
Chapter 5 

Decomposition of a Determinist Flux Observer 
for the Induction Machine: Cartesian and 

Reduced Order Structures 

5.1. Introduction  

In order to precisely control the torque of an induction actuator, its flux must also 
be controlled. Unfortunately, its direct measure is tricky and relatively expensive. It 
is rebuilt through current and/or voltage measures.  

There are two methods for flux reconstruction. The first one, estimators, uses an 
analytical model of the machine connecting the flux and measurable variables 
[VER 88]. This reconstruction is sensitive to disruptions and model errors. To offset 
this lack of precision, we must add complex control techniques [WAN 97]. Another 
solution is to use closed loop models, called observers [VER 88]. The loop gain then 
minimizes the estimation error. We can note that there are deterministic and 
stochastic strengths of observers [PIE 00] (Chapter 4). The second considers 
measurement and calculation of noises (e.g. Kalman filter). But this advantage is 
offset by a very delicate determination of gains and a very calculation time-intensive 
implementation [DU 95].  

Two specific structures of flux observers are presented in this chapter to  
facilitate the real-time implementation of the estimation algorithm. The first 
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structure, the Cartesian observer [BOU 95a], proposes a breakdown into two sub-
observers based on the axes of the two-phase reference frame. These coupled 
subsystems facilitate the synthesis of observation gains and lead to a simplification 
of discrete algorithms. The second structure, the reduced order observer [NIL 89], 
proposes a breakdown of the state vector into a measurable part and a non-
measurable part (to estimate). The second part alone is used.  

This chapter is divided into three sections. First (section 5.2), models of the 
induction machine are presented briefly to establish the common foundations of the 
two structures studied. Section 5.3 is dedicated to Cartesian observers. Following  
an assessment of the different possible models, a specific structure is detailed. 
Section 5.4 focuses on reduced order observers. After a review of the different 
possibilities, the most traditional structure is studied.  

5.2. Estimation models for the induction machine 

The goal of this preliminary part is to define the models of the induction machine 
that can be used to define Cartesian or reduced order observers for estimating its 
fluxes. A more detailed description of the different induction machine models is 
proposed in Chapter 4. We will only present here the data necessary to clarify this 
chapter. The hypotheses and validity ranges of the different structures studied will 
be deduced from the models presented.  

5.2.1. Park model of the induction machine 

5.2.1.1. A dynamic model for control 

Control and estimation of the induction machine require a dynamic model precise 
and simple enough to consider real-time implementation. The Park transformation 
enables us to use an equivalent orthonormal two-phase model satisfying this 
objective. The criterion for speed of resolution, linked to the model’s simplicity, is 
all the more important as the use of Cartesian or reduced order observers is meant to 
make real-time implementation easier while ensuring good estimation robustness.  

The Park transformation represents a change in reference between the true  
three-phase variables and those of the equivalent two-phase model. The use of an 
orthonormal reference for all the (stator and rotor) variables leads to certain 
simplifications of the model. Other simplifications are obtained by a judicious 
choice of the reference (see Chapter 4).  
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5.2.1.2. Reference changes 

Different three-phase references must first be taken into consideration  
(Figure 5.1): reference (1S, 2S, 3S), supporting stator windings and the reference (1R, 
2R, 3R), supporting those of the rotor (true or fictitious windings like those of the 
squirrel-cage machine). Reference (1R, 2R, 3R) runs at rotation speed ωr/s

1 in relation 
to the stator. This rotation speed (often called electrical angular frequency ωe) is 
directly linked to that of shaft Ω through the number of pole pairs np. The angular 
position of the rotor reference in relation to that of stator θ r/s (electrical position) is 
linked to the angular position of rotor θ : 

r/s e p r/s p
d d
d d

ω ω θ θ= = Ω = =n n
t t

 [5.1] 

We define a rotating orthonormal reference (d, q) common to all variables used 
(Figure 5.1). It has an angular position (angular frequency) θd/s

2 (ωd/s) in relation to 
reference (1S, 2S, 3S), and an angular position (angular frequency) θd/r

3 (ωd/r) in 
relation to (1R, 2R, 3R). The different positions (angular frequencies) are thus 
connected:  

d/s d/r r/sθ θ θ= +  or d/s d/r pω ω= + Ωn  [5.2] 
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Figure 5.1. Different study references 

                           
1. index r/s for angular frequency (phase shift) of rotor (r) in relation to stator (s). 
2. index d/s for angular frequency (phase shift) of axis d in relation to stator (s). 
3. index d/r for angular frequency (phase shift) of axis d in relation to rotor (r). 
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Angular frequency ωd/s corresponds to ωs (angular frequency of stator voltage) 
in steady state sinusoidal mode only, which explains the use of different indices.  

In the case of reduced and Cartesian observers, the reference linked to the stator 
(αS, βS) is the preferred study reference. It is deducted from the general reference by 
canceling the phase-difference angle between axis d and axis 1S, hence:  

d/s

d/r p

0ω
ω

⎧ =⎪
⎨

= − Ω⎪⎩ n
 [5.3] 

The Park transformation makes a reference change between an original three-
phase reference and a two-phase orthonormal reference shifted by angular position ρ 
[CHA 83]. 

We will only present the simplified version that does not take into consideration 
the homopolar component (hypothesis of balanced three-phase variables):  

[ ]

2π 2πcos cos cos
3 32( )

3 2π 2πsin sin sin
3 3

P
ρ ρ ρ

ρ
ρ ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞− − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 [5.4] 

Two Park transformations are then necessary to define an equivalent model in a 
single reference (d, q), one in relation to the stator three-phase reference and the 
other in relation to the rotor three-phase reference (two different variable angles):  

( ) ( )d/s d/rdq 1s2s3s dq 1r2r3r  x P x x P xθ θ= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  [5.5] 

in reference (αS, βS) θd/s = 0.  

5.2.1.3. The model in reference (αS, βS )  
The dynamic model in any reference (d, q) is obtained by the two appropriate 

transformations [5.5] and described in Chapter 4. 

