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5
THE OPERATIONAL 

AMPLIFIER AS A  
CIRCUIT ELEMENT

5.1  INTRODUCTION TO THE OPERATIONAL AMPLIFIER

The operational amplifier, more commonly known as op amp, is an analog 
circuit. Op amps perform many arithmetic functions, linear and nonlinear 
operations in the analog or continuous domain. Op amps are also used in 
several kinds of analog amplifiers and active filters. They are also used to 
implement nonlinear circuits such as voltage comparators and continue to 
have a widespread use in the field of analog electronics. In its very early years 
of electronics, the beginning of the twentieth century, the first op amps were 
implemented with vacuum tubes, later on with transistors, and most currently, 
op amps are available in a single (or monolithic) integrated circuit (IC) device. 
That is to say that the transistors that implement the op amp itself reside within 
the IC. Why, if the basic components of an op amp are transistors, do we choose 
to cover op amps prior to the introductory chapter on electronic devices 
(diodes, bipolar, and MOSFET transistors)? The reason is simple and justifi-
able: op amps can be dealt with as circuit elements without necessarily knowing 
all the details of their internals. In this chapter we will start using dependent 
sources, to model the operation of op amps. Moreover, the op amp can perform 
a variety of functions that can be easily understood without initially having 
the knowledge of how the actual integrated circuit is designed. Finally, an op 
amp can be effectively used as a circuit element knowing the behavior of its 
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inputs and output terminals and knowing its parameters from the manufac-
turer’s data sheet. Op amp parameters are indicators of how much a real op 
amp deviates from an idealized model of an op amp. It is in the interest of the 
circuit designer using op amps to establish when the op amp-based circuit 
behaves as if its op amps were ideal and when they are not. When op amp-
based circuits have nonidealities, the circuit designer has to take such devia-
tions from the ideal op amp into account to predict their circuit behavior more 
accurately.

5.2  IDEAL AND REAL OP AMPS

It is extremely useful to use a model of an idealized op amp. In many applica-
tions, as we will see later throughout this chapter, the idealized behavior is just 
a first-order approximation of the way the op amp works as a circuit element. 
Later on, we will add the influence of the real op amp parameters that may 
not let an op amp-based circuit to always be analyzed as an idealization. Our 
goal in this chapter is to understand the ideal op amp, understand how its 
inputs and output work. It is also our goal to know when and what to take 
into account from the manufacturer’s data sheet, which otherwise would not 
be correct with the idealized model. Finally, one of our goals is to address and 
analyze the most important and useful linear and nonlinear applications using 
op amps.

The most basic symbol of an op amp is given in Figure 5.1. It has two inputs, 
a noninverting or positive input and an inverting or negative input. It also has 
a single output. The most generic way of representing an op amp, whether it 
is a real one or an idealized one, is the one seen in Figure 5.1a. A more com-
plete graphical representation is to draw the power terminals that provide 
positive and negative power sources to the real op amp internals, Figure 5.1b. 
Warning to the reader: some technical publications, data sheets, or textbooks 
draw the positive input at the top left of the op amp symbol, some others draw 
the negative input at the top left. However, many other publications inter-
change the location of the positive and negative inputs. Thus, the reader has 
to be very cautious and find out which are the noninverting and the inverting 
inputs of the op amp. Confusing the correct input may mislead one into a 
completely incorrect interpretation of the function of an op amp-based circuit.

Some of the most basic ideal op amp characteristics are

(a) Open-loop gain is infinite: ∞, or AOL → ∞
(b) The noninverting and inverting terminals do not draw or source any 

current from or into the op amp. Zinput = Zi = ∞, means that its input 
impedance is infinitely high.

(c) The output of the op amp can provide an infinitely large current. In 
other words, the op amp output impedance is zero (Zoutput = 0 or 
Zo = 0).
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(d) When the op amp is operated in linear mode using negative feedback, 
the voltage difference between the noninverting and inverting input 
is infinitesimally small.

 ∆V V V= − →+ − 0

We will come back to the negative feedback concept shortly.
(e) Bandwidth of an ideal amplifier is infinite, because the ideal amplifier 

can react to signals of any frequency equally well. Bandwidth in a real 
op amp refers to small signal bandwidth, that is, signals whose peak-
to-peak amplitudes are a small fraction of the op amp power supply 
rail. For example, signals of a 1 V for a ±15-V powered op amp are 
considered to be small signal amplitudes.

(f) Slew-rate: For large signal behavior, that is, for signals that are com-
parable to the power supply rail magnitude in a real op amp, slew-rate 
is a finite and nonzero number. This is because real op amps take time 
to react to large voltage swings. Typically, slew-rates are expressed in 
volts per microsecond.

Figure 5.1  Graphic representation of an op amp (a) idealized or real op amp without power 
terminals, (b) real op amp showing its power terminals.
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(g) Offset voltage: Zero for the ideal case. This value is nonzero for real 
op amps since their negative and positive inputs cannot be perfectly 
matched.

(h) Bias current: Zero for an ideal op amp. This value is nonzero for real 
op amps since their negative and positive inputs cannot be perfectly 
matched.

(i) Offset current (difference of bias currents at positive and negative 
inputs): Zero for the ideal op amp. This value is nonzero for real op 
amp because bias currents, even when finite, cannot be perfectly 
matched.

(j) Common Mode Rejection Ratio (CMRR): The ratio of differential 
mode gain and the common mode gain, usually expressed in dBs.

Table 5.1 summarizes the idealizations made above for an ideal op amp.
As we discuss more op amp-based circuits, we will introduce some more of 

the ideal op amp characteristics. We will be able to go a long way using the 
top four characteristics mentioned in Table 5.1. For now, in what way real op 
amps parameters differ from the idealizations of Table 5.1? Without getting 
into much detail this early in the chapter, we will just say that for a real op 
amp, none of the characteristics listed in Table 5.1 is true. Upon studying  
real op amp data sheet parameters, we will expand what that means in a more 
qualitative manner.

5.3  BRIEF DEFINITION OF LINEAR AMPLIFIERS

Let us study the basic linear amplifiers that are available, before we zoom into 
the operational amplifier-based circuits. Op amp-based circuits are usually 

Table 5.1  Some operational amplifiers idealizations

Parameter Ideal Value

Open-loop gain (AOL) Infinite
Input resistance Ri (more generically input impedance) Infinite
Output resistance Ro (more generically output impedance) Zero
Voltage difference (ΔV) between noninverting and inverting inputs, 

when negative feedback path exists. That is, the op amp is working 
in a linear application. Note: This is not true when the op amp 
operates in open-loop mode or with positive feedback.

Zero

Bandwidth (refers to small signal response capability) Infinite
Slew-rate (refers to large signal response capability) Infinite
Offset voltage Zero
Bias current Zero
Offset current Zero
Common Mode Rejection Ratio (CMMR) Infinite
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special cases of the most generic cases of the four types of amplifiers that we 
will cover in this section.

An amplifier is a two-port device that receives an input signal and produces 
and output that is proportional to some constant, that we call the amplifier 
gain or A, which stands for amplification factor. In general, the gain of an 
amplifier (unlike the gain of an ideal op amp) is finite. Generally when we talk 
about amplifiers, we will always refer to linear amplifiers, unless it is otherwise 
stated. For example, multipliers are nonlinear amplifiers, whereas adders, sub-
tractors, inverters, buffers, and difference amplifiers all are linear amplifiers.

Four key types of linear amplifiers exist from the point of view of the kind 
of input and output signals that they involve:

(a) Voltage amplifier
(b) Current amplifier
(c) Trans-conductance amplifier
(d) Trans-resistance amplifier

A voltage amplifier receives an input voltage and produces an amplified output 
voltage. A current amplifier receives an input current and produces an ampli-
fied output current. A trans-resistance amplifier receives an input current and 
produces an amplified output voltage. A trans-conductance amplifier receives 
an input voltage and produces an amplified output current.

It is common practice to cascade amplifiers. That means connecting the 
output of one into the input of the next one. It is common to cascade two or 
three stages of amplifiers in that way. The input stage of an amplifier typically 
loads the output of an amplifier that precedes it. Figure 5.2 presents three 
cascaded amplifiers.

Figure 5.3 depicts the four amplifiers types described above.
The voltage amplifier of Figure 5.3a has an ideal infinite input resistance, a 

zero output resistance, and a voltage gain of

 Ri → ∞

 Ro = 0

 A v vv o i= / .  (5.1)

The current amplifier of Figure 5.3b has an ideal zero input resistance, an 
infinite output resistance, and a current gain of

Figure 5.2  Cascaded amplifiers.

Gain G1 Gain G2 Gain G3
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Figure 5.3  Amplifier types: (a) voltage, (b) current, (c) trans-conductance, (d) trans-resistance.

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

(a)

(b)

(c)

(d)



BRIEF DEFINITION OF LINEAR AMPLIFIERS  293

 Ri = 0

 Ro → ∞

 A i iI o i= / .  (5.2)

The trans-conductance amplifier of Figure 5.3c has an ideal infinite input 
resistance, an infinite output resistance, and a trans-conductance gain of

 Ri → ∞

 Ro → ∞

 A i vo iG = / .  (5.3)

The trans-resistance amplifier of Figure 5.3d has an ideal zero input resistance, 
a zero output resistance, and an open circuit trans-resistance gain of

 Ri = 0

 Ro = 0

 A v iR o i= / .  (5.4)

But what do Equations (5.1) through (5.4) mean? Let us start with Equation 
(5.1) on the voltage amplifier and let us refer to Figure 5.3a. The voltage ampli-
fier is modeled with a voltage-controlled voltage source (VCVS). A voltage 
amplifier has an input resistance (in more general terms we say that it is an 
input impedance), and from an ideal point of view, we do not want the input 
stage of the amplifier to load the source that is driving it. So that is the reason 
why, ideally speaking, a voltage amplifier should have an infinite input resis-
tance. This in effect means that the amplifier does not draw any current from 
its driving source. A finite output resistance of a voltage amplifier is what 
would actually limit a real amplifier from driving current to a load connected 
across its output terminals. Since ideally one wants the amplifier to have no 
current sourcing limitation, thus we say that the ideal voltage amp should have 
a zero output resistance.

For the current amplifier of Figure 5.3b the amp is modeled by a current-
controlled current source (CCCS). The controlling input is the input current 
ii; we want the amplifier to be controlled by the current and not by a voltage 
developed across its input resistance. Thus, in this case, the ideal current ampli-
fier should have a zero input resistance, since the input current has to enter 
the amplifier for control purposes. For the same amplifier, notice that the 
output resistance is in parallel with the output current source Ai ii; we certainly 
do not want all the output current to be drained or consumed by its output 
resistance, we want the output current to go to the load. Thus, the output 
resistance of an ideal current amplifier wants to be infinite. The trans-
conductance amplifier of Figure 5.3c is modeled with a voltage-controlled 
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current source (VCCS). The controlling input is voltage vi, so we want the ideal 
trans-conductance amplifier not to draw any current from its driving input 
source; thus, the need for an infinite input resistance. The infinite output resis-
tance of the trans-conductance amp is justified in the same way as the output 
resistance of the current amplifier was. The trans-resistance amp is modeled 
with a current-controlled voltage source (CCVS); the input is controlled by 
current ii, thus we want a zero input resistance for the trans-resistance ampli-
fier, just like we have it for the current amplifier. The output of the trans-
resistance amplifier of Figure 5.3d behaves just like the output of the voltage 
amplifier, thus we want the ideal trans-resistance amplifier to have a zero 
output resistance to drive any load. Finally, let us note that the gain of the 
trans-resistance (AR) and trans-conductance (AG) amplifiers have respectively 
units of ohms and ohms−1. Current and voltage amplifiers have dimensionless 
amplification factors.

