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8
DIGITAL DESIGN  

BUILDING BLOCKS  
AND MORE ADVANCED 

COMBINATIONAL CIRCUITS

8.1  COMBINATIONAL CIRCUITS WITH MORE THAN ONE OUTPUT

Not all combinational circuits have a single output, like it was presented 
throughout most of Chapter 7. As a matter of fact, many applications have 
multiple outputs. Let us examine this with an interesting example.

Example 8.1  Design a combinational circuit to decode a four-bit BCD number 
that drives segments of a seven-segment LED display. The display must light 
up showing the corresponding BCD number presented at the input of the 
decoder. Figure 8.1a depicts a seven-segment LED display. Each segment has 
been labeled with the letters a through g. The display has seven inputs, one per 
segment. Assume that a high-level voltage presented at the input of a segment 
turns such segment ON; else when a low-level voltage is presented, the segment 
is OFF. When we want the display to show the number 0, we must ensure to 
apply high-levels or one’s to segments: a, b, c, d, e, and f, while we need to 
present a zero to segment g. Figure 8.1b shows the wiring of a single segment, 
and Figure 8.1c shows the schematic representation where the LED is shown 
with its corresponding symbol. Both (b) and (c) show the current limiting resis-
tor that is placed in-series with the LED so that the appropriate current makes 
the LED shine when turned ON as the manufacturer specifies.

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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The LED driver, LED the current limiting resistor, and the LED segment 
are all assumed to be part of the display assembly. In addition to the seven 
LED segments, the assembly contains seven drivers and seven resistors.

Brief Calculation of the Current Limiting Resistor

Assume that the current through the LED for the intended typical luminous 
intensity required by the manufacturer is 10 mA. The manufacturer also speci-
fies a maximum forward voltage drop. This is VDROPMax = 2.0 V. Moreover, 
assume that our LED driver drives TTL-compatible voltage levels. Since the 

Figure 8.1  (a) Seven-segment display assembly; (b) detailed wiring and connectivity of one 
segment; (c) detailed wiring as shown in part (b) with the segment replaced with a LED sche-
matic symbol.
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Figure 8.2  Decoder driving a seven-segment LED display.
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Figure 8.2 depicts the LED assembly driven by the BCD-to-seven segment 
decoder that we need to design. The inputs to the decoder are assumed to be 
BCD 0000, 0001 through 1001; the other six binary combinations (1010–1111) 
will be assumed not to be present as decoder inputs.

minimum voltage at the output of the driver is VOHMin = 2.4 V sourcing a 
current of 10 mA, the current limiting resistor value is calculated as follows:

	 R
V V

L
OHMin DROPMax= − = − =

0 010
2 4 2 0

0 010
40

.
. .

.
,Ω 	 (8.1)

where VOHMin = 2.4 V is dictated by the driver TTL compatibility. The driver 
must be selected so that it can source at least 10 mA. A driver of somewhat 
higher current source capability may also be selected to do the job. Ultimately, 
the series resistor will limit the current needed by each segment.

Let us quickly check the amount of power that the resistor will dissipate.

	 P RR L= ×ILED
2 . 	 (8.2)

Since ILED = 0.01 A and R = 40 Ω, thus:

	 P mWR = ( ) × =0 01 40 42. . 	 (8.3)

Since some resistors available can handle 1/16 W (62.5 mW) we can use a 
1/16 W-rated resistor. The above analysis does not take into consideration 
variations of LED current and LED voltage forward drop, resistor variability, 
power supply changes, and temperature changes. The intent of the above cal-
culation is to provide the reader with the basics to calculate the current limit-
ing resistor value.
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Figure 8.3  Seven-segment LED display segments to numerical mappings.
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We will assume that we want the numbers 0 through 9 displayed as depicted 
by Figure 8.3. Additionally, let us remember that a high-level voltage turns a 
segment ON, while a low-level voltage turns it OFF.

At this point we are ready to start working on this example’s truth table, 
which is presented in Table 8.1.

Table 8.1 contains the BCD number bits (D, C, B, A) on the four left-hand 
side columns. Clearly A is the least significant bit (LSB). The columns for each 
segment are labeled as a, b, and so forth. It is very convenient and important 
to observe that since the last six binary combinations 1010 through 1111 are 
not present, because the input number is by definition a BCD number which 
only spans 0000 through 1001, it works out to our advantage to place don’t 
care conditions (X’s). So what needs to be done to find a simplified SOP forms 
for each the seven segments? Proceeding we obtain the following seven K. 
maps, depicted by Figure 8.4a through g.

The maximally simplified SOP forms for every segment are given below:

	 Segment a ( , , ) .: , .a D C B A D B C A C A= + + + 	 (8.4)

	 Segment b : ( , , , ) . .b D C B A C D B A B A= + + + 	 (8.5)

	 Segment c : ( , , , )c D C B A D C B A= + + + 	 (8.6)
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Table 8.1  Truth table for Example 8.1, BCD-to-seven-segment decoder

BCD Input bits D: 
MSB, A: LSB Outputs to Segments

Displays NumberD C B A a b c d e f g

0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 1 0 1 1 0 0 0 0 1
0 0 1 0 1 1 0 1 1 0 1 2
0 0 1 1 1 1 1 1 0 0 1 3
0 1 0 0 0 1 1 0 0 1 1 4
0 1 0 1 1 0 1 1 0 1 1 5
0 1 1 0 1 0 1 1 1 1 1 6
0 1 1 1 1 1 1 0 0 0 0 7
1 0 0 0 1 1 1 1 1 1 1 8
1 0 0 1 1 1 1 0 0 1 1 9
1 0 1 0 X X X X X X X –
1 0 1 1 X X X X X X X –
1 1 0 0 X X X X X X X –
1 1 0 1 X X X X X X X –
1 1 1 0 X X X X X X X –
1 1 1 1 X X X X X X X –

	 Segment d : ( , , , ) . . . . .d D C B A C B A C A C B B A= + + + 	 (8.7)

	 Segment e : ( , , , ) . .e D C B A C A B A= + 	 (8.8)

	 Segment f : ( , , , ) . . .f D C B A C A C B B A D= + + + 	 (8.9)

	 Segment g : ( , , , ) . .g D C B A C B BA D CB= + + + 	 (8.10)

Each of the seven output functions (a through g) depends on the same four 
independent binary variables A, B, C, and D. Some of the functions have 
repeated terms, for example, taking a close look at Equations (8.4), (8.7), and 
(8.8) we see that they have a common term C A.  among them. When we do the 
logic implementation of functions (a) through (g) we only need to generate 
the term C A.  once, then feed it into Equations (8.4), (8.7), and (8.8). Before 
getting into the logic implementation of our seven functions let us identify all 
other repeated terms. These are: B A.  present in Equations (8.5) and (8.9) and 
term C B.  present in Equations (8.7) and (8.10), and term C.B present in Equa-
tions (8.9) and (8.10).

Following Equations (8.4) through (8.10) these are implemented with logic 
gates in Figure 8.5a through g. But we are not done yet. Each of the segment 
functions a, b, through g, is simplified SOP forms in a stand-alone sense. 
However, since we are implementing all seven functions, which are all func-
tions of input variables A, B, C, and D there are few other things that we can 
do in order to reduce the number of logic gates that we use. First by inspection 



508    DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

X

X

11

X

1

X

1

1 1

X

1 X

1

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

1

X

1

X

1

1 1 1

X

1 X

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7 6

8 9 11 10

12 13 15 14

1

X

X

11

X

1

X

1

1 1

X

1 X

1

D

BA

00 01 11 10

00

01

DC

A

B

11

10

C

0 1 3 2

4 5 7

8 9 11 10

12 13 15 14

X

X

1

X

1

X

1

1 1

X

X

1

Segment a Segment b

Segment c Segment d

6

(a) (b)

(c) (d)

Figure 8.4  Illustration of segments a through g.

of Figures 8.5a through g we can see that each function uses some subset of 
the variables A, B, C, and D and their complements (A, B, C, D); this means 
that once we have A, B, C, and D and generate their complements once, using 
four inverters, the variables, and their complements can be connected to each 
of the functions that require them. For example, referring to Figure 8.5a, we 
note that C is used in the lower AND gate. Additionally, C is used in Figure 
8.5b as an input to the four-input OR gate; thus we do not need to use a second 
inverter to generate C again. The same applies to other uses of C throughout 
the rest of the segment functions. Finally. the above is true for all input vari-
ables and their complements.

