
PART II 

Observer Examples 



Chapter 4 

Linear Estimators and Observers 
for the Induction Machine (IM)  

4.1. Introduction 

Controlling alternating-current machines requires the implementation of complex 
algorithms for signal processing: the observation and estimation of quantities 
necessary for the control and regulation of output variables for speed drives made up 
of machines and associated static converters. To carry out these controls, it is 
necessary to have certain information for electrical and mechanical quantities 
measured from the power system. Ordinarily, these measures are obtained from 
physical sensors where the characteristics in terms of precision and bandwidth must 
be efficient, resulting in high cost for these devices and their maintenance, in 
addition to the significant structural fragility and sensitivity to unavoidable 
electromagnetic interferences. All these lead to a progressive suppression of 
physical sensors in relation to the mechanical structure of the machine, that is, flux, 
torque, rotation speed, and position sensors. 

However, since knowing these quantities is vital for ensuring efficient control, 
estimators and observers constituting of indirect sensors were developed. The rest of 
this chapter explains several types of estimators and deterministic and stochastic 
observers. Order reduction methods are studied (see Chapter 5) to reduce calculation 
times. In this chapter, we will only consider linear structures of complete order 
observers, that is, on the basis of the hypothesis that mechanical modes (rotation 
speed and position) are infinitely slow compared to electrical modes, which enable 
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us to consider rotation speed and position as parameters and thus ensure linearization 
of electrical equations. 

The first section of this chapter mainly covers the estimation of magnetic stator 
and rotor or air-gap fluxes of the induction machine. In fact, the implementation of 
flux sensors in the air-gap is reserved for certain machines specifically used for 
benchmarks in university or industrial laboratories. 

In the second part, we consider estimation and observation structures for 
defining the flux, torque, and rotation speed, while retaining linear or pseudolinear 
structures. 

4.2. Estimation models for the induction machine 

The goal of this preliminary section is to define models of the induction machine 
used to define magnetic flux estimators and observers. The hypotheses and validity 
ranges of the different structures studied will be deduced from the models presented. 

4.2.1. Park model for the induction machine 

4.2.1.1. A dynamic model for observation 

Control and estimation of the induction machine require a dynamic model that is 
precise and simple enough to consider real-time implementation. The Park 
transformation satisfies this objective by using a magnetically equivalent 
orthonormal two-phase model. The speed of resolution, linked to the complexity of 
the model, is important for the use of observers and makes real-time implementation 
easier while ensuring estimation robustness. 

The hypotheses required by the original three-phase model [CAR 95, PIE 88] are 
a sinusoidal distribution of the flux in the air-gap, no slot effect, no magnetic 
saturation, no account for thermal variations, particularly of the pellicular effect and 
hysteresis [CHA 83]. 

The Park transformation executes a change of reference frame between the initial 
three-phase variables and those of the magnetically equivalent two-phase model. A 
single orthonormal reference frame, judiciously chosen for all the (stator and rotor) 
variables, leads to certain simplifications of the model. 

4.2.1.2. Reference frame changes 

Different three-phase reference frames exist: the stator reference frame (1S, 2S, 
3S) linked to stator windings and rotor reference frame (1R, 2R, 3R) linked to those 
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of the rotor (true windings for the wound machine or equivalent for the squirrel-cage 
machine). The reference frame (1R, 2R, 3R) turns at rotation speed ωr/s1 in relation to 
the stator (often called electric speed ω), directly linked to the mechanical speed of 
shaft Ω by the number of pole pairs Pp. The angular position of the rotor reference 
compared to that of stator θr/s (electrical position) is linked to the mechanical 
angular position of rotor θ : 

r/s p r/s p
d d
d d

P P
t t

= = ⋅Ω = = ⋅ω ω θ θ  [4.1] 

 

Figure 4.1. Different study references frames 

We define a turning orthonormal reference frame (d,q) common to all variables 
used. It has an angular position θd/s2 (angular frequency, ωd/s) compared to 
reference frame (1S, 2S, 3S), and angular position θd/r3 (angular frequency, ωd/r) 
compared to (1R, 2R, 3R). The different positions (angular frequencies) are then 
linked by the main angular or frequency laws of the induction machine: 

d/s d/r r/s d/s d/r por P= + = + ⋅Ωθ θ θ ω ω  [4.2] 

Angular frequency ωd/s corresponds to ωs (power voltage angular frequency) in 
only sinusoidal mode, which explains the different indices. 

The Park transformation changes the original three-phase reference frame to an 
orthonormal two-phase reference frame shifted by angle ρ [CHA 83]. If we do not 
––––––––––––– 
1 Index r/s for angular frequency (phase difference) of rotor (r) in relation to stator (s). 
2 Index d/s for angular frequency (phase difference) of axis d compared to stator (s). 
3 Index d/r for angular frequency (phase difference) of axis d compared to rotor (r). 
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take into consideration the homopolar component, the transformation is 
characterized by: 

[ ]

2 2cos cos cos
3 32( )

3 2 2sin sin sin
3 3

P

⎡ ⎤⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞− − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

π πρ ρ ρ
ρ

π πρ ρ ρ
 [4.3] 

Two Park transformations define an equivalent model in a single reference frame 
(d, q): 

( ) ( )dq 1s2s3s dq 1r2r3rd/s d/rx P x x P x⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦θ θ  [4.4] 

We also use fixed reference frame (αS, βS) according to stator (θd/s = 0) and 
reference frame (αR, βR) linked to rotor (θd/r = 0). 

4.2.1.3. The model in the general reference  

The dynamic model in any rotating reference frame (d, q), characterized by 
velocity ωd/s in relation to the stator and ωd/r in relation to the rotor is: 

sd s sd sd d / s sq

sq s sq sq d / s sd

rd r rd rd d / r rq

rq r rq rq d / r rd

d  
d
d  
d 
d   
d
d   
d

V R I
t

V R I
t

V R I
t

V R I
t

ω

ω

ω

ω

⎧ = + Φ − Φ⎪
⎪
⎪ = + Φ + Φ⎪⎪
⎨
⎪ = + Φ − Φ
⎪
⎪
⎪ = + Φ + Φ
⎪⎩

 [4.5] 

Insofar as the machine is magnetically linear, the flux/current relations are linear 
with stator Ls and rotor Lr cyclic inductances, the mutual cyclic inductance between 
stator and rotor Msr is given by: 

sd s sd sr rd

sq s sq sr rq

rd sr sd r rd

rq sr sq r rq

 =  + 
=  +   

 
= +  
=  +  

L I M I
L I M I

M I L I
M I L I

Φ⎧
⎪ Φ⎪
⎨ Φ⎪
⎪ Φ⎩

 [4.6] 
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On the other hand, the electromagnetic torque is the result of the interaction 
between two fluxes and/or currents [CAR 95, PIE 88], for example: 

( )sr
em p rd sq rq sd

r

M
T P I I

L
= Φ − Φ  [4.7] 

The mechanical equation of the machine can be written as follows: 

L
d e ( )e empd

J f P T T
t

ω
ω+ = −  [4.8] 

The general model, in any reference frame (d, q), is non-linear at order five, with 
four electrical variables (combination of currents and fluxes) and a mechanical 
variable, the machine’s rotation speed. If we consider that the mechanical model is 
decoupled from magnetic and electrical modes (which is often the case), then the 
induction machine model is the association of two decoupled linear state systems: an 
order one system (mechanical part) and an almost stationary order four linear system 
(electrical part). 

Most sinusoidal machines are squirrel-cage and their rotor voltage is zero. 

4.2.2. Different state models for flux estimation 

4.2.2.1. State representation of a sinusoidal machine 

The previous hypothesis of mechanical and electromagnetic mode separation 
indicates that state variables [4.5] are components d and q of the stator and rotor 
fluxes. However, because of relations [4.6], different state vectors X  can be chosen: 
stator and rotor currents, stator currents and stator fluxes. Obviously, the different 
associated state representations are equivalent and lead to identical dynamic 
behaviors [PIE 00, VUL 98]. For a squirrel-cage sinusoidal machine, control vector 
U  is made up of stator voltages. Output vector Y is made up of stator currents that 
can be directly measured. Dynamic [A], control [B], and observation [C] matrices 
depend on the choice of X :  

[ ] [ ]
[ ]

d X U
 d

Y = X

A B
t

C

⎧ = +⎪
⎨
⎪⎩

 [4.9] 
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with: 

T T
U  V  = Y  Isq sqsdqsdq sd sdV V I I⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦  [4.10] 

Among the different possibilities for the choice of state vector, we will retain 
three: 

– the four fluxes; 
– the stator fluxes and stator currents; 
– the rotor fluxes and rotor currents; 

4.2.2.2. State vector made up of stator currents and fluxes 

The state vector is made up of axes d and q, components of the stator current and 
flux: 

T
sd sq sd sqX i i⎡ ⎤= Φ Φ⎣ ⎦  [4.11] 

The matrices of state equation come from this choice: 

[ ]

( ) / ( )s r r rd/r d/s d/r
( ) ( ) /s r r rd/r d/s d/rA

0 0s d/s
0 0s d/s

aR bR aR L a
aR bR a aR L

R
R

− + − −⎡ ⎤
⎢ ⎥− − + −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥⎣ ⎦

ω ω ω
ω ω ω

ω
ω

  

[ ] [ ]

0
0 1 0 0 0

B and C
1 0 0 1 0 0
0 1

a
a

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 [4.12] 

21 1 1 sr1
 s r sr s r

M
a b c

L L M L L
−

= = = = −
σ σ

σ σ σ
 [4.13] 

This representation is used for controls based on the stator flux (DTC, stator flux 
vector control, etc.). In addition, it makes it possible to estimate the stator flux.  
The output vector corresponds to a state vector, relatively important property in 
terms of precision and robustness of the different observers studied, or to the 
implementation of a reduced order observer (Chapter 5). 
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4.2.2.3. State vector made up of stator currents and rotor fluxes 

The state vector is: 

T
sd sq rd rqX i i⎡ ⎤= Φ Φ⎣ ⎦  [4.14] 

New state matrices are: 

[ ]

s r d/s r r d/s d/r

d/s s r d/s d/r r r

r sr r r r d/r

r sr r d/r r r

(1 ) / ( )
(1 ) ( ) /

A
/ 0 /

0 / /

aR bR cR L c
aR bR c cR L

R M L R L
R M L R L

− − − −⎡ ⎤
⎢ ⎥− − − − − −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

− −⎣ ⎦

σ ω ω ω
ω σ ω ω

ω
ω

 

[ ] [ ]

0
0 1 0 0 0

B and C
0 0 0 1 0 0
0 0

a
a

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 [4.15] 

This representation is used for controls based on the rotor flux (vector control) 
direction. This state model has the same properties as the previous model [4.11] and 
can therefore lead to a rotor flux reduced observer and good robustness of observers 
(output vector corresponding to a part of the state vector). 

4.2.2.4. State vector made up of stator fluxes and rotor fluxes 

The state vector is then: 

  
T

X sq rqsd rd⎡ ⎤= Φ Φ Φ Φ⎣ ⎦  [4.16] 

[ ]

s d/s s

d/s s s

r r d/r

r d/r r

0
0

A
0

0

aR cR
aR cR

cR bR
cR bR

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥

− −⎣ ⎦

ω
ω

ω
ω
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New state matrices are obtained: 

[ ] [ ]

1 0
0 1 0 0

B and C
0 0 0 0
0 0

a c
a c

⎡ ⎤
⎢ ⎥ −⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ −⎣ ⎦
⎢ ⎥
⎣ ⎦

 [4.17] 

This representation can be used for the development of a control based on stator 
or rotor flux, or on both [JAN 94]. Even though this model may seem more 
universal than the previous ones, it cannot result in reduced order observers (no 
variables can be easily measured in the state vector). In addition, the convergence of 
the output vector does not condition that of the state vector: matrix [C] contains 
parameters sensitive to variations. 

