languages have been defined in recent years. Some of
the more widespread languages were introduced by providers of design automation
software. ‘M-HDL’ by Mentor Graphics or ‘Verilog-HDL’ by Cadence Design Sys-
tems are typical representatives of this group. In the analogue field the languages
‘MAST’ from Avant!, ‘HDL-A’ from Mentor Graphics, ‘SpectreHDL’ or ‘Verilog-
A’ from Cadence Design Systems and ‘ABCD’ from Dolphin Integration S.A., are
particularly worth mentioning. All these languages should be classified as propri-
etary hardware description languages since the associated tools could initially only
be obtained from the companies in question.

A further group of hardware description languages originated from the university
sector, such as ‘BDS’ from the University of California, Berkeley, or ‘daCapo’
from the University of Dortmund. However, these languages have only become
widespread in the academic field. Nevertheless, because of their innovative ideas
they often form the basis for commercial description languages.

A third group of languages is represented by VHDL,?> which was initially the
product of an American research programme and later became the IEEE stan-
dard 1076 as part of an expensive standardisation. The American Department of
Defense, by far the biggest user in the North American area, helped the standard to
make a breakthrough by making adherence to this standard a prerequisite for the

2 VHSIC Hardware Description Language. VHSIC = very high speed integrated circuits, American pro-
motional program for the development of particularly powerful integrated circuits.

4.5 MODELLING PARADIGMS 69

placement of orders. Thus all CAE providers were forced to support VHDL. Other
languages were also standardised such as, for example, Verilog-HDL, which was
initially designed as a proprietary language. The great advantage of such standards
is that they promote the exchange of circuit descriptions and furthermore make
it possible for the providers of CAE tools to exchange simulators, for example,
without the reformulation of the models into another language and the significant
costs associated with this. Since 1987 VHDL has been a standard for the devel-
opment of digital circuits and systems, which is being continuously improved and
expanded. A significant aspect of this is the expansion around analogue and mixed
analogue-digital constructs. In 1999 the IEEE standard 1076.1 (VHDL-AMS?) was
passed, which covers the full language scope of VHDL and additional constructs
for the modelling of analogue processes. For an introduction to VHDL the reader
is referred to the books of Ashenden [15], Pellerin and Taylor [319] and Perry
[334]. With regard to VHDL-AMS, as yet there is only the provisional version of
the IEEE standard 1076.1 [160] and an associated tutorial [16].

As early as 1993 VHDL and Verilog-HDL enjoyed a clear predominance in the
digital field compared to other languages, see Carrol [61]. Today hardly any other
languages are used in the digital field. A similar concentration will presumably
also take place in the field of analogue hardware description languages.

4.5 Modelling Paradigms

4.5.1 Introduction

In the following, the most important techniques of digital and analogue mod-
elling in hardware description languages will be described. For example, the lan-
guage VHDL-AMS, which covers the most important constructs of other hardware
description languages, will be considered in this connection. The aim of the descrip-
tions that follow is to convey an impression of the modelling possibilities available
using hardware description languages. However, they are not a substitute for the
corresponding literature. In the following, the key words in hardware description
languages are written in upper case letters and all identifiers in lower case let-
ters. In principle this makes no difference, since in VHDL and VHDL-AMS, no
differentiation is made between upper and lower case.

A VHDL model is organised into various descriptions. Every module has pre-
cisely one interface description, which in principle specifies the corresponding
interface signals and their type and direction. Such a description is also called an
ENTITY. For each ENTITY there is one or more ARCHITECTURE descriptions that
contains the different variations of the modelling of the module. For example, in
the following section three architectures will be listed for a module. For frequently
used constructs it is possible to define packages, which are themselves split into

3 VHDL analogue and mixed signal extensions.

70 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

an interface section (PACKAGE) and an implementation section (PACKAGE BODY).
A fifth group of descriptions specifies which architectures should form the basis
for a simulation. These are also called configurations (CONFIGURATION).

4.5.2 Structural and behaviour-oriented modelling

Structural modelling formulates the submodules from which a module is composed.
In contrast to this, behaviour-oriented modelling describes the function and timing
of the module. Let us clarify this using the example of a full adder. Hardware
description 4.1 shows the interface description of a fictitious full adder in VHDL.
Comments for the rest of the lines are preceded by a double minus sign. Using the
LIBRARY and USE instructions a PACKAGE is first referenced, which includes the
necessary types for the digital signals, e.g. std_logic. The ENTITY description
mainly consists of a PORT instruction, which declares the inputs and outputs of the
full adder.

