
 

Chapter 3 

Modeling and Simulation of Analog Angular 
Sensors for Manufacturing Purposes1 

This chapter develops a new mathematical model, for pancake resolvers, which 
depends on a set of variables controlled by the sensor manufacturer – the winding 
parameters. This model allows a resolver manufacturer to manipulate in-process 
controllable variables in order to readjust already assembled resolvers that without 
any action would be scrap for the production line. The developed model follows  
a two-step strategy where on a first step a traditional transformer’s model computes 
the resolver nominal parameters and on a second step a linear model computes the 
corrections on the controllable variables, in order to compensate for small deviations 
in design assumptions, caused by the variability of the manufacturing process. At the 
end of the chapter an experimental methodology for parameter identification and 
several tests for model validation are presented. 

3.1. Introduction 

Resolvers are nowadays widely used in industrial applications. These 
electromagnetic devices which were, in the past, largely used in military 
applications, namely to control the position stability of heavy guns, are presently 
very common in industrial areas as a servomotor component. Servomotors are today 
widely used in robotics, rotary machinery, radars, aeronautics, etc. 

The main factors that promote the widespread use of synchros and resolvers as 
angular sensors are their robustness and stability in non-friendly environments such 
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as mechanical vibrations, shocks, environments with dust, oil, and radiation. 
Besides, these electromagnetic devices have very stable properties when subjected 
to extreme temperature variations (–50º C to +150º C) and high rotational velocities 
(1,000–10,000 rpm). 

The wide application fields of synchros and resolvers can be grouped into three 
main areas [GOL 81]: 

– distant transmission of absolute angles – Figure 3.1; 

– analog computation of the difference between two angles (reference and actual 
values) – Figure 3.2; 

– servo-systems (where the information signals are apart from the energy 
signals) – Figure 3.3. 
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Figure 3.1. Distant transmission of absolute angles 
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Figure 3.2. Analog computation of the difference between two angles 
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Figure 3.3. Servo-systems 

The main disadvantages of synchros and resolvers in relation to optoelectronic 
encoders are both the necessity of an AC-power source and the delivery of an analog 
output signal. However this latter disadvantage is nowadays vanishing due to  
the advances in signal processing technology that is constantly delivering more 
speedy and cost-efficient solutions to convert analog to digital signals. The market’s 
continuous search for more accurate devices and the wide availability of digital 
controllers coupled to servomotors is increasing today’s demand for resolvers as 
function systems, able to be connected with analog/digital converters as is shown  
in Figure 3.4. 

R1

R2

ref.

ADC
Digital
Output

Analog Output

+ -

α

 

Figure 3.4. Resolver as a function system coupled to ADC device 
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The main research areas focusing resolver development can be grouped into 
three fields: 

– Model development [SUN 08], [BRA 09], [BEN 07], [KIM 09], [HOS 07], 
[FIG 04], [ALH 04]; 

– Analog to digital converters [ATT 07], [HAN 90], [VAZ 10], [BRA 08], [SAR 
08], [BEN 04], [BEN 05]; 

– Applications [BUR 08], [BUN 04], [MUR 02], [MAS 00]. 

This chapter concerns the research field of model development. In this  
field some authors focus the efforts on improving the model accuracy [SUN 08], 
[BRA 09], [BEN 07], others concentrate on developing new procedures for 
modeling and calibration [KIM 09], [HOS 07], [FIG 04].  

In [FIG 04] an explicit mathematical model for a pancake resolver is presented. 
This former paper develops an explicit model for pancake resolvers following the 
traditional approach from transformer models, where the main parameters are the 
resistances of primary and secondary coils, the magnetic resistances, and the leakage 
impedances.  

The model developed in [FIG 04] has little use for a resolver manufacturer 
because it does not give any help supplying a specific path where the manufacturer 
can act to compensate the deviations in assembled products due to the variability of 
the manufacturing process. 

This chapter enlarges the applicability of the study formerly developed  
in [FIG 04] by proposing a new mathematical model developed for resolver 
manufacturers, where the model parameters are the production controllable variables. 

The main functional characteristics of a resolver are the angular error, the output 
voltage (transformer ratio, r), the phase shift, and the input current. All these 
important factors, specified by applications, are strongly influenced by constructive 
factors such as magnetic properties of stators and rotors, winding geometries, and 
manufacturing tolerances of mechanical parts.  

Facing this situation, it is clear that the availability of a mathematical model,  
at the resolver manufacturer, allowing the producer to simulate the characteristics of 
its products, in the presence of high variability of production factors, is a valuable 
asset. The availability of a simulation model supplying the resolver production 
parameters, with high accuracy, implies a smaller number of prototypes needed  
until customer specifications are effectively met. In the end, this efficiency increase 
corresponds to a large amount of money that is saved yearly, by the resolver 
manufacturer, as the number of wasted prototypes is reduced. 
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The present market for analog angular sensors is extremely competitive as  
new applications are continuously arriving, encouraging a fall of the prices as a way  
to reach other markets (the automotive market is today still a marginal market for 
resolvers but the pressure to expand into this market is extremely high) [MUR 02], 
[BER 03], [MAP 10].  

