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Chapter 1

Identification of Induction Motor
in Sinusoidal Mode

1.1. Introduction

Models generally used in electrical engineering are obtained from the laws of
physics and are based on the knowledge of a certain number of parameters, they are
called parametric models. As with the model structure, knowledge of parameters can
also be obtained from laws of physics, if modeling is pushed far enough. Neverthe-
less, this approach has a few drawbacks: calculations are often fastidious; parameters
depend on geometry and the materials used, which may not be well known. In ad-
dition, some parameters may vary during the life of a system and this is difficult to
model by applying the laws of physics.

Another approach, that is more pragmatic, consists of estimating the numeric val-
ues of parameters so that the model has the same behavior as the experimental system.
In this chapter, we will focus on the estimation procedures for the induction machine
parameters from sinusoidal mode measurements. The methods we will present apply
to all types of induction machines and are not based on usual stator measurements and
rotation speed. First, we will develop the parametric models liable to use this type of
estimation procedure. We will then present the most basic methods based on a limited
number of measurements. In order to improve estimation precision, it may be neces-
sary to use a larger number of measurements. We will present two methods with this
possibility.
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4 Electrical Actuators

1.2. The models

The sinusoidal mode is not a steady-state mode strictly speaking because the elec-
trical variables are not constant. In order to obtain the model rigorously, it is necessary
to rely on the actuator’s dynamic model.

1.2.1. Dynamic model of the induction machine

For the establishment of the dynamic model, consider a wound rotor three-phase
induction machine. We presume that the stator and rotor windings are perfectly sym-
metrical (hypothesis of concentricity). We use the hypothesis of the first space har-
monic, i.e. we presume that magnetomotive forces created by windings are sinusoidal
space functions. We ignore salience effects and teeth harmonics. Subsequently, we
will presume that the model is valid for squirrel-cage machines, a more widespread
technology.

First, take the dynamic model of the three-phase induction machine which, for
the purpose of this report, is presumed to be star connected. We can detect the three
phases by indices a, b, and c. We write i for currents, v voltage, and φ fluxes. The
resistance of the stator winding is Rs , and the rotor circuit is Rr . We note Ls as
the cyclic inductance of the stator, Lr for the rotor, and M is the cyclic mutual induc-
tance between stator and rotor. The machine has p pole pairs.

A set of balanced three-phase stator quantities {xsa(t), xsb(t), xsc(t)} without
homopolar can be represented by the complex phasor referred to the stator [LOU 04]:

xs(t) =

√
2
3
(
xsa(t) + a xsb(t) + a2 xsc(t)

)
[1.1]

with a = exp(j 2π
3 ), corresponding to the first component of the Fortescue transform.

This transformation is inversible with

⎡
⎣ xsa(t)

xsb(t)
xsc(t)

⎤
⎦ =

√
2
3

⎡
⎣ Re(xs(t))

Re(a xs(t))
Re(a2 xs(t))

⎤
⎦ [1.2]

For a three-phase rotor quantity {xra(t), xrb(t), xrc(t)}, we define the complex
phasor referred to the stator, corresponding to the first component of the Ku transform:

xr (t) =

√
2
3

exp(j p θ(t)) ·
(
xra(t) + a xrb(t) + a2 xrc(t)

)
[1.3]
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where θ(t) is the angular position of the rotor.

The resulting model is expressed in two series of equations, equations to fluxes

{
φ

s
(t) = Ls is(t) + M ir (t)

φ
r
(t) = M is(t) + Lr ir (t)

[1.4]

and voltage equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vs(t) = Rs is(t) +
dφ

s
(t)

dt

0 = Rr ir (t) +
dφ

r
(t)

dt
− j pΩ(t)φ

r
(t)

[1.5]

In the second equation, a zero voltage appears in the rotor corresponding to winding
short circuit, and an electromotive force proportional to rotation speed Ω of the rotor,
resulting from the change in reference frame of rotor variables.

This model depends on five parameters: two resistances Rs and Rr and three in-
ductances: Ls , Lr , and M . The goal of an estimation procedure is to determine the
numeric values of these parameters. And yet, this model cannot directly be used. In
fact, an infinite number of parameter values correspond to an identical stator behavior
[POL 67]. We say that this model is unidentifiable.

1.2.2. Establishment of the four parameter models

1.2.2.1. Total rotor leakage model

These equations are similar to those of a transformer. As with this other electro-
magnetic system, we can introduce the magnetizing current relative to stator flux:

φ
s

= Ls ims [1.6]

implying that

ims = is +
M

Ls
ir [1.7]
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By noting ms = M
Ls

the stator/rotor transformation ratio and i2s = ms ir the rotor
current referred to the stator, we can write the rotor flux in the following form:

φ
r

= M ims +
(

Ls Lr

M
− M

)
i2s [1.8]

We define the total rotor leakage inductance referred to the stator:

Nr =
σLr

ms
2 [1.9]

where σ = (1− M 2

Ls Lr
) is the dispersion coefficient, representative of the leakage part

in the magnetic flux. The rotor flux referred to the stator is

φ
2s

= Ls ims + Nr i2s [1.10]

and the rotor resistance referred to the stator is R2s = Rr

ms
2 . The model, referred to as

the stator, is in the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vs(t) = Rs is(t) +
dφ

s
(t)

dt

0 = R2s i2s(t) +
dφ

2s
(t)

dt
− j pΩ(t)φ

2s
(t)

[1.11]

The model is then described by equations [1.6], [1.10], and [1.11] and is given in
Figure 1.1. There are four parameters (Rs , R2s , Ls , and Nr ), illustrated in Table 1.1,
instead of five and are identifiable. Once these four parameters are identified, the pa-
rameters of the initial model are obtained in the following way: since Ls and Rs are
already known, Rr , M , and Lr must still be determined with the help of two equa-
tions. The system is therefore underdetermined, and we must impose a parameter. We
will arbitrarily choose the value of ms . We then get Rr = ms

2 R2s , M = ms Ls , and
Lr = ms

2 (Ls + Nr ).

1.2.2.2. Total stator leakage model

Another possibility of writing a model based on four parameters is to define the
magnetizing current from the rotor flux:

φ
r

= M imr [1.12]
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Figure 1.1. Dynamic total rotor leakage model referred to the stator

Generic parameter Rotor leakage Stator leakage

m ms = M
L s

mr = L r
M

Rs Rs Rs

N Nr = σ L r
m s

2 Ns = σ Ls

Lm Lm s = Ls Lm r = M 2

L r
= (1 − σ) Ls

R2 R2s = R r
m s

2 R2r = R r
m r

2

Table 1.1. Parameters of the four-parameter dynamic models

Resulting in node law is + mr ir = imr with mr = Lr

M . By defining the inductance
of total leakages referred to the stator:

Ns = σ Ls [1.13]

and the magnetizing inductance Lmr = M 2

Lr
, the stator flux is written as

φ
s

= Ns is + Lmr imr . [1.14]

By noting the variables referred to the stator i2r = mr ir , R2r = Rr

mr
2 , and φ

2r
=

φ
r
/mr , we rewrite the following flux equations:

{
φ

s
(t) = Ns is(t) + Lmr imr (t)

φ
2r

(t) = Lmr imr (t)
[1.15]
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and voltage equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vs(t) = Rs is(t) +
dφ

s
(t)

dt

0 = R2r i2r (t) +
dφ

2r
(t)

dt
− j pΩ(t)φ

2r
(t)

[1.16]

The model defined by equations [1.15] and [1.16] is presented in Figure 1.2. It depends
on four parameters (Rs , R2r , Ns , and Lmr ), illustrated in Table 1.1. Suppose that
these parameters are estimated, the parameters of the initial model are then obtained
by arbitrarily setting the mr transformation ratio:

⎧⎪⎪⎨
⎪⎪⎩

Rr = mr
2 R2r

Ls = Lmr + Ns

M = mr Lmr

Lr = mr
2 Lmr

[1.17]

Figure 1.2. Dynamic total stator leakage model referred to the stator

1.2.2.3. Equivalence of total leakage models

Since the total rotor or stator leakage models are equivalent to the initial model,
they are therefore equivalent between each other, and we can go from one to the
other by

⎧⎪⎪⎨
⎪⎪⎩

Ls = Lmr + Ns

R2s =
(

Lm r +Ns

Lm r

)2
R2r

Nr =
(

Lm r +Ns

Lm r

)
Ns

[1.18]
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The inverse of these relations results in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lmr =
Ls

2

Ls + Nr

R2r =
(

Ls

Ls + Nr

)2

R2s

Ns =
(

Ls

Ls + Nr

)
Nr

[1.19]

These different equations reveal a single factor, which is less than 1:

ms

mr
= 1 − σ =

Lmr

Lmr + Ns
=

Ls

Ls + Nr
[1.20]

1.2.3. Magnetic circuit saturation

The increase in the magnetic field in certain parts of the machine’s magnetic circuit
leads to an decrease in their permeability, creating a magnetic saturation phenomenon.
We generally consider that this phenomenon only affects the mutual stator/rotor flux.
In fact, leakage fluxes go through a large portion of air and because of that they are
less sensitive to the saturation of magnetic parts. We now separate the fluxes in a main
flux, noted φm and leakage fluxes:

{
φ

s
(t) = ls is(t) + φ

m
(t)

φ
r
(t) = lr ir (t) + mφ

m
(t)

[1.21]

where m is the transformation ratio, equal to the number of turn ratio, and ls and lr are
the leakage inductances of the stator and rotor, respectively, presumed to be constant.
We also define the magnetizing current relative to the air-gap flux:

im = is + mir . [1.22]

By presuming that the saturation acts as a non-uniform fictitious increase of the air-
gap and limiting to a development in the first order of this air-gap, it has been shown
that the equations of the induction machine remain valid as long as we consider a
variable magnetizing inductance Lm , defined by φ

m
=Lm im , depending on the level

of saturation [LEM 99]. We can then choose as a variable, representative of the state
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of saturation, the amplitude of the magnetic flux and we note Lm = Lm (φm ), or the
amplitude of the magnetizing current and we note Lm = Lm (im ). In what follows,
we will note ξm the saturation variable that can be equal to im or to φm .

