
Chapter 7 

Observation of the Load Torque  
of an Electrical Machine 

7.1. Introduction 

The requirements on speed and position control for electro-mechanical actuators 
have a strong impact on the control loops of variable speed drives. The 
electromagnetic torque must be perfectly controlled to obtain the most satisfying 
evolutions in speed or position. Regardless of the care we take in the construction of 
the electrical machine and the power quality of this machine, the resulting 
electromagnetic torque very often contains a ripple. It is increased in so far as 
electromotive forces are not sinusoidal and/or the relation between decoupling 
frequency and fundamental frequency is too low. This torque ripple is visible in the 
speed and position behavior of the machine, notably at low speed. 

In addition, the resulting mechanical loads often have undefined characteristics 
in terms of the low-speed neighborhood or even zero or quasi-zero speeds. The 
variable speed drive’s control in these specific operation zones can turn out to be 
problematic and its traditional control laws are often wrong. The study proposed in 
this chapter contributes to this theme, by developing a solution for the improvement of 
the global actuator behavior. 

The major solution considered is based on the association of a powerful control 
method based on speed and position state feedback presumed measurable here and a 
method of reconstruction of the total load torque. The main contribution involves the 
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torque observer that can observe effort disruptions because of its structure and 
operation. They are inherent to the internal structure of the electrical machine used 
(cogging torque, electromotive force distortion, etc.) and also come from exogenous 
parametric modifications relative to the resulting load. In this way, the observer 
provides information representing the series of disruptions experienced by the axis 
of rotation independently of the nature of these modifications and original cause. 
This quantity representing the torque to be compensated is then injected in the 
control law in order to smooth the machine’s effective torque. The set thus functions 
in disturbance rejection. 

The solutions presented here are based on studies conducted at Laboratoire 
d’Electrotechnique et d’Electronique Industrielle de Toulouse (LEEI), resulting in 
experimental prototypes digitally powered and run. Several results, most of them 
experimental, confirm the relevant character of the robustness approach and qualities 
in relation to the parameter variations of the load and/or machine. The choice of the 
observer’s dynamic compared with the setup process and the number of sensors used 
is being carefully examined. 

7.2. Characterization of a load torque relative to an axis of rotation 

7.2.1. Introduction 

The drive of a mechanical load in rotation with the help of an electrical machine 
is often the basis of disruptions linked to the specific characteristics of the useful 
load (pump, cooling fan, etc.) as well as the internal characteristics of the motor (roll 
and bearing quality, etc.). Even if the powered load has a specific and known 
behavior in relation to speed, the appearance of an external event can lead to 
significant modifications of the effort required by the motor and result in undesirable 
behavior. In addition, seen as a torque generator, the electrical motor usually reveals 
some structural imperfections that can compromise the quality of the drive. The 
internal efforts experienced by this axis can be separated into two categories based 
on whether they depend on the nature of the contact between the fixed and mobile 
parts (friction, etc.) or whether they depend on the remote interaction between these 
two same parts (aerodynamic efforts, magnetic interactions, etc.). Globally, the load 
relating to an axis in rotation is complex and its characteristics depend on many 
factors, particularly speed of rotation, amplitude, and signal. In the following, we 
illustrate these specific efforts by characterizing them according to speed and in the 
context of variable speed drive type operations. 

In real systems, load torques are very different depending on whether we are 
dealing with a cooling fan, a pump, a piston machine, a hoisting system, or a 
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machining process, etc. We consider the main components of the load torque and 
internal friction torque encountered in major applications.  

7.2.2. Disruptions of the electrical machine torque 

7.2.2.1. Generation of the electromagnetic torque 

Within the synchronous machine, the interaction between a magnetic field and 
an electrical current is at the basis of the production of an electromagnetic torque. Its 
quality is linked to the purity of the three-phase current system imposed to the stator 
as well as the actual structural characteristics, notably magnetic. Among the causes 
that can trigger a change in the torque produced, we note: 

– the imposition of currents that are not perfectly sinusoidal: by a residual ripple 
inherent to limited decoupling frequency power, or by a slight imbalance between 
the phases; 

– determination of electromotive forces, which are not perfectly sinusoidal, 
linked to a specific geometry of the stator, or the more rare existence of a certain 
saturation of the magnetic circuit. 

Generally, the existence of current harmonics (hi) or electromotive force 
harmonics (he) is at the basis of torque harmonics obtained by the combination 
corresponding to Table 7.1.  

 

Table 7.1. Major torque harmonics generated by current and electromagnetic  
force harmonics  
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In this way, emerging torque harmonics are of order 6, 12, 24, etc., that is, 
multiplied by six times the powering frequency of the machine. We should note that 
by action on the control, it is possible to act on injected current harmonics and thus 
offset torque distortion caused by an electromotive force harmonic by generating a 
corresponding current harmonic. For example, an order five harmonic on current can 
block an order six torque ripple triggered by an electromotive force having an order 
seven harmonic. This methodology goes beyond the scope of this book, and for 
more information, we can refer to reference [GAS 04].  

If the resulting electromagnetic torque is constant in terms of accepted tolerance, 
the cogging torque can trigger ripples and modify the quality of the generated force. 

7.2.2.2. The cogging torque 

The cogging torque is the result of the interaction between rotor windings or the 
magnet and magnetic circuit constituted by the rotor and the stator. The presence of 
slots and the resulting reluctance variation are responsible for this effect. This is 
translated by preferential rotor positions compared to the stator. This effect is very 
disruptive in the case of induction machine position control and can be seen without 
power for a magnet machine and in the presence of excitation for a wound induction 
machine. In any case, the disruptive torque remains independent from the stator 
current. This torque, also called slot torque, depends on the constitution of the 
machine’s magnetic circuit, and more specifically, the number of slots [MTS 93]. 
These slots receive motor windings and are equally distributed on the stator and 
rotor; they create air-gap variations when the rotor moves in relation to the stator. 
When the rotor is powered, it naturally moves into a position that minimizes circuit 
reluctance, as viewed by the rotating field. This minimization of reluctance 
corresponds to the minimization of the global air gap viewed by the field winding. 
When the rotor is in a stable angle position and an external action moves it away, 
this torque tends to bring it back to this position. If the rotor is in an unstable 
position (Figure 7.1) and an external action moves it away, this torque brings it back 
to the next stable attitude angle.  

If Ne represents the number of slots in the stator and Pp the number of pole pairs, 
the number of periods in a mechanical turn is defined by:  

Np (Ne,2 Pp)= ×PPCM  [7.1] 

The resulting cogging torque is expressed by:  

d d1 d2
Ne Ne( ) sin sin 2

2 Pp Np 2 Pp Np
θ θ θ

⎛ ⎞ ⎛ ⎞
= ⋅ × + ⋅ × × +⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠

C C C  [7.2] 
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Figure 7.1. First harmonic of the cogging torque  

The values of Cdi can be obtained by field calculation as they depend mainly on 
the geometry of the motor. We can also carry out a low-speed test by controlling the 
speed to a constant value and by evaluating current distortion. The disruptive effects 
of this torque can be compensated in different ways:  

– using automatic techniques to act on the motor’s current control. This control 
is modulated according to the observation of cogging torque effects on the variable 
to control [MTS 93, VOR 95]; 

– compensating this cogging torque by powering the machine with currents 
where waveshapes are first calculated according to the structure of the powered 
machine [CLE 95].  

In addition, a careful construction including a set of slots or magnets makes it 
possible to significantly decrease this amplitude of the disruptive torque. In terms of 
design, the choice of the number of slots can efficiently influence this ripple.  