This chapter develops a new mathematical model for pancake resolvers, 
dependent on a set of variables controlled by a resolver manufacturer – the winding 
parameters. The developed model follows a two-step strategy where in a first step  
a traditional transformer’s model computes the resolver nominal conditions and in  
a second step a linear model computes the corrections on the controllable variables, 
in order to compensate for small deviations in design assumptions, caused by the 
variability of the manufacturing process. 

3.2. Pancake resolver model 

3.2.1. Description 

The pancake resolver is the most popular resolver in industrial applications and 
aeronautics because its design avoids the traditional collector that brings energy to 
the rotor. 

The pancake resolver carries the current into the rotor through a transformer  
that is located at the stator edge. The advantage of such a design, over the traditional 
resolver with collector, is the absence of the relative movement between mechanical 
parts which causes wear, vibrations, and sound. Figure 3.5 presents the two above-
mentioned designs. 

 

Figure 3.5. Traditional resolver (left) and pancake resolver (right) 
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Independently of how the energy is brought into the resolver rotor, the function 
of a resolver, as an angular sensor, can be briefly illustrated in Figures 3.6 and 3.7. 
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Figure 3.6. Resolver function schematics 

 

Figure 3.7. Resolver input and output voltages 

As can be seen, the secondary coils, which are geometrically shifted by 90º, 
deliver two output voltages that are modulated in magnitude according to the cos 
and sin functions of the relative angular position of rotor to stator. 

This physical effect was first developed by Werner Siemens in 1896 [SIE 96]. 
Today, the currently available resolvers have an average accuracy of ±0.2º. The 
angular position of the rotor referred to the stator can be obtained as in [3.1]: 

-1 -1S2S4 0

S1S3 0

sin tan tan
cos 

U rU
U rU

α
α

α
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 [3.1] 

r = transformer ratio;  
α = relative angle rotor to stator; 
U0 = input voltage; 
US1S3, US2S4 = output voltage from each stator winding. 
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3.2.2. Mathematical model 

The commonly used mathematical models for resolvers are the typical 
transformer models that are shown in Figures 3.8, 3.9, and 3.10. These models are 
very suitable to supply the usual customer electrical characteristics for resolvers, 
namely the rotor and stator impedances (open and short circuited). 
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Figure 3.8. Rotor impedance with stator open (Zro) and rotor open (Zso) 
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Figure 3.9. Rotor impedance with stator shorted (Zrs)  
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Figure 3.10. Stator impedance with rotor shorted (Zss)  
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According to the below schematics (Figures 3.8–3.10) using the traditional 
circuit analysis methods, the following equations are derived: 

ro 1 3Z Z Z= +  [3.2] 

so 2 3Z Z Z= +  [3.3] 

2 3
rs 1

2 3

Z Z
Z Z

Z Z
= +

+
 [3.4] 

1 3
ss 2

1 3

Z ZZ Z
Z Z

= +
+

 [3.5] 

where, 

Zro = rotor impedance with stator open; 

Zso = stator impedance with rotor open; 

Zrs = rotor impedance with stator shorted; 

Zss = stator impedance with rotor shorted. 

This traditional, well-known model, although very useful for computing the main 
electrical characteristics for customers, is of little use to the manufacturers as it 
cannot deliver data for production purposes. Actually this model does not supply 
any controllable parameter for the resolver manufacturer (number of windings and 
wire diameters). 

The new model proposed in this chapter is appropriate for resolver 
manufacturers because it deals explicitly with the actually controllable variables in a 
resolver production plant – the winding parameters.  

The main resolver variables that directly influence the customer-specific 
electrical characteristics can be grouped into three areas: 

Group 1: material-related variables – magnetic permeability of materials (rotor, 
stator, rotor–transformer, stator–transformer). 

Group 2: geometry-related variables – dimensional tolerances of mechanical 
parts (rotor, stator, rotor/stator air-gap, transformer air-gap). 

Group 3: winding-related variables – spatial distribution of windings, number of 
windings, and winding wire diameters (in all four components: rotor, stator, rotor–
transformer, and stator–transformer). 
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From these three groups of variables, the resolver manufacturer can directly 
influence only the third group (winding-related variables). In fact, the other two 
variable groups are usually fixed for the assembly line as the resolver manufacturer 
usually buys the materials and parts from external suppliers. 

In such a scenario a useful mathematical model for a resolver manufacturer must 
deal explicitly with the controllable variables at the assembly line – winding-related 
variables (Group 3). 