5.4  LINEAR APPLICATIONS OF OP AMPS

Linear applications of op amps refer to those circuits that have a linear rela-
tionship between output and input, whereas nonlinear applications do not. The 
most common linear applications are inverting amplifiers, noninverting ampli-
fiers, buffers, and difference amplifiers. Other interesting op amp-based linear 
circuits are integrators and differentiators.

5.4.1  The Inverting Amplifier

Let us now look at op amp-based circuit show of Figure 5.4. This circuit is 
called an inverting amplifier configuration. To analyze how this circuit works, 
we will assume that the op amp of the inverting amplifier is ideal. Let us care-
fully describe by inspection of Figure 5.4 how this circuit is connected. First, 

Figure 5.4  Op amp-based inverting amplifier configuration.
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besides the op amp, we have two external resistors. Resistor R1 is connected 
from the input source V1 to the inverting input terminal of the op amp. Resis-
tor R2 connects the output of the op amp back to the inverting input of the 
op amp. This path from the output to the inverting input of the op amp is 
referred to as a negative feedback path. We will see that all linear circuits 
implemented with op amps have a negative feedback path. Finally, the nonin-
verting input of the op amp is tied to reference ground.

Example 5.1 Calculate the output voltage to input voltage ratio, Vo/Vi or the 
voltage gain of the circuit of Figure 5.4, assuming that the op amp is ideal.

Because the op amp has a negative feedback path, we can assume that the 
voltage difference between inverting and noninverting inputs is zero (see 
Table 5.1). Now because the noninverting input is tied to ground, then the 
voltage at the inverting input is referred to as being virtually grounded. People 
refer to as this node as being “virtual ground.” The closer is the op amp to the 
idealization, the truer that statement becomes. Now we can state a Kirchoff’s 
current law (KCL) equation at virtual ground node A:

 I I1 2=  (5.5)

because i = 0.
But since

 I
V
R

1
1

1

=  (5.6)

because node A is virtually grounded, and since

 I
V V

R
V
R

A o
2

0

2

= −
−

= −
2

,  (5.7)

VA is zero because it is virtually grounded.
At this point, let us refer to Figure 5.4 one more time. Note that the entire 

current I1 that flows through R1 also flows through R2, because there is no 
current at all going into or out of the inverting terminal of the ideal op amp, 
i = 0, Equation (5.5).

So now combining Equations (5.6) and (5.7) yields:

 
V
V

R
R

o

1

2

1

= − .  (5.8)

Equation (5.8) is the approximated closed-loop voltage gain of the inverting 
amplifier, which assumes an infinite op amp AOL. Equation (5.8) is also com-
monly referred to as the inverting amplifier closed-loop gain (CLG). Such 
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CLG is approximate because the ideal op amp parameters have been assumed 
(Table 5.1). Note that the absolute magnitude of this gain is the ratio of R2 
and R1, whereas its sign is negative. It is important to observe that the CLG 
of the amplifier, Equation (5.8), depends only on the external resistors, and it 
is independent of the op amp, as long as the op amp open-loop gain is “large 
enough” and other op amp idealizations are met (Table 5.1).

Figure 5.5  Modeling finite open-loop gain: model used to analyze an inverting configuration 
CLG with a finite-open-loop gain op amp.
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5.4.1.1  Effects of Finite Op Amp Open-Loop Gain in the CLG  Now let 
us investigate what happens when the open-loop gain of the op amp is large, 
but not quite as large as it would have to be. We will see next how to quantify 
when the open-loop gain of the op amp is large enough for Equation (5.8) to 
be accurate. We will calculate the error we make using Equation (5.8) when 
the open-loop gain is finite. Figure 5.5 shows an op amp model where the 
open-loop gain is no longer infinite (AOL < ∞). The output is modeled with a 
VCVS that depends on ΔV, which is the difference between the noninverting 
and the inverting input voltages.

Upon making the above assumptions, not only AOL is finite but also ΔV is 
no longer zero. Figure 5.5 shows the usage of the model of a configured as an 
inverting amplifier with two external resistors, R1 and R2.

Let us assume that the one nonideality of the op amp model that we are 
interested in is its finite open-loop gain. By inspection of the circuit of Figure 
5.5 we can state that

 I I1 2= .

Because the op amp model still assumes that the input resistance of the op 
amp is infinite, thus

 i = 0.
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Additionally,

 ( ) / ( ) / .V V R V V RA A o1 1 2− = −  (5.9)

Since the open-loop gain is assumed to be finite, then

 V V AA o OL= / .

And since the positive input is grounded (0 V), the voltage at node A has 
to be

 V V AA o OL= − / .  (5.10)

Using Equation (5.10) in Equation (5.9) and doing a little bit of algebra we 
arrive at

 V V
R R

A
R R

o

OL

/
/

( / )
.1

2 1

2 11
1

1
= −

+ +
 (5.11)

Equation (5.11) shows the CLG of the inverting amplifier of Figure 5.4 when 
the open-loop gain is finite. We will also refer to this as the true value CLG. 
Note that if

 AOL → ∞,

then Equation (5.11) becomes

 V V R Ro / / .1 2 1= −  (5.12)

Equation (5.12) is the CLG of the inverting amplifier with an infinite AOL op 
amp or simply the estimated or approximated CLG.

Example 5.2 Assume a ratio of R2/R1 = 1, using Equation (5.11), evaluate 
Vo/V1 for the following values of AOL: 1, 10, 102, 103, 104, 105, 106, and 107. Deter-
mine the error that exists between the more accurate close loop gain of Equa-
tion (5.11) with respect to the approximated CLG given by Equation (5.12).

Let us define the absolute value of the error between the two CLGs as the 
difference of the absolute values of Equations (5.12) and (5.11):

 Abs Error Estimated Value True Value_ _ _= −
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 Abs Error R R
R R

A
R R

OL

_ = − − −
+ +

2 1
2 1

2 11
1

1
/

/

( / )
 (5.13)

And the relative error:

 Relative Error Abs Error True Value_ _ _  = ×( / ) [%]100

 Relative Error

R R
R R

A
R R

R R
OL_ =

−
+ +

















+

2 1
2 1
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1

/
/

( / )

/
11

1

100

2 1
A

R R
OL

( / )

.

+

×  (5.14)

Table 5.2 depicts an inverting amplifier CLG absolute and relative errors for 
various finite values of AOL for a CLG of 1. Table 5.3 depicts the same values 
as Table 5.2 but for a CLG of 10.

It is interesting and important to note that for small CLG of 1 of an invert-
ing amplifier, for a finite op amp open-loop gains (AOL) of 60 dB and higher 
(Table 5.2), the relative error that exists between the CLG assuming an op 
amp with an infinite open-loop gain versus the CLG with a finite op amp 
open-loop gain is just 0.2%. This is quite a small error for the CLG equation. 
Since most op amps today have gains of at least 80 dB, the closed-loop error 
gain of the inverting amplifier with finite AOL is practically the same as the 

Table 5.2  Inverting amplifier closed-loop gain (CLG) errors for finite AOL and CLG of 1

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 1 (CLG = 1) 
with Finite AOL

CLG = 1 
Absolute Error

CLG = 1 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.333333 0.666667 200.000000
10 20 0.833333 0.166667 20.000000

100 40 0.980392 0.019608 2.000000
1,000 60 0.998004 0.001996 0.200000

10,000 80 0.999800 0.000200 0.020000
100,000 100 0.999980 0.000020 0.002000

1,000,000 120 0.999998 0.000002 0.000200
10,000,000 140 1.000000 0.000000 0.000020
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Table 5.3  Inverting amplifier closed-loop gain (CLG) errors for finite AOL and CLG 
of 10

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 10 (CLG = 10) 
with Finite AOL

CLG = 10 
Absolute Error

CLG = 10 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.833333 9.166667 1,100.000000
10 20 4.761905 5.238095 110.000000

100 40 9.009009 0.990991 11.000000
1,000 60 9.891197 0.108803 1.100000

10,000 80 9.989012 0.010988 0.110000
100,000 100 9.998900 0.001100 0.011000

1,000,000 120 9.999890 0.000110 0.001100
10,000,000 140 9.999989 0.000011 0.000110

gain with an infinite op amp open-loop gain (just a 0.02% error; again refer 
to Table 5.2). Now when the CLG of the inverting amplifier is higher than  
1, in our example of Table 5.3, we assume a CLG of 10, note that for a  
finite open-loop gain of 60 dB, the CLG relative error of the amplifier is 1.1% 
(Table 5.3).

We can generalize and state that the larger the op amp AOL, the more accu-
rate is the approximated CLG of Equation (5.8). When the op amp AOL is not 
as large, then Equation (5.11) should used for better accuracy. However, once 
we have selected “an” op amp, AOL is fixed. So under these conditions, as pre-
sented by the Tables 5.2 and 5.3, the larger the CLG that is desired, the less 
accurate it will be when compared to another CLG that is smaller. For example, 
this is to say that given an op amp with a 100 dB AOL, implementing an invert-
ing configuration of a CLG of 1 will be more accurate than an inverting con-
figuration of a CLG of 10. Once more looking at Tables 5.2 and 5.3, we have 
an error of 0.002% for a CLG of 1 and an error of 0.011% for a CLG of 10, 
in both cases for an AOL of 100 dB.

5.4.1.1.1  Effect  of  Op  Amp  Output  Swing  Due  to  Saturation  A real op 
amp has to receive power from positive and negative power supplies. Some 
op amps are designed to operate off a unipolar power supply; we will in 
general assume that the op amps we use require plus and minus power supplies 
unless it is otherwise stated. So we need to ask ourselves the following ques-
tion, what can the maximum output of an op amp be? Regardless of whether 
the op amp is used in a linear or a nonlinear application, closed-loop or open-
loop (will cover open-loop applications when talking about comparators), the 
highest and lowest output of the amplifier cannot exceed its power supply rails 
minus a saturation voltage (VSAT) imposed by the op amp. For example, if an 
op amp is operated from a +15-V and −15-V power supplies, if the op amp 
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VSAT is 2 V below the positive rail and 2 V above the negative rail, its output 
shall always be within a voltage range of −13 V to +13 V. From now on, even 
though we will continue to deal with ideal op amps, we will assume that our 
ideal op amp requires positive and negative power, and its output shall be 
required to stay away from the saturation limits.

Example 5.3 Design an inverting amplifier with resistors and assume you 
have an ideal op amp. Let us assume that we want a CLG of −4. (a) Determine 
some possible resistor value pairs. (b) Determine the maximum and minimum 
input signal values not to saturate the op amp. Assume the op amp is powered 
from +15 V/−15 V supplies and for the output not to saturate the op amp is 
allowed excursions from +13 V to −13 V.