In the absence of the rotor measurement, the transformation ratio is not available
and can anyway be arbitrarily chosen with no effect on the behavior of the model
referred to the stator. The model then depends on four constant parameters (Rs , Rr ,
ls , and lr ) and a characteristic Lm (.).

Saturation can be taken into consideration in two ways in the model: by noting the
different values of Lm based on the saturation variable in a table, or by attempting to
interpolate this characteristic by a parametered function. In the last case, it is practical
to determine the magnetizing current according to flux (im (φm )), which can be easily
done from a polynomial development of the form:

im =
n∑

k=1

ak φm
k , [1.23]

which is also written φm = Lm (φm ) im with

Lm (φm ) =
1∑n

k=1 ak φm
k−1 [1.24]

Other authors prefer to use a development of Lm according to magnetizing current im .
We can then use the same form of development. In any case, this consists in choosing
a characteristic in the form:

Lm (ξm ) =
Lm0

1 +
∑n−1

k=1 αk ξm
k

[1.25]

where Lm0 = 1
a1

is the no-load inductance and αk = ak + 1
a1

. In practice, we choose a
reduced number of non-zero factors αk , in order to limit the number of parameters to
estimate.

When we consider saturation, leakage separation between stator and rotor is theo-
retically possible because of saturation. In practice, it is difficult to determine exper-
imentally because the measurement errors produce estimation errors of high order1.
We can then decide to work on similar models with total leakage at the stator or the
rotor. The advantage of working with a model with better identifiability largely com-
pensates slight loss in precision.

1 This result will be demonstrated in the following sections.
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1.2.4. Iron losses

Field variations in the magnetic circuit of the machine lead to ferromagnetic losses.
A first source of magnetic loss is caused by eddy currents, which are currents induced
by field variations (also known as Foucault currents). Their power is proportional to
the square of the field amplitude and the square of the frequency. The solution to
decrease them is to use foliated material circuits.

Hysteresis losses are a second type of magnetic loss. They are connected to the
depth of the hysteresis cycle of the magnetic material characteristic. Their power is
proportional to the frequency and function of the surface of the cycle run. This surface
increases in a non-linear way according to the field amplitude. Different approxima-
tions can be proposed to parameter this surface based on the field amplitude. One of
them proposes that this surface is proportional to the square of the field amplitude. In
any case, these losses can only be calculated for one period.

Eddy current losses are well modeled by a resistance added to the model in paral-
lel to magnetizing inductance. For hysteresis losses, we generally use the same model,
which has the advantage of making modeling of all magnetic losses by a single re-
sistance possible. Nevertheless, in this last case, it is an approximation. To be more
precise in writing the model, we could parameter the value of the resistance according
to frequency, and possibly to the magnetic field amplitude. Nevertheless, in this chap-
ter, we will only consider the case where iron losses are modeled by a single additional
resistance, only adding one parameter to models previously presented.

Based on what we have just written, the resistance must be parallel to the mag-
netizing inductance, which corresponds to the main flux. If we ignore saturation, we
then have a model with six parameters (resistances Rs and Rr , leakage inductances ls
and lr , magnetization inductance Lm , and resistance of iron losses Rf ). This model,
as we will see later, can theoretically be identified when Rf is not infinite. However,
as in the saturation case, leaks are difficult to separate because of the high sensitivity
with respect to measurement errors. We then use in practice five parameter models
with a single leakage inductance.

1.2.5. Sinusoidal mode

In sinusoidal mode (SM), each three-phase system {xa(t), xb(t), xc(t)} can be
written in the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xa(t) = X
√

2 cos(ω t + αx)

xb(t) = X
√

2 cos(ω t + αx − 2π

3
)

xc(t) = X
√

2 cos(ω t + αx +
2π

3
)

[1.26]
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In a balanced mode, we can restrict to studying the first phase that is characterized
by complex amplitude X = X exp(j αx) (equivalent to the Fresnel vector). The
Fortescue component, obtained according to [1.1], is written as

x(t) =
√

3 X exp(j (ω t + αx)) [1.27]

Except for factor
√

3 exp(jωt), both notations are equivalent. In this way, all the
models developed so far are equally valid for representing the equivalent diagram of
the machine. We just have to replace the complex phasors noting the voltage, currents,
and flux by the complex amplitudes by noting these same quantities for a phase of the
machine.

By noting g as the slip, the rotor rotation speed is linked to the stator angular
frequency by the p Ω = ω (1− g) relation. We will again use the equation of the rotor
voltage [1.5.b]. It is now written as 0 = Rr Ir + j ω Φr − j pΩΦr , where Ir is the
complex amplitude of the current of a rotor phase, written again by dividing by g:

j ω Φr = −Rr

g
Ir [1.28]

As a result, the electromotive force jpΩΦr behaves as a resistance with value 1−g
g Rr .

By adding the resistance Rr of the rotor winding, we then get global resistance Rr

g
corresponding to the sum of the converted power and rotor Joule losses. This general
principle is valid for all the diagrams introduced earlier. In order to get the sinusoidal
mode diagram, we just have to replace electromotive force by a resistance in the form
1−g

g R2 .

Important note: we can observe that all the parameters of the dynamic model are
present in the sinusoidal mode model. If we can estimate all these parameters by sinu-
soidal mode measurements, we then have a valid sinusoidal model as well as a valid
dynamic model.

We showed that saturation can be taken into consideration by using magnetizing
inductance Lm (or Ls in the case of total rotor leakage models) as a function of ξm

equal to im or to φm ; these variables represent modules of complex numbers defined
by the transformation presented in section 1.2.1. In the case of SM, the rms value Ξm

of ξma(t), relative to one phase, and module ξm (t) of vector ξ
m

(t) are in a ratio of√
3 (see equation [1.27]). We can then adapt the characteristic of saturation [1.25] to

obtain saturation characteristic L̃m (Ξm ) depending on the rms value of the saturation
variable:

L̃m (Ξm ) = Lm (
√

3 Ξm ) [1.29]
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In the case where we choose flux as a saturation variable, it might be practical to
consider induced electromotive force Em = ωφm , as it can easily be determined from
stator voltage2. Identification results of the saturation characteristics will be provided
later in the chapter (see section 1.4.1).

Working with a set angular frequency ω = 2π f (f = 50 Hz in Europe; f = 60 Hz
in North America), we will use the following notations in the rest of the chapter to
simplify:

Xm = Lm ω, Xr = lr ω and Xs = ls ω. [1.30]

1.2.6. Summary of the different models

The different models that we have obtained can all be put in a single form corre-
sponding to the phase equivalent diagram represented in Figure 1.3. In the case of the
total stator model (see Figure 1.2), we will consider that

Xm = Lmr ω, Xs = Ns ω and Xr = 0, R2 = R2r . [1.31]

Figure 1.3. Sinusoidal mode model

In the case of the total rotor leakage model (see Figure 1.1), we will consider that

Xm = Ls ω, Xs = 0, Xr = Nr ω and R2 = R2s . [1.32]

The equivalent phase model impedance is written as

Z = Rs + j Xs +
1

1
Rf

+ 1
j Xm

+ 1
j Xr + R 2

g

[1.33]

2 The mesh law applied to the stator mesh of the diagram in Figure 1.2 gives V s = (Rs +
j Ns ω) Is + Em .
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where Xm can be a function of the level of saturation. In the case of parametric satu-
ration identification, we will from now on consider the model:

Lm =
Lm0

1 + Aφm
N

[1.34]

resulting in sinusoidal mode

Xm =
Xm0

1 + α Em
N

[1.35]

with

Xm0 = Lm0 ω and α = A

(√
3

ω

)N

. [1.36]

There are 12 different models considered. One choice in three for leakage po-
sition (rotor, stator, or distributed), one in two for saturation (with or without), and
one in two for iron losses (with or without). These different models are explained in
Table 1.2. The first letter indicates if the leaks are totaled at the stator (S), rotor (R) or
if the leaks are distributed between the stator and the rotor (D for Sales). The models
that consider the saturation have an s as a second letter; and the models taking into
account iron losses have letter f . Each model is in the general form of the diagram
in Figure 1.3 as long as certain parameters are set at a zero value (Xs , Xr , or A) or
infinite (Rf ). The asterisks represent the parameters to estimate; four to six accord-
ing to the models. Model D cannot be identified. The other models can theoretically
be identified but, we will see later, separate leak models are difficult to identify in
practice.

Parameter R S D Rf Sf Df Rs Ss Ds Rsf Ssf Dsf
Rs (Ω) * * * * * * * * * * * *
R2 (Ω) * * * * * * * * * * * *
Rf (Ω) ∞ ∞ ∞ * * * ∞ ∞ ∞ * * *

N1 (mH) * 0 * 0 * * * * 0 0 * *
N2 (mH) 0 * * * 0 * 0 0 * * 0 *
Lm 0 (mH) * * * * * * * * * * * *
A (Wb−4 ) 0 0 0 0 * 0 * * * * * *

Table 1.2. Different models considered



Identification of Induction Motor in Sinusoidal Mode 15

1.2.7. Measurements

The methods that we will present from now on help us to determine the numeric
values of the parameters from sinusoidal measurements. Two types of measurements
are necessary: electrical measurements for the stator (voltage, current, power, etc.) and
a mechanical measurement: the rotor’s rotation speed.