In Figure 3.11 the geometry and function schematics of a pancake resolver are 
shown. This product is mainly composed by four main coils, identified as A, B, C, 
and D (A = stator transformer; B = rotor transformer; C = rotor sensor; D = stator 
sensor). 
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Figure 3.11. Pancake resolver geometry and schematics 
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The study developed in this chapter departs from a traditional transformer model 
[FIG 04] with design variables (ohmic resistors from primary and secondary coils, 
magnetic resistances and leakage impedances) and updates this model with a 
sensitivity model that correlates the main electric specifications of a Resolver with 
the production factors that are controlled by the manufacturer (mainly winding 
parameters).  

The approach developed in this chapter is inspired by the mathematical 
methodology of a function expansion according to the Taylor series. The strategy 
adopted here considers the nominal model developed in [FIG 04] to compute the 
system nominal values – f(x0) – and additionally a linear model, dependent  
on production controllable parameters, which computes the variable increments. 
These increments will cancel the deviations on the functional characteristics of the 
resolver, due to the variability of the production processes in the assembly line. The 
incremental model that is developed in this chapter is an innovative approach based 
on experimental parameter identification. 

3.2.2.1. Model for nominal conditions – [f(x0)] 

Observing the pancake resolver functionality we can consider this device as  
two standard transformers connected in cascade. The first one supplies the energy 
into the rotor, with an output voltage that is independent from the relative position  
of rotor to stator, and the second one, that models the resolver function itself,  
which can be considered as a rotational transformer with an output voltage that is 
dependent on the rotor/stator relative angular position. 

The model adopted for each one of the above referred transformers is a complete 
model for a mono-phase transformer, considering magnetic losses in metal and 
windings. The respective block diagram is presented in Figure 3.12. 
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Figure 3.12. Complete mono-phase transformer model  
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The variables represented in Figure 3.12 account for the following effects: 

R1 = primary winding resistance; 

R′2 = affected secondary winding resistance (viewed by the primary winding); 

RFe = magnetic metal resistance; 

Xσ1 = primary winding leakage impedance; 

X′σ2 = affected secondary winding leakage impedance (viewed by the 
 primary winding); 

Xh1 = impedance related to common flux. 

Connecting two of the above transformer models in cascade we get the complete 
model for our pancake resolver, which is presented in Figure 3.13. The indexes T 
and D account respectively for transformer and sensor. 
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Figure 3.13. Complete pancake resolver model 
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Considering the resolver model described in Figure 3.13, we can simplify this 
model by combining the impedances (serial and parallel), according to the following 
schematics. 
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Figure 3.14. Pancake resolver model – first step simplification 

The simplified impedances are calculated according to the following expressions: 

a T1 T1Z R Xσ= +  [3.6] 

TFe T
e

TFe T

h

h

R X
Z

R X
×

=
+

 [3.7] 

i T2 T2' 'Z R X σ= +  [3.8] 

0 D1 D1Z R Xσ= +  [3.9] 

DFe D
u

DFe D

h

h

R X
Z

R X
×

=
+

 [3.10] 

au D2 D2' 'Z R X σ= +  [3.11] 

Simplifying the serial association of the Zi and Z0 impedances, we obtain the 
triangular system of impedances illustrated in Figure 3.15. 
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Figure 3.15. Pancake resolver model – second step simplification 
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The simplified impedance Zi0 is calculated according to the expression: 

i0 i 0 T2 T2 D1 D1' ' ' 'Z Z Z R X R Xσ σ= + = + + +  [3.12] 

The above model can now be reworked in order to present a star topology, as it is 
illustrated in Figure 3.16. 
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Figure 3.16. Pancake resolver model – third step simplification 

The simplified impedances (Zx, Zy, and Zz) are calculated according to the 
following expressions: 

i0 e
x

i0 e u

Z Z
Z

Z Z Z
×

=
+ +

 [3.13] 

i0 u
y

i0 e u

Z Z
Z

Z Z Z
×

=
+ +

 [3.14] 

e u

i0 e u
z

Z Z
Z

Z Z Z
×

=
+ +

 [3.15] 

After simple manipulations we can reach the pancake resolver simplified model, 
as it is illustrated in Figure 3.17. 
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Figure 3.17. Equivalent-impedance pancake resolver model 
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The simplified impedances (Z1, Z2, and Z3) are calculated according to the 
following expressions: 

i0 e
1 a x a

i0 e u

Z Z
Z Z Z Z

Z Z Z
×

= + = +
+ +

 [3.16] 

i0 u
2 au y au

i0 e u

Z Z
Z Z Z Z

Z Z Z
×

= + = +
+ +

 [3.17] 

e u
3 z

i0 e u

Z Z
Z Z

Z Z Z
×

= =
+ +

 [3.18] 

