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Electric Vehicle Modelling

8.1 Introduction

With all vehicles the prediction of performance and range is important. Computers allow
us to do this reasonably easily. Above all, computer-based methods allow us quickly to
investigate aspects of the vehicle, such as motor power, battery type and size, weight, and
so on, and see how the changes might affect the performance and range. In this chapter
we will show how the equations we have developed in the preceding chapters can be
put together to perform quite accurate and useful simulations. Furthermore, we will show
how this can be done without using any special knowledge of programming techniques,
as standard mathematical and spreadsheet programs such as MATLAB® and Excel make
an excellent basis for these simulations. We will also see that there are some features of
electric vehicles that make the mathematical modelling of performance easier than for
other vehicles.

The first parameter we will model is vehicle performance. By performance we mean
acceleration and top speed – an area where electric vehicles have a reputation of being
very poor. It is necessary that any electric vehicle has a performance that allows it,
at the very least, to blend safely with ordinary city traffic. Many would argue that the
performance should be at least as good as current IC engine vehicles if large-scale sales
are to be achieved.

Another vitally important feature of electric vehicles that we must be able to predict is
their range. This can also be mathematically modelled, and computer programs make this
quite straightforward. The mathematics we will develop will allow us to see the effects
of changing things like battery type and capacity, as well as all other aspects of vehicle
design, on range. This is an essential tool for the vehicle designer.

We will go on to show how the data produced by the simulations can also have other
uses in addition to predicting performance and range. For example, we will see how data
about the motor torque and speed can be used to optimise the compromises involved in
the design of the motor and other subsystems.
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8.2 Tractive Effort

8.2.1 Introduction

The first step in vehicle performance modelling is to produce an equation for the required
‘tractive effort’. This is the force propelling the vehicle forward, transmitted to the ground
through the drive wheels.

Consider a vehicle of mass m , proceeding at a velocity v , up a slope of angle ψ , as in
Figure 8.1. The force propelling the vehicle forward, the tractive effort, has to accomplish
the following:

• overcome the rolling resistance;
• overcome the aerodynamic drag;
• provide the force needed to overcome the component of the vehicle’s weight acting

down the slope;
• accelerate the vehicle, if the velocity is not constant.

We will consider each of these in turn.

8.2.2 Rolling Resistance Force

The rolling resistance is primarily due to the hysteresis losses in the vehicle tyres. Friction
in bearings and the gearing system also play their part. The rolling resistance is approxi-
mately constant, and hardly depends on vehicle speed. It is proportional to vehicle weight.
The equation is

Frr = μrrmg (8.1)

where μrr is the coefficient of rolling resistance. The main factors controlling μrr are the
type of tyre and the tyre pressure. Any cyclist will know this very well – the freewheeling
performance of a bicycle becomes much better if the tyres are pumped up to a high
pressure, though the ride may be less comfortable.

The value of μrr can reasonably readily be found by pulling a vehicle at a steady very
low speed, and measuring the force required.

Fte

Fad

Frr

y

Fhc

y

mg

Figure 8.1 The forces acting on a vehicle moving up a slope



Electric Vehicle Modelling 189

Typical values of μrr are 0.015 for a radial ply tyre, down to about 0.005 for tyres
developed especially for electric vehicles.

8.2.3 Aerodynamic Drag

This part of the force is due to the friction of the vehicle body moving through the air.
It is a function of the frontal area, shape, protrusions such as side mirrors, ducts and air
passages, spoilers and many other factors. The formula for this component is

Fad = 1
2ρACdv

2 (8.2)

where ρ is the density of the air, A is the frontal area and v is the velocity. C d is a
constant called the ‘drag coefficient’.

The drag coefficient C d can be reduced by good vehicle design. A typical value for a
saloon car is 0.3, but some electric vehicle designs have achieved values as low as 0.19.
There is greater opportunity for reducing C d in electric vehicle design because there is
more flexibility in the location of the major components, and there is less need for cooling
air ducting and under-vehicle pipework. However, some vehicles, such as motorcycles
and buses, will inevitably have much larger values, and C d figures of around 0.7 are
more typical in such cases.

The density of air does of course vary with temperature, altitude and humidity. However
a value of 1.25 kg m−3 is a reasonable value to use in most cases. Provided that SI units
are used (m2 for A, m s−1 for v ) then the value of F ad will be given in newtons.

8.2.4 Hill Climbing Force

The force needed to drive the vehicle up a slope is the most straightforward to find. It is
simply the component of the vehicle weight that acts along the slope. By simple resolution
of forces we see that

Fhc = mg sin ψ (8.3)

8.2.5 Acceleration Force

If the velocity of the vehicle is changing, then clearly a force will need to be applied in
addition to the forces shown in Figure 8.1. This force will provide the linear acceleration
of the vehicle, and is given by the well-known equation derived from Newton’s third law,

Fla = ma (8.4)

However, for a more accurate picture of the force needed to accelerate the vehicle we
should also consider the force needed to make the rotating parts turn faster. In other
words, we need to consider rotational acceleration as well as linear acceleration. The
main issue here is the electric motor – not necessarily because of its particularly high
moment of inertia, but because of the higher angular speeds.

Referring to Figure 8.2, clearly the axle torque equals Fter , where r is the radius of
the tyre and F te is the tractive effort delivered by the powertrain. If G is the gear ratio
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tractive effort = Fte

gear ratio = G

motor torque = T

tyre
radius = r

Figure 8.2 A simple arrangement for connecting a motor to a drive wheel

of the system connecting the motor to the axle and T is the motor torque, then we can
say that

T = Fter

G
and Fte = G

r
T (8.5)

We will use this equation again when we develop final equations for vehicle performance.
We should also note axle angular speed equals v /r radians per second, so motor angular
speed is

ω = G
ν

r
rad s−1 (8.6)

and, similarly, motor angular acceleration is

ω̇ = G
a

r
rad s−2

The torque required for this angular acceleration is

T = I × G
a

r

where I is the moment of inertia of the rotor of the motor. The force at the wheels
needed to provide the angular acceleration (Fωa) is found by combining this equation
with Equation (8.5), giving

Fωa = G

r
× I × G

a

r
or Fωa = I

G2

r2
a (8.7)