For electrical measurements, usually we would consider the measurements of the
rms value Vs of a phase voltage, Is the rms value of its current and power P . In
purely sinusoidal mode (absence of harmonics), we have P = 3Vs Is cos(φ), where
φ is the voltage/current phase difference. We can then determine the equivalent com-
plex impedance of a phase Z = Z exp(j φ) with φ = arccos(P/(3Vs Is)) and
Z = Vs/Is . If harmonics are present, it is then preferable to work on the funda-
mentals of the voltage and current and to only consider the energy transported by the
fundamental, enabled by certain measurement devices. This technique is used in sec-
tion 1.5. It is possible to replace the power measurement by a direct phase difference
φ measurement between voltage and current. This is the method that will be used in
section 1.4.

Speed measurement Ω must be precise. In fact, it is used to determine slip form
relation g = 1 − p Ω

ω , with pΩ similar to ω. In this way, a relatively small speed error
can generate a relatively important error on the slip.

The test bench for the estimation of parameters must enable the variation of the
point of operation. In order to do this, we need a variable mechanical load for impos-
ing a variable torque. If this load is passive (powder brake, direct current generator dis-
charging in a rheostat), only the stable operation zones will be used (for slips of some
percentage). A controlled speed load makes it possible to carry out measurements for
all the values of speed (and thus slip)3. It is also interesting to have a reversible load,
to reverse the direction of transfer of energy and to make the induction machine work
as a generator, corresponding to faster speeds than the speed of synchronism.

If we want to identify the saturation characteristic, it is necessary to change
the flux and consequently the voltage. We usually use a variable autotransformer in
this case.

3 We will be careful when implementing such a system in an operation zone corresponding to
instability of the induction machine because the whole system may be unstable.



16 Electrical Actuators

1.2.8. Use of the nameplates

The nameplates of induction motors vary from one manufacturer to another. Nev-
ertheless, we can consider that they will at least provide the following information
relative to the nominal working point: nominal slip gN , rms value UsN of the voltage
between two phases, rms value IsN of the line current, power factor Fp , and output
power Pu . It is not possible to determine the series of parameters of induction ma-
chine models only from the nameplate information. We will then introduce a “well
designed” hypothesis; i.e., we will presume that the nominal machine operation cor-
responds to the optimal power factor. In addition, we will ignore stator resistance.

Ignoring mechanical losses helps to identify mechanical power to output power
(Pm = Pu ). Knowing that the power transmitted to rotor P2 is distributed in me-
chanical power and in rotor Joule losses according to relations Pm = (1 − g)P2
and Pjr = g P2 , we can determine P2 and Pjr . The electrical power absorbed is
Pe =

√
3 UsN IsN Fp . Since the stator Joule losses are ignored, a power balance

makes it possible to estimate iron losses: Pf = Pe − P2 . Knowing that iron losses

and written Pf = 3Vs N
2

Rf
, we can estimate Rf = 3 Vs N

2

Pf
.

The admittance of a phase at nominal point is Y N = YN exp(−j φN ) with YN =
Vs N

Is N
and φN = arccos(Fp). It is known that the location of admittance when the slip

varies is a circle of diameter 1/Xr and which center is a point with an affix with,
as real part, 1

Rf
. By relying on Figure 1.4, we extract from the right triangle OAD

relation sin(φN ) = YN

OD. We can also obtain relation sin(φN ) = 1
Rf CD. The radius

is then written r = AC = AD−CD = Yn

sin(φN ) −
1

Rf sin(φN ) , which makes it possible

to obtain Xr = 1
2 r .

Rotor Joule losses, which were previously evaluated, are written Pjr = 3R2 Ir
2 ,

where Ir is the current in the rotor branch such that Ir
2 = Vs N

2

R2 /gN
2 +Xr

2 . This relation
helps to determine R2 by solving the equation of the second order:

R2
2 − bR2 + (gN Xr )2 = 0 [1.37]

with b = 3 Vs N
2 gN

2

Pj r
. This equation has two real positive solutions. For each root R21

and R22 , we can then determine the magnetizing reactance by replacing in the general
admittance expression, resulting in

Xmk =
j

Y N − 1
Rf

− gN

R2 k +j gN Xr

[1.38]

We will select the most plausible couple (R2k ,Xmk ).
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C

D

A

O

φN
1

Rf

Re(Y )

Y N

φN

Im(Y )

Figure 1.4. Admittance diagram

In the case of the MAS3 machine, the characteristics of which are given in
Appendix 1.7.2, we obtain: Rf = 644 Ω and Xr = 20 Ω. Only the greatest of the roots
of [1.37] gives a positive Xm value; we then have R2 = 3, 8 Ω and Xm = 284 Ω.

1.3. Traditional methods from a limited number of measurements

1.3.1. Measurement of stator resistance

Resistance Rs of a stator winding is the only parameter that can be measured inde-
pendently from the other parameters. We just have to power a phase of the motor with
direct current, to sample the average values of voltage and current and to determine
Rs as the voltage over current ratio.

Since the resistance values are sensitive to variations in temperature, it is rec-
ommended to bring the machine to its working temperature prior to making this
measurement4.

4 The time necessary to reach a stationary temperature increases with the size of the machine.
It can take a few minutes for a few kilowatts machine and several hours for a very powerful
machine.
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1.3.2. Total rotor leakage model

Different procedures based on two tests help us to obtain the parameters of the
total rotor leakage model5.

1.3.2.1. Usual method

The most usual method to determine the parameter values contains two tests:

– no-load test (without load torque) under nominal voltage with stator voltage Vs0 ,
stator current Is0 , power P0 and speed Ω06,

– locked rotor test (g = 1) with reduced voltage or a specific g1 slip providing
values Vs1 , Is1 and P1 of the same quantities7.

In a first approach, we can consider that the no-load speed is equal to the speed
of synchronism, corresponding to zero slip. The rotor branch of the model is then
open, and it is possible to estimate the parameters of the magnetic circuit from no-
load measurements. By deducting the stator Joule losses at the absorbed power (P01 =
P0 − 3Rs Is0

2) and by calculating voltage Em to Lm terminals:

Em =
√

Vs0
2 − Rs Is0 Vs0 cos(φ0) + (Rs Is0)2 [1.39]

where φ0 is the phase difference of voltage in relation to the no-load current. From an
active and reactive energy balance, we then determine the following:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Rf =

3Em
2

P10

Xm =
3Em

2

Q0

[1.40]

5 That is particularly the case in the NFC 51-100 norm from the UTE based on the circle’s
diagram, i.e. the image of the current when the slip varies. The circle diagram is generally
established from a simplified model, where Joule losses are either ignored or referred to rotor
level. This procedure is described in [SÉG 94, PIC 65, FOU 73, DAL 85].
6 Opinions differ how to carry out no-load tests. Some authors recommend setting the machine
to its synchronism speed, using a driving load which only provides sufficient energy to com-
pensate losses. Nevertheless, since the rotor rotates at the speed of synchronism, the machine
then behaves like a synchronous machine excited by its residual field, which may disrupt the
measurements.
7 The locked rotor test has two disadvantages. First, it presumes that we can mechanically block
the axis of the machine when it is generally protected for security purposes. In addition, with
locked rotor, the rotor currents are at the stator’s angular frequency ω, a very high angular
frequency compared to their usual range. In this case, additional frequency effects can emerge,
leading to significant variations in parameters, and notably leaks. This phenomenon is very
significant for deep slot rotors where this effect is used to make start-up easier. If we want to
identify a valid model for nominal operation, it is better to use a nominal slip measurement.
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with Q0 =
√

(3Vs0 Is0)2 − P0
2 .

1.3.2.1.1. Simplified calculation

For the locked rotor test (g = 1) under reduced voltage, it is usual to ignore the
current passing through the magnetizing inductance and iron losses. We can then write
active and reactive powers:{

P1 = 3 (Rs + R2) Is1
2

Q1 = 3Xr Is1
2 [1.41]

with Q1 =
√

(3Vs1 Is1)2 − P1
2 . The unknown parameters are then determined by

⎧⎪⎪⎨
⎪⎪⎩

R2 =
P1

3 Is1
2 − Rs

Xr =
Q1

3 Is1
2

[1.42]

1.3.2.1.2. Precise calculation

In order to obtain more precise results, it is preferable not to ignore the saturation
of the magnetic circuit8. An ingenious way of obtaining results is to write calculations
in complex form. Z1 is the equivalent impedance calculated from measurements by
the method described in section 1.2.7. The model gives the following relation:

Z1 = Rs +
1

1
jXm

+ 1
Rf

+
1

R2
g1

+ jXr

[1.43]

written as

R2

g1
+ j Xr =

1
1

Z 1 −Rs
− 1

j Xm
− 1

Rf

. [1.44]

The real and imaginary parts are enough to isolate R2 and Xr , respectively:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R2 = g1 Re

(
1

1
Z 1 −Rs

− 1
j Xm

− 1
Rf

)

Xr = Im

(
1

1
Z 1 −Rs

− 1
j Xm

− 1
Rf

) [1.45]

8 This is necessary in the case of a measurement under nominal voltage where the effect of the
magnetic circuit cannot be ignored.
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1.3.2.2. Use of any two measurements

The previous method can be generalized in order to take any two measurement
points into consideration9. Note the different measurements with indices a and b cor-
responding to two measurement points. To simplify calculations, note Ỹ k as complex
admittances of circuits once stator Joule losses compensated. If Zk , k = a, b is the
equivalent impedance determined from experimental measurements as explained in
section 1.2.7, we can determine them with relation Ỹ k = 1/(Zk − Rs). Admittance
expressions:

⎧⎪⎨
⎪⎩

Ỹ a =
1

jXm
+

1
Rf

+
ga

R2 + j Xr ga

Ỹ b =
1

jXm
+

1
Rf

+
gb

R2 + j Xr gb

[1.46]

Two of the unknown parameters are easily eliminated considering the difference term
for term of both equations, which then results in:

R2 − ga gb
Xr

2

R2
+ j (ga + gb)Xr =

ga − gb

Ỹ a − Ỹ b

[1.47]

The imaginary part of this last equation determines the value of Xr :

Xr =
ga − gb

ga + gb
Im

(
1

Ỹ a − Ỹ b

)
[1.48]

We then have to determine R2 as the only positive solution of the second-order equa-
tion obtained with the real section of relation [1.47]:

R2
2 − B R2 − ga gb Xr

2 = 0 [1.49]

with B = (ga − gb)Re
(

1
Ỹ a −Ỹ b

)
, or

R2 =
1
2

(
B +

√
B2 + 4 ga gb Xr

2
)

[1.50]

9 This makes it possible notably to consider the measurement of no-load speed if it is not exactly
equal to the speed of synchronism.
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The values of Xm and Rf are then simply obtained by using one of the two equations
of [1.46], the first one, for example:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rf = 1

Re

(
Y 1 −

ga

R2 + j Xr ga

)

Xm = −1

Im

(
Y 1 −

ga

R2 + j Xr ga

) [1.51]

We can use this method by choosing a no-load measurement and a nominal load mea-
surement. We can then consider, when appropriate, the value of the no-load speed if it
is slightly different from the speed of synchronism.

