
6
Mechanics in Hardware
Description Languages

6.1 Introduction
The objective of this section is to highlight the most important strategies for obtain-
ing the equations of motion for mechanical components and systems and to clarify
the options for their subsequent representation in hardware description languages.
Both direct formulations of symbolic equations and indirect formulations based
upon the parametric calculation of the system matrices will be considered. The
latter is often also called the solution using numerical equations.

The use of hardware description languages for the modelling of mechanics also
implies that the solution of the mechanical equation takes place using the solver
of the circuit simulator. Naturally, solvers are generally optimised for various
domains. For electronics the focus tends to be upon the management of a large
number of degrees of freedom, whereas in mechanics numerical problems with
a large number of constraints require particular attention. On the other hand, the
example of the classical multibody simulator ADAMS shows that this contrast is
not irreconcilable, see Orlandea et al. [304] and [305]. The numerics of ADAMS
is largely based upon procedures that are also used in circuit simulation. We should
mention at this point that the equation system is not formulated using a minimum
number of equations according to the degrees of freedom. Rather, each individ-
ual equation is entered into an overall system. Thus the resulting system matrix
is sparse and can be processed using ‘sparse matrix’ techniques. The numerical
integration takes place using the Gear procedure that is also commonly used in
circuit simulation.

In mechanics — as in electronics — we can differentiate between various abstrac-
tions. Multibody mechanics and continuum mechanics are examples. According to
Schiehlen [361] a multibody system is characterised as a collection of rigid and/or
elastic bodies with inertia as well as springs, dampers and servo motors without
inertia. These are connected together by rigid bearings, joints or suspensions. Fric-
tion and contact forces can also be included if necessary. This corresponds with

Mechatronic Systems Georg Pelz
 2003 John Wiley & Sons, Ltd ISBN: 0-470-84979-7

100 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

modelling using concentrated parameters and is thus comparable with a circuit
made up of components.

In some cases the abstraction of a continuum to the discrete elements of a multi-
body system is not suitable for the solving of the envisaged problem. For example,
this is the case if the exact deformation of an elastic body contributes significantly
to the system behaviour. In this case models need to be created and formulated
in hardware description languages that adequately describe the continuum with its
distributed parameters. Both multibody mechanics and continuum mechanics will
be considered in the following.

6.2 Multibody Mechanics
6.2.1 Introduction
When modelling multibody mechanics using hardware description languages, we
first have to raise the question of the perspective from which the system is to be
considered. One option focuses upon the system level, the other upon the com-
ponent level with the system models being generated by connecting component
models together. The first method is called system-oriented modelling and the
second method object-oriented modelling.

The first option has the advantage that equations of motion can be created using
standard engineering methods. Furthermore, we have access to a greater system
knowledge during the modelling, which can be beneficial. However, one problem is
that this type of consideration opposes one of the most important basic philosophies
for the development of electronics. In this field it is generally sufficient to model only
the fundamental components and to develop complex systems from these. Further
modelling is normally not necessary during the development of electronic systems.

As an alternative to this we can use object-oriented modelling to describe the
standard components — for example bodies, springs, dampers, joints, etc. — and put
these submodels together into a system model. Information about this system, such
as, for example, a favourable selection of generalised coordinates, is in principle
not available and thus cannot be used for the simplification or acceleration of the
model. However, the building of a system model can be considerably simplified if
the basic models that are required are available.

In the following we will consider how it is possible to obtain equations of motion
for multibody systems, see for example, Dankert and Dankert [79], Greenwood
[125], Hiller [144] or Nikravesh [299] for the basic principles shown. Multibody
systems typically include the following components:

• Particles with translational inertia.

• Rigid bodies with translational and rotational inertia.

• Suspensions and joints that limit the movement of individual particles and
bodies in relation to one another.

• Coupling elements, e.g. springs, dampers, servo motors, etc.

6.2 MULTIBODY MECHANICS 101

Figure 6.1 Multibody system with four bodies, springs, dampers, suspensions, joints, and
inertial and body-related frames of reference

In the consideration of the structure of a multibody system, an abstracted descrip-
tion such as that given in Figure 6.1 is generally sufficient. Decisive factors are
the topography of the system and the parameters of the individual elements, such
as mass, centre of gravity, moments of inertia with respect to the main axes or the
point of application of forces.

For the consideration of point-shaped masses we start from Newton’s second
law, which identifies the product of mass m and acceleration in the x, y, and z
direction ax, ay, az of a particle with the forces Fx, Fy, Fz acting upon it:

Fx = max, Fy = may, Fz = maz (6.1)

Let us now consider a system of N particles. These may be subject to additional
limitations to their movement, so-called constraints. This state of affairs can be
taken into account by the introduction of the so-called reaction forces, which ensure
that the constraints are adhered to. The total force acting upon a body is divided
into two components, the force applied from outside Fe

i and the reaction force Fr
i .

In total this yields the following equation system:

miaix = Fe
ix + Fr

ix

miaiy = Fe
iy + Fr

iy (i = 1, 2, . . . , N)

miaiz = Fe
iz + Fr

iz

(6.2)

This can be formulated as a vector equation as follows:

miai = Fe
i + Fr

i (6.3)

102 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

For the sake of simplicity we can also describe the cartesian coordinates of the
first body by (x1, x2, x3), those of the second body by (x4, x5, x6) and so on. If we
also term the masses of the kth body m3k−2 = m3k−1 = m3k and set ai = ẍi for the
accelerations, then the equations of motion can be formulated by the following set
of equations:

miẍi = Fe
i + Fr

i (i = 1, 2, . . . , 3N) (6.4)

If the movement of the particle is not restricted then the reaction forces are neg-
ligible. This yields a system of 3N second-order differential equations, which is
generally nonlinear. This equation system can in general only be solved numeri-
cally, i.e. as part of a simulation.

The constraints between the particles are characterised by a set of M independent
constraint equations:

fj(x1, x2, . . . , x3N, t) = 0 (j = 1, . . . , M) (6.5)

So 3N + M equations are available for the solution of the same amount of variables.
However, the use of cartesian coordinates is not always favourable. In many

cases cylindrical, spherical, elliptical, parabolic or other coordinates are benefi-
cial. For this reason we will now move to the so-called, generalised coordinates
q1, . . ., qn. These permit a formulation that is better suited to the problem. Further-
more, under certain conditions the generalised coordinates can be selected so that
the constraint equations are dispensed with completely, considerably simplifying
the drawing up and calculation of the equations of motion. This is possible if all
constraints are holonomous, i.e. they relate exclusively to the possible geometric
positions of the bodies or can at least be put into such a form. Regardless of the
selection of coordinates, the number of degrees of freedom of the system in prin-
ciple remains constant. It corresponds with the number of independent coordinates
minus the number of independent constraint equations.

A small example, see Greenwood [125], should clarify the relationship between
cartesian and generalised coordinates, see Figure 6.2.

(x1, y1)

(x2, y2)

(x, y)

φk

Figure 6.2 Description of the position of two particles joined by a mass-free rod

6.2 MULTIBODY MECHANICS 103

Two mass points in the plane are rigidly joined together by a mass-free rod.
Their position is determined by two pairs of cartesian coordinates (x1, y1) and (x2,
y2). The condition induced by the rod can be described by the following equation

(x2 − x1)
2 + (y2 − y1)

2 − k2 = 0 (6.6)

We therefore have four cartesian coordinates and a bond equation, thus a total
of three degrees of freedom. In principle, however, the configuration of the two
particles can be described by the following generalised coordinates:

q1 = x coordinate of the mid-point of the rod

q2 = y coordinate of the mid-point of the rod

q3 = angle φ of the rod.

The fourth coordinate q4 would be the length of the rod, which is, however, con-
stant. So the associated bond equation

q4 = k (6.7)

is trivial and can be disregarded. There thus remain three coordinates without a
further bond equation, i.e. three degrees of freedom. Only by this formulation in
generalised coordinates can we thus omit the consideration of constraint equations
in holonomous systems. In the following we will consider exclusively holonomous
systems.