We must note that in these simple equations we have assumed that the gear system is
100% efficient – it causes no losses. Since the system will usually be very simple, the
efficiency is often very high. However, it will never be 100%, and so we should refine
the equation by incorporating the gear system efficiency ηg . The force required will be
slightly larger, so Equation (8.7) can be refined to

Fωa = I
G2

ηgr
2
a (8.8)
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Typical values for the constants here are 40 for G /r and 0.025 kg m2 for the moment
of inertia. These are for a 30 kW motor, driving a car which reaches 60 kph at a motor
speed of 7000 rpm. Such a car would probably weigh about 800 kg. The IG2/r2 term in
Equation (8.8) will have a value of about 40 kg in this case. In other words, the angular
acceleration force given by Equation (8.8) will typically be much smaller than the linear
acceleration force given by Equation (8.4) In this specific (but reasonably typical) case,
it will be smaller by the ratio

40

800
= 0.05 = 5%

It will quite often turn out that the moment of inertia of the motor I will not be known. In
such cases a reasonable approximation is simply to increase the mass by 5% in Equation
(8.4), and to ignore the Fωa term.

8.2.6 Total Tractive Effort

The total tractive effort is the sum of all these forces

Fte = Frr + Fad + Fhc + Fla + Fωa (8.9)

where:

• Frr is the rolling resistance force, given by Equation (8.1)
• Fad is the aerodynamic drag, given by Equation (8.2)
• Fhc is the hill climbing force, given by Equation (8.3)
• Fla is the force required to give linear acceleration given by Equation (8.4)
• Fωa the force required to give angular acceleration to the rotating motor, given by

Equation (8.8)

We should note that Fla and Fωa will be negative if the vehicle is slowing down, and that
Fhc will be negative if it is going downhill.

8.3 Modelling Vehicle Acceleration

8.3.1 Acceleration Performance Parameters

The acceleration of a car or motorcycle is a key performance indicator, though there is
no standard measure used. Typically the time to accelerate from standstill to 60 mph, or
30 or 50 kph, will be given. The nearest to such a standard for electric vehicles are the
0–30 and 0–50 kph times, though these times are not given for all vehicles.

Such acceleration figures are found from simulation or testing of real vehicles. For IC
engine vehicles this is done at maximum power. Similarly, for electric vehicles perfor-
mance simulations are carried out at maximum torque.

We have already seen in Chapter 7 that the maximum torque of an electric motor is a
fairly simple function of angular speed. In most cases, at low speeds, the maximum torque
is a constant, until the motor speed reaches a critical value ωc after which the torque falls.
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In the case of a ‘brushed’ shunt or permanent magnet (PM) DC motor the torque falls
linearly with increasing speed. In the case of most other types of motor, the torque falls in
such a way that the power remains constant.

The angular velocity of the motor depends on the gear ratio G and the radius of the
drive wheel r as in Equation (8.6) derived above. So, we can say that

For ω < ωc, or v <
r

G
ωc, then T = Tmax

Once this constant torque phase is passed, that is ω ≥ ωc, or v ≥ (r/G) ωc, then either
the power is constant, as in most brushless type motors, and we have

T = Tmaxωc

ω
= rTmaxωc

Gν
(8.10)

or the torque falls according to the linear equation we met in Section 7.1.2:

T = T0 − kω

which, when Equation (8.6) is substituted for angular speed, gives

T = T0 − kG

r
v (8.11)

Now that we have the equations we need, we can combine them in order to find the
acceleration of a vehicle. Many of these equations may look quite complex, but nearly all
the terms are constants, which can be found or estimated from vehicle or component data.

For a vehicle on level ground, with air density 1.25 kg m−3, Equation (8.9) becomes

Fte = μrrmg + 0.625ACdν
2 + ma + I

G2

ηgr
2
a

Substituting Equation (8.5) for F te , and noting that a = dν/dt , we have

G

r
T = μrrmg + 0.625ACdν

2 +
(

m + I
G2

ηgr
2

)
dν

dt
(8.12)

We have already noted that T , the motor torque, is either a constant or a simple
function of speed [Equations (8.10) and (8.11)]. So, Equation (8.13) can be reduced to a
differential equation, of first order, for the velocity v . Thus the value of v can be found
for any value of t .

For example, in the initial acceleration phase, when T = Tmax, Equation (8.12) becomes

G

r
Tmax = μrrmg + 0.625ACdv

2 +
(

m + I
G2

ηgr
2

)
dv

dt
(8.13)

Provided all the constants are known, or can reasonably be estimated, this is a very
straightforward first-order differential equation, whose solution can be found using many
modern calculators, as well as a wide range of personal computer programs. This is
also possible for the situation with the larger motors. Two examples will hopefully make
this clear.
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Figure 8.3 Electric scooter of the type simulated at various points in this chapter. The photograph
was taken in a Berlin car park

8.3.2 Modelling the Acceleration of an Electric Scooter

For our first example we will take an electric scooter. No particular model is being
considered, but the vehicle is similar to the electric scooters made by Peugeot and EVS,
an example of which is shown in Figure 8.3.

• The electric scooter has a mass of 115 kg, with a typical passenger of mass 70 kg, so
total mass m = 185 kg.

• The moment of inertia of the motor is not known, so we will adopt the expedient
suggested at the end of Section 8.2.5, and increase m by 5% in the linear acceleration
term only. A value of 194 kg will thus be used from m in the final term of Equation
(8.13).

• The drag coefficient C d is estimated as 0.75, a reasonable value for a small scooter,
with a fairly ‘sit-up’ riding style.

• The frontal area of vehicle and rider is 0.6 m2.
• The tyres and wheel bearings give a coefficient of rolling resistance, μrr = 0.007.
• The motor is connected to the rear wheel using a 2:1 ratio belt system, and the wheel

diameter is 42 cm. Thus G = 2 and r = 0.21 m.
• The motor is an 18 V ‘Lynch’-type motor, of the type discussed in the previous chapter,

Section 7.1.2. Equation (7.8) has been recalculated for 18 V, giving

T = 153 − 1.16 ω (8.14)

• As in Section 7.1.2, the maximum current is controlled by the maximum safe current,
in this case 250 A, so, as shown in Equation (7.9), the maximum torque T max is 34 N m.
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• The critical motor speed, ωc , after which the torque falls according to Equation (8.14),
occurs when

34 = 153 − 1.16 ω ∴ ω = 153 − 34

1.16
= 103 rad s−1

• The gear system is very simple, and of low ratio, so we can assume a good efficiency.
A value of ηg of 0.98 is estimated. An effect of this will be to reduce the torque, and
so this factor will be applied to the torque.