1.3.3. Total stator leakage models

In the case of total stator leakage models, the estimation of parameters with the
help of two measurements is clearly more difficult to achieve. In fact, it is a four non-
linear equation system (if we consider the real and imaginary parts of both equations)
with four unknowns. In the present case, the no-load test makes it possible to eliminate
a single parameter instead of two in the previous case, the same applies to the tech-
nique previously used consisting of calculating the difference between both equations.

If, however, we wish to obtain a total stator leakage model with a simple method,
the easiest way is to estimate the parameters of the total rotor leakage model and to
find an equivalent total stator leakage model. When we ignore iron losses, we know
that they are perfectly equivalent as long as we use the equivalence formulas from
section 1.2.2.3. For the value of iron loss resistance, we propose to settle for the pre-
viously estimated value. It is obviously an approximation; a small difference will then
remain between the values of impedances given by the two measurements and those
given by the model.

1.3.4. Saturation characteristic

Once the values for the parameters in non-saturated mode are estimated, i.e. at low
flux, we can try to extend the field of validity of the model by identifying the saturation
characteristic10. We consider the measurements for a point of saturation with a level
of saturation ξm : Vs , and Is rms value of the voltage and current relative to a phase,
P the power absorbed and g the slip. It is then possible to determine the equivalent

10 The method presented for the case of saturation dependence according to magnetizing cur-
rent, is taken from [KAS 00].
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impedance per phase as explained in section 1.2.7; note Zmes to clarify that it comes
from the measurements. This impedance is also written based on model [1.33] where
the value of Lm must be recalculated to correspond to the measurement point as much
as possible. We can then choose:

Xm (ξm ) = Im

⎛
⎝( 1

Zmes − Rs − jXs
− 1

Rf
− 1

R2
g + jXr

)−1
⎞
⎠ [1.52]

To determine characteristic Xm (ξm ), it is necessary to determine the level of sat-
uration. In order to simplify the writing, we will use complex notations by using
V s = Vs as reference. We then have Is = Is exp(−jφ), where φ is determined
from P = 3Vs Is cos(φ). We can then determine the voltage across the inductance
terminals by Kirchhoff’s link rule:

Em = V s − (Rs + jXs) Is. [1.53]

The magnetizing current module is then written as Im = Em

Xm
. After iteration of mea-

surements, we have two saturation characteristics: Xm (Em ) and Xm (Im ) which can
be chosen as needed.

When appropriate, we can then identify the characteristic as a parametric function
of the saturation variable by estimating parameters by a least-square technique. This
type of estimation method will be presented in detail and used in the following part of
this chapter for the estimation of parameters from a high number of measurements.

1.3.5. Experimental results

1.3.5.1. Total rotor leakage model

The estimation method previously discussed was implemented in the MAS3 motor,
and the characteristics are provided in Appendix 1.7.2. Two usual measurements were
carried out: no-load test and nominal load test. Different variable voltage no-load tests
were then carried out in order to identify the saturation characteristic.

We estimate the parameters of model Rsf with total rotor leaks and considering
saturation and iron losses. We estimate stator resistance by a direct current test: Rs =
3.45 Ω. From the no-load test (Vs0 = 158 V, Is0 = 3.06 A, P0 = 173 W), we
determine Rf = 1.51 kΩ and Xm = 201 Ω. The nominal slip test (Vs1 = 128 V,
Is1 = 3.84 A, P1 = 1190 W, g1 = 2.4%) results in R2 = 3.14 Ω and Xr = 20.9 Ω.
We can observe slight gaps compared to the values obtained from the nameplates.
We must conclude that the nameplate only lets us have the orders of magnitude of
parameters.



Identification of Induction Motor in Sinusoidal Mode 23

1.3.5.2. Total stator leakage model

By using the transition equations of the stator leakage model to the rotor leakage
model [1.19], we determine the following parameter values of the total rotor leakage
model: Xms = Lsω = 182 Ω, R2r = 2.6 Ω and Xs = Nsω = 19 Ω; parameters Rs

and Rf are unchanged.

Because of iron losses, both models are not rigorously identical. In order to com-
pare them, their complex admittances were calculated for different slip values between
−10% and +10% and are represented in Figure 1.5. We note that both models provide
similar admittance values.
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Figure 1.5. Comparison between models Rf (×) and Sf (+)

1.3.5.3. Saturation

We now focus on the effect of saturation on Xm value. For different measurement
points, we calculate Xm with the help of relation [1.52]. The corresponding electro-
motive force Em is determined with the help of relation [1.39], making it possible to
draw Xm variations according to Em . We can also calculate current Im = Em

Xm
.

We propose to handle the identification of the saturation characteristic in the
following form:

Im = α1 φm + α2 φm
N [1.54]
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where N is an integer to determine. The model depends linearly on parameters α1
and α2 . We can then search for the values of parameters minimizing the gap quadratic
criterion between the model and measurements:

J(α1 , α2) =
m∑

k=1

(α1 φmk + α2 φmk
N − Imk )2 [1.55]

where φmk and Imk , k = 1 . . . m, are the m measurements of φm and Im . The pa-
rameters must verify the conditions of the first order ∂J

∂α1
= 0 and ∂J

∂α2
= 0, written in

the following form:

A
[

α1
α2

]
= b [1.56]

where

A =

⎡
⎣
∑m

k=1 φmk
2 ∑m

k=1 φmk
N +1

∑m
k=1 φmk

N +1 ∑m
k=1 φmk

2N

⎤
⎦ [1.57]

and

b =

[ ∑m
k=1 φmk Imk∑m
k=1 φmk

N Imk

]
. [1.58]

We then calculate α1 and α2 by multiplying relation [1.56] to the left by the inverse of
matrix A. This technique was tested for different values of N . Value N = 10 showed
the best results (i.e. the residual of the lowest criterion); giving α1 = 1.44 A/Wb
and α2 = 2.06 A.Wb−10 . The points of measurement and the identified characteristic
(Xm = 1/(α1 + α2 (Em /ω)N −1)) are represented in Figure 1.6. The characteristic
identified corresponds accurately to the measurements.

1.4. Estimation by minimization of a criteria based on admittance

1.4.1. Estimation of parameters by minimization of a criterion

Let us consider a system in which a certain number of measurements Mk were
done, grouped in vector M . Suppose that for each point of measurement, a rele-
vant quantity can be calculated according to a function f(Mk ). Suppose that we
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have a model of the system, parameterized by vector Θ, for estimating the relevant
quantity by f̂(Mk,Θ). For each point of measurement, we can then calculate the
estimation error εk = ε(Θ,Mk ) = f(Mk ) − f̂(Θ,Mk ) and build scalar function
J(Θ,M) =

∑
k qk ||εk ||2 , which is a weighted sum of error squares (with qk real

positive). This positive scalar function is zero only if the model outputs correspond
perfectly to the measurements. From an initial value, we will try to adjust Θ in order
to minimize J by a procedure of optimization. If the model is identifiable and if the
measurements are sufficiently rich, the criterion presents a global minimum; we will
retain as a value of parameters the minimum argument: Θ∗ = arg minΘ J(Θ,M).
In the case where the model is linear with respect to the parameters, this value can
be determined analytically. We will discuss this topic in more detail in the last part
of the chapter to propose a method of estimation of parameters simple to implement
numerically. If that is not the case, the minimum must be approximated iteratively by
a non-linear programming method such as Gauss–Newton or Levenberg–Marquard
[FLE 87, GIL 81]. In practice, the residual of criterion J(Θ∗) is non-zero due to mea-
surement errors and model errors.
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Figure 1.6. Saturation characteristics

1.4.2. Choice of criterion

Considering the circle diagram to characterize the operation of an induction ma-
chine is usual. Since this diagram represents complex admittance, it is legitimate to
consider this quantity as relevant for identification (f = Y ). In this way, identifying
the machine comes down to finding a model providing a circle diagram approximating
measurements the best.
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From the measurements grouped in a vector Mk = [Vsk Isk Pk Ωk ]T , we deter-
mine admittance Y k = f(Mk ) as explained in section 1.2.7. In addition, the estima-
tion of admittance is done with the help of the model selected Ŷ k = f̂(Θ,Mk ), where
gk is calculated from Ωk . For a model that considers saturation, we must also calculate
the saturation variable from Mk and Θ11. The criterion is then written as

J(Θ,M) =
n∑

k=1

|Y k (M) − Ŷ k (Θ,M)|2 [1.59]

By noting εk = Y k − Ŷ k and by grouping the different values in a vector: ε =
[ε1 . . . εn ]T , we can write

J(Θ,M) = εH(Θ,M) ε(Θ,M) [1.60]

where XH represents the Hermitian of X , i.e. the conjugate of its transpose.

We consider, in this section, the parameter estimation of the different models pre-
sented in Table 1.2 with the saturation characteristic [1.35] and N = 4.