7.2.2.3. Other disruptive torques non-linked to contact 

The torque produced by an electrical machine can also experience disruptions 
that are difficult to measure, and which obey to uncertain models. In this regard, we 
note the existence of an imbalance linked to a compensation fault with moving parts, 
or an alignment fault of drive axes, not absorbed by coupling. These constraints 
generate an additional resistant torque disturbing the position as well as the speed 
operation. In the same vein, aerodynamic reaction forces located in the air gap and 
linked to rotor movement are at the basis of additional efforts noticeable at high 
speed notably.  
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7.2.3. Load torque disruptions by modification of contact actions 

In a rotation drive, the moving part is in contact with the fixed part through an 
adapted device, revealing specific characteristics based on the speed of rotation.  

7.2.3.1. Low-speed friction  

We have three types of friction. The first one is called static friction and occurs 
only when both parts in contact (bearings and axis of rotation) are not moving, 
consequently at zero speed. The other two types of friction occur when the speed is 
not zero. They are solid friction or dry friction, independent from speed, and viscous 
friction, proportional to speed. We note here the problem with simulating these 
phenomena inherent to the definition of speed around zero. 

Viscous friction is the only linear friction; it is, therefore, the only one 
considered for the determination of linear control algorithms. However, this 
approach is sometimes insufficient to achieve precise position control. There are 
other types of friction: 

– Static friction: This is the force to overcome in order to move a part that is in 
contact with another part. A minimal torque is necessary to trigger the actuator’s 
rotation. This maximal torque value of static friction (C0) is sometimes called 
“break-off torque” or “starting torque”. It depends mainly on the contact pressure 
between both parts and the nature of matters in contact [FÖR 95]. An increase in 
contact pressure results in an increase in the maximum value of the static friction 
torque. This contact pressure is created by radial forces occurring in the actuator 
bearings and load bearings. For hoisting applications, the maximum value of the 
static friction torque is not previously known because of ignorance about the mass to 
hoist. The sum of torques applied to the axis (other than the static friction torque) 
can have an infinite number of values without triggering any rotation, as long as this 
sum remains lower than the maximum value of the static friction torque, hence, the 
existence of limited cycles often observed during a mass hoisting test. Because of 
static friction in bearings, the variation of control dimension has no immediate effect 
on the actuator. When the sum of torques, other than the static friction torque, 
exceeds the maximum value of static friction torque, the actuator starts rotating. 

– Dry friction: The torque corresponding to this friction is independent of speed, 
but it is defined for a non-zero speed. As with other types of friction, dry friction 
hinders movement. Its value is given by the Coulomb law and depends on the 
contact pressure between both parts as with the maximum value of static friction. Its 
value is generally lower than the maximum static friction value [FÖR 95] and results 
in this case in a constant resistant torque. 
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– Viscous friction: The viscous friction torque is proportional to speed and 
hinders movement. The factor of proportionality is generally called “coefficient of 
friction” and depends on the viscosity of the lubricant used in the bearings  
[FÖR 95]. It can be the subject of significant variations depending on the ambient 
temperature. It is also possible to observe a modification of this coefficient by effect 
of ageing of grease used. 

– Combination of friction types: The different friction types described here can 
be represented by a characteristic (Figure 7.2) illustrating friction torque (C

frot
) 

according to speed [FÖR 95, JOH 92]. The characteristic is symmetrical, but the 
different terms making up the friction torque are not necessarily equal in absolute 
value; they can take different values depending on the rotation direction, and 
especially on the type of stress from actuator bearings.  

The characteristic (Figure 7.2) is close to the Striebeck friction [FÖR 95, 
LIG 95], hence the following notes:  

– Close to zero speed (Ω ∈ [−Ω
0
, Ω

0
]), a static friction zone appears, different 

from the one obtained by the model described earlier where this friction exists only 
at zero speed. The existence of this zone makes the numerical simulation of static 
friction easier [FÖR 95, JOH 92].  

– During the transition between static friction and other types of friction, the 
“stiction” zone corresponds to a quick decrease of the friction torque when the speed 
increases [GOM 92]. Reciprocally, in slowdown phase, the friction torque quickly 
increases and can abruptly block the actuator. The actuator is then in static friction 
mode, which can compensate the gap between the motor torque and load torque and 
keep the actuator stopped. This gap can come from the control law, which is unable 
to adapt the motor torque quickly enough to variations of the friction torque because 
of its dynamic that is too slow. We now consider a simulation of non-linear friction 
to achieve representations of these types of friction.  

7.2.3.2. Non-linear friction simulation 

The simulation example presented here shows the implementation of non-linear 
friction models. It integrates specific conditions (cogging torque, quantification, 
sampling, filtering, etc.). The values retained to simulate non-linear friction are 
evaluated empirically from different experimental tests.  

A block simulating non-linear friction (Cfnl) is contained in the simulation 
diagram (Figure 7.3). According to this diagram, non-linear friction is internal to the 
actuator and hinders all torque stresses (ΣCple), including the cogging torque. The 
simulation diagram of non-linear friction (Figure 7.4) distinguishes between the 
static friction mode and the dry friction mode, depending on speed Ω of the actuator 
(Figure 7.2). If Ω is higher than Ω0 in absolute value, the actuator is in dry friction 
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mode, and the corresponding non-linear friction torque (Cfsec) is independent of 
speed. The mechanical equation is then written as:  

fsec
Dry friction torque

dΩ Ω sign(Ω)
d

J Cple f C
t

⋅ = Σ − ⋅ − ⋅  [7.3]

 

 

If Ω is lower than Ω0 in absolute value, the actuator is in static friction mode. 
Then, Ω is zero from the moment it is lower in absolute value to Ω0 [FÖR 95,  
JOH 92]. This leads to discontinuity in speed, which changes abruptly from 0 to Ω0 
when the mode changes from static friction to dry friction, or conversely.  

Since speed is a state variable, such a discontinuity is not admissible. To avoid 
this discontinuity, we propose the following modeling:  

– when Ω = 0, the static friction torque always hinders other torques ( ),ΣCple  as 
long as their sum is inferior in absolute value to the maximum static friction torque 
(C

0
). Speed is zero and 

dΩ. 0 
d

J
t

=  [7.4] 

– when 0Cple CΣ > , the actuator accelerates, and the mechanical equation is 
then expressed as: 

( )0

Maximum static
 friction torque

dΩ Ω sign 0
d

J Cple f C Cple
t

⋅ = Σ − ⋅ − ⋅ Σ ≠  [7.5] 

Speed then becomes different from zero, and from this moment, the static 
friction torque hinders the movement, and thus, depends on the sign of speed. The 
mechanical equation becomes:  

( )0

Maximum static
 friction torque

dΩ Ω sign Ω
d

J Cple f C
t

⋅ = Σ − ⋅ − ⋅   [7.6] 

In this equation, the maximum static friction torque hinders movement, even if 
speed is not zero. The maximum static friction torque then acts in the same way as  
the dry friction, but its value is higher. Speed will then evolve, and when it is higher  
than Ω0 (in absolute value), the actuator goes into dry friction mode with lower  
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friction torque (phenomenon of stiction). We observe here that discontinuity no longer 
occurs at the speed level, but at the level of friction torque, which is not representative 
of the energy. Consequently, this discontinuity is admissible, and is in fact an 
idealized vision of the Striebeck friction (Figure 7.2). 

