
Chapter 2 

Modeling and Parameter Determination  
of the Saturated Synchronous Machine  

The goal of this chapter is to introduce the rational treatment of saturation in 
synchronous machines. We will limit this study to the case of machines with 
sinusoidal coupling, the only case where the study of saturation has reached a certain 
level of maturity. We will not go into all the practical details of the tests involved; 
we instead refer the interested reader to standards such as [IEC 85] and [IEE 95]. 
This chapter is divided into three sections. In the first section, we describe the basic 
notions in a way that does not presume linearity. The second section is dedicated to 
conventional tests. The models used are mainly linear, but this part ends with the 
observation that the linear theory is insufficient and with the introduction of the 
Potier model for smooth pole machines. The third and last section of this chapter is 
dedicated to the treatment of non-linearities, as well as to the question of equation 
linearization. 

2.1. Modeling of the synchronous machine: general theory 

2.1.1. Description of the machine studied and general modeling hypotheses 

The machine studied is a conventional machine. It contains two solid parts, stator 
and rotor, with the latter executing a rotation movement relative to the former. 
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One of the parts that we can presume as being the stator without losing 
generality contains a three-phase winding, that is, a symmetrical system with three 
windings called “phases”. This system is called “armature winding”. The quantities 
relative to the three phases are identified by indices a, b, and c. We presume that the 
stator has smooth poles, that is, no effect from stator magnetic saliences occurs. This 
hypothesis can be formalized by saying that, in the absence of stator currents, the 
rotor’s electric behavior does not depend on its position θ. It could, however, depend 
on the velocity dθ/dt. 

The, smooth or salient pole, rotor has only one winding called “excitation 
winding” or “field winding”. The quantities relative to this winding are indicated by 
index f (feld or field). 

The mechanical connection between the rotor and the machine’s exterior is 
characterized by angular position θ and applied torque C. Similarly, the electric 
connection between each winding and external electric circuit is characterized by 
voltage u and current i. For these quantities, we use reference directions such as 
product C dθ/dt and product u i are input powers. 

The connection between the machine and its environment is described by 10 
variables, functions of time. The machine’s behavior, from the outside, is described 
by the relations that exist between these 10 variables. 

The movement follows a mechanical evolution equation, which is written with 
the reference directions indicated above: 
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d
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ℑ − + =  [2.1] 

where the first term is the derivative of the kinetic moment, Cem being the 
electromagnetic torque and Cp the friction torque. The kinetic moment is in 
electrotechnic linked to the rotation speed by the constitutive relation: 
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where J is mechanical inertia, so that the mechanical equation is often directly 
written in the form: 
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To model the machine’s electric behavior, we normally use “equivalent circuit” 
type models. Beside electrical ports, these models contain additional branches to 
account for the different physical phenomena. 

The presence of grids or damping cages in the rotor or the possible damping 
effect of the steel in particular will be modeled by two equivalent circuits in short 
circuit. The quantities relative to these damping circuits are identified by the D and 
Q indices, resulting in three rotor circuits. We presume that the magnetic axis of 
winding D coincides with that of field winding f, and that winding Q is in magnetic 
quadrature with f and D (the notion of magnetic quadrature will be discussed in 
more detail later). 

We again increase the number of branches of the model in order to simplify the 
equations of these branches. Whenever possible, the branches will be characterized 
by a relation that only involves quantities inherent in the branch involved, and 
connections between the different phenomena represented by branches are taken into 
consideration in the form of electric connections between the branches, which form 
a Kirchhoff network, that is, we consider that the network formed by the 
interconnection of the different branches, that belong to the machine studied or its 
environment, is done via the Kirchhoff laws (law of nodes between currents and 
mesh law between voltages). 

The advantage with modeling with such electric circuits (also called Kirchhoff 
networks) mainly comes from a consequence of the Tellegen theorem, indicating 
that electric connections conserve power. This theorem can be written simply if we 
adopt the voltage and current reference direction as the “receiver” convention, that 
is, the product u i represents an incoming electric power. By identifying the different 
branches of a circuit by index k, the desired property is written as: 

k
k

k
0u i =∑  [2.3] 

By writing expression [2.3], we place the voltage index in lower position and the 
current index in upper position. A consequence of this choice is that, in the 
expressions with sums, we will systematically find in each term the summation 
index once in lower position and once in upper position. It is an interesting 
mnemonic method, but also with some physical significance. 
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2.1.2. Fundamental circuit laws for the study of electrical machines 

Inductive circuits can be studied by using two internal variables, flux ψ and total 
electromotive force e, linked to voltage by the Faraday law: 

dψ
d

u e
t

= +  [2.4] 

Physically, ψ is linked to magnetic induction field B whereas e is linked to 
electric field E. 

Equations [2.1] and [2.4] are not enough to determine the machine’s behavior. 
We must add relations, such as [2.2a], called constitutive relations. We will 
distinguish between electrical constitutive relations, connecting electromotive force 
e and current i, and magnetic constitutive relations, connecting flux ψ to current i. 
Constitutive relations take the different symmetries discussed in the previous section 
into consideration. These symmetries can then be formalized considering the form of 
these relations. 

In order to simplify the study of elements, we distinguish: 

1. purely resistive elements for which we have ψ = 0 and where e is a function of 
i only or e = R i in the linear case; 

2. and purely inductive elements, where e does not depend on i (it can be zero or 
depend on ψ, as we will see later). 

Inductive elements are mainly characterized by a relation between fluxes and 
currents. A generally accepted hypothesis is supposing that this relation is single-
valued, that is, the hysteresis and magnetic losses are either taken into consideration 
by resistive elements of the model or are ignored. We can then express the magnetic 
constitutive relation of a device with n circuit branches in the form of n functions 
with type: 

ψk = ψk (i1, i2 . . . . . in–1, in, θ ) [2.5] 

In this case, we can define the incremental, mutual, and self-inductances by: 

j
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 [2.6] 
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In the case of non-linear devices, we can note that these inductances are, as 
fluxes, a function of the set of currents. In order for us to define the magnetic 
energy, and consequently use energy conservation, the following must occur: 

jk kjL L=  [2.7] 

We always want to make sure that the choices made about the form of 
constitutive relations are rigorously compatible with the principle of energy 
conservation. 

A consequence is that the expression of the electromagnetic torque Cem is tightly 
linked to that of constitutive relations. 

Another consequence is that the models not respecting [2.7], even if they are 
popular, will not be outlined in this study. 

Hypothesis [2.5] makes it possible to formalize the notion of magnetic 
quadrature. We say that a circuit is in magnetic quadrature relative to another if, all 
other currents being zero, the relation between the flux and current from the first 
circuit is an odd function, regardless of the current’s value in the second. When the 
first current is zero, the corresponding flux must then be zero regardless of the 
current in the second circuit. 

In the case of linear circuits, the quadrature condition is equivalent to the 
reduction of the mutual inductance to zero. However, in the case of non-linear 
circuits, it is no longer the case. This phenomenon, known as cross-saturation, is 
described in the website associated with [MAT 04]. We will study it in the third 
section of this chapter (section 2.3.2.2). 

In the non-linear case, it is difficult to express the conditions on the fluxes [2.5] 
ensuring that condition [2.7] will be respected. A way to achieve it is to replace n 
expressions [2.5] by a given function called “coenergy”: 

( )1 2 1 n
cm cm , , ,nw w i i i i θ−= …  [2.8] 

The expression of the different fluxes is then set by: 
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54     Electrical Actuators 

and condition [2.7] is automatically satisfied. The use of coenergy also makes it 
possible to simplify the notion of quadrature: a circuit is in magnetic quadrature in 
relation to a second if the coenergy is an even function of the first current, regardless 
of the second. 

2.1.3. Equations of the machine in abc variables 

Circuits f, a, b, and c are made up of a winding of electric wire. The path of the 
current in these circuits is therefore set according to the matter (the electric wire) 
constituting them: they are said to be filiform circuits. We presume that it is the 
same for circuits D and Q, even though the hypothesis is less rigorous when these 
circuits relate to large-scale eddy currents. In the case of filiform circuits, total 
electromotive force e, introduced at formula [2.4], is often reduced to an ohmic term 
(in electrical engineering, we usually do not take into consideration the 
thermoelectric and electrochemical effects among others), assuming that this term is 
a linear function of currents: 

k
j jk

k
e R i=∑  [2.10a] 

The Faraday equation [2.4] is then often written directly combined with [2.10a]: 

j k
j jk

k

dψ
d

u R i
t

= +∑  [2.10b] 

where j, k ∈ {a, b, c}. 

In the case of the circuits examined here, there is no mutual resistance because 
the currents use separate paths. Equation [2.10b] is then reduced to: 

kk
k kk

dψ
d

u R i
t

= +  [2.11] 

We suppose that the three stator phases form a three-phase system in which the 
machine is “well built” and “faultless”. This hypothesis can be formalized by a law 
of symmetry; there is an integer p, called “number of pole pairs”, such that a cyclic 
permutation of the three phases is equivalent to an angular shift of the rotor by an 
angle 2π/3p. 

A first consequence of this symmetry is that all three Raa, Rbb and Rcc resistances 
are equal. 
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We now examine the constitutive relation linking fluxes ψk to currents. To 
simplify writings and graphical representations, we add the variable: 

θe = p θ [2.12] 

called “electric angle.” 

We can then formalize this hypothesis by noting the fact that permuting the 
phases amounts to a change of variable: 

ψa = ψc′ and ia = ic′ [2.13a] 

ψb = ψa′ and ib = ia′ [2.13b] 

ψc = ψb′ and ic = ib′ [2.13c] 

θe = θ' ′e + 2π/3 [2.13d] 

where transformed variables were distinguished from original variables by an apo-
strophe assigned, due to a usual misuse of words, not to the variable but to its index. 

We can admit that voltages are transformed like fluxes. Because of [2.4], 
electromotive forces of circuits a, b and c are also transformed like fluxes, whereas 
the variables relative to rotor circuits remain unchanged. The hypothesis made can 
be formalized by saying that, for any physically achievable evolution (i.e., one that 
verifies all equations of the model) of old variables, the same evolution applied to 
new variables defined by [2.13] is also a physically achievable evolution. 

We can transform [2.13a], [2.13b] and [2.13c] in the following form: 

k k k k
k k k k

k k
(120º) and ψ ψ (120º)i i′ ′ ′

′= Π = Π∑ ∑  [2.14] 

where k ∈ {a, b, c} and k' ∈ {a', b', c'}, and where factors Π(120°)k'k are simply the 
components of the permutation matrix: 

0 1 0
(120º) 0 0 1

1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Π  [2.15a] 
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By multiplying with itself, matrix [2.15a] generates two new matrices: 

T
0 0 1

(120º) (120º) (240º) 1 0 0 (120º)
0 1 0

⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

Π Π Π Π  [2.15b] 

and: 

1 0 0
(120º) (240º) (360º) (0º) 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥= = = ⎢ ⎥
⎢ ⎥⎣ ⎦

Π Π Π Π  [2.15c] 

This last matrix is the identity matrix. [2.15c] also shows that matrices [2.15a] 
and [2.15b] are inverse of each other. The three matrices [2.15] form a group for 
multiplication. The same applies to corresponding transformations. The hypothesis 
above comes down to saying that this group is a symmetry group of the model. 

Matrix Π(120°) can be diagonalized. From a method described in [LES 81], we 
obtain: 

j2π/3 1

j2π/3

1 0 0

(120º) 0 0

0 0

e

e

− −
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π F F  [2.16] 

where F is the normalized Fortescue matrix, that is, the Lyon matrix: 

2

2

1 1 1
1 1
3

1

a a

a a

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  [2.17] 

and where a is the cube root of unit: 

2πj
3a e=  [2.18] 

The custom is to impose a stronger symmetry, known as “sinusoidal coupling 
hypothesis”. The corresponding symmetry group is made up of transformations that 
we will note by analogy with [2.14] and [2.13d]: 
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( ) ( )k kk k
k ke k k e

k k
and ψ ψi iθ θ′ ′′

′= Π Δ = Π Δ∑ ∑  [2.19a] 

e e e'θ θ θ= + Δ  [2.19b] 

where matrices Π(Δθe) form a group, parameterized by cyclic variable Δθe, 
including group [2.15]. 