The model in reference (αS, βS) is obtained by using the angles of transformation 
from [5.3]. 

The first equation system involves stator voltage, Vs (rotor Vr), stator current, Is 
(rotor Ir), and stator flux, Φs (rotor Φr), through the stator resistance, Rs (rotor Rr):  
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 [5.6] 

The second equation system expresses the creation of fluxes according to the 
different currents through stator Ls, rotor Lr, cyclic inductances and mutual cyclic 
inductance between the stator and rotor Msr:  

sα s sα sr rα

sβ s sβ sr rβ

rα sr sα r rα

rβ sr sβ r rβ

 

 

Φ = +⎧
⎪ Φ = +⎪
⎨ Φ = +⎪
⎪ Φ = +⎩

L i M i
L i M i
M i L i
M i L i

 [5.7] 

5.2.2. State models for Cartesian and reduced observers 

5.2.2.1. State representation of an induction machine 

The different state representations of the induction machine are presented in 
Chapter 4. In the hypothesis of mechanical and electromagnetic mode separation, the 
induction machine is a four-order state model.  

For a squirrel-cage induction machine, the power is provided through stator 
voltage corresponding to control vector U. Output vector Y is made up of stator 
current. The state representation is thus defined with several possibilities in terms of 
the choice of state vector X, which will set the dynamic [A], control [B], and 
observation [C] matrices:  

[ ] [ ]
[ ]

d
 d

⎧ = +⎪
⎨
⎪ =⎩

X A X B U
t

Y C X
 [5.8] 

with: 

sαβ sα sβ sαβ sα sβ

T T
U V V V Y I I I⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦  [5.9] 
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In the context of flux estimation for a squirrel-cage induction machine, the state 
vectors with rotor current (non-accessible) or those with no flux are not used: only 
three solutions are appropriate.  

5.2.2.2. State vector made up of stator currents and fluxes 

The state vector is made up of axes α and β components of the stator current and 
flux:  

sα sβ sα sβ⎡ ⎤= Φ Φ⎣ ⎦
T

X i i  [5.10] 

The matrices of state representation come from this choice:  

[ ]

s r p r r p

p s r p r r

s

s

( ) /
( ) /

0 0 0
0 0 0

− + − Ω − Ω⎡ ⎤
⎢ ⎥Ω − + Ω⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

aR bR n aR L an
n aR bR an aR L

A
R

R

 

[ ] [ ]

0
0 1 0 0 0

and
1 0 0 1 0 0
0 1

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

a
a

B C  [5.11] 

2
sr

s r sr s r

1 1 1 1σ σ
σ σ σ

−
= = = = −

M
a b c

L L M L L
 [5.12] 

This representation is used to estimate the stator flux. We can also note that the 
output vector corresponds to a part of the state vector: this property is relatively 
important in terms of the precision and robustness of the different observers studied 
(see section 5.4).  

5.2.2.3. State vector made up of stator currents and rotor fluxes 

The state vector is made up of stator currents and rotor fluxes: 

sα sβ rα rβ⎡ ⎤= Φ Φ⎣ ⎦
T

X i i  [5.13] 
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New state matrices are obtained:  

[ ]

( )
( )

s r r r p

s r p r r

r sr r r r p

r sr r p r r

1 0 /
0 1 /

/ 0 /
0 / /

σ
σ

− − − Ω⎡ ⎤
⎢ ⎥− − − − Ω⎢ ⎥= ⎢ ⎥− − Ω
⎢ ⎥

Ω −⎢ ⎥⎣ ⎦

aR bR cR L cn
aR bR cn cR L

A
R M L R L n

R M L n R L

 

[ ] [ ]

0
0 1 0 0 0

and
0 0 0 1 0 0
0 1

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

a
a

B C  [5.14] 

This representation also helps in the estimation of the rotor flux. This state model 
has the same properties as the previous model [5.11] and can therefore lead to a 
rotor flux reduced observer and good robustness of observers (output vector 
corresponding to a part of the state vector).  

5.2.2.4. State vector made up of stator fluxes and rotor fluxes 

The state vector is made up of stator and rotor fluxes: 

sα sβ rα rβΦ Φ Φ Φ⎡ ⎤= ⎣ ⎦
T

X  [5.15] 

New state matrices are obtained:  

[ ]

s s

s s

r r p

r p r

0 0
0 0

0 Ω
0 Ω

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

aR cR
aR cR

A
cR bR n

cR n bR

 

[ ] [ ]

1 0
0 1 0 0

and
0 0 0 0
0 0

⎡ ⎤
⎢ ⎥ −⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ −⎣ ⎦
⎢ ⎥
⎣ ⎦

a c
B C

a c
 [5.16] 
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This representation helps in the estimation of these two fluxes. Even though this 
model may seem more universal than the previous ones, it cannot result in reduced 
order observers (no variables can be easily measured in the state vector). In addition, 
the convergence of the output vector in the case of an observer (difference between 
the true output and estimated output) is not ensured because the state vector, matrix 
[C], contains parameters that are sensitive to robustness problems.  

5.2.3. Determination of the flux in the reference used by the control 

5.2.3.1. Different study references 

We show that reference (αS, βS) (d aligned with a stator phase) is the reference 
providing the closest dynamic behavior to the real squirrel-cage machine [PIE 88, 
VUL 98] because it uses a linear transformation for stator variables (zero-angle Park 
transformation called Concordia transformation).  

However, control reference (d, q) is generally different, and it is most often 
linked to the flux involved. In relation to the control reference, the estimation also 
gives the Cartesian components of this flux, and we can easily calculate its polar 
components:  

( )2 2
d q q darg actg /θΦΦ = Φ + Φ = Φ = Φ Φ  [5.17] 

5.2.3.2. Flux estimators 

The notion of flux estimator is associated with a copy of a model (or part of a 
model) of the induction machine in order to rebuild one (or more) flux with open 
loop from accessible dimensions (stator voltage and current, and speed or position 
for the squirrel-cage machine).  