 

Figure 7.2. Combination of friction models 

 

Figure 7.3. Consideration of disturbances internal to the actuator 

In braking phase, reasoning is the same. When speed becomes lower than Ω0 (in 
absolute value), the actuator goes from dry friction mode to static friction mode. The 
slowdown thus becomes more important. When speed is zero, we are then in real 
static friction conditions as described earlier. |∑Cple| must pass C0 once more so that 
the actuator can start moving. In simulation, it is difficult to find a speed that is 
exactly zero once the calculations are launched. Because of this, the simulated  
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actuator may show an oscillation around zero speed, which does not correspond to 
reality [FÖR 95]. To avoid this phenomenon, we propose canceling the torque at 
linear actuator input when the speed is in a range close to zero, or |Ω| < 0.05Ω0, for 
example. This cancelation is obtained by making Cfnl equal to ∑Cple, if |∑Cple| is 
lower than C0. If |∑Cple| is higher than C0, there is no torque cancelation at linear 
actuator input, and we must then apply equation [7.5] as long as the speed is close to 
zero. If speed is higher than 0.05Ω0, equation [7.6] applies. The cancelation of 
torque at linear actuator input comes down to letting the actuator evolve according 
to its dampened free mode from initial conditions that were almost zero; speed can 
therefore be considered as zero.  

The mechanical equation corresponding to the cancelation of the torque at linear 
actuator input is close to [7.4] and is written as:  

0
dΩ Ω 0 with Ω 0.05 Ω
d

J f
t

⋅ = − ⋅ ≈ < ⋅  [7.7]  

It seems obvious that this speed range is contained in the static friction range. 
The torque cancelation at linear actuator input is thus equivalent to being in ideal 
static friction conditions (Ω = 0) when 0| |Σ <Cple C  [7.4]. The previous 
considerations lead Figure 7.4, which can be implemented in simulation software 
such as SIMULINK™. 

7.3. Modal control of the actuator with load torque observation 

7.3.1. Introduction 

The behavior of a position variable speed drive depends not only on the control 
law used but also on the powered load. During the definition of the control law, we 
mainly focus on its dynamic behavior in terms of variations of the set point, whereas 
the influence of the load torque is only rarely taken into consideration. And yet, its 
effect modifies the behavior of the variable speed drive by creating significant 
disturbances. To avoid this phenomenon, it may seem beneficial to compensate the 
load torque at control law level. The implementation of a sensor for the load torque 
is generally tricky and expensive. On the other hand, the implementation of an 
observer seems a profitable solution in many respects. This methodology obviously 
goes through a study of observability. The goal is to determine whether the variables 
used for the construction of the observation are sufficient, or in other words, whether 
the desired information is present in the measures that we allow ourselves. 
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Figure 7.4. Simulation diagram of non-linear friction  

7.3.2. State representation of the actuator 

The state equation of the actuator comes from the mechanical equation of the 
motor: 

em r em em
dΩ Ω with
d

J C f C C K I
t

⋅ = − ⋅ − = ⋅   [7.8]  

The parameters and variables used in this equation are:  

J: inertia of the motor and its load;  
f: friction factor; 
Ω : mechanical speed;  
Cr: load torque; 

Cem: motor torque; 
Kem: constant of torque; 

I: rms value of three-phase currents feeding the motor.  
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Since the inverter is assimilated to a perfect current source, the current is a 
variable that is infinitely quick in relation to speed. State variables are speed Ω and 
positionθ . 

From [7.8], the state equation of the actuator is:  

em

r

m v r

1Ω0

1 0 00θθ

−⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ −Ω ⎛ ⎞ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
= ⋅ + ⋅ + ⋅

Kf
I CJ JJ

X A X B I B C

 [7.9]  

The discretization of this system to sampling period Te [BÜH 83] leads to:  

( )( ) [ ] ( )( )

( )( )

e ee

e

e e

e

( 1) 1
e e m

( 1) 1
v r

1 e e ( )d

e ( )d

τ

τ

τ τ

τ τ

+ ⋅ ⋅ + ⋅ −⋅

⋅

+ ⋅ ⋅ + ⋅ −

⋅

+ ⋅ = = ⋅ + ⋅ ⋅

+ ⋅ ⋅

∫

∫

k T A K TA T

k T

k T A K T

k T

X k T X k T B I

B C
   [7.10]  

The matrix exponential is calculated by using the theory of matrix functions 
[GAN 66, ROT 95]:  

e m11
m

m21

0
0

e with = e
(1 ) 1 1

f
eJ TA T F

F J
F

f

λ
λ

λ
−⋅

⎡ ⎤
⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎢ ⎥⋅ − ⎣ ⎦⎢ ⎥⎣ ⎦

 [7.11] 

Control variable I(τ) remains constant during the sampling period. This is perfectly 
well represented by the zero-order relay. Assuming that Cr(τ) remains as constant is 
more doubtful because the load torque is independent of the control law, and can, 
therefore, vary between two sampling moments. However, this hypothesis is 
nevertheless accepted if the sampling period is small compared with the mechanical 
time constant. Hence, from [7.11]: 

( )

e
e

e

em

( 1) m1( 1)
m m

m2em
e

(1 )
e e d

1

τ

λ

τ
λ

+ ⋅⋅ + ⋅ − ⋅

⋅

⎡ ⎤⋅ −⎢ ⎥ ⎡ ⎤⎢ ⎥= ⋅ ⋅ ⋅ = = ⎢ ⎥⎢ ⎥⎛ ⎞ ⎣ ⎦⋅ − ⋅ −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫
k TA k T A

k T

K
f H

H B
HK JT

f f

 [7.12]  
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( )

e
e

e

( 1) v1( 1)
m v

v2
e

1 (1 )
e e d

1 1

τ

λ

τ
λ

+ ⋅⋅ + ⋅ − ⋅

⋅

−⎡ ⎤⋅ −⎢ ⎥ ⎡ ⎤⎢ ⎥= ⋅ ⋅ ⋅ = = ⎢ ⎥⎢ ⎥⎛ ⎞− ⎣ ⎦⋅ − ⋅ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫
k TA k T A

k T

f H
H B

HJT
f f

  [7.13]  

From relations [7.12] and [7.13], we have:  

v1 v2
v1 m2 m1 v2

em m1 m2

1
− = = ⇔ ⋅ = ⋅

H H
H H H H

K H H
   [7.14]  

Hence, the discrete state equation:  

v1m11 m1
r

v2m21 m2

0Ω( 1) Ω( )
( ) ( )

1( 1) ( )θ θ
+ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

HF Hk k
I k C k

HF Hk k
 [7.15]  

7.3.3. Analysis of controllability and observability 

Before implementing a control law by state feedback, we must make sure of 
system controllability, in order to act on both state variables by the control 
dimension I(k). We use the Kalman criterion on the controllability matrix:  

[ ] ( )
m1 m1

c m m m
m2 m1 m21

λ

λ

⋅⎡ ⎤
⎢ ⎥= ⋅ = ⎢ ⎥− ⋅ +
⎢ ⎥⎣ ⎦

H H
Q H F H JH H H

f
  [7.16]  

It must be of the second order, or its determinant must not be zero:  

2
c m1 e edet( ) 0 because 0 and 1λ= ⋅ ≠ ≠ ≠Q H T T    [7.17]  

The system is, therefore, controllable. The study of observability is carried out in 
a similar way with the help of the Kalman criterion. The object is to verify that the 
order of the matrix of observability is equal to the sequence of the system. The 
matrix of observability depends on the output, which is either speed or position. If 
its output is position:  

[ ]m

Ω
( ) 0 1

( )
θ

θ
( )⎛ ⎞

− ⋅ = ⋅ ⎜ ⎟
⎝ ⎠

k
k C X

k
 [7.18]  
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The matrix of observability is then equal to:  

m
o

m m

0 1

(1 ) 1λ

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⋅ −⋅⎣ ⎦ ⎢ ⎥⎣ ⎦

C
Q J

C F
f

 [7.19]  

and determinant of Qo is different of zero:  

( )o edet( ) ( 1) 0 because 1 since 0JQ T
f

λ λ= ⋅ − ≠ ≠ ≠  [7.20]
 

The system is therefore observable for position and state feedback (speed and 
position) is possible for the measure of position.  