4.2.3. Different study reference frames for flux estimation 

4.2.3.1. Different study reference frames 

The ordinary orthonormal two-phase reference frame is not optimal, and 
additional simplifications are linked to specific choices. We can observe two 
categories of references based on the determination of angles. 

The first one corresponds to transformation angles directly deducted from the 
measures of stator currents. We then speak of direct flux estimations. 

In the second one, the angles are first determined from the estimation algorithm 
itself. The evolution of variables must be insignificant for the calculation period 
(quasi-stationarity). This hypothesis applies to matrix A in which the speed is 
considered as a parameter. We then speak of indirect estimations. In all discretized 
observers, the inputs are considered as constant during the sampling period. The flux 
vector can be estimated in Cartesian or polar form. In the first case, reference frame 
(d, q) is not necessarily aligned with the flux vector considered. From these 
Cartesian components, we can easily calculate its polar components: 

( )2 2  = arg = actg /q q dd θΦΦ = Φ + Φ Φ Φ Φ  [4.18] 

When the reference is aligned with the flux vector to estimate its polar 
coordinates and components on another reference frame (d′, q′) out of phase by ϕ , 
are: 

d ' d q ' dcos sin  Φ = Φ Φ = Φϕ ϕ  [4.19] 
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The dynamic behavior of the machine will be different according to the 
reference. This is caused by the non-linear Park transformation (depends on a 
variable angle). Reference (αS, βS) (d aligned with a stator phase) is the one that has 
the closest dynamic behavior to the real machine [BEN 93, OUR 95, VUL 98, 
WES 94], because it uses a linear transformation for stator variables (Concordia 
transformation). 

4.2.3.2. Reference frames based on prior knowledge of angles 

In reference frame (αS, βS) set in relation to the stator, the angular positions of 
the different references are d/s d/r0 and pP= = − ⋅Θθ θ . 

The reference frame change of stator variables occurs according to the Concordia 
transformation. The reference change of rotor variables requires the measure of shaft 
position Θ (position sensor) or the integrated rotation speed of shaft Ω (velocity 
rotation speed sensor). The global model [4.5] and estimation structures are 
simplified. 

Stationary reference frame (αR, βR) in relation to the rotor has dual properties. A 
position or velocity sensor makes it possible to deduce the angle of transformation. 
The model and estimations in this reference frame are simplified because: 

 d/r d/s p0 and P= = ⋅Θθ θ  

A third reference frame (d,q), aligned with the stator current [ROB 92], can be 
used for a direct determination of the transformation angle. The measured stator 
currents and their components in reference frame (αS, βS) result in the polar 
coordinates of the current [4.17] and thus the transformation angles. 

4.2.3.3. Reference frames based on subsequent knowledge of angles 

The other references frame (d, q) use subsequent knowledge of transformation 
angles. The most widely used are references linked to the desired flux: d linked to 
stator flux (Φsq = 0) or rotor flux (Φrq = 0). In fact, these two references make it 
possible to simplify controls for stator or rotor flux controls. They can be used to 
directly determine the polar components of these fluxes. The flux estimation in one 
of these reference frames depends on the stator current components and the 
transformation angle linked to this reference. This angle is deducted from flux 
estimates. We can see that there is looping (Figure 4.3), representing the rotor flux 
estimator. The validity of the estimation therefore depends on the quasi-stationarity 
of model variables in relation to the calculation step and error, between the 
estimated and true angle, which is then ignored. 
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4.2.3.4. Assessment of the different reference frames appropriate for the estimation 
of fluxes 

For a squirrel-cage induction machine, the reference that is best adapted to the 
estimation of fluxes is reference frame (αS, βS). Reference frame (d, q) linked to the 
stator current offers the possibility of a direct knowledge of angles of transformation 
by introducing a non-linearity linked to the transformation. 

For simplicity reasons, we can use a reference frame (d, q) linked to the flux 
considered because it directly leads to the polar coordinates of this flux. On the other 
hand, during real-time implementation of the estimation algorithm, as long as we 
verify the quasi-stationarity of the variables in relation to the calculation time. 

4.3. Flux estimation 

4.3.1. Introduction 

The magnetic flux of the induction machine is one of the fundamental quantities 
necessary for the correct control of torque and thus velocity, and possibly the 
mechanical position of the machine. It is possible to observe three types of 
estimation structures: 

– open loop estimators [PIE 00]; 
– Luenberger deterministic observers [LUE 71]; 
– Kalman–Bucy stochastic observers [KAL 82]. 

The first category consists of combining circuits or algorithms on the basis of all 
or part of the machine model, with no correction and therefore functioning in open 
loop. These estimators are mainly characterized by their simplicity, so there are very 
few calculation means. The downside is their dependence on real system’s time 
constants, resulting in a slow convergence. We also note a strong dependence on 
structural and functional speed drive parameters, leading to errors and even in 
certain cases, to instabilities. 

The deterministic state observers have a more complex structure; hence the more 
significant calculation means. But they work in closed loop, and an error detected 
and amplified is used to correct the operation and enables the convergence based on 
a time constant depending on the amplification gain, with a theoretically zero error. 
They have an inherent dynamic independent from the system. The robustness in 
relation to parameters is better than in the previous case. 
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Stochastic observers have structures comparable to the previous ones, but with a 
consideration for state noises and measuring noises, leading to a smoothing of 
operations that guarantee better stabilization and robustness than the deterministic 
observer. 

4.3.2. Stator flux estimator 

We consider flux estimator [ARC 99] (Figure 4.2) used particularly in DTC 
control. From the measure of two stator voltages and two currents: s1 s2,i i  and 

s1 s2,V V , we rebuild the components of the stator or rotor flux in fixed two-phase 
axes αβ : 

( )sα s1 sβ s1 s2
3 1and 2

2 2
i i i i i= = +  [4.20a] 

and similarly: 

( )sα s1 sβ s1 s2
3 1and 2

2 2
V V V V V= = +  [4.20b] 

In this reference frame, the stator equations are: 

sα s sα sα

sβ s sβ sβ

d
d
d
d

V R i
t

V R i
t

= + Φ

= + Φ
 [4.21] 

Hence, the flux components in this fixed reference are: 

( )

( )
sα sα s sα

sβ sβ s sβ

d

d

V R i t

V R i t

Φ = −

Φ = −

∫
∫

 [4.22] 

and the three-phase RMS value of stator flux sΦ  is: 

2 2
s sα sβ

1
3

Φ = Φ + Φ  [4.23] 
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Figure 4.2. Stator and rotor flux and electromagnetic torque estimator 

The rotor flux components are deducted from those of the stator fluxes and 
currents, according to relations: 

r
rα sα s sα

sr

r
rβ sβ s sβ

sr

L
L i

M
L

L i
M

σ

σ

Φ = Φ −

Φ = Φ −
 [4.24] 

We notice that the stator flux depends on a single parameter: stator resistance. 
The estimation error will therefore be more significant at very low frequency, thus at 
very slow rotation speed. Knowing fluxes and currents, we deduce the electro-
magnetic torque: 

em p sα sβ sβ sαT P i i⎡ ⎤= Φ ⋅ − Φ ⋅⎣ ⎦  [4.25] 

One of the weak points of this estimator is the open loop integration of 
electromotive force, which results in errors. However, its great simplicity leads to its 
use, especially for direct scalar control and DTC. Instead of using two voltage 
sensors, we can reconstitute stator voltage from the converter control (as long as 
dead time can be compensated) and the continuous DC voltage at its input. This 
enables the economy of two isolated sensors. 
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4.3.3. Rotor flux estimator 

In vector control with rotor flux orientation, we developed a rotor flux estimator 
[PIE 00]. It is based on the major relations from rotor flux orientation according to 
axis d of reference frame (d, q): 

sr
r rd sr sd em rd sq

r

sr sq
mr

r rd

d1 and
d

d and d
d

ρ ω ρ ω

⎡ ⎤+ Φ = = Φ⎢ ⎥⎣ ⎦

= + =
Φ ∫

M
T M i T P i

t L
M i

t
t T

  [4.26] 

where mrω  is the rotation speed of the rotor flux vector in relation to stator 
(ωmr = ωd/s) and ρ  is the angular position of the flux vector or axis d in relation  
to phase 1 of the stator. The principle diagram of this estimator is illustrated in 
Figure 4.3. Angle ρ , which sets the transformation of coordinates to obtain 
components sd sq, ,i i  is estimated from these same components. 

 

Figure 4.3. Principle diagram of the rotor flux estimator 

In addition, rotor time constant rT , variable with temperature, is directly 
involved in the expression of mrω , and thus the angle. Incorrect knowledge of the 
rotor time constant has all the more influence as the machine works at slow speed 
and strong torque, because the part of the second term in the expression of mrω  
becomes predominant. Incorrect knowledge of rT  leads to inaccuracy in ρ  and a 
loss of natural decoupling obtained by the rotor flux orientation. In these conditions, 
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the flux is not oriented along axis d; there is a component based on q, and the flux 
amplitude becomes dependent on sqi  and thus the torque. 

4.4. Flux observation 

4.4.1. Full order deterministic observer 

4.4.1.1. Principle 

Consider an induction machine powered by a two-level Pulse Width Modulation 
(PWM) voltage inverter. We make a few hypotheses to simplify the model: 

– We suppose that the feeding of the machine is reduced to the application of the 
first harmonic signals with variable amplitude and frequency. We ignore the effect 
of harmonics and delays caused by the inverter. 

– We suppose that the rotation speed is a slow variable parameter in relation to 
currents and fluxes, as was explained in section 4.2. 

In these conditions, the electrical machine model is linear and can be represented 
by a four order state system, as we have seen previously: 

d and
d

X A X B U Y C X
t

= ⋅ + ⋅ = ⋅  [4.27] 

where X is the state vector, U  the input vector, Y  the output vector, and ,A  ,B  
and C  are system matrices. 

In a stationary reference frame, the locations of machine poles (eigenvalues of 
the dynamic matrix A) according to speed have the same form as the one shown in 
Figure 4.4. In a rotating reference frame, the location of poles according to speed is 
shown in Figure 4.5. 

The estimator has a state model similar to that of the machine, with the same 
matrices A, B, and C. However, the vectors are differentiated: * *and .X Y  The drive 
system and estimator are fed by the same input vector :U  

* * * *d
d

X A X B U and Y C X
t

= ⋅ + ⋅ = ⋅  [4.28] 
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Figure 4.4. Evolution of induction machine poles in a stationary reference frame 

 

Figure 4.5. Open loop system poles in a reference frame linked to the rotor 

In terms of an estimator, the observer evaluates the error between a measured 
variable and the same variable, but estimated. This error is amplified by a gain and 
reinjected to force the observer to converge toward a zero error. The variable used is 
generally the stator current vector. The principle diagram of the observer associated 
with an induction machine speed drive is shown in Figure 4.6. 
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Figure 4.6. Diagram of a deterministic state observer associated with  
an induction machine 

In the state transition matrix A, two parameters, rotation speed ω and reference 
frame speed ωd/s, emerge. As it is natural to consider that the rotation speed is a 
slow parameter, it is more difficult for speed ωd/s generally linked to an electrical 
angular frequency. Consequently, the most appropriate choice is to use a set 
reference with ωd/s = 0. 