In general, a single flux is used in the most common dynamic controls of 
induction machines. In this case, a single flux must be rebuilt and the use of a part of 
the state model is sufficient if we choose a state vector containing stator current. We 
can thus speak of reduced order estimator.  

For example, to estimate the rotor flux, reference (d, q) linked to the rotor flux 
offers the simplest model [LEO 91]. The rotor equations alone are used in [5.5]:  
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 [5.18]  

The angle of transformation of measured stator current is deducted from the 
integration of angular frequency ωd/s, which comes from ωd/r and rotation speed 
[5.2].  

5.2.3.3. Flux observers 

Different induction machine models can be used for the estimation of flux. Some 
require more hypotheses in addition to the Park transformation (mode decoupling, 
etc.), decreasing their range of validity. The choice of an estimation model depends 
on the flux considered and accessible variables available on the machine. Most 
estimators correspond to the use of part of a model chosen. We can thus speak of 
reduced order estimators. But we must note that these open loop structures raise 
problems of robustness which are often tricky for induction machine dynamic 
controls based on a good understanding of one of the fluxes.  
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Figure 5.2. Structure of a deterministic state observer 

Flux observers [VER 88] correspond to closed loop estimators (Figure 5.2). They 
offer better precision and robustness to estimate fluxes. On the other hand, they 
require a lot of calculating time as compared to estimators. In order to reduce this 
disadvantage, Cartesian observers and reduced order observers are intermediate 
solutions.  
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5.3. Cartesian observers 

This section is dedicated to Cartesian observers which are simply a specific 
mode of representation of complete order observers for the induction machine. First, 
the structure of these flux rebuilders is presented, as well as the different models that 
can be used. The study of a specific Cartesian observer is then detailed to illustrate 
more concretely these rarely used structures.  

5.3.1. Principle and structure of Cartesian observers 

5.3.1.1. Breakdown of a complete observer 

A complete observer is based on an four-order state machine model (see  
section 4.2 of Chapter 4). We can break it down into two order-two sub-observers 
according to each axis of the study reference (Cartesian components). These sub-
observers are then coupled by coupling matrices [Kα] and [Kβ] (Figure 5.3).  
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sub-observer d 

Vsd Bd
Isd Cd

Xd+

+

Ld

Xd

+
+- Isd 

+ +

Kq

Aq

sub-observer q 
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+

+

Lq

Xq

+
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+ +
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Figure 5.3. Structure of a Cartesian observer 



Decomposition of a Deterministic Flux Observer     261 

 

5.3.1.2. Coupled sub-observers 

The state vector is broken down into two state vectors and each one only 
contains the variables of the same axis. Each sub-observer then has one of the 
Cartesian components of the desired flux. Control input of axis α sub-observer (and 
of β ) is voltage Vsα (Vrβ) and its output is isα (irβ), respectively. On the other hand, 
the different state vectors lead to several possibilities for the two state sub-vectors 
with two dimensions. 

The equations of each sub-observer reveal additional input in relation to the 
traditional observer:  

[ ] [ ]α α α α βα sα sα sα α

αsα α

β β β β αβ sβ sβ sβ β

βsβ β

d ˆ ˆ ˆˆ( )
d 

ˆ ˆ

d ˆ ˆ ˆˆ( )
d 

ˆ ˆ

⎧ = + + − +⎪
⎨
⎪ =⎩
⎧ ⎡ ⎤ ⎡ ⎤= + + − +⎪ ⎣ ⎦ ⎣ ⎦
⎨
⎪ =⎩

T

T

X A X B v L i i K X
t

I C X

X A X B v L i i K X
t

I C X

 [5.19] 

These additional terms, [Kα] Xα and [Kβ] Xβ, correspond to couplings between 
the two axes (thus between the two sub-observers). The two gain matrices Lα and Lβ 
have to be determined to ensure good dynamics and precision of sub-observers.  

We can make the connection between this Cartesian representation and the 
representation in a complex form sometimes used [VER 88]. The latter is based on a 
two-dimension state vector with components that are complex variables associated 
with reference (αS, βS):  

( ) ( )1α 1β 2α 2β

T
X x jx x jx⎡ ⎤= + +⎣ ⎦  [5.20] 

We then obtain an order two equivalent complex model representing the real 
order four global models. However, variables are not grouped by axis, and cannot 
induce coupling matrices at the basis of the properties of the Cartesian observer. The 
synthesis and discretization methods turn out to be very different [BOC 91]. 

5.3.1.3. Characteristics of Cartesian observers 

In the continuous field, the two sub-observers can be considered as independent. 
Because of this, their synthesis becomes simplified (e.g. pole placement for a second 
order system). We can observe that the discretization of this type of algorithm will 
require additional hypotheses linked to coupling input (see example in section 
5.3.4). 
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The real-time implementation is thus made easier because it must then solve two 
two-order state systems instead of a single four-order system (see the example 
discussed). 

5.3.2. Different Cartesian observers 

The three state vectors considered for the flux estimation can lead to Cartesian 
observers for a squirrel-cage induction machine. Three study references can be used 
first: reference (αS, βS) linked to the stator (direct access to stator current), the 
reference linked to the rotor flux or the reference linked to the stator flux (direct 
estimation of their polar coordinates). Reference (αS, βS) is the most widely used 
because it is based on the prior knowledge of the angle. We will only limit ourselves 
to this case.  