If the output is speed:  

[ ]m o

1 0
1 0 and det( ) 0

0λ
= = =C Q    [7.21] 

The system is therefore not observable from the measure of speed. In fact,  
the integration of speed only provides information on the position variation and  
not on initial position. The state feedback from the measure of speed is possible  
if the initial position is known. This study of observability will be discussed in 
section 7.4.  

7.3.4. Control law by state feedback  

The system is controllable (section 7.3.3) and state variables are presumed 
measurable by sensors. We first present the control structure, followed by the sizing 
of its parameters and finally a method of limitation for the integral action, connected 
to the limitation with current set point Iref.  

7.3.4.1. Control structure 

Control (Figure 7.5) contains a state feedback on state variables, speed Ω  and 
position θ  with gains Ks1 and Ks2. We choose the “optimal state adjustment 
structure” defined by Bühler [BÜH 83], by adding three actions:  

– an integral action to cancel the error position in steady state operation, as 
because of non-linearities (dry friction, etc.), the integration between position and 
speed is not sufficient. Integrator r 'sX input is affected by a gain Kr;  
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– a load torque compensation with gain Kv;  
– a term proportional to the set point that acts on control I with gain Kθ , which 

accelerates the response to the position set point, by bringing a zero in the equivalent 
transfer function between input and output. 

A current set point limitation provided for the inverter is necessary to ensure the 
security of the variable speed drive. This limitation requires a limitation of the 
integral action.  

 

Figure 7.5. Optimal structure of state setting 

7.3.4.2. Sizing of the control law 

The sizing of the control law is achieved by the determination of the five gains. 
First, we define the state feedback and integral action (Ks1, Ks2 and Kr) gains by the 
choice of closed-loop poles that set the dynamic. Then we calculate the 
compensation gain of load torque (K

v
) to cancel the influence of the load torque on  

position. Finally, we define the gain linked to set point (Kθ) according to the desired 
dynamic behavior in uni-set response or path following. In order to achieve this 
sizing, we define the closed-loop state equation from equation [7.15] and the 
equations of control algorithm [7.22] and [7.23]:  

( )r r ref1 ( ) ( ) ( )θ θ+ = + −X k X k k k  [7.22]  

s1 s2 r r ref v r
ˆ( ) Ω( ) ( ) ( ) ( ) ( )θθ θ= − ⋅ − ⋅ + ⋅ + ⋅ + ⋅I k K k K k K X k K k K C k  [7.23]  
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Xr(k) is the third state variable, and by combining [7.15], [7.22] and [7.23], we 
get closed-loop state equations:  

m11 m1 s1 m1 s2 m1 r

m21 m2 s1 m2 s2 m2 r
r r

v1 m1 v
m1

vref v2 r m2 r
m2

Ω( 1) Ω( )
( 1) ( )

1
( 1) ( )
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0 0

θ

θ

θ ⋅ θ

θ
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⋅⎡ ⎤ ⎢ ⎥ ⎢ ⎥+ ⋅ + ⋅ + ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k k
F H K H K H K

k k
F H K H K H K

X k X k

H H K
H K

k H C k H K C k
H K

    [7.24]  

m11 m1 s1 m1 s2 m1 r

bf m21 m2 s1 m2 s2 m2 r1
0 1 1

− ⋅ − ⋅ ⋅⎡ ⎤
⎢ ⎥= − ⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥−⎣ ⎦

F H K H K H K
F F H K H K H K     [7.25]  

If its output is position: 

[ ]m 1 0 0=C  

– Pole placement: Coefficients of Fbf [7.25] determine the closed-loop dynamic 
of the actuator and depend on the gains from the control law (Ks1, Ks2 and Kr). The 
calculation of Ks1, Ks2 and Kr is done by the identification of the polynomial 
characteristic of Fbf with a same order polynomial characterizing the desired 
dynamic. We choose a real triple pole pbf in order to avoid possible overshoots.  

Characteristic polynomial: 

( )bfdet 1 with 1, identity matrix⋅ −z F     [7.26]  

Desired polynomial:  

( ) e bf
3

bf bfwith e ω− ⋅− = Tz p p  [7.27]  

ωbf corresponds to the bandwidth equivalent to pbf in the continuous field. Since 
the pole is triple, the bandwidth is defined from an attenuation of 9 dB.  
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We get: 
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r
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– Determination of K v: the compensation gain of the resistant torque (Kv) is 
calculated from [7.24], 

[ ]
m1 v1 m1 v

bf m2 ref v2 m2 v r

r r

Ω( 1) Ω( )
( 1) ( ) ( ) ( )
( 1) ( ) 1 0

θ

θθ θ θ
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k k H K H H K
k F k H K k H H K C k

X k X k
 [7.29]  

To cancel the load torque effect and by considering [3.14], Kv is chosen in such a 
way that:  

v1 v2
v v v

m1 m2 em

1and either
H H

K K K
H H K

= = − =  [7.30] 

Term v r
ˆ ( )⋅K C k  in the control law corresponds to the equivalent current that 

must be added at the current set point to compensate the load torque. However, this 
compensation is not perfect because the observer dynamic is not infinite.  

– Determination of θK : θK  can be defined in two ways:  
- the first one consists of compensating a transfer function pole between 

position and position set point [7.31] by the zero displaceable by θK , to improve the 
dynamic behavior in relation of set point changes. This zero, which is equal to  

r1 / θ− K K , can lead to unfortunate overshoots: 
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To compensate a pole p
bf: 

r r
bf

bf
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1θ

θ

− = =
−

K K
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 [7.32] 

K
r
 is imposed by the pole placement, and the closed-loop transmittance becomes:  

( )
( )

m2 m11 m2 m21 m1r
2

ref bf bf

( )
( ) 1

θ
θ

⋅ + ⋅
= ⋅

− −

⋅ −H H F HKz
z p z p

z F
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- the second one consists of canceling the output of the sinusoidal mode 
integrator, and it is only efficient if the load torque is zero or compensated. 
Otherwise, the integral action compensates the load torque and the integral action 
output is no longer zero in sinusoidal mode. Kθ is defined by considering the 
sinusoidal mode reached. From [7.24] in sinusoidal mode, we have:  

( ) ( )

ref

m1 s2 ref m1 r r

Ω( 1) Ω( ) 0 and ( + 1) ( ) ( )

( ) 0θ

k k k k k

H K K k H K X k

θ θ θ

θ

+ = = = =
⇓

⋅ − ⋅ + ⋅ ⋅ =
 [7.34] 

where   

s2θ =K K  [7.35]  

K
s2

 is determined by pole placement. The closed-loop transfer function is:  

( ) ( )
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s2 s2 r m2 m11 m2 m21 m1
3

ref bf

( )
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θ
θ

⋅ − + ⋅ ⋅ − ⋅ + ⋅
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−

K z K K H z F H F Hz
z z p

  [7.36] 

Experimental results (Figure 7.6) show the influence of Kθ on the step response of 
the actuator. The second method, contrary to the first one, creates an overshoot that 
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can be damaging, but inevitable if we want to cancel Xr in steady state operation, 
when the set point is constant. On the other hand, this same method makes it 
possible to cancel the velocity error for a side input.  

With Kθ = Ks2 (cancelation of integrator output), the new diagram (Figure 7.7) 
clarifies the sampled transfer function. We have a particular cascade structure, since 
the integral action is in the external loop (position) and not in the internal loop 
(speed) as is traditionally the case. The integrator output is zero in steady-state 
operation (θ = θref and Ω = 0), only if the load torque is compensated or zero.  

