ELECTRIC VEHICLE TECHNOLOGY EXPLAINED

ELECTRIC VEHICLE TECHNOLOGY EXPLAINED SECOND EDITION

James Larminie Oxford Brookes University, UK

John Lowry Consultant Engineer, Swindon, UK

This edition first published 2012 © 2012 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB[®] is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] software.

Library of Congress Cataloging-in-Publication Data

Larminie, James

Electric vehicle technology explained / James Larminie, John Lowry. –

Second Edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-119-94273-3 (cloth)

1. Electric vehicles–Technological innovations. 2. Electric vehicles–
Design and construction. I. Lowry, John. II. Title.

TL220.L37 2012
629.22'93 – dc23

2012006649

A catalogue record for this book is available from the British Library.

Print ISBN: 9781119942733

Set in 10/12pt Times by Laserwords Private Limited, Chennai, India.

Contents

About	t the Author	xiii
Prefa	ce	XV
Ackno	owledgments	xvii
Abbro	eviations	xix
Symb	ols	xxiii
1	Introduction	1
1.1	A Brief History	2
	1.1.1 Early Days	2
	1.1.2 The Middle of the Twentieth Century	7
	1.1.3 Developments towards the End of the Twentieth Century and the	
	Early Twenty-First Century	8
1.2	Electric Vehicles and the Environment	13
	1.2.1 Energy Saving and Overall Reduction of Carbon Emissions	14
	1.2.2 Reducing Local Pollution	15
	1.2.3 Reducing Dependence on Oil	15
1.3	Usage Patterns for Electric Road Vehicles	15
	Further Reading	17
2	Types of Electric Vehicles – EV Architecture	19
2.1	Battery Electric Vehicles	19
2.2	The IC Engine/Electric Hybrid Vehicle	19
2.3	Fuelled EVs	24
2.4	EVs using Supply Lines	25
2.5	EVs which use Flywheels or Supercapacitors	25
2.6	Solar-Powered Vehicles	26
2.7	Vehicles using Linear Motors	27
2.8	EVs for the Future	27
	Further Reading	27
3	Batteries, Flywheels and Supercapacitors	29
3.1	Introduction	29

3.2	Battery Parameters		30
	3.2.1 Cell and Battery Voltages		30
	3.2.2 Charge (or Amphour) Cap	pacity	31
	3.2.3 Energy Stored		32
	3.2.4 Specific Energy		33
	3.2.5 Energy Density		33
	3.2.6 Specific Power		34
	3.2.7 Amphour (or Charge) Effi	ciency	34
	3.2.8 Energy Efficiency	2	35
	3.2.9 Self-discharge Rates		35
	3.2.10 Battery Geometry		35
	3.2.11 Battery Temperature, Hea	ting and Cooling Needs	35
	3.2.12 Battery Life and Number	of Deep Cycles	35
3.3	Lead Acid Batteries	5 1 5	36
	3.3.1 Lead Acid Battery Basics		36
	3.3.2 Special Characteristics of	Lead Acid Batteries	38
	3.3.3 Battery Life and Maintend	ince	40
	3.3.4 Battery Charging		40
	3.3.5 Summary of Lead Acid Ba	etteries	41
3.4	Nickel-Based Batteries		41
	3.4.1 Introduction		41
	3.4.2 Nickel Cadmium		41
	3.4.3 Nickel Metal Hydride Bat	teries	44
3.5	Sodium-Based Batteries		46
	3.5.1 Introduction		46
	3.5.2 Sodium Sulfur Batteries		47
	3.5.3 Sodium Metal Chloride (7	EBRA) Batteries	48
3.6	Lithium Batteries		50
	3.6.1 Introduction		50
	3.6.2 The Lithium Polymer Batt	erv	50
	3.6.3 The Lithium Ion Battery		51
3.7	Metal-Air Batteries		52
	3.7.1 Introduction		52
	3.7.2 The Aluminium–Air Batte	rv	52
	3.7.3 The Zinc–Air Battery		53
3.8	Supercapacitors and Flywheels		54
	3.8.1 Supercapacitors		54
	3.8.2 Flywheels		56
3.9	Battery Charging		59
	3.9.1 Battery Chargers		59
	3.9.2 Charge Equalisation		60
3.10	The Designer's Choice of Battery		63
2.10	3.10.1 Introduction		63
	3.10.2 Batteries which are Curre	ntly Available Commercially	63
3.11	Use of Batteries in Hybrid Vehicle	s	64
	3.11.1 Introduction		64