To find the expression of these matrices, we just need to replace equation [2.16] 
by: 

e

e

jΔ 1
e

jΔ

1 0 0

( ) 0 0

0 0

e

e

θ

θ
θ − −

⎡ ⎤
⎢ ⎥

Δ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π F F  [2.20] 

These matrices obviously form a group, because we immediately see that: 

Π(x) Π(y) = Π (x + y) [2.21] 

By executing the member at the right of [2.20], we see that they are actually real 
matrices that can be written as: 

( )

( )

( )

e e e

e e e e

e e e

1 2 1 2 2 1 2 2cos cos cos
3 3 3 3 3 3 3 3

1 2 2 1 2 1 2 2( ) cos cos cos
3 3 3 3 3 3 3 3
1 2 2 1 2 2 1 2cos cos cos
3 3 3 3 3 3 3 3

θ θ θ

θ θ θ θ

θ θ θ

π π⎡ ⎤⎛ ⎞ ⎛ ⎞+ Δ + Δ + + Δ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥π π⎛ ⎞ ⎛ ⎞Δ = + Δ − + Δ + Δ +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥π π⎛ ⎞ ⎛ ⎞+ Δ + + Δ − + Δ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

Π  [2.22] 

Among the interesting properties of these matrices, we can note the fact that their 
transpose is equal to their inverse, in other words, they are orthonormal: 

ΠT (x) = Π–1 (x) = Π (–x) [2.23] 

In variables a, b, c, even with the simplifying [2.5], [2.6] and [2.7] hypothesis, 
finding the form that the constitutive relations must have for the imposed 
symmetries to the model to be satisfied remains generally difficult. Because of this,  
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the problem is only handled in the linear case in the literature with the use of a very 
simplified local (field type) model (approximation said to be “of the first 
harmonic”). However, since the goal of this chapter is to study saturation in 
synchronous machines, we prefer to develop adequate mathematical tools before 
addressing the question of the form of constitutive equations. 

For now, we will settle for noting that when the coenergy function exists, the 
desired condition can be written as: 

wcm (ia,ib,ic, θ) = wcm (ia',ib',ic', θ ') [2.24] 

Even with coenergy, the notion of magnetic quadrature can only be formalized if 
the field system is smooth or is in particular locations relative to the phases of the 
stator. In practice, we choose, as origin θ = 0, a position that will make the field 
system axis coincide with the magnetic axis of phase a, or, which amounts to the 
same thing, in magnetic quadrature with the circuit formed by connecting in series 
phases b and c. 

In the case of a model constituted, as is the case in this section, of filiform 
circuits, the electromagnetic torque can also be expressed through the coenergy 
function. 

We obtain expression: 

( )a b c
cm

em
, , ,w i i i

C
θ

θ

∂
=

∂
 [2.25] 

The interested reader will find the demonstration of this well-known equation in 
the literature, for example, in [LOU 04], section 3.2.4.2. 

2.1.4. Concordia transformation: equations of the machine in 0αβ variables 

The three-phase symmetry [2.15] or [2.22] is not the only one found in 
machines. A simpler structure is with two-phase machines. These machines are 
identical to the ones described in section 2.1.1, except for the fact that they only 
have two stator windings. Designating these two phases by letters α and β, we 
define this symmetry by saying that a permutation of these phases, α and β, joined 
to the change of the reference direction of one of these phases, is equivalent to a 
rotation of 90°. 
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We can formalize this hypothesis by noting the fact that permuting the phases 
comes down to changing of variable: 

ψα = –ψβ' and iα = –iβ' [2.26b] 

ψβ = ψα' and iβ = iα' [2.26c] 

θe = θ 'e + π/2 [2.26d] 

In order to make it more general, we introduce a third stator circuit with index 
“o”. The quantities of this circuit are not affected by transformation [2.26], or: 

ψo = ψo' and io = io' [2.26a] 

Voltage and magnetomotive forces of circuits o, α, and β transform as flux, 
whereas the variables relative to rotor circuits remain unchanged. The hypothesis 
made can be formalized by saying that for any physically achievable evolution (i.e., 
that verifies all equations of the model) of old variables, the same evolution applied 
to new variables defined by [2.26] is also a physically achievable evolution. 

We can put transformation [2.26a], [2.26b] and [2.26c] in the following form: 

k' k' k
k

k

(90°)i i= Θ∑  

and k'
kk k'

k
(90 )ψ = ψ Θ °∑  [2.27] 

where k ∈ {o, α, β} and k' ∈ {o', α', β'}, and where factors Θ (90°)k'k are only the 
components of the matrix: 

1 0 0
(90 ) 0 0 1

0 1 0

⎡ ⎤
⎢ ⎥° = ⎢ ⎥
⎢ ⎥−⎣ ⎦

Θ  [2.28a] 

By multiplying itself, matrix [2.28a] generates three new matrices: 

1 0 0
(90 ) (90 ) (180 ) 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥° ° = ° = −⎢ ⎥
⎢ ⎥−⎣ ⎦

Θ Θ Θ  [2.28b] 
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1 0 0
(180 ) (90 ) (270 ) 0 0 1

0 1 0

⎡ ⎤
⎢ ⎥° ° = ° = −⎢ ⎥
⎢ ⎥⎣ ⎦

Θ Θ Θ  [2.28c] 

1 0 0
(270 ) (90 ) (360 ) (0 ) 0 1 0

0 0 1

⎡ ⎤
⎢ ⎥° ° = ° = ° = ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ Θ Θ Θ  [2.28d] 

This last matrix is the identity matrix. [2.28d] also shows that matrices [2.28a] and 
[2.28c] are inverse of each other. In addition, matrix [2.28b] is its own inverse. The four 
matrices [2.28] form a multiplying group. The same applies to corresponding 
transformations. The hypothesis above comes down to saying that this group is a 
symmetry group of the model. Matrix Θ (90°) can be diagonalized. We get: 

1 0 0 1 0 01 0 0

j / 22 2 2 2(90 ) 0 j 0 0 0 j
2 2 2 2

j / 22 2 2 20 j 0 j0 0
2 2 2 2

e

e

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− π

° = ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥π⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Θ  [2.29] 

We can again impose a “sinusoidal coupling hypothesis”. The corresponding 
group of symmetry is made up of transformations defined by: 

( )k'k' k
ke

k
i iθ= Θ Δ∑  and ( )k'

kk k' e
k

θψ = ψ Θ Δ∑  [2.30a] 

  θe = θ 'e + Δθe [2.30b] 

where matrices Θ (Δθe) form a group including group [2.28]. 

To find the expression of these matrices, we simply need to modify equation 
[2.29]. We get: 

e
e

e

1 0 0 1 0 01 0 0

j2 2 2 2( ) 0 j 0 e 0 0 j
2 2 2 2

j2 2 2 20 j 0 j0 0 e
2 2 2 2

θ
θ

θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥− Δ⎢ ⎥ ⎢ ⎥Δ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥Δ− − − −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Θ  [2.31] 
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The first and last matrices of the right member are identical, and this matrix is its 
own inverse. These matrices [2.31] obviously form a group, because we 
immediately see that: 

Θ(x) Θ(y) = Θ(x + y) [2.32] 

By computing the member at the right of [2.31], we see that they are actually real 
matrices that can be written as: 

e e e

e e

1 0 0
( ) 0 cos sin

0 sin cos
θ θ θ

θ θ

⎡ ⎤
⎢ ⎥Δ = Δ Δ⎢ ⎥
⎢ ⎥− Δ Δ⎣ ⎦

Θ  [2.33] 

Matrix [2.33] is simply a rotation matrix in the Euclidian plan (α, β). 

We then expect that the symmetry based on [2.30] and [2.33] will be easier  
to use than the symmetry based on [2.19] and [2.22]. One way to simplify the 
equations of a three-phase machine will consist of replacing the three phases a, b, 
and c by an equivalent two-phase system o, α, and β in the model of this machine. 

By designating T as the desired transformation matrix, we know that we must 
have: 

a 0

b

c

i i

i i

i i

α

β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T  [2.34a] 

If we want to be able to interpret currents io, iα, iβ as the currents circulating in 
circuits o, α, and β, implying that the expression of power in these circuits must 
keep the usual form u i, voltages, and thus fluxes, must transform according to law: 

0 a b c[ , , ] [ , , ]α βψ ψ ψ = ψ ψ ψ T  [2.34b] 

This transformation must make the three-phase transformation [2.19] and [2.22] 
and the two-phase transformation [2.30] and [2.33] correspond. Between 
transformed variables, we will then have the same connection [2.34a] than between 
original variables, or: 

a ' 0 '

b ' '

c ' '

i i

i i

i i

α

β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T  [2.35] 
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By comparing [2.34a] and [2.35], and by considering transformation laws [2.19] 
and [2.30], the condition to satisfy matrix T is: 

T = Π(−Δθe) T Π (Δθe) [2.36] 

We arrive at the same conclusion on the basis of flux transformation [2.34b]. 

By using decompositions [2.20] and [2.31], this condition can be written as: 

e e

e e

1 0 0 1 0 0

j j
0 e 0 0 e 0

j j
0 0 e 0 0 e

θ θ

θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ − Δ

= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− Δ Δ
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

D D  [2.37] 

where: 

1

1 0 0

2 20 j
2 2

2 20 j
2 2

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

D F T  [2.38] 

The condition for [2.37] to be verified regardless of the value of Δθe is that D be 
diagonal. In this case, [2.38] shows that we can write T in the form: 

11

22

33

11 22 33 22 33
2 2

11 22 33 22 33
2 2

11 22 33 22 33

1 0 0
d 0 0

2 20 d 0 0 j
2 2

0 0 d
2 20 j

2 2

d d j d j d d
2 d a d j a d j a d a d

2 3
d a d j a d j a d a d

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

− −⎡ ⎤
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

T F

 [2.39] 
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We can observe that the condition for T to be a real matrix is: 

Im(d11) = 0 [2.40a] 

d33 = j d22* [2.40b] 

Change parameters by saying: 

11 0d 2 d=  [2.41a] 

e
22

j
d d e

ρ
α=  [2.41c] 

where parameters d0, dα and ρe are real. 

We can then write F in the obviously real form: 

e e

0

e e

e e

2 cos sin
2 d 0 0

2 2 2 2cos sin 0 d 0
3 2 3 3

0 0 d
2 2 2cos sin

2 3 3

ρ ρ

ρ ρ

ρ ρ

α

α

⎡ ⎤
−⎢ ⎥

⎢ ⎥ ⎡ ⎤⎢ ⎥π π⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥π π⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

T  [2.42] 

In electrical engineering, we often mandate that variable transformation matrices 
be orthonormal. This condition actually makes it possible to change the current and 
voltage by using the same matrix formula. It comes down to impose in [2.42]: 

0d 1=  [2.43a] 

d 1α =  [2.43b] 

Transformation T is then written: 

e e

e e

e e

2 cos sin
2

2 2 2 2cos sin
3 2 3 3

2 2 2cos sin
2 3 3

ρ ρ

ρ ρ

ρ ρ

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥π π⎛ ⎞ ⎛ ⎞= − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥π π⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

T  [2.44] 
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If in addition, we choose ρe = 0, the transformation matrix becomes: 

2 1 0
2

2 2 1 3
3 2 2 2

2 1 3
2 2 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

T  [2.45] 

This matrix is well known in electrical engineering: it is the Concordia matrix 
(normalized Clarke). 

This matrix is usually introduced as a way to simplify the expression of 
inductance matrices. The way in which we introduced this matrix is more general 
because it does not use the hypothesis of linearity. 

The transformation of circuits abc in oαβ is often presented as a simple change 
in variables. However, the terminology used in practice talks of circuits o, α, and β, 
showing that the intuition of electrical engineers tends to be in changing circuits and 
not in changing variables. By adopting the point of view of changing circuits, we 
have the advantage of directly using the symmetries in the o, α, β group to write the 
form of the equations. We can then formalize the notion of changing circuits. 

If we represent the original circuits by their conductor densities Nk, the new 
circuits will be defined by densities: 

k
k'k' k

k
N T=∑N  [2.46] 

where factors Tkk' are the components of the transformation matrix. 

Circuit change must be accompanied by a change of current and flux variables 
such that local quantities J and A, that is, current density associated with a charge 
movement and vector potential, remain unchanged. By using the relations between 
local quantities and circuit type variables [MAT 06], that is: 

k
k

k
i=∑J N  [2.47a] 

and: 

k k dVψ = ⋅∫∫∫ A N  [2.47b] 
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we then show that new circuit currents and fluxes are connected to the old ones 
through laws: 

k' k' k
k

k
Ti i=∑  and k'

kk k'
k

Tψ = ψ∑  [2.48] 

Since transformation matrix T is constant, formula [2.4] shows that 
electromotive forces must transform (see [2.34b]) the same way as fluxes and 
voltage. The constitutive electric relation [2.10a] then becomes: 

k'
j ' j ' k'

k
=∑e R i  [2.49] 

with: 

j k
j' k'j', k' jk

j, k

R R T T= ∑  [2.50a] 

or, in matrix form: 

Roαβ = TT Rabc T [2.50b] 

The electric equations [2.49] then retain the same form [2.10a]: circuits o, α, β, 
as with original circuits, are filiform circuits. If T is orthonormal, we immediately 
obtain: 

Roo = Raa [2.51a] 

Rαα = Rββ = Raa [2.51b] 

mutual resistances being zero once again. 