Since the error is calculated from measurable stator currents, we must also retain 
stator currents as state vector components. To simplify, we can represent complex 
state equations. In order to do this, we define the complex vectors as: 

[ ] [ ] [ ]c sc rc c sc c sc, , , andX I U V Y I= Φ = =  

with 

sc sd sq rc rd rq sc sd sqI i ji j V V jV= + Φ = Φ + Φ = +   

The complex state equation is: 

c c c c c c c c
d and
d

X A X B U Y C X
t

= + =   [4.29] 
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with 

[ ] [ ]
1 1

tr
c c c

1
r

1 jω
0 1 0

1 jω

a b
T

A B a C
c

T

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= = =⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

  

where 

( )1 s r 1 1 r1a aR b R b c c cRσ= − + − = =⎡ ⎤⎣ ⎦  

4.4.1.2. State equation of the observer 

As was discussed previously, the estimator matrices and input vector are the 
same as those of the machine: 

* * * *
c c c c c c c c

d
d

X A X B U Y C X
t

= + =  [4.30] 

The error on the output vector is 

*
c c ce Y Y= −  

and in closed loop, the observer equation becomes: 

( )* *
c c c c c c c c c

d
d

X A L C X B U L Y
t

= − + +  [4.31] 

The new state matrix defining the dynamic of the observer is 

c c c cA A L C′ = −  [4.32] 

The determination of gain matrix cL  is done according to the desired dynamic 
for the observer: 

c
(1)
(2)

L
L

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 [4.33] 
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Because of matrix symmetries A that we want to reproduce on matrix A′, the real 
gain matrix L will be in the form: 

T
1 2 3 4

1 2 3 4
2 1 4 3

and (1) (2)
L L L L

L L L jL L L jL
L L L L

⎡ ⎤
= = + = +⎢ ⎥− −⎣ ⎦

 

 [4.34] 

4.4.1.3. Observability 

It is important to verify the field of observability of the observer [SIA 92]. In 
order to do this, we assume ωa = 0. The observability matrix is 

t n 1
c c c c c cOB , , ,C C A C A −⎡ ⎤= ⎣ ⎦…  [4.35] 

where n is the dimension of state vector *
cX , that is, in this case 2n = . Hence: 

c
c

c c
r

1 1
s r sr

1 0
OB 1 jω

1 1 1with and

C
a bC A

T

a b
T T M

σ σ
σ σ σ

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = ⎛ ⎞⎢ ⎥ ⎢ ⎥−⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

− −
= − − =

 [4.36] 

2 2
c c 1 2

r

1det(OB) det(OB ) det(OB ) b
T

ω
⎡ ⎤

= × = +⎢ ⎥
⎢ ⎥⎣ ⎦

 [4.37] 

We observe that, regardless of velocity, the determinant det(OB)  is not zero, and 
consequently, the condition of observability is fully respected for any operation 
point. 

4.4.1.4. Calculation of observer gain 

The determination of gain matrix Lc is done by imposing closed loop observer 
poles in relation to the solution machine poles of 

cdet( ) 0pI A− =  
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These poles are generally complex, two by two, and each pair describes a 
location according to velocity. In the large field of speed, both locations are far 
enough apart (Figure 4.4) that we can distinguish between the poles connected to 
stator current (the fastest ones) and those connected to the flux (the slowest). The 
choice for gain matrix will consist in accelerating the poles linked to the flux. 
Empirically, this acceleration is a compromise between velocity and stability, and it 
is possible, for example, to multiply, by a factor of 3 or 4, the real part of the poles 
corresponding to the slowest modes. Several solutions can be considered to account 
for the rotation speed: 

– the gain matrix is maintained as a constant, the poles then describe a location 
that must be verified to make sure they still correspond to a satisfying response; 

– or the gain matrix is variable with speed in order to maintain constant poles. 
We choose to evolve the gains, in intervals and not continuously, according to this 
rotation speed. 

When the first solution is chosen, matrix factors Lc are defined and coefficients 
1 2andβ β  are a function of the rotation speed: 

2
c 1 2det( )pI A p pβ β′− = + +  

By identifying: 

[ ]1 1 2 1 1 1
r r

1 1(1) jω and (1) ( (2) ) jωL a L a b L c
T T

β β
⎡ ⎤

= − + − = − + − −⎢ ⎥
⎣ ⎦

  [4.38] 

We deduce L(1) and L(2) values according to rotation speed and the four gains of 
gain matrix L. In Figure 4.7, pole locations of the open loop system and observer are 
indicated. A simulation result is shown in Figure 4.8, from an initial error on the 
estimated flux [SIA 92]. 

4.4.1.5. Example of observer robustness 

In state matrix A, rotor resistance Rr occurs in several terms. This resistance is 
generally not well known because of rotor measure problems, and it varies in large 
proportions with temperature and pellicular effect on the rotor cage. From an initial 
value Rr0, we represent its variations by rRΔ . Corresponding to the initial resistance 
value, we call state matrix 0cA′  and corresponding state vector c0X ∗ . 
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Figure 4.7. Pole locations of the system and observer after the determination of β1 and β2 

 

Figure 4.8. Simulation results of the convergence of the flux deterministic observer 
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The state equation becomes: 

[ ]* * * *
c0 c c0 r c0 c c c c c c0

d
d

X X A A R X X B U L C X
t Δ⎡ ⎤ ⎡ ⎤′+ Δ = + Δ + Δ + +⎣ ⎦ ⎣ ⎦  

10 1
r rr0

c0
sr

10
r rr0

11(1) jω

11(2) jω

b
a L b

L LT
A A

M
c L L LT

σ
σ

Δ

⎡ ⎤ −⎛ ⎞ ⎡ ⎤−− −⎢ ⎥⎜ ⎟ ⎢ ⎥
⎝ ⎠⎢ ⎥ ⎢ ⎥′ = =⎢ ⎥ ⎢ ⎥

−⎢ ⎥− − + ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 [4.39] 

Robustness will be characterized by the relation: 

* *
c0 c c0 rA X A X RΔ′ Δ = − Δ  [4.40] 

By ignoring the second order terms, the above state equation is written as 

* * *
c c c c0 r c c c c c

d
d

X A X A X R B U L C X
t Δ′= + Δ + +  [4.41] 

To improve observer robustness, a technique consists of increasing its order by 
using resistance variation rRΔ  as new variable that we use as state equation: 

[ ] 1* *
r c0 r r0 r p r

d 0 and
1d

b
R A X R I R B R

t Δ
⎡ ⎤

Δ = Δ = Δ = Δ⎢ ⎥−⎣ ⎦
 [4.42] 

If Lp is the gain corresponding to this new state variable, then the equation 
becomes: 

[ ]

* *c0 pc c
G c G G c

pr r

t t
G G p G

s

d
0d

1 0 0 (1) (2) 1 0 0

A BX X B U L C X
Lt R R

B L L L L C
Lσ

′⎡ ⎤⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥⎢ ⎥ ⎢ ⎥

−Δ Δ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎣ ⎦⎣ ⎦

  [4.43] 

This approach consists of adding a rotor resistance observer associated with the 
flux observer, according to the diagram in Figure 4.9. 

We have carried out step variations in the rotor resistance (Figure 4.10), which is 
unrealistic, and we compared by simulation the results obtained with the disturbance 
observer in relation to those with the state observer only. We verify the advantage of 
this resistance estimation that can also be used to adapt machine control. 
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Figure 4.9. Flux state observer and disturbance observer 

4.5. Linear stochastic observers – Kalman–Bucy filters 

4.5.1. Introduction 

The adoption of a deterministic approach for the state estimation of a physical 
system ignores the notions of uncertainty and random fluctuations. They are linked 
to errors and noises inherent to any physical system, as well as to noises marring 
power signals caused by static converters. When the level of noise is low, the 
deterministic approach can turn out to be enough, but in other cases, the 
consideration of the stochastic aspect enables us to increase the precision of 
estimated variables. 

In this approach, there is a very precise link between estimator pole placement 
and statistic noise parameters. In fact, because of the noise description, matrix 
choice K of Kalman gains is optimal in the sense of the minimal variation of 
estimated values. The basic structure of a stochastic estimator is similar to that of a 
closed loop deterministic state observer. The Kalman–Bucy filter is a recursive 
algorithm of data processing, generating the estimate of state variables of a dynamic 
system from a series of measures marred by noises. 
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Figure 4.10. Observation of the flux with or without disruption 
observer during the variations of rotor resistance 

4.5.2. Kalman–Bucy filter model 

In terms of the deterministic model, the filter model contains two additional 
terms bsn(t) and bmn(t), respectively, state noises and measuring noises: 

* * * *
sn mn

d ( ) ( ) ( ) ( ) ( ) ( )
d

X AX t BU t b t Y t CX t b t
t

= + + = +  [4.44] 

As previously, we choose a stationary reference frame s sα β  and vectors 
* *, andX Y U  are  

T T* * * * * * * *
sα sβ rα rβ sα sβ

T
sα sβ

( ) ( )

( )

X t i i Y t i i

U t V V

⎡ ⎤ ⎡ ⎤= Φ Φ =⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

 [4.45] 
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Noises must have the following statistic properties: 

– average value or mathematical esperance is equal to zero: 

[ ] [ ]rs rm( ) ( ) 0E b t E b t= =  

– autocorrelation form as below: 

T T
rs rs rm rm( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )E b t b t Q t t E b t b t R t tδ τ δ τ⎡ ⎤ ⎡ ⎤⋅ = − ⋅ = −⎣ ⎦ ⎣ ⎦  

– absence of correlation between noises: 

T
rm rs( ) ( ) 0E b t b t⎡ ⎤⋅ =⎣ ⎦  

– absence of correlation between noises and initial state: 

T T
rm 0 rs 0( ) ( ) ( ) ( ) 0E b t X t E b t X t⎡ ⎤ ⎡ ⎤⋅ = ⋅ =⎣ ⎦ ⎣ ⎦  

( )uδ  is a pulse function of Dirac, matrices Q(t) and R(t) are symmetrical, 
defined non-negative and represent spectral densities with average noise power. The 
discretization of the state equation above with a sampling period Ts is: 

* *
rs

* *
rm

( ) ( , 1) ( 1) ( , 1) ( 1) ( )

( ) ( ) ( ) ( )
a b

c

X k k k X k k k U k b k

Y k k X k b k

φ φ

φ

= − − + − − +

= +
 [4.46] 

We define state transition matrices anda bφ φ  between instants (k – 1)Ts and kTs: 

s

s

s

s

( 1)

( 1)

T T
sn sn mn mn

( , 1) exp ( )d

( , 1) exp ( , ) ( )d

( )

( ) ( ) ( ) and ( ) ( ) ( )

kT
a k T

kT
b ak T

c

k k A

k k t B U

k C

Q k E b k b k R k E b k b k

φ τ τ

φ φ τ τ τ

φ

−

−

⎡ ⎤− = ⎢ ⎥⎣ ⎦
⎡ ⎤− = ⋅ ⋅⎢ ⎥⎣ ⎦

=

⎡ ⎤ ⎡ ⎤= ⋅ = ⋅⎣ ⎦ ⎣ ⎦

∫

∫ [4.47] 
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In practice, matrices φa and φb are approximated by limited developments: 

[ ] [ ]s s

0 0

( ) ( )
( , 1) and ( , 1)

! !

n nn n n n

a b
n n

T A T B
k k k k

n n
ω ω

φ φ
′ ′= =

= =
− = − =∑ ∑   [4.48] 

In general, we limit the development of φa at order two maximum and that of φb 
at order one, or: 

2
4 s s

s
s 4

T
s 0 0 2

1( , 1) ( ) [ ( )]
2

( , 1) [ ( )]
2

( ) ( , 1) ( , 1) and ( )

a

b

a a

k k I T A T A

Tk k T I A B

Q k T k k Q k k R k R I

φ ω ω

φ ω

φ φ

− = + ⋅ + ⋅

− = +

= ⋅ − ⋅ − =

 [4.49] 

Q0 is a rank four diagonal matrix with terms that are the initial values of 
covariances. I2 and I4 are rank two and four unit matrices. Matrices R0 and Q0 play 
an important role in the convergences of the Kalman filter, and we should define 
them well. 