We can still reduce the number of logic gates a little more. Looking further 
at Figure 8.5a, note that the term C A.  is the fourth input of the OR gate for 
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Figure 8.4  (Continued )

segment a. Term C A.  can also be found as the third input to the OR gate of 
Figure 8.5d and the first OR input of the OR gate of Figure 8.5e. What does 
this mean? It means that we do not to repeat the AND-ing logic that creates 
three different C A.  terms in (a), (d), and (e). We actually need just one AND 
gate that produces C A. , and this term is fed to all other users of the C A.  term. 
This saves us two AND gates. Something very similar occurs with terms B A.  
and C B. .

Exercise:  Redraw the circuits of Figure 8.5a through g reducing the logic 
gates by: deleting repetitive logic terms produced by the AND gates.
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Figure 8.5  Seven-segment decoder logic implementation for segments a through g.

8.2  DECODERS AND ENCODERS

Decoders and encoders are combinational logic circuits. A binary decoder is 
a digital circuit that has n binary inputs and 2n outputs. For example, a decoder 
with three inputs produces eight outputs; this decoder is referred to as a 3-to-8 
decoder. Let us assume that the outputs are active high or high-true signals; 
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Figure 8.5  (Continued )

this means that an asserted signal is interpreted as a high level and this high 
level is a one. Conversely, an inactive or negated output is a low output and 
such low is a zero. Table 8.2 depicts the truth table for such a decoder. The 
LSB input is named A, while the MSB is named C. As expected, note that the 
three inputs span a total of 23 = 8 binary combinations, starting at 000 through 
111. Each of its 8 outputs is associated with each one of the eight binary com-
binations. In such way that input 000 is associated with Y0, input 001 is associ-
ated with Y1 and so on.

Each output Y0, . . . , Y7 is respectively associated to its output 000, . . . , 111. 
Outputs are asserted in a mutually exclusive fashion, that is, one at a time.

By inspection of Table 8.2 we see that if the input code to the decoder is 
100, output Y4 is 1 while all other outputs are zero. The truth table of our 
decoder has a fourth input that provides a master enable to the component. 
When the enable is high, the decoder works as we already described. When 
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the enable is zero or negated, all the decoder output are zero, thus the decoder 
is disabled. That is, no matter what the values of its three binary input bits are, 
the outputs remain low as long as the enable is low.

From another point of view, the decoder can be seen as a minterm genera-
tor. Note that our 3-bit input decoder produces Y0 = 1 upon input combination 
000.

Y0 is minterm m0 since C, B, and A are negated. Let us recall from the previ-
ous chapter that m C B A0 = . .  when we have a three-bit or three-variable func-
tion. The reader should convince herself that that is the case for every one of 
the eight minterms. Based on the decoder truth table, one cannot have more 
than one output asserted at any given time. Refer to Table 8.2 once more. The 
enable provides the decoder with a feature to negate all outputs regardless of 
the input present at inputs C, B, and A. This enable is useful when we want to 
make larger decoders with smaller ones. We will see that the enable allows us 
to interconnect the decoders in the appropriate manner. An example of this 
will be discussed soon. The decoder logic implementation is straightforward. 
Initially ignoring the decoder enable, we can think of our 3-to-8 decoder having 
eight three-input AND gates into which we present our eight binary combina-
tions 000 through 111. Let us name each AND gate as AND gate 0, 1, 2, and 
so forth. Upon presenting 000 to the inputs of AND gate 0 we want AND gate 
0 output to assert while all other 7 AND gates we want to see negated. Simi-
larly upon presenting 001 to the inputs of AND gate 1, we want AND gate 1 
output to be asserted while all other AND gate outputs need to be negated. 
This procedure is carried for all 8 AND gates to obtain our 3-to-8 decoder. 
Now it is time to go back to the decoder’s enable. Since we want the enable 
not to interfere with the decoder functionality when enable is 1, we just use 
four-input AND gates instead of the three-input ones used before. So upon 
enable being a 1 or asserted allows decoder operation as usual. When enable 
is negated all outputs are negated because a zero at the input of every one of 
the 8 4-input AND gates negates all outputs. Figure 8.6 depicts a possible logic 
implementation of a 3-to-8 decoder with an active high master enable.

Table 8.2  Truth table of a 3-bit decoder with an active high enable

Inputs Outputs

C (22) B (21) A (20) E Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1
X X X 0 0 0 0 0 0 0 0 0
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Figure 8.6  (a) Three-to-eight decoder with active high enable symbol; (b) a logic gate imple-
mentation of the decoder.
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Example 8.2  Using a 3-to-8 decoder implement the following logic function:

	 f ( , , ) ( , , ).C B A = ∑ 2 5 7 	 (8.11)

Since function f is a three-variable function, and a 3-to-8 decoder is a 3-bit 
function minterm generator, the implementation of Equation (8.11) consists 
simply of OR-ing the three minterms m2, m5, and m7. Figure 8.7 depicts this 
implementation.

This is a good time to talk about the decoder unused outputs. Is there any-
thing wrong with that? From an electrical point of view, there is nothing wrong 
about leaving combinational circuit outputs floating or just simply not-
connected as Figure 8.7 shows. It is not correct though to leave any combina-

Note that the logic implementation of Figure 8.6b adopted the following 
notation to offer faster and easier readability of the circuit. The inputs A, B, 
and C may or may not have to be inverted depending on which AND gate 
output they need to assert. Instead of drawing explicitly an inverter at the 
input of every AND gate that requires its input to be inverted we draw a 
bubble. A bubble represents an inversion in the signal path in which it is drawn. 
For example, a NAND gate has a bubble at its output that means that the 
NAND is an AND followed by an inverter. Back to our Figure 8.6b explana-
tion, AND gate Y0 has to produce a 1 output upon enable = 1 and C.B.A = 000, 
thus AND gate Y0 has three bubbles to complement all three inputs A, B, and 
C. Similarly note that AND gate Y1 has only two bubbles to negate inputs C 
and B, while input A is presented to the AND without inversion. A similar 
reasoning follows for the rest of the AND gates. Just remember that decoder 
input A is the least significant bit (20), while decoder input C is the most sig-
nificant bit (22).

Figure 8.7  Decoder and gates implementation for Example 8.2.
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8.2.1  Making Larger Decoders with Smaller Ones

Decoders of larger sizes, such as 5-to-32, 6-to-64 or larger will likely have to 
be constructed with smaller available decoders. One of the limitations of dis-
crete IC decoders is that the larger they are, the larger is their number of pins. 
It is generally not practical for manufacturers to make huge decoders. Thus, it 
is usually left to the logic designer to assemble very large decoders using 
smaller ones or using programmable devices.

Example 8.3  Let us assume that we are given two 2-to-4 decoders with an 
active high enable input, and somehow we want to build with both of them 
plus some minimal amount of additional logic a 3-to-8 decoder. Of course for 
the sake of this example we will assume that we do not have or are not allowed 
to use a 3-to-8 decoder. Table 8.3 depicts the truth table of a 2-to-4 decoder 
with active high enable and active high outputs.

What we want to do is somehow connect two 2-to-4 decoders such that both 
jointly reproduce the truth table of a 3-to-8 decoder such as the one described 
by Table 8.2 at the beginning of the Decoders and Encoders Section. We will 
assume that the composite 3-to-8 decoder we are about to build will not neces-
sarily have an enable input. This is not a big imposition; it is just a requirement 
that we make not to add a few more gates to the logic.

Figure 8.8 depicts the interconnection of two 2-to-4 decoders. Let us under-
stand what such arrangement logically does.

tional circuit inputs non-connected or floating. Why? Because a floating input 
has no solid logic or voltage level driving such input. Since logic gates like all 
electronic circuits are susceptible to electrical and electronic noise, leaving a 
floating input is an opportunity for random noise to couple into the input and 
drive the input to the incorrect level. In summary, an unused input must be 
either tied down to zero ground or tied to a high voltage level or a one, typi-
cally the power supply voltage of the logic gate. Of course it is the job of the 
logic designer making the right choice to what input level to tie the unused 
input. As a quick example, let us look into a 3-input AND gate. Assume the 
gate is left over logic that we want to use for some other purpose on a board 
or part of a logic design. However, we only need a 2-input AND for this 
particular application. Can we still use the 3-input AND as a 2-input AND? 
The answer is yes, but we should not use the three inputs. Since we have an 
AND gate, tying the unused input to a high voltage level (logic one) in effect 
removes the third input out of the logic equation. The other two inputs of the 
AND gate behave as a 2-input gate.