In terms of magnetic constitutive relations, modeling in the form of circuits o, α 
and β is still too complicated for us to be able to find the form of these relations by 
applying two-phase symmetry. We can note in particular that circuits α and β are 
not in magnetic quadrature (except if the rotor has smooth poles) for all values of 
angle θ. 

In the linear case, on the other hand, this operation is possible. We can obtain the 
form of constitutive relations either directly, by applying two-phase symmetry to  
the general form written in variables o, α and β, or indirectly by applying the 
Concordia transformation to expressions already established in variables a, b, and c. 
The second method can be found in reference [SAR 04], section 2.3. 
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In this chapter, dedicated to non-linear models, we will develop other tools 
before looking for the form of constitutive relations. For now, we will settle for 
noting that, when the coenergy function exists, the desired condition can be written 
in a slightly simpler form than [2.24]: 

wcm (iα,iβ, θ ) = wcm (iα',iβ', θ ') [2.52] 

Finally, since the circuits in this model are filiform, the electromagnetic torque 
can also be expressed with the help of the coenergy function. We have a formula 
similar to [2.25]: 

( )0
cm

em
, , ,w i i i

C
θ

θ

α β∂
=

∂
 [2.53] 

2.1.5. Park transformation: equations of the machine in 0dq variables 

In order to obtain simpler constitutive relations, we have to make a new circuit 
change. Circuits α and β are replaced by two circuits, d and q, defined from circuits 
α and β by the Park transformation: 

0 0

d
e

q

( )

i i

i i

i i

ρα

β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

P  [2.54a] 

( )0 d q 0 e[ , , ] [ , , ] ρα βψ ψ ψ = ψ ψ ψ P  [2.54b] 

where: 

e e e

e e

1 0 0
( ) 0 cos sin

0 sin cos
ρ ρ ρ

ρ ρ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

P  [2.55] 

or, in terms of conductor density of the different circuits: 

0 d q 0 e[ , , ] [ , , ] ( )ρα β=N N N N N N P  [2.56] 
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However, contrary to the transformations presented in the sections above, we no 
longer force variable ρe to be constant. We note: 

e
e

d
dt
ρρ

•
=  [2.57] 

The result is that circuits d and q are not filiform circuits. Their voltage is 
therefore not given by law [2.11]. To obtain the expression of voltage, we derive 
[2.54b] in relation to time. We get: 

0 d q 0 e

0 e e 0 e e

e e

d d[ , , ] {[ , , ] ( )}
d d

0 0 0
d [ , , ] P( ) [ , , ] 0 sin cos
d

0 cos sin

t t

t

ρ

ρ ρ ρ ρ
ρ ρ

α β

•
α β α β

ψ ψ ψ = ψ ψ ψ

⎡ ⎤
⎧ ⎫ ⎢ ⎥= ψ ψ ψ + ψ ψ ψ − −⎨ ⎬ ⎢ ⎥⎩ ⎭ ⎢ ⎥−⎣ ⎦

P

 [2.58] 

By using [2.54b] once again, we have: 

0 d q 0 e

1
e 0 d q e e e

e e

d d[ , , ] [ , , ] ( )
d d

0 0 0
[ , , ] ( ) 0 sin cos

0 cos sin

t t
ρ

ρ ρ ρ ρ
ρ ρ

α β

• −

⎧ ⎫ψ ψ ψ = ψ ψ ψ⎨ ⎬
⎩ ⎭

⎡ ⎤
⎢ ⎥+ ψ ψ ψ − −⎢ ⎥
⎢ ⎥−⎣ ⎦

P

P
 [2.59] 

or: 

0 d q 0 e

e 0 d q

d d[ , , ] [ , , ] ( )
d d

0 0 0
[ , , ] 0 0 1

0 1 0

t t
ρ

ρ

α β

•

⎧ ⎫ψ ψ ψ = ψ ψ ψ⎨ ⎬
⎩ ⎭

⎡ ⎤
⎢ ⎥+ ψ ψ ψ −⎢ ⎥
⎢ ⎥⎣ ⎦

P

 [2.60] 

By replacing temporal derivatives of fluxes by general law [2.4], and by 
accepting that voltages are transformed like fluxes, by [2.54b], we obtain: 

0 d q 0 e e 0 d q

0 0 0
[ , , ] [ , , ] ( ) [ , , ] 0 0 1

0 1 0
e e e e e e ρ ρ

•
α β

⎡ ⎤
⎢ ⎥= − ψ ψ ψ −⎢ ⎥
⎢ ⎥⎣ ⎦

P  [2.61] 
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Finally, by using the constitutive relation [2.49] in variables α and β, we have: 

00
0 d q

0 d q dd

qq

e 0 d q

0 0
[ , , ] [ , , ] 0 0

0 0

0 0 0
[ , , ] 0 0 1

0 1 0

R
e e e i i i R

R

ρ
•

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥− ψ ψ ψ −⎢ ⎥
⎢ ⎥⎣ ⎦

 [2.62a] 

where: 

00 00

dd e e

qq

0 0 0 0
0 0 ( ) 0 0 ( )
0 0 0 0

R R
R R

R R
ρ ραα

ββ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

P P  [2.63] 

or, since Rαα = Rββ and P is in the form [2.55]: 

Rdd = Rqq = Rαα [2.64] 

Constitutive relation [2.62a] can be written in phasor form. In order to do this, 
we have to define phase electromotive force, current, and flux phasors by: 

d qj ,e e e= + d qji i i= + and d qjψ = ψ + ψ  [2.65] 

We then have: 

dd eje R i ρ
•

= + ψ  [2.62b] 

The electric constitutive relation [2.62] has an additional term beside the ohmic 
term. We will show that this term can be interpreted as caused by circuits d and q 
sliding relative to the matter constituting them. To do this, we must introduce 
distinct variables ρed and ρeq to describe the position of circuits d and q. The 
distinction is only formal because, at each moment, we have: 

ed eq eρ ρ ρ= =  [2.66] 
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We can then define the coenergy function in terms of variables d and q as: 

wcm
* (id, iq…, θ, ρed, ρeq) = wcm (iα, iβ, θ ) [2.67] 

with: 

iα = cosρed id – sinρeq iq [2.68a] 

 iβ = sinρed id + cosρeq iq [2.68b] 

We then have equality: 

( )

( )

d dcm cm cm
ed ed

ed
d d

e e q

sin cos

sin cos

w w wi i
i i

i i

ρ ρ
ρ

ρ ρ

∗

α β

α β

∂ ∂ ∂
= − +

∂ ∂ ∂

= − ψ + ψ = ψ

 [2.69a] 

and: 

( )

( )

d dcm cm cm
eq eq

eq
d q

e e d

cos sin

cos sin

w w wi i
i i

i i

ρ ρ
ρ

ρ ρ

∗

α β

α β

∂ ∂ ∂= − +
∂ ∂ ∂

= − ψ − ψ = − ψ

 [2.69b] 

Putting aside the zero-sequence component, this makes it possible to write 
electromotive force [2.62a] in the form: 

d cm
d dd ed d

ed

1 w
e R i

i
ρ

ρ

∗• ∂
= −

∂
 [2.70a] 

q cm
q qq eq d

eq

1 w
e R i

i
ρ

ρ

∗• ∂
= −

∂
 [2.70b] 

Because of the fact that the speed of matter constituting the stator is zero, [2.70] 
has the usual form of a sliding electromotive force, presented in [MAT 04], formula 
[1.21]. 

The development leading to [2.62] and [2.70] does not use two-phase symmetry. 
We could make the same development for any three-phase system. However, in 
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order for the Park transformation to be interesting, the fact that the electric 
constitutive relation has become more complicated must be compensated by a 
simplification of the magnetic constitutive relation. This simplification is easily 
obtained in the case of a machine with sinusoidal coupling, in which case it is 
useless to transform from a three-phase system since this system is equivalent to a 
two-phase system. 

We now consider the sinusoidal two-phase symmetry [2.30] and [2.33] and carry 
out a Park transformation such that: 

ρe = θe [2.71] 

With this choice, we arrive at the conclusion that, in the case of a machine with 
sinusoidal coupling, constitutive relations expressed in terms of variables d and q in 
any position θ are identical to constitutive relations in variables α and β in position 
θ = 0. Therefore, in variables d and q, constitutive relations do not depend on θ. 

To obtain simpler constitutive relations, we must then choose the origin of θ as 
indicated at the end of section 2.1.3: circuits Q and q are in permanent magnetic 
quadrature with circuits f, D, and d. 

We note that transformation T P, connecting circuits o, d, and q to original 
circuits a, b, and c, is simply transformation [2.44] linked to [2.71]. 

If constitutive relations were obtained in variables α and β, we can obtain 
constitutive relations in variables d and q by applying the Park transformation. This 
method is developed at reference [SAR 04], section 2.5.2, in the linear case. 

However, since d and q are circuits, it is simpler, especially in the linear case, to 
express the constitutive relations directly in terms of circuits d and q. These relations 
will be expressed in the form of two equivalent circuits, one relating to quantities f, 
D, and d and the other to quantities Q and q. 

If we want the elements of these equivalent circuits to be linked to distinct 
physical phenomena, we have to use circuits with several elements, such as those in 
Figure 2.1, only provided as a basis of reflection. 

A third circuit, relating to zero-sequence quantities, should be added. Its 
structure is similar to the one in Figure 2.1b. 
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Figure 2.1a. Example of direct axis equivalent circuit 

 

Figure 2.1b. Example of quadrature axis equivalent circuit 

These circuits contain a k ratio ideal transformer. This ratio takes into account 
the number of turns of the armature and the field winding among others. We can 
note that it is not exactly equal to the turn ratio, because it also considers the 
different winding factors. 

In accordance with [2.62], in order to obtain the correct voltage, we have placed 
a voltage source controlled by the flux of the equivalent element in series with each 
inductive element of the stator, including the primary of the ideal transformer. 

The different elements of these schemas have a physical significance. The power 
absorbed by resistances corresponds to losses, and the power absorbed by 
inductances is stored as magnetic energy. In order for the energy balance to be 
correct, we must accept that the power converted into mechanical power is the one 
provided to voltage sources. 

In these schemas, Rao and Rf are ohmic resistances of the armature and field 
winding, whereas Lao and Lfo are the parts of the series inductance caused by 
insulating material placed between the turns. These inductances, described by 
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[MAX 81], are small and often ignored compared to other series inductances. The 
elements represented by small rectangles are non-ideal inductances; they are 
accompanied by a resistance in order to account for magnetic losses. These 
rectangles will be modeled in the form of a inductance with a parallel or series 
resistance. In addition, in these rectangles related to the stator, the inductance is in 
series with a voltage source in accordance with [2.62]. 

Elements Rao, Rf, Lao, and Lfo slightly depend on frequency because of the skin 
effect. The frequency effect is more marked on non-ideal inductances, because of 
the proximity effect and magnetic losses linked to corresponding fluxes. In normal 
operation, the frequency effect is mostly definite in the stator because we do  
not have to consider the frequency of quantities d and q, but frequency of quantities 
a, b, and c. 

We presume that only homologous elements are magnetically coupled. Since the 
circuits are in quadrature, the equivalent linear elements are not coupled. The only 
couplings relative to magnetic constitutive relations between direct axis and 
quadrature circuits are therefore only done via non-linear inductances. In Figure 2.1, 
we have only considered two inductances of this type, one in the stator and the other 
in the rotor. 

2.1.6. Connection between the machine and a three-phase link 

In practice, synchronous machines are connected by a three-phase three wire link. 

With the hypothesis of the sinusoidal coupling, this results in the zero-sequence 
components being zero. Indeed, if the machine is star-connected, as the neutral is  
not linked, the zero-sequence current is zero. Similarly, if it is delta connected, the 
zero-sequence voltage is zero. 

The zero-sequence circuit, however, with a structure that is similar to Figure 
2.1b, can only be excited by its “terminals” because it is in quadrature with the two 
other circuits, and thus these circuits cannot induce non-zero quantities. The result is 
that all zero-sequence voltages and currents are zero. From then on, we will no 
longer consider the zero-sequence circuit. This simplification would not be achieved 
if we extended the study to the case of machines with non-sinusoidal coupling. 

2.1.7. Reduction of rotor circuits to the stator 

We should note that we can move inductances and resistances from one side to 
the other of the ideal transformer, as long as we multiply their value by k2 when 
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these elements go from side 2 to side 1, or if we divide by k2 if they move from side 
1 to side 2. It is therefore possible to group all the elements of the equivalent circuit 
on the stator side. 

We obtain equivalent circuits such as those in Figure 2.2. 