LIBRARY IEEE;
-- IEEE Package for logic types
USE IEEE.std logic_1164.all;

ENTITY full adder IS

-- two sum inputs, one Carry-In

-- one sum output, one Carry-Out

PORT (il, i2, ci: 1IN std logic;
sum, co: OUT std _logic) ;

END full adder;

Hardware description 4.1 Interface description of a full adder

The first possibility is represented by structural modelling, in which the full
adder is made up of a half adder and an Or gate, see Hardware description 4.2.
The timing is taken from the timing of the underlying modules.

ARCHITECTURE structure OF full adder IS

BEGIN

instl : half adder (il ,i2 ,tcl ,tsl); -- Instantiation HA
inst2 : half adder(cin ,tsl ,tc2 ,sum); -- Instantiation HA
inst3 : or_gate (tcl ,tc2 ,co); -- Instantiation OR

END structure;

Hardware description 4.2 Structural description of a full adder

The simplest form of behavioural modelling is the data flow description, in
which the underlying Boolean function is merely assembled from basic functions
and the calculation of the results performed after a delay. This is shown in Hardware
description 4.3.

4.5 MODELLING PARADIGMS 71

ARCHITECTURE data_ flow OF full adder IS

BEGIN -- Signal assignment according to Boolean function...
sum <= il xor 12 xor ci AFTER 3 ns;
co <= (il and i2) or (il and ci) or (i2 and ci) AFTER 2 ns;

END data_ flow;
Hardware description 4.3 Data flow description of a full adder

However, not all functions that are possible are predefined. It can also be tire-
some to fully prepare the Boolean functions. In such cases it is also possible to
provide a purely behavioural description, which relates input and output assign-
ment to each other in tabular form, see Hardware description 4.4. This is based
upon a so-called process, the body of which includes sequential instructions.

ARCHITECTURE behaviour OF full adder IS

BEGIN
PROCESS -- Process head
VARIABLE tmp : std logic_vector (2 DOWNTO O0) ;

BEGIN -- Process body with sequential instructions
WAIT ON il, i2, ci; -- Wait for signal change
tmp(2) := il; tmp(l) := i2; tmp(0) := ci; --Store in vect.
CASE tmp IS -- Case differentiation
WHEN "000" =>

sum <= ‘0’ AFTER 3 ns; -- Signal assignment sum
co <= ‘0’ AFTER 2 ns; -- Signal assignment Carry-Out
WHEN "001" =>
sum <= ‘1’ AFTER 3 ns; -- Signal assignment sum
co <= ‘0’ AFTER 2 ns; -- Signal assignment Carry-Out
WHEN
END CASE;

END PROCESS;
END behaviour;

Hardware description 4.4 Behaviour-oriented description of a full adder

4.5.3 Digital modelling

The process (PROCESS) will be explained in more detail in the following. It forms
the work-horse of digital modelling. Virtually all digital relationships are modelled
either directly as a process or in a form that is easy to convert into a process. The
process is attributed to the parallel instructions. Thus it is processed in parallel to
the other processes and the remaining parallel instructions. The body of a process
contains sequential commands that are thus processed one after the other. When
the processing reaches the end of the body, it jumps back to the start and thus
executes an endless loop. To prevent this from causing the simulation to hang, each
body must contain at least one synchronisation point in the form of an explicit or
implicit WAIT instruction. Its task is to delay progress in the body of the process

72 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

by an amount that depends upon its parameter. This may be based, for example,
upon a fixed time period or the occurrence of a certain event. The process is
executed accordingly by the performance of a sequence of instructions between
two synchronisation points. Sequential instructions in VHDL are comparable to
the instructions of procedural programming languages. In the following, a few
processes will be described as examples.

Example: multiplexer

The first example is a multiplexer that is formulated in Hardware description 4.5
as ENTITY and ARCHITECTURE. Synchronisation takes place by means of the WAIT
instruction, which interrupts the execution of the process until at least one of the
signals a, b or sel has changed. Thus the body of the architecture proceeds as
soon as there is a change at the inputs of the multiplexer. Then and only then can
a change at the outputs be expected.