It is often worthwhile going over to the generalised coordinates, which — as is
the case for pure cartesian coordinates — represent the configuration of the system,
i.e. the position of all particles. Coordinate transformations permit the conversion
between generalised and cartesian coordinates:

x1 = x1(q1, q2, . . . , qn, t)

x2 = x2(q1, q2, . . . , qn, t)

...

x3N = x3N(q1, q2, . . . , qn, t)

(6.8)

The transition to generalised coordinates requires that forces acting upon the system
from outside are also present in generalised form. Whereas the forces in cartesian
coordinates can be simply split up into their x, y and z components, things are
more complicated in this case. For example, forces acting upon angular coordinates
become moments. The conversion rule for the generalised force Qi is naturally also
based upon the coordinate transformation xj and looks like this:

Qi =
3N∑
j=1

Fj
∂xj

∂qi
(i = 1, 2, . . . , n) (6.9)

104 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

If we now move on from particles to rigid bodies we now have to consider the
moments of inertia in addition to the translational inertia. These are described by
the underlying Euler equations for the rigid body Kj:

Ij1ω̇j1 − (Ij2 − Ij3)ωj2ωj3 = Me
j1 + Mr

j1

Ij2ω̇j2 − (Ij3 − Ij1)ωj3ωj1 = Me
j2 + Mr

j2

Ij3ω̇j3 − (Ij1 − Ij2)ωj1ωj2 = Me
j3 + Mr

j3

(6.10)

In matrix form these equations look like this:

Ijω̇j + ωj × (Ijωj) = Me
j + Mr

j (6.11)

where Mj represents the applied and reactive torque vectors, Ij represents the
tensors of the moment of inertia and ωi represents the angular velocities with
respect to the three principal axes of the rigid body Kj.

6.2.2 System-oriented modelling

In system-oriented modelling two classical approaches can be distinguished, the
synthetic and the analytical, see for example, Kreuzer [207]. In the synthetic
methods we first draw up the Newton and Euler equations for each body. The
connections between bodies, e.g. joints, give rise to constraining forces, and the
elimination of these converts the Newton/Euler equations into equations of motion.
The analytical approach, on the other hand, is associated with the name Lagrange
and starts from an energy formulation. This is rearranged directly into equations
of motion without the constraining forces being considered.

Both approaches will be described in the following in a formulation using gen-
eralised coordinates. In addition to the above-mentioned approaches there is also
a range of further options, which are briefly described and compared by Kane and
Levinson in [177]. It should not go unmentioned that the equations that result from
the various approaches are ultimately the same. However, they are obtained at a
different level of complexity. The formulation is also of varying suitability for the
subsequent numerical simulation.

Newton–Euler approach

The Newton–Euler approach, see also Kreuzer and Schiehlen [208], should — just
like the Lagrange approach described subsequently — be represented in a
formulation using the generalised coordinates q1, . . .,qn. From these the velocities
should be determined for each body Kj in the x, y and z coordinates:

6.2 MULTIBODY MECHANICS 105

 vxj

vyj

vzj

 =

∂xj

∂q1

∂xj

∂q2
· · ∂xj

∂qn

∂yj

∂q1

∂yj

∂q2
· · ∂yj

∂qn

∂zj

∂q1

∂zj

∂q2
· · ∂zj

∂qn

q̇1

q̇2

·
·

q̇n

 +

 vxj

vyj

vzj

 (6.12)

In more compact form the same situation can be formulated as follows

vj = JTjq̇ + vj (6.13)

where both the translational Jacobi matrix JTj, and the local velocities vj depend
only upon q and t. The cartesian accelerations aj of the jth body are calculated
as follows:

aj = JTjq̈ + aj (6.14)

For the local accelerations aj it is again true that they depend only upon q
and t.

In a similar manner we move from the generalised coordinates to the angular
velocities ωj and angular accelerations αj of each rigid body Kj:

ωj = JRjq̇ + ωj (6.15)

αj = JRjq̈ + αj (6.16)

where the rotational Jacobi matrix JRj and the local angular velocities ωj and
angular accelerations αj again depend exclusively upon q and t.

In the next step we draw upon Newton and Euler equations for each body:

miai = Fe
i + Fr

i (6.17)

Ijω̇j + ωj × (Ijωj) = Me
j + Mr

j (6.18)

Using the transformation of generalised coordinates into (angular) velocities and
(angular) accelerations of the individual body, as described above, these equations
can now be formulated exclusively in the form of generalised coordinates. How-
ever, these are the same for all bodies, which means that the bodies can be
linked together in this manner. The resulting system of equations takes the fol-
lowing form:

MJq̈ + k = pe + pr (6.19)

106 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

Where the 6k × 6k matrix M takes the form

M = diag(m1E, . . . , mkE, I1, . . . , Ik) (6.20)

and forms a block diagonal matrix of masses and inertia tensors. The k denotes the
number of bodies. The 6k × n matrix J is the global Jacobi matrix and consists of
a stack of k translational and k rotational 3 × n Jacobi matrices of the individual
bodies, where n is the number of generalised coordinates:

J = [JT
T1| · · · |JT

Tk|JT
R1| · · · |JT

Rk]T (6.21)

Again k is the 6k × 1 vector of gyroscopic and centrifugal forces as well as Cori-
olis forces. Finally, the applied forces and moments and the reaction forces and
moments are located in the 6k × 1 vectors pe and pr:

pe = [FeT
1 | · · · |FeT

k |MeT
1 | · · · |MeT

k]T (6.22)

pr = [FrT
1 | · · · |FrT

k |MrT
1 | · · · |MrT

k]T (6.23)

Finally, we multiply the equation system (6.19) from the left with the transposed,

global Jacobi matrix J
T

, so that it is formulated completely in generalised coordi-
nates. This yields equilibrium of forces in matrix form:

Mq̈ + k = Q (6.24)

The product J
T

MJ yields the mass matrix M. Similarly, J
T

k yields k, the vector

of the generalised gyroscopic forces, and J
T

Fe yields the vector of the generalised
forces Q. Here M is dependent upon the generalised coordinates q and t, and k
and Q are dependent upon q, q̇ and t. Last but not least, we should note that

the reaction forces are dispensed with as a result of the multiplication by J
T

. We
therefore have a system of ordinary differential equations to solve because the
algebraic equations of the constraints have disappeared with the reaction forces.

Lagrange approach

The focus of the Newton–Euler approach described in the previous section was
the drawing up of Newton and Euler equations for each body and the conversion
of the resulting overall system into generalised coordinates so that the constraint
equations are dispensed with. The Lagrange approach takes a different and partic-
ularly elegant route. It starts from the premise that the generalised inertial forces
and the generalised applied forces cancel each other out. For the formulation of the
generalised inertial forces QI

i we require the total kinetic energy T of the system,
which of course must also be formulated in the form of generalised coordinates:

QI
i = ∂T

∂qi
− d

dt

(
∂T

∂ q̇i

)
(6.25)

6.2 MULTIBODY MECHANICS 107

The first subterm represents the generalised inertial forces that arise as a result
of the change of position of the system, thus, for example, the Coriolis force.
Opposing this part is the second component, which describes the rate of change of
the generalised impulses. The above-mentioned premise

QI
i = −Qi (6.26)

yields the Lagrange equation

d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi
= Qi (i = 1, 2, . . . , n) (6.27)

By drawing up a formula for kinetic energy and the conversion of applied forces
into their generalised form we can obtain the equations of motion directly by sub-
stituting into equation (6.27). This is particularly simple because kinetic energy is
a scalar that contains no higher derivatives with respect to time than the velocities.
These are significantly easier to determine than the accelerations.

Formulation in hardware description languages

The primary purpose of analogue hardware description languages is for the mod-
elling of analogue electronic components for a circuit simulator. The variables
considered in this application — voltage and current — correspond with the duality
of a potential and a flow and can be represented by other quantities in accordance
with the analogies described in Section 3.2.2. Although the text-based formulation
of the mechanical model is based upon accelerations, velocities, positions, and
forces, the underlying calculations take place in accordance with the analogies of
the potentials and flows available.

Furthermore, the preceding section has shown that the selection of the con-
sidered unknowns of multi-body mechanics is attributed decisive importance. In
electronics the unknowns are normally in the form of node voltages, which is
because of the nodal analysis that is prevalent in circuit simulation. In the system-
oriented modelling of mechanics, on the other hand, it is of decisive importance
to specify a suitable set of generalised coordinates. For holonomous systems,
which can be described using generalised coordinates, the — sometimes very com-
plex — constraint equations are dispensed with. As was shown by the relatively
simple example from Figure 6.2, it is not a question of selecting from a fund of
existing coordinates, but one of an independent engineering task.