 

Figure 7.6. Influence of the Kθ choice on the step response of the actuator 
(experimental results)  

 

Figure 7.7. Structure of control law with K
θ
 = K

s2
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Because of the two integrations (control law and physical integration) in the 
action chain, the velocity error for a ramp input is zero. In order to evaluate it, the  
velocity error is calculated when coefficients Ks2 and Kθ are not equal. From [7.24], 
we have:  

[ ]
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1
m bf m2

ref

( ) . 1
( )

1

θ

θ
θ

θ
−

Η ⋅⎡ ⎤
⎢ ⎥= ⋅ − Η ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

.
K

z C z F K
z

 [7.37]
  

The error on position is:  

ref ref
ref

( ) ( ) 1 ( )
( )

θε θ θ θ
θ
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 [7.38] 

With the theorem of the final value, for a (gradient b) ramp input, we have:  

( ) ref1
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e
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−
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 [7.39]

 

The velocity error [7.39] for a ramp input is zero when Ks2 = Kθ . Otherwise, it is 
constant and depends on the ramp gradient given in set point. The steady state 
operation error is always zero for a set point in pole step, regardless of the choice  
of Kθ . 

In experimental tests (Figure 7.8), the velocity error is zero when the reset action 
is canceled in steady state operation. Error fluctuations around zero are attributed to 
the machine’s slot torque. When zero is compensated, the velocity error is constant 
[7.39]. Experimental conditions are as follows and correspond to a triple pole 
placement:  

ω
bf

 = 15 rad/s (p
bf

  =  0.74);  

K
s2 

= 5.7379; b = 360°/s; 
K

θ
  = 1.9996; T

e
 = 20 ms; 

K
r 
  = 0.5183. 

Error [7.39] equals: ε
θ
(∞) = 51.9°. This result reflects the velocity error 

experimentally sampled at approximately 50°.  
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Figure 7.8. Influence of the choice of K
θ  on actuator response at a ramp input  

(experimental results) 

7.3.4.3. Limitation of the integral action 

The limitation of control variable refI  requires a limitation of the integral action. 
This control limitation slows down the system and the error does not decrease 
according to the control dynamic. Without limitation, the integrator triggers an 
excessive overshoot of the output variable. Digitally, this overshoot problem is all 
the more significant as the number of bits used for programming variables is high 
(32 bits in our case).  

The limitation of Xr avoids this “drift”. The procedure recalculates the reset 
component, according to the control limit value (Ilim) and operating conditions  
[BÜH 82]:  

lim s1 s2 ref
r

r

( ) Ω( ) ( )
( ) θθ θ+ ⋅ + ⋅ ( ) − ⋅

=
I k K k K k k k

X k
K

  [7.40] 
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The effect of limitation is shown in an experimental test (Figure 7.9). The 
position no longer has an overshoot and also benefits from better response time. In 
addition, control is not saturated as long, decreasing the constraint (maximum 
intensity time) experienced by the variable speed drive. The second gradient shows 
the evolution of the integral action in limitation phase.  

 

Figure 7.9. Influence of integral action limitation (experimental results)  

This limitation method seems the simplest to use. There are others based on 
retro-propagation of maximum references [WES 94] or on a change in the regulation 
structure in case of limitation [BÜH 88].  

7.4. Observation of load torque 

7.4.1. Introduction 

The behavior of a position variable speed drive depends not only on the type of 
control law used but also on the load drive. During the definition of the control law, 
we mainly focus on its dynamic behavior in terms of variations of the set point, 
whereas the influence of the load torque is only rarely taken into consideration. And 
yet, its effect modifies the variable speed drive behavior and the position no longer 
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depends exclusively on the set point. To avoid this phenomenon, we must 
compensate the resistant torque at the level of the control law. Since the measure of 
load torque with a sensor is generally tricky and expensive, a resistant torque 
observer can be implemented.  

First, we consider a simple type of observer called “observer with loop 
integration”, and its performance will be analyzed with the help of simulations.  

Second, we develop several state observation structures that will be compared. In 
order to implement the load torque observer, the actuator state vector is increased by 
an additional variable, the load torque. The observation structures described in this 
section are different in their sequence and variables used (speed or position) to 
ensure observer convergence. For each structure, the analysis of the transfer function 
between the observed and real torque determines its performances. The observation 
error of measurable state variables is evaluated. This evaluation is done from 
transfer functions linking the state variables of the actuator and those from the 
observer to the system’s input variables. The most interesting experimental results of 
observation structures are presented.  

7.4.2. Observer with integration in the loop 

7.4.2.1. Principle 

The reconstruction of the load torque can be obtained by integrating the speed 
error caused by the difference between the measured speed and the speed taken from 
a model (Figure 7.10). This technique was often experienced [LEP 93] for this 
purpose and for the estimation of a system’s parameter.  

Km
J.p+f

1I(t)

Ω(t)

Ω(t)

+

-

+
-

Cr(t)

R(p)

 

Figure 7.10. Diagram of principle of an observer with integration 
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The regulator makes the speed error lean toward zero and converge the estimated 
load torque toward the real load torque: load drive and/or internal machine torque 
(cogging torque).  

The regulator parameters are defined by a pole placement imposing a desired 
dynamic. 

Because of the simplicity of the system, the regulator is chosen proportionally 
integral: 

p i( )
⋅ +

=
K p K

R p
p

 [7.41] 

Put into an equation:  
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By identifying with a second-order system ( )n,ξ ω , we obtain: 

2
p n i n2 andξ ω ω= ⋅ ⋅ ⋅ − = ⋅K J f K J  [7.44]  

Torque reconstruction is characterized by the following transmittances:  
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and                    
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We find the poles specified by doublet ( )n,ξ ω  and zero for 1( )T p , placed in: 

2
n

n2
ω
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⎛ ⎞⋅

−⎜ ⎟⋅ ⋅ ⋅ −⎝ ⎠

J
J f

 

That zero is directly caused by the regulator structure and can be positive if the 
dynamic imposed is too low. We will now analyze the behavior of this observer in 
an induction machine with strong cogging torque. It is a magnet machine with a 
quasi-sinusoidal electromotive form with the following characteristics:  

– rated output: P = 1 kw;  
– rated speed: Nn = 2,000 rpm; 
– number of slots: Ne = 36; 
– number of pole pairs: Pp = 2;  
– inertia: J = 2 × 10−4 kg m2;  
– coefficient of viscous friction: f = 9.3 × 10−3 (Nm/rad/s);  
– inductance: L = 0.48 mH;  
– resistance: R = 2.75 Ω;  
– coefficient of the cogging torque [2]: Cd1 = 0.1; Cd2 = 0.03; Cd3 = 0.0016;  
– harmonic coefficients: h1 = 0.16 V/rad/s; h3 = 1% of h1;  
– electromotive force: E = 250 V at rated speed;  
– hysteresis control: H = 0.1 A; 
– coefficient of torque: Kem = 0.65 Nm/A;  
– Imax = 7.4 A a max torque of 4.8 Nm. 

Simulation results at 700 rpm are illustrated in the following text and show the 
behavior of a resistant torque observer functioning on a permanent magnet machine 
with strong cogging torque.  
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7.4.2.2. Open-loop operation 

Observer bandwidth must be defined with the consideration of the maximum 
rotation frequency and the number of slots. In fact, the frequency of ripples  
(Figure 7.11), linked to slots, corresponds to the power frequency multiplied by the 
number of slots, and the choice of angular frequency nω will be given accordingly 
as:  

n 2 Ne 10fsmω π> ⋅ ⋅ ⋅ ×  

 

Figure 7.11. (a) cogging torque; (b) applied load torque; (c) torque observer 

This observer uses the motor’s mechanical parameters (inertia, friction factor, 
etc.), and it is important to evaluate the robustness of the observation in the presence 
of parametric variations.  