LIBRARY IEEE;

USE IEEE.std logic_ 1164.all; -- IEEE package for logic types
ENTITY mux IS -- Interface description of multiplexer
PORT (a, b, sel: IN std logic;
q : OUT std _logic) ;
END mux;
ARCHITECTURE behaviour OF mux IS -- Architecture description...
BEGIN
PROCESS -- Process
BEGIN
WAIT ON sel, a, b; -- Wait for signal changes
if sel = 1’ then -- Case differentiation
g <= aj; -- Signal allocation
else
g <= b; -- Signal allocation
END IF;

END PROCESS;
END behaviour;

Hardware description 4.5 Behaviour-oriented modelling of a multiplexer

Example: multiplier

The next example is used to explain in more detail the various abstractions of
modelling in a design sequence. The example relates to a multiplier. In its simplest
form this can be described by a times sign, see Hardware description 4.6. This
form of description is extremely compact, although a realisation of the circuit
can consist of thousands of gates. In a second description, multiplication can be
traced back to shifting and adding, as we learned multiplication at school, see

4.5 MODELLING PARADIGMS 73

Hardware description 4.7. This corresponds with the first step in the direction of
implementation. Most synthesis tools are able to translate this description into a
gate circuit, which could be followed up by representation on a FPGA.

LIBRARY IEEE;

USE IEEE.std logic 1164.all; -- IEEE package for logic types
USE IEEE.std_logic_arith.all; -- IEEE package for associated
arith.

ENTITY multiplier IS
PORT (clk: in std logic;
a, b : IN std logic_vector (3 DOWNTO O0) ;
q : OUT std logic_vector (7 DOWNTO 0)) ;
END multiplier;

ARCHITECTURE behaviourl OF multiplier IS
BEGIN PROCESS

BEGIN
WAIT UNTIL rising edge(clk) ; -- Wait for rising edge
g <= a*b; -- Multiplier and assign result to

END PROCESS;
END behaviourl;

Hardware description 4.6 Behavioural description of a multiplier on the basis of a multipli-
cation operation

At this point we should highlight a further point. The WAIT instructions delay the
sequence up to the next active clock-pulse edge. For the architecture behaviourl
this means that the multiplication must be completed within one clock cycle. The
realisation behaviour2, however, unrolls the loop over time and not spatially.
Thus the calculation of the product requires at least as many clock cycles as the
number of bits of the operands. In the VHDL formulation this is achieved by the
fact that the loop contains a WAIT instruction.

ARCHITECTURE behaviour2 OF multiplier IS

BEGIN
PROCESS
VARIABLE pp, res : std logic vector (7 DOWNTO O0) ;
BEGIN
WAIT UNTIL rising edge (clk) ; -- Wait for rising edge
res := "00000000"; -- Initialise variable res
FOR index IN 0 TO 3 LOOP -- Loop index := 0 .. 3
WAIT UNTIL rising edge(clk) ; -- Wait for rising edge
pp := "00000000"; -- Initialise variable pp
IF b(index) = ‘1’ THEN -- If bit index of b set
pp ((index + 3) DOWNTO index) := a; -- Adder moved
END IF;

res := res + pp; -- Accumulate result

74 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

END LOOP;
WAIT UNTIL rising edge (clk) ; -- Wait for rising edge
g <= res; -- Signal assignment for output

END PROCESS;
END behaviour2;

Hardware description 4.7 Behavioural description of a multiplier on the basis of moving
and adding

Digital signal assignment

Up until now we have based our description of a signal assignment upon an intu-
itive understanding, which in some cases can be deceptive. This can be clarified by
looking at a simple inverter gate. The function of the inverter is quickly described.
However, in some cases this does not achieve the desired result. The inverter may
have a delay time of 100 picoseconds. If a pulse of one picosecond occurs at its
input then we would assume in the first approximation that this pulse would be
observed in the opposite polarity at the output 100 picoseconds later. However, this
is not physically correct because the pulse is much too short to effect a change
at the output. Before this has moved to a significant degree, the cause has disap-
peared again. In order to bring about this ‘inert’ behaviour it is necessary for each
signal assignment to evaluate the right-hand side correctly and to draw up a list of
current and future events. If necessary, the future events may have to be deleted
again before they are realised. This is also the case, for example, if the right-hand
side always produces an assignment with the same value, so that a formal assign-
ment yields no new information for the signal. In this case we can postpone the
assignment, so that no events without information content are produced. This task
and others are undertaken by the so-called signal driver.

4.5.4 Analogue modelling
Introduction

We can differentiate between three classical applications of analogue modelling,
see Vachoux and Berge [406]. Firstly, and self-evidently, it is implemented when
the system under investigation consists wholly or partially of analogue compo-
nents. But even when looking at digital systems, the consideration of an analogue
environment of the circuit may still be necessary. Finally, analogue effects, such
as signal delays or coupling capacitances, often cannot be disregarded especially
for digital high-speed circuits.