	3.11.2 IC/Battery Electric Hybrids	64
	3.11.3 Battery/Battery Electric Hybrids	64
	3.11.4 Combinations using Flywheels	65
	3.11.5 Complex Hybrids	65
3.12	Battery Modelling	65
	3.12.1 The Purpose of Battery Modelling	65
	3.12.2 Battery Equivalent Circuit	66
	3.12.3 Modelling Battery Capacity	68
	3.12.4 Simulating a Battery at a Set Power	71
	3.12.5 Calculating the Peukert Coefficient	75
	3.12.6 Approximate Battery Sizing	76
3.13	In Conclusion	77
	References	78
4	Electricity Supply	79
4.1	Normal Existing Domestic and Industrial Electricity Supply	79
4.2	Infrastructure Needed for Charging Electric Vehicles	80
4.3	Electricity Supply Rails	81
4.4	Inductive Power Transfer for Moving Vehicles	82
4.5	Battery Swapping	84
	Further Reading	85
5	Fuel Cells	87
5.1	Fuel Cells – A Real Option?	87
5.2	Hydrogen Fuel Cells – Basic Principles	89
	5.2.1 Electrode Reactions	89
	5.2.2 Different Electrolytes	90
	5.2.3 Fuel Cell Electrodes	93
5.3	Fuel Cell Thermodynamics – An Introduction	95
	5.3.1 Fuel Cell Efficiency and Efficiency Limits	95
	5.3.2 <i>Efficiency and the Fuel Cell Voltage</i>	98
	5.3.3 Practical Fuel Cell Voltages	100
	5.3.4 The Effect of Pressure and Gas Concentration	101
5.4	Connecting Cells in Series – The Bipolar Plate	102
5.5	Water Management in the PEMFC	106
	5.5.1 Introduction to the Water Problem	106
	5.5.2 The Electrolyte of a PEMFC	107
	5.5.3 Keeping the PEM Hydrated	109
5.6	Thermal Management of the PEMFC	110
5.7	A Complete Fuel Cell System	111
5.8	Practical Efficiency of Fuel Cells	114
	References	114
6	Hydrogen as a Fuel – Its Production and Storage	115
6.1	Introduction	115
6.2	Hydrogen as a Fuel	117

6.3	Fuel Re	eforming	118
	6.3.1	Fuel Cell Requirements	118
	6.3.2	Steam Reforming	118
	6.3.3	Partial Oxidation and Autothermal Reforming	120
	6.3.4	Further Fuel Processing – Carbon Monoxide Removal	121
	6.3.5	Practical Fuel Processing for Mobile Applications	122
	6.3.6	Energy Efficiency of Reforming	123
6.4	Energy	Efficiency of Reforming	124
6.5	Hydrog	en Storage I – Storage as Hydrogen	124
	6.5.1	Introduction to the Problem	124
	6.5.2	Safety	124
	6.5.3	The Storage of Hydrogen as a Compressed Gas	125
	6.5.4	Storage of Hydrogen as a Liquid	127
	6.5.5	Reversible Metal Hydride Hydrogen Stores	129
	6.5.6	Carbon Nanofibres	131
	6.5.7	Storage Methods Compared	131
6.6	Hydrog	en Storage II – Chemical Methods	132
	6.6.1	Introduction	132
	6.6.2	Methanol	133
	6.6.3	Alkali Metal Hydrides	135
	6.6.4	Sodium Borohydride	136
	6.6.5	Ammonia	140
	6.6.6	Storage Methods Compared	142
	Referen	nces	143
7	Electri	c Machines and their Controllers	145
7.1	The 'B	rushed' DC Electric Motor	145
	7.1.1	Operation of the Basic DC Motor	145
	7.1.2	Torque Speed Characteristics	147
	7.1.3	Controlling the Brushed DC Motor	151
	7.1.4	Providing the Magnetic Field for DC Motors	152
	7.1.5	DC Motor Efficiency	153
	7.1.6	Motor Losses and Motor Size	156
	7.1.7	Electric Motors as Brakes	156
7.2	DC Reg	gulation and Voltage Conversion	159
	7.2.1	Switching Devices	159
	7.2.2	Step-Down or 'Buck' Regulators	161
	7.2.3	Step-Up or 'Boost' Switching Regulator	162
	7.2.4	Single-Phase Inverters	165
	7.2.5	Three Phase	167
7.3	Brushle	ess Electric Motors	169
	7.3.1	Introduction	169
	7.3.2	The Brushless DC Motor	169
	7.3.3	Switched Reluctance Motors	173
	7.3.4	The Induction Motor	177
7.4	Motor (Cooling, Efficiency, Size and Mass	179