 

Figure 2.2a. Axis d equivalent circuit reduced to the stator 

 

Figure 2.2b. Axis q equivalent circuit reduced to the stator 

In Figure 2.2, we replace the series elements by pure inductances, except the one 
with stator port. This is an approximation, but it is satisfying insofar as, since losses 
are weak, we can represent stator losses via the three resistances retained in the 
stator, whereas we will represent all rotor losses by the resistance of circuits f, D,  
and Q. 

By moving the ideal transformer to the right, we modify the value of rotor 
elements. They are noted differently in Figure 2.2 and, for example, we have: 

i'f = if/k [2.72a] 

R'f = k2 Rf [2.72b] 

L'f0 = k2 Lf0 [2.72c] 
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Because of these simplifications, inductances and voltage sources appear in 
series and can be combined to reduce the number of elements. We then obtain 
Figure 2.3. 

 

Figure 2.3a. Axis d equivalent circuit after a first reduction of the number of elements 

 

Figure 2.3b. Axis q equivalent circuit after a first reduction of the number of elements 

It is possible through circuit manipulations to group the three parallel 
inductances into one, in the direct circuit (the inductance appearing in series with the 
current source can be eliminated) and in the quadrature circuit. In this way, the 
series inductances included between these parallel inductances are found in series 
with stator and rotor inductances to which we can combine them. We then obtain the 
circuits in Figure 2.4. 

 
Figure 2.4a. Axis d reference equivalent circuit 
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Figure 2.4b. Axis q reference equivalent circuit 

We should note that, during the establishment of the circuits in Figure 2.4, we 
carry out transformations consisting of moving a series inductance upstream to 
downstream of a parallel inductance, and vice versa. During these transformations, 
both the value of the series inductance and the parallel inductance are modified. In 
addition, this transformation reveals new ideal transformers. These transformers can 
be eliminated as was done for the k ratio transformer, but the result is that the value 
of rotor elements is modified. In this way, if we designate the new transformation 
ratio by α (corresponding to the cascade connection of all ideal transformers 
introduced), instead of definitions [2.72], we will have definitions such as: 

i'f = if/α [2.73a] 

R'f = α2 Rf [2.73b] 

L'fo = α2 Lfo [2.73c] 

Inductance Lad is called Potier inductance, in view of the method usually used to 
determine it (see section 2.2.3.3). We must note that Lad and Laq are not stator 
leakage inductances, because they include a part of the leakage inductance of the air-
gap, and even of the rotor. In fact, the distribution of series inductances between 
upstream and downstream of the equivalent circuit is not controlled by physical 
imperatives, but by the will to group all the non-linear phenomena in the only 
parallel element of the circuit. 

Similarly, inductances Lμd and Lμq, which we will call magnetization 
inductances, take into account the phenomena present in the air-gap, stator, and 
rotor. The flux of these inductances is called the main flux. Physically, we consider 
that the main flux goes through the air-gap and closes through the rotor on one side 
and the stator on the other side. On the one hand, Lμd and Lμq report the reluctances 
encountered by the main flux along the air-gap, stator, and rotor paths. 
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On the other hand, resistances Ra and Rμ only account for stator losses: the Joule 
effect in conductors and losses associated with the stator leakage fields on one side 
and magnetic losses associated with the main flux on the other side. 

With these precisions, the equivalent circuits in Figure 2.4 correspond to the 
circuits presented as Figure 2.24 in [SAR 04], except the Canay inductance and 
resistance Rμ. This comes from the fact that reference [SAR 04] is limited to the 
linear case and ignores magnetic losses. In this case, the equivalent circuit in Figure 
2.4 is redundant; we can obtain the same external behavior by deleting the Canay 
(implying an adaptation of the values of the other elements). In practice, magnetic 
losses are too low to justify the consideration of the Canay inductance. On the other 
hand, the non-linearities fully justify its introduction. We will explain this topic in 
more detail in the last part of this chapter, in section 2.3.2.1. 

In sinusoidal mode, the frequency is zero so that the voltage on inductances 
cancels out. 

The diagrams in Figure 2.5 are obtained by deleting the elements that have 
become useless. 

 

Figure 2.5a. Sinusoidal mode direct axis reference circuit 

 

Figure 2.5b. Sinusoidal mode quadrature axis reference circuit 
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In Figure 2.5, we have redistributed the voltage source between the remaining 
series inductance and parallel inductance. In this model, the voltage appearing in 
inductive elements (made up of an inductance and a voltage source) only contains 
the voltage source, that is, the last term of [2.62], since in steady state the flux 
temporal derivatives are zero. 

If the machine has smooth poles, we can combine both circuits into one owing to 
the use of phasors defined in [2.65]. 

This is obvious for linear elements because, since they have the same value in 
the direct and quadrature circuit, we can highlight this value. 

For the non-linear element, we must introduce an additional hypothesis, that the 
“main flux” phasor and “magnetizing current” phasor have the same argument, and 
that there is a relation that involves no other quantity between their modules. In this 
case, Zμ is only a function of the modulus of E or, which amounts to the same, of 

the modulus of I .μ  

We then arrive at the equivalent circuit in Figure 2.6, the Potier equivalent circuit. 

 

Figure 2.6. Potier equivalent circuit, reference model for a smooth pole 
 machine in balanced steady state 

Note that Xa and Xμ reactances do not replace the inductances of Figure 2.5, but 
the associated voltage sources. They are zero-energy, however, because the power 
absorbed by a couple of equivalent sources equals to: 

( )
( )

d q q d d q
e q e d e q d

d q
e d q 0

i i L i i L i i

L L i i

θ θ θ

θ

• • •

•

− ψ + ψ = − +

= − =

 [2.74] 

Please note that this conclusion is only valid for smooth pole machines! 
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In Figure 2.6, we presumed that the phase reference was taken in relation to the 
moment where θ = 0, so that the current source has a zero argument. We can also 
take as phase reference the phase of the voltage, in which case the current source has 
a non-zero argument. We then write it as: 

f j
2

f' eiI
δ π⎛ ⎞−⎜ ⎟
⎝ ⎠=

α
 [2.75a] 

where angular quantity δ is called internal angle. 

We can also take as phase reference the phase of the current, in which case we 
will write the current source in the form: 

f j
2

f
iI e

δ π⎛ ⎞′ −⎜ ⎟
⎝ ⎠′ =

α
 [2.75b] 

where angular δ ′ quantity is only: 

δ ′ = δ + ϕ [2.76] 

Because of transformations [2.45] and [2.55], in steady state, phasors U and I  
have the rms value of the phase variable multiplied by 3  as modulus. Especially, 
if we consider a star connection, the modulus of U is simply the rms value of the 
line voltage. If we prefer to use the usual convention for the single-phase equivalent 
circuit, the impedances will remain the same, but ratio α will have to be divided by 

3, and power corresponding to the left part of the equivalent circuit will have to be 
multiplied by 3 to provide the total three-phase power. 

During tests, we usually measure line voltage and current circulating in a 
conductor. So we do not directly obtain the correct values of the two moduli in 
either of the two cases involved above. When required, we will designate these 
quantities as UL and IL (“L” for “line”). 

The circuit in Figure 2.4 retains a physical sense: we can interpret the power 
dissipation in Ra as stator Joule losses, or: 

pJs = 3 Ra IL2 [2.77] 
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and the one dissipated in Rμ as stator magnetic losses, or: 

pμ = 3 E2/Rμ = EL2/Rμ [2.78] 

Since reactances Xa and Xμ are zero-energy, and the power dissipation in 
resistances corresponds to losses, the energy balance then shows that the power 
exchanged with the current source corresponds to the electromechanical power 
conversion. 

This circuit can be simplified by replacing the current source and parallel 
impedance by a voltage source of value: 

f 20 0E Z I ' E e
ϕ δμ

π+ −
μ= =  [2.79] 

in series with an impedance of value Zμ . It is a transformation similar to the one 

from Thevenin. We note that the argument of 0E is not exactly equal to δ, except 
if we ignore the effect of resistance Rμ, in which case ϕμ = π/2. 

We then obtain the equivalent circuit (see Figure 2.7). 

 

Figure 2.7. Thevenin equivalent of the Potier model 

During the use of this circuit, we should be careful of the fact that elements Rμ, 
Lμ and 0E depend on the saturation level of the machine. This is not defined by 
the value of if, or by the value of E0, or by the value of the voltage or current going 
through Zμ in Figure 2.7. Voltage E once again determines the level of saturation. 

In addition, even in the linear case, we should also be careful of the fact that 
magnetic losses are no longer represented by power dissipation in Rμ. They in fact 
retain the same expression as before, or as in [2.78]. A consequence of this fact is 
that the power exchanged with the voltage source does not correspond exactly to the 
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mechanical power converted in electric power (except if magnetic losses are 
ignored). 

We can carry on the simplification by combining all impedances into one, called 
synchronous impedance. 

We then obtain the circuit in Figure 2.8, which is simply the equivalent Behn-
Eschenburg circuit. 

 

Figure 2.8. Equivalent Behn-Eschenburg circuit 

In this equivalent circuit, Rs is usually very close to Ra and they are often 
confused. On the other hand, synchronous reactance Xs is usually much larger than 
Xa, since it takes into account magnetization reactance Xμ. 

During the use of this circuit, we should be careful that elements sZ  and 

0E depend on the level of machine saturation (in principle, the same applies to Rs 
but we can ignore it because Rs is close to Ra). This one is not defined by value if,  
or by E0. Once again voltage E determines the level of saturation, even though it no 
longer explicitly appears in the equivalent circuit. 

This problem disappears in the linear case. 

There remains, however, the problem that resistance Rs does not account for all 
stator losses and that consequently, the power exchanged by the voltage source does 
not always correspond to the converted power (except if magnetic losses are 
ignored). 

2.1.8. Relative units (per-unit) 

Traditionally, in electrical engineering, we reason in terms of standardized 
variables (without a physical dimension) called “per-unit (p.u.) system”. For this, the 
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quantities are expressed in fraction of base quantities. Base quantities are chosen in 
such a way that reduced variables usually have a value close to 1. 

The fundamental base quantities are power and voltage, from which current and 
impedance result. 

For calculations relative to synchronous machines, two choices of base quantities 
are commonly practiced for stator quantities. 

The first one is based on the choice of the rated three-phase apparent power as 
power base, combined with the rated line voltage as voltage base: 

b N

b N

S S
U U

=
=

 [2.80] 

from which the current and impedance bases are deducted: 
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The alternative is based on the choice of the rated apparent power by phase as 
power base, combined with the rated line-to-neutral voltage (phase-to-neutral 
voltage) as voltage base: 
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from which the current and impedance bases also result: 
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With the definition of an angular frequency p.u., ωb, we can complete these set 
of base quantities and deduce, for example, inductance, flux, and torque p.u.: 
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The choice of rotor base variables is trickier. A major constraint that is generally 
accepted in this problem is the choice of the same angular frequency and power 
bases for the rotor and stator. Since the stator power is generally much larger than 
that involved at the rotor level, the result will be that some rotor base variables will 
be numerically much larger and when this happens, certain rotor quantities, 
expressed in p.u., will be numerically very small. 

A common methodology is based on the concept of the mutual coupled flux. The 
base rotor current is, for example, chosen in such a way that it produces the same air-
gap flux as the base stator current in the direct axis. It is then defined by: 
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b b

df 0

L
i I

L
μ=  [2.85] 

where Ldf 0 is the stator-rotor mutual inductance (or the slope of the linear part of the 
characteristic described in Figure 2.9). Generally, we have: 
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If the stator leakage inductance is equal to the Potier inductance (see equivalent 

diagram in Figure 2.6), factor kf is equal to 
3

α  or α  depending on whether Ib  

is respectively equal to 
N

3 I  or NI  (i.e. following the choice of stator bases,  

discussed above). 

Other rotor p.u. choices are also often found in practice. They are motivated by 
the necessity of interfacing the equation of the field circuit with the equations of the 
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excitation device and the voltage regulator among others. For example, the rotor 
current p.u. can be arbitrarily defined as the excitation current corresponding to the 
rated stator voltage in no-load or full-load condition. 

The situation can be even more complicated because some authors, once they 
have introduced non-orthonormal transformations of variables, compensate for the 
resulting drawbacks with the choice of ad hoc base variables. Generally, we have to 
remain careful during the use of variables expressed in p.u. 

2.2. Classical models and tests 

2.2.1. The synchronous non-saturated machine 

When the fluxes are low enough, we can consider that the machine is not 
saturated. We can then replace all inductances with linear inductances in the 
equivalent circuits introduced in section 2.1.7. 

2.2.1.1. Classical linear model (Park model) 

In the case of a non-saturated sinusoidal machine, the Park transformation 
separates the equations into two magnetically decoupled systems (direct and 
quadrature axis). In fact, since there is no cross-saturation in that case, there is no 
coupling between axis d and axis q circuit inductances either. The matrix techniques 
show that the Park transformation is the only one ensuring decoupling, except for 
scaling factors. 