Solution to Example 5.3

(a) the simplest combination of values that come to mind are 4 kΩ and 1 kΩ 
resistors. Other combinations of values such as 80 kΩ and 20 kΩ, or 400 kΩ 
and 100 kΩ are possible. This should pose a question on our mind: how large 
or how small such resistor values can be. Could we use a 400 MΩ and a 
100 MΩ? Since we are assuming that we are dealing with an ideal op amp even 
400 MΩ and 100 MΩ are fine to use because their ratio provides a CLG of −4 
in an inverting amplifier configuration. Later on we will see that it may not be 
possible to use arbitrarily large or arbitrarily small resistor values when we use 
real-world op amps. We will see that there are upper limits as well as lower limits 
for the resistor values we can choose.

(b) Now, since the op amp output swing cannot exceed +13 V and cannot 
be under −13 V, the largest possible input signal magnitude is determined by 
dividing:

 13 4 3 25/ . .= V  (5.15)

So the input signal should not exceed +3.25 V and should not be under −3.25 V 
for the inverting amplifier not to saturate. Why? Because if the input signal is 
+3.25 V, then

 3 25 4 13. ( ) ,V. V− = −  (5.16)

and when the input signal is

 − − = +3 25 4 13. ( ) .V. V  (5.17)

So keeping the input within −3.25 V and +3.25 V voltage range will prevent 
the op amp from saturating. This is sometimes referred to as the op amp hitting 
or exceeding the power rails.
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What happens, with the circuit of Example 5.3, when we saturate the op 
amp-based inverting amplifier? If the input is outside of the voltage range 
discussed, that is, ±3.25 V, the output of the op amp will not try to go beyond 
its positive output saturation voltage (VSAT) or below its negative saturation 
voltage (–VSAT). Figure 5.6a,b,c present three examples of what occurs when 
the inverting amplifier op amp output becomes saturated. In essence, the op 
amp-based circuit ceases to work as the inverting amplifier that we were trying 
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Figure 5.6  Inverting amplifier (gain = −4) circuit with signals exceeding the output saturation 
limits. (a) 5 V DC input, (b) −5 V DC input, and (c) 5 sin (2π 1 kHz) sinusoidal input.



302  THE OPERATIONAL AMPLIFIER AS A CIRCUIT ELEMENT 

time

time

15 V

10 V

5 V

0 V

−5 V

−5 V

−10 V

−15 V

Input Signal

Output
Signal

Inverting Amplifier output signal due to op amp saturation = 13 V

Inverting Amplifier Input Signal : −5 V

Op amp positive supply rail

Op amp negative supply rail

0 V

5 V

(b)

Figure 5.6  (Continued )

to implement. When the input times the amplifier gain exceeds the maximum 
voltage that the op amp can produce at its output, which is +15 V − 2 V = 13 V 
for positive outputs and when the op amp output is less than 
−15 V − (−2 V) = −13 V, the output of the op amp is clipped. This means that 
the output will never be over +13 V or be below −13 V. Referring again to 
Figure 5.6c, note that the clipped sinusoidal output waveform is a sinusoidal 
up until the clipping voltage limits are reached by the output. Such limits are 
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±13 V. Note that the top part of Figure 5.6c depicts the output as if the invert-
ing amplifier could reproduce it with a linear gain of −4. The lower portion of 
Figure 5.6c shows what actually happens to the output because of the op amp 
saturation. This effect is called clipping and causes a usually undesired nonlin-
earity. Note: Figure 5.6c ignores the inverting sign of the CLG for simplicity.

Note that in all three cases, the maximum signal value times −4, the invert-
ing gain of the amplifier, leads to a voltage of −20 V DC for case (a), +20 V 
DC for case (b), and −20 sin (2π 1 kHz) for (c). However, in all three cases, 
the inverting amplifier op amp output cannot go beyond ±13 V.

Figure 5.7 shows the same inverting amplifier of a gain of −4 V, when a 
sinusoidal signal of 3 sin (2π 1 kHz) gets well amplified by a factor of −4 
without any clipping or distortion.

The output waveform in Figure 5.7 does not saturate on either positive or 
negative cycles.

20 V peak

+13 V

−13 V

This would be the output voltage if the
amplifier did not saturate

Clipping due to output saturation

Clipping due to output saturation

time

time

(c)

Figure 5.6  (Continued )
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The 3 V peak input sinusoidal waveform is not shown in Figure 5.7. Since 
the inverting amp gain is −4 V, the magnitude of the positive and negative 
peaks of the output do not exceed ±12 V.

5.4.1.1.2  Powering and Decoupling the Op Amp-Based with Positive and 
Negative Supplies  Most op amps require two-polarity power supplies. Only 
special op amps require a single polarity supply. Figure 5.8 shows the intercon-
nection required for two 15-V power supplies for the op amp to effectively 
see a +15 V at its +VDD power pin and −15 V at its –VDD power pin. In addi-
tion to the power supplies, the op amp requires what is usually referred to as 
decoupling capacitors. Decoupling capacitors need to be placed very near the 
op amp power pins, to eliminate any stray inductance on the wire leads. It is 
the decoupling capacitors that keep the voltage across the op amp power pins 
constant and without electrical noise. When the output or inputs of the op amp 
make transitions, the power supply cannot instantaneously supply the ±15-V 
power that the op amp requires at all times to operate correctly. The instan-
taneous voltage during such time is supplied for a short time by the decoupling 
capacitors, until the power supplies have time to respond to the transient.

What value of decoupling capacitor we need? As usual we need to make 
some assumptions about the situation, if that is not already given to us. Assume 
the power supplies can respond to the changes in power supply current demand 
in 1 ms, but no sooner than that. Then we have to size the ±VDD decoupling 
capacitors to hold voltage level of the supplies constant for at least 1 ms at 
not less than the normal VDD value minus 100 mV. Also assume that the opera-
tional amplifier requires at most 10 mA of current of each of its supplies. 
However, the capacitor will not be able to maintain strictly a constant voltage. 

Figure  5.7  Inverting amplifier with a sinusoidal input that does not cause the op amp to 
saturate.

12 V peak

-12 V peak

Output Saturation Limit = +13 V

Output Saturation Limit = -13 V

time
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Figure 5.8  Op amp power (a) +VDD and −VDD, (b) decoupling capacitors.
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As time passes, the decoupling voltage across each capacitor will droop a little 
bit. Why? The voltage–current relationship that governs the electrical behavior 
of a capacitor is

 i t C dv t dt( ) ( ) / .=  (5.18)

So let us use Equation (5.18) to calculate a capacitor value that will hold the 
voltage to 100 mV or less for 1 ms. Plugging in the numbers into Equation 
(5.18) and replacing differentials by finite increments we obtain

 i t C v t t( ) ( ) / ,= ∆ ∆  (5.19)

where

 C i t t v t= ( ) / ( )∆ ∆  (5.20)

 C = × =0 010 0 001 0 1 100. . / . .µF  (5.21)

Figure 5.8a depicts the generation of +VDD and −VDD, and Figure 5.8b shows 
the 100 µF decoupling capacitors just calculated, connected to the op amp 
power supply pins.

Note that the other terminal of each capacitor not connected to a power 
supply rail, connects to ground.

After the charge of the capacitors is depleted, so that they would not be 
able to continue to supply the 15 V less 100 mV, the power supply is ready to 
supply current again and not only powers the op amp at this time, but also 
recharges the decoupling capacitors.

5.4.2  The Noninverting Amplifier

An op amp-based noninverting amplifier circuit is shown in Figure 5.9.
Let us point out the similarities and differences that exist between this 

circuit and the inverting amplifier of Figure 5.4. Both amplifiers have negative 
feedback. Note that on both amplifiers, the output voltage is sampled and fed 
back into the inverting input. The noninverting amplifier, however, has the 
input voltage V1 applied to the positive or noninverting input; this is not the 
case for the inverting amplifier. Assuming that the op amp is ideal, we will 
calculate the output to input voltage ratio or the closed-loop transfer function 
of the noninverting amplifier. Remember that our ideal amplifier, however, 
requires power, and it will saturate if the output gets too close to either supply 
rail.

Node A is virtually close to input voltage V1, because the amplifier uses 
negative feedback and ΔVis practically zero; the voltage at node A is V1. So, 
by inspection of Figure 5.9, we have

 I V R1 1 1= − /  (5.22)
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Figure 5.9  Noninverting amplifier.
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and

 V V I Ro1 2 2− = .  (5.23)

Now, since there is no current entering or exiting the op amp inverting 
terminal,

 I I1 2= .  (5.24)

Combining Equations (5.22) through (5.24) yields

 
V
V

R
R

o

1

2

1

1= + .  (5.25)

Equation (5.25) is the approximated transfer function of the closed loop gain 
of the noninverting amplifier. It is approximated because ideal op amp param-
eters have been assumed (Table 5.1). Note that the sign of the output matches 
the sign of the input waveform. Additionally, it is important to note that the 
CLG (1 + R2/R1) is always strictly greater than one if both resistors are greater 
than 0 Ω. The noninverting amplifier ±input signal times the CLG (1 + R2/R1) 
must be less than the absolute value of the power supply rail.

Example 5.4 Given a noninverting amplifier like the one shown in Figure 
5.9, assuming that the op amp is ideal, but with an op amp VSAT = ±13 V, and 
input V1 is ±1 V maximum, determine the maximum CLG of the noninverting 
amplifier that will not allow the output to become saturated. Assume ±15 V 
power supplies.
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5.4.2.1  Effects of Finite Op Amp Open-Loop Gain in the Closed-Loop 
Equation of the Noninverting Amplifier  In a very similar manner as it was 
done with the inverting amplifier configuration assuming a finite open-loop 
gain op amp model, we arrive at the noninverting amplifier CLG which is:

 V V
R R

A
R R

o

OL

/
/

( / )
.1

1 2

1 2

1

1
1

1
=

+

+ +
 (5.28)

The op amp circuit model used to derive Equation (5.28) is given by the circuit 
of Figure 5.10 where AOL is assumed to be finite.

Solution: Since the closed loop of the noninverting amplifier is: (1 + R2/R1), 
the supply rail is +15 V, and VSAT = 13 V, the maximum positive and negative 
swings that the amplifier can have is ±13 V. Note that this amplifier will only 
swing to the negative voltage rail if the input is negative.

 ± = ±13 1 13V V/ .  (5.26)

Then using Equation (5.26) with Equation (5.25) we have

 ± = + = ±V V
R
R

o / .1
2

1

1 13  (5.27)

From Equation (5.17) we determine that the R2/R1 ratio must equal 12. So for 
example R2 = 12 kΩ and R1 = 1 kΩ.

Figure 5.10  Model of noninverting amplifier with finite AOL.
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Using Equation (5.25) as the estimated value of the CLG and Equation 
(5.28) as the true value of the CLG for an op amp with finite open-loop gain 
AOL, we can calculate the absolute and relative errors of the noninverting 
amplifier CLG equation when the op amp AOL is finite.

Tables 5.4 and 5.5 show the errors that exist for a noninverting amplifier 
configuration for CLGs of 2 and 20 for various values of AOL.

5.4.3  The Buffer or Noninverting Amplifier of Unity Gain

The buffer amplifier is a special case of the noninverting amplifier. Referring 
to the circuit in Figure 5.9, if R2 approaches 0 and R1 approaches infinity, then 
Vo = V1.