Again, the extremely different levels of abstraction can be represented. Thus, on
the purely behavioural level we can provide models based upon transfer functions
or differential equations. At a lower level of abstraction, so-called macromodels are
often used, which may represent the standard blocks of analogue circuit design, e.g.

4.5 MODELLING PARADIGMS 75

operational amplifiers, comparators, etc. Such macro-models describe behaviour
at the terminals, for example, in the form of a characteristic. Finally, we can
also model components such as transistors, diodes, etc. using analogue hardware
description languages.

Furthermore, the methodology of analogue modelling is in line with the follow-
ing strategies:

Structural definition Analogue hardware description languages permit the formu-
lation of a component as an interconnection of its subcomponents.

Behavioural definition The description of the terminal behaviour of components
on the basis of mathematical equations is one of the main properties of analogue
hardware description languages.

Conservative modelling Analogue hardware description languages permit the for-
mulation of models on the basis of potential (across) and flow (through) variables,
e.g. voltage and current or velocity and force, meaning that Kirchhoff’s laws apply.
The product of potential and flow variables is normally represented by energy. So
this formulation is set up to describe energy flows.

Non-conservative modelling Non-conservative quantities can also be described,
allowing block or signal flow diagrams to be formulated using hardware description
languages. Often the description of an information or control flow predominates.

Table model Table models are normally based upon a piece-wise linear descrip-
tion, which may be smoothed for numerical reasons. These models can also be
unproblematically formulated into an analogue hardware description language.

Arbitrary mixed forms Analogue hardware description languages permit the use
of arbitrary mixed forms of these modelling strategies.

Using the above-mentioned modelling strategies, analogue hardware description
languages thus permit the formulation of structural, physical and experimental
models, so that the fundamental approaches to modelling from Chapter 2 are fully
represented. The use of mathematical equations in the description of the models
allows the addition of various fields to the discussion. The fields listed in Table 4.1
are particularly pertinent here, see Antao [12].

Table 4.1 Model formulation in analogue hardware description languages

Description Field Representation

Discrete Time Differential equations and algebraic
equations

Continuous Time Differential equations and algebraic
equations

Discrete Frequency Z-transformation

Continuous Frequency Laplace transformation

76 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

Now, if analogous behaviour is to be formulated in a hardware description
language this normally occurs in the form of mathematical equations. In VHDL-
AMS these equations are also termed simultaneous instructions. Both sides of the
equation must have real values. The equations are symmetrical in the sense that
swapping the left and right-hand side leads to the same results. The analogue
solver is responsible for the fact that these equations are approximately fulfilled.
In addition to the equations there are also the simultaneous versions of the IF,
CASE and PROCEDURAL instructions, which facilitates sequential notation. Let us
now clarify this using the example of a diode model.

Hardware description 4.8 shows a simple diode model in VHDL-AMS, see
[160]. The division into interface and implementation, i.e. into ENTITY and ARCHI -
TECTURE, also applies for the analogue model. In addition to the anode and cathode
electrical connections the interface now includes a GENERIC instruction that permits
the named parameter to set when the model is instanced. Furthermore, standard
values are specified that are used if no further specifications are encountered during
instancing. Then some electrical quantities are initially declared in the architecture
such as, for example, the diode current id and the voltage ud across the diode. The
threshold voltage ut is finally declared as a constant. The actual equations define
the diode current id, the charge of the diode g and an additional current ic, which
is found from the derivative of charge with respect to time g’ DOT. Furthermore,
the fact is worthy of special mention that individual equations can be allocated
to a predefined accuracy group by means of the TOLERANCE instruction, so that
different accuracies can be set for various equations. However, this means that
no decision is anticipated regarding which criteria the simulator is to use for the
evaluation of accuracy and how this is to be calculated.