2.2.1.2. Equivalent diagrams 

The most widely used equivalent diagram is shown in Figure 2.4, considering 
inductances as linear. When at standstill, both circuits are decoupled. Their order 
depends on the number of resistances they contain. According to the technology of 
the machine involved, we often have to introduce additional damping circuits in the 
equivalent circuit. 

2.2.1.3. Operational reactances in non-saturated mode 

During transients executed when the machine is rotating, stator resistances (Ra 
and Rμ) have different effects to rotor resistances (of the field winding and 
dampers). In order to separate the phenomena, we usually ignore the effect of 
resistance Rμ (an alternative would consist of placing it upstream of Xa). In this case, 
we can “isolate” Ra, Rμ, and the only remaining voltage source, and treat the rest of  
the circuit with techniques usual in the frequency domain by writing: 
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ψd = Ld(s) id + G(s) uf [2.87] 

ψq = Lq(s) iq [2.88] 

Factors Ld(s) and Lq(s) have the dimension of inductances. However, it is easy to 
give them the dimension of a reactance by multiplying them by angular frequency 
ωe. We then define operational reactances as: 

Xd (s) = ωe Ld(s) [2.89] 

Xq(s) = ωe Lq (s) [2.90] 

By isolating the stator resistance, the direct axis circuit has only two resistances. 
The response of this circuit, that is, Ld(s) and G(s), is then of the second order. The 
response of the quadrature circuit is of the first order, but we often introduce a 
second damper in this axis, making Lq(s) of the second order also. 

2.2.1.4. Internal and external parameters in non-saturated mode 

By limiting to order two, the transfer functions of equations [2.87] and [2.88], we 
can write them in the form: 
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where the parameters are called: 

– Ld: d axis synchronous inductance; 
– T'd: direct-axis transient “short-circuit” time constant; 
– T'd0: direct-axis transient open-circuit time constant; 
– T"d: direct-axis subtransient “short-circuit” time constant; 
– T"d0: direct-axis subtransient open-circuit time constant; 
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We define similar parameters in axis q. 

The names “short-circuit” and “open circuit” represent the situations in which 
the corresponding parameters play a dominant role. We should, however, not take 
these names literally. 

Equations [2.91] and [2.93] can take the equivalent form: 
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where the new parameters are called: 

– Xd: direct-axis synchronous reactance; 
– X'd: direct-axis transient reactance; 
– X"d: direct-axis subtransient reactance. 

In the literature, expressions owing to go from T'd and T"d to X'd and X"d are 
often established with the approximation that: 

T"d << T'd [2.96] 

We must avoid considering these approximate formulas as definitions, because 
then it becomes impossible to return to the exact formulas. 

The parameters introduced above are called external parameters. We can connect 
them to internal parameters (those of the equivalent circuit), but this link is simple 
only if we use approximation [2.96]. Qualitatively, we can then consider that each 
time constant is associated with one of the equivalent circuit’s resistances, the others 
being presumed zero or infinite. In this way, the subtransient is associated with the 
damper’s resistance, and the transient to the field winding or to the second damper 
planned in axis q. The reactance associated with each time constant is then that 
“seen” by the resistance involved, and is expressed as a series/parallel connection of 
inductances of the equivalent circuit. 

When the order of the equivalent circuit is higher than two, other time constants 
appear (we sometimes speak of sub-subtransient). Expressions [2.91] to [2.95] are of 
the second order; therefore, they can only represent the behavior of the machine 
approximately. The external parameters discussed above make sense, however, and 
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are still useful in characterizing the behavior of the machine, but their connection 
with internal parameters must be reviewed. The technique for obtaining them from 
the equivalent circuit is known as “special disturbances” in automatics. Its use in the 
context of synchronous machines is described in [GUE 95]. 

2.2.2. General classical tests 

Classical tests are often done on standstill or in low-load steady state. This 
obviously presents the advantage that they can be done even if we do not have a 
powerful enough installation to treat the high power that some synchronous 
machines have. Another advantage, since exchanged power is often lost in the 
machine instead of being converted between electric and mechanical power, is that 
an energy balance makes it possible to obtain the value of losses with more 
precision. 

We will not describe here the precautions required to carry out these tests with 
no danger for the machine. If the field winding contains much more turns than the 
stator, we will especially make sure that we make connections and carry out tests so 
as to never produce overvoltage on the field winding. 

In order to carry out some tests, we must be able to precisely determine the 
rotor’s position. When in standstill, we can determine the reference position by 
feeding alternating current in the first phase of the rotor (or the circuit located 
between the first terminal and the two others interconnected) and by searching for a 
position such that the voltage induced in the field circuit is zero (we should be 
careful not to induce dangerous voltage in the field winding). The position found is 
at 90 electric degrees from the reference position. In the reference position, the 
induced voltage is in phase with the stator voltage, taking away the ambiguity. 

An alternative that is not as strongly influenced by contact resistances consists of 
not connecting the first stator terminal and in feeding the stator between the two other 
terminals. The induced voltage is zero if the rotor is in the reference position (apart 
from 180°). 

If the machine has a position sensor, the above tests make it possible to 
determine zero. 

For the rotation tests, if we do not have a position sensor, we can use the 
stroboscopic method. The axis of the machine has a tag and its position is 
determined from the test above. We must be able to determine the position of 
lightning in relation to the zero crossing of the stator voltage, for example, by 
comparing this voltage to the output of a photoelectric cell. 
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Another useful determination consists of measuring the armature resistance at 
standstill, using a DC bridge, or by a voltamperometric method. Precautions must be 
taken to avoid contact and connection resistances. The measured value must be 
divided by two to obtain an estimation of the armature resistance, or RaDC. This 
resistance is lower than Ra because it does not consider the additional resistance 
appearing in alternating current. We will use it only if a better estimation is not 
available. We must consider that resistances are sensitive to temperature variations, 
the fact that we will get back to in section 2.2.2.1.3. 

2.2.2.1. Test of the synchronous machine in low-load steady state 

The tests carried out in steady state only give access to a limited number of the 
model parameters, but this fact has the advantage of enabling a more precise 
determination of these parameters. 

2.2.2.1.1. No-load test (taking down of the direct-axis magnetic characteristic) 

Ideally, we will make a no-load test by driving the test machine by an auxiliary 
machine, at the speed of synchronism. 

We then pick up the stator voltage (preferably the line voltage) according to the 
excitation current. In order to obtain results that can be reproduced despite the 
presence of hysteresis (which is not considered in the models examined here), we 
must follow a procedure consisting of starting with a high level of excitation current 
and pick up the characteristic with an excitation current decreasing in a monotonous 
way. 

The tangent at the origin of this curve is called “air-gap characteristic”. It is used 
in linear models instead of the real magnetic characteristic. 

If it is not possible to carry out the no-load test at the synchronous speed, we can 
carry out the test at a different speed, because the induced voltage is practically 
proportional to the speed, so the correction is easy. 

If we do not have a driving machine but we can still start the test machine as a 
motor, we can adjust the excitation current in order to make the reactive power zero. 
By repeating the test for different stator voltages, we can draw the magnetic 
characteristic. During such a test, the stator current is not quite zero since power 
supply must provide to the machine sufficient power to offset losses. An alternative 
consists of measuring the armature voltage only after disconnecting it, that is, during 
a speed decreasing test. 

The magnetic characteristic is an important parameter in a synchronous machine 
model. In fact, during the no-load test, the armature voltage is simply q-axis 
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electromotive force (voltage on magnetization inductance) whereas the excitation 
current corresponds to the magnetizing current, except for a factor α. We then define 
an efficient excitation current: 

Ife = α Iμ [2.97] 

where Iμ is the norm of the magnetizing current; this allows for the reinterpretation 
of the diagram in Figure 2.9. 

 

Figure 2.9. Magnetic characteristic of direct axis U0 – i f  or E – i fe 

2.2.2.1.2. Short-circuit test 

Ideally, we will make a short-circuit test by driving the test machine with an 
auxiliary machine, at the synchronous speed. In order to not exceed the stator-rated 
current, we must use a reduced excitation current. If necessary, we will first 
demagnetize the field system by a current running through it that we will 
progressively decrease while carrying out inversions of direction (being careful to 
avoid overvoltage). 

During the short-circuit test, we note the stator short-circuit current as a function 
of the excitation current. This characteristic is linear because the magnetic field is 
low in a short-circuit machine. In principle, one measure is sufficient, but a control 
measure makes it possible to eliminate the effect of a possible remanence. 

If the test cannot be done exactly at the speed of synchronism, we can take 
advantage of the fact that, the current being mainly linked to the fluxes, the value of 
the current is independent from the speed as long as we can ignore the effect of 
armature resistance in comparison with reactances. 
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No-load and short-circuit test results enable us to determine direct axis 
synchronous reactance. In order to obtain this, we need to create the ratio between 
the slopes of the air-gap magnetic characteristic and the short-circuit characteristic. 
If the first one is drawn in line voltage, we should divide the quotient by 3 in order 
to respect the conventions relative to equivalent circuits. 

 

Figure 2.10. Short-circuit line 

2.2.2.1.3. Loss determination (ohmic, magnetic, mechanical) 

No-load and short-circuit tests also help us to determine losses in the test 
machine. In fact, during these tests, the power entering the machine corresponds to 
the losses. We must therefore determine the mechanical or electric power. The sum 
of these two powers (where one is usually zero) corresponds to the sum of 
mechanical and magnetic losses as well as Joule effect losses in the stator. The 
electric power consumed at the field winding is treated separately, because it is only 
made up of excitation losses. 

As far as the determination of mechanical power is concerned, it comes down to 
the torque determination because the rotation speed is easy to determine. This is 
done ideally by a torque meter or a balance machine, but we can also use a 
calibrated auxiliary machine, or still force sensors or strain gauges placed at machine 
supports. 

If the test is done using motor operation, the measure of the torque is replaced by 
a measure of the electric power. Finally, if the tests are speed decreasing, we must 
be able to measure its instant value and know the value of mechanical inertia 
because the reduction of kinetic energy offsets losses in this case. If we absolutely 
must, we can estimate the machine’s inertia by carrying out additional decreasing 
tests with adding known values to losses, for example by connecting known value 
resistances to the stator. 
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Figure 2.11. Losses based on the square of the electromotive force 

Machine losses during no-load test are only mechanical and magnetic losses (if 
the test is done using motor operation, we will correct the value measured by 
deducting an estimation of ohmic losses, low in this case). 

We can separate them because the mechanical losses do not depend on the level 
of the field present in the machine, whereas magnetic losses vary approximately as 
its square, thus as the square of the induced voltage. We can then draw on a diagram 
the value of mechanical and magnetic losses according to the square of the no-load 
voltage. The intersection of this curve with the axis of ordinates provides 
mechanical losses. Magnetic losses are obtained by subtracting them from the total. 

Similarly, losses taken from the short-circuit test correspond to the sum of 
mechanical and Joule effect losses in the stator. In fact, during this test, the field is 
low as are magnetic losses, which are generally ignored. Losses can be separated 
from the fact that mechanical losses do not depend on the armature current, whereas 
Joule losses vary like the square of this current. On a diagram of losses based on  
the stator current, we can then easily separate both types of losses, as shown in 
Figure 2.12. 

 

Figure 2.12. Losses based on the square of the armature current 
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Values of resistances (and thus of associated losses) are very sensitive to 
temperature variations. We should therefore bring their value back to a reference 
temperature. We will remember that the temperature factor characteristic of the 
material (copper, aluminum, iron, etc.) only applies to resistances directly 
corresponding to an ohmic effect. For example, the ohmic part of Ra behaves as 
expected (it increases with temperature), but the part of Ra corresponding to 
additional losses decreases with temperature because, when material resistivities 
increase, the eddy currents decrease along with the associated losses. 

2.2.2.1.4. Low slip test (determination of longitudinal and transversal synchronous 
reactances) 

The determination of the quadrature axis synchronous reactance is more difficult 
than the determination of Xd. In fact, it is not possible for this determination to excite 
the quadrature circuit by the field winding. We will then do a test during which the 
excitation current will be zero and the armature current reduced to its quadrature 
component. During this type of test, the torque is low and generally decreases the 
stability of the desired state. 

One way to avoid this problem consists of measuring armature current and 
voltage while the unexcited machine rotates at a slightly different speed to the 
synchronous speed. We presume that the slip is low enough so that we can consider 
that we are in electric steady state at any time. Under these conditions, the extreme 

values of ratio L

L3
U

I
provide Xd and Xq values. Such a test likely can only be done 

at reduced armature voltage so that the values obtained are non-saturated values. In 
fact, since Xd can be determined more precisely from no-load and steady state short-
circuit tests, the low slip test is only used to determine the salience ratio Xd/Xq, used 
to determine Xq from the more precise Xd value. 