	7.4.1	Improving Motor Efficiency	179
	7.4.2	Motor Mass	181
7.5	Electri	c Machines for Hybrid Vehicles	182
7.6	Linear	Motors	185
	Refere	nces	185
8	Electr	ic Vehicle Modelling	187
8.1	Introdu	action	187
8.2	Tractiv	e Effort	188
	8.2.1	Introduction	188
	8.2.2	Rolling Resistance Force	188
	8.2.3	Aerodynamic Drag	189
	8.2.4	Hill Climbing Force	189
	8.2.5	Acceleration Force	189
	8.2.6	Total Tractive Effort	191
8.3	Model	ling Vehicle Acceleration	191
	8.3.1	Acceleration Performance Parameters	191
	8.3.2	Modelling the Acceleration of an Electric Scooter	193
	8.3.3	Modelling the Acceleration of a Small Car	197
8.4	Model	ling Electric Vehicle Range	198
	8.4.1	Driving Cycles	198
	8.4.2	Range Modelling of Battery Electric Vehicles	204
	8.4.3	Constant Velocity Range Modelling	210
	8.4.4	Other uses of Simulations	210
	8.4.5	Range Modelling of Fuel Cell Vehicles	212
	8.4.6	Range Modelling of Hybrid Electric Vehicles	215
8.5	Simula	itions – A Summary	215
	Refere	nces	216
9	Design	1 Considerations	217
9.1	Introdu	action	217
9.2	Aerody	ynamic Considerations	217
	9.2.1	Aerodynamics and Energy	217
	9.2.2	Body/Chassis Aerodynamic Shape	220
9.3	Consid	leration of Rolling Resistance	222
9.4	Transn	nission Efficiency	223
9.5	Consid	leration of Vehicle Mass	227
9.6	Electri	c Vehicle Chassis and Body Design	229
	9.6.1	Body/Chassis Requirements	229
	9.6.2	Body/Chassis Layout	230
	9.6.3	Body/Chassis Strength, Rigidity and Crash Resistance	231
	9.6.4	Designing for Stability	234
	9.6.5	Suspension for Electric Vehicles	234
	9.6.6	Examples of Chassis used in Modern Battery and Hybrid Electric	
		Vehicles	235
	9.6.7	Chassis used in Modern Fuel Cell Electric Vehicles	235

9.7	General Issues in Design	237
	9.7.1 Design Specifications	237
	9.7.2 Software in the use of Electric Vehicle Design	237
10	Design of Ancillary Systems	239
10.1	Introduction	239
10.2	Heating and Cooling Systems	239
10.3	Design of the Controls	242
10.4	Power Steering	244
10.5	Choice of Tyres	245
10.6	Wing Mirrors, Aerials and Luggage Racks	245
10.7	Electric Vehicle Recharging and Refuelling Systems	245
11	Efficiencies and Carbon Release Comparison	247
11.1	Introduction	247
11.2	Definition of Efficiency	248
11.3	Carbon Dioxide Emission and Chemical Energy in Fuel	248
12	Electric Vehicles and the Environment	253
12.1	Introduction	253
12.2	Vehicle Pollution – The Effects	253
12.3	Vehicle Pollution in Context	256
12.4	The Role of Regulations and Lawmakers	256
	Further Reading	258
13	Power Generation for Transport – Particularly for Zero Emissions	259
13.1	Introduction	259
13.2	Power Generation using Fossil Fuels	260
13.3	Alternative and Sustainable Energy	260
	13.3.1 Solar Energy	260
	13.3.2 Wind Energy	262
	13.5.5 Hydroelectricity	203
	13.3.4 Illuli Ellergy 12.2.5 Maxima Commenta	204
	13.3.5 Marine Currents	200
	13.3.7 Biomass Energy	200
	13.3.8 Obtaining Energy from Waste	207
	13.3.0 Coothermal Energy	207
13/	Nuclear Energy	207
13.4	13.4.1 Nuclear Fission	207
	13.4.2 Nuclear Fusion	207
13 5	In Conclusion	200
15.5	Further Reading	269
14	Recent Electric Vehicles	271
14.1	Introduction	271