When the torque is constant, as in Equation (8.13), we have

2

0.21
× 0.98 × 34 = 0.007 × 185 × 9.8 + 0.625 × 0.6 × 0.75v2 + 194

dv

dt

317 = 12.7 + 0.281v2 + 194
dv

dt

thus 194
dv

dt
= 304 − 0.281v2

and so
dv

dt
= 1.57 − 0.00145v2 (8.15)

This equation holds until the torque begins to fall when ω = ωc = 103 rad s−1, which
corresponds to 103 × 0.21/2 = 10.8 m s−1. After this point the torque is governed by
Equation (8.14). If we substitute this, and the other constants, into Equation (8.12) we
obtain

2

0.21
× 0.98 ×

(
153 − 1.16

2

0.21
v

)
= 0.007 × 185 × 9.8

+ 0.625 × 0.6 × 0.75v2 + 194
dv

dt

1428 − 103v = 12.7 + 0.281v2 + 194
dv

dt

and so
dv

dt
= 7.30 − 0.53v − 0.00145v2 (8.16)

There are many practical and simple ways of solving these differential equations. Many
modern calculators will solve such equations, remembering that there is a simple initial
condition that v = 0 when t = 0. However, the most versatile next step is to derive a
simple numerical solution, which can then easily be used in Excel or MATLAB®. The
derivative of v is simply the difference between consecutive values of v divided by the
time step. Applying this to Equation (8.15) gives us

vn+1 − vn

δt
= 1.57 − 0.00145v2

n

For a program such as Excel or MATLAB® we need to rearrange this equation to
obtain the value of the next velocity from the current velocity. This is done as follows:

vn+1 = vv + δt × (
1.57 − 0.00145v2

n

)
(8.17)
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This equation holds for velocities up to the critical velocity of 10.8 m s−1, after which we
have to use Equation (8.16), approximated in exactly the same way as we have just done
for Equation (8.15), which gives

vn+1 = vv + δt × (
7.30 − 0.53v − 0.00145v2

n

)
(8.18)

The MATLAB® script file below shows how to solve these equations using this pro-
gram. Figure 8.4 is a plot of the solution using a time step δt of 0.1 seconds. Exactly the
same result can be obtained with almost equal ease using Excel. It is left as an exercise
for the reader to produce an Excel spreadsheet or MATLAB® script file where many of
the machine parameters, such as the gear ratio G , are left as easily altered variables, so
that the effect of changing it on the vehicle’s performance can be noted.

% ScootA - electric scooter acceleration.

t=linspace(0,50,501); % 0 to 50 s, in 0.1 s steps

vel=zeros(1,501); % 501 readings of velocity

d=zeros(1,501);% Array for storing distance travelled

dT=0.1; % 0.1 second time step

for n=1:500

% Now follow equations (8.17) & (8.18)

if vel(n)<10.8 % Torque constant till this point

vel(n+1)= vel(n) + dT*(1.57 - (0.00145*(vel(n)^2)));

elseif vel(n)>=10.8

vel(n+1)=vel(n)+dT*(7.30-(0.53*vel(n))-(0.00145*(vel(n)^2)));

end;

d(n+1)=d(n) + 0.1*vel(n); % Compute distance travelled.

end;

vel=vel.*3.6; % Multiply by 3.6 to convert m/s to kph

plot(t,vel); axis([0 30 0 50]);

xlabel('Time / seconds');

ylabel('Velocity / kph');

title('Full power (WOT) acceleration of electric scooter');

The result of this simulation is shown in Figure 8.4, and shows that the performance
is somewhat as might be expected from a fairly low-power motor. The acceleration is
unspectacular, and the top speed is about 30 mph or 48 kph, on level ground. However, this
is reasonably compatible with safe city riding. The acceleration of such vehicles is some-
times given in terms of the standing start 100 m times, and the power of such MATLAB®
script files is that they can very easily be changed to produce such information. If the
plot line in the file above is changed as follows, then Figure 8.5 is obtained.

plot(t,d); axis([0 15 0 100]);

While we are not claiming that our model exactly represents any particular commercial
designs, it is worth noting the following points from the specification of the Peugeot
Scoot’Elec performance specification:
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Figure 8.4 A graph showing the acceleration of a design of electric scooter, being the solution
of Equations (8.15) and (8.16), as approximated by Equations (8.17) and (8.18), with a 0.1 second
time step
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• Maximum speed: 45 kph (28 mph)
• 10 m from standing start time: 3.2 seconds
• 100 m from standing start time: 12 seconds.

It is very clear, from Figures 8.4 and 8.5, that the performance of our simulated vehicle
is remarkably similar.

8.3.3 Modelling the Acceleration of a Small Car

For our second example we will use a vehicle that had an important impact on the recent
development of electric cars. The GM EV1 was arguably the first modern electric car from
one of the really large motor companies. It incorporated technologies that were quite novel
when it was introduced. Several views of this vehicle are shown in Figure 14.5. Further
details of this car are given in Section 14.3, but as far as simulating its performance, the
main features are:

• an ultra-low drag coefficient C d of 0.19;
• a very low coefficient of rolling resistance, μrr , of 0.0048;
• the use of variable frequency induction motors, operating at very high speed – nearly

12 000 rpm at maximum speed.

Further data is taken from company information1 about the vehicle:

• Vehicle mass = 1400 kg.2 Then add a driver and a passenger each weighing 70 kg,
giving m = 1540 kg.

• The motor’s moment of inertia is not known. However, compared with the mass of
such a heavy vehicle this will be very low. The wheels are also very light. We will
approximate this term by increasing the mass very modestly to 1560 kg in the final
term of Equation (8.12).

• The gear ratio is 11:1, thus G = 11. The tyre radius is 0.30 m.
• For the motor, T max = 140 N m and ωc = 733 rad s−1 (Note that this means T = T max

till v = 19.8 m s−1 (71.3 kph)).
• Above 19.8 m s−1 the motor operates at a constant 102 kW, as this is a WOT test. So

T = 102000

37 × v
= 2756

v

• The frontal area A = 1.8 m2.
• The efficiency of the single-speed drive coupling between motor and axle is estimated

as 95%, so ηg = 0.95. The values of the torque T will be reduced by a factor of 0.95.
This slightly lower figure is because there is a final drive and a higher ratio gearbox
than in the last example.