Exercise:  Prove the above statement with the use of a truth table. Are there 
any other ways to use a 3-input AND gate, so that it behaves as a 2-input 
AND gate?
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The upper 2-to-4 decoder is wired such that its four outputs Y0 through Y3, 
will behave as the Y0 through Y3 outputs of the composite 3-to-8 decoder that 
we are trying to build. The lower 2-to-4 decoder is wired such that its four 
outputs Y0 through Y3, will behave as the Y4 through Y7 outputs of the com-
posite 3-to-8 decoder. Furthermore, notice that both A and B inputs of each 
2-to-4 are tied together and in turn they will also become the composite 3-to-8 
decoder A and B inputs, where A is the LSB. Finally, the most interesting part 
of the design of Figure 8.8, is the way in which both enables are handled. The 
upper 2-to-4 decoder E enable input ties through an inverter to input C, the 
MSB of the composite decoder. Why? Note that upon C, B, and A binary 

Figure 8.8  Three-to-eight decoder implementation with 2-to-4 decoders and one inverter.
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Table 8.3  Truth table of a 2-to-4 decoder with active high enable

Inputs Outputs

B (21) A (20) E Y0 Y1 Y2 Y3

0 0 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1
X X 0 0 0 0 0
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Example 8.4  Assume that a single interrupt line, an input to a micro control-
ler, needs to have some logic in front of it to allow four interrupts to be fun-
neled into the micro controller single interrupt line. Additionally, we want our 
priority encoding logic to supply the interrupt priority level of the interrupt 
with the highest priority on the P1 and P0 binary encoded outputs. Refer to 
the priority encoder schematic symbol in Figure 8.9.

Assume that interrupt priority 3 (I3) is the highest while priority 0 is the 
lowest. If two interrupts assert at the same time, say 3 and 1; since 3 has higher 
priority than 1, we want the priority encoder to produce an encoded binary 3 
at its output P1 and P0. In addition we want our priority encoder to assert a 

combinations 000 through 011 being presented to the composite decoder, since 
C the MSB is inverted by the external inverter, the upper decoder behaves 
just like the composite 3-to-8 but just for the first four binary combinations of 
inputs (0 through 3). On the other hand, since the E enable of the lower 2-to-4 
decoder is directly connected to input C of the composite, the lower decoder 
operates as the 3-to-8 composite one for CBA binary combinations, four 
through seven.

Exercise:  Carefully trace the behavior of the composite decoder of Figure 
8.8 and convince yourself that indeed it operates as a 3-to-8 decoder.

8.2.2  Encoders

An encoder is a combinational logic block that performs the inverse operation 
of a decoder. For example, for a 2-to-4 decoder, the associated encoder is a 
logic block with 4 inputs and 2 binary encoded outputs. An important combi-
national block used in embedded systems is the priority encoder. This encoder 
is important because it expands the number of interrupts that a micro control-
ler is capable of handling using a single micro controller interrupt input line.

Figure 8.9  Priority encoder schematic symbol.
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Table 8.4  Priority encoder truth table

Interrupt Inputs Outputs

I3 I2 I1 I0 P1 P0 Any_Interrupts?

0 0 0 0 X X 0
0 0 0 1 0 0 1
0 0 1 X 0 1 1
0 1 X X 1 0 1
1 X X X 1 1 1

Table 8.5  Depiction of the expansion of Table 8.4

Interrupt Inputs Outputs

I3 I2 I1 I0 P1 P0 Any_Interrupts?

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 0 1 1 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 0 1
0 1 1 1 1 0 1
1 0 0 0 1 1 1
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

third output to indicate that no interrupts are asserted. Table 8.4 presents a 
complete description of how we want our priority encoder logic to work. Note 
that Table 8.4 has several don’t-care conditions. For the first line, when no 
interrupts are asserted the Any Interrupts? output is negated meaning, there 
are no interrupts, thus the priority code bits P1 and P0 are don’t cares. For the 
next line of the truth table when interrupt I0 asserts, while I1, I2, and I3 are zero, 
priority code bits P1 P0 must become 00. For the last line of Table 8.4, if I3 
asserts regardless the state of interrupt bits I0, I1, and I2, priority code bits P1 
P0 must become 11 and the Any-Interrupts? output must assert.

Let us now consider the same priority encoder, explicitly assigning its 
24 = 16 values, to the four interrupt input lines, priority encoded outputs P1 
and P0 and Any_Interrupts?. As usual output Any_Interrupts? indicates the 
presence of an asserted interrupt at the input of the encoder. Thus, we obtain 
Table 8.5 for the same logic presented by Table 8.4, without using don’t cares 
in an explicit form.
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Figure 8.10  (a) Karnaugh map for P1; (b) Karnaugh map for P0.
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From Table 8.5 we can do the three Karnaugh map to find out the combi-
national logic of outputs: P1, P0, and Any_Interrupts? But let us look at the 
logic of output Any_Interrupts?

By carefully inspecting the truth table, it is easy to see that the logic for 
Any_Interrupts? is:

	 Any_Interrupts? = + + +I I I I3 2 1 0. 	 (8.12)

This is clear because output Any_Interrupts? is zero only when all inputs are 
zero (Tables 8.4 and 8.5).

For outputs P1 and P0 we produce the K. maps of Figures 8.10a,b.
By inspection of Figure 8.10a,b we obtain the following:

	 P I I1 3 2= + 	 (8.13)

	 P I I I0 3 2 1= + . . 	 (8.14)

Drawing the logic gates of Equations (8.12) through (8.13) we obtain  
Figure 8.11.

8.3  MULTIPLEXERS AND DEMULTIPLEXERS 
(MUXES AND DEMUXES)

Many years ahead of digital multiplexers and demultiplexers, mechanical ver-
sions of them were available. These devices were initially called distributors 
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Figure 8.11  Logic implementation of the priority encoder for Example 8.4.
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and used mostly as part of telegraph equipment by the end of the nineteenth 
century. The purpose of these devices is to allow more than one transmitting 
data source to use a single serial line, connected between the n sources and n 
destinations. The serial line between source and destination is time-shared. Let 
us look at how this works looking at the scheme depicted in Figure 8.12. For 
simplicity, assume that there are just two transmitting sources, channel 0 and 
channel 1. Let us assume that each source transmits a bit (either a 0 or a 1) 
for 1 ms and does not transmit anything for another millisecond. It is conceiv-
able to synchronize the two transmitting sources such that when channel 0 
transmits it data bit, channel 1 rests; the next bit time channel 0 rests while 

Figure 8.12  Multiplexer (mux) and demultiplexer (de-mux) transmission/reception scheme.
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Channel 1 Receiver
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channel 1 transmits its data bit. For the sake of simplicity, let us not be con-
cerned with exact timing details of a real implementation.

When channel 0 transmitter has a bit to send over the line, channel 0 and 
its mux rotor must be engaged and channel 0 receiver and its de-mux rotor 
must be engaged. This connection has to persist for 1 ms, during which time a 
bit is transmitted from channel 0 transmitter (on the left) to channel 0 receiver 
(on the right). We are ignoring finite propagation delays over the serial line, 
rotor rotation times, and several other factors that should not matter at this 
point. After 1 ms, channel 1 transmitter has a bit to send over the line, channel 
1 and its mux rotor must be engaged, and channel 1 receiver and its de-mux 
rotor must be engaged. During this time bit 1 of channel 1 gets transmitted. 
This process repeats indefinitely or until no more transmissions are desired.

Today muxes and de-muxes can be designed to transport analog or digital 
signals. This chapter focuses on digital devices only.