These impedances can now be written according to the resolver electrical 
characteristics, using the former equations [3.6] to [3.11] (see Figure 3.13), which 
gives: 

( )T2 T2 D1 1
1 T1 T1

Den

' ' ' ' DR X R X
Z R X

Z
σ σ

σ
⎡ + + +

= + + ⎢
⎢⎣

 

( )( )TFe T TFe T

Den

h hR X R X

Z

⎤× +
⎥×
⎥⎦

 [3.19] 

( )T2 T2 D1 D1
2 D2 D2

Den

' ' ' '
" "

R X R X
Z R X

Z
σ σ

σ
⎡ + + +

= + + ⎢
⎢⎣

 

( )( )DFe D DFe D

Den

' ' ' 'h hR X R X

Z

⎤× +
⎥×
⎥⎦

 [3.20] 

( ) ( )( ) ( ) ( )( )TFe T TFe T DFe D DFe D
3

Den

' ' ' 'h h h hR X R X R X R X
Z

Z

× + × × +
=  [3.21] 

where: 

( ) ( )( )Den T2 T2 D1 D1 TFe T TFe T' ' ' ' h hZ R X R X R X R Xσ σ= + + + + × +  

( ) ( )( )DFe D DFe D' ' ' 'h hR X R X+ × +
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For industrial applications, beyond the angle measurement accuracy, which was 
referred to in equation [3.1], the main resolver electrical requirements are: 

(i) output voltage from each stator–winding (ucos,usin); 

(ii) resolver input current (i). 

Considering the representation of dynamic systems according to the transfer 
function methodology, this chapter computes the resolver mathematical model 
illustrated in Figure 3.17 and provides the two explicit transfer functions: Ucos(s)/ 
U0(s) and I(s)/U0(s). 

To calculate the transfer functions referred to above we started from the resolver 
model presented in Figure 3.17. This model is then reworked in order to obtain a 
frequency model, which is explicitly dependent on the frequency input of the supply 
network (s = jw).  

Considering the former model already presented in Figure 3.13, that is equivalent 
to the following model, illustrated in Figure 3.18, when the below relations are 
considered: 

T1 T1=L X wσ σ  [3.22] 

T2 T2' = 'L X wσ σ  [3.23] 

D1 D1' = 'L X wσ σ  [3.24] 

T T=h hL X w  [3.25] 

D D' = 'h hL X w  [3.26] 

D2 D2" = "L X wσ σ  [3.27] 

Considering the resolver model – equations [3.19] to [3.21] (see Figure 3.17) – 
the system transfer function (U″2(s)/U0(s)) can be directly obtained by using the 
usual block diagram algebra: 

( )
( )

( )
( ) ( )

2 3

0 1 3

"
=

+
U s Z s
U s Z s Z s

 [3.28] 

where Z1 and Z3 have already been defined in the former equations [3.19] and [3.21]. 
Simplifying these impedances now (beginning by the variable ZDen), we obtain, 
considering the notation from equations [3.22] to [3.27]: 
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Figure 3.18. Complete pancake resolver model 

( ) ( ) ( )( )
( ) ( )( )

T2 T2 D1 D1 TFe T DFe D
Den

TFe T DFe D

' ' ' ' ' '
Z

' '
h h

h h

R sL R sL R sL R sL

R sL R sL
σ σ+ + + × + × +

=
+ × +

 

( ) ( )( ) ( ) ( )( )
( ) ( )( )

TFe T DFe D DFe D TFe T

TFe T DFe D

' ' ' '

' '
h h h h

h h

R sL R sL R sL R sL

R sL R sL

+ × + + + × +
+

+ × +
 [3.29] 

First simplifying the numerator of ZDen (numZDen) we obtain: 

( ) ( ) ( ) ( )Den T2 D1 T2 D1 TFe T DFe Dnum ' ' ' ' ' 'h hZ R R L L s R sL R sLσ σ⎡ ⎤= + + + × + × +⎣ ⎦  

( ) ( )DFe TFe T TFe T D' 'h h hR R sL R sL sL+ × × + × ×  

( ) ( )TFe DFe D DFe T D' ' ' 'h h hR R sL R sL sL+ × × + × ×  [3.30] 
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After several manipulations, numZDen can be written as: 

( )[ ] 3Den D T T2 D1num ' ' 'h hZ L L L L sσ σ= × × +  

( ) ( )[ ]{ D T T2 D1 T2 D1 TFe' ' ' ' 'h hL L R R L L Rσ σ+ + + +  

( ) } 2
DFe T T2 D1 DFe T D TFe T D' ' ' ' ' 'h h h h hR L L L R L L R L L sσ σ+ + + +  

( ) ( ) ( ){ D TFe T2 D1 DFe T2 1 T T2 D1 TFe' ' ' ' ' ' ' 'h D hL R R R R R R L L L Rσ σ⎡ ⎤+ + + + + +⎣ ⎦  