Table 5.4  Noninverting amplifier closed-loop gain (CLG) errors for finite AOL: for an 
estimated CLG of 2

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 2 (CLG = 2) 
with Finite AOL

CLG = 2 
Absolute Error

CLG = 2 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 1.333333 0.666667 50.000000
10 20 1.833333 0.166667 9.090909

100 40 1.980392 0.019608 0.990099
1,000 60 1.998004 0.001996 0.099900

10,000 80 1.999800 0.000200 0.009999
100,000 100 1.999980 0.000020 0.001000

1,000,000 120 1.999998 0.000002 0.000100
10,000,000 140 2.000000 0.000000 0.000010

Table 5.5  Noninverting amplifier closed-loop gain (CLG) errors for finite AOL: for an 
estimated CLG of 20

Finite Op Amp 
Open-Loop 
Gain (AOL)

Op Amp 
AOL in dB

Closed-Loop Gain 
of 20 (CLG = 20) 
with Finite AOL

CLG = 20 
Absolute Error

CLG = 20 
Relative Error

(V/V) (dB) (V/V) (V/V) (%)

1 0 0.952381 19.047619 2,000.000000
10 20 6.666667 13.333333 200.000000

100 40 16.666667 3.333333 20.000000
1,000 60 19.607843 0.392157 2.000000

10,000 80 19.960080 0.039920 0.200000
100,000 100 19.996001 0.003999 0.020000

1,000,000 120 19.999600 0.000400 0.002000
10,000,000 140 19.999960 0.000040 0.000200
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For the reader’s convenience, we repeat the gain equation of the noninvert-
ing amplifier given by Equation (5.25):

 
V
V

R
R

o

1

2

1

1= + .  (5.29)

Expressing Vo as a function of V1 and resistors R1 and R2, and taking the limit 
of the expression for R1 → ∞ and R2 → 0, we obtain

 limV R R V Vo
R
R

1
2 0

2 1 1 11
→∞
→

= +( ) =/ .  (5.30)

Figure 5.11a depicts a unity gain noninverting amplifier or simply a buffer.
So what is the meaning of Vo = V1? Literally, it means that the output 

voltage is equal to the input voltage. If we connect just a wire between V1 and 
V0 without having any op amp in between, we get the same voltage relation-
ship. To explain the importance of the circuit of Figure 5.11a we need to assume 
that the idealized input resistance of the op amp is actually finite and not 
infinite like it is for the ideal op amp model. Additionally, we will assume that 
the op amp AOL is also finite. This op amp model described with finite input 
resistance and open-loop gain is presented in Figure 5.11b and the buffer 
amplifier, using the op amp model from Figure 5.11b, is shown in Figure 5.11c

Writing the Kirchhoff equations for the circuit of Figure 5.11c and realizing 
that

 V V V A V Vo OL o1 1 1− = − −( ),

we find that

 A V V A ACL o OL OL= = + ≈/ / ( )1 1 1  (5.31)

 R A R A RinCL OL in OL in= + ≈( ) .1  (5.32)

ACL is the CLG of the buffer amplifier and RinCL is the closed-loop input resis-
tance of the buffer amplifier. Because for a buffer amplifier the input voltage 
is quite approximately equal to the output voltage, Equation (5.31), this ampli-
fier is also called a voltage follower.

Rin is the op amp input resistance, usually of several mega-ohms. AOL is the 
op amp open-loop gain. RinCL stands for the closed-loop input resistance of the 
buffer amplifier, not the op amp input resistance.

From Equation (5.32) it is clear to see that since Rin is in the order of several 
mega-ohms, AOL is in the order of 106 V/V, the closed-loop input resistance of 
the buffer amplifier configuration (see Figure 5.11c) is in the order of 1012 Ω. 
The closed-loop input resistance of the buffer amplifier is the effective resis-
tance that the input V1 sees at the noninverting input terminal of the amplifier. 



Figure 5.11  (a) Buffer amplifier, (b) op amp with model finite Rin and AOL, (c) actual buffer 
amplifier circuit using the model from part (b).
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So for input signals in the order of 1 V, the current drawn by the buffer ampli-
fier is in the order of pico amps (10−12 A)!

Based on what we just discussed, the buffer amplifier, which operates as a 
unity gain noninverting amplifier, is in effect a current amplifier. The output 
of the buffer circuit is converted to a voltage with much higher drive capability 
than the pico amp input current. It can also be proven from the circuit of 
Figure 5.11c by adding a finite (nonzero) Rout between the plus sign of the AOL 
ΔV-controlled source and the output voltage Vo, that the effective output resis-
tance of the buffer amplifier is

 R
R

A
outCL

out

OL

=
+( )

,
1

 (5.33)

where Rout is the op amp output resistance, which we have assumed to be zero 
in the ideal op amp model. In a real op amp, Rout is larger than zero and typi-
cally is a small fraction of an ohm to a few ohms. RoutCL is the effective output 
resistance that the buffer amplifier presents to a load that can be connected 
at its output. Let us consider the following numerical example to quantify the 
significance of finite Rin and finite AOL.

Example 5.5 The circuit of Figure 5.12a consists of a resistor divider formed 
with R1 and R2. The intent of this resistor divider is to provide 5 V to any load. 
This will only work with some accuracy if the load resistance is much higher 
than 1 kΩ. But in the circuit example the load resistance is also 1 kΩ. The load 
has a loading effect on the 5 V at node A of the resistor divider. After stating 
the circuit Kirchhoff equations and solving them we determine that the voltage 
across RLOAD is 3.333 V, this is considerably lower than the desired 5 V. Figure 
5.12b shows the circuit divider circuit to which a buffer amplifier configuration 
was added to right side of node A. The output of the buffer drives RLOAD. Since 
the buffer does not draw any significant current from the resistor divider, the 
buffer supplies to RLOAD practically the 5 V at the input of the buffer to RLOAD. 
The advantage of this circuit (Fig. 5.12b) is that for load resistances much 
larger than 1 kohm, the op amp-based buffer can supply the current required 
by the load. To continue to work with this example, consider the circuit of 
Figure 5.12a and calculate the voltage at RLOAD, when RLOAD = 1 Ω, 100 Ω, 
10 kΩ, 100 kΩ, and 1 MΩ, refer to Table 5.6 for the numerical answers of this 
example.

By Kirchhoff, the voltage at node A is

 V
V R R

R R R
A

input LOAD

LOAD

=
⋅

+
( / / )

( / / )
.2

1 2
 (5.34)

Plugging into Equation (5.34) 1 Ω, 100 Ω, 10 kΩ, 100 kΩ, and 1 MΩ we obtain 
Table 5.6.
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Figure 5.12  (a) Resistor divider loaded with a resistor at node A and no buffer amplifier, (b) 
resistor divider load with a resistor after buffering node A, with a voltage follower.
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Table 5.6  Load effect on circuit without and with buffering op amp

RLOAD (Ω)
VA (V); Figure 5.12a without 

Op Amp
Vo (V); Figure 5.12b with 

Op Amp

1 0.00998004 5.0
100 0.098039216 5.0

10,000 4.761904762 5.0
100,000 4.975124378 5.0

1,000,000 4.997501249 5.0

It is interesting to note that the larger the load resistance value is with 
respect to the values of the resistor dividers, when no buffer amplifier is used, 
then the better is the output voltage accuracy. For instance, for 1 MΩ load 
resistance, without using a buffer amp, the voltage across the load is quite close 
to 5 V. For 1 Ω, that is not the case; that is, 0.00998004 V is much lower when 
compared against the 5 V obtained using the buffer amplifier.
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5.4.4  The Inverting Adder

Figure 5.13 shows the circuit topology of an inverting adding amplifier. We 
only show a three-input circuit; however; the circuit can easily be generalized 
to n-inputs, where n is an integer. Let us analyze this circuit to determine the 
output voltage as a function of all the circuit resistors and the input voltages. 
We will do the analysis assuming that the op amp is ideal.

Since the op amp is ideal and the circuit has negative feedback, the voltage 
difference across the inverting and noninverting inputs of the op amp is zero 
(ΔV = V+ − V− = 0).

Additionally, since the input resistance of the op amp is infinite and using 
KCL we have that

 I I I IF1 2 3+ + = .  (5.35)

Now since the negative input of the op amp is virtually grounded, we have 
using Equation (5.35) and applying Ohms law to each circuit branch:
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+ + = − .  (5.36)

Figure 5.13  Three-input inverting adder amplifier.
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Doing some algebra on Equation (5.36) we obtain

 V R
R

V
R

V
R

Vo F= − + +





1 1 1

1
1

2
2

3
3 .  (5.37)

We usually prefer to make R1 = R2 = R3 = R so that Equation (5.37) becomes

 V
R
R

V V Vo
F= − + +( ).1 2 3  (5.38)

Equation (5.38) is also referred to as the inverting adder with constant gain 
output voltage, since the ratio RF/R is the same for all the inputs. When the input 
signals are audio frequency signals, the circuit is also called an audio mixer.

Example 5.6 Derive the output voltage equation of an n-input inverting 
adder with constant gain circuit. Assume the op amp is ideal.

Proceeding just like we did to obtain Equations (5.36)–(5.38), we simply 
generalize them to have n-inputs and obtain the following:
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+ + + + = −…  (5.39)
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3 � .  (5.40)

We usually prefer to make R1 = R2 = R3 = . . . = Rn = R so that Equation (5.40) 
becomes

 V
R
R

V V V Vo
F

n= − + + + +( ).1 2 3 �  (5.41)

Important note about inverting adders of any number of inputs:
In order for the inverting adder circuit to operate linearly and without satura-
tion, it is required that

 V R
R

V
R

V
R

V
R

VSAT F
n

n> + + + +
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2

3
3 � .  (5.42)

And when R1 = R2 = R3 = . . . = Rn = R, then

 V
R
R

V V V VSAT
F

n= + + + +( ) .1 2 3 �
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5.4.5  The Difference Amplifier

Figure 5.14 shows the circuit of an op amp-based difference amplifier. Let us 
analyze the circuit to calculate the output to inputs relationship of this 
amplifier.

First, let us note that the op amp has negative feedback, like all previous 
configurations did. The feedback is negative because the output is sampled 
and injected back into the inverting terminal of the op amp. Then assuming 
our op amp is ideal and since it has negative feedback, the ΔV or the voltage 
difference between the noninverting and inverting inputs is infinitely small or 
practically zero.

By inspection of Figure 5.14 we see that ΔV, which is the difference between 
node voltages B and A, is practically zero. So the voltage at node A is identical 
to the voltage at node B. We will refer to this voltage as VA. Moreover, it is 
easy to see that

 V V
R

R R
VA B= =

+
4

3 4
1.  (5.43)

The current that flows through resistor R1 is

 I V V RA1 2 1= −( ) / .  (5.44)

Figure 5.14  Op amp-based difference amplifier.
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Plugging the value of VA from Equation (5.43) into Equation (5.44) we obtain

 I
V

R
R R

V

R
1

2
4

3 4
1

1

=
−

+ .  (5.45)

Current I2 through resistor R2 is

 I V V RA o2 2= −( ) / .  (5.46)

Again plugging the value of VA from Equation (5.43) into Equation (5.46) we 
obtain

 I

R
R R

V V
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4

3 4
1 0

2

= +
−

.  (5.47)

Since I1 = I2, equating Equations (5.45) and Equation (5.47) we get
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Carefully doing the algebra on Equation (5.48) we obtain the output of the 
difference amplifier as a function of its two input voltages and resistors R1 
through R4:
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R R

R
R

R R
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Vo =
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 −1 2

1

4

3 4
1

2

1
2 .  (5.49)

Equation (5.49) is the difference amplifier transfer function when all resistors 
(R1 through R4) are different in value. Additionally, Equation (5.49) is the 
expression of the difference amplifier gain when the op amp is assumed to be 
ideal.