The filter algorithm (Figure 4.11) contains a prediction and a correction part. The 
general diagram of the discretized filter is shown in Figure 4.12. 

4.5.3. Convergence of the Kalman filter 

If covariance matrices ( , )P k k  are no longer defined as positive, then the filter 
can diverge. This situation can be a result of inaccuracies linked to discretization and 
numeric precision. Negative terms can then emerge on the major diagonal of 

( , )P k k . 

The precision problem guides the choice for the microprocessor used for the 
implementation of the filter’s algorithm. It was proven that a 32-bit floating point 
RISC architecture is very well adapted for obtaining sufficient precision [BEN 93]. 

An analysis of the Kalman gain matrix shows that it has the following form: 

11 12

12 11

13 14

14 13

( , ) ( , )
( , ) ( , )

( , )
( , ) ( , )
( , ) ( , )

k k k k k k
k k k k k k

K k k
k k k k k k
k k k k k k

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 [4.50] 



202     Electrical Actuators 

 

 

Figure 4.11. Kalman filter algorithm 

 

Figure 4.12. General diagram of the Kalman filter for an induction machine 
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The elements of this matrix are functions of the machine’s rotation speed. The 
evolution of gains k11(k, k) and k12(k, k) according to the speed variation  is shown in 
Figure 4.13. In addition, the definition of gain matrix ( , )K k k  and the covariance 
matrix of estimation error ( , )P k k  does not depend on the knowledge of measures 

( )Y k . We can therefore store the values of Kalman gains in tables and obtain shorter 
calculation times. 

We have seen previously that matrices ( ) and ( )Q k R k  depend on their initial 
values Q0 and R0. The choice of these initial values greatly conditions the operation 
of the Kalman filter. There is no direct method for defining them. Authors 
developed real-time adaptation algorithms based on the quality of estimation. But Q0 
and R0 become state variables, thus increasing the state vector order and 
corresponding calculation times. We can also define these covariances by trial and 
error method with the help of consecutive simulations. We can, for example, choose 
[JAC 95]: 

0 0

0 0 0
0 0 0 0

and
0 0 0 0
0 0 0

Q R

α
α γ

β γ
β

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 [4.51] 

 

Figure 4.13. Examples of the variations of two Kalman gain matrix factors 
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Where , andα β γ  are defined within a constant. We have two degrees of 
freedom: 

– α1 relation between state noises and measuring noises; and 

– α2 relation between flux and current state noises. 

0 1 0
2

2

1 0 0 0
0 1 0 0 1 0

and
0 0 0 0 1
0 0 0

Q Rα
α

α

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

 [4.52] 

Factors α1 and α2 are defined empirically and by a certain number of 
simulations. 

4.5.4. Simulation results and experimental results 

In order to test this filter in simulation, it was necessary to generate measuring 
noises in stator currents isα and isβ. This was done by the generation of two random 
numbers Nα and Nβ. Simulations were done on a 45 kW machine, which injects with 
a 10% measuring noise in relation to the rated current [BEN 93]. 

In Figure 4.14, the comparative results of real and estimated dimensions on rotor 
flux components r randα βΦ Φ , the two-phase flux module rF ,  and the phase of this 
flux ΦΘ  are shown. 

We verify the correct performances of the filter, despite the rate of noises on 
measures, during the establishment of the flux before machine startup. 

Experimental tests are done on an induction variable speed drive with a 
metallurgical application and power of 90 kVA, made up of a Gate Turn-Off Switch 
(GTO) voltage inverter associated on the continuous side to a rectifier and a filter, a 
45-kW induction machine, a vector control defining the voltage provided by the 
inverter to the machine stator, and a Kalman filter for estimating the rotor flux. The 
variable speed drive has a speed sensor. 

The general diagram of this variable speed drive is shown in Figure 4.15. Two 
experimental tests, corresponding to a reversal of the rotation direction (Figure 4.16) 
and an abrupt variation of the load torque (Figure 4.17) show the performances of 
this variable speed drive [BEN 93]. 
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Figure 4.14. Comparison of real and estimated fluxes 
by the Kalman filter during machine magnetizing 

 

Figure 4.15. General diagram of the variable speed drive with vector control  
and Kalman filter 
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Figure 4.16. Experimental test–reversal of the rotation direction 

Other experimental tests were carried out on the prototype of a chain of an 
induction traction of high-speed train (TGV). This prototype corresponds to a  
300-kW motor with a nominal torque of 2,100 Nm. We are dealing with torque 
control without any speed regulation [JAC 95]. 

Figure 4.18 shows a series of accelerations and brakes with a representation of 
the variation of the continuous input voltage (catenary) Uc, the current in a stator, 
and real electromagnetic torque phase compared to the reference torque. The first 
acceleration occurs at the same time as motor magnetizing, leading to a relatively 
slow torque ascent. 

In Figures 4.19 and 4.20, a reference torque cycle and the real response for two 
speeds, one close to stopping and average speed, are shown. 

In Figures 4.21-4.23, we present the experimental responses to the torque set 
point profile (Figure 4.19) for several coefficient couples 1 2andα α  [4.52] and for 
two different speeds, practically stopped and average speed. 
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Figure 4.17. Experimental test–impact of the load torque 

 

Figure 4.18. Traction and braking cycle for a railway chain 

We can comment these tests as follows. Figure 4.21 (α1 = 104 and  
α2 = 2.5 × 10−8): at low speed, the torque is not well regulated, there are over shoots 
and static errors. The torque response is very oscillatory. At higher speed, the 
behavior is perfectly fine. Torque ramps and steps are well followed. 
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Figure 4.19. Torque set point cycle 

 

Figure 4.20. Electromagnetic torque, speed, and stator current cycle 
(a) zero speed; (b) average speed 

 

Figure 4.21. Electromagnetic torque, speed, and stator current 
(a) zero speed, (b) average speed α1 = 104 and α2 = 2.5 × 10−8 

a b 

a b 
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Figure 4.22. Electromagnetic torque, speed and stator current 
(a) zero speed (b) average speed α1 = 1.6.103 and α2 = 10–7 

Figure 4.22 (α1 = 1.6 × 103 and α2 = 10−7): we do not trust the state model in 
relation to current measures as much as the state flux model in relation to the current 
state model. The results are clearly better. At low speed, torque ramps and steps are 
better followed than in the previous case. But a few over shoots and errors remain. 

 

Figure 4.23. Electromagnetic torque, speed, and stator current 
(a) zero speed, (b) average speed α1 = 103 and a2 = 2.5 × 10−8 

Figure 4.23 (α1 = 103 and α2 = 2.5 × 10−8): compared to the first test, we trust 
less the state model in relation to current measures. The results obtained are very 
close to those in the second case. We verify that the first torque over shoot is lower 
than in the second case. 

a b 

a b 
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In conclusion, adjusting the observer does not have a significant impact in 
average or high-speed operations. The system is much more difficult to control at 
low speed. The adjustment of two factors must be done at very slow speed. 

4.6. Separate estimation and observation structures of the rotation speed 

4.6.1. Introduction 

Control without mechanical sensor creates great interest in all range power of 
variable speed drives. For low-power variable speed drives, the cost and 
encumbrance of the speed sensor were prohibitive compared to those of the variable 
speed drive. In addition, many low-power applications do not require precise 
knowledge of the speed. For high-power motors, the sensor cost is not the first 
concern; instead we speak of problems linked to its assembly and maintenance. 
There is not always a machine shaft end available for the speed sensor. In addition, 
on high-power equipment, axial movements and vibrations deteriorate the sensor 
and its coupling, as well as the quality of speed measures. 

In order to obtain good performances from variable speed drives, especially at 
very low speeds and large loads, knowledge of speed is necessary. 

All these considerations lead to replacing the speed sensors by estimators or 
observers. 

In this section, we present a certain number of speed estimation systems 
associated with estimators or flux observers, but separate from them [FOR 96]. In 
Chapter 3, non-linear observers were disscused where flux and speed are estimated 
in the same algorithm. 

4.6.2. General principles 

They are organized around three main concerns: 

– the choice of the model: there is a compromise between a simple model, 
generally not precise, but not very dependent on parameters, and a more complex 
and often less robust model than parametric variations; 

– the precision of parameters: resistive parameters are mainly the ones that will 
have a predominant influence at very low speeds and large loads. In particular, 
natural decoupling in the vector control depends on the precision of the angle of 
transformation and thus rotor resistance; 
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– real-time calculation precision: this point is particularly important for controls 
with low sampling frequency. This corresponds to high power speed drives where 
the modulation frequency of the inverter is low and leads to the choice of a sampling 
frequency that is low, so as to take advantage of signal synchronization. In this case, 
there can be the introduction of delays and errors linked to the precision of the 
calculator. 

The speed can be identified, estimated, observed, or come from an adaptive 
process: 

– identification: the speed is determined by the real-time analysis of the 
influence of faults or characteristics of the machine on stator currents–mechanical 
out of balance, slots, or magnetic saturation. But the information obtained is generally 
less precise as the speed is low. Some techniques consist in triggering specific 
saturations or increasing some faults. But this can result in additional vibrations. 
These techniques are not new, but the available real-time calculation power makes 
them usable; 

– estimation: the open loop estimation of speed uses self-piloting relations 
(frequency composition), often deducted from electrical equations in sinusoidal 
mode. Open loop operation makes these estimation techniques weak; 

– observation: observation uses the mechanical model instead. We often 
associate the load torque to speed as a state variable of the mechanical model. It 
implies separation of electrical and mechanical modes; 

– adaptive principle: the electrical model makes it possible to adapt the quantity 
that we wish to determine, speed in this case, with the help of a choice of measures 
and estimated variables. The problem resides in the choice of the optimizing 
function to obtain the speed. 

4.6.3. Speed estimation and observation methods 

4.6.3.1. Speed calculation by the self-piloting relation 

We presume that current and flux electrical variables are estimated by an 
observer, for example, an order four linear Kalman filter as presented in section 4.5. 
If we are in the case of vector control with rotor flux orientation, then relation [4.26] 
results in: 

r sq

sr rd

d
d

T i
t M

ρ ω= +
Φ
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The observer provides the rotor flux components: 

rα rβand∗ ∗Φ Φ  

rβ

rα

arctgρ
∗

∗
∗

Φ
=

Φ
 [4.53] 

From currents isα and isβ deducted from measures, estimated current *
sqi  is: 

( ) ( )2 2* * * * * *
sq sα sβ rd rα rβsin cos andi i iρ ρ= − ⋅ + ⋅ Φ = Φ + Φ  

The speed estimate is: 

( ) ( )

* ** sr sα sβrβ*
* 2 2* *rα

r rα rβ

sin cosd arctg
d

M i i

t
T

ρ ρ
ω

⎡ ⎤⎡ ⎤ ⋅ − ⋅ + ⋅Φ ⎣ ⎦⎢ ⎥= −
⎢ ⎥Φ⎣ ⎦ Φ + Φ

 [4.54] 

We can see with relations [4.53] and [4.54] that precision and robustness of the 
speed estimation mainly depend on those of the flux estimation. In addition, as was 
discussed previously (section 4.3.2), time constant rT  is sensitive to temperature 
variables. 