1 The two sources are Shnayerson (1996) and the official GM EV1 website at www.gmev.com.
2 It is interesting to note that 594 kg, or 42%, of this is the lead acid batteries!
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These values can now be put into Equation (8.12), giving, for the first phase when the
motor torque is constant,

0.95 × 37 × 140 = 72.4 + 0.214v2 + 1560
dν

dt

so
dν

dt
= 3.11 − 0.000137v2 (8.19)

Once the speed has reached 19.8 m s−1 the velocity is given by the differential equation

0.95 × 37 × 2756

ν
= 72.4 + 0.214v2 + 1560

dv

dt

so

dv

dt
= 62.1

v
− 0.046 − 0.000137v2 (8.20)

The procedure for finding the acceleration is very similar to the first example; the only
extra complication is that when the velocity reaches 35.8 m s−1 it stops rising, because at
this point the motor controller limits any further acceleration.

Before any program such as Excel or MATLAB® can be used the key equations,
Equations (8.19) and (8.20), must be put into ‘finite difference’ form. This is done exactly
as we did for Equations (8.15) and (8.16). The two equations become

vn+1 = vn + δt
(
3.11 − 0.000137v2

n

)
(8.21)

vn+1 = vn + δt

(
62.1

vn

− 0.046 − 0.000137v2
n

)
(8.22)

The MATLAB® script file for these equations is very similar to that for the electric
scooter given above, so it is not given here in the main text, but can be found in Appendix
1. The plot of velocity against time is shown in Figure 8.6. Looking at Figure 8.6, we
can see that the time taken to reach 96 kph, which is 60 mph, is just under 9 seconds. Not
only is this a very respectable performance, but it is also exactly the same as given in the
official figures for the performance of the real vehicle.

We have thus seen that, although not overly complex, this method of modelling vehicle
performance gives results that are validated by real data. We can therefore have confidence
in this method. However, vehicles are required to do more than just accelerate well from
a standing start, and in the next section we tackle the more complex issue of range
modelling.

8.4 Modelling Electric Vehicle Range

8.4.1 Driving Cycles

It is well known that the range of electric vehicles is a major problem. In the main this
is because it is so hard to store electrical energy efficiently. In any case, this problem
is certainly a critical issue in the design of any electric vehicle. There are two types of
calculation or test that can be performed with regard to the range of a vehicle.
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Figure 8.6 A graph of velocity against time for a GM EV1 at full power. This performance
graph, obtained from a simple mathematical model, gives very good agreement with published real
performance data

The first, and much the simplest, is the constant velocity simulation. Of course no
vehicle is really driven at constant velocity, especially not on level ground, and in still
air, which are almost universal further simplifications for these tests. However, at least
the rules for the test are clear and unambiguous, even if the simulation is unrealistic. It
can be argued that they do at least give useful comparative figures.

The second type of test – more useful and complex – is where the vehicle is driven,
in reality or in simulation, through a profile of ever-changing speeds. These test cycles
have been developed with some care, and there are (unfortunately) a large number of
them. The cycles are intended to correspond to realistic driving patterns in different
conditions. During these tests the vehicle speed is almost constantly changing, and thus
the performance of all the other parts of the system is also highly variable, which makes
the computations more complex. However, modern computer programs make even these
more complex situations reasonably straightforward.

These driving cycles (or schedules) have primarily been developed in order to provide
a realistic and practical test for the emissions of vehicles. One of the most well known
of the early cycles was one based on actual traffic flows in Los Angeles, and is known
as the LA-4 cycle. This was then developed into the Federal Urban Driving Schedule,
or FUDS. This is a cycle lasting 1500 seconds, and for each second there is a different
speed, as shown in Figure 8.7. There is also a simplified version of this cycle known as
SFUDS, shown in Figure 8.8, which has the advantage that it only lasts 360 seconds,
and so has only 360 data points. This has the same average speed, the same proportion
of time stationary, the same maximum acceleration and braking, and gives very similar
results when used for simulating vehicle range.
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Figure 8.7 The Federal Urban Driving Schedule, as used for emission testing by the United States
Environmental Protection Agency
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Figure 8.8 Graph of speed against time for the Simplified Federal Urban Driving Schedule

These cycles simulate urban driving, but other cycles are used to simulate out-of-town
or highway driving. Two notable examples of these are the Federal Highway Driving
Schedule, or FHDS, shown in Figure 8.9. Although widely used, this cycle has a rather
unrealistic maximum speed for highway driving, and the newer US06 standard, is now
becoming more widely used instead.
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Figure 8.9 Graph of speed against time for the 765 second Federal Highway Driving Schedule
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Figure 8.10 European urban driving schedule ECE-15

In the European scene the cycles tend to be rather simpler, with periods of constant
acceleration and constant velocity. Of particular note is the ECE-15 drive cycle, shown in
Figure 8.10, which is useful for testing the performance of small vehicles such as battery
electric cars. In EC emission tests this has to be combined with the Extra-Urban Driving
Cycle (EUDC), which has a maximum speed of 120 kph.
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Figure 8.11 Diagram for SAE J227a cycle. The figures for the various times are given in Table 8.1

Currently the most widely used standard in Asia is the Japanese 10-15 Mode Cycle.
Like the European cycles, this involves periods of constant velocity and acceleration. It
is not unlike a combination of the European ECE-15 urban driving cycle and the EUDC.
At the time of writing, this cycle must be used in stating ranges for vehicles in Japan, as
well as for emission tests.

All these standards have maximum speeds in the region of 100 kph. For several impor-
tant types of electric vehicle, including the electric delivery vehicle and the electric motor
scooter, this is an unrealistic speed, which can often not be achieved. To simulate these
vehicles other standard cycles are needed. A fairly old standard, which was developed
specifically for electric vehicles in the 1970s, is the SAE J227a driving schedule. This
has four versions, with different speeds. Each cycle is quite short in time, and consists
of an acceleration phase, a constant velocity phase, a ‘coast’ phase and a braking phase,
followed by a stationary time. The coasting phase, where the speed is not specified, but
the tractive effort is set to zero, is somewhat of a nuisance to model.3 The general veloc-
ity profile is shown in Figure 8.11, and the details of each of the four variants of this
cycle are given in Table 8.1. The most commonly used cycle is SAE J227a-C, which is
particularly suitable for electric scooters and smaller city-only electric vehicles. The A
and B variants are sometimes used for special purpose delivery vehicles.