The behavior of the observer is sensitive to the value of the friction factor, by 
introducing a bias (Figure 7.12). For inertia uncertainty, the observation dynamic is 
altered, but the average torque observed is correct in sinusoidal mode.  

7.4.2.3. Closed-loop operation 

We consider here a state feedback control defined continuously and using a 
compensation of the observed torque (Figure 7.13). The control law in closed loop 
imposes a triple pole with a value of  bf 200 rad/s,ω =  and the anticipation term is  
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used to compensate the pole by zero in order for the transfer function denominator to 
be at degree two in the closed loop. The gains are then expressed by:  

2 3 2
bf bf bf bf

s1 s2 r
m m m m

3 3
, , , θ

ω ω ω ω⋅ ⋅ − ⋅ ⋅ ⋅ ⋅
= = = =

J f J J J
K K K K

K K K K
 [7.46]  

 

Figure 7.12. Effects of J and f variations 

 

Figure 7.13. Closed-loop control diagram 
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The observer uses a PI regulator calculated to impose a double pole in 
n 300 rad/s.ω =  In Figure 7.14, the behavior of the variable speed drive is shown for  

a reference position step of 90° with a constant torque of 1 Nm applied at startup. 
This value is doubled from 0.06 s. 

At moment t = 0.09 s, the position set point changes and the load torque remains 
the same.  

With the help of the observer, the torque impact is only slightly noticeable 
(Figure 7.14), and the movement remains lower than 0.2°. 

 

Figure 7.14. Variable speed drive behavior in response to a set point step:  
(a) with observer; (b) without observer; (c) reference 

Figure 7.15 illustrates the behavior of the observer in abrupt variations of the 
torque applied to the machine as well as with the reconstruction of the cogging 
torque. 

Since the mechanical load is not also perfectly known, it is interesting to learn 
more about the behavior of the observer in the presence of uncertainties in existing 
friction and powered inertia. 

In the first series of simulations (Figure 7.16), we show the observed torque 
during a variation of the friction factor of ±50%. 
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Figure 7.15. Observed resistant torque 

 

Figure 7.16. 

These differences have very little influence on the evolution of the position that 
remains almost confused with nominal gradients. The evolution of the reference 
current (Figure 7.17) illustrates this small impact.  

On the other hand, for a variation of inertia, the behavior is quite different, 
notably when inertia increases. In fact, strong amplitude oscillations emerge  
(Figure 7.18). 
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Figure 7.17. 

 

Figure 7.18. 

For a decrease in inertia, sensitivity is low because the evolution of the position 
is only slightly affected. 

7.4.2.4. Analytical characterization 

The system made up of synchronous machine with its model, torque observer, 
control law, and torque compensation can be represented by a only state equation:  
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From this equation, the observed resistant torque is expressed by: 

r p p i r i
ˆ ˆ0 0 Ω Θ Ω⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦

t
C K K K x x     [7.48] 

When the observer parameters are identical to those of the system, we can 
emphasize the transfer function of the observer: 

r
1

ref

ˆ ( )( ) 0
Θ ( )
C pG p

p
= =

 
[7.49]  

( )
( )

2
p ir n

2 2 22
r n np i

ˆ ( )
( )

( ) 2
σ ω
ξ ω ω

⋅ + ⋅ +
= = =

+ ⋅ ⋅ +⋅ + + ⋅ +

K p KC p p
G p

C p p pJ p K f p K
 

r 1 ref 2 r
ˆ ( ) ( ) Θ ( ) ( ) ( )= × + ×C p G p p G p C p  

On Figures 7.19 and 7.20 are presented the variations of the transfer functions 
between the observed torque and the reference position when the inertia and the 
friction are varied 

7.4.3. Complete order observer 

The development of this torque observer is based on the theory of state observers 
[BAB 91, LUE 71, VER 88]. There is, however, another approach based on the use of 
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a proportional integral regulator associated with a model. The observed torque is 
then given by this model’s integrator output, as the input is the error between 
measured speed and its estimate [LEP 93]. 

 

Figure 7.19. Variation of inertia: Crobs transfer function in relation to θref with  
(a) J = Jn; (b) J = Jn + 50%; (c) J = Jn – 50%; (d) J = Jn + 100% 

 

Figure 7.20. Friction variation  

To apply this theory of state observers, in the case of the disruption torque, we 
consider the resistant torque as an additional state variable. 

The hypothesis adopted by all publications consulted considers the resistant 
torque to be constant between two sampling moments [IWA 93, KO 93, REI 91]; 
this hypothesis is all the more justified as the sampling period is short: 

r r( 1) ( )+ =C k C k    



Observation of the Load Torque of an Electrical Machine     353 

 

With this additional state equation, the observer state model is: 

m11 v1 m1

m21 v2 m2

r r

Ω( 1) 0 Ω( )
( 1) 1 ( ) ( )
( 1) 0 0 1 ( ) 0

θ θ
+⎛ ⎞ ⎡ ⎤ ⎛ ⎞ ⎡ ⎤

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ = ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+⎝ ⎠ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦

k F H k H
k F H k H I k

C k C k
   [7.50]  

In the following calculations, the observer parameters are taken as equal to the 
parameters of the actuator in order to avoid an excessive complexity of calculations.  

It is then not possible to use the analytical study of transfer functions developed 
in this section to evaluate the influence of parametric variations on the actuator. This 
robustness study will be done later. 

7.4.3.1. Considerations on observability 

We will extend the study briefly presented in section 7.3.3, to an order three 
observer from the matrix of evolution [F], and output matrix [C].  

This output matrix can take different forms, depending on whether the output 
variable is the position or speed. We then have: 

[ ]
m11 v1

m21 v2

0
1

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F H
F F H   [7.51]  

If the position is output variable: [C] = [0 1 0]. The system can be observed if the 
following determinant is different from zero (application of the Kalman criterion):  

[ ]
[ ] [ ]
[ ] [ ] ( )

m21 v2
2

m21 m11 m21 v1 v2

0 1 0
1

1 1 2

C
C F F H

F F F H HC F

⋅ =
⋅ + ⋅ + ⋅⋅

 

[ ]
[ ] [ ]
[ ] [ ]

( )2
2

or

1 e 0
f

eJ T

C
JC F T
f

C F

− ⋅⋅ = ⋅ ⋅ − ≠

⋅

 [7.52]  
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The system can then be observed from the measure of position. Consequently, it 
is possible to reconstitute the disruption torque as well as the speed from the 
measure of position and knowledge of the current set point. Let us observe if this 
observability remains true in the case of the measure of speed only. The output 
matrix is then: [C] = [1 0 0], and the determinant calculation defined previously is:  

[ ]
[ ] [ ]
[ ] [ ] ( )

m11 v1
22

m11 v1 m11

1 0 0
0 0
0 1

⋅ = =
⋅ +⋅

C
C F F H

F H FC F

 [7.53]  

This determinant is zero and the system is therefore not observable from the 
measure of speed. As before (section 7.3.3), the initial position is not defined. We 
have here the same result as in [7.21] in the context of controllability and 
observability analysis for the development of modal control. According to [7.50], 
speed and torque do not depend on position. We can therefore delete the line 
involving the position in [7.50], and the reduced state system, without position, 
becomes:  

rr

m11 v1 m1

r r

Ω( 1) Ω( )
( )

( 1) ( )0 1 0
+⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
F

k kF H H
I k

C k C k
 [7.54]  

[ ]
r

Ω( )
Ω( ) 1 0

( )
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠C

k
k

C k
 [7.55]  

The application of the Kalman criterion for the observability of the reduced 
system, with speed already measured is:  

[ ]
[ ] [ ] ( )e

v1

( / )

r m11 v1

1 0 1 e 1 0− ⋅= = = ⋅ − ≠
⋅

f J TC
H

C F F H f
 [7.56]  

The reduced state system [7.54, 7.55] is observable, and the knowledge of 
position is not necessary to estimate the resistant torque; the measure of speed is 
sufficient. In the mechanical equation, the speed and the sum of torques applied to 
the axis alone are involved. This speed measure does not make it possible to 
reconstitute the position because of the fact that the initial position is not known.  