In discrete mode with a sampling period sT , we have: 

( ) ( ) ( ) ( )
( )

** *
sr sq*

*e r rd

1 M i nn n
n

T T n

ρ ρ
ω

⋅− −
= −

⋅Φ
 [4.55] 

The principle diagram of this estimation is illustrated in Figure 4.24. 

The estimation of speed is in open loop, with all the drawbacks of this type of 
operation: static errors, lack of robustness, and possible instability. Since the 
estimated speed contains a term with a dynamic that is meant for electrical quantities 
dimensions, we must treat this term with a filter, with a bandwidth that is similar to 
that of the speed. 
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Figure 4.24. Electric observer associated with an estimator by frequency addition 

4.6.3.2. Association of a mechanical observer to an estimator by frequency addition 

This filtering requirement may be made by the use of an order two mechanical 
Kalman filter, with state variables being speed and load torque. To close the 
mechanical filter, we must define a measurable output vector. The load torque is 
generally unknown and no measure is considered. We use a pseudo-measure of 
speed given by the previous estimator. We then obtain the principle diagram shown 
in Figure 4.25. The pseudo-measure is: [ ]1( )nω . The Kalman gain acts on the 
difference between these two quantities. The electromagnetic torque is calculated 
from variables estimated according to relation [4.7]. 

The state equations of a mechanical observer are: 

*
* * * * * *m

m m m m m m1 m2 m2 m m
d

and
d
X

A X B U L Y Y Y C X
t

⎡ ⎤= + + − =⎣ ⎦  [4.56] 

with: 

[ ]

* * * * * * * * *
m 2 r m2 2 m1 1 m em

m m m
( / ) ( / ) /

1 0
0 0 0

t
X C Y Y U C

f J P J P J
A B C

ω ω ω⎡ ⎤= = = =⎣ ⎦
− −⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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For the load torque, we have the simplest state equation: 

*
r

d 0
d

C
t

=  [4.57] 

 
Figure 4.25. Principle diagram of a speed estimator by frequency addition 

associated with a mechanical observer 

In Chapter 7 of this book, dedicated to the estimation of the load torque, the 
calculation of factors of matrix Lm is clarified. 

Since the mechanical filter does not depend on any variable parameter, as is the 
case with speed in the electrical filter, covariances of measuring and state noises of 
the mechanical filter are identical, regardless of the machine’s operation point. 

This system is tested with the help of an operation cycle made up of: 

– the establishment of the flux from 0 to 0.3 s; 
– the nominal torque acceleration up to 1,200 rpm; 
– the impact of a rated load from 1 to 1.8 s; 
– a reversal of the rotation direction; 
– braking until slow speed (190 rpm); 
– the impact of a load equal to one-third of the rated load. 
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Figure 4.26. Estimation of speed and load torque for an operation cycle 

We verify (Figure 4.26) the correct estimation of speed and load torque that can 
be used to compensate the load in a speed regulator. 

4.6.3.3. Adaptive mechanism (MRAS) 

This method is based on the comparison of quantities obtained in two different 
ways – one with a calculation that does not explicitly depend on speed (output 
reference model rY ) and the other by a calculation directly depending on speed 
(output adaptable model aY ). 

 

Figure 4.27. Principle diagram of the adaptation mechanism 

This method was developed by Schauder [SCH 92] under the name of MRAS 
(model reference adaptive system). For the estimation of the induction machine 
speed, he proposes a comparison of fluxes calculated, respectively, from stator and 
rotor equations. The basic idea is to find the speed parameter of the adaptable model 
providing two identical estimations of the flux. We can show that this value can only 
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be the true speed because there is uniqueness in the solution. The correct operation 
of this system is ensured by the judicious choice of a function ( )r a, ,F Y Yω  ensuring 
convergence of the adaptable model toward the reference model, per the Popov 
criterion. The principle diagram is illustrated in Figure 4.27. 

The drawback to the Schauder solution is that it bases the estimation of speed on 
distinct observers corresponding to stator or rotor equations that are of reduced 
order. We propose instead the Yang approach, where real current measures are the 
output of the reference model, which is actually the real machine. The output of the 
adaptable model is made up of stator currents estimated by the electrical variable 
observer. We calculate speed in such a way that the error between true and estimated 
currents cancels out. State models of the machine and observer are: 

( ) ( )* * * * *

( ) and

( )

X A X B U Y C X

X A X B U K C X X

ω

ω ω

= ⋅ + ⋅ = ⋅

= ⋅ + ⋅ + ⋅ −
 [4.58] 

We consider the three basic matrices: 

0 0 1 0 0 1
0

0 0 0 1 1 0
I J

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

hence, state matrices: 

( ) [ ]

( )
( ) ( )
( ) ( )

1 2 4

3 4

* *
1 2

*
* *2

3
2

0
0
bIa I a a I J

A B C I
a I a I J

k I k J
K kk I J

a

ω
ω

ω ω
ω

ω ω

⎡ + ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
+⎢ ⎥

⎢ ⎥⎣ ⎦

 [4.59] 

        

sr
1 2 3 4

s r sr r r s

1 1 1 1 1M
a a a a b

T T M T T L
σ σ

σ σ σ σ
− −

= − − = − = = =
 

The state vector error: *e X X= −  obeys a state equation: 

*
e e e

d ( ) ( , , ) with
d
e A e B W X t C e
t

ω ε ε= ⋅ − ⋅ = ⋅  [4.60] 
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with: 

         ( ) ( ) ( )sα sβ rα rβ( )
t

e e i e i e e⎡ ⎤= Φ Φ⎣ ⎦  

( ) ( ) ( ) 2
e e

2

11 0 0
;

10 1 0

a
A A K C B

a

ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥= + ⋅ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

ε  represents estimation errors that can actually be calculated, that is, machine 
current errors. The above equation is illustrated in Figure 4.28. 

 

Figure 4.28. Representation diagram of state equations of estimation errors 

The equivalent system is made up of a direct linear chain τS  and a non-linear 
feedback *( , , )W X tε . We have: 

( ) ( )
( )

*
rβ sβ*

2 2*
sαrα

e i
W a k

e i
ω ω

⎛ ⎞⎡ ⎤ ⎡ ⎤−Φ −⎜ ⎟⎢ ⎥ ⎢ ⎥= − +
⎜ ⎟⎢ ⎥ ⎢ ⎥Φ ⎣ ⎦⎣ ⎦⎝ ⎠

 [4.61] 

The observer convergence is equivalent to the asymptotic stability of the 
previous system. The determination of the three gains 1 2 3, , andk k k  and the law 
defining *ω  must make the system asymptotically stable. In order to do this, we use 
the hyperstability criterion from Popov [POP 73]: 

1. the linear system τS  must be observable and controllable; 
2. there is a symmetrical matrix P , defined positive, and a matrix ,Q  defined 

negative, such that: 

t t
e e e eandA P P A Q B P C⋅ + ⋅ = ⋅ =  



218     Electrical Actuators 

 

3. there is a number 0γ  such that: 

t
2
0

0
dt Wε τ γ⋅ ⋅ ≥ −∫  [4.62] 

The speed estimation law, cut off from previous considerations, was chosen in 
the form: 

( ) ( )* * * *
rβ sα sα rα sβ sβi i i iΔ = Φ − − Φ −  [4.63] 

where Δ  represents the product of the estimation error of the electromagnetic 
torque, if the flux is correctly estimated. A non-zero value of Δ  is interpreted as a 
speed estimation error. Function ( )ωF Δ , which provides the estimated speed, is the 
sum of a proportional part and an integral part of Δ , or in other words: 

( )
t

*
p i

0
dW F K Kωω τ= = Δ = ⋅ Δ + Δ∫  [4.64] 

The advantages of this method are the following: 

1. minimization of current estimation error; 
2. no requirement to know the mechanical parameters of the machine; 
3. low calculation volume. 

The drawbacks are the following: 

1. because of current measuring noises, the estimated speed is very noisy. This 
imposes the necessity of slowing down current and speed regulators to only amplify 
noises; 

2. speed filtering before its consideration in the electrical Kalman filter leads to a 
delay that can put in question the adaptive method principle. This can lead to high 
amplitude fluctuations during transitory modes; 

3. static speed error is directly linked to the numeric resolution prediction 
precision of the state of the electrical Kalman filter. 

The choices of gains Kp and Ki are made with the help of consecutive simula-
tions. To avoid large variations in the estimated speed, we limit the integral term, 
and the value of the limit is defined according to the electromagnetic torque. This 
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limit iTδ  is defined with the help of a speed gap ωΔ  corresponding to the speed 
variation during a sampling period sT  during acceleration with the nominal torque: 

( )
( )em snom

s nom s
T T

T T
J

ω
⋅

Δ = Γ ⋅ =  [4.65] 

We use an algorithm, which considers two types of operations: 

1. low speed variation for an acceleration lower than 5% of em;T  

2. high speed variation for an acceleration higher than 5% of em;T  

Several simulations made it possible to define the algorithm according to these 
two operations. 

( ) ( ) ( )
( )

( )

ref ref e

i+ e

i e

1 0.05

0.5

0.5

Si n n T

T T

T T

ω ω ω

δ ω

δ ω−

− − < Δ

= Δ

= − Δ

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ref ref s

i ref ref s

i ref ref s

1 0.05

1 2

1 2

Si n n T

T n n T

T n n T

ω ω ω

δ ω ω ω

δ ω ω ω
+

−

− − > Δ

= − − + Δ⎡ ⎤⎣ ⎦
= − − − Δ⎡ ⎤⎣ ⎦  

The principle diagram of this speed estimation adaptive system is given in  
Figure 4.29. 

 

Figure 4.29. Principle diagram of the speed estimation adaptive system 
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Simulation tests illustrate (Figure 4.30) the behavior of the system. We can 
observe that the estimated speed and variable sqV  are very noisy (Figure 4.30,  
curve 1). 

Improvements are made by the reduction of noises, according to the algorithm 
above involving the limitation of the integral term (Figure 4.30, curve 2). Filtering 
and the reduction of regulator dynamic (Figures 4.30, curves 3 and 4) bring 
significant improvement. 

4.6.3.4. Adaptive mechanism associated with a mechanical observer 
As we have seen in section 4.6.3.2, the mechanical observer enables speed 

filtering and load torque estimation. The use of MRAS provides an estimation of the 
speed by going beyond the calculation of the sliding frequency that greatly depends 
on rotor resistance. For systems with a long sampling period, it is the inaccuracy of 
the numeric resolution in the prediction phase of the electrical Kalman filter. 

We use the same function Δ  than in the previous section, and the state equation 
of the mechanical observer contains terms proportional to :Δ  

* *
ω

em* * Crr r

d
d 0 0 0

f P P k
TJ J J

kt C C

ω ω⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− − ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + Δ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 [4.66] 

The prediction of states is done from the mechanical equation and correction of 
term Δ , resulting from current measures. Tlk  defines the quality and speed of 
estimation of the load torque, and ωk  the stability and quality of estimated speed 
filtering. 

The principle diagram of the MRAS and mechanical Kalman filter association 
are shown in Figure 4.31. 