ENTITY diode IS
-- Parameter declaration with default values

GENERIC (isO:real := 1.0e-14; tau, rd : real := 0.0);
-- Inputs/outputs
PORT (TERMINAL anode, cathode: electrical);

END ENTITY diode;

ARCHITECTURE simultaneous OF diode IS
-- Declaration of variables and constants
QUANTITY ud ACROSS id, ic THROUGH anode TO cathode;
QUANTITY g: real;

CONSTANT ut: voltage := 0.0258;
BEGIN -- Defining equations

id == is0* (exp((ud-rd+*id) /ut)-1.0) ;
g == tau*id TOLERANCE "Charge";

ic == g’'DOT;

END ARCHITECTURE simultaneous;

Hardware description 4.8 Simultaneous behavioural description of a diode

4.5 MODELLING PARADIGMS 77

Alternatively, a sequential description can also be provided, see Hardware des-
cription 4.9. Here the causality is specified by the assignments. However, some
possibilities for sequential modelling exist such as the use of IF-THEN-ELSE con-
structs, CASE instructions or loops, meaning that this form of modelling also has
its attraction. However formulated, the two descriptions should, however, supply
the same outputs.

ARCHITECTURE procedural OF diode IS
QUANTITY ud ACROSS id, ic THROUGH anode TO cathode;
QUANTITY g: real;

CONSTANT ut: voltage := 0.0258;
BEGIN
pl: PROCEDURAL BEGIN -- defining assignments
id := is0* (exp((ud-rd*id) /ut)-1.0) ;
g := tau*id TOLERANCE "charge";
ic := g’'DOT;

END PROCEDURAL;
END ARCHITECTURE procedural;

Hardware description 4.9 Sequential behavioural description of a diode

Physical domains and associated quantities

When describing analogue relationships in VHDL-AMS the physical domains that
can be described are not specified in advance. Rather, it is even possible to declare
domains with their associated quantities subsequently. Here a differentiation is
made between potentials and flows, which are declared by the keywords ACROSS
and THROUGH. For electronics these may be voltage and current. Hardware descrip-
tion 4.10 shows the corresponding declaration as PACKAGE.

PACKAGE electrical system IS

SUBTYPE voltage IS real TOLERANCE "low voltage";
SUBTYPE current IS real TOLERANCE "low current";
NATURE electrical IS

voltage ACROSS; -- Potential

current THROUGH; -- Flow
ALIAS ground IS electrical’reference;

END PACKAGE electrical system;
Hardware description 4.10 Declaration of electrical potentials and flows

In the same manner, potentials and flows can be declared to arbitrary other
domains. For translational mechanics these might be velocity and force; for rota-
tional mechanics, rotational velocity and torque.

In a model the quantities used can be declared as either a THROUGH or an ACROSS
QUANTITY. This is a real number that describes a continuous variable. Kirchhoff’s

78 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

voltage law is applied for potential quantities, which means that all ACROSS quan-
tities in a closed loop add up to zero. For the flow quantities, Kirchhoff’s current
law applies. Thus all THROUGH quantities at a node add up to zero. In addition to
the declared quantities others are implicitly defined such as, for example, g’ DOT,
g’ INTEG and g’ DELAYED (t). These denote the derivative of the quantity g with
respect to time, the integral of the quantity g with respect to time and a quan-
tity g delayed by time t. In addition to the potentials and flows it is sometimes
worthwhile considering quantities that are not subject to Kirchhoff’s laws. For
example, in control technology signal flow diagrams or block diagrams are often
considered, in which the individual quantities do not occur in pairs and furthermore
have a direction. Kirchhoff’s laws in particular do not apply to these quantities. In
VHDL-AMS such quantities can also be used, as is demonstrated by the following
example of a combined adder/integrator, see Hardware description 4.11 and [16].

ENTITY adder_ integrator IS

GENERIC (k1,k2: real);

PORT (QUANTITY inl, in2: IN real;
QUANTITY outp: OUT real) ;

END ENTITY adder integrator;

ARCHITECTURE signal flow OF adder integrator IS
QUANTITY gint: real;

BEGIN -- defining equations
gint == kl*inl + k2*in2;
outp == gint’INTEG; -- Integration

END ARCHITECTURE signal flow;

Hardware description 4.11 Signal flow modelling of a combined adder/integrator

Discontinuities

In the case of mechanical models in particular, non-continuous relationships also
often have to be modelled. These are illustrated in what follows based upon the
example of a bouncing ball, see Hardware description 4.12 and Bakalar et al. [16].
Two discontinuities are considered in this model. The first of these is the start of
the simulation at which the initial state is set at the first BREAK command. The
second discontinuity consists of the fact that the bouncing ball reverses its velocity
when the it hits a surface, i.e. at s < 0. This corresponds with an elastic impact.
Furthermore, the IF instruction ensures that the braking effect of air resistance acts
with gravity when rising and against gravity when falling.