If the sliding cannot be considered as minuscule, we should treat the results of 
this test by the methods discussed later involving transient tests. 

2.2.2.2. Synchronous machine tests in transient state 

Tests carried out in transient state provide access to all the parameters of the 
model and allow us to determine many of them, but this fact has the disadvantage of 
making a precise determination of these parameters difficult. We will keep in mind 
that it is better not to question the value of parameters obtained by steady state tests, 
reducing the number of parameters to determine by transient tests. In the context of 
a purely linear study where Rμ is ignored, equivalent circuits such as those in  
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Figure 2.4 are redundant because leakage inductances can be moved downstream to 
upstream of the parallel branch with a redefinition of the α ratio. In this case, the 
Canay inductance must be deleted if we want to be able to determine Lad. On the 
other hand, we will see later that if we consider magnetic saturation, it is possible to 
isolate the values of the leakage reactance of armature Xa by steady state tests, thus 
also the values of magnetization reactances Xμd and Xμq, as well as ratio α. We will 
then prefer the methods retaining the value of these elements during the 
interpretation of transient tests. 

In order to easily manipulate experimental results, it is desirable to acquire them 
in computer form. 

The most general way to handle such results consists of considering a part of the 
variables recorded (e.g. voltage and position) such as data, identifying the value of 
unknown parameters by carrying out simulations on the basis of the chosen 
equivalent circuit, and by comparing the results of these simulations to experimental 
results. 

This method directly provides the internal parameters of the machine. 
Unfortunately, it only converges if we are able to determine an initial value for the 
desired parameters that is close enough to the optimal value. The convergence is 
particularly difficult if we do not have a record of the position, so its evolution must 
be estimated by calculation. 

We should, however, note that if we have a record of the angular position and 
stator variables of all phases, we can simplify the problem by comparing the 
calculated and experimental variables in system d q. 

We often use a less-demanding approach in experimental data, presuming that 
quantities can be broken down into a frequency fe pseudoperiodic component and an 
aperiodic component (there is also a frequency 2 fe pseudoperiodic component but it 
is often ignored). We then search for the lower and upper shells of these variables. 
The half-difference between both shells provides the amplitude of the pseudo-
periodic component, whereas the average provides the aperiodic component. 

The curves obtained can then be broken down into a constant (steady state value) 
and a sum of exponential functions. This break down can be done graphically by 
using the fact that the diagram of a pure exponential function, in a logarithmic 
diagram, is a straight line, making it possible to use linear regression techniques. We 
can then determine a set of time constants and amplitudes. 
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Figure 2.13. Typical aspect of a transient carried out on a rotating machine 

 

Figure 2.14. Graphical identification of a sum of exponential functions 
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In order for the transient and subtransient time constants to be equal to observed 
time constants, the electric circuit connected to the field winding must have zero 
impedance that we can approximately achieve with the use of batteries. 

From these results, we can get the external parameters. Determining internal 
parameters from external parameters is, however, possible only if we have chosen a 
simple equivalent circuit. Even in this case, it will only be simple if we carry out 
simplifications resulting from the approximation [2.96]. 

2.2.2.2.1. Transient three-phase short-circuit test 

The abrupt three-phase short-circuit test is interesting because it provides 
indications on the machine’s behavior in a difficult situation. We do it at reduced 
excitation current so that the linearity hypothesis is verified. We can observe the 
evolution of armature and field winding currents. 

The transient behavior of the machine during this test is influenced by resistance 
Ra. Contrary to what is sometimes asserted, this one is not insignificant compared to 
the other winding resistances. Thankfully, because of the rotation of the rotor 
relative to the stator, a sort of disconnection between the modes associated with 
rotor resistances and the mode associated with Ra occurs. This one is associated with 
a new time constant τa and results in a frequency fe component in d q variables, 
mainly translated by an aperiodic component of the current in abc variables. 

On the contrary, modes associated with rotor resistances are mainly aperiodic in 
d q variables, thus pseudoperiodic in abc variables. These two types of mode 
normally correspond to different frequency bands and they interact only slightly. We 
should note that the distinction made in this section is only approximate.  

In this way, we have not considered the existence, even though it is real if the 
machine is not perfectly symmetrical, of a pseudoperiodic double frequency 2fe 
component of the electric frequency in abc variables. 

We can simplify the interpretation of results by using a source of voltage 
(battery) to power the field winding. In this case, the test makes it possible to 
immediately determine time constants T'd, T"d, T'q, and T"q. 

2.2.2.2.2. Load shedding test 

The load shedding test consists of abruptly opening the startor’s circuit while it 
receives a non-zero current. In this test, Ra and voltage sources are not involved, 
making the interpretation of results easier. We notice that La is not involved either 
(except for a high-frequency transient during current breaking). 
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For a linear study, we must conduct this test with reduced excitation current, 
again using batteries to power the field winding, thus making the interpretation of 
results easier. In this case, the test makes it possible to immediately determine time 
constants T'd0, T"d0, T'q0, and T"q0. 

2.2.2.3. Transient standstill test 

In the standstill machine, voltage sources present in the equivalent circuit cancel 
out, making the processing of experimental data easier. In particular, there is no 
emergence of components at frequencies other than the one present in the excitation. 

2.2.2.3.1. Direct current decay test 

The decay test of a direct current in the armature is done by direct current 
powering of a circuit made up of two phases of the armature series connected, or the 
circuit obtained between one armature’s terminal and the two other terminals 
together connected. We usually position the rotor in such a way that the resulting 
armature current has only the direct-axis component or only the quadrature-axis 
component. The test can also be done by the field winding. 

We then short-circuit the power supply (most often presuming that we have 
connected a series additional resistance to limit its short-circuit current) and we can 
observe the evolution of the current in the short-circuited winding (or the voltage or 
current of the other winding). The observed quantity can be broken down into a sum 
of decreasing exponential functions. Unfortunately, since all components are 
aperiodic, the effect of resistance Ra do not separate during the transient three-phase 
short-circuit test as well. Time constants observed are therefore not identical to the 
ones we can identify by similar tests on the rotating machine! 

2.2.2.3.2. Frequency response static tests 

An interesting method consists of powering the standstill machine with a single-
phase alternating voltage. By changing the frequency, we can directly get the 
frequency response of the machine. We can also obtain this frequency response by 
applying a signal that has numerous frequencies (white noise) to the machine and by 
analyzing the device response. 

Knowing the frequency response, the circuit theory techniques help us to 
sequentially determine the equivalent circuit elements. 

We shall avoid determining all the elements of the equivalent circuit with this 
method (which would, in fact, force the deletion of the Canay inductance since it 
makes no sense in a linear model). We would have to correct the frequency 
responses to eliminate the known parameters from the part that they characterize, 
which is not always easy. 
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Another possibility consists of identifying the parameters by non-linear 
regression by only looking at unknown parameters, which can be done by 
comparing the calculation results with the experience in the frequency domain (we 
will later see that the process can also be used in the temporal domain). 

2.2.3. Potier Method 

2.2.3.1. Insufficiency of the linear theory 

Until now, we presumed that the machine was not saturated in our description of 
tests. This hypothesis is not realistic, as the magnetic characteristic (Figure 2.9) 
shows: the magnetic characteristic slightly deviates from the “air-gap characteristic” 
for voltage values neighboring normal use voltage. Because of this, when we 
calculate the excitation current and the internal angle necessary to achieve a given 
steady state with nominal voltage, the results obtained by using the linear model are 
significantly different from experimental values. 

2.2.3.2. Potier Model 

Saturation was first studied in the smooth pole machines. We know that in  
steady state and in the linear case we can use a single equivalent circuit, a 
combination of axis d and q circuits, in which the quantities are phasors. The Potier 
model (Figure 2.6) consists of presuming that this property remains valid if the 
magnetization impedance Zμ is non-linear, by accepting that the value of this 
impedance only depends on the modulus of its flux μΨ or current i ,μ  and that 
these two last phasors have the same argument. 

The practical advantage of the Potier model is that it only involves a function of 
a single variable to represent saturation, in other words: 

ψμ = ψμ (iμ) [2.98] 

with: 

2 2
d qμ μ μψ = ψ + ψ  [2.99a] 

and: 

( ) ( )2 2d qi i iμ μ μ= +  [2.99b] 
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Fluxes ψμd and ψμq depend on currents iμd and iμq by the relations: 

d
d i

i
μ μ

μ μ

ψ
ψ =  [2.100] 

q
q i

i
μ μ

μ μ

ψ
ψ =  [2.101] 

By introducing saturation factor Ks (0 ≤ Ks ≤ 1) and non-saturated magnetization 
inductance Lμ 0, we have: 

s 0K L
i

μ
μμ

ψ
=  [2.102a] 

We can also define the saturation factor in such a way that it will tend toward 0 
when the magnetizing current tends toward the infinite. In order to do that, we must 
consider the value toward which the magnetization inductance tends for this limit, or 
Lμ ∞, and treat it separately. We then write: 

( )s 0K L L L
i

μ
μ μ ∞ μ ∞μ

ψ
= − +  [2.102b] 

We will see later that this second definition is more suited to the extension of the 
model to salient pole machines. 

Finally, we can write the fluxes in the following form: 

d d
d s 0 s( )K i L i L iμ μ ∗ μ

μ μ μψ = =  [2.103a] 

or: 

( ) ( ) d d
sd s 0K i L L L i L iμ μ ∗ μ

μμ μ μ∞ μ∞
⎡ ⎤ψ = − + =⎢ ⎥⎣ ⎦

 [2.103b] 

( ) q q
sq s 0K i L i L iμ μ ∗ μ

μμ μψ = =  [2.104a] 

or: 

( ) ( ) q q
q s 0 sK i L L L i L iμ μ ∗ μ

μ μ μ∞ μ∞ μ
⎡ ⎤ψ = − + =⎢ ⎥⎣ ⎦

 [2.104b] 
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The saturated inductance factor L*μs is called “static inductance”, defined as the 
ratio between a saturated flux and a current. This static inductance is obtained by 
modifying its non-saturated Lμ0 value by a saturation Ks factor evaluated from the 
single non-linear characteristic of the machine. We must not conclude, however, that 
multiplying non-saturated inductances by the factor Ks is enough to obtain valid 
dynamic equations in saturated mode. In fact, incremental inductances Lμd and Lμq 
are not equal to L*μs, or even between themselves, and there is a mutual inductance 
between axes d and q in the Potier model that would not emerge this way. By using 
definition [2.6] of incremental inductances and after a few obvious developments, 
we obtain: 

2d

d
iL

i i i i

μ
μ μ μ

μ μ μ μ μ

⎛ ⎞ ⎡ ⎤ψ ∂ ψ ψ
= + −⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎣ ⎦⎝ ⎠

 [2.105a] 

2q

q
iL

i i i i

μ
μ μ μ

μ μ μ μ μ

⎛ ⎞ ⎡ ⎤ψ ∂ ψ ψ
= + −⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎣ ⎦⎝ ⎠

 [2.105b] 

d q

dq
i iL
i i i i

μ μ
μ μ

μ μ μ μ μ

⎡ ⎤∂ ψ ψ
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 [2.105c] 

We can immediately verify that the mutual inductance [2.105c] is cancelled in 
the linear case. 

2.2.3.3. Experimental determination of Potier model parameters 

The major part of the information necessary to determine the Potier model is 
already provided by the no-load test. In addition, values of Ra and Rμ (function of E) 
are also determined by classical tests. Only two parameters, Xa and α, remain to be 
determined. 

We must note that this determination must involve additional tests when the 
machine is saturated. In fact, when the machine is not saturated, the number of 
parameters in the equivalent circuit of Potier is redundant because this circuit is 
equivalent to the Behn-Eschenburg circuit, which has less parameters. In order to 
determine Xa with precision, the additional tests must also involve a highly reactive 
current because the current’s reactive component is the only one that leads to a 
significant difference between the value of voltage U and the value of electromotive 
force E because of the Xa effect. The steady-state short-circuit test can be counted 
among the useful tests  as in this Ra is normally small in relation to Xa and the 
current is then highly reactive (in relation to E ). 
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For given Xa and α values, it is easy to calculate, from the values of the voltage 
and current (defined in norm and phase), the value of E and thus of the magnetizing 
current and finally the excitation current if necessary to achieve this mode. It is 
therefore possible, having recorded the value of the excitation current for a few 
modes satisfying the conditions described above, to find by non-linear regression the 
value of parameters Xa and α. The procedure followed can be graphically 
represented if the additional tests are done with a single armature current where the 
component of axis d is the only one that is different from 0 (by ignoring the effect of 
resistances Ra and Rμ, it is a purely reactive current). These tests are called “zero-
power-factor” tests. In order to do this, we add to the same diagram as the magnetic 
characteristic the graph of relation U – if corresponding to this armature current (a 
few points are sufficient). In this case, the difference between real and effective 
excitation currents is constant (let it be α I). If the voltage drop Ra I is insignificant 
compared to U, the difference between voltage and electromotive force (which then 
is equal to Xa I ) is also insignificant. The second curve is therefore the translated 
curve of the magnetic characteristic. We can then graphically look for (e.g. by using 
a drawing) the value of this translation. We note that it is only defined uniquely if 
both graphs are curved, demanding that the zero-power-factor tests sufficiently 
cover the “saturation elbow”. Once the translation for going from one diagram to the 
other is determined, Xa and α values are deducted immediately (Figure 2.13). 