The speed estimation law is given by the integral–differential equation deduced 
from the previous state equation: 

( )
t*

* *
em ω Tl

m 0

d 1 , , d
d

P PT k k X
t J J

ω ω ε τ τ
τ

= − + + Δ − Δ∫  [4.67] 
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Figure 4.30. Simulation results with adaptive estimation 
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Figure 4.31. Principle diagram of the association between the adaptive mechanism 
and the mechanical Kalman filter for the estimation of speed 

and the solution is: 

( ) ( ) ( )

( )m m

t
* *

0
t

( / ) ( / ) *

0

, , d 1

( ) , , dt t

G X G a V t

V t e e Xτ τ

ω ε τ τ

ε τ τ− −

= Δ + −

= ⋅ Δ ⋅

∫

∫
 [4.68] 

where ωTl

Tl
and

f kP K
G a

f P K
⋅⋅

= =
⋅

 

The last step consists of choosing G and a in order to satisfy the Popov criterion, 
maintaining adequate decoupling between the flux and torque, and having low noise 
levels on the signals. The transfer function between the estimated speed and quantity 
Δ  is given by: 

( )
( )

*
m

m

1
1
a p

G
p p

τω
τ

+ ⋅ ⋅
=

Δ + ⋅
 [4.69] 

If 1a < , we have a phase delay, and filtering is more efficient. 

If 1a > , we have an advance in phase, and looped system stability is better. 

TlK  is used to set the transfer function gain above, and ωk  is used to define a. 
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For the speed and torque profile defined previously (Figure 4.26 and section 
4.6.3.2), we present two series of results: 

1. Figure 4.32 in which a is set and G has three different values; 
2. Figure 4.33 in which G is set and a takes three different values. 

For the machine considered, the best compromise between speed of response and 
minimization of noises corresponds to values: a = 0.0036 and G = 11.1. 

4.7. Adaptive observer 

4.7.1. Introduction 

The structure of observation that we are now developing is a specific rotor flux 
observer. In fact, it must rebuild the two components of the rotor flux and estimate 
the speed at the same time. It is based on the MRAS technique, presented in section 
4.6.3.3 only for the estimation of speed and is applicable to the observation of the 
flux. This method consists of adapting the operation of an adjustable system to that 
of a reference model (Figure 4.34). The adaptation organ modifies the parameters of 
the adjustable system (observer) to obtain rotor flux *

rΦ  and speed *ω  by decrea-
sing the estimation error of stator currents. 

To create this observer, we can proceed in two ways. The first one uses an 
appropriate Lyapunov function, and its research is quite complicated. The second 
method, retained for our study, is based on the hyperstability theory of Popov 
(4.6.3.3 and [4.62]). The system is described by a state equation in stationary 
reference frame (αs, βs) where the dynamic matrix depends on speed *ω  ([4.58] and 
[4.59]). 

( )

* T1 2 4 2
*

1 2 2 4*
*

3 4
*

3 4

0 0 0 0
 

0 0 0 0,
1 0 0 00
0 1 0 00

a a a a b
B

a a a a bA
a a

C
a a

ω

ω
ω

ω

ω

⎡ ⎤− ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦= ⎢ ⎥
⎢ ⎥− ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

,  [4.70] 
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Figure 4.32. Estimation of load torque for a constant and G variable 
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Figure 4.33. Estimation of load torque with G constant and a variable 
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Figure 4.34. Principle of an adaptive system 

Matrix ( )*A ω  is antisymmetrical, and we will keep this characteristic for the 
creation of the observer. Gain matrix ( )*K ω  will have a structure that is written as: 

( )

*
1 2

*
2 1*

*
3 2 2

*
2 2 3

( / )

( / )

k k

k k
K

k k a

k a k

ω

ω
ω

ω

ω

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 [4.71] 

If a system is made up of a linear invariant ΣL part in the direct chain and a non-
linear part W  in the feedback chain (Figure 4.35), then it is said to be 
asymptotically stable if the hyperstability of Popov conditions are verified (section 
4.6.3.3 and [4.62]). 

 
Figure 4.35. Breakdown of the linear ΣL part and non-linear W part system 

The state equations of the estimation error and non-linear function W  are given 
in section 4.6.3.3. The block diagram is represented in Figure 4.28. 

According to Popov, the asymptotic stability of this system is equivalent to 
observer convergence. But this theorem only guarantees the convergence of state 
estimation (e = 0) and not that of the speed. However, convergence of e toward zero 
involves that of *ω  toward ω  since the equation of the error is 

( ) ( )( ) ( ) ( )( )* * *
ee A e A A X K K C eω ω ω ω= ⋅ − − ⋅ − − ⋅ ⋅  [4.72] 
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If the convergence of the observer is ensured, we get 

( ) ( )( ) ( ) rβ* * *

rα
0 0A A Xω ω ω ω

−Φ⎡ ⎤
− ⋅ = ⇒ − ⋅ =⎢ ⎥

Φ⎣ ⎦
 [4.73] 

For rα 0Φ ≠  or rβ 0Φ ≠ , we deduce that true speed ω  is equal to estimated 
speed *ω . 

4.7.2. Determination of observer gains 

We must define observer gains respecting the conditions of the Popov theory. 
Matrix P, not involved in the development of the observer, is used to prove the 
stability of the system, and it is chosen in order to make calculations easier. For 
example: 

1 3 4

3 4 2

1 0 0 1
where and

0 1 1 0
x I x I x J

P I J
x I x J x I

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 [4.74] 

Matrix Q becomes 

a I b I c J
Q

b I c J d I
ω

ω
⋅ ⋅ + ⋅ ⋅⎛ ⎞

= ⎜ ⎟⋅ − ⋅ ⋅ ⋅⎝ ⎠
 [4.75] 

with 

( ) ( )

( ) ( )( ) ( )

( ) ( )

2
1 1 1 3 3 3 4

2

1 1 4 3 2 4 2 4 1 3 3 2

2
2 1 2 3 1 1 4 4 2

2

2 4 3 2 4 4 2

2 2 2

1

1

2 2 2

ka a k x a k x x
a

b a k a x k x a a x a k x

kc a x k x a k a x x
a

d a a x a x a x

ω

ω

ω ω ω ω

ω

⎧ = + ⋅ + + ⋅ + ⋅ ⋅⎪
⎪
⎪ = + + ⋅ + − ⋅ + ⋅ ⋅ + + ⋅⎪
⎨
⎪ ⋅ = ⋅ ⋅ + − ⋅ − + + ⋅ − ⋅ ⋅⎪
⎪

= ⋅ ⋅ − ⋅ ⋅ + ⋅⎪⎩

 

We then demonstrate that Q is defined negative and P positive. For this, we turn 
Q into a diagonal form by canceling b and c factors: 

b = 0: 2
2 1 4 2 21 , 0, andk x x x a= = = =  

c = 0: 
( )
( )

2 4 2 3
3

4 1

a a a
x

a
α

α
− + ⋅

=
+

 [4.76] 



228     Electrical Actuators 

 

we write: 

1 1 1a kα = +  and 3 3 3a k= +α  

Q will be defined as negative if its diagonal elements are strictly negative. By 
noting: 

( )
( )

2 4 2 3

4 1

a a a
a

α
β

α
− + ⋅

=
+

 

Q and P become: 

( )
( )

1 3
2

2 4 2 2

2 0
0 2

I II
Q P

a a a I I a I

βα α β
β β

⋅⎛ ⎞⎛ ⎞+ ⋅ ⋅
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠

 [4.77] 

P will be defined as positive if all its main minors are strictly positive: 

2 4 1 2 3 12a a aβ α α α> ⇒ − − > ⋅ >  [4.78] 

Q will be defined as negative if: 

1 3 0α α β+ ⋅ <  [4.79] 

The association of these disparities [4.78] and [4.79] gives the condition for k3, 
definitely fixed when k1, which is involved in the adaptation of the law of ω, is 
defined. Then: 

( )1 2 3
1 2 3 3 3

2
0

a a
a a k

a
α

α α
− ⋅

< ⋅ < ⇒ − < <  [4.80] 

P is fixed, and eC  [4.62] is defined by the Popov theorem. 

4.7.3. Speed adaptation law 

4.7.3.1. Verification of the third condition of the hyperstability theory 

The *ω  adaptation law will be determined by using the third condition of Popov 
[4.62], which comes down to finding a lower bound of the function: 

( ) t T
0
ε df t W t= ⋅ ⋅∫  [4.81] 
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or: 

( ) ( )t
0

df t F S t t= ⋅ ⋅∫  [4.82] 

( )( ) [ ]

( )

T
e 1 2 3 4 1 2

rβ isβT
2

rα isα
*

C e a a I a I e

e
S t y a

e

F

ε α α α

ω ω

⎧ = ⋅ = − ⋅ + ⋅ ⋅ ⋅
⎪
⎪ ⎛ −Φ − ⎞⎡ ⎤ ⎡ ⎤⎪ = ⋅ ⋅ +⎜ ⎟⎨ ⎢ ⎥ ⎢ ⎥⎜ ⎟Φ⎣ ⎦ ⎣ ⎦⎪ ⎝ ⎠
⎪

= −⎪⎩

 [4.83] 

We choose adaptation law: 

( )*
0

d
t

L S t tω = − ⋅ ∫  [4.84] 

where L is the coefficient giving speed estimation. The dynamic of *ω  is set 10 
times faster than that of ω , for it to catch up. Consequently, we ignore the 
variations of ω , in relation to those of *ω : 

( ) ( ) ( ) ( )( )t* * 2 2
0

1 1d 0
2

F L S t f t F F t F t F
L L

ω ω ω= − = − = − ⋅ ⇒ = ⋅ ⋅ = −∫  [4.85] 

( ) ( )21If : 0
2

f t F t
L

≥ − ∀ . 

4.7.3.2. Parameters k1 and L1 

We have already verified the three conditions of the Popov hyperstability theory. 
We now define the characteristics of the law of adaptation that are fixed for values 
of L and 1k . By developing this law, we obtain [4.86]: 

[ ]* 1 2 3
2 1 2 304 1

d
ta

La T T T t
a

α α
ω

α
−

= − + +
+ ∫  [4.86] 

where [4.87]: 

1 isβ rα isα rβ 2 Φrφ rα Φrα rβ 3 Φrβ isα Φrα isβˆ ˆ ˆ ˆ, , andT e e T e e T e e e e= Φ − Φ = Φ − Φ = −  

The third term T3 of the integrant can be ignored in relation to the first T1, since 
the flux error is low in relation to the value of the reference flux (order two error is 
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ignored in relation to order one error). rθ  being the angle between the direction of 
the real flux and estimated flux; the second term becomes: 

( )( )t
2 r r0

sin da tθΦ ⋅ ⋅∫  [4.87] 

If the observer converges, the flux is stabilized in sinusoidal mode, r 0,θ =  
making it possible to ignore this term. The law of adaptation is reduced to: 

( )* 1 2 3
1 isβ rα isα rβ 1 20 4 1

ˆ ˆ d with
t a

L e e t L L a
a

α α
ω

α
−

= ⋅ ⋅Φ − ⋅Φ = − ⋅
+∫  [4.88] 

To determine L1, we study the estimated speed dynamic from the previous 
equation and the speed estimation error equation: 

*
ωe ω ω= −  [4.89] 

The result then is: 

( )
( )( )
( ) ( )

( ) ( ) ( )
( )

22 2
2 isα isβ

ω 4 1 ω 1 2 ω 2 2
rα rβ rα Φrα rβ Φrβ

2 2
1 2 isα isβ 1 2 rα Φrα rβ Φrβ

1 2 4 rβ Φrα rα Φrβ

1/

ˆ ˆ

ˆ ˆ

ˆ ˆ

a e e
e a e L a e

e e

L a e e L a e e

L a a e e

α

ω ω

⎛ ⎞+ −⎜ ⎟− + + =⎜ ⎟
Φ + Φ − Φ + Φ⎜ ⎟

⎝ ⎠

− + + Φ + Φ

− Φ − Φ

 [4.90] 

Since these electric variables are much faster than speed, the errors of the four 
electric variables quickly cancel out in relation to that of the speed. The previous 
equation can be approximated by 

( )
2

ω 4 1 ω 1 2 ω rˆ 0e a e L a eα− + ⋅ − ⋅ ⋅ ⋅ Φ =  [4.91] 

with: 1 1 1a kα = + . 