} ( ){ }DFe TFe T DFe TFe D DFe TFe T2 D1' ' ' ' ' 'h hR R L R R L s R R R R+ + + +  [3.31] 

Rewriting the numZDen in a simplified way, we obtain: 

3 2
DennumZ as bs cs d= + + +  [3.32] 

where: 

( )D T T2 1' ' 'h h Da L L L Lσ σ= × × +  

( ) ( ){ D T T2 1 T2 D1 TFe' ' ' ' 'h h Db L L R R L L Rσ σ⎡ ⎤= + + +⎣ ⎦  

( ) }DFe T T2 D1 DFe T D TFe T D' ' ' ' ' 'h h h h hR L L L R L L R L Lσ σ+ + + +  

( ) ( ) ( ){ D TFe T2 D1 DFe T2 1 T T2 D1 TFe' ' ' ' ' ' ' 'h D hc L R R R R R R L L L Rσ σ⎡ ⎤= + + + + +⎣ ⎦  

}DFe TFe T DFe TFe D' ' 'h hR R L R R L+ +  

( ){ }DFe TFe T2 D1' ' 'd R R R R= +  

Finally, ZDen can be written in a simplified way: 

( ) ( )( )
3 2

Den
TFe T DFe D' 'h h

as bs cs dZ
R sL R sL

+ + +
=

+ × +
 [3.33] 
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Following the same methodology we can now simplify Z1: 

( ) ( )TFe T T2 D1 DFe D
1 T1 T1 3 2

' ' ' 'h hR L R R s R sL
Z R sL

as bs cs d
σ

+ +⎡= + + ⎢ + + +⎣
 

( ) ( )2TFe T T2 σD1 DFe D
3 2

' ' ' 'h hR L L L s R sL
as bs cs d
σ + + ⎤+ ⎥+ + + ⎦

 [3.34] 

First simplifying the Z1 numerator (numZ1) we obtain: 

[ ] ( )[ ]4 31 T1 T1 T1 D T2 D1 TFe Tnum ' ' 'h hZ aL s bL aR L L L R L sσ σ σ σ= + + + +  

( )T1 T1 D T2 D1 TFe T' ' 'h hcL bR L R R R Lσ⎡+ + + +⎣  

( ) 2
DFe T2 D1 TFe T' ' ' hR L L R L sσ σ ⎤+ + +⎦  

( )T1 T1 DFe T2 1 TFe T T1' ' 'D hdL cR R R R R L s dRσ⎡ ⎤+ + + + +⎣ ⎦  [3.35] 

Finally, Z1 can be written in a simplified way: 

1
1 3 2

numZZ
as bs cs d

=
+ + +

 [3.36] 

Simplifying the last impedance Z3 now we obtain: 

( ) 2
TFe T DFe D

3 3 2

' 'h hR L R L s
Z

as bs cs d
=

+ + +
 [3.37] 

Knowing that the relationship between the resolver output voltage Ucos and the 
voltage U″ is dependent on the device’s global transformer ratio leads to the 
equation: 

( )
( )

cos

T D

1=
" +

U s
U s r r

 [3.38] 

where: 

rT = transformer ratio from transformer (T); 

rD = transformer ratio from sensor (D). 
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According to this equation we can finally derive the system transfer function 
(Ucos(s)/U0(s)): 

( )
( )

( )
( ) ( )

( )
( ) ( )

cos 3 3

0 T D 1 3 T D 1 3

num1 1=
+ num +num

U s Z s Z s
U s r r Z s Z s r r Z s Z s

× = ×  [3.39] 

( )
( )

( )
( )

cos 3

0 T D

num1
F

U s Z s
U s r r s

= ×  [3.40] 

where: 

( )2
3 TFe T DFe Tnum Sh hZ R L R L′ ′=  

( )[ ]4 3T1 T1 T1 D T2 D1 TFe TF( ) ' ' 'h hs L aS L b R a L L L R L Sσ σ σ σ= + + + +  

( )σT1 T1 D TFe T T2 D1' ' 'h hL c R b L R L R R⎡+ + + +⎣  

( ) 2
DFe TFe T T2 D1 T1 T1' ' 'hR R L L L S L d R cσ σ σ⎤+ + + +⎡⎣⎦  

( )DFe TFe T T2 D1 T1' ' 'hR R L R R S R d⎤+ + +⎦  

( )D T T2 D1' ' 'h ha L L L Lσ σ= +  

( ) ( )D T T2 D1 TFe T2 D1' ' ' ' 'h hb L L R R R L Lσ σ⎡ ⎤= + + +⎣ ⎦  

( )DFe T T2 D1 TFe T D DFe T D' ' ' ' ' 'h h h h hR L L L R L L R L Lσ σ+ + + +  

( )D TFe T2 D1 DFe TFe T DFe TFe D' ' ' ' ' 'h h hc L R R R R R L R R L= + + +  

( ) ( )DFe T T2 D1 TFe T2 D1' ' ' ' 'hR L R R R L Lσ σ⎡ ⎤+ + + +⎣ ⎦  

( )DFe TFe T2 D1' ' 'd R R R R= +  

The other important explicit model that will be derived here is the transfer function 
which relates the resolver current consumption (I) with its input voltage (U0). 
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Considering the resolver model presented in Figure 3.17 (equations [3.19] –
[3.21]), we can directly obtain the system transfer function (I(s)/U0(s)) using the 
usual block diagram algebra: 