The methods described supply sets of ordinary differential equations in symbolic
form. These can easily be formulated in analogue hardware description languages.
This is true under the prerequisite that the size of the equation set remains within
limits. In Section 7.2.3 the obtaining and formatting of the equations of motion for
an automotive wheel suspension system using the Lagrange approach is illustrated.

108 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

6.2.3 Object-oriented modelling

Introduction

The use of generalised coordinates in object-oriented modelling raises two prob-
lems. Firstly, it poses the question of how we should determine the generalised
coordinates from the very limited perspective of an element. Secondly, the local
Jacobi matrices, which describe how the local coordinates arise from the totality
of the generalised coordinates, have to be set up. Both questions necessitate the
global perspective of mechanics, i.e. the local consideration that has brought so
many benefits in electronics is lost. In other words: When generalised coordinates
are used the consideration of a multibody system generally results in the completion
of the drawing up of the Newton–Euler equation system

Mq̈ + k = Q (6.28)

using hardware description languages, based upon models for rigid bodies, springs,
dampers etc. A more promising approach would seem to be to add the automated
creation of symbolic equations of motion by a suitable programme and thus select
system-oriented modelling.

Object-oriented modelling thus cannot be performed directly using generalised
coordinates. However, if we free ourselves from the generalised coordinates and
in particular permit a greater number of unknowns, then the question is reformu-
lated. The work of Suescun et al. [391] provides a first approach to the modelling
of multidimensional mechanics in hardware description languages (VHDL-AMS).
Here the position of the body is given in natural coordinates, which occur in two
forms: Firstly, they are given as cartesian coordinates for certain points on the
body. These marked points may be contact points of joints, springs and dampers.
Secondly, unit vectors are introduced as natural coordinates, in order to specify
axes of rotation. According to Suescun et al. the mass matrix M of a body is con-
stant if a sufficient quantity of natural coordinates are considered. This represents
the vector q of the natural coordinates on the inertial force QI (with respect to the
natural coordinates):

QI = −Mq̈ (6.29)

The natural coordinates are modelled in the hardware description languages as
potentials (across), the forces and moments as flows (through). In addition there
are algebraic constraint equations in quadratic (for planar mechanics) and cubic
(for 3D mechanics) form, which hold constant the constellation of points in relation
to each other and the length of the unit vectors. In addition there is a VHDL-AMS
module for the gravitation that is suspended on the rigid body model. Also present
are models for joints, springs and dampers. The models mentioned are put together
using a circuit editor. The corresponding system of DAE is then solved in a circuit
simulator. Finally, we should also mention that no simulation results are shown
in [391].

6.2 MULTIBODY MECHANICS 109

In addition to the general principle there is one special case, for which the
development of arbitrarily connectable models has been known for a long time.
The prerequisite for this is that the movement in the system only takes place in
one translational or rotational dimension, or that the movements in the system
can be broken down into one-dimensional movements that are independent of
each other. Then the generalised coordinates coincide with the cartesian coordi-
nates or the angular coordinates, the Jacobi matrices are trivial and the mechanical
forces/moments and velocities/angular velocities can be represented directly by
potentials and flows. Applications are any pure translational movements and one-
dimensional rotational movements, such as in a drive train with motor, gearbox
and mechanical load. In the following suitable models for the basic elements mass,
spring, damper, power source and position source1 will be described.

Basic model

The basic elements mass, spring, and damper can be formulated for both transla-
tional and rotational movements. In the following the translational version will be
given, with positions (instead of the velocities) being used as potentials. It is for-
mulated in the hardware description language VHDL-AMS. We first begin with the
model of mass inertia for translational movements inertia_trans, see Hardware
description 6.1. This model follows the equation

F = −(m · ẍ) − (m · g) (6.30)

and thus describes both the inertia and also the acceleration due to gravity. If
the acceleration due to gravity does not lie in the direction of the translation, the
parameter GRAVITY, i.e. g, is set to 0. Otherwise the model follows the convention
that an acceleration in the direction of x gives rise to negative forces and vice versa.

LIBRARY disciplines; -- Reference to a package with the
USE disciplines.Kinematic_system.all; -- mechanics declarations
ENTITY inertia_trans IS -- Interface description
GENERIC (m, g: REAL); -- Mass, gravity
PORT (TERMINAL p, n: kinematic); -- Terminals

end inertia_trans;
ARCHITECTURE simple OF inertia_trans IS -- Architecture
-- Declaration of potential/flow quantity=deflection x/force F ...
QUANTITY tdisp ACROSS tforce THROUGH p TO n;

BEGIN
tforce == -(m*tdisp’DOT’DOT) - (m*g); -- Basic equation

END simple;

Hardware description 6.1 Model of a mass for translational movement in VHDL-AMS

1 Like a voltage or current source, but supplying a position.

110 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

Now to spring and damper models. For the spring model the applied force is
dependent upon the position, i.e. upon the distortion of the spring. The damping
force, on the other hand, is proportional to the relative velocity of the two termi-
nals of the damper model, and thus primarily describes the Stokes’ friction of a
viscous fluid, such as for example in an automotive shock absorber. The following
equations form the basis:

Fspring = −k(xp − xn − l0)

Fdamper = −b(vp − vn) (6.31)

The appropriate conversion is found in Hardware descriptions 6.2 and 6.3.

LIBRARY disciplines; -- Reference to a package with the
USE disciplines.Kinematic_system.all;-- mechanics declarations
ENTITY spring_trans IS -- Interface description
GENERIC (k, l0: REAL);-- Spring constant, basic spring length
PORT (TERMINAL p, n: kinematic); -- Terminals

end spring_trans;
ARCHITECTURE simple OF spring_trans IS -- Architecture

-- Declaration of potential/flow = deflection/force ...
QUANTITY tdisp ACROSS tforce THROUGH p TO n;

BEGIN
tforce == -k * (tdisp - l0); -- Basic equation

END simple;

Hardware description 6.2 Spring model for translational movements

In both cases the spring or the damping force is first calculated and correspond-
ingly applied. This force is applied in the negative direction. For the spring this is
consistent with the convention that positive forces increase the current positional
value. The spring force at terminal p is oriented such that the spring length tends
towards the equilibrium l0. At terminal n the force is correspondingly oriented in
the opposite direction. For the damper, the convention applies that positive forces
increase the relative distance of the two position terminals. The damping force
resists a positive, relative velocity. The descriptions for the application of forces
and velocities will not be illustrated here. They correspond with the applicable
descriptions of sources for currents and voltages.

LIBRARY disciplines -- Reference to a package with the
USE disciplines.Kinematic_system.all; -- mechanics declarations
ENTITY damper_trans IS -- Interface description
GENERIC (b: REAL); -- Damper constant
PORT (TERMINAL p, n: kinematic); -- Terminals

end damper_trans;
ARCHITECTURE simple OF damper_trans IS -- Architecture ‘simple’

-- Declaration of potential/flow = deflection/force ...
QUANTITY tdisp ACROSS tforce THROUGH p TO n;

6.2 MULTIBODY MECHANICS 111

BEGIN
tforce == -b * tdisp’DOT; -- Basic equation

END simple;

Hardware description 6.3 Damper model for translational movements

6.2.4 Example: wheel suspension

Starting from these basic models we can now put together more complex models.
A wheel suspension will serve as an example. Let us first of all set up the frame-
work for the consideration of a modelling process. We assume that only the vertical
movement of the wheel and the vehicle body is to be considered. Furthermore, the
condition is imposed that the centre of gravity of the vehicle is located mainly in
the centre of the vehicle and thus the axles are uniformly loaded. In this case the
movements of the axles are almost independent of each other, which means that
we can restrict ourselves to the consideration of one axle. If we further assume
that the road conditions are the same for the left and right-hand wheel, then for
reasons of symmetry it is completely adequate to consider only one wheel includ-
ing half an axle and a quarter of the car body. Using the assumptions described
yields a two-mass oscillator, which describes the vertical dynamics very well, see
Figure 6.3.