In order for the speed estimation error to cancel out, coefficient ( )4 1a α+  must 
be negative. The differential equation obtained is of the second order, defined by 

( )
22 *

n 4 1 n 1 2 r2 anda L aξω α ω= − + = − ⋅ ⋅ Φ  
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The choice of L1 is done in such a way that *ω  is at least 10 times faster than the 
closed loop speed. If Tm is the undampened period of speed ω  and Te is that of *ω : 

ŵe n m2 10.T Tπ ω= =  

Then gain L1 becomes: 

( )2

1 2* 2
2 r m

2 10
L

a T

π
=

− Φ
 [4.92] 

1k  sets dampening of we  according to the expression: 

4 1 1 m( )
40

a a k Tξ
π

+ +
=  [4.93] 

L1 and k1 are therefore defined by the conditions imposing the desired 
convergence of the estimation error. Once k1 is set, we determine k3 by relation 
[4.80] and all observer gains are defined. 

4.7.4. Simulation results and experimental results 

We tested the operation of the variable speed drive with the complete control 
implemented according to scenario [AND 96]. 

1. Establishment of nominal flux, r 0.2613 WbΦ = , at 0st = . 

2. Startup of the variable speed drive to its rated electric speed 270 rad/s  at 
0.2s.t =  

3. Imposition of a constant load torque, 0 1 NmC = , at 0.5s.t =  

4. Reversal rotation direction at 0.8st =  and maintenance of the generator 
operation from 1.6st =  to 2st = . 

5. Reset of the speed at 3 rad/s−  to 2st = . 

We can observe (Figure 4.36a) that the rotor flux is quickly installed, its 
observation is satisfactory, and it quickly converges at real value. Speed is also 
controlled in a very satisfactory manner (Ts = Tdec = 250.10−6 s). We must note that  
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speed and flux behaviors are satisfactory at every point in the variable speed drive 
operation and even at very low speed. 

In this case, we have complementary information on the torque and load torque 
(Figure 4.36b) that can be used for a possible compensation. 

 

Figure 4.36a. Responses of rotor flux and rotation speed, the straight line representsΦr and 
Φe (estimated flux) taken together or ωm and ωe (estimated speed) and the dotted line 

corresponds to flux and speed references, respectively 

 

Figure 4.36b. Responses of stator current, electromagnetic torque, and load torque. Tem is 
the straight line gradient and Cres the dotted line 
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In order to have correct operation of the low-speed variable speed drive with 
constant load torque, we have injected the 200-Hz sinusoidal signal in the flux axis. 
This is done to enrich the harmonic content of the voltage that will enable the 
correct estimation of the speed at the point of operation where ωs goes through zero. 
Figure 4.37 shows that the flux perfectly follows its reference when there is injection 
of the high-frequency signal, which is not the case when there is no injection. In this 
last case, speed and flux diverge. 

 

Figure 4.37. Estimation of speed at low speed with injection of 200-Hz sinusoidal signal  
in the flux axis 

Figure 4.38 shows the behavior of the variables that interest us. The flux very 
quickly responds and stays at a constant value during the transitory mode. 

The mechanical speed responds in 200 ms, with an over shoot of 2% as a 
Butterworth filter. We can verify that the static error of the speed estimation is 
lowered by 2% in motor operation as well as in generator operation. 
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Figure 4.38. Experimental results, response of rotor flux, rotation speed load torque,  
and stator current (image of the electromagnetic torque) 

Overspeed operation of the variable speed drive is shown in Figure 4.39. We can 
verify that the speed response time in the second transitory mode is almost the same 
as in the first. Therefore, response time is independent from the flux level. 

4.8. Variable structure mechanical observer (VSMO) 

4.8.1. Basic principle 

The speed observer presented here is developed according to the sliding mode 
principle [ARC 99, BUH 86, UTK 81]. This type of observer is interesting because 
of its robustness in terms of uncertainties of modeling applied. The mathematical 
bases of variable structure observation or control are the theory of discontinuous 
second member differential equations developed by Fillipov. 
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Figure 4.39. Experimental results corresponding to overspeed operation. Responses of flux, 
rotation speed, stator voltage and stator current 

A system described by the following differential equation: 

( )d ,
d

X f X t
t

=  [4.94] 

and ( )ˆ ,f X t , an approximate function where inaccuracies are increased by a known 
continuous function: 

( ) ( ) ( )ˆ , , ,f X t f X t F X t− <  [4.95] 
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The observer must provide an observed value for the state of system X̂  as close 
to its true value as possible. The S sliding surface is reached when the state observed 
equals the true state: 

( )ˆ 0S C X X= ⋅ − =  [4.96] 

We can then formulate the observer structure in the following way: 

( ) obs
d ˆˆ ˆ ,
d

X f X t U
t

= +  [4.97] 

Uobs corresponds to control to correct observation errors, and we must choose it 
for the S sliding surface to be a stable balance surface of the observer. We use the 
stability method defined by Lyapunov in which the Lyapunov V(S) function is 
written as 

( ) 21
2

V S S= ⋅  [4.98] 

This function is defined as positive, that is, 

( )0 0V =    and if   0S ≠ , then ( ) 0V S >  

In order for the S sliding surface to be attractive and stable, the first derivative of 
V(S) must be a function defined as negative. Or 

( ) ( )obs
d d ˆ 0
d d

V S S S S C f f U
t t

⎡ ⎤= ⋅ = ⋅ ⋅ − + <⎣ ⎦  [4.99] 

We now choose a control such as obs .sgn ( )U K S= −  with 0K > . The variable 
structure observer has as structure: 

( ) ( )d ˆˆ ˆ , sgn
d

ˆ ˆ

X f X t K S
t

Y C X

⎧ = − ⋅⎪
⎨
⎪ = ⋅⎩

 [4.100] 

Because of the discontinuous function K⋅sgn (S), the n order observation system 
has to converge to an order (n − m) surface, where m is the number of measurable 
outputs of the system observed. 
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4.8.2. Construction of the VSMO 

The action model of the system for the proposed observation uses the principle 
of electric and mechanical mode separation of the induction machine. In this way, 
the mechanical speed (its evolution is very slow compared to the evolution of 
electrical dimensions) can be considered as a parameter in electric equations. 

The VSMO is in the following form: 

m m m m m

m m m

d ˆ ˆ
d

ˆ ˆ

X A X B U
t

Y C X

⎧ = ⋅ + ⋅⎪
⎨
⎪ = ⋅⎩

 [4.101] 

with m
m

r

ˆˆ
ˆX

C

ω⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 state vector, m em ,U C=  and matrices Am, Bm and Cm defined, 

respectively: 

( )
p pm

m m mm m m, , and 1 0
0 0 0

P Pf
A B CJ J J

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

   1 1

2 2
and and gain vectors of the observer.

l k
L K

l k
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

The sliding surface is chosen; it involves the components of the state vector that 
can be obtained by measure, or as in the case studied where the rotation speed is 
obtained by the composition of electric angular frequencies (previously discussed in 
section 4.6.3.1). We then obtain: 

m m mmesˆS ω ω ω= − =  [4.102] 

The discontinuous function ( )msgnK ω⋅  maintains the course of the state vector 
observed on the sliding surface. The term mL ω⋅  widens the area of direct attraction 
of the sliding surface and enables better convergence of the variable observed 
toward the surface regardless of the initial conditions. However, this term is not 
necessary to the convergence of the observer. If vector K is zero, the observer then 
becomes a Luenberger deterministic observer where the determination of vector L 
gains can be obtained by a pole placement technique of the linearized system. 
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The global diagram of control with VSMO is illustrated in Figure 4.40 [ARC 
99]. We deduct the estimated value from the mechanical speed by the selfpiloting 
relation. This value then plays the role of “measure” to converge the observer 
toward the sliding surface. 

 

Figure 4.40. Global diagram of control containing the variable structure observer 

4.8.3. Determination of variable structure observer gains 

As was addressed in section 4.8.1, vector K gains are chosen in such a way that 
the sliding condition must be verified: 

d 0
d

S S
t

⋅ <  [4.103] 

In order to do this, we must characterize the observation error and its evolution. 
We obtain the differential system [4.101] characterizing the observation error mω : 

( )

( )

m n
m m l 1 m 1 m

m m

l 2 m 2 m

d sgn
d

d sgn
d

f p T l k
t J J

T l k
t

ω ω ω ω

ω ω

⎧ = ⋅ − ⋅ − ⋅ − ⋅⎪⎪
⎨
⎪ = − ⋅ − ⋅⎪⎩

 [4.104] 

By solving the sliding condition with the expression of mω  and in the case of a 
system sampled at Ts, we obtain: 

( ) pm m
1 1 m e s

m m m

f1 max or e × T
J

Pfk l T
J J

λ ω λ
⎛ ⎞ ⎛ ⎞

> − ⋅ − ⋅ − ⋅ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 [4.105] 
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The maxima reachable by the mechanical speed and load torque of the system 
studied helps in choosing gain k1 so that it can verify the disparity [4.103]. On the 
sliding surface, the order two systems are degenerated into a first-order system and 
equations [4.106] are verified: 

m

m

0 0
d d0 0
d d

S

S
t t

ω

ω

= ⇔ =

= ⇔ =
 [4.106] 

The dynamic of the system taken out of the observation error takes the following 
form: 

( )p
l 1 m

m
sgn 0

P
T k

J
ω− ⋅ − ⋅ =  [4.107] 

Consequently, the equation verified by the load torque observed on the sliding 
surface is written as: 

p2
l l

1 e m

d 1
d

PkT T
t k T J

λ−
= ⋅ ⋅ ⋅  [4.108] 

Gain k2 then sets the dynamic of the load torque observation convergence on the 
S sliding surface. 

4.8.4. Presentation of observer performances 

4.8.4.1. The shattering phenomenon 

The shattering phenomenon accompanies the non-linear techniques of control or 
observation. It is characterized by a variation band of the observed value, in the case 
studied, speed and load torque (Figure 4.41), around its true value. First, we examine 
it in the case where controlled speed is measured; the VSMO then operates in open 
loop in relation to control. The simulation result proposed in Figure 4.41 was 
obtained for the following test protocol [ARC 99]: 

1. {0 s–0.4 s}: machine magnetization; 
2. {0.4 s–1.4 s}: machine acceleration to rated speed; 
3. {1.4 s–2 s}: sinusoidal mode operation; 
4. {2 s–2.5 s}: load impact with a value 80% of nominal torque. 
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Figure 4.41. Illustration of the shattering phenomenon 

The commutation term chosen to build this VSMO involves the signum function 
(Figure 4.42a) of the error between a value that we can measure and its observed 
value. It makes it possible to maintain the observed value on the S sliding surface. 
This very quick phenomenon is a hindrance when the observer is introduced in the 
direct torque control. 

To reduce this effect, we can add a saturation function (Figure 4.42b) where 
discontinuities around zero are not as abrupt. 
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Figure 4.42. Commutation functions 

We can observe the improvement of the waveform on the observation of 
mechanical speed (Figure 4.43), and even more clearly on the observation of the 
load torque. 

 

Figure 4.43. Limitation of the shattering phenomenon with the help of a saturation function 

4.8.4.2. Rated speed operation 

We will now use the observer based on the structure proposed in Figure 4.40. 
The variable structure observer is defined by equation [4.100]. In this case, the  

a b
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commutation function “sgn” is replaced by the saturation function in order to limit 
the shattering phenomenon. The gains of matrix L are chosen with the help of a pole 
placement technique. 