8.3.1  Multiplexers

Digital multiplexers are devices that allow a number of data sources to route 
one out of the total data sources to its output. Let us assume that we have a 
four-input mux, at any given time one input is allowed to pass straight through 
the mux onto the output. At such time none of the other inputs can go through 
the mux. This scheme clearly works fine when the data path at the output  
of the mux can be time-shared by the various inputs to the mux. Multiplexers 
are referred to as being 1-of-2n, where n is the number of input channels. 
Conceptually we can have 2, 4, 8, 16, . . . , 2n input multiplexers. Table 8.6 
depicts the truth table of a 1-of-4 mux in a compact fashion using don’t care 
conditions. The same truth table is somewhat expanded in Table 8.7 by explic-
itly stating the values of each input channel data input. Note that in order to 
fully expand the truth table of Table 8.7, since there are seven inputs, the fully 
expanded truth table would have 27 = 128 entries! Clearly this is not practical, 
and it is not too clear to understand either.

Truth Tables 8.6 and 8.7 are easy to understand. They should be read in the 
same manner as the mux operates. For example when input 0 is selected (select 

Table 8.6  Compressed 1-of-4 multiplexer truth table

Enable Input Channel Data Select Line Output

E Ix S1 S0 Y

1 I0 0 0 I0

1 I1 0 1 I1

1 I2 1 0 I2

1 I3 1 1 I3

0 X X X 0
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lines set to select such input), regardless of what all other mux inputs input 
levels are (don’t cares), the selected input 0 passes straight through the mux 
to its output Y. The same is true for when input 1 or 2 or 3 is selected. The 
operation of the enable E is such that the mux does its thing (route input data 
to output), upon E being high. However, when E is low, the mux output is zero. 
The E input is useful when we want to build larger multiplexers using smaller 
ones.

Figure 8.13a depicts the schematic symbol of a 1-of-4 mux, and b of the 
same figure depicts a possible logic implementation of such mux.

It is not too hard to figure out the truth table of virtually any size mux just 
by similarity with the 1-of-4 mux just covered. For example, a 1-of-8 mux will 
have eight data inputs, three select lines to choose one out of eight inputs to 
go through the Mux, a master enable E, that allows us to concatenate the mux 
with others to build even larger multiplexers, and one output.

Exercise:  Derive the truth table and a logic implementation of a 1-of-8 
mux. Assume that one has logic gates of the required number of inputs, to 
facilitate the task. This last assumption does not preclude generality to the 
exercise. If gates of the required number of inputs are not available or we 
are not allowed to use them, we can always build gates with larger number 
of inputs using multiple gates with a smaller number of inputs. For example 
an 8-input OR gate can be built in a number of ways according. Figure 8.14 
shows two possible implementations of an 8-input OR gate (a) using 4-input 
and 2-input gates (b) using all 2-input gates.

8.3.2  Building Larger Multiplexers

How do we construct a 1-of-8 mux using just 1-of-2 muxes? Assume that all 
of our 1-of-2 muxes have a master enable input pin. We can think of a mux 
having a funneling effect on its input data signals from left to the output on 

Table 8.7  Somewhat expanded or more explicit 1-of-4 multiplexer truth table

Enable Data Inputs
Data Control 

Line Output

E I0 I1 I2 I3 S1 S0 Y

1 0 X X X 0 0 0
1 1 X X X 0 0 1
1 X 0 X X 0 1 0
1 X 1 X X 0 1 1
1 X X 0 X 1 0 0
1 X X 1 X 1 0 1
1 X X X 0 1 1 0
1 X X X 1 1 1 1
0 X X X X X X 0
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the right. Let us refer to the graph depicted in Figure 8.15, if we start with a 
1-of-2 mux (Mux 1) we can feed with two other 1-of-2 muxes (Muxes 2 and 
3) a total of 4 signals into Mux 1. We repeat this process one more time and 
we can feed 8 signals into Mux1, using in addition to Muxes 2 and 3, Muxes 4, 
5, 6, and 7.

Figure 8.13  (a) 1-of-4 mux schematic symbol; (b) 1-of-4 mux logic implementation.
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But we are not done yet; we still need to identify data inputs I0 through I7 
of the overall composite 1-of-8 mux. So one more time referring to our picture 
of Figure 8.15, assume that the data select line of Mux 1 is assigned to be the 
MSB of the select lines of our composite 1-of-8 mux. The select lines of muxes 
2 and 3 are tied together and assigned to be the middle bit of the 3-bit select 
line group of our 1-of-8 mux. Finally, we assign the select line of muxes 4, 5, 
6, and 7 tied together to the LSB of the 3-bit select line group of our composite 
1-of-8 mux. Following what was just described can be seen depicted in Figure 
8.15. In Figure 8.15 the data paths are highlighted with heavy lines. The select 
lines are shown with a medium weight line. Finally, the master enable lines are 
all drawn with a lightweight line. Lines that cross and do not have a heavy dot 
at their intersection are not connected.

The techniques depicted in Figure 8.15 can be generalized to build virtually 
any mux of any desired number of inputs with other combination of smaller 

Figure 8.14  Eight-input OR gate implementation (a) using 4-input and 2-input gates; (b) using 
all 2-input gates.
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Figure 8.15  A 1-of-8 mux implementation using 1-of-2 muxes.
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muxes. Naturally the number of mux inputs is always 2S, where exponent S is 
the number of the mux select lines.

Exercise:  (1) Using the techniques used for the 1-of-8 mux, build a com-
posite 1-of-32 mux. Hint: Use four 1-of-8 muxes and one 1-of-4 mux. (2) 
Try a different implementation with another mix of muxes.
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8.3.3  De-Multiplexers

From our previous example depicted in Figure 8.12 and knowing the logic of 
a decoder, we can appreciate that in a way a decoder can be used as a de-
multiplexer, in the sense that it reverses what multiplexers do to data. Figure 
8.16a shows wedged-shaped symbols for mux and de-mux. Such wedged 

Figure 8.16  (a) System level view of a mux/de-mux application; (b) 1-to-2 decoder with enable; 
(c) 1-to-2 decoder wired as a de-multiplexing device.
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symbols are preferred in computer architecture and systems illustrations. We 
will use a wedge for a mux in later chapters of the book that deal with com-
puter architecture. Figure 8.16b shows the schematic symbol of the simplest 
decoder one can have a 1-to-2 decoder, with a single select line, two outputs 
and its master enable line. Finally, Figure 8.16c depicts the use of a decoder as 
a de-multiplexer in our application of Figure 8.12.

8.4  SIGNED AND UNSIGNED BINARY NUMBERS

The binary numbers that we described on the previous chapter did not have 
any sign; they were just positive or unsigned binary numbers. If we have n bits 
to represent a positive number there are 2n binary combinations of such 
numbers. Now if we intend to represent positive as well as negative numbers, 
but continue to use binary-valued terms or bits, we must give up some of the 
positive number binary combinations and allocate them to the negative range. 
Why? Because we cannot use a negative sign to depict a negative number; this 
implies the need of three different symbols to represent numbers, the 1, the 0, 
and the “-” sign. We are supposed to represent positive and negative numbers 
with just ones and zeros. This will become clearer when we go over some 
examples.

8.4.1  One’s Complement Representation of  
Binary Numbers: Addition

Let us assume that we are working with 3-bit binary numbers. The 1’s comple-
ment of a binary number is defined as the bit-to-bit complementation of every 
one of its bits. For example, given the 3-bit binary number 010, its 1’s comple-
ment is 101. Similarly, given the 3-bit number 101, its 1’s complement is 010. 
It is easy to see that 1’s complementing a number twice in a row leads to the 
original number we started with. This is similar to the involution rule covered 
in the previous chapter (refer to Table 7.11 in Chapter 7).

Now what follows is the most important consideration about 1’s comple-
ment numbers, given n bits to represent a 1’s complement number, the most 
significant bit (MSB) is allocated to represent the number sign. A leading 0 
means the number is positive, a leading 1 means that the number is negative. 
The rest or the (n − 1) remaining bits are assigned to represent the number’s 
magnitude. Figure 8.17a depicts the bit assignments of an n-bit 1’s complement 
number, Figure 8.17b depicts the bit assignments for a three-bit (n = 3) 1’s 
complement number.

Now we know how to obtain the 1’s complement of a number and we know 
how the bits are assigned. Let us look into how we obtain the negative number 
of 3-bit positive 001.

Simply take the 1’s complement of 1, which leads to 110.