14.2	Low-Speed Rechargeable Battery Vehicles	271
	14.2.1 Electric Bicycles	271
	14.2.2 Electric Mobility Aids	272
	14.2.3 Low-Speed Vehicles	274
14.3	Battery-Powered Cars and Vans	274
	14.3.1 Peugeot 106 and the Partner	274
	14.3.2 The GM EV1	275
	14.3.3 The Nissan Leaf	279
	14.3.4 The Mitsubishi MiEV	279
14.4	Hybrid Vehicles	279
	14.4.1 The Honda Insight	280
	14.4.2 The Toyota Prius	281
	14.4.3 The Chevrolet Volt	283
14.5	Fuel-Cell-Powered Bus	284
14.6	Conventional High-Speed Trains	286
	14.6.1 Introduction	286
	14.6.2 The Technology of High-Speed Trains	288
14.7	Conclusion	289
	References	290
15	The Future of Electric Vehicles	291
15.1	Introduction	291
15.2	The Tesla S	291
15.3	The Honda FCX Clarity	292
15.4	Maglev Trains	292
15.5	Electric Road-Rail Systems	294
15.6	Conclusion	295
	Further Reading	296
Appe	endices: MATLAB [®] Examples	297
	Appendix 1: Performance Simulation of the GM EV1	297
	Appendix 2: Importing and Creating Driving Cycles	298
	Appendix 3: Simulating One Cycle	300
	Appendix 4: Range Simulation of the GM EV1 Electric Car	302
	Appendix 5: Electric Scooter Range Modelling	304
	Appendix 6: Fuel Cell Range Simulation	306
	Appendix 7: Motor Efficiency Plots	308

Index

311

About the Author

John Lowry is a professional engineer who graduated in Mechanical Engineering from Imperial College, London University. He holds a PhD from Queen Mary College, London University. He was formerly a university lecturer and is currently a consultant engineer. He is a Fellow of the Institution of Mechanical Engineers, the Institute of Energy and the Institute of Engineering and Technology.

Preface

Electric vehicle technology is now in its third century of development and is likely to advance rapidly in the coming years.

Electric trains are widely used and modern high-speed trains are competitive with air travel in terms of journey speed over shorter land routes. In energy terms they use less than 10% of the fuel per passenger kilometre than air transport.

Electric road vehicles have not achieved the commercial success that internal combustion engine vehicles have; however, battery technology has now developed to the point where electric vehicles are being commercially produced. Future battery developments are likely to accelerate the use of electric road vehicles in the next few years.

Small electric vehicles such as golf buggies and personnel carriers in airports have become well established. Electric bicycles are becoming increasingly popular and are considered one of the fastest ways to move about crowded cities.

Potential environmental benefits which can result from the use of electric vehicles are substantial when the vehicles use electricity that is generated from sources which use highly efficient modern generating stations or which use nuclear or sustainable energy. Environmental benefits include zero exhaust emissions in the vicinity of the vehicles, reduced dependence on fossil fuels and reduced overall carbon emissions.

This book explains both the technology of electric vehicles and how they affect the environment. The book is designed for engineers and scientists who require a thorough understanding of electric vehicle technology and its effects on the environment.

John Lowry

Acknowledgments

The authors would like to put on record their thanks to the following companies and organisations that have made this book possible:

Ballard Power Systems Inc., Canada DaimlerChrysler Corp., USA and Germany The Ford Motor Co., USA FreeGo Electric Bikes Ltd, UK General Motors Corp., USA GfE Metalle und Materialien GmbH, Germany Groupe Enerstat Inc., Canada Hawker Power Systems Inc., USA The Honda Motor Co. Ltd Johnson Matthey Plc, UK MAN Nutzfahrzeuge AG, Germany MES-DEA SA, Switzerland Micro Compact Car Smart GmbH Mitsubishi Motors Corporation National Motor Museum Beaulieu Nissan Motor Manufacturing (UK) Ltd Parry People Movers Ltd, UK Paul Scherrer Institute, Switzerland Peugeot SA, France Powabyke Ltd, UK Richens Mobility Centre, Oxford, UK Saft Batteries, France SR Drives Ltd, UK Tesla Motors Inc.