1.4.3. Implementation

Since the model is non-linear according to parameters, we should use a minimiza-
tion algorithm to determine the numerical values of parameters. In order to improve
the speed of convergence, it is preferable to use methods based on a limited develop-
ment of the criterion.

The first derivative of the criterion with respect to the vector of parameters, called
gradient, is a vector noted ∇(Θ∗,M) with dimension n (number of parameters),
where the ith component is written (∇(Θ∗,M))i = ∂J (Θ ,M )

∂Θ i
. The gradient can be

written as

∇(Θ,M) = 2Re
(

∂εH(Θ,M)
∂Θ

· ε(Θ,M)
)

[1.61]

11 Determination of the saturation variable, φm or im , from measurements and parameters, is
explained in section 1.3.5.3 (see equation [1.53]).
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where the term at line k and column l of ∂ ε(Θ ,M )
∂Θ is ∂ εk (Θ ,M )

∂Θ l
; in addition, ∂ εH (Θ ,M )

∂Θ =(
∂ ε(Θ ,M )

∂Θ

)H
. The expression of the module sensitivities

∂ εk

∂Θ l
= − ∂ Ŷ k (Θ ,Mk )

∂Θ l
is given

in Appendix 1.7.1.

The second derivative of the criterion in relation to the vector of parameters, called

Hessian, is a n×n matrix where the term (i, j) is written (H(Θ,M))i,j = ∂ 2 J (Θ ,M )
∂Θ i ∂Θ j

.
We generally use the following approximate expression, valid for low values of ε:

H(Θ,M) � 2Re
(

∂εH(Θ,M)
∂Θ

· ∂ε(Θ,M)
∂Θ

)
. [1.62]

Around an arbitrary value Θ∗ of the vector of parameters, the second-order devel-
opment is written as

J(Θ,M) � J(Θ∗,M) + ∇T (Θ∗,M) · (Θ − Θ∗)

+
1
2
(Θ − Θ∗)H · H(Θ∗,M) · (Θ − Θ∗). [1.63]

The gradient has a first-order development written as

∇(Θ,M) � ∇(Θ∗,M) + H(Θ∗,M) · (Θ − Θ∗). [1.64]

1.4.4. Analysis of estimation errors

A method of estimation able to determine the values of parameters in ideal con-
ditions is not enough. It must also be able to deliver a relatively precise estimation
of the parameters despite errors affecting the system. There are two types of errors:
(i) the measurement errors linked to inaccuracies in the measurement device and the
chain of acquisition; (ii) those linked to model imperfections (ignored phenomena,
idealization of reality). In order to validate or invalidate estimators, in this section, we
conduct a complete theoretical accuracy analysis of estimators of the different mod-
els. This study is based on raw values of parameters obtained from prior investigation
(these values are referred to as “a priori values” in the sequel; they can be derived
from the name plate). In section 1.4.5, we will see that this study helps us to clarify
experimental results.
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1.4.4.1. Method for error evaluation

A first method for evaluating estimation errors consists of creating the estimation
procedure from simulated measurements in which we have introduced one or more
sources of error. For stochastic measurement errors, the resulting estimation errors are
random variables, and we will focus on their stochastic properties (bias and standard
deviation), which will be evaluated in a panel containing a large enough number of
samples12.

Another method consists of writing an approximate analytical development for the
error in parameters according to measurement or model errors. The estimate Θ̂ of Θ
verifies the first-order condition ∇(Θ̂,M) = 0. From the development of gradient
[1.64], we get the relation:

∇(Θ∗,M) + H(Θ∗,M) · (Θ̂ − Θ∗) = 0. [1.65]

Now consider that Θ∗ is the “true” value of parameters, and that Θ̂ �= Θ∗, because of
measurement and model errors. The estimation error of parameters εΘ = Θ̂ − Θ∗ is
then written as

εΘ � −H−1(Θ∗,M) · ∇(Θ∗,M). [1.66]

It can be evaluated based on the a priori values of parameters Θ∗.

1.4.4.2. Experiment design

In order to best identify the behavior of the machine, we have considered a mea-
surement set that is as large as possible. In practice, the slip is limited to a value gmax
for stability purposes; we then limited ourselves to a range of [−gmax; gmax]. In order
to identify saturation, it is interesting to vary the level of saturation (and thus volt-
age) in a wide range. By noting Vmax as the maximum value that can be reached for
voltage, we can choose to use as measurement range [ 1

2 Vmax;Vmax]. It is not neces-
sary to measure at very low voltage because the relative precision is then low and, in
the absence of saturation, these measurements only bring redundant information. The
experimental results used in this part were obtained on the MAS1 machine with char-
acteristics available in Appendix 1.7.1. With a maximum slip of approximately 10%
and maximum voltage of 120 V. We chose to carry out 66 different measurements for
11 Em values and 6 slip values.

12 These are Monte-Carlo methods where we simulate, for example, 2,000 samples each con-
taining 66 measurement points, for a representative panel.
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In order to test the choice of measurement points on estimation precision, we also
considered two other series of measurements containing the same number of measure-
ments. In one, the measurements are done at positive slip, corresponding to motoring
operation. In the other, the measurements are done at negative slip, i.e. in generating
operation. Subsequently, we will see how to optimally design a set of measurement
points.

1.4.4.3. Effect of measurement errors

We now present the evaluation of estimation errors, achieved with the help of an-
alytical development presented in section 1.4.4.1 considering the measurement set
presented in section 1.4.4.2. The series of results will be the subject of a discussion in
section 1.4.4.5.

1.4.4.3.1. Offset and error of gain on sensors

We considered offsets on the different sensors corresponding to ±1% of the nomi-
nal value in voltage, current, phase difference, and speed (nominal values are given in
Appendix 1.7.2), and we calculated the impact on the estimated value of the param-
eters of model Rsf (see Table 1.3). We provided the effect of each sensor offset and
the worst-case conjugated effect of an offset in each sensor. We can observe that the
most effective measurement is the phase measurement. The most sensitive parameters
are Rf and Rs . The high level of these errors (117% and 43%, respectively) shows the
necessity of an unbiased measurement of phase difference; it would also be useful to
ensure that phase measurement has a lower offset by a tenth of what was considered
in the evaluation, or less than 0.1% of 2π.

Sensor
Parameter Vs Is φ Ω sum

Rs −0.4 0.8 42.3 −0.2 43.1
R2 −1.4 0.8 −0.3 −0.0 −0.9
Rf −0.3 0.6 −117 −3.1 −120
N2 −1.5 3.2 −0.8 −0.0 0.8
Lm 0 −2.1 2.4 −0.5 0.0 −0.1
A 0.4 4.2 −1.3 0.0 3.4

Table 1.3. Errors of parameter estimations caused by sensor offsets
(in percentage of nominal parameter value)

We also evaluated the effect of a gain error of 1% in each sensor. The results are
presented in Table 1.4 and show that the phase measurement is again the trickiest
measurement that can lead to estimation errors in Rf and Rs .
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Sensor
Parameter Vs Is φ Ω Sum

Rs −1.0 1.0 10.1 −0.0 10.1
R2 −1.0 1.0 0.3 −1.0 −0.7
Rf −1.0 1.0 −26.3 −0.0 −26.3
N2 −1.0 1.0 5.8 0.0 5.8
Lm 0 −1.0 1.0 −0.6 −0.0 −0.6
A 4.0 −0.0 −1.2 −0.0 2.8

Table 1.4. Errors of parameter estimations because of sensor gain errors
(in percentage of the nominal value of parameters)

1.4.4.3.2. Stochastic measurement noise

The parameter estimation of the different models was done from measurements
containing a random additive error with standard deviation equal to 1% of nominal
values (see Table 1.5). We start with model R with four parameters that will serve
as reference. We get accurate precision in R2 and Lm0 and a less accurate, but still
satisfactory, precision in Rs and N2 . When we consider iron losses in model Rf ,
the precisions in the four starting parameters are almost maintained and Rf has an
acceptable precision. At this stage, model Rf is considered as usable for identification.

In model Df , we try to separate leaks, theoretically possible if we account for iron
losses. However, the precisions obtained in leakage inductances are catastrophic. We
conclude that this model is inappropriate for identification.

Model Rs is different from reference model R because of the introduction of sat-
uration. We can observe that the precision of the four physical parameters remains
correct; model Rs is therefore usable. That is also the case with model Rsf account-
ing for iron losses and saturation. However, with models Ds and Dsf attempting
to separate leaks with the presence of saturation, we cannot obtain satisfying leak-
age inductance values. They should therefore be rejected for identification. Generally
speaking, separate leakage models cannot be practically identified.

Parameter R Rf Df Rs Rsf Ds Ds
Rs 6.4 8.4 7.4 6.1 6.9 6.5 7.4
R2 0.5 0.5 15.7 0.5 0.5 4.6 4.9
Rf − 15.7 20.5 − 15.3 − 15.9
N1 − − 236 − − 63.7 67.9
N2 10.2 10.1 277 10.5 10.5 68.8 72.8
Lm 0 1.7 1.7 8.1 3.0 3.0 2.9 2.9
A − − − 15.2 15.0 29.6 30.1

Table 1.5. Standard deviation of estimation errors caused by stochastic errors
of measurements (in percentage of the nominal value of parameters) for a

random additive error of 1% of nominal value
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1.4.4.4. Effect of model error

Ignoring a phenomenon can lead to significant estimation errors. Validating an
estimation procedure in relation to this problem is a vital step. In the case of sinusoidal
mode operation, the main model errors emerge when we ignore saturation and iron
losses. The reader will find a more detailed analysis of model errors of the dynamic
model in [LAR 00, LAR 08].