( )
( ) ( ) ( )

1

0 1 3

den ( )1=
+ F( )

I s Z s
U s Z s Z s s

=  [3.41] 

where: 

3 2
1denZ as bs cs d= + + +  

( )4 3
T1 1 T1 D T2 D1 TFe TF( ) ' ' ' ST h hs L aS L b R a L L L R Lσ σ σ σ⎡ ⎤= + + + +⎣ ⎦  

( )T1 T1 D TFe T T2 D1' ' 'h hL c R b L R L R Rσ⎡+ + + +⎣  

( ) 2
DFe TFe T T2 D1 T1 T1' ' 'hR R L L L S L d R cσ σ σ⎤+ + + +⎡⎣⎦  

( )DFe TFe T T2 D1 T1' ' 'hR R L R R S R d⎤+ + +⎦  

( )D T T2 D1' ' 'h ha L L L Lσ σ= +  

( ) ( )D T T2 D1 TFe T2 D1' ' ' ' 'h hb L L R R R L Lσ σ⎡ ⎤= + + +⎣ ⎦  

( )DFe T T2 D1 TFe T D DFe T D' ' ' ' ' 'h h h h hR L L L R L L R L Lσ σ+ + + +  

( )D TFe T2 D1 DFe TFe T DFe TFe D' ' ' ' ' 'h h hc L R R R R R L R R L= + + +  

( ) ( )DFe T T2 D1 TFe T2 D1' ' ' ' 'hR L R R R L Lσ σ⎡ ⎤+ + + +⎣ ⎦  

( )DFe TFe T2 D1' ' 'd R R R R= +  

This obtained explicit mathematical model is suitable to test the accuracy  
of the assumed approach. In fact, all the parameters needed can be evaluated 
experimentally as will be explained in section 3.2.2.3. 

The above model will be taken to compute the resolver nominal design variables 
(the standards for all product variables – f(x0)). 
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In the next section we will introduce a new differential model to compute  
the influences on the main functional characteristics of a resolver – output voltage 
(Ucos, Usin) and input current (I) – caused by small changes in product parameters, 
due to the variability of the assembly processes. 

3.2.2.2. Incremental model – [(∂f/∂xi )0(∆xi)] 

Having a general function f in Rn [f(x1,x2,…,xn)] this function can be linearized 
around the point (x10,x20,…,xn0) by cutting its Taylor’s serial development after the 
first order partial derivatives, which leads to: 

( ) ( ) ( ) ( )1 2 10 20 0 1 10 0
1 0 0

f ff , ,..., f , ,...,n n n n
n

x x x x x x x x x x
x x
∂ ∂

= + − + + −
∂ ∂

…  [3.42] 

This methodology was used to build up a new mathematical model that was  
able to compute the influences on the resolver main functional characteristics: 
output voltage (Ucos, Usin) and input current (I) caused by small changes on the 
manufacturer controllable variables (winding parameters). 

The linear model presented here develops a complete new approach to model  
the product characteristics of a pancake resolver from the knowledge of the 
manufacturer controllable variables (winding parameters).  

In Figure 3.19 the pancake resolver controllable model for a standard manufacturer 
is shown. 

The variables considered by the are: 

U0 = resolver input voltage; 

F = input frequency; 

nst = number of windings of the stator transformer; 

nrt = number of windings of the rotor transformer; 

nss = number of windings of the stator sensor; 

nrs = number of windings of the rotor sensor; 

φst = winding wire diameter of the stator transformer; 

φrt = winding wire diameter of the rotor transformer; 

φss = winding wire diameter of the stator sensor; 

φrs = winding wire diameter of the rotor sensor. 
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nst, φst

nrt, φrt

nst, φst
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Ucos, Usin

I 
Resolver

Model

 

Figure 3.19. Resolver controllable model 

The differential model for the resolver output voltage – Ucos – considers the 
marginal changes on the manufacturer controllable variables (winding parameters) 
and it can be computed as it is shown in equation [3.43]. 

Using the same approach, the influences on the input current – I – caused by 
small changes on the controllable variables (winding parameters) can be calculated 
as is illustrated in equation [3.44]. 