The mass ma describes the wheel and the associated part of the axle and mb

describes a quarter of the body. Both masses are of course subject to gravity,
but also to the forces that are exerted by the adjacent springs and dampers. Shock
absorbers and body springs themselves are characterised by the parameters b and ks

respectively. The tyres can also be considered as springs, but with a spring constant
kw that lies around an order of magnitude above that of the body spring. The

ya

yb

ma

mb

d kf

kr

ys

Figure 6.3 Modelling of a wheel suspension by a two-mass oscillator

112 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

Pos

Name:

Date:
Wheel suspension

yb

ya

Figure 6.4 Schematic diagram of a wheel suspension

Table 6.1 Parameters

Parameter Value

ma 50 kg
mb 250 kg
ks 25 500 N/m
kw 250 000 N/m
B 2000 Ns/m
l0,Spring 0.2 m
l0,Tyre 0.03 m
G 9.81 m/s2

damping effect of the tyres can be disregarded here. The system is one-dimensional
because only the vertical movement of the masses is being considered. It has two
degrees of freedom, the y-positions of the two masses. The y-position of the road
serves as the stimulation. Driving over a step of a few centimetres is modelled by
imposing a jump of corresponding height. This system can be assembled directly
from the basic elements developed above in the form of a schematic diagram, see
Figure 6.4.

After suitable parameterisation, simulation can take place without further mod-
elling expense. The parameters in Table 6.1 are used for the simulation shown in
Figure 6.5.

The situation considered in the simulation corresponds with driving over a 5 cm
high step at a right angle, i.e. the left-hand and right-hand wheel experience the
same deflection. Thus the symmetry condition is fulfilled. At the beginning of the
journey the spring forces of springs and tyres correspond with the respective weight

6.2 MULTIBODY MECHANICS 113

0.00

0.04

0.08

0.12

0.16

0.20

−4000

0

4000

8000

12000

16000

0.01
0.02
0.03
0.04
0.05

E
xc

ita
tio

n
/ m

y-
po

si
tio

ns
 /

m
F

or
ce

s
/ N

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

y-position of road level

y-position of wheel

Spring force of wheel

Spring force of spring
Damping force

y-position of car body

t / sec.

Figure 6.5 Simulation of a wheel suspension

and ensure that body and wheel dip in relation to gravity. Whilst the road level
ys rises suddenly by 5 cm, the tyre springs are correspondingly compressed and
quickly build up a force of approximately 15 000 N. As a result, the wheel is pushed
upwards, the tyre spring relaxes and the force in question eases. However, the body
spring is compressed by the movement of the wheel and corresponding forces
are transmitted to the body. In accordance with the mass and spring constants,
vibrations are observed in the range of around one hertz. In the case of the wheel the
vibrations lie in the range of around ten hertz. Thus the body requires significantly
longer to take on its new y-position. Finally, it should be noted that the damping
force works to counter the relative movement between wheel and body and thus
allows the vibrations to decay. The simulation requires few CPU seconds on a
SUN Sparc 20 workstation.

6.2.5 Further applications

Introduction

In the following a few other applications will be presented as examples, thereby
illustrating the possibilities of multibody modelling using hardware description lan-
guages. The representation takes into account both mechatronic and micromecha-
tronic systems.

114 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

Mechatronics

In [254] Makki et al. describe an electronically controlled window winder mecha-
nism for cars. On the mechanical side a direct current motor, a gearbox, a rack for
the conversion of the rotational motion into a translational movement, a mechan-
ical load — the window pane — and a mechanical stop are envisaged. In addition
to this there is a force sensor that allows the drive to be switched off in the event
of large counterforces. This typically corresponds with a situation in which objects
are trapped by the window-pane whilst the window is raised. In this case move-
ment is restricted to a rotary — or after the rack a translational — dimension. For
this reason the system described can be simply assembled from basic models, each
of which corresponds with one of the named components.

Other examples can be found in Donnelly et al. [84], who describe an electroni-
cally controlled hydraulic braking system, or in Mikkola [269], who uses hardware
description languages to model and simulate diesel-electric ship drives.

Micromechatronics

For the class of so-called ‘suspended’ MEMS, Mukherjee and Fedder [282] have
developed an approach based upon multibody mechanics. Classical applications
for this approach are, for example, seismically suspended masses of acceleration
sensors and resonators, see Figure 6.6. The structure of interest is broken down
into individual parts such as springs, masses, dampers, etc., for which models
are available. Thus a micromechanical model can be assembled from the basic
models. This strategy is very well suited to the approach that is also selected
here of formulation in hardware description languages, because these continuously
support the hierarchical structure of models.

In the NODAS system in [103], Fedder and Jing go beyond multibody systems
made up of rigid bodies by including elastic components on the basis of hard-
ware description languages. The following components have been implemented
in NODAS as described in [103]: A bending beam, a rigid plate, an electrostatic

m

U

Fe

k b

Figure 6.6 Electrically excited resonator in the form of a multibody system

6.3 CONTINUUM MECHANICS 115

comb actuator, and an anchor (which corresponds with a fixed suspension). Imple-
mentation first raises the question of differentiating between a global and local
coordinate system. Initially all considerations of an element are local. However,
the element can also be given global coordinates, which can be used to solve a
calculation of the operating point. Thus the correct values of the global coordinates
are set automatically, whereas the actual calculations generally take place using a
further set of variables that only give values relative to the operating point.

The model of the bending beam was developed on the basis of a mechanical
structural analysis. The equation for the beam takes the form:

Fbeam = Mü + Bu̇ + Ku (6.32)

where Fbeam represents the vector of forces and moments at the beam, u represents
the vector of the translational and rotational degrees of freedom of the beam, M
represents the mass matrix, B the damping matrix and K the stiffness matrix. In
principle this follows the beams presented in [34] and in Section 6.3.2, although
NODAS is more interested in the global movement and not in the deformation
of a continuum. Furthermore, the local mass, damping and stiffness matrices are
formulated directly in the hardware description language, which may cause these
symbolic equations to explode in the event of more complex elements.

However, in many cases physical modelling, as used in the previous examples,
is not possible or would be associated with great expense. In such cases it is often
worthwhile to move to experimental modelling. In this approach an experiment
does not necessarily consist of measurements on a real system, but often consists
of field and continuum simulations, for example based upon finite elements. In
this manner, the simulation can be run in advance of manufacture by the use
of experimental models. Pure table models, such as for example in Romanowicz
et al. [350] or Swart et al. [394], are an example. However, these table models,
with their data list of identification pairs, can be represented by compression into
relatively simple equations. This is shown by Teegarten et al. [397], who also
supply a lovely example of the mixing of physical and experimental modelling
based upon a micromechanical gyroscope.

6.3 Continuum Mechanics

6.3.1 Introduction

The previous section dealt with multibody mechanics, the main characteristic of
which is the consideration of a collection of bodies connected together by joints
and suspensions. The validity of this abstraction depends upon the formulation
of the question. In particular, the bending of mechanical components is often not
an undesirable side-effect, but is essential to the functioning of the system. Now,
if the form of bending plays a significant role in the system behaviour then we

116 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

cannot avoid the consideration of the continuum in the modelling. The associated
mechanics, and in particular its representation in hardware description languages,
are the subject of this section.

We can initially differentiate between whether the consideration is to be per-
formed statically or dynamically. For the static case each mechanical position may
be assigned an electrical quantity. Here only the steady state is considered. In the
dynamic case velocities and accelerations of mechanical quantities also play a role,
so that phenomena such as mechanical resonance are also considered. A further
distinction is supplied by the selection of a desired level of abstraction. It is a funda-
mental truth of continuum mechanics that elasticity and mass spread continuously,
thus giving rise to an infinite number of degrees of freedom. As is described in
more detail in what follows, we can perform the modelling of mechanical continua
on the basis of (geometric) structure, physical equations, and experimental data.
In this context the reader is referred to a corresponding classification of modelling
approaches in Section 2.4.

6.3.2 Structural modelling

Introduction

Structural modelling traces the generation of a model back to the composition of
basic models. In the case of continuum mechanics these basic models may be
finite elements, for example. Due to the generality and high degree of adoption
of finite elements in the framework of structural modelling, we will deal exclu-
sively with this approach. Bathe [19], Gasch and Knothe [113] and Knothe and
Wessels [202] supply a good overview of the methods of finite elements in their
works. For the modelling of finite elements, as in the Ritz procedure (see within
Section 6.3.3), we work on the basis of interpolation functions. However, these are
not formulated globally for the whole structure here, but locally for the finite ele-
ment. Thus the main difficulties of the Ritz procedure are removed. If the models
of the finite elements are available, modelling is a purely geometric task, which
primarily represents a breakdown of the continuum. In this context we also speak
of a meshing, in which finer resolutions buy more precision at the expense of
greater simulation time.