Toyota Motor Co. Ltd Wamfler GmbH, Germany Varta/Johnson Controls Zytek Group Ltd, UK

In addition we would like to thank friends and colleagues who have provided valuable comments and advice. We are also indebted to our families who have helped and put up with us while we devoted time and energy to this project. Special thanks are also due to Dr Peter Moss, formerly of The Defence Academy, Cranfield University, for reading and commenting on the draft manuscript.

Abbreviations

Anti-lock brake system
Alternating current
Alkaline fuel cell
Brushless DC (motor)
Balance of plant
Computer-aided design
Computer-aided manufacturing
California Air Resources Board
Combined cycle gas turbine
Computational fluid dynamics
Combined heat and power
Central Japan Railway
Compressed natural gas
Catalytic partial oxidation
Direct current
Direct methanol fuel cell
Degree of hybridisation
Double overhead cam
Electronically controlled continuous variable transmission
Electronically commutated motor
Electric Fuel Transportation Company
Electromotive force
Environmental Protection Agency
Electric power steering
Energy Technology Support Unit (a UK government organisation)
Extra-Urban Driving Cycle
Electric vehicle
Fuel cell
Fuel cell vehicle
Federal Highway Driving Schedule
Federal Urban Driving Schedule
General Motors
General Motors Electric Vehicle 1

GNF	Graphitic nanofibre
GRP	Glass reinforced plastic
GTO	Gate turn-off
HEV	Hybrid electric vehicle
HHV	Higher heating value
HSR	High-speed rail
HSST	High-speed surface train
IC	Internal combustion
ICE	Internal combustion engine
IEC	International Electrotechnical Commission
IGBT	Insulated gate bipolar transistor
IMA	Integrated Motor Assist
IPT	Inductive power transfer
JET	Joint Euorpean Torus
kph	Kilometres per hour
LH ₂	Liquid (cryogenic) hydrogen
LHV	Lower heating value
LIB	Lithium ion battery
LPG	Liquid petroleum gas
LSV	Low-speed vehicle
MCFC	Molten carbonate fuel cell
MeOH	Methanol
MEA	Membrane electrode assembly
MOSFET	Metal oxide semiconductor field effect transistor
mph	Miles per hour
NASA	National Aeronautics and Space Administration
NEDC	New European Driving Cycle
NiCad	Nickel cadmium (battery)
NiMH	Nickel metal hydride (battery)
NL	Normal litre, 1 litre at NTP
NOx	Nitrous oxides
NTP	Normal temperature and pressure (20 °C and 1 atm or 1.013 25 bar)
OCV	Open-circuit voltage
PAFC	Phosphoric acid fuel cell
PEM	Proton exchange membrane OR polymer electrolyte membrane (different names for the same thing which fortunately have the same abbreviation)
PEMFC	Proton exchange membrane fuel cell OR polymer electrolyte membrane fuel cell
PM	Permanent magnet OR particulate matter
POX	Partial oxidation
ppb	Parts per billion
ppm	Parts per million
PROX	Preferential oxidation
PSA	Pressure swing absorption

PTFE	Polytetrafluoroethylene
PZEV	Partial zero-emission vehicle
RRIM	Reinforced reaction injection moulding
SAE	Society of Automotive Engineers
SFUDS	Simplified Federal Urban Driving Schedule
SL	Standard litre, 1 litre at STP
SLI	Starting, lighting and ignition
SMC	Sheet moulding compound
SOC	State of charge
SOFC	Solid oxide fuel cell
SRM	Switched reluctance motor
STP	Standard temperature and pressure
SULEV	Super ultra-low-emission vehicle
SUV	Sports utility vehicle
TDI	Toyota Direct Ignition
TGV	Train à grande vitesse
VOC	Volatile organic compound
VRLA	Valve-regulated (sealed) lead acid (battery)
WOT	Wide open throttle
ZEBRA	Zero Emissions Battery Research Association
ZEV	Zero-emission vehicle

Symbols

Letters are used to stand for variables, such as mass, and also as chemical symbols in chemical equations. The distinction is usually clear from the context, but for even greater clarity italics are used for variables and ordinary text for chemical symbols, so H stands for enthalpy, whereas H stands for hydrogen.