Another schedule worthy of note for low-speed vehicles is the European ECE-47 cycle,
which is used for the emission testing of mopeds and motorcycles with engine capacity
less than 50 cm3. It is also widely used for the range simulation of electric scooters. Like
the SAE J227 cycle it can be a little complicated to run the simulation, as the speed
is not specified at all times. Instead the vehicle is run from standstill at WOT for 50
seconds. The vehicle is then slowed to 20 kph over the next 15 seconds, after which this

3 It is not uncommon to get around this difficulty by simply putting in likely figures for a somewhat gentle period
of deceleration.
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Table 8.1 Nominal parameters for the four variations of the SAE J227a test schedule. These
figures should be read in conjunction with Figure 8.10

Parameter Unit Cycle A Cycle B Cycle C Cycle D

Maximum speed kph 16 32 48 72
Acceleration time, Ta s 4 19 18 28
Cruise time, Tcr s 0 19 20 50
Coast time, Tco s 2 4 8 10
Brake time, Tb s 3 5 9 9
Idle time, Ti s 30 25 25 25
Total time s 39 72 80 122
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ECE-47 cycle for the electric scooter of Figure 8.4

Figure 8.12 ECE-47 cycles for the same electric scooter as in Figure 8.4

speed is maintained for 35 seconds. Finally the vehicle is brought to a halt, at constant
deceleration, over the next 8 seconds. This cycle has been created for the same electric
scooter, an approximation to the Peugeot Scoot’Elec, and is shown in Figure 8.12. The
MATLAB® script file for creating this is very straightforward, and is given in Appendix 2.
This cycle has the benefit that it probably does quite well model the way such vehicles
might be used – considering the age of the typical rider, that is full speed for a good deal
of the time!

There are many other test cycles which can be found in the literature, and some com-
panies have their own ‘in-house’ driving schedules. Academics sometimes propose new
ones that, they suggest, better imitate real driving practice. There are also local driving
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cycles, which reflect the particular driving patterns of a city. A noteworthy example is
the New York City Cycle, which has particularly long periods of no movement, and low
average speeds, reflecting the state of the roads there. This cycle is sometimes used when
simulating hybrid electric/IC engine (ICE) vehicles, as it shows this type of vehicle in a
particularly good light.

The actual figures for the speed at each second, which are needed to run a simulation,
can sometimes be deduced from the figures given above. However, in the case of the US
cycles, which consist of a specific speed at each time, it is more convenient to load data
files downloaded from web sites. These can readily be found using the normal Internet
search engines, though several have been supplied as MATLAB® script files at a dedicated
website.4

In the sections that follow it will be explained how a driving schedule can be simulated
for different types of electric vehicle.

8.4.2 Range Modelling of Battery Electric Vehicles

8.4.2.1 Principles of Battery Electric Vehicle Modelling

The energy flows in a classical battery electric vehicle are shown in Figure 8.13. To
predict the range, the energy required to move the vehicle for each second of the driving
cycle is calculated, and the effects of this energy drain are calculated. The process is
repeated until the battery is flat. It is important to remember that if we use time intervals
of 1 second, then the power and the energy consumed are equal.

The starting point in these calculations is to find the tractive effort, which is found
from Equation (8.9) The power is equal to the tractive effort multiplied by the velocity.
Using the various efficiencies in the energy flow diagram, the energy required to move
the vehicle for 1 second is calculated.

Normal forward
driving

Regenerative
braking

Battery
Motor and
Controller

Gear
System

Road
Wheels

hb hm hg

Energy
to move
vehicle

Accessories,
average

power = Pac

P teP mot_outP mot_inP bat

Figure 8.13 Energy flows in the ‘classic’ battery-powered electric vehicle, which has regenerative
braking

4 www.wiley.com/go/electricvehicle2e.
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The energy required to move the vehicle for 1 second is the same as the power, so

Energy required each second = Pte = Fte × v (8.23)

To find the energy taken from the battery to provide this energy at the road we clearly
need to be able to find the various efficiencies at all operating points. Equations that
do this have been developed in the previous chapters, but we will review here the most
important system modelling equations.

8.4.2.2 Modelling Equations

The efficiency of the gear system ηg is normally assumed to be constant, as in electric
vehicles there is usually only one gear. The efficiency is normally high, as the gear system
will be very simple.

The efficiencies of the motor and its controller are usually considered together, as it
is more convenient to measure the efficiency of the whole system. We saw in Chapter 7
that motor efficiency varies considerably with power, torque and also motor size. The
efficiency is quite well modelled by the equation

ηm = T ω

T ω + kcT
2 + kiω + kwω3 + C

(8.24)

where kc is the copper losses coefficient, k i is the iron losses coefficient, kw is the windage
loss coefficient and C represents the constant losses that apply at any speed. Table 8.2
shows typical values for these constants for two motors that are likely candidates for use
in electric vehicles.

The inefficiencies of the motor, the controller and the gear system mean that the motor’s
power is not the same as the traction power, and the electrical power required by the motor
is greater than the mechanical output power according to the simple equations

Pmot_in = Pmot_out

ηm

Pmot_out = Pte

ηg

(8.25)

Equations 8.25 are correct in the case where the vehicle is being driven. However, if
the motor is being used to slow the vehicle, then the efficiency (or rather the inefficiency)
works in the opposite sense. In other words, the electrical power from the motor is reduced,
and we must use these equations:

Pmot_in = Pmot_out × ηm Pmot_out = Pte × ηg (8.26)

So, Equations 8.25 or 8.26 are used to give us the electrical and mechanical power to
(or from) the motor. However, we also need to consider the other electrical systems of
the vehicle, the lights, indicators, accessories such as the radio, and so on. An average
power will need to be found or estimated for these, and added to the motor power, to
give the total power required from the battery. Note that when braking, the motor power
will be negative, and so this will reduce the magnitude of the power:

Pbat = Pmot_in + Pac (8.27)



206 Electric Vehicle Technology Explained, Second Edition

Table 8.2 Typical values for the parameters of Equation (8.23)

Parameter ‘Lynch’-type PM motor, 100 kW, high-speed
with brushes, 2–5 kW induction motor

kc 1.5 0.3
ki 0.1 0.01
kw 10−5 5.0 × 10−6

C 20 600

The meaning of these various powers, in and out of the motor, traction power and so on,
is shown in Figure 8.13.