Up until now, finite elements have typically only been used to investigate the
component level, disregarding the system context. The following sections will show
that finite elements can be drawn into a circuit simulation on the basis of hardware
description languages. As we will show in what follows, the differential equation
solver of the circuit simulator in question is thus entrusted with the calculation
of the equations of the finite elements. The dynamic coupling of electronics and
mechanics then takes place automatically. Overall, this opens up a simpler, faster
and more secure way of modelling mechanical continua that is compatible with
hardware description languages and thus also with circuit simulation.

6.3 CONTINUUM MECHANICS 117

Finite elements

In principle, finite elements can be used in many fields of engineering science. Our
discussion is based upon the field of structural mechanics. Thus the following quan-
tities have to be linked together: displacements, forces, strain, and applied loads,
which act as a trigger here. Depending upon the application, different finite ele-
ments are used, which vary in structure, number of nodes and degrees of freedom.
Figure 6.7 shows a selection of finite elements of structural mechanics.

The degrees of freedom of the finite elements can be of both a translational (ux,
uy, uz) and a rotational (rx, ry, rz) nature. The numerical complexity of the calcula-
tion increases with their number. Fundamentally, the element selected should fulfil
the question formulated with as few superfluous degrees of freedom as possible. In
addition, symmetry considerations are used to keep the number of finite elements
as low as possible.

In the following, an approach will be presented that allows the finite elements
of structural mechanics to be represented in hardware description languages. This
is based upon the work of Pelz et al. [333] and Bielefeld et al. [33] and [34].
Information on the mechanical foundation can be found in [19], [113] or [202].
We should mention at this point that Haase et al. [131] to some degree follow a
similar approach in a subsequent work by linking system matrices that originate
from a commercial FE simulator into a circuit simulator.

The formulation of the finite elements firstly requires that a mass matrix, a
stiffness matrix, and a load vector are generated for each element. As in many other
works the damping matrix is initially disregarded. Secondly, in a FE simulator,
these element matrices are combined into a global equation system, according to

ux4

(c) (d)

ux3

ux2

uy2

uy4 uy3

ux1

uy1

rz1

rz4
ry4

rx4

rx1

rx2

rz2

rx3
uy3

rz3

ry3ry1

uy1 uy4

uy2

y
xz

(a)

rz1 uy1 uy2

rz2

(b)

rz1 uy1
uy2

rz2

Figure 6.7 Selection of finite elements from structural mechanics: (a) Shear-resistant 1-D
beam, two nodes, two degrees of freedom per node (uy, rz) (b) Non shear-resistant 1-D, two
nodes, two degrees of freedom per node (uy, rz) (c) Plane element, four nodes, two degrees of
freedom per nodes (ux, uy) (d) Plate element, four nodes, four degrees of freedom per node (uy,
rx, ry, rz)

118 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

the structure of the mechanics. This must either be completed during the modelling
or in the circuit simulator.

A sensible starting point in the drawing up of the element matrices is the
principle of virtual displacement. A virtual displacement is a small displacement
superimposed upon the actual displacement, which fulfils the geometric boundary
conditions and otherwise brings about no gaps or overlapping of the continuum.

The principle of virtual displacements demands that the virtual displacement
energy is equal to the virtual work of the external forces for each permitted virtual
displacement. This yields the basic equation that is drawn up for the whole contin-
uum. Now the components of the individual elements in the basic equation should
be taken into account. This would require knowledge of the continuous displace-
ments over the entire element. However, because we want to operate using only
the displacements of the nodes of the finite elements, it is necessary to approximate
the continuous displacements from the node displacements. This is done with the
aid of interpolation functions that are often created in the form of polynomials.
Thus the continuous displacements are approximated from the node displacements,
and using the displacement/strain relationship these are transformed into the strains
of the element. Using the underlying law of matter we find the stresses from the
strains. Using the quantities determined in this manner, the strain energy can be
integrated over the element range and summed over all elements. The integration
is significantly simplified by the use of interpolation functions, which — as noted
before — typically are polynomial.

By contrast, the virtual work of the external forces is based upon the excita-
tion forces, stresses at the edge of the body, and body forces such as weight. The
associated proportions of (virtual) work are again calculated from the node dis-
placements by integration over the range in question and summed for all elements.
Finally, the total virtual strain energy is equated to the total virtual work of the
external forces. In the static case this yields the following equation system:

Ku = p (6.33)

where K represents the system stiffness matrix, u the node displacements, and p
the converted body and contact forces at the nodes. The system stiffness matrix is
found from the suitable addition of the element stiffness matrices. In the kinetic
case there are also inertia forces and the equation is formulated as follows:

Mü + Ku = p (6.34)

where M represents the system mass matrix, which, in a similar way to the system
stiffness matrix, is found by a suitable summing of the element mass matrices. The
system mass matrix is linked with the accelerations of the displacements. In this
discussion both equation systems correspond with the equilibrium principle.

If we want to represent finite elements in hardware description languages, then
it initially appears logical to first draw up the differential equation system resulting

6.3 CONTINUUM MECHANICS 119

from the collection of finite elements in symbolic form, and then to directly formu-
late this in a hardware description language. In theory this is correct. However, the
handling of the equations causes massive problems. This is firstly the case if we
want to parameterise the elements geometrically and not on the basis of the entries
in the element matrix. The same applies in the nonlinear consideration if the mass
and stiffness matrices of the finite elements are dependent upon the current state
of deformation and have to be drawn up afresh depending upon deflection. In both
cases the complete rule for the creation of the element matrices must be included
in the equation system, as must the conversion from the element matrices into the
system matrix. This allows the volume of equations to explode and the resulting
equation system is thus beyond any meaningful calculation.

It therefore makes sense to initially consider the finite elements individually and
to build the rule for the creation of the element matrices into the model in ques-
tion. This could, for example, be achieved by embedding a C routine, capable of
generating suitable element matrices as required, into the model. This corresponds
with the numerical simulation of multibody systems. The question is also raised
of how to move from element behaviour to system behaviour. Ideally, the system
behaviour would be found by composing the finite elements in a circuit simulator.
This first requires a link between electronic quantities and mechanical degrees of
freedom. Here mechanical deflections are represented by electrical potentials and
mechanical forces and moments by electrical currents. The linking of two finite
elements effects a scleronomic2 constraint between the element degrees of freedom
in question, and thus the amalgamation of the degrees of freedom in question to a
single system degree of freedom. This is the expected behaviour for voltages and
positions. Furthermore, the currents are added at these points, as is also expected
of forces and moments.

The generation of element matrices

In what follows the example of the shear-resistant beam element will be used to
demonstrate how such a finite element can be formulated in hardware description
languages. To achieve this two main problems have to be solved. Firstly the mass
and stiffness matrices in question have to be generated. Secondly the element
matrices have to be transformed into the system matrices, which represents the
behaviour of the entire structure.

The beam element is shown in Figure 6.8 and has two nodes, k and l, each
with two degrees of freedom, the deflection in the y-direction uy and the rotation
about the z-axis rz. Both the shear deflection in the x-direction and the structural
damping are disregarded in this model.

The stiffness Bi = EIzz and the mass distribution µi = ρAi are assumed to be
constant over the length of the beam, where E is the modulus of elasticity, Izz the
moment of inertia, ρ the density of the beam material and Ai the cross-section of

2 Scleronomic constraints are not changeable.

120 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

y
xz rz0 uy0

uy1

rz1

Figure 6.8 Degrees of freedom of the shear-resistant beam element at the nodes k and l: uy

(deflection in y-direction), rz (rotation about the z-axis)

the beam section i. The beam load is concentrated by pi0 and pi1 on the nodes 0
and 1 of the beam element. In the shear-resistant case and for small deflections
the stiffness matrix Ki, the mass matrix Mi and the load vector pi of the ith beam
element are independent of the deflection. If we select the interpolation functions
h1 . . . h4 in the variables ξ for the approximation of the continuous displacements
as follows:

h1(ξ) = 1 − 3ξ 2 + 2ξ 3

h2(ξ) = −ξ(1 − ξ)2li

h3(ξ) = 3ξ 2 − 2ξ 3

h4(ξ) = ξ 2(1 − ξ)li

(6.35)

then we find the following element matrices and vectors, see Gasch and Knothe [113]:

Ki = Bi

l3i

12 −6li −12 −6li
−6l 4l2i 6li 2l2i
−12 6li 12 6li
−6l 2l2i 6li 4l2i

Mi = µili
420

156 −22li 54 13li
−22li 4l2i −13li −3l2i

54 −13li 156 22li
13li −3l2i 22li 4l2i

 (6.36)

pi = pi0li

7/20

−li/20

3/20

li/3

 + pi1li

3/20

−li/30

7/20

li/20

The equation system for such an element thus takes the form:

Miüi + Kiui = pi (6.37)

where

ui = [uy0, rz0, uy1, rz1]T

where ui represents the element displacement vector, and thus the degrees of freedom.