1.4.4.4.1. Iron losses

Models Rs and Rsf only differ in iron losses. By simulating measurements with
Rsf and by estimating Rs parameters, we can evaluate estimation errors caused
by iron losses, reported in Table 1.6. In order to evaluate the effect of the choice
of measurement points, estimation errors were evaluated for the three distinct sets
of measurements introduced in section 1.2.7: the complete case containing balanced
measurements in motoring and generating mode (noted “Mixed” in the table), a set of
measurements containing as many measurements but only in motoring mode and one
set only containing generating mode measurements.

First, consider the estimation of parameters from the mixed measurement set.
The most biased parameters are Rs (6.6%) and N2 (3.3%). Errors in the other
parameters are less than 1%. We can then consider that the errors are acceptable.
When the estimation is done from measurements only corresponding to rotoring or
generating mode operation, the biases are greater: more than 50% for Rs . In this way,
estimation errors due to this model error are very sensitive to the choice of the set of
measurement points.

Parameter Mixed Motor Generator
Rs −6.5 55.5 50.7
R2 0.0 −7.9 7.6
N2 3.4 23.4 −19.9
Lm 0 0.1 0.5 −0.6
A 0.6 14.8 −15.7

Table 1.6. Estimation errors due to iron losses (in percentage
of parameter reference values)

1.4.4.4.2. Saturation

Magnetic saturation is an undeniable phenomenon that necessarily appears in the
nominal mode operation of an electric machine. However, for simplicity purposes,
we often prefer to use models that ignore this phenomenon13. Parameter estimation

13 This is generally the case for models dedicated to control [FOR 00, FOR 04, GRE 01,
MON 04].
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of this kind of model from measurements corresponding to saturated mode operation
yields estimation errors. As an example, in Table 1.7, values relative to the biases
obtained by simulating measurements with Rsf and by estimating Rf parameters are
presented.

For the three sets of measurements, parameter Lm0 is very sensitive to this model
error. In fact, the estimated value of Lm0 is an average of the values taken by Lm dur-
ing the different saturation measurements. The other biases are very low. The results
are not sensitive to the choice of the set of measurements, as Table 1.7 shows.

Parameter Mixed Motor Generator
Rs −0.0 −0.0 −0.0
R2 0.0 0.0 0.0
Rf −1.8 −1.8 −1.8
N2 0.0 0.0 −0.0
Lm 0 −19.5 −19.5 −19.5

Table 1.7. Estimation errors due to saturation (in percentage
of parameter reference values)

1.4.4.5. Discussion

For the sets of measurements considered, the study of estimation errors caused by
measurement noise showed that models considering both stator and rotor leaks (Df ,
Ds, and Dsf ) are practically unidentifiable. We then cannot use them to simultane-
ously estimate all the parameters. In terms of saturation, it appears that we could use
a model that does not consider this phenomenon. The study showed that iron losses,
when they are ignored, can have a significant influence on the quality of parameter
estimation. In addition, the results are very sensitive to the choice of measurements
points. It is therefore desirable to account for iron losses in the identification model.
If these losses are ignored, an in-depth study, in the spirit of the study presented here,
is necessary to evaluate estimation errors and validate, or invalidate, all the chosen
measurement points.

The only models guaranteeing a correct estimation of parameters are Rf and Rsf ,
as well as their total stator leakage equivalents. Resistance Rs is not identified with
good precision by this method, but that is of lesser importance because it may be
estimated independently from the other parameters by a direct current measurement.
In addition, we can also improve the precision of parameter estimation by choosing a
better set of measurement points.

In conclusion, we will retain that saturation and iron losses can be estimated simul-
taneously with the other parameters and that we should not try to estimate the stator
and rotor leaks separately.



Identification of Induction Motor in Sinusoidal Mode 33

1.4.5. Experimental results

In order to illustrate in a concrete case the identification protocol proposed in this
section, measurements were taken from machine MAS1 (see Appendix 1.7.2) for 71
measurement points corresponding to a slip that varies between −gmax and gmax =
6% and for Em varying between 1

2 Vmax and Vmax = 130 V. The numeric values of
parameters estimated for the different models are given in Table 1.4.5. The parameters
of the sinusoidal mode model are given earlier, followed by the residual of criterion
J ; and finally parameters of the dynamic model14 or, more precisely, their value in
the absence of saturation (calculated for Lm = Lm0). A lower value of the criterion
indicates better identification. From this point of view, with these results, the rotor
leakage models have a slight advantage over the stator leakage models. Remember
that this difference can only appear in the presence of iron losses or saturation because,
without these phenomena, both models are rigorously equivalent. The separation of
leaks introduced in models DS and DSF turns out to be hazardous and leads to a
negative value of N1 for model DSF. These models should therefore be rejected, as
predicted in the precision analysis phase. When appropriate, if a distribution of leaks
is necessary, it must be first imposed in a heuristic way (e.g. by imposing N1 = N2)
and cannot be identified experimentally by the protocol considered here.

Parameter Ss Rs Ssf Rsf Ds Dsf
Rs (Ω) 1.3 1.29 1.33 1.28 1.29 1.28
R2 (Ω) 0.65 0.76 0.64 0.75 0.75 0.76
Rf (Ω) ∞ ∞ 424 491 ∞ 494

N1 (mH) 5.8 0 5.7 0 0.2 −0.3
N2 (mH) 0 6.8 0 6.7 6.6 7.0
Lm 0 (mH) 92.6 97.2 92.3 97.1 97.1 97.2
α(10−9 ) 5.09 2.94 4.99 2.94 3.00 2.85
J(10−3 ) 10.7 9.3 6.9 5.2 9.3 5.2
Rr (Ω) 0.65 0.71 0.64 0.7 0.70 0.71

Ls (mH) 98.4 97.2 98.0 97.1 97.3 96.9
Lr = M (mH) 92.6 90.8 92.3 90.8 90.9 90.7

σ (%) 5.9 6.5 5.8 6.5 6.6 6.4

Table 1.8. Experimental estimation results

1.4.6. Optimal experiment design

1.4.6.1. Principle

Optimal experiment design consists of determining the m measurement points that
minimize estimation errors (bias and variance) for a given model structure. In the

14 See section 1.2.1.
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current case where the study is based on a priori values of parameters, the optimality
has only a local validity. In order to obtain more information on the numerous methods
developed in this field, the reader should consult [WAL 97] or [WAL 90]. The optimal
set of measurements is the solution of a minimization problem under constraints that
is generally non-convex and presents local minima, making the direct use of usual
optimization algorithms impossible. To remedy these problems, we used a genetic
algorithm [BUC 92, MAN 97] and its result was used as an initial condition for a more
conventional algorithm [FOR 76, COL 99] to refine precision. The results presented
below use model Rs without iron losses but with saturation. They are based on an
approximate expression of estimation errors using relation [1.66]. For detail on these
calculations, the reader should refer to references [LAR 02] and [LAR 05].

1.4.6.2. Minimization of the effect of measurement noises

First, we try to minimize the effect of measurement noise analyzed in sec-
tion 1.4.4.3.2. The criterion involved is the sum of variances of reduced estimation
errors for different parameters. In this way, optimal set of measurements M∗ is de-
fined by the minimum argument of a variance function:

J(M) =
5∑

i=1

(
σΘ i

Θi0

)2

[1.67]

where σΘ i
is the standard deviation of the estimation error of parameter Θi with nom-

inal value Θi0 . To illustrate the methodology, a set of 12 measurement couples com-
pletely free in pad [−gmax ; gmax ]×[ 1

2 Vmax ; Vmax ] was considered. Optimal torques
(g; Em ) obtained are grouped around four distinct values: (gmin ; Vmax ), (gmax ; Vmax ),
(g1 ; Vmin ), and (g1 ; Vmax ) where g1 � 0. These different values are repeated, 3, 4, 3
and 2 times, respectively. It is an expected result indicating that an optimal experience
is made up of a limited number of measurement points repeated several times; these
points are generally located at the border of the reachable field. Note that three distinct
measurement points are enough to determine the five parameters of model Rs.

1.4.6.3. Minimization of the combined effect of measurement noise and iron losses

We saw that if iron losses are not considered, the biases are significant and depend
on the set of measurements. In order to synthesize a set of measurements guaranteeing
a low bias, in addition of low variance, we have used a mixed criterion involving the
variances of estimation errors caused by measurement noise and biases due to iron
losses:

J(M) =
5∑

i=1

((
σΘ i

Θi0

)2

+ λ

(
bΘ i

Θi0

)2
)

[1.68]
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where bΘ i
is the estimation error of parameter Θi due to iron losses, and λ is a factor

making it possible to adjust the respective parts of both errors.

We chose λ = 1, 000 making it possible to cancel almost all errors due to iron
losses. The measurements obtained again contain four measurement points repeated
two to four times and slightly modified compared to the previous case. The evaluation
of this optimal protocol is reported in Table 1.9. We can compare with the results
presented in Tables 1.3–1.6. We can observe a slight global improvement of results
in terms of measurement errors and a drastic decrease of errors due to iron losses.
We should moderate this last point, however. In fact, this strong improvement was
obtained for given values of the parameters and may not be robust to variations of
these parameters15.

Parameter Offset Gain error Stoch. Noise (sd) Iron losses
Rs 31.6 7.4 7.2 −0.07
R2 −1.4 −0.9 0.6 −0.01
Rf −99.9 −21.8 12.6 −
N2 2.4 5.5 10.2 −0.01
Lm 0 1.5 0.1 0.9 −0.00
A 9.7 4.6 4.0 −0.00

Table 1.9. Estimation errors with the optimal protocol (in percentage
of nominal parameter values)

1.4.7. Conclusion on the method

The estimation error evaluation of physical parameters of the induction motor
made it possible to conclude on practical identifiability of the different models in sinu-
soidal mode. These results were used to determine sets of measurements minimizing
the estimation errors while respecting physical constraints.