	 1’s C(001) 110.= 	 (8.15)
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Equation (8.15) thus is the representation of decimal number −1 in three-bit 
1’s complement form. Conversely, given a 3-bit 1’s complement number such 
as 110, by inspection of the number’s MSB we know that we are dealing with 
a 3-bit negative number, check the MSB. One more time in order to find the 
magnitude of such negative number; again we take the 1’s complement of 110.

	 1’ ( ) .s C 110 001= 	 (8.16)

Hence the given negative number (i.e., 110) magnitude is 1. Table 8.8 depicts 
the 1’s complement of all 3-bit positive numbers.

By inspection of Table 8.8 we can tell that if we want to use the 1’s comple-
ment representation for positive as well as negative numbers, the first four 
numbers under the 1’s Complement column have to be negative numbers, 
because they have a one MSB; whereas the last four binary combinations of 
the same column have to represent four positive binary numbers, because they 
have a leading zero.

Note from Table 8.8 that the number zero has two 1’s complement repre-
sentations, that is 000 and 111; that is positive zero and negative zero. We will 

Figure 8.17  One’s complement bit assignments (a) for an n-bit number; (b) for a 3-bit number.
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Table 8.8  3-bit binary numbers and their associated 1’s complement representation

Positive 3-Bit 
Binary Number

Positive 3-Bit Binary 
Decimal Equivalent 1’s Complement

1’s Complement 
Decimal Equivalent

000 0 111 −0
001 1 110 −1
010 2 101 −2
011 3 100 −3
100 4 011 3
101 5 010 2
110 6 001 1
111 7 000 0

Table 8.9  Basic rules for unsigned or positive binary addition

Augend Addend Sum Carry Out

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

see that 2’s complement is a better negative number representation system, 
which will be the topic of our subsequent section.

Table 8.9 depicts the basic addition of two single bit unsigned numbers, 
augend and addend, the results is the sum and the right most column is the 
carry out.

So after all of the above why is 1’s complement good or what is it for? We 
can add numbers in 1’s complement representation using the fundamental 
rules of unsigned binary addition given by Table 8.9.

8.4.1.1  Four-Bit 1’s Complement Representation  4-bit 1’s complement 
numbers range from 0000 (decimal +0) up to 0111 (decimal +7). Negative 4-bit 
1’s complement numbers range from 1000 (decimal −7) up to 1111 (decimal −0).

The algorithm to obtain the 1’s complement of an n-bit binary number is 
simply flipping its zeros to ones and its ones to zeros. Given that X is our n-bit 
binary number:

1sComplement X 1sComplement x x ,x x xn n n’ ( ) ’ ( , , , ) ,  = =− − −1 2 1 0 1… xx x xn−2 1 0, , ,…

Table 8.10 lists all 4-bit numbers in 1’s complement representation.
From Table 8.10 again we see that 4-bit 1’s complement numbers exhibit 

plus and minus zero or double representation for the number zero. As a matter 
of fact, all n-bit 1’s complement numbers will always produce double repre-
sentation of the number zero.
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Table 8.10  Four-bit 1’s complement numbers

Representation in 4-bit  
1’s Complement Assigned Decimal Number

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 −7
1001 −6
1010 −5
1011 −4
1100 −3
1101 −2
1110 −1
1111 −0

Example 8.5  Given the following 4-bit 1’s complement numbers, perform the 
additions indicated below and double check your results using their decimal 
equivalent.

(a)  0100 + 0011,
(b)	 0101 − 0001,
(c)	 1011 + 0010,
(d)	 1011 + 0110.

Solutions

With the aid of Tables 8.9 and 8.10 we perform the operation as follows:

(a)	 0100 + 0011 = 0111 and in decimal: 4 + 3 = 7
(b)	 0101 − 0001 = 0101 + (−1 in 1’s C) = 0101 + 1110 = 0011 and a carry of 

1 in order to achieve the correct decimal result of +4 (since we are 
subtracting 1 from 5) the carry must be wrapped around and added 
back to the previous sum. Thus:

	

Carry =
+

1

0101

1110

0011
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Finally add the carry and let us refer to it as the End-Around-Carry 
(EAC) of 1 so that:

	
0011

0001

0100

EAC +

in decimal we have that 5 − 1 = +4, which is the final answer. Note that 
the first addition and the addition of the EAC, the second addition, 
effectively take two addition times, to perform the complete sum.

(c)	 1011 + 0010 = 1101 and in decimal, note that 1011 is −4 in 1’s Comple-
ment, and 1101 is −2. Thus: −4 + 2 = −2

(d)	 1011 + 0110 = 0001 and a Carry = 1, treating the Carry as an EAC we 
obtain:
0001 + 0001 = 0010. In decimal we have that 1011 + 0110 = 0010, 
which is −4 + 6 = +2. Note that when dealing with the 1’s complement 
addition not wrapping around the carry and adding to the previously 
obtained addition will not lead to the correct answer.

Note that what we need to do when we want to subtract B from A, is to add 
A and minus B, plus any end-around carry (EAC) that comes out of the opera-
tion. Because of the subsequent addition of the EAC the 1’s complement 
subtraction method is twice as slow as the 2’s complement subtraction. Because 
of this fundamental reason 1’s complement subtraction is hardly used.

8.4.2  Two’s Complement Representation of  
Binary Numbers: Addition

Having learned 1’s complement representation well it is reasonably straight-
forward to understand 2’s complementation. The basic formula to obtain the 
2’s complement representation of X an n-bit number is:

	 2 1 1’ ( ) ’ ( ) .s C X s C X= + ignoring the Carry out bit 	 (8.17)

The sign and magnitude format for 2’s complement numbers, i.e. MSB is 
the sign bit, rest of the bits are its magnitude, is identical to the bit assignment 
for 1’s complement numbers (see Fig. 8.17).

Why 2’s complement numbers, we might ask ourselves. There are two 
reasons for them; first we will see after applying Equation (8.17) that there is 
a single representation for the number zero. Secondly, 2’s complementation 
addition never has to add a carry as an EAC (like 1’s complement does), the 



532    DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

Table 8.11  Four-bit 2’s complement numbers

Representation in 4-bit  
2’s Complement Assigned Decimal Number

0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 −8
1001 −7
1010 −6
1011 −5
1100 −4
1101 −3
1110 −2
1111 −1

carry in a 2’s complement addition must be set to zero if there is no Cin from 
a less significant bit position. When carry out is ignored, the 2’s complement 
representation of the addition is obtained.

Table 8.11 depicts all four-bit 2’s complement numbers.

Example 8.6  Shows how to perform binary additions in 2’s complement 
representation. The decimal equivalents of the same operations are shown. 
Perform the following four-bit 2’s complement additions:

(a)	 0100 + 0011
(b)	 0111 + 1110
(c)	 0101 + 1100
(d)	 1011 + 1110

Solutions to Example 8.6

Use the algorithm presented by Equation (8.17) to perform 2’s complementation.

(a)	 0100 + 0011 = 0111, in decimal: +4 + 3 = +7
(b)	 0111 + 1110 = 0101 and a carry of 1, since carry out has to be ignored 

the result is: 0101, which in decimal is: +7 − 2 = +5
(c)	 0101 + 1100 = 0001 and a carry out of 1, since the carry has to be 

ignored the result is 0001, which in decimal is: +5 − 4 = +1
(d)	 1011 + 1110 = 1001 and a carry out of 1, since the carry has to be 

ignored the result is 1001, which in decimal is: −5 − 2 = −7
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8.4.3  Other Numbering Systems

Interestingly, infinitely many numbering systems exist. In computer software 
the most interesting and usual numbering systems, which we have not dis-
cussed yet, are the octal and the hexadecimal systems. We will very briefly 
touch on this subject since in the author’s experience most scientists and 
engineers already know those numbers. The octal numbering system is simply 
based on eight uniquely defined digits, which are: 0, 1, . . . , 7. This numbering 
system is referred to as base 8. The hexadecimal numbering system or base 
16, has 16 uniquely defined digits, which are: 0 through 9 and A through F. 
Table 8.12 depicts the first 18 decimal, octal, and hexadecimal numbers.

The arithmetic rules for adding octal-to-octal and hex-to-hex numbers are 
pretty similar to those of decimal arithmetic. Care must be exercised knowing 
the uniquely defined digits for each numbering representation.