Ideal difference amplifiers only amplify the difference of the two input 
signals and fully reject the average of the sum of the two input signals, also 
referred to as the common mode input signal. This means that Equation (5.50) 
is nonzero and Equation (5.51) is zero for an ideal op amp-based difference 
amplifier.

 Differential input signal : V V Vidiff = −1 2  (5.50)

 Common mode input signal V V Vicm   1
2: ( ).1 2+  (5.51)

However, in the real world, difference amplifiers will not only amplify the 
differential mode input signal, but also the common mode signal to some 
extent.



318  THE OPERATIONAL AMPLIFIER AS A CIRCUIT ELEMENT 

The following equation is an expression of the output voltage produced by the 
presence of both types of gains, the differential and the common mode:

 V A V A Vo diff idiff cm icm= + .  (5.52)

It is important to note that the difference amplifier of Figure 5.14 is nonideal 
even if it is implemented with an ideal operational amplifier. Why is this so? 
Because a real difference amplifier, regardless of using an ideal or a real op 
amp, has both differential and common mode gains that are not zero. The 
common mode gain is different from zero due greatly to the resistor inaccura-
cies. Using the circuit of Figure 5.14 we can calculate the value of the common 
mode gain by injecting an input of the same polarity to both the inverting and 
noninverting inputs of the difference amplifier. Figure 5.15 depicts the com-
bined input signal to determine the difference amplifier common mode gain.

If the op amp used for the difference amplifier is ideal, again we have that 
the ΔV is zero, that is, node A and node B are at the same voltage level; 
however, the voltage at node A (and B) is not zero. Again making the usual 
assumptions about ideal op amps, we calculate the voltage at node B, as the 
one produced by the common mode input voltage Vicm and the resistor divider 
formed by R3 and R4 (Fig. 5.15):

Figure  5.15  Common mode input signal to determine the difference amplifier common 
mode gain.
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From the circuit of Figure 5.15 we see that

 I
V V

R
cm A

1
1

=
−

.  (5.54)

Plugging Equation (5.53) into Equation (5.54) we obtain
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We also have that
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And since I1 = I2, we get
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Doing some algebra on Equation (5.57) and expressing everything in terms of 
Vo/Vcm we get
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Equation (5.58) is the equation of the common mode gain of the difference 
amplifier.

Since we want a difference amplifier to have a zero common mode gain, so 
that it amplifies only differential signals and it eliminates common mode input 
signals. For the common mode gain to be zero, the right-hand side term of 
Equation (5.58) needs to be zero. This is achieved by having the following 
resistor ratios:

 
R
R

R
R

2

1

4

3

= .  (5.59)

When Equation (5.59) is met. the common mode gain of the difference ampli-
fier with an ideal op amp becomes zero. Thus:
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Example 5.7 Given a difference amplifier just like the one in Figure 5.14, 
determine the value of the differential mode gain, using Equation (5.52) as 
the condition that inhibits the common mode gain. Assume that the op amp 
is ideal.

So using the general expression for the difference amplifier gain from Equa-
tion (5.49), which we repeat here for the reader’s convenience is

 V
R R

R
R

R R
V

R
R

Vo =
+



 +





 −1 2

1

4

3 4
1

2

1
2 .  (5.61)

Equation (5.61) consists of differential and common mode gains. Doing some 
algebraic manipulations on Equation (5.61) we obtain
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Then, plugging the condition given by Equation (5.59) into Equation (5.62), 
we get an expression for the differential amplifier gain, rid of any common 
mode gain, thus:

 V
R
R

V Vo = −2

1
1 2( ).  (5.63)

Referring once more to Figure 5.14 note that V1 is the input to the noninvert-
ing side of the difference amplifier, while V2 is the input to the inverting side 
of the amplifier.

A closer look at Equation (5.63) reveals that the difference between V1 and 
V2 is amplified by the ratio of R2/R1. This ratio is called the difference amplifier 
gain. Remember that Equation (5.63) is valid when the condition given by 
Equation (5.59) is met.

Additionally, if

 R R R R1 2 3 4= = = ,  (5.64)

Equation (5.63) becomes

 V V Vo = −1 2 .  (5.65)

Equation (5.65) is the expression of the difference amplifier output voltage 
strictly as a function of the difference between voltages V1 and V2.

 A
V
V

cm
o

cm

= = 0.  (5.60)
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5.4.6  The Inverting Integrator

If we have an inverting amplifier configuration and replace the resistor in the 
feedback loop with a capacitor, the circuit obtained is an integrator. Figure 
5.16 depicts an integrator using an op amp. The output to input voltage ratio 
in the frequency domain is then

 V V
j C
R j RC

o /
/

.1
1 1

= − = −
ω

ω
 (5.66)

In the time domain and referring to Figure 5.16 we have that

 I I1 2= ,  (5.67)

where

 I V R1 1= /  (5.68)

and

 I C
dV
dt

o
2 = − .  (5.69)

Figure 5.16  Pure integrator circuit using an ideal op amp.
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Combining Equations (5.67) through (5.69 yields

 
V
R

C
dV
dt

o1 = − .  (5.70)

Integrating Equation (5.70) and expressing the output voltage Vo, the follow-
ing is obtained:

 V
RC

V dto = − ∫1
1 .  (5.71)

The Bode plots of an integrator given by Equation (5.66) are shown in Figure 5.17.
The integrator design frequency is fo = 1/2π RC where R and C are the 

values of the resistor and capacitor of the integrator circuit shown in Figure 
5.16. It is important to notice the difference between the op amp-based inte-
grator of Figure 5.16 and the first order RC LPF from Chapter 4, Figure 4.4. 
The op amp-based integrator has an infinite gain at DC or at zero frequency. 
The gain or magnitude decreases at a constant rate of 20 dB per decade. The 
first-order RC LPF integrator circuit, which has no op amp, has a 0 dB gain at 
frequencies below the integrator f0 cutoff frequency and the gain decays at a 
constant rate of 20 dB per decade above f0. Refer to this previously discussed 
circuit Bode plots in Figure 4.4. So what does this all mean in terms of practical 
operation of the integration? The op amp-based integrator has an infinite gain 
at DC, so if the input signal to be integrated is constant, the op amp will satu-
rate. That is the reason why op amp integrators implemented like in Figure 
5.16 are not quite that practical. One needs to add a semiconductor switch in 
parallel with the capacitor to reset the op amp output by discharging the 
capacitor, to let the integration restart. Another issue with the op amp-based 
integrator of Figure 5.16 is that any noisy signals below the integrator f0 fre-
quency become amplified more than the integrated frequency. We will shortly 
address a practical integrating op amp-based circuit that performs better than 
the one being presented and does not have the deficiencies just mentioned. It 
is also important to mention that the circuit of Figure 5.16 has a constant phase 
shift of −90° for all frequencies, whereas the first-order RC integrator does not 
(refer to Figure 4.4).

5.4.7  The Inverting Differentiator

If we have an inverting amplifier configuration and replace the resistor in the 
input path with a capacitor, the circuit obtained is a differentiator. Figure 5.18 
depicts a differentiator using an op amp. The output to input voltage ratio in 
the frequency domain is then

 V V j RCo i/ .= − ω  (5.72)
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Figure 5.17  Op amp-based pure integrator asymptotic Bode plots.
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In the time domain and referring to the differentiator of Figure 5.18 we have that

 I I1 2= ,  (5.73)

where

 I
V

j C

1
1

1
=

ω

 (5.74)
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and

 I
V
R

o
2 = − .  (5.75)

Combining Equations (5.74) and (5.75) according to Equation (5.73) it yields

 
V
V

j RCo

1

= − ω .  (5.76)

Equation (5.76) is the expression of a differentiator transfer function in the 
frequency domain. We will also determine the time domain equation of the 
differentiator output voltage. Again by referring to Figure 5.18 we see that 
I1 = I2. Since current I1 through the capacitor is

 I CdV dt1 1= /  (5.77)

and

 I V Ro2 = − / .  (5.78)

Combining Equations (5.77) and (5.78) we obtain the expression of the output 
voltage for the inverting differentiator:

 V RC
dV
dt

o = − 1 .  (5.79)

Figure 5.18  Pure differentiator circuit using an ideal op amp.
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The Bode plots of a differentiator derived from the frequency domain 
Equation (5.76) are shown in Figure 5.19.

The differentiator frequency is f0 = 1/2π RC where R and C are the values 
of the resistor and capacitor of the differentiator circuit shown in Figure 5.18. 
It is important to notice the difference between the op amp-based differentia-
tor of Figure 5.18 and the first-order RC HPF differentiator from Chapter 4, 

Figure 5.19  Asymptotic Bode plots of a pure differentiator.
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Figure 4.10. The op amp-based differentiator has a negative infinite gain at 
DC. The gain or magnitude increases at a constant rate of 20 dB per decade 
of frequency. The first-order RC HPF differentiator circuit (Chapter 4, Fig. 
4.10), which has no op amp, has a negative gain that increases at 20 dB per 
frequency decade from very low frequencies up until the filter cutoff fre-
quency. Above this frequency, the op amp-less differentiator gain is 0 dB. Refer 
to the previously discussed circuit in Chapter 4, Figures 4.10 and 4.12. So what 
does this all mean in terms of practical operation of the differentiator? The 
op amp-based differentiator of Figure 5.18 actually will not work properly. 
Why? Because the gain at higher frequencies becomes extremely large; in fact, 
this high frequency gain is so large that any noisy or unwanted signals of a 
frequency higher than that of the signal that we intend to differentiate over-
whelms the output of the op amp, effectively saturating it, and the op amp may 
even oscillate from rail to rail. To make the circuit of Figure 5.18 work, one 
has to limit the gain of the differentiator at very high frequencies. The imple-
mentation of such circuit, which will be used as a practical differentiator as 
well as an integrator, is discussed in the next section.

5.4.8  A Practical Integrator and Differentiator Circuit

We already discussed the reasons why the integrator circuit of Figure 5.16 and 
the differentiator circuit of Figure 5.18 will not operate properly. We summa-
rize those results again. The integrator has an infinite gain at DC and thus it 
saturates the op amp output when a DC level is integrated for some finite 
time. The differentiator has an infinite gain for infinitely high frequencies, thus 
causing any high frequency unwanted signals to saturate the op amp and 
masking the differentiated signals of interest.

A practical solution to mitigate both of those problems is to limit the gain 
of the integrator at low frequencies and to limit the gain of the differentiator 
at very large frequencies. The circuit that does just that is depicted in Figure 
5.20. Its corresponding asymptotic and exact Bode plots are presented in 
Figures 5.21 and 5.22, respectively.

The circuit in Figure 5.20 shapes the gain characteristics at low frequencies 
and at high frequencies. Refer once more to Figures 5.21 and 5.22. These 
figures show a fairly constant band-pass gain characteristic of 20 dB between 
cutoff frequencies f2 and f3. It behaves as a differentiator for all those signals 
of frequencies at f1 and below, and it behaves as an integrator for those fre-
quencies at f4 and above. The cut-off frequencies are the −3 dB gain frequen-
cies, for this particular example f2 = 100 Hz and f3 = 10 kHz. Frequency range 
f2 through f3 defines the circuit mid-frequency band.