 

Figure 2.15. Determination of Xa and α 

There is a conventional construction that only involves one zero-power-factor 
test, in addition to a point deducted from the short-circuit characteristic. We will not 
describe this procedure here because it is not as precise as the previous one as the 
hypothesis of a purely axis d current is less satisfied during the short-circuit test. 

2.2.3.4. Necessity for a more general theory in the presence of saturation and 
magnetic saliences 

In the case of smooth pole machines, experience shows that the Potier model 
makes it possible to accurately determine the excitation current necessary to achieve 
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a given operation mode and the corresponding internal angle. In the search for a 
theory to account for saturation in the presence of salient poles, it is normal to 
demand that this theory use the Potier theory as a limit in the case where the salience 
becomes insignificant. Some of the theories proposed, such as Blondel, do not 
satisfy this condition. Experience actually shows that these theories are not very 
accurate. We will attempt to rationally develop a satisfying theory in the next part of 
this chapter. 

2.3. Advanced models: the synchronous machine in saturated mode 

2.3.1. Elements of the von der Embse theory of saturated electrical machines: 
inductive circuits in the presence of magnetic saturation 

In the general theory presented in section 2.1.2, the fluxes play a major role. 
However, it is often more useful to reason in terms of inductances. These were 
defined by [2.06]. Fluxes can be expressed in function of the inductances in the form 
[VON 68]: 

k
j jk j0

k
L iψ = + ψ∑  [2.106] 

where ψj0 verify the equation: 

j0 jk k
k k

k

L
i

i i

∂ ψ ∂
= −

∂ ∂
∑  [2.107] 

Magnetic coenergy can also be developed in function of the currents such as: 

j k j
cm jk j0 00

jk j

1
2

w L i i i w= + ψ +∑ ∑  [2.108] 

where the last term verifies: 

jk j k00
m m

jk

1
2

Lw
i i

i i

∂∂
=

∂ ∂
∑  [2.109] 

Equations [2.106] to [2.109] are the generalization of classical expressions of 
coupled circuits considered as linear to saturated circuits. 
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By using definitions [2.6] of inductances, the induced voltage during a current 
variation is written as: 

kj
jk

k

d d
d d

iL
t t

ψ
=∑  [2.110] 

which is formally identical for saturated and non-saturated circuits. 

2.3.2. General study of magnetic coupling in the presence of saturation 

After a Park transformation, two types of coupling should be considered between 
the elements of the equivalent circuit of the synchronous machine. The first type 
involves the circuits aligned on the same axis, that is, circuits d, D, and f on one 
side, and q and Q on the other. The second type involves equivalent circuits located 
on different axes, that is, coupling between magnetization inductances of both axes. 

The study of these two specific cases was detailed in [GAR 88]. We will also use 
elements from the website associated with [MAT 04] below. 

2.3.2.1. Transformer effect coupling 

We now consider a set of electric circuits highly coupled, such as the primary 
and the secondary of a transformer. 

 

Figure 2.16. N winding transformer 

Induced voltage is given by [2.110] where Ljk (i1, i2 . . . . in) must be obtained 
experimentally by incremental tests covering the whole range of the system 
operation. 

This general approach requires a large number of tests and is not practical even 
for a small number of coupled circuits. 

To handle such a problem, we try to describe parameters Ljk according to a 
single magnetic characteristic representing the non-linearities, along with a few 
constant parameters that can be determined with the help of a small number of tests. 
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This objective is satisfied if the system can be represented by an equivalent 
circuit containing a magnetization branch that considers saturation and n leakage 
inductances assumed linear, as illustrated in Figure 2.17. 

We will now examine the conditions under which this possibility exists. 

The model in Figure 2.17 presupposes the existence of a magnetizing current iμ, 
which is a linear combination of circuit currents: 

k

kk

ii
k

μ =∑  [2.111] 

such that the system’s magnetic coenergy takes the form: 

( ) j k
cm jk

jk
w f i i iμ= +∑  [2.112] 

where jk jk= are constants. 

 

Figure 2.17. Simplified model of an n winding transformer 

We are not losing generality by favoring one of the circuits and by presuming: 

k1 = 1 [2.113] 

If we derive [2.112] along ij, we obtain flux ψj: 

k
j jk

j k

1f i
kiμ

∂ψ = +
∂

∑  [2.114] 
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If the equation relative to k = 1 is used to eliminate /f iμ∂ ∂ , we get: 

k
j 1 jk 1k

j jk

1 1 i
k k

⎛ ⎞
ψ − ψ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  [2.115] 

It is possible to write the second member in function of the inductance 
coefficients. In this way, deriving equation [2.115] along ik, one gets: 

jk 1k jk 1k
j j

1 1L L
k k

− = −  [2.116] 

In this way, equation [2.115] becomes: 

k
j 1 jk 1k

j jk

1 1 iL L
k k

⎛ ⎞
ψ − ψ = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  [2.117] 

It is a well-known fact that this equation is satisfied in linear circuits for any kj 
value and that there is then no way to define uniquely the equivalent circuit in 
Figure 2.17. 

However, for saturated circuits, according to [2.106], condition [2.117] is 
satisfied only if: 

10
j

j0
cstek

ψ
= =

ψ
 [2.118] 

which sets in a unique way the transformation ratios and leakage inductances of the 
model. 

In practice, these conditions are well verified for highly coupled circuits as in a 
transformer. We will suppose that they are also well verified for circuits d and q of 
rotating machines taken separately. 

The equivalent circuit in Figure 2.17 can easily be simplified in the case of a two 
windings transformer. In fact, it is possible to include mutual inductance 

12 21= in the magnetization branch and the equivalent circuit takes the form 
represented in Figure 2.18. 
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Figure 2.18. Equivalent circuit of a saturated two windings transformer 
 such that k = ψ10 /ψ20 is a constant 

The fact that the saturation unequivocally determines the equivalent circuit of a 
two windings transformer clearly appears in the conventional Potier triangle of 
synchronous machines. 

For a three windings transformer, it is generally not possible to include all the 
mutual inductance terms in the magnetization branch. However, if the mutual 
inductances between one of the circuits and the two others can be presumed 
identical, that is: 

k3 L13 = k2 L12 [2.119] 

some simplifications of the same type emerge and we obtain Canay’s equivalent 
circuit of a three windings transformer. 

 

Figure 2.19. Canay equivalent circuit 

The simplest model of saturated electrical machines is based on the presumption 
that condition [2.118] is satisfied. 

That is not always the case and more sophisticated models, for example, 
saturable leak inductances, could be developed. 
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2.3.2.2. Cross-saturation coupling 

2.3.2.2.1. General study 

Saturation of electrical machines leads to a specific sort of magnetic coupling 
that disappears in linear operation: coupling between quadrature circuits where 
magnetic circuits occupy a common space. 

Even though only the parallel branch is the basis of non-linearities in the 
synchronous machine models considered in this chapter, we will carry out a general 
study in this section. We will not use the “μ” index in the following study; it  
will have to be added to equations to customize them to the case of synchronous 
machine modeling. The situation involved in this section is the one represented in 
Figure 2.20. 

 

Figure 2.20. Coupling between quadrature circuits by cross-saturation 

Condition [2.118] is not satisfied in this case and, in order to describe saturation 
according to a simple magnetic characteristic, very different techniques must be 
used. 

In order to develop these techniques, we will first write the fluxes in the following 
form: 

( ) ( ) ( )d q d d q
d d d, ,0 ,i i i i iψ = ψ + Δψ  [2.120a] 

( ) ( ) ( )d q q d q
q q q, 0, ,i i i i iψ = ψ + Δψ  [2.120b] 

where the last terms represent cross-saturation. 
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If the fluxes are presumed to be analytical functions, a serial development of the 
last terms is possible: 

( )
m

mdq qdd qq m
m

1, ( )
m! 0( )

i i i
ii

⎛ ⎞∂ ψ
Δψ = ⎜ ⎟⎜ ⎟ =∂⎝ ⎠

∑  [2.121a] 

( )
m

q mqd dq m qd
m

1, ( )
m! 0( i )

i i i
i

⎛ ⎞∂ ψ
⎜ ⎟Δψ =
⎜ ⎟ =∂⎝ ⎠

∑  [2.121b] 

If d and q are the machine’s axes of symmetry, the cross-saturation effect must 
satisfy certain symmetry conditions and certain limit conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

q q q qd d d d
d d q d

q q q qd d d d
d d q d

, , , ,

, , , ,

i i i i i i i i

i i i i i i i i

Δψ = Δψ − Δψ = Δψ −

Δψ = − Δψ − Δψ = − Δψ −
 [2.122a] 

( ) ( )

( ) ( )

d q d q
d qd q

0 0

d q d q
d qd q

lim , 0 lim , 0

lim , 0 lim , 0

i i

i i

i i i i

i i i i

→ →

→∞ →∞

Δψ = Δψ =

Δψ = Δψ =
 [2.122b] 

By using these conditions and by defining mutual inductances by [2.6], or: 

qd
dq qdq dL L

i i

∂Δψ∂Δψ
= = =

∂ ∂
 [2.123] 

it is possible to conclude that: 

( ) ( ) ( )2 2d q d q d q
dq d q, 2A 1 B B . . .L i i i i i i⎡ ⎤= − − − +⎢ ⎥

⎣ ⎦
 [2.124] 

where A, Bd, and Bq are constants and where the series present in [2.124] tends 
toward 0 faster than 1/id or 1/iq. 
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2.3.2.2.2. The UCL model 

Some simplifications were used in the past to study cross-saturation. 

The Blondel approximation ignores all the effects, including the first coupling 
term: 

A = 0 [2.125] 

The armature reaction theory of conventional DC machines limits Ldq to the 
terms of the second order by saying: 

Bd = 0 and Bq = 0 [2.126] 

We will expose a model that goes farther next, which we will call “model UCL” 
[DEJ 91, DEJ 92, GAR 88a, GAR 88b]. In order to continue the development of 
[2.124] beyond [2.126], we come up against the fact that polynomial developments 
like [2.124] are not well suited to represent magnetic saturation in a practical way. In 
fact, magnetic characteristics present a skewed asymptote, whereas polynomials 
behave very differently, except if they include an infinite number of terms with 
alternate signal factors. We will then abandon this parameterization, except for factor 
A, which has already been found interesting for characterizing cross-saturation. In 
order to characterize the mutual inductance [2.124], we will replace the polynomial 
between parentheses by a non-linear function. Since a two variable non-linear 
function is quite difficult to identify, we will hypothesize that we can represent this 
function with the help of a non-linear function of only one variable, and we will 
write: 

( ) ( ) ( )2 2d q d q d q
dq d q, 2 A F" B BL i i i i i i⎡ ⎤= − +⎢ ⎥

⎣ ⎦
 [2.127] 

where we impose the following conditions to function F"(x): 

F"(0) = 1 [2.128] 

0

F"(x) 1
x x=

∂ =
∂

 [2.129] 

in order to retain the definition of parameters A, Bd, and Bq. 

Since Ldq can be obtained by deriving ψd along iq, we can find the form of ψd by 
integrating [2.127] according to iq. We get: 

( ) ( ) ( ) ( ) ( )2 2 2d q d d q d d
d d q d

q

A, F' B B ] F'[B f
B

i i i i i i i
⎧ ⎫⎡ ⎤ψ = − + − +⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
 [2.130] 
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where F'(x) is the indefinite integral of F"(x) and f (id) a function of id alone to be 
determined. To completely define F'(x), we write: 

F'(∞) = 0 [2.131] 

To take it a step further, we will introduce a new physical hypothesis, which is 
that the magnetic circuits associated with currents id and iq share the same domain in 
space. Mathematically, we can introduce this condition by saying that, when one of 
the currents tends toward the infinite, the system becomes linear. 

When this hypothesis is made, function F"(x) does not settle for characterizing 
the mutual inductance; it almost completely defines the magnetic behavior of the 
device, as we will now show. 