The choice of a model is generally given to the specialist in the field involved.
On the contrary, the method that we propose allows to make an objective choice. Let
us complement with some remarks. First, we must avoid using the most complete
model with separate leaks. Even though it corresponds to the physics of the process
better, it generally leads to absurd parameter values because of measurement errors
and lack of structural identifiability. In order to obtain a model that can be identified,
the phenomena only leading to low estimation error must be ignored. As the model
is simplified, the estimation of parameters, although slightly biased, is gradually less
sensitive to measurement noise. A good model results from a compromise between

15 The limitation of these approaches is that they are based on a priori parameter values.
After an estimation of these parameters, it can be necessary to restart the analysis based on the
new values.
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low sensitivity to measurement noise and low bias caused by model errors. The opti-
mal experiment design makes it possible to obtain an experimental protocol reducing
the bias because of model errors, as well as sensitivity to the measurement noise.

1.5. Linear estimation

In this section, we present a method for moving beyond the non-linear program-
ming step, facilitating numeric implementation. In the case of the total stator leakage
model that considers iron losses but not saturation, we will see that the parameters can
be estimated with satisfying precision.

1.5.1. Principle

We now consider a given model in the form of an affine relation between its pa-
rameters, i.e. that for a measurement Mk , we have a relation in the form:

n∑
l=1

al(Mk ) · Θl = b(Mk ) [1.69]

involving parameters Θl , in the number of n and measurements Mk , where al and bl

can be vectors, and where the problem can be real or complex. For all m measurement
sets, we can concatenate information, resulting in system:

A(M) · Θ = B(M) [1.70]

where

A(M) =

⎡
⎢⎣

a1(M1) . . . an (M1)
...

...
a1(Mm ) . . . an (Mm )

⎤
⎥⎦ [1.71]

and

B(M) =

⎡
⎢⎣

b(M1)
...

b(Mm )

⎤
⎥⎦ [1.72]

As long as the system is identifiable and the measurements are sufficiently rich, matrix
A(M) is of rank n and the system is overdetermined. We then try to solve it in terms
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of least squares, i.e. we search for the vector of parameters Θ̂ minimizing ||AΘ̂−B||2 ,
given by:

Θ̂ = A† B [1.73]

where A† = (AH A)−1 AH is the pseudo-inverse of A.

To apply this method, we must be able to rewrite the problem in such a way that
it becomes linear according to a new set of parameters. We must also be able to find
the original parameters from the new ones. This can easily be done with models de-
pending on four parameters. We will now concentrate on the total rotor leakage model
considering iron losses where the resistance value of the stator has already been iden-
tified16. The case of the total rotor leakage model without iron losses is not discussed
in this chapter but is available in the literature [LAR 04].

1.5.2. Case of the five parameter model

As an example, consider the total rotor leakage model considering iron losses (Rf )
without considering stator Joule losses. Its model, given by [1.33] by canceling Rs and
Xs can be written as:

−Y Θ1 + Θ2 + g Θ3 = j g Y [1.74]

with Θ1 = R2
Xr

, Θ2 = R2
Xr

( 1
Rf

+ 1
jXm

) and Θ3 = 1
Xm

+ 1
Xr

+ j
Rf

. It is a linear equation
with complex factors involving complex parameters (Θ1 alone is real). As long as we
have enough measurement points (at least three), the method in the previous section
can be applied.

This equation can also be transformed into a two linear equation system involving
five real Θr

k parameters:

{
−Re(Y ) · Θr

1 + Θr
2 + g Θr

4 = −g Im(Y )

−Im(Y ) · Θr
1 − Θr

3 + g Θr
5 = g Re(Y )

[1.75]

with Θr
1 = R2

Xr
, Θr

2 = R2
Rf Xr

, Θr
3 = R2

Xr Xm
, Θr

4 = 1
Xm

+ 1
Xr

and Θr
5 = 1

Rf
. Once

more, the method applies when we have three distinct measurement points. Note that
these five real parameters can be obtained from the complex problem solutions: Θr

1 =
Re(Θ1), Θr

2 = Re(Θ2), Θr
3 = −Im(Θ2), Θr

4 = Re(Θ3) and Θr
5 = Im(Θ3).

16 The resistance of a stator winding can be estimated by the direct current volt-ampere metric
method.
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Once the estimates for the five new parameters are found, the question then is
how to obtain the four original parameters. Each of the new parameters constitutes
an equation linking the original parameters: we now face an overdetermined problem.
One method could be to try to minimize a distance criterion for the new parameters.
But this criterion would be non-quadratic and minimization would require the imple-
mentation of a non-linear programming algorithm whereas we are actually trying to
avoid using it in the current method.

A simple solution then is to delete only one of the five equations in order to deter-
mine an estimator of each parameter. Note that parameters Θr

1 , Θr
2 , and Θr

5 are linked
by the relation Θr

1Θ
r
5 = Θr

2 . We can estimate original parameters without taking into
account the value of one of those three parameter. Depending on the parameter re-
moved, three estimators can be determined. However, the three resulting estimators
are not always distinct and in the present case, we have two distinct estimators for
each original parameter (see Table 1.10).

Parameter Estimator #1 Estimator #2

R2
Θr

1
2

Θr
1Θr

4 − Θr
3

Θr
2

2

Θr
5 (Θr

2Θr
4 − Θr

3Θr
5 )

Rf
Θr

1

Θr
2

Θr
5

Xm
Θr

1

Θr
3

Θr
2

Θr
3Θr

5

Xr
Θr

1

Θr
1Θr

4 − Θr
3

Θr
2

Θr
2Θr

4 − Θr
3Θr

5

Table 1.10. The different estimators of physical parameters

We end up with four estimators for each physical parameter. Two estimators (later
called LC1 and LC2) are given by solving the complex system obtained from equation
[1.74] and two others (LR1 and LR2) are given by solving the real system obtained
from [1.75]; for each method LC and LR, two estimators are calculated as indicated
in Table 1.10. These estimators do not have the same precision. We will see in the
following sections that some estimators cannot be used because of their significant
sensitivity to measurement or model errors. We will see that the estimators to use are
estimators no 1 obtained with the real formulation [1.75].

1.5.3. Study of precision

In order to validate the estimation procedure and to select, among the different
estimators, the least sensitive to measurement noises and model errors, we carried
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out a series of tests. The different estimators are evaluated and compared to the
method based on the minimization of a quadratic variance criterion presented in sec-
tion 1.4 and called NL (non-linear). The evaluations were done on machine MAS2 (its
characteristics are given in section 1.7).

1.5.3.1. Measurement errors

Among the measurement errors, we can distinguish the deterministic errors (offset,
linearity error, gain error) from stochastic errors. We evaluated the effect of the offset
error, gain error, and random additive noise.

1.5.3.1.1. Offset

The evaluation was achieved from simulated measurements integrating an offset
error on sensors corresponding to a fraction of nominal values (±1 V on voltage,
±0.1 mA on current, ±10 W on power, and ±0.5 rad/s on speed). Among all the
possible combinations, the worst deviation was reported in Table 1.11, in percentage
of the nominal parameter value. The two estimators obtained by method LR and the
two LC estimators are evaluated and compared with those of NL with or without
identification of Rs , knowing that Rs may have been previously estimated. The NL
method is used here as a reference; it provides a relatively good estimation of R2 and
Xm and a less precise estimation of Xr and Rf . Remember that the level of these
errors is linked to the level of errors on sensors and can be decreased by increasing the
sensor precision.

The linear formulation provides estimators with different levels of precision. For
R2 and Xm , we will only use the first estimator (LR1 or LC1), the second one is unus-
able because of its level of sensitivity to offset errors. For Rf , LC2 is also disqualified.
We can observe that methods LR and LC enable us to obtain estimators with precision
similar to, or even better than, the NL reference method.

LR1 LR2 LC1 LC2 NL
Rs × × × × × 54.3
Rr −0.56 203 −0.56 806 −2.17 −3.20
Rf 240 335 351 1230 239 211
Xm 17.0 227 17.2 967 15.6 15.1
Xr −27.1 −24.5 −27.1 −25.4 −106 −111

Table 1.11. Estimation errors because of sensor offsets (in percentage
of nominal parameter values)

1.5.3.1.2. Gain error

Errors of sensor gains were simulated: ±2% on voltage, current, and power and
±1% on speed. Maximum deviations in parameter values are given in Table 1.12 in
percentage of the nominal value of parameters. The same estimators as in the previous
case have to be rejected. Note that method NL sometimes leads to estimated Rf values
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that tend toward the infinite. Once again, some estimators obtained with methods LR
and LC have better results than those with NL.

LR1 LR2 LC1 LC2 NL
Rs × × × × × 49.3
Rr −2.62 −82.8 −2.62 112 11.4 −12.4
Rf 211 −61.9 335 858 ∞ ∞
Xm 4.19 −87.2 4.21 119 −6.20 −8.79
Xr 34.2 70.0 34.1 28.5 −210 −278

Table 1.12. Estimation errors due to sensor gain errors (in percentage
of the nominal parameter values)

1.5.3.1.3. Stochastic errors

A random additive measurement noise was simulated for the different sensors
with standard deviation equal to a fraction of nominal measurement values (1 V on
voltage, 0.1 mA on current, 10 W on power, and 0.5 rad/s on speed). Each estimator
of a parameter then becomes a random variable. By working on a sample containing a
representative number of copies, we can estimate the statistical properties of estima-
tors. By working with a set of samples repeating 2,000 times the estimation procedure
(with a new draw of errors each time), we estimated the bias and standard deviation
of each estimator and reported this data in Tables 1.13 and 1.14, as a percentage of
nominal parameter values. We can observe that the biases are relatively low compared
to standard deviations. Xm and R2 estimations are relatively precise.