5.3.2.1. Cartesian observer associated with the stator current and stator flux 

This observer is based on model [5.11] where the state vector has the 
components of axis αS and βS of the stator currents and stator fluxes [5.10] in 
reference to reference frame (αS, βS): 

[ ]α βsα sα sβ sβ⎡ ⎤= Φ = Φ⎣ ⎦
TTX i X i  [5.21] 

The new matrices of this specific representation are deducted from global 
representation [5.11]: 

[ ] [ ]s r r r p p
α β α β

s

( ) /
 

0 0 0
− + − Ω − Ω⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤= = = − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− ⎣ ⎦⎣ ⎦

aR bR aR L n an
A A K K

R
 

[ ]α β α βand 1 0
1

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦

a
B B C C  [5.22] 

We can notice the symmetry of both axes α and β sub-models. This property can 
reveal equality between the two observation Lα = Lβ gain matrices. On the other 
hand, the new dynamic matrices [Aα] and [Aβ] are stationary (no term linked to 
speed). The non-stationarities were reported in coupling matrices [Kα] and [Kβ]. 

This Cartesian observer can help in a robust estimation of stator flux for controls 
based on flux control. This structure has actually been used for DTC control of an 
induction machine requiring very good knowledge of the stator flux [BEL 00]. 
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5.3.2.2. Cartesian observer associated with the stator current and rotor flux 

This observer is based on state model [5.14] where the state vector is made up of 
the stator currents and rotor fluxes [5.13] in reference (αS, βS): 

[ ]α βsα rα sβ rβ⎡ ⎤= Φ = Φ⎣ ⎦
TTX i X i  [5.23] 

The new matrices of this representation are deducted from global representation 
[5.14] considering the simplifications caused by reference (αS, βS): 

[ ] [ ] ps r r r
α β α β

pr sr r r r

0(1 ) /
0/ /

σ Ω− − − ⎡ ⎤⎡ ⎤
⎡ ⎤ ⎡ ⎤= = = − = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ − Ω−⎣ ⎦ ⎣ ⎦

cnaR bR cR L
A A K K

nR M L R L
 

[ ]α β α βand 1 0
0

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦

a
B B C C  [5.24] 

We observe the same properties of symmetry and reporting of non-stationarities 
as the previous model [5.22]. This observer can help in a robust estimation of rotor 
flux for controls based on flux control. 

5.3.2.3. Cartesian observer associated with the stator flux and rotor flux 

This observer is based on state model [5.16] where the state vector is made up of 
the stator currents and rotor fluxes [5.15] in reference (αS, βS):  

[ ]α α β βsα rα sβ rβ      ⎡ ⎤= Φ = Φ Φ = Φ = Φ Φ⎣ ⎦
TTX X  [5.25]

  

The new matrices of this representation are deducted from the global 
representation [5.16] considering the simplifications caused by reference (αS, βS):  

[ ] s s
α β α β

pr r

0 0
[

0 Ωc
− ⎡ ⎤⎡ ⎤

⎡ ⎤ ⎡ ⎤= = − = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ −−⎣ ⎦ ⎣ ⎦

aR cR
A A K K

nR bR
 

[ ]α β α β

1
and

0
⎡ ⎤

= = = = −⎢ ⎥
⎣ ⎦

B B C C a c  [5.26] 

We observe the same properties of symmetry and reporting of non-stationarities 
as the previous models [5.22] and [5.24]. 
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This Cartesian observer can help in a robust estimation of stator and rotor fluxes 
for controls based on the control of one of those fluxes. This structure was actually 
implemented for a Cartesian vector control of stator flux in reference (αS, βS) 
[BOU 95a]. 

Even though this observer seems to be more universal than the first two 
(reconstruction of both fluxes), we must realize that observation matrices Cα and 
Cβ contain parameters sensitive to robustness problems. Because of this, the 
convergence of currents estimated with true currents does not condition the 
convergence of fluxes. It is, however, clearly improved in relation to that of an 
estimator type structure [BOU 99]. 

5.3.3. Synthesis of the Cartesian observer linked to stator and rotor fluxes 

In order to present a complete study of Cartesian observer, we chose the 
structure with a state vector that contains the stator and rotor fluxes in reference  
(αS, βS). 

5.3.3.1. Observability 

The observability of this structure by the Kalman criterion leads to writing the 
four line determinant of the matrix of observability because the system is of order 
four [BUH 88]. We choose to study the determinant of the first four lines: 

4 2 2 2 2 2 2
s r p r( ) [ ( ) ( ) ]Δ = Ω Ω + −c p R R a n ab c R  [5.27] 

It demonstrates the inobservabilty of this zero speed system (zero determinant) 
and rigorous observability for any other operation point (constant ab− c2, image of 
magnetic leaks, strictly positive for an induction machine). 

This result is consistent because, at zero speed, coupling disappears (see [5.26]): 
the two sub-observers are then completely independent (and we demonstrate their 
rigorous observability for this operation point [BOU 95a]). It thus seems that the 
system can be observed locally: Φα is observable through Isα and Φβ through Isβ. 

5.3.3.2. Calculation of observer gains 

In order to conserve the symmetry properties of model [5.18] for the Cartesian 
observer, gain matrices are chosen identical:  

[ ]α β 1 2= = TL L l l  [5.28] 
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The estimation errors of the two sub-observers are deducted from the system’s 
state model [5.16] and from the Cartesian observer’s state model [5.28]: 

[ ] [ ]α α α αφα φα φβ

β β β βφβ φβ φα

d
d 

A L C K
t

d A L C K
dt

ε ε ε

ε ε ε

⎧ = − +⎪⎪
⎨
⎪ ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦⎪⎩

 [5.29] 

By imposing Lα = Lβ, we impose the dynamics of each estimation error (action on 
the equivalent dynamic matrix [Ai − LiCi]). The system associated with the error of 
observation is made up of two coupled sub-systems (Figure 5.4). We can express the 
transfer function of the system by:  

[ ] [ ] 11
φα α α α β β β β φα( ) ( )ε α ε

−− ⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦p sI A L C K sI A L C K p  [5.30] 

εφβ
εφα

+

+

Aα-LαCα

Kα Kβ

εφβ

+

+

Aβ-LβCβ
 

Figure 5.4. Block diagram of the error of observation 

We then deduce the characteristic equation of the estimation error, which will set 
the convergence dynamics of estimated values with the true values:  

( ) ( ) ( ) ( )2 2
p p p p 0s s x jn k jn z s s x jn k jn z⎡ ⎤ ⎡ ⎤+ + Ω + + Ω + − Ω + − Ω =⎣ ⎦ ⎣ ⎦  

with: 

2

s 1 r 2 s 1 s( ) , ( ), ab cx a R l bR cl z a R l k R
a
−

= + + − = + =  [5.31] 

We obtain two combined complex pole pairs. A complex study helps us choose a 
judicious placement of the four poles (Figure 5.5) [BOU 95a]. 