6.3 CONTINUUM MECHANICS 121

Now, if the behaviour of a mechanical continuum is to be reconstructed in a
circuit simulator it is reasonable to keep the modelling close to the actual deter-
mination of the simulator. In our case this means that the mechanics model is
formulated ‘electronically’. For this purpose a network of capacitors, inductors
and current sources is drawn up, see Figure 6.9. If we consider the associated
admittance matrix we notice that just like the mass and stiffness matrices it is
symmetrical and its leading diagonal consists of positive entries.

The task now is to find an LC network, the admittance matrix of which coincides
with the mass and stiffness matrix of the mechanics. To a certain degree this
corresponds with the drawing up of a type of equivalent circuit. However, we will
see later that the formulation in hardware description languages does not rest upon
components, but uses the underlying equations. Let us first consider the circuit in
Figure 6.9 and draw up Kirchhoff’s current law for the four nodes, i.e. four degrees
of freedom:

4∑
j=1

(iij,L + iij,C) = ii i = 1 . . . 4, (iii,L = 0, iii,C = 0) (6.38)

Using the current–voltage relationships this yields the following equations:

4∑
j=1

(
1

Lij

∫
uij dt + Ciju̇ij

)
= ii i = 1 . . . 4, Lij = Lji, Cij = Cji (6.39)

(CL)11
(CL)13

(CL)12 (CL)34
(CL)14(CL)23

(CL)22 (CL)44
(CL)24

(CL)33

1 3

2 4

uyk uyl

rzk

rzl

i3i1

i4i2

Figure 6.9 LC network with current sources for the modelling of finite beam elements

122 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

These four equations are differentiated once with respect to time and then rear-
ranged to give:

4∑
j=1

Cijüij +
4∑

j=1

1

Lij
uij = i̇i i = 1 . . . 4 (6.40)

The four degrees of freedom of the beam element uyk, uyl, rzk and rzl should now
be represented by the potentials ϕ1, ϕ2, ϕ3 and ϕ4, which for this reason are used
here for the branch voltages uij. The following is true:

uij = ϕi − ϕj (i �= j)

uii = ϕi (6.41)

Substituting into the above formula yields:

Ciiϕ̈i +
∑
i �=j

Cij(ϕ̈i − ϕ̈j) + 1

Lii
ϕi +

∑
i �=j

1

Lij
(ϕi − ϕj) = i̇i i = 1 . . . 4 (6.42)

After rearranging this yields in vector notation:

Cϕ̈ + Lϕ = ı̇ (6.43)

where:

ϕ̈ = [ϕ̈1, ϕ̈2, ϕ̈3, ϕ̈4]T

ϕ = [ϕ1, ϕ2, ϕ3, ϕ4]T

i̇ = [ı̇1, ı̇2, ı̇3, ı̇4]T

C =

C11 + C12 + C13 + C14 −C12 −C13 −C14

−C12 C12 + C22 + C23 + C24 −C23 −C24

−C13 −C23 C13 + C23 + C33 + C34 −C34

−C14 −C24 −C34 C14 + C24 + C34 + C44

L =

1

L11
+ 1

L12
+ 1

L13
+ 1

L14
− 1

L12
− 1

L13
− 1

L14

− 1

L12

1

L12
+ 1

L22
+ 1

L23
+ 1

L24
− 1

L23
− 1

L24

− 1

L13
− 1

L23

1

L13
+ 1

L23
+ 1

L33
+ 1

L34
− 1

L34

− 1

L14
− 1

L24
− 1

L34

1

L14
+ 1

L24
+ 1

L34
+ 1

L44

Let us now return to the equations of the ith mechanical, finite beam element:

Miüi + Kiui = pi (6.37)

where

ui = [uy0, rz0, uy1, rz1]T

6.3 CONTINUUM MECHANICS 123

This equation system has the same structure as the LC network, see equation (6.43).
We now have to identify the individual components of the two matrix equations
with each other, i.e.:

üi
�=ϕ̈

ui
�=ϕ

Mi
�=C

Ki
�=L

pi
�=i̇

(6.44)

The degrees of freedom of the finite beam elements are directly represented by the
potentials, i.e. the node voltages. The same applies for the associated accelerations.

In order to balance the matrix entries in question, the negative entries of the
mass matrix mij are used for the capacitance entries in the secondary diagonals,
the sum of the involved mass coefficients are used in the leading diagonal:

Cij = −mij (i �= j)

Cii = mii +
∑

mij (i �= j)
(6.45)

In a similar way, the entries for the inductance matrix are formed from the stiffness
coefficients kij:

Lij = 1

kij
(i �= j)

Lii = 1

kii + ∑
kij

(i �= j)

(6.46)

The equations (6.45) and (6.46) ensure that the matrices Mi and Ki described by C
and L are represented with sufficient precision, i.e. there is a good correspondence
between equation systems (6.37) and (6.43). Correction terms obtained from the
summing term are also added into the leading diagonals of C and L. These ensure
that the LC circuit yielded from the matrices satisfies Kirchhoff’s laws and, in
particular, that the currents linked by the nodes add up to zero. This corresponds
with a variation of the LC branches from the nodes 1 to 4 to the mass, which thus
characterises not the relationships between every two degrees of freedom, but only
the relationship of the degree of freedom to ground.

Finally, the derivative of the currents i̇ are derived as follows. The loads of the
beam element concentrated at the nodes pi0 and pi1 are converted by equation (6.36)
into the element load vector. The components of this are then integrated and, in the
form of current, put into the nodes of the associated degree of freedom. This takes
place for every time step, so that time-variant loads can also be taken into account.

The finite elements are formulated in the analogue hardware description lan-
guage MAST of the Saber circuit simulator and this formulation is primarily based

124 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

upon introducing two current sources between the nodes i and j for an LC branch,
which satisfy the following equations:

iij,C = miju̇ij where mij is from M

iij,L = kij

∫
uij dt where kij is from K

(6.47)

In addition there are two further current sources for each degree of freedom, which
represent the connection to the ground and — as demonstrated above — the external
excitations pi0 and pi1 at each beam element.

Composition of the system matrix

In the previous section an element matrix was put together for the beam element,
the four degrees of freedom of which are represented by the potentials at the
four terminals of the element. The currents at the nodes in question describe the
integral of the associated forces and moments, depending upon whether the degree
of freedom is a translational or rotational deflection. In particular, the components
of the exciting forces and moments that are assigned to the elements adjoining the
nodes are also added to the currents at a node. Thus it is not necessary to explicitly
draw up the system matrix. Its solution is found implicitly from the interconnection
of the finite elements.

Example: beam with various boundary conditions

Two examples will be considered to illustrate the element model described above,
a cantilever beam with and without an additional support point, see Figure 6.10.
The second case, in particular, cannot simply be mastered by either analytical
equations or finite differences. The beam of length l itself is modelled by 40 finite
beam elements. The excitation consists of the pulsed force Fy, which is applied to
the beam for eight seconds and then removed again. The outputs are the deflections
in the y-direction at x = 0.25 l, 0.5 l, 0.75 l and 1.0 l, see Figure 6.11. In the first
case there is an oscillation, the amplitude of which is more strongly marked towards
the end of the beam, and which is in phase at each point. The additional support
in the second case fundamentally alters the behaviour of the beam. Firstly, the
natural frequency of the system increases, secondly the node moves downwards at
x = 0.25 l due to the lever effect of the free end of the beam, although the force is
acting upwards. We note that the deflection at x = 0.5 l becomes zero.

The same simulation was performed using the ANSYS finite element simulator
to verify the results. The differences amount to less than one percent and are
in principle attributable to differences in the numerical solution procedure. The
simulations were run on a SUN Sparc 20 workstation. The simulation time for the
first case amounted to 91 CPU seconds for Saber and 94 CPU seconds for ANSYS.