LIBRARY disciplines; -- Reference to a package with
USE disciplines.mechanical.all; -- the mechanical declarations
ENTITY ball IS -- Autonomous model,

END ENTITY ball; -- no connections

ARCHITECTURE simple OF ball IS

4.6 SIMULATION OF MODELS IN HARDWARE DESCRIPTION LANGUAGES 79

QUANTITY v : velocity; -- Velocity
QUANTITY s : displacement; -- Relative position
CONSTANT g : real := 9.81; -- Gravity

CONSTANT 1lw: real := 0.1; -- Air resistance
BEGIN

-- Initial conditions

BREAK v => 0.0, s => 10.0;

-- Detect discontinuity and invert velocity...
BREAK v => -v WHEN NOT s’ABOVE(0.0) ;

s'DOT == v; -- v = ds/dt
IF v > 0.0 USE

v'DOT == -g - v**2*lw; -- Accel. = -Gravity - Air resist.
ELSE

v'DOT == -g + v**2*lw; -- Accel. = -Gravity + Air resist.
END USE;

END ARCHITECTURE simple;

Hardware description 4.12 Modelling of discontinuities using the example of a bouncing ball

Modelling in the frequency range

In addition to modelling in the time range we can also provide a description in
the frequency range. This is based upon a small-signal model, which arises as a
result of the linearisation of the equations around the working point. In this model
it is possible to define quantities based upon their spectra. Furthermore, predefined
functions are available that effect either a Laplace or a Z-transformation. In this
manner filters, for example, can be described in a very simple way.

4.6 Simulation of Models in Hardware
Description Languages

In what follows the focus will again lie on the consideration of VHDL-AMS,
which provides a good example of a hardware description language with digital
and analogue components. Thus, we are automatically considering a mixed digital-
analogue simulation. The first step is the performance of the so-called elaboration,
which includes the evaluation of structural sections of the model and thus builds
up a complete system model from the module instantiations. The digital section
consists of a number of processes and the digital simulator core. The analogue
section consists of a number of equations and the analogue solver. A necessary
prerequisite for analogue solvability is that the number of equations and the num-
ber of (analogue) unknowns in the model are equal. For VHDL-AMS this is the
number of THROUGH quantities, free quantities and interface quantities with the
direction oUT. The actual simulation then runs in two phases. In the first phase

80 4 MODELLING IN HARDWARE DESCRIPTION LANGUAGES

the operating point of the system is determined. There then follows a simulation
in the time, small-signal or noise range. If a model contains no quantities, then
the simulation is reduced to a pure logic simulation, which corresponds with the
predetermined simulation cycle in the VHDL 1076 standard, see [158] and [159].
If, on the other hand, a model does not include a digital signal, then the simulation
is exclusively analogue.

The simulation cycle of VHDL-AMS should be described based upon Algo-
rithm 4.1 below, which is formulated in pseudocode. The representation is some-
what simplified, for a complete version refer to [160].

Loop {
Call to the analogue solver;
Set current time T. to Ty;
If maximum time reached or no active
processes present then simulation end;
Bring digital signal to newest state;
Execute active, not delayed processes

up to the next synchronisation point (= WAIT);
Calculate next time point of digital activity Tyu;
If T, = T -- delta time interval

then proceed to the start of the loop;
Execute active, delayed processes

up to the next synchronisation point;
Calculate next time point of digital activity Tyu;

Algorithm 4.1 Simplified simulation cycle of VHDL-AMS

The simulation cycle of VHDL-AMS includes the combined simulation of ana-
logue and digital processes and thus requires a corresponding linking of the digital
and analogue solution strategies. Initially the analogue solver is called up, which
in general calculates a solution up to time point T,,. However, it may be necessary
for T, to be set back to T, (T, < T,), if the analogue world has produced a digital
event at time point T,'. The current time T, is then set to T, or possibly to T,’. If
the maximum representable time has now been reached by the time variables, or
there are no longer any active processes, the simulation is ended. Otherwise the
digital signals are set to the latest state and the active processes before the next
synchronisation point executed. However, the execution of some of these processes
is delayed. Then the next time of digital activity T, is calculated. If T, is equal to
T. then it is a time increment that elapses in zero time, i.e. a delta time increment.
In this case execution is restarted at the start of the loop. Otherwise the delayed
processes are executed and a new T, calculated. This completes the circle and
execution is recommenced at the start of the loop.

4.7 SUMMARY 81

4.7 Summary

This chapter has described the opportunities of modelling in hardware descrip-
tion languages. It thus provides the basis for the investigation of the inclusion
of software and mechanics using hardware description languages covered in the
next chapter.