We align the poles with the same real part to avoid operating in the unstable zone 
(combined complex double poles), and we set the converge dynamics chosen by the 
real associated part. This strategy leads to the following gains:  
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  [5.32]  
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Figure 5.5. Cartesian observer pole: (a) general case; (b) choice of gains used  

This choice leads to a stable solution and a sufficiently quick convergence of the 
estimation error in the range of speed used (Figure 5.5).  

We notice that a different gain calculation is necessary for zero speed because of 
the completely decoupled structures in this case. In practice, following sensor 
problems, we operate in estimator mode for low speeds (with empirical 
determination of commutation velocity) [BOU 95a].  

5.3.3.3. Equivalence with a complete order observer 

The equations of the Cartesian observer [5.19] can be rewritten with a four-order 
state vector:  

[ ] [ ] [ ] [ ]

[ ]

s ss

s

d ˆ ˆ ˆ ˆ( )
d 

ˆ ˆ

X A X B V L I I K X
t

I C X

⎧ ′= + + − +⎪
⎨
⎪ =⎩

 [5.33] 

(a) (b) 
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ncR bR

− ⎡ ⎤⎡ ⎤
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l
l

L
l
l

 [5.34] 

This new format demonstrates that the Cartesian observer is actually a complete 
order observer with a specific gain matrix. The use of the Cartesian representation 
can be seen as a simple way to achieve the synthesis of a complete order observer.  

5.3.4. Discretization of the Cartesian observer linked to stator and rotor fluxes 

The properties of the Cartesian observer will be taken advantage of during its 
discretization for real-time implementation.  

5.3.4.1. Discretization of a complete order observer 

A discrete state model must be used for real-time implementation. It is deducted 
from the continuous state equation [5.8] using the hypothesis that input vector U is 
constant between two sampling periods [BUH 86]. We then obtain the equation at 
the differences between moments kTech and (k + 1) Tech:  

[ ] [ ]
[ ]

1
ˆ

k k k

k k

X F X H U

Y C X
+

⎧ = +⎪
⎨

=⎪⎩
  [5.35]  

[ ] [ ]( ) [ ] [ ] [ ][ ]1
echexp H −= = −F A T A F I B   [5.36]  

This discretization is applied to the complete order observer considering that its 
dynamic matrix is [A−LC] and that there are two input vectors Vs and Is:  

[ ] [ ] [ ]
[ ]

1 ν s i s

s

ˆ ˆ

ˆ ˆ
k k

k

k k

k

X F X H V H I

I C X
+

⎧ = + +⎪
⎨

=⎪⎩
  [5.37]  
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Beyond the state transition matrix [F], two discrete controls must be calculated: 
[Hv] in relation to voltage and [Hi] in relation to the current, which is a return 
variable. Because of the non-stationarity of matrix [A] and the velocity dependence 
of observation gains [L] [5.32], the three discrete matrices will need to be calculated 
in real-time (with traditional approximations), or discretized by range (determination 
of velocity ranges for which the matrices are almost stationary) [BOU 96]. Real-
time implementation is then relatively intensive in calculation time.  

5.3.4.2. Cartesian observer discretization 

In order to decrease calculation time, we use the properties of the Cartesian 
observer by discretizing its characteristic equation in its initial form [5.19] (and by 
using the error of observation as input4) [BOU 96]:  

[ ] [ ] [ ] [ ]α α βα αν αe sα αsα1

αsα α

β β ββ βν βe sβ βsβ1

βsβ β

ˆ ˆ ˆ
 

ˆ ˆ

ˆ ˆ ˆ
 

ˆ ˆ

xk k kk k

kk

xk k kkk

kk

X F X H V H H X

I C X

X F X H V H H X

I C X

ε

ε

+

+

⎧ = + + +⎪
⎨

=⎪⎩
⎧ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎨

=⎪⎩

 [5.38] 

[ ] [ ]( ) [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

1
ech i

ν e

exp Z

H  H  H  
i i i i

i i i i i i ix i i

F A T A F I

Z B Z L Z K

−
= = −

= = =
 [5.39] 

We must then note that the quasi-stationarity hypotheses between two sampling 
periods of input sampling must also be applied to the current error and to the two 
state vectors. This structure can therefore only be used for sampling periods adapted 
to time constants of the system.  

The Cartesian form first enables the discretization of two-order systems. In 
addition, as dynamic matrices [Aα] and [Aβ] are stationary, state transition matrices 
can be discretized offline, decreasing calculation time (in real time) and increasing 
precision (use of more complex and precise methods). Matrices [Hie] and [Hix] still 
have to be calculated in real time, however. But by breaking down the calculation, 
so that matrix [Zi] calculated offline appears, these calculations come down to 
simple multiplications and additions.  

                           
4. Since main input Vs is most often found in modulated form (obtained by PWM), we can 
use its reference value obtained from the control (if the modulation period is low compared to 
the system’s dynamic). This avoids a measurement which includes a filter. 
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We show that for the same observer (same gain values) the discretization of the 
Cartesian form requires half as many basic operations as that of the complete form, 
while increasing its precision [BOU 96].  

5.3.5. Validation of the Cartesian observer for stator and rotor fluxes 

5.3.5.1. Specifications 

The Cartesian observer was implemented in a stator flux Cartesian vector control 
for a 500 W induction machine (see parameters in Appendix). We can then have an 
estimation of the stator flux Cartesian components directly controlled by their 
reference values. A 68,000 Motorola microprocessor was used for the control of two 
machines, the sampling period was set at Tech = 500 μs. In addition, the modulation 
period of Pulse Width Modulation (PWM) was set at Tmod = 500 μs. This control 
made it possible to experimentally validate a double drive for the motorization of a 
mobile robot [BOU 95b].  