In cases where a letter can stand for two or more variables, the context always makes it clear which is intended.

a	Acceleration
Α	Area
В	Magnetic field strength
С	Amphour capacity of a battery OR capacitance of a capacitor
<i>C</i> ₃	Amphour capacity of a battery if discharged in 3 hours, the '3 hour rate'
C_d	Drag coefficient
C_p	Peukert capacity of a battery, the same as the amphour capacity if discharged at a current of 1 amp
CR	Charge removed from a battery, usually in amphours
CS	Charge supplied to a battery, usually in amphours
d	Separation of the plates of a capacitor, OR distance travelled
DoD	Depth of discharge, a ratio changing from 0 (fully charged) to 1 (empty)
е	Magnitude of the charge on one electron, 1.602×10^{-19} coulombs
Ε	Energy OR Young's modulus OR EMF (voltage)
E_{b}	Back EMF (voltage) of an electric motor in motion
E_{f}	Field winding
$\vec{E_s}$	Supplied EMF (voltage) to an electric motor
f	Frequency
F	Force OR Faraday constant, the charge on 1 mole of electrons, 96 485 coulombs
F_{ad}	Force needed to overcome the wind resistance on a vehicle
F_{la}	Force needed to give linear acceleration to a vehicle
F_{hc}	Force needed to overcome the gravitational force of a vehicle down a hill
F _{rr}	Force needed to overcome the rolling resistance of a vehicle
F _{te}	Tractive effort, the forward driving force on the wheels

$F_{\omega a}$	Force at the wheel needed to give rotational acceleration to the rotating parts of a vehicle
g	Acceleration due to gravity
G	Gear ratio OR rigidity modulus OR Gibbs free energy (negative thermodynamic potential)
Н	Enthalpy
Ι	Current OR moment of inertia OR second moment of area (the context makes it clear)
I	Motor current
I m	Polar second moment of area
k	Peukert coefficient
k.	Copper losses coefficient for an electric motor
k.	Iron losses coefficient for an electric motor
k_{\dots}	Windage losses coefficient for an electric motor
KĔ	Kinetic energy
<i>K</i>	Motor constant
L^{m}	Length
т	Mass
'n	Mass flowrate
m_{h}	Mass of batteries
n	Number of cells in a battery OR a fuel cell stack OR the number of moles of substance
Ν	Avogadro's number, 6.022×10^{23} , OR revolutions per second
Р	Power OR pressure
P _{adb}	Power from the battery needed to overcome the wind resistance on a vehicle
P_{adw}	Power at the wheels needed to overcome the wind resistance on a vehicle
P_{hc}^{aan}	Power needed to overcome the gravitational force of a vehicle down a hill
P _{mot-in}	Electrical power supplied to an electric motor
P _{mot-out}	Mechanical power given out by an electric motor
P_{rr}	Power needed to overcome the rolling resistance of a vehicle
P_{te}	Power supplied at the wheels of a vehicle
q	Sheer stress
Q	Charge (e.g. in a capacitor)
r	Radius, of wheel, axle, OR the rotor of a motor, etc.
R	Electrical resistance OR the molar gas constant $8.314 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
r_i, r_o	Inner and outer radius of a hollow tube
R_a	Armature resistance of a motor or generator
R_L	Resistance of a load
S	Entropy
SE	Specific energy
Т	Temperature OR Torque OR the discharge time of a battery in hours
T_1, T_2	Temperatures at different stages in a process
T_{f}	Frictional torque (e.g. in an electric motor)
t_{ON}, t_{OFF}	On and off times for a chopper circuit
v	Velocity

V	Voltage
W	Work done
z	Number of electrons transferred in a reaction
δ	Deflection
δt	Time step in an iterative process
Δ	Change in, e.g. ΔH = change in enthalpy
ε	Electrical permittivity
η	Efficiency
η_c	Efficiency of a DC/DC converter
η_{fc}	Efficiency of a fuel cell
η_g	Efficiency of a gearbox
η_m	Efficiency of an electric motor
η_o	Overall efficiency of a drive system
θ	Angle of deflection or bend
λ	Stoichiometric ratio
μ_{rr}	Coefficient of rolling resistance
ρ	Density
σ	Bending stress
Φ	Total magnetic flux
ψ	Angle of slope or hill
ω	Angular velocity