The simulation of battery behaviour was explained in Chapter 3, Section 3.12. But to
summarise, the procedure now is:

1. Calculate the open-circuit battery voltage, which depends on the state of charge of the
battery.

2. Calculate the battery current5 using Equation (3.20), unless Pbat is negative, in which
case Equation (3.22) should be used.

3. Update the record of charge removed from the battery, correcting high currents using
the Peukert coefficient, with Equation (3.18). However, if the battery power is negative,
and it is being charged, Equation (3.23) should be used instead.

4. The level of discharge of the battery should then be updated, using Equation (3.19)

Provided that the battery is not now too discharged, the whole process should then be
repeated 1 second later, at the next velocity in the cycle.

8.4.2.3 Using MATLAB® or Excel to Simulate an Electric Vehicle

In the previous section we saw how the various equations we have derived can be used to
calculate what goes on inside an electric vehicle. To see how far a vehicle can go before
the battery is flat, we do this in a step-by-step process through the driving cycle. The way
this is done is represented by the flowchart shown in Figure 8.14.

The first stage is to load the velocity data for the driving cycle to be used. This is
usually done as by a separate MATLAB® script file. The way of doing this is explained
in Appendices 1 and 2.

The next stage is to set up the vehicle parameters such as the mass, the battery size
and type, and so on. The electrical power taken by the accessories Pac should be set at
this point.

Having done that, data arrays should be created for storing the data that needs to be
remembered at the end of each cycle. These could be called ‘end of cycle arrays’. The
most important data that needs to be kept is a record of the charge removed from the
battery, the depth of discharge of the battery and the distance travelled.

5 If the vehicle uses a conventional DC motor, it might be more convenient to calculate the current using the more
or less linear relationship between torque and current. If the connection is known, this can occasionally be a useful
simplification.
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Using a and n, calculate Fte using
eq 8.9 and thus Pte using Equation 8.23

Calculate motor angular speed from
n and torque from T = P/w

Use given value of n, and the last value
of n, to find the acceleration
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Use Equation 8.25, or Equation 8.26 if P is negative,
to find the power into the motor.

Use Equation 3.26 (or 3.28 if P is
negative) to find battery current.

Use Equation 3.24 or 3.29 and 3.25 to update
DOD figure

End of cycle
?

Add the average accessory power Pac to
give the total value of Pbat

Calculate the motor power using
Equations (8.25) or (8.26)

Battery
Discharged

?

Update end of cycle
values and do
another cycle

Y

Y

N

N

STOP

Find the motor efficiency
from T and w using Equation (8.24)

Figure 8.14 Flowchart for the simulation of a battery-powered electric vehicle

The next stage is to set up arrays for the data to be stored just for one cycle; this
data can be lost at the end of each cycle. This is also the charge removed, depth of
discharge and distance travelled, but we might also save other data, such as information
about torque, or motor power, or battery current, as it is sometimes useful to be able to
plot this data for just one cycle.
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Figure 8.15 A graph of depth of discharge against distance travelled for a simulated GM EV1
electric car on the SFUDS driving cycle. In one case the conditions are benign: no lights, heating
or air-conditioning are in use. In the other case the battery is degraded slightly by cold weather,
and all the vehicle’s headlights are on

Having set the system up, the vehicle is put through one driving cycle, using the
velocities given to calculate the acceleration, and then the tractive effort, and thus the
motor power, torque and speed. This is used to find the motor efficiency, which is used
to find the electrical power going into the motor. Combined with the accessory power,
this is used to find the battery current. This is then used to recalculate the battery state
of charge. This calculation is repeated in 1 second steps6 until the end of the cycle.

The end of cycle data arrays are then updated, and if the battery still has enough charge,
the process is repeated for another cycle. This is process is shown in the flowchart of
Figure 8.14.

MATLAB® lends itself very well to this type of calculation. Appendices 3 and 4
contain example MATLAB® script files that find the range for a model of the famous
GM EV1 vehicle. It should be easy enough to relate these to the text and all the equations
given above. The main complications relate to zero values for variables such as speed and
torque – which need careful treatment to avoid dividing by zero. The vehicle is running
an urban driving cycle.

The file prints a graph of the depth of battery discharge against distance travelled, and
this is shown in Figure 8.15, for two different situations. It can be seen that the vehicle
range is about 130 km.

6 Steps of 1 second are the most convenient, as most driving cycles are defined in terms of 1 second intervals.
Also, many of the formulae become much simpler. However, it is quite easy to adapt any of the programs given
here for different time steps, and shorter steps are sometimes used.
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One of the very powerful features of such simulations is that they can be used to see
very quickly and easily the effect of changing certain vehicle parameters on the range.
For example, it is the work of a moment to change the program so that the conditions
are different. For example, we can ‘put the headlights on’ by increasing the value of
the average accessory power Pac . We can also simulate colder weather by increasing
the internal resistance by 25% or so, raising the Peukert coefficient and reducing the
battery voltage very slightly. The simulation can then be rerun. This has been done with
Figure 8.15. This shows how the depth of discharge rises under normal clement weather,
daytime conditions and also under colder conditions when in the dark. We can instantly
see that the range, usually given when 80% discharge is reached, drops from a little over
90 miles to about 70 miles. The official stated range, in the GM literature, is ‘50–90
miles, depending on conditions’. Our simulation confirms this. We could further adapt the
program to include hills, or more demanding driving, which would bring it below the 70
mile figure.

The ECE-47 driving cycle was explained in the previous section. This can equally well
be used for such range testing. In Appendix 5 we have included another MATLAB®
script file for the same electric scooter that was used for Figures 8.4 and 8.12. This
vehicle has been set up with an NiCad battery, unlike the GM EV1, which uses lead
acid. If the MATLAB® script file in the appendix is studied, it will be seen that the
vehicle has been fitted with three 100 Ah batteries, with the same properties as the NiCad
batteries simulated in Section 3.11.3. Some range data, taken to 80% discharged, is given
in Table 8.3.