This order three observer estimates the state vector of components 
rΩ( ), ( ), and ( )k k C kθ  from the current set point and measure of position, which is 

less noisy than the analog speed measure [KO 93]. It helps in setting up higher 
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observation dynamics, but we must have good resolution of the position encoder in 
order to protect against quantification noises.  

7.4.3.2. Construction 

From [7.50], the complete observer equation [7.57] is [KO 93]: 

( )

( ) [ ]

m11 v1 m1

m21 v2 m2

r r

1

2

3 r

Ω( 1) ( )0
ˆ ˆ( 1) 1 ( )
ˆ ˆ0 0 1 0( 1) ( )

Ω( )
ˆ0 1 0 ( )
ˆ ( )

θ θ

θ θ

⎛ ⎞ ⎛ ⎞+ Ω⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟+ ⋅ − ⋅⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

k kF H H
k F H k H I k

C k C k

kl
l k k
l C k

 [7.57]  

State variables are estimates ( r
ˆ ˆ ˆΩ, and Cθ ) and the observer convergence is 

ensured by the gap between the measured position and estimated position [VER 88]. 
This gap acts on every observer variable through gains l1, l2, and l3. The structure of 
this observer is given in Figure 7.21.  

Equation [7.57] can then be expressed in this way: 

( ) ( )

03

m

m11 1 v1

m21 2 v2

3r r

m1 1

m2 2

3

Ω( 1) Ω( )
ˆ ˆ( 1) 1 ( )
ˆ ˆ0 1( 1) ( )

0

θ θ

θ

⎛ ⎞ ⎛ ⎞+ −⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟+ = − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥−⎜ ⎟ ⎜ ⎟+ ⎣ ⎦⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

F

H

k kF l H
k F l H k

lC k C k

H l
H I k l k

l

    [7.58]  

Factors l1, l2, and l
3
 help in setting up the observation dynamic, because they are 

involved in matrix 03F . These gains are defined as state feedback gains for modal 
control pole placement. Characteristic polynomial ( )03Δ z  is calculated 
(denominator of [7.66]), and its factors are identified with the polynomial factors 
imposed by the specifications. 

[ ]03 03Δ ( ) det 1z z F= ⋅ −  [7.59] 
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Figure 7.21. Structure of the complete observer 

To impose three simple poles (p1, p2, and p3), l1, l2, and l3 must take values: 

( ) ( )( )

( ) ( ) ( )

2
v1 1 2 3 m11 1 2 2 3 1 3 m11

1
v1

v2 m11 m21
v2

1 m11 2 m11 3 m11

v1
m21 m11 m21

v2

1 1

1

1

H p p p F p p p p p p F
l

HH F F
H

p F p F p F

HF F F
H

− − − ⋅ + + ⋅ + ⋅ + ⋅ +
=

⎛ ⎞⎛ ⎞
⋅ − − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− ⋅ − ⋅ −
+

⎛ ⎞⎛ ⎞
⋅ − − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 [7.60a] 

2 m11 1 2 32= + − − −l F p p p  [7.60b] 

( ) ( ) ( )1 2 3
3

v1
v2 m11 m21

v2

1 1 1

1

− ⋅ − ⋅ −
=

⎛ ⎞⎛ ⎞
⋅ − ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

p p p
l

HH F F
H

 [7.60c] 
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By placing the three simple poles at the origin (p1 = p2 = p3 = 0), the 
characteristic polynomial of the observer will be: z3 = 0. We will then have an exact 
response observer that will reproduce the resistant torque with a delay of three 
sampling periods. 

7.4.3.3. Analytical study 

It is carried out with the constituted state equation of all equations corresponding 
to the actuator, observer, and control law. This global state equation of the closed-
loop actuator provides transfer functions between state variables and input variables 
(reference position and load torque). The state equation of the motor is [7.15], that 
for the control law is given by [7.22] and [7.23], and that of the complete observer is 
[7.58]. State feedback in [7.23] is developed with observed variables 
ˆ ˆΩ( ) and ( )θk k . Equation [7.23] is introduced in [7.15] and [7.58] and the global 

state equation is written as: 

( ) ( ) ref
glob glob glob glob

r

( )
1

( )
θ⎛ ⎞

+ = ⋅ + ⋅⎜ ⎟
⎝ ⎠

k
X k F X k H

C k
   [7.61]  

with 

r

glob

r

Ω( )
( )
( )

( )
Ω̂( )
ˆ( )
ˆ ( )

k
k

X k
X k

k

k

C k

θ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

m1 θ v1

m2 θ v2

glob
m1 θ

m2 θ

1 0
0
0

0 0

H K H
H K H

H
H K
H K

⋅⎡ ⎤
⎢ ⎥⋅⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⋅⎢ ⎥

⎢ ⎥⋅
⎢ ⎥
⎢ ⎥⎣ ⎦

     [7.62]  
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m11 m1 r m1 s1 m1 s2 m1 v

m21 m2 r m2 s1 m2 s2 m2 v

glob
1 m1 r m11 m1 s1 1 m1 s2 v1 m1 v

2 m2 r m21 m2 s1 2 m2 s2 v2 m2 v

3 3

0
1

0 0 1 0 1 0
0
0 1
0 0 0 1

F H K H K H K H K
F H K H K H K H K

F
l H K F H K l H K H H K
l H K F H K l H K H H K
l l

⋅ − ⋅ − ⋅ ⋅⎡ ⎤
⎢ ⎥⋅ − ⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⋅ − ⋅ − − ⋅ + ⋅⎢ ⎥

⎢ ⎥⋅ − ⋅ − − ⋅ + ⋅
⎢ ⎥

−⎢ ⎥⎣ ⎦

 [7.63]  

The sixth column of Fglob is simplified with the help of relation [7.30], which 
defines compensation gain Kv of resistant torque. After simplification, this column is 
expressed according to:  

( )( ) ( )glob v1 v2i,6 0 0 0 1= − −t F H H  [7.64]  

Transfer functions provide the evolution of state variables of vector globX  
according to inputs θ

ref
 and C

r
:  

( ) 1 ref
glob glob glob

r

( )
1

( )
θ− ⎛ ⎞

⎡ ⎤= ⋅ − ⋅ ⋅⎜ ⎟⎣ ⎦
⎝ ⎠

z
X z z F H

C z
 [7.65]  

This very large calculation was carried out with the help of the Mathematica 
software package [MTH 91]. The sixth line of globX  [7.65] results in the observed 
torque according to system inputs. It depends only on the load torque and not on 
position set point. In the denominator in [7.66], the ( )03Δ z  characteristic 
polynomial of the observer emerges, setting its dynamic from gains l1, l2, and l3: 

( ) ( )
( ) ( )

( )
( )

v1
3 v2 m11 m21

v2
r ref r

m11 2 3 v2 m21 3 v1 1

3 v2 2 m21 1 m11 m11 2

2
2 m11

3

ˆ 0 ( )
1

1 2

2

θ

⎛ ⎞⎛ ⎞
⋅ − − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= ⋅ + ⋅

⎛ ⋅ − − ⋅ + ⋅ ⋅ − ⎞
⎜ ⎟

+ ⋅ + ⋅ − + ⋅ + ⋅ − ⋅⎜ ⎟
⎜ ⎟+ ⋅ − −⎜ ⎟
⎜ ⎟+⎝ ⎠

Hl H z F F
H

C z z C z
F l l H F l H l

z l H l F l F F l

z l F

z

 [7.66]  

In a state of equilibrium, we can define that the observer’s static gain equals 1, 
by applying the theorem of the final value in [7.66]. There is a zero at the numerator 
that depends only on mechanical parameters (J and f) and the sampling period:  

( )
( )

ev1
0 m11 m21

v2 e

1
.