In other words our circuit combines the differentiating and integrating 
characteristics of both pure differentiator and pure integrator, and provides a 
flat gain band-pass characteristic at mid frequencies. Frequencies below f1 are 
attenuated at a rate of +20 dB/decade. Frequencies above f4 are attenuated at 
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a rate of −20 dB/decade. At mid-band frequencies the gain is quite constant 
and it is 20 dB. Such gain is mainly determined by the ratio of R2 over R1.

In a general sense our practical circuit is designed such that at frequencies 
f2 through f3 the ratio of the impedance module of R2 in parallel with C2 over 
the impedance module of the series of R1 and C1 is 10, thus a 20 dB gain. 
Capacitor C1 and resistor R2 determine f1 at 0 dB gain, the high end of the 
differentiating frequency range. C2 and R1 determine f4 at 0 dB, and it is the 
low end or the beginning of the integrating frequencies.

Our practical circuit phase behavior ranges from −90° at low frequencies 
to +90° at high frequencies. Now since the op amp produces a −180° phase 
shift, the overall circuit phase spans from −90° (+90° to 180°) from very low 
frequencies down to −270° (−90° to 180°) at high frequencies. The −180° phase 
shift is caused by the negative sign of the op amp-based inverting configuration 
output voltage over input voltage transfer function, that is, Vo /Vin = −R2/R1.

We can see that the topology of the circuit of Figure 5.20 is that of an invert-
ing amplifier where

 Z

R
j C

2

2
2

1
1

=
+ ω

 (5.80)

Figure 5.20  A practical differentiator, integrator, and band-pass filter circuit schematics.
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Figure 5.21  Asymptotic Bode plots of a practical differentiator, integrator, and band-pass filter.
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and

 Z R
j C

1 1
1

1
= +

ω
.  (5.81)

The transfer function of the circuit of Figure 5.20 is
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= − .  (5.82)

Using Equations (5.80) and (5.81) in Equation (5.82) we obtain
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Doing some algebraic manipulations with Equation (5.83) we arrive at

 V V
j R C

j R C j R C
o in/

( )( )
.= −

+ +
ω

ω ω
2 1

2 2 1 11 1
 (5.84)

Equation (5.84) has one zero at the origin in the numerator and two zeros on 
the denominator. Numerator zeros are simply referred to as zeros of the trans-
fer function. Denominator zeros are referred to as poles of the transfer 
function.

Figure 5.22  Exact Bode plots of a practical differentiator, integrator, and band-pass filter. See 
the Appendix to this chapter for a larger version.
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Example 5.8 Design a pass band amplifier that has the following characteristics:

(a) Pass band gain = 20 dB
(b) 0 dB gain and end of differentiation at f1 = 10 Hz
(c) Low cutoff frequency f2 = 100 Hz
(d) High cut-off frequency f3 = 10 kHz
(e) 0 dB gain and beginning of integration at 100 kHz

Assume you can use an ideal op amp.
The circuit topology is just like the circuit shown in Figure 5.20.
From Equations (5.88)–(5.90) and the given characteristics of the desired 

band pass amplifier with combined differentiating and integrating properties, 
we have the following:

 f / R C1 2 11 2 10= =π Hz  (5.91)

 f / R C2 1 11 2 100= =π Hz  (5.92)

 f R C f R C3 2 2 4 1 21 2 10 1 2 100= = = =/ / .π πkHz and kHz  (5.93)

We can rewrite Equation (5.84) using the following definitions:

 ω1
2 1

1
=

R C
 (5.85)

 ω2
1 1

1
=

R C
 (5.86)

 ω ω3
2 2

4
1 2

1 1
= =

R C R C
and  (5.87)

where ω1 = 2πf1, ω2 = 2πf2, ω3 = 2πf3, and ω4 = 2πf4 thus,

 f R C1 2 11/2= π  (5.88)

 f R C2 1 11/2= π  (5.89)

 f R C f R C3 2 2 4 1 21/2 and 1/2= =π π  (5.90)

We can plot Equation (5.84) either by writing a computer program that cal-
culates the magnitude and the phase of Equation (5.84) or using the asymp-
totic Bode plot methodology. We have to keep in mind that Equation (5.88) 
is the frequency at which the transfer function magnitude has 0 dB gain and 
the differentiation in the time domain ends. Equation (5.89) is where the first 
pole of the transfer function is placed, and f3 (in Eq. ((5.90)) is where the 
second pole of the transfer function is placed. Finally, f4 is the frequency at 
which the gain is 0 dB and integration begins.

We will go over a numerical example to clarify the generation of the trans-
fer function given by Equation (5.84).
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Important Points 
The differentiating frequencies of the amplifier are at and below f1 (10 Hz 

and below).
The band pass flat gain of 20 dB is between f2 = 100 Hz and f3 = 10 kHz.
The integrating frequencies of the amplifier are at and above f4 (100 kHz 

and above).
The current circuit topology will work as a differentiator, a band pass 

amplifier, and an integrator in the three different frequency ranges discussed 
above (see Figs. 5.21 and 5.22).

5.5  OP AMPS NONLINEAR APPLICATIONS

The most significant and widely used nonlinear application using op amps is 
when op amps operate in open loop. The op amp under such operation is 
referred to as a comparator, and op amp manufacturers optimize op amp 
parameters to operate them as comparators. So it is common for IC manufac-
turers to sell op amps and comparators. So what is a comparator? A compara-
tor is designed to operate in open loop; its output swings between specified 
upper and lower limits. A very desirable feature is that the comparator wants 
to be fast to swing its output upon a detected voltage difference at its inputs. 
Usually comparators do not have internal compensating capacitors. On the 
other hand, op amps have internal compensating capacitors. The lack of com-
pensation capacitors allows comparators to be faster than op amps. Op amps 
are designed to be accurate and stable; op amps have good DC and AC behav-
ior. On a final note, most comparators have an open collector or open drain 

The mid-band frequency gain of our amplifier has to be 20 dB. This means  
that the amplifier closed loop gain has to be 10. Arbitrarily, we can choose 
R2 = 10 kΩ, thus R1 must be 1 kΩ, thus 20 log10 (10) = 20 dB. Using these 
values for R1 and R2 in Equations (5.91)–(5.93) we obtain

 C1 1 59= . µF  (5.94)

 C .2 1 59= . nF  (5.95)

Also remember that

 R1 1= kΩ  (5.96)

and

 R .2 10= kΩ  (5.97)

Figure 5.22 shows exact Bode magnitude and phase plots of the transfer func-
tion given by Equation (5.84) using the numerical values given by Equations 
(5.94) through (5.97).
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output; this means that its output can be connected to supply levels that may 
not necessarily be those of the comparator power supplies. This flexibility 
allows an easier interface of comparators to digital circuits.

5.5.1  The Open-Loop Comparator

The comparator is typically used in open-loop mode to compare when the 
signal level at the one of the inputs is greater or smaller that the signal level 
at the other input terminal. Since a comparator gain is very high, just like that 
of an open-loop op amp, upon detecting a difference between its inputs, the 
output will swing to the positive rail when V+ > V−. The output will swing to 
the negative rail when V− > V+. V+ refers to the input signal at the noninvert-
ing input of the comparator. V− is the signal at the inverting input of the 
comparator. Figure 5.23 shows a comparator operating with its inverting input 
tied to ground and an arbitrary waveform at its noninverting input. Note that 
when the input signal at the positive input is above zero the comparator output 
swings to its positive rail.

The output swings to the negative rail when the noninverting input signal 
is negative or below ground.

Figure 5.23 assumes that the comparator output used is very fast when 
reacting to a change of the noninverting input. Such circuit is called a nonin-
verting zero-crossing detector. Note that since the inverting input of the com-
parator is grounded, it is at 0 V; every time the noninverting input is above 
zero, the output of the comparator saturates toward the positive rail, otherwise 
it saturates to the negative rail. We can easily design an inverting zero-crossing 
detector by swapping the inputs to the comparator of Figure 5.23. This means 
tying the ground to the noninverting input and connecting the input signal Vin 
to the inverting input.

5.5.2  Positive and Negative Voltage-Level Detectors  
Using Comparators

5.5.2.1  Positive Level Detectors  Let us assume that we want to detect 
when a signal Vin is above a positive DC voltage level, which we will refer to 
as VREF. Let us also assume that every time signal Vin is above VREF, we want 
the output of the comparator to indicate this with a high output level at Vout. 
Figure 5.24 shows a possible implementation of such circuit.

Note that the reference voltage VREF is connected to the inverting input of 
the comparator. The input signal Vin is tied to the noninverting input of the 
comparator. The comparator shows its positive and negative power supply 
levels. For simplicity, the decoupling capacitors are not shown. Let us see how 
this circuit works; each time Vin is greater than VREF, the comparator output 
will saturate to the positive +VSAT level. When Vin is less than VREF the com-
parator output will saturate at the negative −VSAT level. Although Figure 5.24 
shows a sinusoidal waveform for Vin, there is no restriction on waveform Vin, 
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Figure 5.23  Open-loop comparator operation with grounded inverting input.
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it can be a saw-tooth, an exponential or even a piece-wise linear waveform. 
The positive-level detector of Figure 5.24 is referred to as a noninverting 
detector because the comparator output signals with a high level Vout at +VSAT 
when the input signal Vin is greater than the reference voltage. This is the 
simplest and most straightforward variation of the four types of level detectors 
that we will study in this section. When confused with the subsequent detector, 
make sure that you always come back to the one described by Figure 5.24. 
This will let one understand the concepts more easily than any of the other 
three will. The inverting positive-level detector is implemented in Figure 5.25. 
Note that the input signal is now applied to the inverting input of the compara-
tor, while the reference voltage is applied to the noninverting input.

Figure 5.24  Noninverting positive-level detector.
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5.5.2.2  Negative-Level  Detectors  Just like there are two polarities of 
positive-level detectors, that is, inverting and noninverting, there are also two 
kinds of negative-level detectors. Negative level refers to the sign of the voltage, 
to which the input signal is being compared. Figure 5.26 depicts a noninverting 
negative-level voltage detector. Vin the input signal is applied to the positive 
input of the comparator, while the negative input of the comparator has a 
negative reference voltage. Note that VREF negative terminal is connected to 
the comparator inverting input, while the positive terminal of VREF is grounded.

Finally, for the inverting level negative edge voltage level detector, VREF and 
Vin are swapped. Figure 5.27 depicts the inverting negative voltage-level detec-
tor. Note that when Vin is above the negative reference level (–VREF), the 
output of the comparator is at −VSAT.