The range of the scooter appears to be about 50 km, which is longer than the 40 km in
‘urban nominal mode’ claimed by the Peugeot Scoot’Elec, which uses the same batteries.
This is probably due to the fact that, as we will see in the next section, this ECE-47 driving
cycle seems very well suited to the ‘Lynch’-type motor we are using in our model. It may
also be due to conservative claims in the vehicle specification.

Table 8.3 is also another demonstration of the power of simulations like these to find
quickly the effect of changing vehicle parameters. In this case we have changed the
proportion of the ‘braking power’ that is handled by the motor. In other words, we have
changed the degree of regenerative braking performed. It is sometimes thought that this
makes a huge difference to battery vehicle range. In the case of a scooter, it clearly does
not. With no regenerative braking at all, the range is 48.82 km. Fifty per cent is probably

Table 8.3 The simulated range of an electric
scooter running the ECE-47 driving cycle with
different degrees of regenerative braking

Percentage regenerative Range on ECE-47
braking cycle (km)

75% (Note: not possible
in practice)

51.30

50% 50.47
25% 49.59
None 48.82
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the highest practical possible motor braking, and this extends the range less than 2 km,
or 4%. This does make some difference, but we should note that it is not a very great
improvement. It is left as an exercise for the reader to do the same for the GM EV1 – here
the difference will be much greater, because it is a heavy vehicle and well streamlined.

8.4.3 Constant Velocity Range Modelling

Compared with the modelling of the driving cycles we have just achieved, constant
velocity simulation is much easier. However, the basic round of calculations is the same
as those outlined in the previous section. The system is simpler since the values of speed
and torque are never negative or zero.

It should be possible to write a new and much shorter MATLAB® script file for such
simulation. However, a quicker and easier solution, which makes use of the programs
already written, is to create a ‘driving cycle’ in which the velocity is constant. This can
be done in one line in MATLAB® thus:

linspace(12.5, 12.5, 100);

This creates an array of 100 values, all equal to 12.5, which corresponds to 45 kph. A
line like this, at any desired velocity, can replace the lines ECE_47, or SFUDS, at the
beginning of the simulations given in the appendix. This may not be the most elegant
method, but it is probably the quickest. Constant velocity simulations are clearly very
unrealistic, and so are of limited use.

8.4.4 Other uses of Simulations

The data produced during these simulations has many more uses than just predicting the
range of a vehicle. At each 1 second step of the cycle many variables were calculated,
including:

• vehicle acceleration
• tractive effort
• motor power
• motor torque
• motor angular speed
• motor power
• motor efficiency
• current out of (or into) the battery.

All of these variables are of interest, and it is instructive to plot them over one cycle.
This can be done with great simplicity in MATLAB®, and gives very useful results. The
basic principle is to create two arrays, with names such as XDATA and YDATA, and
allocate then values during a cycle. For example, if the loop counter is C, as it is in the
examples of the appendix, then C will have the same value as the time in seconds. If we
wanted to plot the value of the motor power during one cycle, then we would include
the lines



Electric Vehicle Modelling 211

12000

10000

8000

6000

4000

2000

0

0 50 100 150 200 250 300 350 400
−2000

Power of GM EV1 electric motor during an SFUDS cycle

Time / s

M
ot

or
 p

ow
er

 / 
W

at
ts

Figure 8.16 A graph of the power of the electric motor in a simulated GM EV1 electric car
during one run of the SFUDS driving cycle

XDATA(C) = C;

YDATA(C) = Pmot_out;

into the code for a cycle. This can be seen very near the end of the script file given in
Section A.3. Near the end of the program, the main program that uses one_cycle, we
would include the line

plot(XDATA, YDATA);

For this type of plot the program could be simplified so that only one driving cycle is
performed. An example of this type of plot output is shown in Figure 8.16. This shows the
motor output power. It can be seen that the motor power is very modest, with a maximum
of only about 12 kW. The motor has a maximum power of about 100 kW, so the SFUDS
driving cycle is not testing the vehicle at all hard.7

Another example of a particularly useful plot is that of motor torque against motor
angular speed. To produce this graph only two lines of the program need changing. The
X and Y data lines become:

7 This can be confirmed by looking for the maximum acceleration during the SFUDS cycle, which is only about
1 m s−2, whereas the GM EV1 is capable of over three times this value.
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XDATA(C) = omega;

YDATA(C) = Torque;

For this type of plot the points should be left as disconnected points – they should
not be joined by a line. MATLAB® easily allows this, and a suitable plot command is
given near the end of the script file of Section A.5. In Figure 8.17 this has been done for
the electric scooter simulation. This maps the operating points of the motor. This graph
should be carefully compared with Figure 7.7 in the previous chapter. It can be seen that,
at least with this driving cycle, the motor is frequently operating in the region of about
120 rad s−1 speed, and low (∼10 N m) torque. From Figure 7.7 we can see that this is
precisely the area where the motor is most efficient . The motor is thus extremely well
matched to this particular driving cycle. This probably explains why the range simulation
results were rather better than given in the specification for the Peugeot Scoot’Elec, to
which our model is quite similar.

8.4.5 Range Modelling of Fuel Cell Vehicles

The principal energy flows in a fuel-cell-powered vehicle are shown in Figure 8.18. The
energy required to drive the various fuel cell ancillaries that were discussed in Chapter 5
have not been explicitly shown, but these can be accounted for by adjustments to the
value of the fuel cell efficiency.
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Figure 8.17 A plot of the torque/speed operating points for the electric motor in an electric scooter
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Figure 8.18 Energy flows in a fuel-cell-powered electric vehicle

The modelling of such a system is extremely complex, largely because of the fuel pro-
cessor system. This has very many sub-processes with highly variable time constants, some
quite long. The simulation of such fuel processing systems is extremely important – but
too complex for an introductory text such as this. In addition, most of the important data
is highly confidential to the companies developing these systems.

However, the simulation of a system running directly off onboard stored hydrogen
is not nearly so complex. Indeed in many ways it can be less difficult than for battery
vehicles, at least to a first approximation. The efficiency of a fuel cell is related, as we
saw in Chapter 5, to the average voltage of each cell in the fuel cell stack, Vc. If the
efficiency is referred to the lower heating value (LHV) of hydrogen, then

ηf c = Vc

1.25
(8.28)

Now, we know from Chapter 5 that at lower currents the fuel cell voltage rises, and
thus the efficiency. However, we also saw in Chapter 5 that a fuel cell system will also
have many pumps, compressors, controllers and other ‘balance of plant’ that use electrical
power. This use of electrical power is higher, as a proportion of output power, at lower
currents. The result is that, in practice, the efficiency of a fuel cell is, to quite a good
approximation, more or less constant at all powers. (Note that this contrasts with an IC
engine, whose efficiency falls very markedly at lower powers.)