In order to harmonize the test with the different observers proposed, a specific 
trajectory is used to test the behavior in the four quadrants of the velocity torque 
plan (Figure 5.6). The flux is first imposed at its nominal value. At t = 1 s, a speed 
trapezoid is imposed, and we can note a decrease of the flux at high speed, making it 
possible to also test the flux reduction mode. Between t = 6 s and t = 13 s, a nominal 
step torque is imposed: this leads to speed disruption. In the preliminary test 
presented, the control uses the Cartesian observer without parametric variations in 
relation to simulation models.  

5.3.5.2. Robustness test 

Prior to real-time implementation, robustness tests must enable us to validate 
observer performances.  

Second, parametric variations are only done in the observer (and not in the 
vector control) in order to illustrate the robustness of this estimation structure:  

ΔRs = 50% 
ΔRr = 50% 
ΔLs = 20% 

These parametric variations were defined according to identification errors  
and evolutions during the operation: effect of temperature (resistances) and magnetic 
level (inductances). The amplitude of the rotor flux in the machine is used as  
a reference and the gap with an estimated flux and an observed flux is drawn  
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(Figure 5.7). The amplitude of the estimated flux is obtained by the traditional rotor 
flux estimator. The observed flux comes from the Cartesian observer. We notice 
greater estimator sensitivity to parametric variations.  
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Figure 5.6. Test profile without parametric variation 

Improvement can be achieved by an online identification of sensitive parameters 
with the use of extended observers [DU 95] and adaptive structures, etc.  
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Figure 5.7. Robustness test for the Cartesian observer 

5.3.6. Assessment on Cartesian observers 

A Cartesian observer is simply a specific representation of a complete order 
observer: two sub-observers in each axis, coupled by coupling matrices. In terms of 
the flux estimation for an induction machine, three state representations can be used. 
Reference (αS, βS) linked to the stator remains the most judicious, however.  

The use of the Cartesian form helps to achieve an easy analytical synthesis of 
observation gains because the study then involves two identical systems of the 
second order. In addition, discretization of the Cartesian form provides significant 
gain in computation time while increasing precision. On the other hand, this 
structure can only be used for sampling periods short enough to consider the 
different quasi constant variables between two periods.  

5.4. Reduced order observers 

This part focuses on reduced order observers that only estimate a part of the 
model state vector. These estimation structures have often been used for two 
decades because of the real-time implementation possibilities at a time when control 
processors were limited in performance [LEO 91].  

We first present the structure of these flux estimations, as well as the different 
models that can be used. The study of the most traditional reduced order observer is 
then detailed to illustrate these flux estimation structures.  
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5.4.1. Principle and structure of reduced order observers 

5.4.1.1. Principle of the reduced order observer 

A reduced order observer is an observer limited to only estimating a part of the 
state vector. The other components of the state vector must be accessible for this to 
happen. Because of this, the dimension of the observer thus restricted is reduced to 
the dimension of the state sub-vector made up of the variables to estimate. In fact, 
the complete order observer is broken down into two parts, one associated with 
measurable state variables and the other to the variables to estimate: the second part 
alone is used (after a few modifications).  

The state models used for the induction machine are of order four (see section 
5.2). We can reduce the estimation of a state vector made up of stator current and 
flux involved: we focus on the components of the flux, since the current components 
can be measured. The state equation to solve is of dimension two, meaning real- 
time implementation (notably in relation to its discretization (see an example in 
section 5.4.4)).  

5.4.1.2. Breakdown of the complete observer 

State vector X (dimension n = m + p) is broken down into two state vectors, one 
containing variables that cannot be measured (dimensions to estimate) X1 
(dimension p) and one made up of measurable variables X2 (dimension m). 
Associated sub-matrices are deducted from the matrices of global representation 
[5.8]. It is therefore logical to associate output vector Y to the state vector made up 
of accessible dimensions X2 [BOR 90]:  

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 211 12 1

2 2 122 21 2

2

d 
d

d
d

X A X A X B U
t

X A X A X B U
t

Y X

⎧ = + +⎪
⎪
⎪ = + +⎨
⎪

=⎪
⎪⎩

  [5.40]  

The system is made up of two state equations, each containing a dynamic matrix 
and two control matrices. We can make the analogy between the inter-axis coupling 
matrices [Kα] and [Kβ] of the Cartesian model [5.19] and those of state inter-variable 
coupling [A12] and [A21] of this model [5.40].  

For the observer equation, vector X1 is replaced by its estimate, 1X̂ , whereas X2 

is not modified. We use the hypothesis that 2 2
ˆ .X X=  
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This hypothesis will make it possible to define the reduced order observer and to 
only use a part of the equations to estimate X1 (hence calculation time gain desired).  

In order to minimize the calculations, it is logical to limit the action of the return 
gain [L] on the state equation linked to non-measurable variables (Figure 5.8):  

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

1 1 211 12 1

2 2 122 21 2

2

d ˆ ˆ
d
d ˆ ˆ 
d

ε⎧ = + + +⎪
⎪
⎪ = + +⎨
⎪

=⎪
⎪⎩

X A X A X B U L
t

X A X A X B U
t

Y X

 [5.41] 

The choice for the estimation error ε (error between an estimated variable and a 
true variable) remains unresolved. In fact, output vector Y (equal to X2) can no 
longer be used because its estimation (i.e. that of X2) is equal to its true value by 
hypothesis. We then use the error of prediction linked to the derivative of X2 
[BOR 90]:  

2 2
d d ˆ
d d

ε = −X X
t t

 [5.42] 
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Figure 5.8. Structure of a reduced observer 
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This choice provides a new state equation by using the estimation expression of 
the derivative of X2 in [5.41]:  

[ ] [ ] [ ] [ ]1 1 211 21 12 22 1 2
d dˆ ˆ
d d

= − + − + − +X A LA X A LA X B LB U L Y
t t

  [5.43]  

Since this state equation involves the output derivative (which is clearly not 
accessible), a judicious variable change is used to make this term disappear:  

[ ]1 2
ˆ ˆ= −W X L X   [5.44]  

Equation [5.45] is simplified with this variable W with dimension p:  

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] ( )

2w u

w 11 21 u 1 2

11 21 12 22

d ˆ ˆ
d
                                

                         

= + +

= − = −

= − + −⎡ ⎤⎣ ⎦

x

x

W A W B X B U
t

A A LA B B LB

B A LA L A LA

  [5.45]  

The observer is then synthesized (gain calculation) for a good estimation of W 
through [5.45], then vector X1 is rebuilt following the estimation of W and the 
measure of X2 [5.44].  