6.3 CONTINUUM MECHANICS 125

x

y
Fy(t)

l
x

y
Fy(t)

l /2

y

(a) (b)

Figure 6.10 Cantilever beam with (a) and without (b) an additional support

3

2

1

0

0 5 10 15 20
−1

u y
/c

m

t/s

Saber
Ansys

(a)

0.3

0.2

0.1

0

0 5 10 15 20

u y
/c

m

t/s

Saber
Ansys

(b)

Figure 6.11 Simulation results for the deflection at x = 0.25 l, 0.5 l, 0.75 l and 1.0 l of a can-
tilever beam with (a) and without (b) an additional support

In the second case with the additional support the times are 155 seconds for Saber
and 270 seconds for ANSYS.

Based upon the previous example, it was possible to show that finite elements
can be formulated in hardware description languages. The same methodology can
also be used for the implementation of other finite elements, such as is also shown
in Chapter 8. The calculation using the solver of a circuit simulator does not
necessarily demand running times that are higher by orders of magnitude. On the
other hand, the approach described above does not form a competition to the regular
FE-simulators. The main goal of the work described here remains to bring together
electronics and mechanics in order to simplify the design of mixed systems.

6.3.3 Physical modelling

Procedures such as the finite element procedure are certainly the most general
solution for the envisaged problem. As a result of the high number of degrees
of freedom, problems in the simulation speed occasionally occur. In order to
achieve improvements here, for certain geometries — for example, round or square
plates — we can give formulae that correspond with a physical modelling. The
development of such models requires a considerable degree of modelling effort
because it calls for an understanding of the physics of the components.

In what follows, four approaches will be considered in this context. The first
possibility is to take a partial differential equation for the mechanical continuum

126 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

and to represent this using, for example, the method of finite differences on a
system of ordinary differential equations, which again can be directly formulated
in a hardware description language. The second method relies upon analytical
solutions of the partial differential equations in question which are, however, rarely
known. Finally, the last two options — the Ritz and Galerkin approaches — attempt
to describe bending structures on the basis of a calculus of variations.

Partial differential equations and finite differences

A classical approach to the consideration of the physics of bending structures is to
derive a partial differential equation, which can, for example, be represented as a
set of ordinary differential equations by the method of finite differences. This step
is necessary because analogue hardware description languages cannot in general
process partial differential equations directly. The process described was first used
by Lee and Wise [224] in order to investigate pressure sensor systems in bulk
micromechanics, in which the (quasi-static) solution was built into the respective
circuit simulator. In [322], [323] and [324] Pelz et al. transferred this solution
from the tool level to the model level, where the automatic translation of partial
differential equations (in one dimension) into hardware description languages and
equivalent Spice net lists was investigated in particular. Consideration was also
given to mechanical kinetics. Mrčarica et al. [278] also use this approach to con-
sider two-dimensional, partial differential equations, favouring a direct formulation
in the in-house hardware description language AleC++. Finally, Klein and Gerlach
[195] break up a bending plate into fragments in their approach, and models in an
analogue hardware description language are then applied to each of these. These
can again be connected to a circuit simulation, thus facilitating the co-simulation
of continuum mechanics and electronics. The formulation leads to a system model
that is mathematically equivalent to the method of finite differences.

For illustration, the circular plate of a capacitive pressure element will be consid-
ered here, see Figure 6.12 and [322], [323] or [324]. A comprehensive description
of this example, which will be used frequently in what follows, is found in
Section 8.2. The plate is deflected by an external pressure and thus changes the
capacitance of the pressure element, which again is detected by a read-out circuit.

r(i) r(i − 1)
r(i − 2)

r(i + 1)r(i + 2)

Figure 6.12 Finite differences for a capacitive pressure element

6.3 CONTINUUM MECHANICS 127

The bending of such a plate can be described by the following partial differential
equation, see Gasch and Knothe [113]:

∂2u

∂t2
= − Et3p

12ρ(1 − ν2)

(
∂4u

∂r4
+ 2

r

∂3u

∂r3
+ 1

r2

∂2u

∂r2

)
+ w (6.48)

Where u is the deflection, E the modulus of elasticity, tp the thickness of the plate,
ρ the density of the plate material, ν Poisson’s ratio, w the excitation, and r the
(radial) position variable. This is then discretised over the range of the plate radius
in n nodes, see Figure 6.12. The above equation is used for each of these n points,
whereby the positional derivation is replaced according to the following plan:

∂u

∂r
≈ 1

12h
(ur(i−2) − 8ur(i−1) + 8ur(i+1) − ur(i+2))

∂2u

∂r2
≈ 1

12h2
(−ur(i−2) + 16ur(i−1) − 30ur(i) + 16ur(i+1) − ur(i+2))

∂3u

∂r3
≈ 1

2h3
(−ur(i−2) + 2ur(i−1) − 2ur(i+1) + ur(i+2))

∂4u

∂r4
≈ 1

h4
(ur(i−2) + 4ur(i−1) + 6ur(i) − 4ur(i+1) + ur(i+2))

(6.49)

As a result of the form of the terms used, the necessity arises to add two further
nodes at both ends of the discretised range. These do not describe a real expansion
of the plate but can, however, be used in addition to the boundary nodes for the for-
mulation of the boundary conditions. This yields a description with 2n + 4 degrees
of freedom, some of which are dispensed with due to the boundary conditions.

Overall, the drawing up of the equation system and its description in a form
compatible with the electronics is definitely specified, but it is very cumbersome to
achieve manually. For this reason a model generator is used in [322], [323] or [324],
which automatically converts the partial differential equation into a formulation in
an analogue hardware description language or a Spice compatible equivalent circuit
on the basis of general integrators. The procedure is so general that it can also be
used on other partial differential equations such as the heat conduction equation,
see for example Bielefeld et al. [35] and [36]. However, one remaining limiting
factor is the fact that the method is only suitable for relatively simple structures
due to the nature of the underlying partial differential equations. Furthermore, in
this model only the plate is considered and not its suspension.

Analytical modelling

For some structures, such as square or circular plates, analytical solutions to the
partial differential bending equations are known. Models can be created on this basis
if the geometric form of a micromechanical structure permits. This is particularly

128 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

true for very simple structures. Thus Chau and Wise [67] and Bota et al. [41], for
example, use analytical equations for the modelling of the square membrane of a
pressure sensor. In addition to bending mechanics, torsional mechanics can also be
considered analytically, as Gómez-Cama et al. [122], for example, demonstrate for
a capacitive acceleration sensor and Wetsel and Strozewski [428] demonstrate for a
micromirror.

To illustrate analytical modelling, the example of a capacitive pressure sensor,
see Figure 6.12, will be considered again in what follows. The bending of the upper
plate can be described by the following equation, see Timoshenko and Woinowski-
Krieger [401] or Voßkämper et al. [417]:

��u = 1

D
(p + pel), where D = E

1 − ν2

t3p
12

(6.50)

where � represents the Laplace operator, u the vertical deflection, D the bending
resistance, p the external pressure and pel an electrostatic pressure caused by the
read-out voltage applied through the plates. The bending resistance is again defined
as shown via the modulus of elasticity E, Poisson’s ratio ν and the thickness of the
plate tp. The electrostatic pressure can be described as follows using the radius:

pel(r) = 1

2
ε0εr,eff(r)

(
U

tc + ti − u(r)

)2

(6.51)

with the dielectric constants ε0 and εr,eff, the radius r, the read-out voltage U, the
thickness of the hollow space tc and the insulator thickness ti. A direct execution
of the four-fold integration of (6.50) for the solution with respect to deflection is
not possible because the electrostatic pressure in (6.51) is itself dependent upon
the deflection. A polynomial approximation of pel solves the problem, see [417]:

pel(r) ≈
n∑

i=0

air
i (6.52)

The general solution of equation (6.50) is then calculated as:

u = 1

64

p

D
r4 + 1

4
C1r2

(
ln

r

R0
− 1

)
+ 1

4
C2r2 + C3 ln

r

R0

+ C4 +
n∑

i=0

ai

(i + 2)2(i + 4)2
ri+4 (6.53)

with the radius of the plate R0 and four constants C1 to C4 that have been yielded
by the integration, the values of which are to be determined from the boundary
conditions. With the aid of the resulting equation, further effects can be built in,
such as the restriction of the plate movement through the insulator, the influence
of plate suspension, or the dynamics of the movement.