The variables with the subscript 0 refer to the nominal conditions computed by 
the nominal model, previously described in section – Model for nominal conditions 
[f(x0)]. 

( )cos st rt ss rs st rt ss rs, , , , , , , , ,U U F n n n n ϕ ϕ ϕ ϕ  

( )cos 0 0 st0 rt0 ss0 rs0 st0 rt0 ss0 rs0 0
 , , , , , , , , ,U U F n n n n ϕ ϕ ϕ ϕ=  

( ) ( ) ( ) ( )cos cos cos cos
0 0 st st0 rt rt0

st rt0 0 0 0

U U U U
U U F F n n n n

U F n n
∂ ∂ ∂ ∂

+ − + − + − + −
∂ ∂ ∂ ∂

 

( ) ( ) ( ) ( )cos cos cos cos
ss ss0 rs rs0 st st0 rt rt0

ss rs st rt0 0 0 0

U U U Un n n n
n n

φ φ φ φ
φ φ

∂ ∂ ∂ ∂
+ − + − + − + − +

∂ ∂ ∂ ∂
 

( ) ( )cos cos
ss ss0 rs rs0

ss rs0 0

U U
ϕ ϕ ϕ ϕ

ϕ ϕ
∂ ∂

+ − + −
∂ ∂

 [3.43] 
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( )st rt ss rs st rt ss rs, , , , , , , , ,I U F n n n n ϕ ϕ ϕ ϕ  

( )0 0 st0 rt0 ss0 rs0 st0 rt0 ss0 rs0 0
 , , , , , , , , ,I U F n n n n ϕ ϕ ϕ ϕ=  

( ) ( ) ( ) ( )0 0 st st0 rt rt0
st rt0 0 0 0

I I I IU U F F n n n n
U F n n
∂ ∂ ∂ ∂

+ − + − + − + −
∂ ∂ ∂ ∂

 

( ) ( ) ( ) ( )ss ss0 rs rs0 st st0 rt rt0
ss rs st rt0 0 0 0

I I I In n n n
n n

φ φ φ φ
φ φ

∂ ∂ ∂ ∂
+ − + − + − + −
∂ ∂ ∂ ∂

 

( ) ( )ss ss0 rs rs0
ss rs0 0

I Iϕ ϕ ϕ ϕ
ϕ ϕ
∂ ∂

+ − + −
∂ ∂

 [3.44] 

The several partial derivatives presented in both equations [3.43] and [3.44] have 
been experimentally identified, with a set of measuring points, which were fitted by 
second order polynomials (see next section). 

3.2.2.3. Parameter identification 

The parameter identification for the model developed in the previous section was 
performed experimentally at Tyco Electronics – Évora plant, applied to the standard 
pancake 1–speed resolver, with reference H2109, where nominal specifications are: 

Input voltage (U0) = 5 V; 

Nominal frequency = 4 kHz; 

Max. input current = 50 mA. 

3.2.2.3.1. Nominal model 

In order to evaluate the nominal model parameters we tested this resolver in both 
cases: open and short circuited. In the open-circuit case the impedances R and Xσ are 
much smaller than the parallel impedance RFe//Xh , then the complete model from 
Figure 3.12 reduces to the model presented in Figure 3.20. 

RFe

Vn
Xh

i0

 

Figure 3.20. Reduced transformer model (open circuit)   
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In the short-circuit case the model from Figure 3.12 reduces to the model 
presented in Figure 3.21. These computing approaches were applied to both pancake 
resolver main components: transformer and sensor. 

 
R1

Vcc

Xσ1 R’2 X’σ2

in

 

Figure 3.21. Reduced transformer model (short circuit) 

The values measured for both transformer and sensor are presented in Table 3.1. 

Transformer 
Open circuit Short circuit 

Vn [V] 5.00     
V2 [V] 6.72 Vcc [V] 3.90 
I0 [mA] 14.91 In [mA] 50.00 
P0 [mW] 40.00 Pcc [mW] 73.00 

R1 = 20.2 Ohm 
R2 = 19.0 Ohm 

      

Sensor 

Open circuit Short circuit 
Vn [V] 3.70     
V2 [V] 2.84 Vcc [V] 1.49 
I0 [mA] 14.51 In [mA] 20.30 
P0 [mW] 20.00 Pcc [mW] 18.00 

R1 = 19.0 Ohm 
R2 = 21.0 Ohm 

Table 3.1. Experimental values 

Using these experimental values together with the standard circuit analysis 
theory, on both the above models (from Figures 3.20 and 3.21), we identify finally 



Modeling and Simulation of Analog Angular Sensors     93 

the resolver nominal model parameters, presented in Table 3.2. These computed 
parameters refer to equations [3.40] and [3.41]. 