8.5  ARITHMETIC CIRCUITS: HALF-ADDERS (HA) AND 
FULL-ADDERS (FA)

Arithmetic circuits can be designed using the same concepts that we use when 
designing any other logic circuits. Basically truth tables and simplification 
methods are used to design them. Let us assume that we want to design the 
logic implementation of an adding cell. That is, a circuit that reads an augend 
bit (A), an addend bit (B), and produces the sum bit (S) and its carry out (Cout). 
Such circuit is referred to as a half-adder (HA) because it does not handle the 
carry in bit as full-adders do. The full-adder (FA) receives three input bits: 
augend (A), addend (B), and carry in (Cin), and it produces the sum bit of all 
three input bits and a carry out (Cout) bit. Table 8.13 depicts the truth table for 
a half-adder.

We obtain a maximally SOP form for output bits Cout and S of our 
half-adder.

Table 8.12  Some decimal, octal, and hexadecimal numbers

Decimal Octal Hex Decimal Octal Hex

0 0 0 9 11 9
1 1 1 10 12 A
2 2 2 11 13 B
3 3 3 12 14 C
4 4 4 13 15 D
5 5 5 14 16 E
6 6 6 15 17 F
7 7 7 16 20 10
8 10 8 17 21 11
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Table 8.13  Half-adder truth table

Augend A Addend B (Carry out) Cout Sum S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Without doing an explicit 2-variable K. map it can be seen that:

	 C ABout = 	 (8.18)

and

	 S A B= ⊕ 	 (8.19)

The logic implementation for the HA is given by Figure 8.18.
Table 8.14 depicts the truth table of a full-adder.

Figure 8.18  Half-adder logic implementation.

A

B

Cout

S

Table 8.14  Full-adder truth table

(Carry in) Cin Augend A Addend B (Carry out) Cout Sum S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Using a 3-variable K. map we find simplified logic equations to express the 
sum bit S and Cout of the FA. Figure 8.19 depicts the K. maps to obtain the 
maximally simplified SOP form for output bits Cout and S. From the truth table 
(Table 8.14) we fill in the K. maps for both output bits, Cout and S, these are 
depicted in Figure 8.19.

Referring to Figure 8.19a it is evident that none of the minterms m1, m2, m4, 
and m7 has any adjacent minterms. So the simplified SOP and the canonical 
SOP forms are identical. Moreover, from the canonical equation:

	 S C A B C A B C A B C A Bin in in in= = + + +∑( , , , ) . . . . . . . .1 2 4 7 	 (8.20)

and since a two-variable XOR is:

	 A B A B A B⊕ = +. . , 	 (8.21)

Figure 8.19  (a) Full-adder: K. map for Cout; (b) full-adder: K. map for S.

AB

00 01 11 10

0

1

C

A

B

0 1 3 2

4 5 7 6

1 1

1

C1

AB

00 01 11 10

0

1

C

A

B

0 1 3 2

4 5 7 6

1 1

1

C

1

in

in

in

in

FA K. map for Cout

FA K. map for S(a)

(b)



536    DIGITAL DESIGN BUILDING BLOCKS AND MORE ADVANCED COMBINATIONAL CIRCUITS  

Equation (8.21) is found to be logically equivalent to Equation (8.23) after 
some Boolean algebra manipulations; that is:

	 S C A B C A B C A B C A B A B Cin in in in in= = + + + = ⊕ ⊕∑( , , , ) . . . . . . . . .1 2 4 7 	
(8.22)

The simplified SOP form for output bit Cout is:

	 C AB A B Cout in= + +( ) . 	 (8.23)

Writing the canonical form of Equation (8.23) by inspection of Figure 8.19b 
we obtain:

	 C C A B C A B C A B C A Bout in in in in= + + +. . . . . . . . . 	 (8.24)

Grouping terms:

	 C C A B A B C A B C A Bout in in in= + + +( . . ) . . . . . 	 (8.25)

Applying Equation (8.25) to Boolean algebra rules yields:

	 C AB A B Cout in= + ⊕( ) . 	 (8.26)

The Cout of the FA has two alternate logic Equations (8.23) and (8.26).
The logic implementations of our full-adder S and Cout output bits are 

depicted in Figure 8.20.
Figure 8.21 depicts the schematic symbol diagram of a full-adder.
Note that this is the first time in this text that the schematic symbol of a 

combinational circuit is drawn in a somewhat nonconventional form. Conven-
tionally circuits are drawn with inputs on the left-hand side and outputs on 
the right-hand side. Full-adders violate those conventions for exceptionally 
good reasons. Note that the Cin input to the FA is drawn on the right hand 
side, while its Cout output is drawn on the left hand side of the symbol. Inputs 
A and B are drawn on top and output S at the bottom. Inputs at the top and 
outputs at the bottom of schematic symbols are within the conventional 
drawing criteria. The reason why Cin is on the right and Cout is on the left is 
primarily due to the arithmetic done by an FA; similar to hand addition opera-
tions carries move from right-hand side digits to more significant or left-hand 
side digits. In the next section we will see that an interconnection of full-adders 
allows us to build multi-bit adders.

8.5.1  Building Larger Adders with Full-Adders

When we perform the addition of two numbers, an augend and an addend, 
regardless of whether these numbers are decimal or binary, the addition algo-
rithm is always the same.
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Figure 8.20  (a) FA logic implementation of its S output; (b) FA logic implementation of its Cout 
output; (c) FA alternate logic implementation of its Cout output.
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Example 8.7  Given two 4-bit binary numbers, describe the algorithm that 
one utilizes in performing the complete addition. Assume our augend has bits 
A3A2A1A0 which can be annotated in a more compact fashion as A[3:0]. The 
addend of bits B3B2B1B0 can also be annotated as B[3:0].

To perform the addition of A[3:0] and B[3:0] we write both numbers as 
follows:

	

A A A A

B B B B

S S S S

3 2 1 0

3 2 1 0

3 2 1 0

+ .
	 (8.27)

We will refer to the above layout of numbers, Equation (8.27) being formed 
by four slices, slice 0 the least significant slice, contains A0, B0, and S0, then slice 
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Figure 8.21  FA schematic symbol.

S

AB

Cout Cin
Full-Adder

*  Cout is always produced by a preceding slice regarding of its value (0 or 1); unless fast carry logic 
is used.

Example 8.7 actually is the justification for drawing the FA inputs and output 
the way that they are shown in Figure 8.21. Having gone over the algorithm 
of Example 8.7 we can easily interconnect four FA’s to build a 4-bit binary 
adder. This time however since all FA’s have the same logic, there will an 
overall Cin to slice 0 and we will refer to it a C0. Figure 8.22a depicts an inter-
connection of full-adders that constitute a 4-bit binary adder. Figure 8.22b 
shows a more compact manner of showing a 4-bit binary adder. Figure 8.22b 
does not imply in any way how the adder is internally designed. It can be built 
with FA’s or other type of logic. Finally Figure 8.22c depicts the most compact 
form of all three of representing a 4-bit binary adder. These types of symbols 
are very convenient to use when we deal computer architecture issues and 
micro controllers in general.

1 contains A1, B1, and S1, and similarly for slices 2 and 3. Slice 3 is the most 
significant slice of our numbers.