Figure 5.25  Inverting positive-level detector.
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Summary of Voltage Level Detectors:

1. Noninverting positive-level detector (see Fig. 5.24)
2. Inverting positive-level detector (see Fig. 5.25)
3. Noninverting negative-level detector (see Fig. 5.26)
4.  Inverting negative-level detector (see Fig. 5.27)

5.5.3  Comparator with Positive Feedback (Hysteresis)

Comparators work well in open-loop mode if the signal Vin at its input varies 
rapidly and it is not noisy. However, if a noisy input signal Vin is present, there is 

Figure 5.26  Noninverting negative voltage-level detector.
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a good opportunity for the open-loop comparator to oscillate once or more times 
before settling on its steady state either +VSAT or −VSAT output voltage level. 
Figure 5.28 shows a comparator operating in open-loop; the input signal has on 
top of it a noisy signal of much higher frequency than the input. We can observe 
that before the output settles to its final and correct value, the comparator  
output oscillates momentarily; this is referred to as chattering. A straightforward 
way of significantly reducing or eliminating this problem is to provide a little bit 
of positive feedback from the comparator output back into its positive input.

Taking a fraction of the output voltage and feeding it back to the noninvert-
ing input of the comparator provides positive feedback into the comparator. 

Figure 5.27  Inverting negative voltage-level detector.
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Figure 5.29 shows a comparator with resistors R1 and R2 that provide positive 
feedback. The circuit is configured as a noninverting zero voltage-level detec-
tor. Let us understand how the resistors provide hysteresis to the circuit.

The upper threshold voltage is the output voltage times the resistor divider 
formed by R1 and R2. Thus,

 V
R

R R
VUT SAT=

+
2

1 2

.  (5.98)

Figure 5.28  Comparator operating in open-loop mode that exhibits chattering.
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Figure 5.29  Comparator with hysteresis eliminates chattering.
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When the comparator output voltage is equal to +VSAT the upper threshold 
voltage given by Equation (5.98) is a fraction of VSAT. If Vin plus any noisy and 
unwanted components are present and are in absolute magnitude smaller that 
VUT, the comparator snaps to +VSAT and will get locked at +VSAT. As Vin 
decreases below 0 V (the ground level) +VSAT will eventually snap out of +VSAT 
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and will switch to −VSAT. Now −VSAT produces a voltage called the lower thresh-
old, which is equal to

 V
R

R R
VLT SAT= −

+
2

1 2

.  (5.99)

The noise on top of Vin is still smaller in magnitude that the VLT. The compara-
tor output locks up at −VSAT now. As the input continues to decrease well below 
ground, the output of the comparator stays at −VSAT. Not until Vin grows above 
ground the whole cycle repeats itself indefinitely. Every time the comparator 
output locked up to either +VSAT or −VSAT, the undesirable chattering seen in 
the open-loop case of the previous section has been eliminated. Figure 5.29 
shows a comparator with hysteresis.

Example 5.9 Given a 100 Hz triangular waveform, and assuming that noise 
signals of ±10 mV can be riding on the signal, design the hysteresis circuit 
divider to avoid chattering of the combined signal plus noise on a noninverting 
zero voltage detector. Let us assume that the positive and negative supplies 
of the comparator are respectively + and −15 V. Also assume that you checked 
the comparator data sheet and the + and −VSAT voltages are respectively + and 
−14 V.

Choosing R2 = 100 kΩ and R1 = 100 Ω, using these values in Equations 
(5.98) and (5.99) we find that

 V
R

R R
V

k
k

UT SAT=
+

=
+

≅2

1 2

100
100 100

14 14
Ω

Ω Ω
V mV  (5.100)

and

 V
R

R R
V

k
k

LT SAT= −
+

= −
+

≅ −2

1 2

100
100 100

14 14
Ω

Ω Ω
V mV.  (5.101)

The total hysteresis voltage, or the voltage range for which the error on the 
signal is eliminated, is given by

 V V VH UT LT= − = 28 mV.  (5.102)

Note that when the input signal goes above the upper threshold, the output 
voltage drops down to –VSAT. The peak-to-peak noise voltage on the input 
signal has to be greater than or equal to 28 mV (the hysteresis voltage given 
by Equation (5.102)), to pull the input signal below the lower threshold and 
cause a false zero crossing. So as long as the peak-to-peak noise on top of the 
input signal does not exceed the hysteresis voltage range (VH), the false cross-
ing will not occur. Since for this example we are told that the peak-to-peak 
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5.6  OPERATIONAL AMPLIFIERS NONIDEALITIES

The actual electrical characteristics of real op amps are more complicated than 
those of the idealized op amp. The op amp is implemented with either bipolar 
or JFET transistors. The basic op amp consists of three main stages cascaded 
one after the other. The input stage is a transistorized differential stage, a level 
shifting stage follows the first stage and the last stage is an output stage that 
performs a differential to single ended output conversion. Differential signals 
come in pairs; there is a noninverted signal and an inverted signal to carry 
information over two separate wires. This provides to the signal better noise 
immunity; this is to say that the signals are more protected against noise or 
unwanted signals. Single ended signals are referenced with respect to ground 
and do not have as good noise immunity as differential signals do.

The differential input stage of the op amp has imperfections due to the fact 
that it is impossible to fabricate perfectly matched transistors. The currents in 
or out of the inverting and noninverting inputs are not really zero. They are 
nonzero and but small in magnitude, and they are referred to as the bias cur-
rents. There is an IB+ (positive input bias current) and an IB- (negative input bias 
current). We will model this behavior of the input stage of the op amp with to 
current sources of values IB+ and IB-. Figure 5.30 shows the model of a real op 
amp with the imperfections that we describe throughout this entire section. It is 
important to say that such bias currents are not only nonzero, but also they are 
not equal to each other and may flow in or out of their respective op amp input. 
The magnitude of the difference of the positive and negative bias current is 
referred to as the offset current (IOS). The numerical value of the offset current 
generally is a fraction of the bias current. A voltage source models the offset 
voltage of the amplifier. The offset voltage (VOS) of the op amp is the voltage 
that is required to apply across its inputs to obtain a 0 V output with the op amp 
in an open-loop condition. Differential impedance appears across both op amp 
inputs and common mode impedance appears between the inputs and ground. 
This impedance models the finite common mode the real op amp has. Figure 
5.30 depicts an op amp model with some real electrical parameters.

The input stage has two AC current sources (IN) and an AC voltage source 
(VN) that model noise components that unavoidably exist in the op amp. 
Finally, for the input imperfections, we have to mention that both bias currents 
and offset voltages vary or drift with temperature variations. Manufacturers 
usually specify these parameters at one temperature, for example, at 25°C and 
at a range of temperatures, such as −40°C to 85°C.

Let us now talk about the output stage of the real op amp. The output of 
the op amp has a nonzero and finite output resistance (Ro), which is modeled 

noise can be up to 20 mV and since the comparator hysteresis was designed 
to tolerate 28 mV of peak-to-peak noise, we still have a positive margin over 
the required immunity to noise.
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Figure 5.30  Model of a real operational amplifier.
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in series with the output generator AOL (Fig. 5.30). Generator AOL models the 
finite nature of the op amp open-loop gain. In actuality AOL is really large, but 
it is not infinite. The op amp open-loop gain is also a function of frequency, 
and it is usually modeled with a capacitor hanging from the output of the op 
amp to ground. This RC network at the output of the op amp is also referred 
to as the op amp single pole approximation. The op amp manufacturer speci-
fies the device behavior with frequency with the open-loop gain bandwidth 
and with the op amp gain-bandwidth product. Both of these parameters model 
the frequency behavior of the op amp under small signal excitation. A small 
signal for an op amp is a signal whose amplitude is about one order of mag-
nitude smaller that its supply voltage. For large signal operation, the slew-rate 
of the op amp determines how fast the op amp can react to changes. Slew is 
usually specified in volts per microsecond. A slow op amp may have a 0.5 V/µs 
slew-rate, while a high speed one may have a 6000 V/µs slew-rate.

There are a few more real parameters of an op amp such as common mode 
rejection ratio (CMRR), which provides information as to how much common 
mode signals become attenuated, by the op amp. CMRR is also a frequency-
dependent parameter. Power supply rejection ratio specifies how sensitive the 
op amp operation is to variation of it power supply rails. This section intends 
to cover some of the most fundament imperfections that most op amp manu-
facturers specify. Beware that this list is not complete and there are manufac-
turers that provide more or less complete data sheet specifications for their 
devices. Table 5.7 summarizes some commonly specified op-amp parameters.

5.7  OP AMP SELECTION CRITERIA

Op amps are generally classified by the following characteristics:

1. DC parameters (offset voltage, bias and offset currents, and their drift 
with temperature) as precision op amps,

2. Low noise,
3. Speed (gain-bandwidth product and slew-rate),
4. Single or dual rail power supply,
5. Single, dual, or quad (1, 2, or 4 amplifiers) in a package,
6. Rail-to-rail output voltage swing,
7. Maximum common mode input voltage, low power consumption.Ulti-

mately most manufacturers provide online tools to their customers to 
select any of their op amps by a selection of any number and combina-
tion of parameters offered by the manufacturer. Other characterizations 
exist; just a few of the most popular ones were listed above.

Why can’t we have all of the parameters optimized and not worry about select-
ing op amps? The reason is that improving some op amp parameters imposes 
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Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

(Note 7)

LM741A LM741 LM741C

Supply Voltage ±22V ±22V ±18V

Power Dissipation (Note 3) 500 mW 500 mW 500 mW

Differential Input Voltage ±30V ±30V ±30V

Input Voltage (Note 4) ±15V ±15V ±15V

Output Short Circuit Duration Continuous Continuous Continuous

Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C

Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C

C˚001C˚051C˚051erutarepmeTnoitcnuJ

Soldering Information

N-Package (10 seconds) 260˚C 260˚C 260˚C

J- or H-Package (10 seconds) 300˚C 300˚C 300˚C

M-Package

Vapor Phase (60 seconds) 215˚C 215˚C 215˚C

Infrared (15 seconds) 215˚C 215˚C 215˚C

See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of
soldering

surface mount devices.

ESD Tolerance (Note 8) 400V 400V 400V

Electrical Characteristics (Note 5)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage TA = 25˚C

RS ≤ 10 kΩ 1.0 5.0 2.0 6.0 mV

RS ≤ 50Ω Vm0.38.0

TAMIN ≤ TA ≤ TAMAX

RS ≤ 50Ω Vm0.4

RS ≤ 10 kΩ 6.0 7.5 mV

C˚/Vµ51tesffOtupnIegarevA

Voltage Drift

Input Offset Voltage TA = 25˚C, VS = ±20V ±10 ±15 ±15 mV

Adjustment Range

Input Offset Current TA An0020200202030.3C˚52=

TAMIN ≤ TA ≤ TAMAX 70 85 500 300 nA

C˚/An5.0tesffOtupnIegarevA

Current Drift

Input Bias Current TA An00508005080803C˚52=

TAMIN ≤ TA ≤ TAMAX 0.210 1.5 0.8 µA

Input Resistance TA = 25˚C, VS = ±20V 1.0 6.0 0.3 2.0 0.3 2.0 MΩ
TAMIN ≤ TA ≤ TAMAX M5.0, Ω
VS = ±20V

Input Voltage Range TA = 25˚C ±12 ±13 V

TAMIN ≤ TA ≤ TAMAX ±12 ± V31

LM
74

1

Table 5.7  Real op amp parameters (National LM741, reproduced with permission of Texas 
Instruments Incorporated)
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Electrical Characteristics (Note 5) (Continued)