6.3 CONTINUUM MECHANICS 129

Ritz method

A further procedure for the modelling of strains is the Ritz method, see for example
Bathe [19]. In this process the partial differential equation is solved and an attempt
is made to approximate an unknown displacement function, e.g. the deflection
of a beam over its length by a linear combination of n interpolation functions.
These must each correspond with the geometric boundary conditions. The n coef-
ficients of the interpolation functions are yielded by the requirement that the elastic
potential must be minimal. From this, n equations are found, which set the partial
derivative of the elastic potential with respect to the coefficients equal to zero. So
n equations are available for n coefficients. It should also be noted that the interpo-
lation functions are defined over the entire mechanical structure, which makes the
consideration of irregular structures considerably more difficult. The same applies
for nonhomogeneous distributions of mass and stiffness. For this reason the sig-
nificance of the Ritz procedure lies not so much in its direct application, but rather
in the fact that it forms the basis of the finite elements method. Nonetheless, the
direct use of the Ritz procedure can make sense in some cases.

Galerkin method

As in the finite differences approach, this method, see for example Bathe [19], also
generates a set of ordinary differential equations from a partial differential equation:

L[φ] = r (6.54)

Where L is a linear differential operator, φ the sought-after solution, and r the exci-
tation function. The solution of the problem should correspond with the following
boundary conditions Bi:

Bi[φ] = qi|at the boundary of Si (6.55)

A prerequisite here is that L is both symmetrical (6.56) and positive definite (6.57).∫
D

(L[u])v · dD =
∫

D
(L[v])u · dD (6.56)

∫
D

(L[u])u dD > 0 (6.57)

Where u and v are arbitrary functions and D is the range of the operator. The solu-
tion should now be approximated as a linear combination of weighted interpolation
functions hi:

φ =
n∑

i=1

aihi (6.58)

130 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

The hi interpolation functions are selected such that they each fulfil the boundary
conditions. Then the residuum R is calculated as follows:

R = r − L

[
n∑

i=1

aihi

]
(6.59)

For the exact solution the residuum is zero and, for the approximation, should at
least be sufficiently low at all points of the solution range. Then the weighting
factors ai can be determined during the approximation of the partial differential
equation. For the Galerkin method the following equations are used as the basis:∫

D
hiR dD = 0 i = 1, 2, . . . , n (6.60)

Where D is again the solution range.
Hung et al. [156] use the Galerkin method to investigate a pressure sensor,

which consists primarily of a bending beam that is fixed at both ends. A voltage and
consequently an electrostatic force is applied to this. The time that passes before the
beam ‘snaps into place’ as a result of the positive feedback of the electrostatic force,
i.e. forcefully rests upon the insulator, is strongly dependent upon the prevailing air
pressure. The modelling uses the Euler equation for bending beams and Reynolds’
equation for air damping. The authors use the Galerkin method with up to four
interpolation functions, which are determined with the aid of a FE simulation. They
thereby achieve an acceleration of the simulation by a factor of between 4 and 105
in comparison to FE simulators, with deviations from the FE simulation in the
range of 1%–14%.

This method permits the formulation of lower-order models. However, it requires
that the system can be considered as a comparatively simple structure, because
the starting point, the partial differential equations and boundary equations, either
cannot be set or can be set only with great difficulty.

6.3.4 Experimental modelling

Introduction

Experimental modelling dedicates itself to the creation of models on the basis of
measured data or FE simulations. The internal physics of the components is dis-
regarded and only the terminal behaviour considered. In this manner we obtain
so-called macromodels that can be simply formulated in a hardware description
language. We thus obtain efficient and numerically unproblematic models. This
method has its advantages if it is difficult or even impossible to derive the phys-
ical background of a component. However, its main problem is that the resulting
models are only valid for precisely one geometric form of the structure and set of
technology parameters. Every change means that a new model must be drawn up.

6.3 CONTINUUM MECHANICS 131

A whole range of approaches extract the main corner-stones of the behaviour of a
component from measurements or simulations using finite elements and use this for
simple models consisting of few equations, see for example Ansel et al. [11], Hof-
mann et al. [149], [150], Karam et al. [179] and Nagel et al. [292]. In what follows
three approaches will be considered that aim in the aforementioned direction.

Table models

The simplest case of experimental modelling is based upon a list of input and
output values, thus arriving at a table model that only considers the static case. In
this manner it is possible, for example, to draw up a table listing pressures and
the associated capacitance values for the pressure elements described above. Such
table models lead to characteristics with kinks that can considerably detract from
the convergence of the simulator. This problem can be circumvented by using the
present value pair as a support point for the characteristic, e.g. on the basis of
splines, which typically removes the numerical problems. In this manner measured
values can be very simply integrated into a simulation. More elaborate procedures
estimate the structure of the equations and move themselves to the identification
of the associated parameter.

Identification of a harmonic oscillator

In [11], Ansel et al. consider a seismic acceleration sensor as a harmonic oscillator.
For the modelling a linear differential equation is used for the force f and the
deflection x:

a0f + a1
df

dt
+ · · · + am

dmf

dtm
= b0x + b1

dx

dt
+ · · · + bn

dnx

dtn
(6.61)

For a spring-mass system, for example, m is set to 0 and n to 2. Here b0 represents
the spring constant, b1 the viscous damping, and b2 the seismic mass. For the system
currently under consideration the parameters ai and bi are automatically obtained
from the results of a simulation using finite elements. For this purpose the classical
methods for system identification are used. This describes the mechanical section
of the system. In addition, there is the conversion of mechanical deflection into
capacitance based upon an interlacing comb structure. A table model is used for
this, which is also determined on the basis of simulations using finite elements.

General identification

Hofmann et al. [149] and [150] propose a general procedure in order to put together
the behaviour of a component from functional modules. The modelling is based
upon a FE model, the behaviour of which is stored in a macromodel. Thus the
complexity and nature of the underlying (partial) differential equations are not

132 6 MECHANICS IN HARDWARE DESCRIPTION LANGUAGES

known in advance, so that we have to start from the assumption of the existence
of strong couplings and nonlinearities. Furthermore, it is required that inputs and
outputs of the FE model can be formulated in an integral manner, i.e. they are not
position dependent.

We now start with a basic model, the parameters of which should be identi-
fied with the aid of various optimisation procedures. For oscillating systems, for
example, equation (6.61) would be a good starting point, whereby the parameters a1

and b1 would have to be determined. For the general case these can be determined
from the criterion that the resulting model should behave as closely as possible to
the FE model. The target function of optimisation is thus the minimisation of the
behaviour difference between the predetermined and sought-after model, i.e. [150]:

#outputs∑
j

#timesteps∑
i

(fFEMi(tj) − fMACROi(tj))
2 (6.62)

For optimisation, gradient procedures, simulated annealing, or genetic algorithms
can be used and it is also possible to switch between these. The resulting parameters
initially apply only for the selected input function. In [150] it is thus proposed to
initially define a set of input functions, which represent reality as well as possible.
Then optimisation takes place primarily for the input function, the macro model of
which exhibits the greatest differences in relation to the FE model. This procedure
corresponds with a parameter identification for nonlinear systems.

Now, if it is difficult to arrive at an acceptable solution using parameter opti-
misation, this raises the question of whether the assumptions with regard to the
structure of the solution equations were correct. Once again, the problem lies in the
nonlinearities that rule out an analytical solution of the problem. The solution pro-
posed by Hofmann et al. consists of setting operators that evaluate the differences
between the FE and macromodel, such as for example ‘rate of rise too low’, ‘over-
shoot too low’ and so on. On the basis of this information a fuzzy controller base
decides on possible structural changes. So we now go from parameter identification
to system identification.

Overall, the procedure supplies efficient and numerically unproblematic models,
that can be easily formulated in hardware description languages, e.g. HDL-A [149].
However, a significant computing time has to be expended for model generation.
Furthermore, the validation of the generated models remains difficult, since firstly
the quality and coverage of the selected input functions is sometimes questionable
and secondly the inner physical structure is not available for an investigation into
the plausibility. Finally, this type of modelling has to be performed afresh for virtu-
ally every variation of the micromechanical geometry or the underlying technology.

6.4 Summary
In this chapter, methods for the modelling of multibody mechanics and contin-
uum mechanics have been highlighted and the representation of the resulting

6.4 SUMMARY 133

models shown in hardware description languages. This, along with the results
of the previous chapters, facilitates a full, universal modelling of mechatronic and
micromechatronic systems in hardware description languages.

Now that the basic technologies have been dealt with in the preceding chapters,
the following two chapters on mechatronics and micromechatronics supply a range
of demonstrators to illustrate their application.