At the present time, a good target value for the efficiency of a fuel cell operating off
pure hydrogen is 38% referred to the LHV. So, from Equation (8.28), we have

Vc = 0.38 × 1.25 = 0.475V (8.29)

Note that the fuel cell will probably, in fact, be running at about 0.65 V, but the difference
between this and 0.475 represents the energy used by the balance of plant.
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This value of average cell voltage can then be used in the formula8 for the rate of use
of hydrogen in a fuel cell:

H2 rate of usage ṁ = 1.05 × 10−8 × P

Vc

= 2.21 × 10−8 × P (8.30)

Notice that this formula does not require us to know any details about the fuel cell, such as
the number of cells, electrode area, or any details at all. It allows us very straightforwardly
to calculate the mass of hydrogen used each second from the required electrical power.
Indeed, this simulation is a great deal easier than with batteries because:

• there is no regenerative braking to incorporate;
• there are no currents to calculate;
• there is no Peukert correction of the current to be done.

By way of example, we could take our GM EV1 vehicle, and remove the 594 kg of
batteries. In their place we could put the fuel cell system shown in Figure 5.23 and the
hydrogen storage system outlined in Table 6.3. The key points are:

• Mass of hydrogen stored: 8.5 kg.
• Mass of storage system: 51.5 kg.
• Mass of 45 kW fuel cell system: 250 kg (estimate, not particularly optimistic).
• Total mass of vehicle is now (1350 − 594) + 8.5 + 51.5 + 250 = 1066 kg.

Appendix 6 contains the MATLAB® script file for running the SFUDS driving cycle
for this hypothetical vehicle. It can be seen that the simulation is simpler. Some example
results, which the reader is strongly encourage to confirm , are given in Table 8.4. In both
cases 80% discharge is taken as the end point, that is 1.7 kg of hydrogen remaining in
the case of the fuel cell.

An alternative approach that might well be found helpful, and that certainly results
in a much simpler MATLAB® program, is to compute the energy consumed in running
one cycle of the driving schedule being used. The distance travelled in one cycle should
also be found. The number of cycles that can be performed can then be computed from
the available energy and the overall efficiency. This approach obviously gives the same
result.

Table 8.4 Simple fuel cell simulation results, showing
great improvement in range over a battery vehicle

Simulation, SFUDS driving Range (km)
cycle in both cases

GM EV1 with standard lead acid
batteries, good conditions

148

GM EV1 with a fuel cell and cryogenic
H2 store

485

8 Derived in Appendix 2 of Larminie and Dicks (2003).
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8.4.6 Range Modelling of Hybrid Electric Vehicles

All the modelling we have done so far has involved equations which the system followed
in a more or less predetermined way. However, when we come to a hybrid electric
vehicle, then this is no longer so. Hybrid electric vehicles involve a controller, which
monitors the various power in the system and the state of charge of the battery, and
makes decisions about the power to be drawn from the engine, battery, and so on. Very
little about the energy flow is inevitable and driven by fixed equations. Furthermore, the
strategy will change with time, depending on issues such as when the vehicle was last
used, the temperature, the need to equalise the charge in the batteries from time to time,
and a host of other criteria. The decision making of these controllers is not at all simple
to simulate.

Another complication is that there are so many different configurations of hybrid electric
vehicles.

The result is that the simulation of these vehicles cannot be attempted or explained in a
few pages of a book like this. Indeed, the use of a simple program such as MATLAB® on
its own is probably not advisable. At the very least the Simulink extension to MATLAB®
should be used. There are a number of vehicle simulation programs available or described
in the literature, for example Bolognesi et al. (2001). Among the most well known of
these is ADVISOR (Wipke et al., 1999), which is MATLAB® based.

The program for the energy controller in a hybrid system, which is a subsystem of vital
importance, will often be written in a high-level language such as C. It makes sense to
incorporate the simulator in the same language, and then it should be possible to use the
very same control program that is being written for the controller in the simulation. This
has obvious reliability and efficiency benefits.

8.5 Simulations – A Summary

We have seen in this chapter how to begin the simulation or modelling of the range
and performance of electric vehicles. With most vehicles the simulation of performance,
by which we usually mean acceleration, is fairly straightforward. Mathematical software
such as MATLAB® or Excel lends itself very well to this.

In the case of the classical battery-powered electric vehicle, and fuel cell vehicles
using stored hydrogen, the modelling of range, though considerably more complex, is not
difficult. For hybrid vehicles a great deal of care and thought is needed in setting up a
simulation.

We have shown the fact that a vehicle mathematical model is crucially important in
the design of electric vehicles, as it allows the designer very quickly to try out different
design options, and at virtually no cost. By using examples of the GM EV1 electric car,
and an electric scooter, we have shown how even a quite simple mathematical model is
validated by the performance of the real vehicle.

It is almost impossible to overemphasise the importance of this modelling process in
electric vehicle design. Hopefully these explanations, and the example MATLAB® script
files we have given, will enable the reader to make a start in this process. Chan and
Chau (2001) have described the use of an extension of this sort of programming in their
simulation program EVSIM, and this could be studied to see how these ideas could be
taken further.



216 Electric Vehicle Technology Explained, Second Edition

References

Bolognesi, P., Conte, F.V., Lo Bianco, G. and Pasquali, M. (2001) Hy-Sim: a modular simulator for hybrid-
electric vehicles. Proceedings of the 18th International Electric Vehicle Symposium (CD-ROM).

Chan, C.C. and Chau, K.T. (2001) Modern Electric Vehicle Technology , Oxford University Press, Oxford.
Larminie, J. and Dicks, A. (2003) Fuel Cell Systems Explained , 2nd edn, John Wiley & Sons, Ltd, Chichester.
Shnayerson, M. (1996) The Car that Could , Random House, New York.
Wipke, K., Cuddy, M., Bharathan, D. et al. (1999) ADVISOR 2.0: A Second Generation Advanced Vehicle

Simulator for Systems Analysis. Report no. TP-540-25928, NREL, Golden, CO.