Figure 4.44 presents the results obtained for the same test protocol as the one 
applied to the previous two simulations. We notice that observation errors of the 
mechanical speed and load torque are more significant than those in Figure 4.43. 

 

Figure 4.44. Observation of mechanical speed and load torque by the VSMO 

This test highlights the influence of inaccuracies on the value of the mechanical 
speed obtained by the selfpiloting relation, which plays a role of “measurable” 
variable in the VSMO. They can therefore be studied as measuring errors. The  
sliding surface that was chosen first, according to equation [4.102], is no longer 
suitable and must be replaced by surface S1: 

 



Linear Estimators and Observers for the IM     243 

 

( )1 m s rˆ ˆ ˆS ω ω ω ν= − + +  [4.109] 

where ν  represents estimation errors. 

If estimation errors are marked [4.102], then S1 sliding surface becomes a band 
around the true value to observe, and where the width is based on the upper 
boundary of inaccuracies [ARC 99]. 

In the literature, the variable structure observer is reputed for its remarkable 
robustness in relation to measuring errors notably. In reality, we notice that these 
measuring errors are reinjected by the term mL ω⋅  (linear part) and by the 
commutation term characteristic of non-linear observers ( )msgnK ω⋅ . This commu-
tation term participating in the VSMO convergence provides greater impassivity to 
measuring errors. It is disrupted by the other term that only widens the direct 
attraction area of the sliding surface and weakens observer robustness in  
relation to measuring errors. The results presented in Figure 4.45 are obtained for an 
observer structure where the term mL ω⋅  is cancelled as above: 

( )m m m m m m m
d ˆ ˆ ˆsgn
d

X A X B U K
t

ω ω= ⋅ + ⋅ + ⋅ −  [4.110] 

with m
m

ˆˆ
ˆX

Cr

ω⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 1

2

k
K

k
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. 

The protocol for the test development is as follows [ARC 99]: 

1. {0 s–0.4 s}: installation of the machine flux; 
2. {0.4 s–0.6 s}: machine acceleration to rated speed; 
3. {0.6 s–1.4 s}: sinusoidal mode operation; 
4. {at t = 1 s}: load impact with a 70% of nominal torque value; 
5. {1.4 s–1.8 s}: reversal of the load rotation direction of the machine; 
6. {1.8 s–3 s}: sinusoidal mode operation; 
7. {at t = 2.5 s}: disappearance of the constant load with a 70% of nominal 

torque value; 
8. {3 s–3.2 s}: deceleration to zero speed. 
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Figure 4.45. Observation of mechanical speed and load torque with VSMO  

structure [4.110]  

4.8.5. Low-speed operation 

We will now study the behavior of the VSMO at low speed. We recall that the 
introduction of an observer able to provide a mechanical speed value and a load 
torque value is particularly interesting when we want to compensate the influence of 
the latter. 

The results of the two following figures show the performances obtained for 
low-speed operation, at 6% of rated speed, with a control that is previously 
described (Figure 4.46) and where the load torque value is compensated from the 
variable structure observer with equation [4.110]. 
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Figure 4.46. Load torque compensation through the variable structure observer  
of the mechanical speed and load torque 

The load torque compensation enables the proportional–integral speed equalizer 
to be adapted to speed control, in accordance with the synthesis made in relation to 
its reference. In this way, loss of speed at load impact is lower than 2% of rated 
speed. The electromagnetic torque rise occurs in less than 20 ms. We then observe a 
torque rise dynamic of over 50 Tnom/s. 

The results obtained greatly depend on the VSMO value of commutation gain k2 
adjusting the convergence dynamic of the load torque observation value in the 
sliding surface [4.102]. The gain value k2 depends on the compromise between 
convergence speed of the observer and its sensitivity to measuring errors. The idea is 
then to establish a compromise between observation precision and electromagnetic 
torque response dynamic. 
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Figure 4.47. Observation of mechanical speed and load torque at slow operating speed 

4.8.6. Robustness in relation to parametric variations 

4.8.6.1. Mechanical parameter variations 

We test the previous VSMO in relation to mechanical parameter variations, that 
is, viscous friction fm and moment of inertia Jm. We modify the values of these 
parameters in the observer model. The case of a 50% underestimation of inertia and 
the effect of a 75% underestimation of the viscous friction is examined. The case of 
overestimations lead to conclusions similar to those presented Figure 4.48. 

Figure 4.48 illustrates an operation for the following test protocol: 

1. {0 s–0.4 s}: machine fluxing; 
2. {0.4 s–1.4 s}: machine acceleration to rated speed; 

3. {1.4 s–2 s}: sinusoidal mode operation; 
4. {2 s–2.5 s}: load impact with a value of nominal torque. 
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Figure 4.48. Speed and pump torque response observed at a variation of mechanical 
parameters: (a) 

obsm m0.25f f= × , (b) 
obsm m0.5J J= ×  
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These first two reports illustrate the influence of an underestimation of the 
viscous friction factor (a) and the last two illustrate the effect of an underestimation 
of inertia (b). We can observe that these two errors are processed by the observer as 
if it were an additional load torque. In case (a), this gap corresponds to a term 

m mf ωΔ ⋅ , and in the second case (b), it corresponds to an additional fictitious inertial 
load [ARC 99]. However, the gap between observation of load torque and true load 
torque is completely offset by the regulation maintaining the observed speed at its 
reference. We thus confirm the global insensitivity of the sensorless control to 
variations of the installation’s mechanical parameters. 

4.9. Conclusion 

The estimation and observation problem discussed in this chapter is at the heart 
of a methodology, leading to research in efficient and powerful control of an 
induction machine desired by the industrial world. Although it is economical to 
develop and inexpensive to operate, the induction motor drive (of torque, rotation 
speed, and/or position) requires vector control with a flux that must have imposed 
orientation. Consequently, any vector control requires excellent knowledge of the 
flux vector represented by its module and phase. Since this vital variable is not 
directly accessible, it must be reconstituted as reliably as possible with the help of  
flux estimators or observers. These mathematical algorithms are simply indirect 
sensors, characterized by an inherent dynamic and able to define the flux module 
and its position in a more reliable manner. Although the open loop estimation 
structures are simple, they lack parametric robustness and their dynamic is greatly 
linked to that of the system. The different observer structures function in closed 
loop, their dynamic is independent from that of the system, and their parametric 
robustness is better than the estimators. Both structures can be defined in the 
different reference frames, linked to stator, rotor, or rotating field. The search for a 
model for an observation is therefore a very important step and, as was presented, 
the stationary reference frame is the best one adapted for flux observation and 
estimation. Deterministic observers and estimators suppose that the model is 
perfectly well known and they ignore the hazards linked to noises from the system 
and measures. Since precise knowledge of the system is impossible because of the 
different uncertainties, stochastic observers were developed guaranteeing more 
reliable, efficient, and powerful overall operation of the variable speed drive. The 
Kalman filter made it possible to consider the characteristics of noises and system 
imperfections, while ensuring parametric robustness. These structures were 
introduced in different vector controls known for their performance and high 
dynamic. But these different strategies are very often associated with a suppression 
of the mechanical sensor, leading to a search for sensorless control. In this chapter, 
“partial” estimation or observation methods were presented; they help reconstitute the 
rotation speed without questioning the initial structure of the control working with the 
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sensor. It is important to carefully verify the performances of the induction variable 
speed drive in every aspect of operation and especially at low speeds. In order to 
improve the global behavior of the variable speed drive, we must use a global flux 
observation and speed method. 

4.10. Bibliography 

[AND 96] ANDREAS PURWOADI M., Réglage non linéaire du variateur de vitesse asynchrone 
sans capteur de vitesse, Doctoral Thesis, INPT, Toulouse, June 1996. 

[ARC 99] ARCKER-HISSEL A.M., Contrôle direct du couple électromagnétique de machines 
asynchrones de grande puissance, Doctoral Thesis, INPT, Toulouse, February 1999. 

[BUH 86] BÜHLER H., Réglage par mode de glissement, Presses polytechniques romandes, 
Switzerland, 1986. 

[CAR 95] CARON J.P., HAUTIER J.P., Modélisation et commande de la machine asynchrone, 
Editions Technip, Paris, 1995. 

[CHA 83] CHATELAIN J., Machines électriques, vol. 1, Editions Dunod, Paris, 1983. 

[BEN 93] BEN AMMAR F., Variateur de vitesse de hautes performances pour machine 
asynchrone de grande puissance, Doctoral Thesis, INPT, Toulouse, April 1993. 

[FOR 97] DE FORNEL B., PIETRZAK-DAVID M., ROBOAM X., “State observers for control of 
A.C., variable speed drives”, EPE-PEMC, 7th International Power Electronics and 
Motion Control Conference and Exhibition, vol. 2, p. 1–7, Budapest, Hungary, September 
2-4, 1997. 

[JAC 95] JACQUOT B., Conception, étude et réalisation des algorithmes de commande des 
systèmes de traction asynchrone pour les TGV de nouvelle génération, Doctoral Thesis, 
INPT, Toulouse, December 1995. 

[JAN 94] JANSEN P., LORENZ R., “A physically insightful approach to the design and accuracy 
assessment of flux observers for field oriented induction machine drives”, IEEE 
Transactions on Industry Applications, vol. 30 no. 1, p. 101–109, January 1994. 

[KAL 82] KALMAN R.E., “A new approach to linear filtering and prediction problems”, 
Transactions of the ASME. Series D, Journal of Basic Engineering, p. 35-45, 1982. 

[LUE 71] LUENBERGER D.G., “An introduction to observers”, IEEE Transactions on 
Automatic Control, AC–16, p. 596-603, December 1971. 

[OUR 95] OURTH T., Commande vectorielle d’un moteur asynchrone sans capteur de vitesse. 
Observateur déterministe de flux rotorique, Doctoral Thesis, INPT, Toulouse, November 
1995. 

[PIE 88] PIETRZAK-DAVID M., Algorithmes de commande d’un variateur électrique 
asynchrone: contrôle dynamique du flux, commande optimale en position, Doctoral 
Thesis, INPT, Toulouse, 1988. 



250     Electrical Actuators 

 

[PIE 00] PIETRZAK-DAVID M., DE FORNEL B., ROBOAM X., “Estimations et observations 
déterminismes et stochastiques des états électromagnétiques”, Commande des moteurs 
asynchrones, vol. 2, Hermes, Paris, 2000. 

[POP 73] POPOV V.M., Hyperstability of Control System, Springer-Verlag, Berlin, 1973. 

[ROB 92] ROBOAM X., HAPIOT J.C., DE FORNEL B., ANDRIEUX C., “Contrôle d’une  
machine asynchrone par estimation robuste de la vitesse”, Journal de Physique III, no. 2,  
p. 439-453, 1992. 

[SIA 92] SIALA S., Motorisation asynchrone d’un robot mobile. Observation et régulation du 
flux, Doctoral Thesis, INPT, Toulouse, February 1992. 

[SCH 92] SCHAUDER C., “Adaptive speed identification for vector control of induction motor 
without rotational transconductors”, IEEE Transactions on Industrial Applications,  
vol. 28 no. 5, 1992. 

[UTK 81] UTKIN V.I., Sliding Modes in Control Optimization, Springer-Verlag, Berlin, 1981. 

[WES 94] VON WESTERHOLT E., Commande non linéaire d’une machine asynchrone, 
Doctoral Thesis, INPT, Toulouse, March 1994. 

[VUL 98] VULTURESCU B., BOUSCAYROL A., IONESCU F., “Model influence on simulation of 
induction machine vector control”, Advanced Topics in Electrical Engineering 
Conference, ATEE-98, Bucharest, p. 137-142, 1998. 