In fact, according to this hypothesis, when iq tends toward the infinite and 
because of [2.131], [2.130] becomes: 

( ) ( )2d d d d
d d

q

A F' B f
B

L i i i i∞
⎡ ⎤= +⎢ ⎥
⎣ ⎦

 [2.132] 

By extracting from [2.132] the expression of f(id) and by substituting it in 
[2.130], we get an expression of ψd that only has one more parameter than [2.126] 
which is: 

( ) ( ) ( )2 2d q d q d
d d d q

q

A, F' B B
B

i i L i i i∞
⎧ ⎫⎡ ⎤⎪ ⎪ψ = − +⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭
 [2.133] 

We can of course create the same development for circuit “q”, leading to: 

( )d q d 2 q 2 q
q q d q

d

A, F' B ( ) B ( )
B

i i L i i i∞
⎧ ⎫⎡ ⎤ψ = − +⎨ ⎬⎣ ⎦⎩ ⎭

 [2.134] 

The magnetic characteristics inherent to each circuit are therefore: 

( )d d 2 d
d d d

q

A, 0 F' B ( )
B

i L i i∞
⎧ ⎫⎪ ⎪⎡ ⎤ψ = −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭

 [2.135] 

( )q q 2 q
q q q

d

A0, F' B ( )
B

i L i i∞
⎧ ⎫⎡ ⎤ψ = −⎨ ⎬⎣ ⎦⎩ ⎭

 [2.136] 
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The differential inductances in terms of new parameters are easily obtained by 
deriving [2.133] and [2.134] in relation to id and iq, respectively, or: 

( ) ( ) ( )

( ) ( ) ( )

2 2d q d q
d d d q

q

2 2 2d d qd
d q

q

AL i , i L F' B i B i
B

2 B A i F" B i B i
B

∞
⎡ ⎤= − +⎢ ⎥
⎣ ⎦

⎡ ⎤− +⎢ ⎥
⎣ ⎦

 [2.137] 

( ) ( ) ( )
( ) ( ) ( )

2 2d q d q
q q d q

d
2 2 2q q d q

d q
d

A, F ' B B
B

2 B A
F" B B

B

L i i L i i

i i i

∞
⎡ ⎤= − +⎢ ⎥
⎣ ⎦

⎡ ⎤− +⎢ ⎥
⎣ ⎦

 [2.138] 

to which we add [2.127]: 

( ) ( ) ( )2 2d q d q d q
dq d q, 2 A F" B BL i i i i i i⎡ ⎤= − +⎢ ⎥

⎣ ⎦
 [2.127] 

If we have experimental values of quantities [2.133] and [2.134] or [2.135] and 
[2.136] or even [2.137], [2.138], and [2.127], and a non-linear regression program, 
we can identify parameters Ld∞, Lq∞, A, Bd, and Bq, as well as function F’(x) and its 
derivative F"(x). In order for the asymptotic behavior of fluxes [2.135] and [2.136] 
to be correct, the last term of these expressions must tend toward a constant when 
the current in the circuit involved tends toward the infinite. This condition forces an 
additional condition on function F’(x). By combining this condition and [2.128] and 
[2.129] previously encountered, we have: 

F"(0) = 1 [2.128] 

0

F"(x) 1
xx =

∂ =
∂

 [2.129] 

lim F'(x)x x C→∞ =  [2.139] 

where C is a parameter inherent to function F’(x). 

Condition [2.139] leads to the validity of [2.131], which we do not have to 
consider anymore. It also results in function F"(x) tending toward 0 in the infinite as 
x–3/2. 
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If we have reasonable knowledge of both characteristics [2.135] and [2.136], we 
can determine three of the parameters, Ld∞, Lq∞, and: 

d

q

B
B

K =  [2.140] 

without having to determine the others. In fact, from [2.135] and [2.136] we can 
deduce: 

( ) ( )2d d d d
d d d

q

A, 0 F' B
B

i L i i i∞
⎡ ⎤ψ − = − ⎢ ⎥
⎣ ⎦

 [2.141] 

( ) ( )2q q q q
q q q

d

A0, F' B
B

i L i i i∞
⎡ ⎤ψ − = − ⎢ ⎥
⎣ ⎦

 [2.142] 

The comparison of right members of [2.141] and [2.142] shows that, with 
definition [2.140], we have: 

q d d
q q d d[ (0, ) ] ( , 0)K K i L i i L i∞ ∞ψ − = ψ −  [2.143] 

 

Figure 2.21. Relation between the magnetic characteristics of axis d and q 

This relation means that the two magnetic characteristics, after subtraction from 
a linear term, can be led in coincidence by a multiplication of the abscissas of factor 
K and a division of ordinates by the same factor K, as shown in Figure 2.21. 

Reciprocally, if we know one of the magnetic characteristics and the three 
parameters Ld∞, Lq∞ and K, it is possible to determine the other magnetic  
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characteristic. We should also note the interesting relation that we can deduce from 
[2.137], [2.138], and [2.127]: 

2d d

q q

(0, 0)
(0, 0)

L L
K

L L
∞

∞

−
=

−
 [2.144] 

that can be used to determine K once Ld∞ and Lq∞ are known. 

2.3.2.2.3. Isotropic inductance 

We have seen in section 2.2.3.2 that the Potier theory helped us in defining a 
single magnetic characteristic function of a single current iμ (or i since we do not use 
indices μ in this section).  

Similarly, in the UCL model, the non-linear function used is a function of current 
[Bd (id)2 + Bq (iq)2]1/2. We can make this expression more symmetrical and get 
closer to the Potier model by replacing circuit “q” by circuit “q'” defined by the 
variable change: 

q
q ' ii

K
=  [2.145a] 

that will be accompanied by a redefinition of the flux so that we can speak of a 
circuit change as defined in section 2.1: 

ψq' = K ψq [2.145b] 

In formula [2.145], K is the salience factor defined by [2.140]. 

The current that controls magnetic saturation can then be replaced by: 

( ) ( ) ( ) ( )
1/ 2 1/ 22 2 2 2q q 'd d

2
1'i i i i i

K
⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 [2.146a] 

and the flux associated with this current is: 

1/ 2 1/ 22 2 2 22
d q d q '' K⎡ ⎤ ⎡ ⎤ψ = ψ + ψ = ψ + ψ⎣ ⎦ ⎣ ⎦  [2.146b] 
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Another way to obtain a symmetrical expression, dual from the previous one, 
consists of keeping the axis q circuit unchanged but replacing circuit “d” by circuit  
“d"” defined by: 

id" = K id [2.147a] 

which will be accompanied by a redefinition of the flux: 

d
d" K

ψ
ψ =  [2.147b] 

where K is once more the salience factor defined by [2.140]. 

The current that controls magnetic saturation can then be replaced by: 

( ) ( ) ( ) ( )
1/ 2 1/ 22 2 2 22 q qd d""i K i i i i⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 [2.148a] 

and the flux associated with this current is: 

1/ 2 1/ 22 2 2 2
d q d" q2

1"
K
⎡ ⎤ ⎡ ⎤ψ = ψ + ψ = ψ + ψ⎢ ⎥ ⎣ ⎦⎣ ⎦

 [2.148b] 

We can then get an isotropic inductance in two ways by considering the non-
linear relation between ψ' and i', or between ψ", and i". 

As in the Potier theory, the behavior of this inductance is completely defined by 
the data of its non-saturated values, of its completely saturated values, and of a 
single saturation factor that we can considered as a function of one of the variables 
ψ', i', ψ", or i", the choice being one of convenience. 

In the first case, we arrive at: 

d
d s d0 d d[ ( ') ( ) ]K i L L L i∞ ∞ψ = − +  [2.149] 

q '
q ' s d0 d d[ ( ') ( ) ]K i L L L i∞ ∞ψ = − +  [2.150] 
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Or, by going back to original quantities: 

d
d s d0 d d[ ( ') ( ) ]K i L L L i∞ ∞ψ = − +  [2.151] 

q
q s q0 d q[ ( ') ( ) ]K i L L L i∞ ∞ψ = − +  [2.152] 

We get the same result by the dual transformation, except that Ks then appears as 
a function of i". 

In this way, the UCL model makes it possible, as in the Potier model, to express 
the saturated inductances according to non-saturated inductances by using a 
common saturation factor. 

2.3.3. Implementation of the model 

In order for the models above to be useful in practice, we must show that we can 
determine their parameters by experimental tests, and that they can be used to 
predict the behavior of the machine in common operation modes. 

2.3.3.1. Leakage flux 

We have seen in section 2.2.2.1 that considering non-linearities makes it possible 
to separate leakage inductances from magnetization inductances. We can apply the 
same principle to direct and quadrature circuits. There is still a degree of arbitrary 
that comes from the existence of the mutual coupling between leakage inductances 
(e.g. for circuit d, between the leakage inductances of stator, of damper, and of field 
winding). This degree of freedom can be used to cancel one of the mutual 
inductances, for example, the mutual inductance between the leakage inductance of 
the stator and of the field winding. In this case, there will still be two non-zero 
mutual inductances. We usually presume that cancelling the mutual inductance 
between stator and field winding leakages simultaneously cancels the mutual 
inductance between the stator and damper leakages. The only remaining mutual 
inductance is the mutual inductance between damper and field winding leakages. 
This mutual inductance can be considered by introducing the Canay inductance in 
the circuit (see Figure 2.4). 

The Canay inductance thus has a well-defined meaning in the case of a non-
linear model. On the other hand, we have already mentioned, in the linear case, that 
the Canay inductance cannot be defined by experimental tests only because there is a 
circuit equivalence allowing grouping this inductance and the stator leakage 
inductance into a single inductance that we can put either upstream or downstream 
from the magnetization inductance. 
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The determination of the stator leakage inductance Lad can be done easily by 
using “zero-power-factor” tests and the method seen in section 2.1.4.3. We 
simultaneously determine relation α. 

The stator quadrature leakage inductance Laq raises more problems. There is 
actually no physical reason to suppose that it is equal to Lad because leakage 
inductances Lad and Laq both contain a contribution from the air-gap’s leaks, and 
these leaks are not identical according to both axes because the air-gap width is not 
the same in a salient pole machine. 

In order to determine Laq, we must use tests with a significant quadrature 
component for the current because this component can produce a significant voltage 
drop in this inductance. In fact, these are tests to get the quadrature magnetic 
characteristic. From these tests, we can determine the non-linear part of this 
characteristic, but in steady state, inductance Laq is combined with another linear 
inductance or in other words Lμd∞. To separate Laq, we must use either tests where 
the current is not aligned with the axes or transient tests. 

This program was never completely executed. However, if we simplify the 
problem by saying Laq = Lad and by ignoring inductances Lμd∞ and Lμq∞ (since this 
last hypothesis only has consequences for the study of modes where the magnetizing 
current uses abnormally high values), the determination of the model is no longer 
problematic. Figures 2.22 and 2.23, obtained by carrying out several tests on an 11.4 
MVA salient pole alternator, [DEJ 92] show that the resulting model, despite 
simplifications, is very superior to usual models. 

 
Figure 2.22. Distribution of errors in the excitation current 
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Figure 2.23. Distribution of errors on the internal angle 

2.3.3.2. Operational reactances in saturated mode 

Even when we consider non-linearities, it can be useful to obtain a linear model 
by the application of “small disturbance” techniques. Such a model is actually 
important for the study of the operational stability or the creation of an efficient 
control algorithm. 

If the non-linear model of parallel elements and the values of the other elements 
(leakage inductances, resistances, α ratio) are known, we can easily deduct a small 
signal model of these elements. The elements that are not involved in steady-state 
operation are determined as was done in the first part of this chapter. We should 
note, however, that the behavior of the saturated machine presents an intrinsic 
difference to its behavior in non-saturated mode. In fact, cross-saturation reveals 
magnetic coupling between axes d and q, so that there is only one system, but in a 
double order. 

Reciprocally, the determination of small signal parameters from tests where a 
disturbance is superimposed to a saturated steady state also comes up against this 
problem since the machine’s external parameters are influenced by this 
phenomenon. But we sometimes want to determine the elements necessary to 
modeling transients with this type of test, because they can be done without 
interrupting the normal machine operation, or because we want to obtain the value 
of these elements by considering the influence of saturation on their value 
(phenomenon ignored in the previous study). In this case, it is better to make those 
tests from modes where only one component of steady-state magnetizing current is 
non-zero, at the risk of complicating the interpretation of results. 
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2.3.3.3. Large-amplitude transients 

Another situation where the methods used in the case of a non-saturated machine 
are not generalized is large-amplitude transients. The use of these transients is 
tempting because it will help to determine all the elements in principle, including the 
non-linear elements, from a limited number of tests. In addition, we can reach levels 
of saturation in transient mode that would not be acceptable in steady state. 
Unfortunately in this case, it is no longer possible to identify parameters linked to 
their respective modes because the superimposition principle, and thus the 
decomposition in eigenmodes as well, are no longer valid. We cannot use an 
intermediate step of establishing a frequency response because this response no 
longer makes sense in the non-linear case. There is still the more general method, 
which is the identification of parameters by comparing simulation results to 
experimental results in the temporal field. 
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