We must notice, however, that this new equation [5.45] is conditional to a 
stationary matrix [L]: in fact, it is based on d ([L] X2)/dt = [L] d X2/dt through 
[5.44]). For a matrix [L] function of speed, this equation is no longer valid, except if 
we use the mode of decoupling hypothesis.  

5.4.1.3. Characteristics of reduced order observers 

The reduced order observer (dimension p < n) is based on a section of the state 
model linked to non-measurable variables. Its synthesis becomes simplified because 
of a lower order characteristic equation. The same applies to its real-time 
implementation because of the order reduction of the state equation to discretize 
[5.45]. A specific complete order (order four) flux observer study and its reduced 
order (order two) equivalent results in a calculation time gain of five and a memory 
size gain of ten [SHO 95]. Even though this is a specific case, this study shows the 
advantage of this type of estimation structure.  

However, the robustness of reduced order observers is not as significant as those 
of complete order structures [GAR 98], while still better than that of estimators 
[NIL 89]. In fact, the different matrices of the observation equation [5.45] contain 
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many parameters. On the other hand, quasi-stationarity hypotheses similar to those 
of Cartesian observers will be addressed during the discretization of the reduced 
order observer (see section 5.4.4).  

5.4.2. Different reduced order observers 

Because of the necessity of having measurable variables in the state vector, on 
the one hand, only the two possibilities containing stator currents can be used. On 
the other hand, the choice of reference is not restricted. We thus find reduced order 
flux observers in references (αS, βS) [HOR 89], (d, q) linked to rotor flux [NIL 89], 
(d, q) linked to stator current [ROB 92], (αR, βR) [DAS 97], etc. 

The most common reference however remains reference (αS, βS) [BOU 98, 
DEL 97, ORL 89, VER 88]. Even though each observer is limited to the estimation 
of a flux, we can also notice certain specific structures for estimating both by a 
change of variable linking both fluxes [BEL 88].  

In this section, we will concentrate on giving the reduced order observer models 
in reference (αS, βS), which are the most commonly used. 

5.4.2.1. Reduced order stator flux observer 

This observer is therefore based on state model [5.11] where the state vector is 
made up of axis αS and βS components of the stator currents and stator fluxes [5.10] 
because we are limiting ourselves to reference (αS, βS):  

1 sαβ 2 sαβsα sβ sα sβ⎡ ⎤ ⎡ ⎤= Φ = Φ Φ = =⎣ ⎦ ⎣ ⎦
T T

X X I i i  [5.46] 

The new matrices of this particular representation are deducted from global 
representation [5.11], considering the simplifications caused by reference (αS, βS), 
or ωd/s = 0 and ωd/r  = –npΩ:  
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a
B B

a
 [5.47] 
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Even if the dynamic flux sub-matrix [A11] is zero, we must note that the dynamic 
matrix of the reduced observer is a linear combination of other matrices [5.45] and 
therefore does not equal zero.  

This reduced order observer can help in estimating the stator flux for controls 
based on flux control.  

5.4.2.2. Reduced order rotor flux observer 

This observer is based on state model [5.14] where the state vector is made up of 
the stator currents and rotor fluxes [5.13] in reference (αS, βS):  

1 rαβ 2 sαβrα rβ sα sβ⎡ ⎤ ⎡ ⎤= Φ = Φ Φ = =⎣ ⎦ ⎣ ⎦
T T

X X I i i  [5.48] 

The new matrices of this representation are deducted from global representation 
[5.14], considering the simplifications caused by the reference (αS, βS):  

[ ] [ ]
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⎣ ⎦ ⎣ ⎦

a
B B

a
 [5.49] 

A simplification emerges because of the cancellation of the control sub-matrix 
linked to the current [B1]. This observer can help in a robust estimation of rotor flux 
for controls based on flux control. This structure was widely used to improve the 
first vector controls field oriented control, consisting of a rotor flux control in polar 
coordinates. It enables a robust estimation of this flux for a real-time implementation 
that is not very significant.  

5.4.3. Synthesis of the reduced order rotor flux observer 

5.4.3.1. Observability 

The observability of global model [5.14] by the Kalman criterion can be 
expressed through the determinant of the first four lines of the observability matrix:  
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Since this determinant is strictly positive for any value of speed, this state system 
[5.14] is rigorously observable. Because of this, the reduced state system can be 
observed for the whole range of speed [BOR 90].  

5.4.3.2. Gain calculation 

After the change in variable [5.44] making the derivative output terms disappear, 
the reduced order observer of intermediate variable W is managed by equation 
[5.45]. Its dynamic matrix corresponds to [A11−LA21]. Observation gain [L] then 
makes it possible to set the observer dynamics (i.e., the convergence dynamics of the 
estimation error). 