The number arrangement depicted by Equation (8.27) is exactly what we 
do when we perform an addition with paper and pencil. For now let us assume 
that there is no Cin into slice 0. We begin the addition from the least significant 
slice by adding A0 and B0 to obtain S0. This sum may produce a Cout* from slice 
0 that has to propagate to slice 1. To obtain the sum for slice 1, or S1 we must 
add Cout from slice 0, which we will name as C1, to A1 and B1. The process 
continues in the same fashion for all the slices. The last slice, slice 3 of our 
example, produces C4, which is the overall Cout of the 4-bit addition.
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Figure 8.22  (a) 4-bit binary adders built with FA; (b) compact form of a 4-bit binary adder; 
(c) an even more compact form of a 4-bit binary adder.
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8.5.2  Notes about Full-Adder Timing

Let us assume a FA just like the one depicted in Figure 8.21. When all inputs 
are applied to the FA’s simultaneously, there are two delays; one of them is 
the delay that it takes for output S before to settle down to a valid value. The 
other delay is the time that it takes the Cout output to settle down and become 
valid. Since it takes some longer time for Cout to settle to a valid value, Cout 
practically becomes the gating factor or the slow timing path, for the complete 
sum to be ready. The complete sum refers to the availability of valid values for 
S and for Cout. Since S is valid a little earlier that Cout, we then say that Cout is 
the long path in the sum. Now let us call this longer delay the full-adder delay, 
which at the moment we do not care about its absolute value in nano-seconds. 
When we build a 4-bit adder like the one shown in Figure 8.22a note that we 
now call the complete sum the availability of all outputs of the 4-bit adder, i.e. 
valid S3, S2, S1, S0, and C4, which is also the overall carry out of the adder. From 
the 4-bit adder point of view we do not care (to a point) about the availability 
of valid internal carries that propagate through the adder. We do care about 
them from the perspective that the longer it takes for those carries to propa-
gate through the internal logic the longer it will take to obtain the complete 
sum. For the 4-bit adder of Figure 8.22a, implemented with full-adders, the 
overall adding time is four full-adder delays. So from the time the last input 
becomes valid at the adder input, we need to wait for the result sum and carry 
out for four full-adder delays. Should we take the sum reading before such 
time there is no guarantee about its correctness.

8.5.3  Subtracting with a 4-bit Adder Using 1’s 
Complement Representation

Let us continue our example with 4-bit wide 1’s complement numbers. Let us 
also recall from an earlier section of this chapter that if we need to subtract 
B from A, where A is the minuend and B is the subtrahend, this can be accom-
plish using 1’s complement arithmetic by adding the 1’s complement of B, the 
subtrahend to A, the minuend, await for the overall output carry of the 4-bit 
adder to become valid and add it back into the input carry of the adder. This 
last step is referred to as adding the End-Around-Carry (EAC). Figure 8.23 
shows how that implementation is done.

Referring to Figure 8.23a observe that the carry out of the 4-bit adder is 
tied back into the carry in. The subtraction is performed as the sum of A with 
the 1’s complement of B plus any end-around-carry (EAC):

	 A B A B A s Complement B EAC− = + − = + +( ) { } .1’ 	 (8.28)

Note that if we deal with 4-bit wide numbers then A = A[3:0] and B = B[3:0].
Because of the need to add the EAC, we have to wait to obtain the complete 

subtraction, which is two complete 4-bit adder delays. Figure 8.23b implement 
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Figure 8.23  (a) 4-bit binary adder configured as a subtractor using 1’s complement arithmetic, 
(b) hardwired logic for a 1’s complementer, (c) programmable logic for a 1’s complementer. 
(*) When the complement-control input signal (c) is high, the 4-bit input number at the 1’s 
Complementer logic will become 1’s Complemented at the 1’s Complementer 4-bit output. When 
the complement-control input signal (c) is low, the 4-bit input number at the 1’s Complementer 
logic will pass-through the 1’s Complementer logic to its 4-bit output unchanged.
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Figure 8.24  2’s Complement 4-bit binary adder/subtractor.
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the simplest possible 1’s complementer, which is just a bit-to-bit inverter. Such 
one’s complementer is said to be hardwired. Figure 8.23c shows an implemen-
tation using XOR gates, why? This implementation allows one to use the same 
logic as pass-through logic when its control input is zero and it converts the 
logic into a 1’s complementer when the control input is a one. That means that 
the logic block depicted by Figure 8.23a could also be used as an adder and 
not just as a subtractor. Of course for this scheme to be complete we should 
multiplex or gate the end around carry, opening the EAC path when we con-
figure the logic as an adder and provide a path for the output carry to feed 
into the input carry when we configure it as a subtractor. For the sake of prac-
ticality, we simply now move on to the 2’s complement adder/ subtractor which 
is the most effective way of implementing and adder and a subtractor using a 
4-bit adder.

8.5.4  Subtracting with a 4-bit Adder Using 2’s 
Complement Representation

The 1’s complement adder/subtractor is interesting but it is not fast enough. 
We can do better if we do not have to wait for the carry out to travel its way 
to the carry in (EAC). So the 2’s complement version of the adder/ subtractor 
is presented in Figure 8.24. Note the EAC path, seen for the 1’s complement 
implementation is now not connected for the 2’s complement implementation. 
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Example 8.8  Draw a block diagram of a 4-bit 2’s complement adder/
subtractor that upon its control input being 0 it adds, but if the control input 
is 1 it subtracts using 2’s complement arithmetic. Equation (8.17) repeated 
below for the reader’s convenience shows the algorithm used to obtain the 2’s 
complement of an n-bit binary number

	 2 1 1’ ( ) ’ ( ) .s c X s complement X= + ignoring the Carry out bit 	 (8.29)

Figure 8.24 below depicts the solution to Example 8.8.
Referring to Figure 8.24 let us see how the adder part works. Upon setting 

to zero the control input to the select line of the 1-of-2 mux, the overall adder 
Cin is zero and the 1’s complementer logic box is in pass-through mode, i.e. 
does not invert its inputs. The logic of Figure 8.24 simply adds with a high-level 
control input. When the control input is zero two things happen, the Cin is set 
to one and the one’s complementer logic box control input is also set to one. 
The 1’s complementer is set to complement mode and since the Cin to the 
adder/subtractor is set to 1, the logic is basically executing:

	 A = A+ 1 1 2− = + −( ) + = +B A B s C B A s C B’ { } ’ { }. 	 (8.30)

Equation (8.30) in effect performs the subtraction of B from A in 2’s comple-
ment form.

It is important to remember that when using 2’s complement arithmetic the 
carry out has to be ignored.

8.6  CARRY LOOK AHEAD (CLA) OR FAST CARRY GENERATION

Let us now go back to our full-adder basic building block with its two logic 
equations, repeated below for the reader’s convenience:

	 S A B Cin= ⊕ ⊕ 	 (8.31)

	 C AB A B Cout in= + ⊕( ) . 	 (8.32)

Since a basic multi-bit adder can be thought as a concatenation of full-adders, 
let us generalize Equations (8.31) and (8.32) for a FA slice. So let us re-write 
Equations (8.31) and (8.32) as if they were the equations of the ith slice.

	 S A B Ci i i i+ = ⊕ ⊕1 	 (8.33)

	 C A B A B Ci i i i i i+ = + ⊕1 ( ) 	 (8.34)

where in Equation (8.33) we can appreciate that Ci is the Cin to the ith slice 
in question produced by its immediately less significant and adjacent slice, or 
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slice (i − 1)th. Similarly with Ci on Equation (8.34); and Ci+1 is the Cout of the 
ith slice.

We will describe a 4-bit adder, which has four slices, slice 0 is the least sig-
nificant slice and 3 is the most significant slice. Personalizing Equations (8.33) 
and (8.34) for each of our four slices we obtain the following logic expressions, 
where we are assuming that slice 0 is the least significant slice and slice 3 is 
the most significant slice of our 4-bit adder.

For all sum bits:

	 Slice S A B C0 : 0 0 0 0= ⊕ ⊕ 	 (8.35)

	 Slice S A B C1 : 1 1 1 1= ⊕ ⊕ 	 (8.36)

	 Slice S A B C2 : 2 2 2 2= ⊕ ⊕ 	 (8.37)

	 Slice S A B C3 : 3 3 3 3= ⊕ ⊕ 	 (8.38)

and for all the carryouts we obtain:

	 Slice C A B A B C0 : ( )1 0 0 0 0 0= + ⊕ 	 (8.39)

	 Slice C A B A B C1 : ( )2 1 1 1 1 1= + ⊕ 	 (8.40)

	 Slice C A B A B C2 : ( )3 2 2 2 2 2= + ⊕ 	 (8.41)

	 Slice C A B A B C3 : ( ) .4 3 3 3 3 3= + ⊕ 	 (8.42)

By close inspection of Equations (8.39) through (8.42) we see that since real 
logic gates have non-zero gate delays, C1 has to be generated by the Cout logic 
of slice 0 before the addition can proceed to slice 1. Similarly C2 has to be 
generated by slice 1 Cout logic before the addition can proceed to slice 2. 
Exactly the same is true for C3 and for C4.