Transformer Sensor 
RT1 [Ohm] 19.21 RD1 [Ohm] 8.44 
XσT1 [Ohm] 47.57 XσD1 [Ohm] 11.40 
RTFe [Ohm] 625.00 RDFe [Ohm] 379.27 
XhT [Ohm] 397.46 XhD [Ohm] 152.04 
R'T2 [Ohm] 9.99 R'D2 [Ohm] 15.75 

Xσ' T2 [Ohm] 24.73 Xσ' D2 [Ohm] 21.26 

Table 3.2. Pancake resolver  nominal model parameters 

3.2.2.3.2. Incremental model 

In order to evaluate the incremental model parameters we need to know all  
the several partial derivatives calculated at the nominal conditions. Here we face  
a problem because we do not have these mathematical functions. To solve this 
problem we identified these partial derivatives by experimental measurements  
and then numerical approximations by second order polynomials [a + b(x–xm) +  
c(x–xm)2] were accomplished. 

Figure 3.22 shows an example of the previously described methodology applied 
to the identification of the partial derivative – ∂I/∂nst – (input current elasticity in 
relation to the number of windings of stator transformer) with all other variables set 
to the nominal values. 

 

Figure 3.22. Parameter identification in incremental model – function ∂I/∂nst 
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Following the interpolation procedure, we obtain the function: 

2
st st

st
10.41 0.42( 215) 0,0031( 215)I n n

n
∂

= − − + −
∂

 [3.45] 

The procedure described above was applied to identify all the partial derivatives 
presented in equations [3.43] and [3.44]. 

3.3. Simulation and experimental results 

The results presented in this chapter are split into two groups: 

– performance of the overall model (nominal + incremental); 

– manufacturer correction tools (incremental model). 

3.3.1. Performance of the overall model 

The results delivered by the overall model are presented in Figures 3.23 and 
3.24. All computations have been done using the Matlab software [MAT]. 

 

Figure 3.23. Frequency response results from resolver’s input current magnitude  

Here we can see the experimental measurements and the simulated values 
delivered by each model separately – nominal and upgraded models – (upgraded 
model = nominal model + incremental model). 
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As was expected, the main contribution is due to the nominal model and  
the incremental model shows a comparatively reduced contribution although it 
approximates the simulated values to the measured points. 

 

Figure 3.24. Frequency response results from resolver’s voltage ratio magnitude 

3.3.2. Manufacturer correction tools 

The results that are shown in this section refer to the incremental model and they 
were nominated as manufacturer correction tools, as these results are effectively the 
new developed tools that are available to the resolver manufacturer in order to 
correct the deviations on product characteristics caused by changes in the production 
factors (manufacturing processes, materials, etc.). 

In fact, a set of correction tools dependent on manufacturer-controlled variables 
(winding parameters) was developed, and can be used to compensate for deviations 
in product characteristics.  

The knowledge of the developed correction tools permits the resolver 
manufacturer to change some controllable variables (usually the number of windings 
in transformers) in order to correct assembled resolvers that without any action 
would be scrap to the production line (usually input current or output voltage out of 
specifications). 

Figures 3.25–3.30 present the simulated and experimental results from some of 
the developed functions that show the resolver manufacturer the way to act on the 
correspondent controllable variable in order to influence the resolver main customer 
characteristics (input current – I, and output voltage – Ucos). 
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Figure 3.25. Output voltage (Ucos(0)) vs. number of windings of the rotor transformer (nrt)  

 

 

Figure 3.26. Output voltage (Ucos(0)) vs. number of windings of the stator transformer (nst) 
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Figure 3.27. Output voltage (Ucos(0)) vs. winding wire diameter of the rotor sensor (φr) 

 

 

Figure 3.28. Output voltage (Ucos(0)) vs. winding wire diameter of the stator sensor (φs) 
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Figure 3.29. Input current (I(0)) vs. number of windings of the stator transformer (nst) 

 

 

Figure 3.30. Input current (I(0)) vs. number of windings of the rotor transformer (nrt)  



Modeling and Simulation of Analog Angular Sensors     99 

3.4. Conclusions 

The two-step strategy followed to build up the resolver mathematical model 
(traditional transformer’s model upgraded with a linear controllable model) proved 
to be very efficient to the resolver manufacturer. 

The newly developed linear model that relates the resolver main electrical 
characteristics (input current and output voltage) to the manufacturer-controllable 
variables – basically the winding parameters – allows the development of a set of 
correction tools that allow the resolver manufacturer to change some controllable 
variables in order to correct assembled resolvers that without any action would be 
scrap to the production line. 

The denominated correction tools are partial derivatives of the resolver’s main 
electrical characteristics (input current and output voltage). These partial derivatives 
reflect the sensitivity of the resolver’s main electrical characteristics to each one  
of the production controllable variables. This knowledge allows the manufacturer to 
react quickly to product deviations due to unknown changes in the production 
processes. 
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