Parameter Conditions LM741A LM741 LM741C Units

Min Typ Max Min Typ Max Min Typ Max

Large Signal Voltage Gain TA = 25˚C, RL ≥ 2 kΩ
VS = ±20V, VO = ± Vm/V05V51

VS = ±15V, VO = ± Vm/V0020200205V01

TAMIN ≤ TA ≤ TAMAX,

RL ≥ 2 kΩ,

VS = ±20V, VO = ± Vm/V23V51

VS = ±15V, VO = ± Vm/V5152V01

VS = ±5V, VO = ± Vm/V01V2

Output Voltage Swing VS = ±20V

RL ≥ 10 kΩ ± V61

RL ≥ 2 kΩ ± V51

VS = ±15V

RL ≥ 10 kΩ ±12 ±14 ±12 ±14 V

RL ≥ 2 kΩ ±10 ±13 ±10 ±13 V

Output Short Circuit TA = 25˚C 10 25 35 25 25 mA

TtnerruC AMIN ≤ TA ≤ TAMAX Am0401

Common-Mode TAMIN ≤ TA ≤ TAMAX

Rejection Ratio RS ≤ 10 kΩ, VCM = ± Bd09070907V21

RS ≤ 50Ω, VCM = ± Bd5908V21

Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX,

VoitaR S = ±20V to VS = ±5V

RS ≤ 50Ω Bd6968

RS ≤ 10 kΩ 77 96 77 96 dB

Transient Response TA = 25˚C, Unity Gain

sµ3.03.08.052.0emiTesiR

%55020.6toohsrevO

Bandwidth (Note 6) TA zHM5.1734.0C˚52=

Slew Rate TA = 25˚C, Unity Gain 0.3 0.7 0.5 0.5 V/µs

Supply Current TA Am8.27.18.27.1C˚52=

Power Consumption TA = 25˚C

VS = ± Wm05108V02

VS = ± Wm58055805V51

LM741A VS = ±20V

TA = TAMIN Wm561

TA = TAMAX Wm531

LM741 VS = ±15V

TA = TAMIN Wm00106

TA = TAMAX Wm5754

Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
functional, but do not guarantee specific performance limits.

LM
741

Table 5.7  (Continued )
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Electrical Characteristics (Note 5) (Continued)
Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj  
max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD).

Thermal Resistance Cerdip (J) DIP (N) HO8 (H) SO-8 (M)

θjA (Junction to Ambient) 100˚C/W 100˚C/W 170˚C/W 195˚C/W

θjC (Junction to Case) N/A N/A 25˚C/W N/A

Note 4: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 5: Unless otherwise specified, these specifications apply for VS = ±15V, −55˚C ≤ TA ≤ +125˚C (LM741/

specifications are limited to 0˚C ≤ TA ≤ +70˚C.
Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs).
Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.
Note 8: Human body model, 1.5 kΩ in series with 100 pF.

Schematic Diagram

LM
74

1

NON-INVERTING
INPUT

INVERTING
INPUT

OFFSET
NULLOFFSET NULL

C1
30 pF

OUTPUT

R9
25

R5
39 K

Q14

V+

V–

00934101

Q15

Q15

Q17

Q22Q11
Q10Q6

5

Q5

1

Q7

Q4

Q8 Q9 Q12

Q3

Q1 Q2
23

Q20

4

Q13

R7
4.5 K
R8

7.5 K

R10
50

6

R11
50

R12
50 K

R2
1 K

R3
50 K

R1
1 K

R4
5 K

LM741A).  For the LM741C/LM741E, these

Table 5.7  (Continued )
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technological trade-offs. For example, if we want a high-precision op amp with 
excellent DC parameters and low drift, it will usually not be as fast as an op 
amp optimized for speed. Unfortunately, it is beyond the scope of this book 
to get into the op amp integrated circuit design techniques that address such 
issues in detail.

It is important for the reader to be aware that not all manufacturers publish 
the exact same list of parameters. There are various reasons for that; one of 
them is the cost of testing the op amps to guarantee every parameter pub-
lished. Also not all manufacturers abbreviate or use the same nomenclature 
for the op amp parameters. It is the job of the op amp user to read very care-
fully how each manufacturer defines their parameters. For example, for some 
op amps, you may have a list of the most important parameter like input offset 
voltage, bias current, offset current, open-loop-gain, and so on, defined with 
typical, minimum, and maximum values at room temperature, most commonly 
25°C/77°F and for +/−15 V power supplies. Then they publish the exact same 
list of parameters previously mentioned which are valid for their entire operat-
ing temperature range, for example, from −40°C to +85°C for +/−15-V power 
supplies. The important message here is that when one compares op amp or 
comparator parameters from different manufacturers, it is imperative to read 
each manufacturer’s data sheet very carefully, and become aware of the condi-
tions under which such parameters are being specified. Table 5.7 reproduces 
an LM741 op amp real data-sheet.

5.8  SUMMARY

This chapter is an overview of some of the most commonly used op amp-based 
circuits. Generally speaking, circuit designers use the op amp transfer func-
tions derived, assuming the op amp is an ideal element. Most times that is 
correct for most routine applications. A routine application is one that is not 
high-precision demanding, or very high speed, or extremely low noise for 
example. However, when one designs highly sophisticated op amp applica-
tions, more care has to be paid and use the op amp model with the parameters 
that are most important for such application. One should model op amps 
introducing most important electrical parameters for the application. As an 
example, if one is interested in a high DC precision application, offset voltage, 
current, and bias currents should be introduced into the model; however, 
parameters like the gain-bandwidth product is certainly not important because 
the signals we are dealing with are DC signals. Conversely, if we have a very 
high speed, AC-coupled op amp application, certainly gain-bandwidth product 
is of utmost importance, while DC parameters are not important. Why are  
DC parameters not important? Because if an op amp is AC-coupled, that 
means that the input signals into the op amp as well as the output signal are 
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capacitively coupled to their respective front-end and back-end stages, thus 
blocking the DC and AC errors due to offsets.
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4. Hank Zumbahlen, ed., Basic Linear Design, Analog Devices, Norwood, MA, 2007.

PROBLEMS

5.1 Mention five ideal operational amplifier parameters.

5.2 Using linear-dependent current or voltage-controlled sources, establish 
models for the following linear amplifiers:
(a) Voltage amplifier
(b) Current amplifier
(c) Trans-conductance amplifier
(d) Trans-resistance amplifier

5.3 Explain in your own words why a voltage amplifier features Ri → ∞, 
Ro = 0, and A v vv o i= / . 

5.4 Explain in your own words why a current amplifier features Ri = 0, 
Ro → ∞, and A i io iI = / .

5.5 Explain in your own words why a trans-conductance amplifier features 
Ri → ∞, Ro → ∞, and A i VG o i= / .

5.6 Explain in your own words why a trans-resistance amplifier features 
Ri = 0, Ro = 0, and A v iR o i= / .

5.7 Design an ideal op amp-based amplifier that has a gain of −2; draw the 
circuit.

5.8 Implement an ideal op amp-based circuit that produces the following 
arithmetic operation:

 V V Vout = − +1 23 .  (5.103)

In Equation (5.103) V1 or −V1 can be used as an input voltage, so is V2, 
but not (3 V2). Implement the circuit with the smallest number of op 



PROBLEMS  349

amps and explain why you can, or cannot implement it differently (i.e., 
with more or less op amps).

5.9 Assume that you have an op amp-based inverting amplifier; assume 
that the op amp used is ideal except for its gain. Complete Table 5.8 
knowing the op amp open-loop gain and the ideal op amp-based invert-
ing amplifier CLG. Refer to Table 5.8’s first and second columns from 
the left.

5.10 For the circuit given in Figure 5.31, calculate the value of the output 
voltage VOUT. Assume an ideal op amp.

5.11 For the circuit given in Figure 5.32, calculate the value of the output 
voltage VOUT. Assume an ideal op amp.

5.12 Assume that you have an op amp in buffer amplifier configuration. The 
buffer CLG is 1 assuming an ideal op amp. Now assume the open-loop 
gain of the op amp (AOL) is finite. For finite open-loop gains of 103, 104, 
105, and 106 determine the CLG of the buffer amplifier and the relative 
error in ppm (parts per million).

5.13 Implement with the smallest possible number of ideal op amps the fol-
lowing analog expression:

 V K V K V dt K
dV
dt

out = + +∫1 1 2 2 3
3 ,  (5.104)

where K1, K2, and K3 in Equation (5.103) are arbitrary constants. V1, V2, 
and V3 are input voltages that vary with respect to time, and Vout is the 
total output voltage as shown by Equation (5.104). Hint: It is fine to use 
resistors and capacitors in addition to the op amps.

Table 5.8  Table for Problem 5.9: inverting amplifier with finite AOL

Open-Loop 
Gain (AOL)

Ideal Closed-
Loop Gain 

(AOL → ∞) (dB)

Closed-Loop Gain 
(CLG) Accounting 

for Finite AOL

Absolute 
Error = 

CLG − ICLG

Relative Error = 
(CLG − ICLG) × 

100/CLG (%)

1000 −2
10,000 −2

100,000 −2
1,000,000 −2

1,000 −20
10,000 −20

100,000 −20
1,000,000 −20
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Figure 5.31  For Problem 5.10.
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Figure 5.32  For Problem 5.11.
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Figure 5.33  For Problem 5.15.
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5.14 Find an alternate manner, also using ideal op amps, of implementing 
Equation (5.104). Hint: It is fine to use resistors and capacitors in addi-
tion to the op amps.

5.15 Given the circuit of Figure 5.33 calculate (a) Vout, (b) VA, (c) VB, (d) VC, 
(e) VD, (f) VE, (g) I1, (h) I2, (i) I3, and (j) I4. Assume ideal op amps. Do 
not change the assumed directions for the currents.

5.16 Given the circuit of Figure 5.34 determine the circuit transfer function: 
Vout (jω)/Vin (jω). Note: Express the final transfer function as a ratio of 
binomials with zeros and poles. Zeros are referred to as the numerator 
roots or zeros. Poles are referred to as the denominator roots or zeros.

5.17 For the circuit of Figure 5.34 assume the following component values: 
R1 = 1 kΩ, C1 = 1 µF, R2 = 10 kΩ, and C2 = 100 pF. Draw the asymptotic 
magnitude and phase Bode plots from 1 Hz to 1 MHz.

5.18 For the circuit of Figure 5.34 assume the following component values: 
R1 = 1 kΩ, C1 = 1 µF, R2 = 10 kΩ, and C2 = 100 pF. Draw the exact mag-
nitude and phase Bode plots from 1 Hz to 1 MHz. Only calculate mag-
nitude and phase values for 1 Hz, 10 Hz, . . . , 1 MHz.
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Figure 5.34  For Problems 5.16, 5.17, and 5.18.
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Figure 5.35  For Problem 5.19.
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5.19 For the circuit of Figure 5.35 determine (a) Vout for Vin = −1 V, (b) Vout 
for Vin = 0 V, (c) Vout for Vin = 1 V, (d) Vout for Vin = 2 V, (e) Vout for 
Vin = 3 V. (f) Also for all five cases (a) through (e), calculate the voltage 
difference: Vin − VREF.

5.20 Research problem: Using Web sites of some op amps and comparator 
manufacturers, determine the fundamental differences between real-life 
operational amplifiers and comparators. Examples of some manufactur-
ers are: http://www.linear.com, www.intersil.com, http://www.ti.com, and 
http://www.analog.com

http://www.linear.com
http://www.intersil.com
http://www.ti.com
http://www.analog.com
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