Let us now make a couple of definitions, let the Ai Bi be Generatei or Gi 
terms for i ranging from 0 to 3. We will also define the term (A Bi i⊕ ) as the 
Propagatei term or Pi for i ranging from 0 to 3. With those new definitions we 
rewrite Equations (8.39) through (8.42) and we obtain:

	 Slice C G P C0 : 1 0 0 0= + 	 (8.43)

	 Slice C G PC1 : 2 1 1 1= + 	 (8.44)

	 Slice C G P C2 : 3 2 2 2= + 	 (8.45)

	 Slice C G P C3 : .4 3 3 3= + 	 (8.46)

Plugging C1 from Equation (8.43) into Equation (8.44) yields:

	 Slice C G P G P P C1 : .2 1 1 0 1 0 0= + + 	 (8.47)
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Plugging Equation (8.47) into Equation (8.45) yields:

	 Slice C G P G P P G P P P C2 : .3 2 2 1 2 1 0 2 1 0 0= + + + 	 (8.48)

Plugging Equation (8.48) into Equation (8.46) yields:

	 Slice C G P G P P G P P P G P P P P C3 : .4 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0= + + + + 	 (8.49)

Now let us carefully look at Equations (8.43), (8.47), (8.48), and (8.49). Note 
that each one of those equations, regardless of the number of terms and the 
number of inputs per AND gate, are all in SOP form, which means that they 
can all be implemented in just two levels of logic. Refer to Figure 8.25 and 
look at the logic implementations that produce carryouts: C1, C2, C3, and C4.

Using the defined generate Gi and propagate Pi terms in Equations (8.43), 
(8.47), (8.48), and (8.49) these can be rewritten as:

	 Slice S G C0 : 0 0 0= ⊕ 	 (8.50)

	 Slice S G C1 : 1 1 1= ⊕ 	 (8.51)

	 Slice S G C2 : 2 2 2= ⊕ 	 (8.52)

	 Slice S G C3 : .3 3 3= ⊕ 	 (8.53)

So based on Equations (8.43), (8.47) through (8.49), and Equations (8.50) 
through (8.53), the picture of a 4-bit adder with carry look ahead or fast carry 
generation is depicted in Figure 8.25.

Note that the adder has four clearly marked areas with horizontal dotted 
lines. Each area is a slice of the adder. Now for the sake of simplicity of the 
timing analysis that we will get into, assume that all logic gates on the diagram 
have the same propagation delay. This is not true, but the assumption simplifies 
the analysis without us getting lost in the details. Note that this adder (Fig. 
8.25) unlike the adder implemented with full-adders, (Fig. 8.22a), does not 
have a carry that propagates from the least to the most significant slice.

The adder with fast carry look ahead produces each slice’s carryout with 
three levels of logic gates. Carefully observe that the first level is the one that 
generates the Pi and Gi terms, the AND gates are the second level and the 
collecting OR gate is the third level. Finally is easy to observe that the sum bit 
requires one additional logic gate delay (exclusive OR) to produce the Si bit. 
The above statement is true for the entire adder, slices 0 through 3. It is also 
important to mention that the same adder with carry look ahead can be used 
to implement a subtractor by adding the 1’s complementing logic to the sub-
trahend. We could continue to discuss fast adders but because of space reasons, 
we refer the reader to the references at the end of this chapter.
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Figure 8.25  Logic implementation of a 4-bit adder with fast carry generation.
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8.7  SOME SHORT-HAND NOTATION FOR LARGE LOGIC BLOCKS

We covered several logic blocks like decoders, multiplexers and adders; in 
most cases we drew every bit of the logic block in an explicit fashion. For 
example look back at Figures 8.13a and 8.15. In computer architecture litera-
ture is common to see a very compact way of drawing multi-bit devices. 
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Assume we need a 1-of-4 multiplexer where each of its input is 32 bits wide. 
If we drew such device bit by bit it would look cumbersome and hard to read. 
Instead we draw a single line for each one of the 1-of-4 mux inputs and indicate 
with a short crossed line the number of bits the mux leg has. Note that output 
Y is a 32-bit wide output.

Figure 8.26 is a representation of the 32-bit wide 1-of-4 multiplexers in 
compact notation.

Note that such 32-bit wide mux can be constructed with thirty-two regular 
1-of-4 multiplexers.

Exercise:  Get a large piece of paper and draw a detailed explicit drawing 
for the 32-bit 1-of-4- mux implemented with 32 individual 1-of-4 muxes.

We draw in a similar fashion very wide adders and subtractors. In the subse-
quent chapter we will use this compact notation more liberally which we will 
see that it also applies to registers, counters, and state machines. These are all 
sequential circuits (circuit with memory capabilities) not covered yet.

8.8  SUMMARY

This chapter covers a good number of combinational circuits: decoders,  
multiplexers, and arithmetic combinational circuits such as adders and 
subtractors.

The purpose of this chapter is to make the reader feel at ease designing 
virtually any simple or complicated combinational circuit by learning how to 
establish their truth table, how to do the logic simplification, and in some cases, 
how to partition big circuits into smaller ones to simplify the methodology or 
even clarify their behavior.

For in-depth coverage of arithmetic circuits the reader is referred to Refer-
ence [1].

Figure 8.26  Compact graphic representation of a 32-bit wide 1-of-4 multiplexer.
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PROBLEMS

8.1  (a) Define the truth table for a logic circuit that given a three-bit posi-
tive binary number input, produces a four-bit output that equals the 
initial 3-bit number plus 7. This circuit has three inputs and four outputs; 
(b) Obtain the simplified SOP form of the four outputs; and (c) draw 
the circuit.

8.2  (a) Define the truth table for a logic circuit that given a four-bit binary 
number, produces a four-bit output that equals the initial 4-bit number 
1’s Complemented. This circuit has four inputs and four outputs; (b) 
Obtain the simplified SOP form of the four outputs; and (c) draw the 
circuit.

8.3  Implement the logic found for Problem 8.1 with the smallest possible 
multiplexer and any inverter gates as needed.

8.4  Implement each piece of logic found for Problem 8.2 with the smallest 
possible multiplexer and any inverter gates as needed.

8.5  Implement a 3-variable XOR function with the smallest possible mul-
tiplexer and inverter gates as needed.

8.6  Implement with the smallest possible decoder and minimal number of 
OR gates a 4-variable XOR function.

8.7  Without simplifying the logic, implement the following function entirely 
with NAND gates:

	 f A B C D A B C A B D A B D( , , , ) . . . . . .= + +

8.8  Without simplifying the logic, implement the following function entirely 
with NOR gates:

	 f A B C D A B C A B D A B D( , , , ) . . . . . .= + +

8.9  Write the truth table for a 4-bit positive binary adder with no carry in 
and no carry out. Implement and draw the circuit of the 4-bit input and 
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4-bit output positive binary adder with the smallest number of multi-
plexers of the smallest size possible and inverter gates as needed.

8.10  Implement and draw the circuit of the adder of Problem 8.9 with the 
smallest size and smallest possible number of decoders and OR gates 
as needed.

8.11  Draw the circuit of a two 4-bit input binary adder with carry in and carry 
out with fast carry-look-ahead logic. This circuit has 2 4-bit inputs, one 
overall carry-in input, one 4-bit output and one overall carry-out output. 
Use 4 single bit full-adders in addition to the carry-look-ahead logic.

8.12  Design and draw the circuit of a 1-of-8 multiplexer using only 1-of-2 
multiplexers. Write the truth table of the circuit to-be-designed.

8.13  Design and draw the circuit of a 1-of-16 multiplexer using some 1-of-2 
multiplexers and some 1-of-4 multiplexers. Write the truth table of the 
circuit to-be-designed.

8.14  Given a 4-bit 2’s Complement binary number design the logic that pro-
duces the absolute value of the 2’s Complement input. This circuit shall 
have a 4-bit input and 3-bit output. Write the truth table of the circuit 
to-be-designed.

8.15  Design a combinational circuit that given a 4-bit input produces the 
bit-to-bit OR of each one of the 16 binary input combinations. This 
circuit shall have 4 inputs and one output and must be implemented 
with the smallest possible decoder and OR gates if needed. Write the 
truth table of the circuit to-be-designed.

8.16  Implement a 3-bit XOR logic block entirely with NAND gates.

8.17  Implement a 3-bit XOR logic block entirely with NOR gates.