In order to simplify the calculations, the gain matrix takes the form [BOU 98]:  

[ ] 11 12

21 22

1 =    
⎡ ⎤
⎢ ⎥
⎣ ⎦

l l
L

l lc
 [5.51] 

The observer poles are then deducted from the polynomial characteristic of 
dynamic observer matrix [A11− LA21]:  

[ ]
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⎣ ⎦
⎡ ⎤
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⎣ ⎦

 [5.52] 

The two solution poles, p1 and p2, are functions of gains lij, speed and machine 
parameters. We propose that they be chosen in such a way that we can verify certain 
criteria linked to the speed of cancellation of the error (Figure 5.9):  

–  observer stability: { } { }1 2Re 0 and Re 0p p< <  
–  combined complex poles: *

1 2p p=  
–  velocity of convergence at zero speed: { } { }10 20 desRe Re 1/τ= <p p  
–  speed of convergence for any other speed: ζ = sinψ = 0.707 
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Figure 5.9. Reduced observer pole: (a) general case; (b) choice of gains used  

The resolution of the characteristic equation [5.52] determines the two solution 
poles. The four criteria defined lead to conditions on the different gains [BOU 98] 
with one having answer tdes:  

–  observer stability: l11 + l22 + 2 > 0 
–  combined complex poles: 2 (l11−l22) + 4l12l21 > 0 
–  velocity of convergence at zero speed: l11 + l22 + 2 = 6Lr/(Rrtdes)  
–  velocity of convergence for any other speed: l21 = 1 + l22 

We notice that an anti-symmetrical gain matrix [L] verifies all these conditions. 
This specific form is often used as a starting point in the study because the state 
model matrices of the process are anti-symmetrical. In order to restrict the field of 
gain definition, we use this form as a new criterion:  

– Anti-symmetrical matrix [L]: l11 = l22 and l12 = – l21 

A particular solution is thus obtained by combining the five relations:  

[ ] 11 11 r
11

11 11 r des

(1 )1   with  3 1
(1 )

− +⎡ ⎤
= = −⎢ ⎥− +⎣ ⎦

l l L
L l

l lc R t
 [5.53] 

The choice for response time of the observer (error convergence) at zero speed 
tdes completely defines gains.  

a) b) 



Decomposition of a Deterministic Flux Observer     279 

 

Speed of convergence is the criterion retained for the observer synthesis. Other 
criteria are possible, notably a robustness criterion in relation to parameters 
[DEL 97] (also see Chapter 2).  

5.4.4. Discretization of the reduced order rotor flux observer 

The reduced observer [5.40] is discretized by using the observation error as input 
[BOU 96]:  
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The variable-change equation directly involves matrix [L] (equation independent 
from time). Since matrices [Aw] and [Bi] depend on [A11] and [A21], which are non-
stationary, discrete matrices [Fw], [Hi], and [Hv] must be calculated in real time (or 
discretized by range).  

We can note however that since the matrices are anti-symmetrical, calculation of 
the state transition matrix [Fw] is then simplified (and also the opposite of [Aw]):  
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w w ech w

w ech w ech w w

cos sin
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sin cos
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b T b T a b
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 [5.56] 

We notice that some studies propose the discretization of this type of observer 
before synthesis, which is done subsequently in the discrete field [DEL 99].  

5.4.5. Validation of the reduced order rotor flux observer 

5.4.5.1. Specifications 

This reduced order observer was implemented in a rotor flux vector control for a 
3 kW induction machine with a sampling period of Tech = 800 μs [DEL 99].  

In order to propose a study consistent with that of the Cartesian observer, we 
simulate the vector control and the reduced observer for the 500 W reference 
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machine under the same conditions and tests (see section 5.3.5 and parameters in the 
Appendix).  

5.4.5.2. Robustness test 

The parametric variations defined previously (see section 5.3.5.2) were only 
applied in the observer (and not in the vector control) in order to bring out its 
inherent robustness. 

The tests proposed (Figure 5.10) show an improvement of flux estimation 
compared to the reference estimator. An improvement can occur from an online 
identification of the problem parameters: extended observers [ORL 89], etc.  
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Figure 5.10. Robustness test for the reduced observer 

5.4.6. Assessment on reduced order observers 

A reduced order observer only estimates a part of the state vector by considering 
the other part accessible. Because of this, on the one hand, only two state 
representations can be used for the flux estimation of a squirrel-cage induction 
machine because only stator currents can be measured. On the other hand, different 
references are used, even if reference (αS, βS) linked to the stator remains the most 
common.  

The use of the reduced form helps to achieve an easy analytical synthesis of 
observation gains because the study then involves a system of the second order. On 
the one hand, the discretization of this Cartesian form provides an important gain in 
computation time. On the other hand, it is not as robust as a complete order 
observer. In addition, this structure can only be used for sampling periods short 
enough to consider the different quasi-constant currents (additional inputs) between 
two periods.  
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5.5. Conclusion on Cartesian and reduced order observers 

The use of a flux observer for the induction machine provides a robust estimation 
of the coordinates of this flux. Because of this, they participate in the good modern 
control performances of induction machines based on precise control of a flux. 
However, the complete order observer of the machine is a non-stationary four-
dimension system. Because of this, its real-time implementation is relatively 
expensive and intensive in computation time.  

In order to reduce this computation time, two techniques of complete observer 
breakdown are used. In the first one, the Cartesian structure proposes a separation 
into two coupled sub-observers. This breakdown provides simpler syntheses and 
especially a less-intensive real-time implementation in calculation time, while 
conserving the properties of a complete order observer. The second structure is 
based on the breakdown of the system based on measurable state variables and those 
that need to be estimated. A reduced order observer is limited to the estimation of 
the part of the state vector linked to the variables to estimate. Even though its 
synthesis is simple, and its implementation less expensive, we notice a slight loss in 
performance. This type of structure has nevertheless often been used in 
manufacturing processes.  

5.6. Appendix : parameters of the study induction machine  

Pn = 500 W 
Nn = 1,420 rpm fs = 50 Hz 
η  = 72% cosφ  = 0.78 
np = 2 
I = 4.2 A  V• = 0 127  
IY = 2.4 A  VY = 220 V 
Rs = 10.75 Ω Rr = 7 Ω 
Ls = Lr = 424 mH  Msr = 397 mH 
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