LR1 LR2 LC1 LC2 NL
Rs × × × × × 0.50
Rr 0.01 −198 −0.01 30.8 0.00 −0.02
Rf 5.62 −152 6.40 15.75 2.06 2.05
Xm 0.15 −203 0.48 30.4 0.07 0.09
Xr −0.39 −0.04 −1.85 −1.94 −0.96 −0.59

Table 1.13. Errors of estimations due to stochastic measurement errors
(in percentage of nominal parameter values)

LR1 LR2 LC1 LC2 Nonlinear
Rs × × × × × 9.64
Rr 0.80 10100 0.81 2610 0.53 0.56
Rf 27.3 7790 35.2 2880 16.8 17.3
Xm 4.81 10360 4.91 2720 3.05 2.92
Xr 19.9 18.3 20.0 17.2 13.0 14.3

Table 1.14. Standard deviation of estimation errors due to stochastic
measurement errors (in percentage of nominal parameter values)
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1.5.3.2. Error on stator resistance

Since the method does not allow us to include the Rs estimation, it must be esti-
mated beforehand. The measurements can then be corrected by offsetting the effect of
Rs . Nevertheless, this compensation, imperfect because it is linked to the estimated
value of Rs , which is a value that is marred by some inaccuracy, can lead to estimation
errors over all the other parameters. To evaluate this effect, we evaluated estimation
errors by introducing an error of 10% on the estimated value of Rs (see Table 1.15).
Estimators LR2 and LC2 are disqualified for R2 , Rf and Xm . The other LR and LC
estimators offer a quality that is comparable with NL.

LR1 LR2 LC1 LC2 NL
Rr −0.24 210.3 −0.04 −108.7 −0.24
Rf −0.16 223.5 51.31 −120.1 0.10
Xm −0.20 223.4 −2.16 −113.0 −0.24
Xr 0.44 −3.59 0.64 −34.04 −0.11

Table 1.15. Estimation errors (in percentage) due to an overestimation
of Rs by 10 %

1.5.3.3. Discussion

Among the different estimators available for a parameter, sensitivity to measure-
ment and model errors greatly varies. For some, it is so high that they are automatically
disqualified; that is the case with LR2 and LC2 for R2 , Rf and Xm . Both LR1 and
LC1 formulations showed similar results with a slight advantage for LR1. Parameter
Xr experiences worse precision than the others. The two estimators proposed by LR
have similar performances for most evaluations. Nevertheless, the worst estimation
error is due to gain errors for LR2 (70%). We therefore suggest choosing the estimator
provided by LR1 for each parameter.

1.5.4. Experimental results

1.5.4.1. Experimental setup

The experimental setup (MAS2) on which the following results were obtained is
different from the one used in the previous section. It is made up of a wound rotor
induction motor by Leroy-Somer, with rated power of 1.5 kW and nominal voltage
230/400 V. The mechanical load is emulated by a direct current machine operating as
a generator by connecting it to a rheostat or as a motor by powering it with a variable
direct current voltage source. The rms value of voltage and current as well as power
is measured by a Fluke 41B probe. The slip measurement is done very precisely by
measuring angular frequency ωr of the rotor current with the help of relation: g = ωr

ω .
In the more recent squirrel-cage motor, it can be done by a tacho-generator or through
a measurement of position with the help of an incremental encoder. The value of
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the resistance of stator winding is estimated in direct current at Rs = 4.8 Ω. The
measurements are obtained in nominal voltage of 230 V per phase, for slips varying
between −10% and +10%.

1.5.4.2. Non-linear method

The method of minimization of a criterion on admittance, discussed earlier
(section 1.4), and which serves as reference, was implemented in two cases: by us-
ing the Rs value previously estimated (4.8 Ω), or by estimating it simultaneously with
the other parameters. The results are reported in the last two columns of Table 1.16.
Even though the two Rs values obtained widely differ, this gap does not change the
other parameters much.

1.5.4.3. Linear method

The different estimators obtained with the help of the method presented in this
section were calculated for the two Rs values and reported in columns 2 to 9 in
Table 1.16; index “1” corresponds to Rs = 4.8 Ω and index “2” to Rs = 8.95 Ω.
The results obtained corroborate the estimation error analyses. In fact, estimators LR2
and LC2 give absurd values for R2 , Xm , and Xr . The estimators chosen, i.e. those of
LR1, provide results close to the ones from NL. In addition, the values given by these
estimators have low sensitivity to the value of Rs . These estimators are the only ones
that can be considered as relevant.

LR11 LR21 LR12 LR22 LC11 LC21 LC12 LC22 NL1 NL2

Rs (Ω) 4.8 8.95 4.8 8.95 4.8 8.95
R2 (Ω) 6.39 −0.586 6.23 3.23 6.34 −0.728 6.28 4.19 6.47 6.39
Rf (Ω) 1860 146 1710 644 −2400 520 −291 −56.3 1440 1750
Xm (Ω) 109 8.56 111 41.8 109 −23.5 108 21.0 105 107
Xr (Ω) 17.2 −20.2 18.4 25.3 17.1 9.07 18.5 63.7 13.8 15.5

Table 1.16. Estimated values of parameters with different protocols

1.5.4.4. Comparison

In order to graphically compare the results obtained from the selected models,
three characteristics were drawn: the current diagram (Figure 1.7), the evolution of
current according to slip (Figure 1.8), and the evolution of power according to slip
(Figure 1.9). The values obtained from relevant models (LR1 and LC1) are compared
to experimental results.

In the circle diagram, we can observe that in the model following the measure-
ments the best is the one obtained by the NL method where the five parameters are
estimated simultaneously. This is an expected result because this method actually at-
tempts to fit the circle diagram. In fact, the five degrees of freedom represented by the
five parameters to estimate allows a better approximation than with the four parameter
model where Rs is fixed.
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Figure 1.7. Admittance diagram
(o: measurements, *: NL1 , ×: NL2 , +: LR11 , �: LR12 )

This trend is also found on the current/slip characteristic (Figure 1.8), but the
dispersion of results is relatively low in this case. In the power/slip characteristic
(Figure 1.9), the four models follow all the measurements quite precisely.
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Figure 1.8. Current/slip characteristic
(o: measurements, * : NL1 , × : NL2 , +: LR11 , �: LR12 )

1.5.5. Conclusion on the “linearizing” method

The method we have detailed makes it possible to use a high number of mea-
surements without having to use a non-linear programming algorithm as is the case
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for the method in section 1.4. This method is not easy to implement for all models.
Nevertheless, for models depending on four parameters such as the one we have
treated, it can easily be implemented. This method goes through a parameterization
change for writing the model in a linear way according to the new parameters. When
it is time to come back to physical parameters, we should choose the correct estimator
because some of them have high sensitivity to uncertainties affecting the system. In the
present case, we should choose the first estimator presented in Table 1.10. In addition,
we noted a slight superiority in the real formulation of the problem compared to the
complex formulation. As long as the estimators are correctly chosen, the precisions
obtained on the parameters are slightly better than those with NL method.
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Figure 1.9. Power/slip characteristic
(o: measurements, * : NL1 , ×: NL2 , +: LR11 , �: LR12 )

1.6. Conclusion

In this chapter, we presented different methods to identify models of the induction
motor in sinusoidal mode. We have seen that from these measurements, it is possible
to obtain the dynamic model.

Generally speaking, an identification protocol is based on

– a model,

– an estimation method,

– measurement techniques, and

– points of measurement.
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Its validation requires the validation of each of these points. The idea is to ensure that
for the model and estimation method retained, because of the precision of sensors and
points of measurement chosen, precision on the input–output behavior and parameters
will be acceptable. A negative response requires that we question the different choices.

In the present case, we have specifically focused on the values of parameters.
In this case, validation goes through an evaluation of estimation errors resulting
from the different uncertainties affecting the system: measurement errors and model
errors. This evaluation is based on models and a priori values of the parameters; it
therefore only has a limited reach and does not necessarily apply to a machine with
a very different range of power or technology. Each range of machines should be the
subject of a study that is similar to what we have presented.

1.7. Appendix

1.7.1. Expression of sensitivities

The phase model of the induction motor in sinusoidal mode is written as
impedance depending on the slip:

Z = Rs + jXs +
1

Y 2
[1.76]

where

Y 2 =
1

Rf
+

1
jXm

+
1

jXr + R2
g

. [1.77]

The sensitivities of this model in relation to the different parameters make it possible
to calculate the gradient and Hessian of a quadratic criterion (see section 1.4.3) and
are written as:

∂Z

∂Rs
= 1 [1.78]

∂Z

∂Xs
= j [1.79]

∂Z

∂Rf
=

1
Rf

2Y 2
2 [1.80]
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∂Z

∂Xm
= − j

Xm
2Y 2

2 [1.81]

∂Z

∂Xr
=

j

(jXr + R2/g)2Y 2
2 [1.82]

∂Z

∂R2
=

1
g(jXr + R2/g)2Y 2

2 . [1.83]

In the case where the model is based on admittance Y = (Z)−1 , we will calculate
the sensitivities based on the formulas above with the help of:

∂Y

∂Θk
= − ∂Z

∂Θk

1
Z2 [1.84]

where Θk represents one of the six parameters.

In the case where we consider a saturation characteristic in the form Xm =
Xm0/(1+αEm

k ), we obtain the sensitivities in relation to parameters Xm0 and α by
composition:

∂Y

∂Xm0
=

∂Y

∂Xm

1
1 + αEm

k
[1.85]

∂Y

∂α
=

∂Y

∂Xm

−Em
k

1 + αEm
k

[1.86]

MAS1 MAS2 MAS3

f (Hz) 50 50 50
Vn (V) 127/220 220/380 230/400

p 2 2 1
Pn (kW) 2.0 1.5 1.5
In (A) 7.2 7.5/4.4 5.0/2.9

Ωn (rpm) 1500 1500 2885
cos(φ) 0.9

Cn (N.m) 5.0

Table 1.17. Characteristics of the machines used
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1.7.2. Characteristics of the machines used

Three machines were used during this chapter to apply and evaluate the different
approaches. The three motors were manufactured by the Leroy-Somer company. In-
formation on their nameplates is presented in Table 1.17. MAS2 has a wound rotor;
the others have squirrel-cage rotors.
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