1
λ λ

λ
⋅ − + ⋅ ⋅

= − =
⋅ − + ⋅

J f TH
Z F F

H J f T
 [7.67]  



Observation of the Load Torque of an Electrical Machine     359 

 

If the actuator is correctly identified, it is advantageous to compensate this zero 
with one of the poles of the observer characteristic polynomial in order to improve 
its dynamic behavior. The observer poles will then be: p1 = Z0, p2 = b, and p3 = c and 
observer gains: 

( )
( )

( ) ( )

v1
1 m11

v2 v1
1 2 0

v1 v2
2 m21

v2

3
v2

1
1

2

1 1

⎫= + − − ⋅ ⎪⎪ ⇒ = − + ⋅⎬
⎪= + ⋅ − −
⎪⎭

− ⋅ −
=

H
l F b c

H H
l l Z

H Hl F b c
H

b c
l

H

 [7.68]  

If poles 2 3andp p  are placed at the origin, the observer has an exact response in 
only two sampling periods. Compensation of Z0 then accelerates the dynamic of the 
observer. Z0 is between –1 and 0, causing alternation phenomena [BÜH 82] on the 
observation if the actuator parameters are not correctly identified, because Z0 is no 
longer compensated. Through simulations, these alternation phenomena affect the 
inverter’s control variable. From glob ( )X z  in [7.65], the speed and position 
observation error can be defined. This error is the difference between real and 
observed state variables, components of glob ( )X z : 

( )
( ) v2

v1 2 1
v1

ref r
03

1 1
HˆΩ Ω( ) 0 ( ) ( )

Δ ( )
θ

⎛ ⎞
− ⋅ ⋅ + − − ⋅⎜ ⎟

⎝ ⎠− = ⋅ + ⋅

Hz H z l l
z z z C z

z
 [7.69] 

( )v2 0
ref r

03

( 1)ˆ( ) ( ) 0 ( ) ( )
Δ ( )

θ θ θ
− ⋅ ⋅ −

− = ⋅ + ⋅
z H z Z

z z z C z
z

 [7.70] 

The observation error is zero for variations of position set point but not for 
resistant torque variations. This error is canceled in a state of equilibrium because of 
term (z − 1) and the asymptotic convergence of the observer is ensured. 
Compensation of 0Z  by a 03Δ ( )z  pole decreases the effect of torque variations on 
the observation error [7.70], through the reduction of the transfer function sequence 
between the observation error and disruption torque. This compensation of Z0 occurs 
also in [7.69] between l1 and l2 [7.68]. 

In summary, the resistant torque is estimated after two sampling periods in the case 
of zero compensation and the placement of a double pole at 0. In addition, the 
observation error of speed and position is not zero during load torque variations.  
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The complete theoretical structure, with performances that are not as good as  
the reduced structures discussed in the following text, was not implemented 
experimentally.  

7.4.4. Reduced order two observer based on the measure of position  

Since the error of observation is non-zero on position during load torque 
variations, and the measure of position is necessary for the complete observer, the 
measured position is used for the state feedback. In addition, for a zero or constant 
load torque, the observation error of the position is zero, regardless of the evolution 
of the position set point. The complete observer, therefore, has no advantage, not 
even a filtering effect to decrease the effects of quantification of the digital position 
encoder. In light of these comments, a reduced order two observer was developed 
for an observation of load torque and speed from current position and set point. It is 
a minimal Luenberger observer [BAB 91] where the measured variables are no 
longer being rebuilt.  

7.4.4.1. Construction 

Since position θ  is measured, it is therefore no longer a state variable but an 
output variable of the reduced state system where the state variables observed are 

rΩ and C . 

Then, [7.50] is modified into:  

[ ]

rr

m11 v1 m1

r r

m2 m21 v2
r

Ω( 1) Ω( )
( )

( 1) ( )0 1 0

Ω( )
1 ( ) ( ) .

( )
θ θ

+⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

⎛ ⎞
( + ) − − ⋅ = ⎜ ⎟

⎝ ⎠

F

k kF H H
I k

C k C k

k
k k H I k F H

C k

 

[7.71]

 

This new state system is the basis of the reduced order two observer: 

[ ]

m11 v1 m1

r r

1
m2 m21 v2

2 r

ˆ ˆΩ( 1) Ω( )
( )

ˆ ˆ0 1 0( 1) ( )
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1 ( ) ( ) .

ˆ ( )
θ θ

⎛ ⎞ ⎛ ⎞+ ⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
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l k
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l C k

 [7.72] 
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As in [7.57], gains l1 and l2 ensure observer convergence from ratio [7.71] 
between the real actuator behavior and its observed behavior. 

The structural diagram of this observer is shown in Figure 7.22. In equation 
[7.72], ( 1)θ +k  at the second member is not known at moment k . In order to do 
this, we introduce variables r

ˆ ˆΩ and′ ′C  by the following transformation:  

1

2r r

ˆ ˆΩ( 1) Ω ( 1)
1

ˆ ˆ( 1) ( 1)
θ

⎛ ⎞ ⎛ ⎞′+ + ⎡ ⎤
= + ⋅ ( + )⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟′+ + ⎣ ⎦⎝ ⎠ ⎝ ⎠

k k l
k

lC k C k
 [7.73] 

The reduced order two observer equation is: 

( )
( )

m11 1 m21 v1 1 v2

2 m21 2 v2r r

1 m11 1 m21 2 v1 1 v2

2 2 v2 1 m21

m1 1 m2

2 m2
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. 1 ( )

( )
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l F l HC k C k

l F l F l H l H

l l H l F

H l H
I k

l H

 [7.74] 

The variables observed at moment k are deduced from transformation [7.73]. 
Gains l1 and l2, setting the observation dynamic, are determined by the identification 
of the characteristic polynomial of observer  02Δ ( )z  with the polynomial defined by 
the specifications: 

( ) ( ) m1 1 m21 1 v2 v1
1 2 02

2 m21 2 v2

Δ ( )
1

− + ⋅ ⋅ −
− ⋅ − = =

⋅ − + ⋅
z F l F l H H

z p z p z
l F z l H

 [7.75] 

is explained in denominator [7.80]. For two simple poles (p
1
 and p

2
), 

( ) ( ) ( ) ( )
( )( )
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1 2 v2 m11 v1 m21 v2 m11 1 2 v1 m21 m11

1
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. 1

1 1
. 1
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− + ⋅

[7.76] 
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Figure 7.22. Structure of the reduced order two observer 

7.4.4.2. Analytical study 

This study is similar to the one carried out previously (section 7.4.3.3) and 
consists of combining state equations [7.15], those of control law [7.22, 7.23] and of 
observer [7.74] into a single equation. State equations of the observer involve 

r
ˆ ˆΩ and C′  and control law, as observed speed is used for state feedback. The global 

state vector is: 

( )glob r r
ˆ ˆ( ) Ω( ) ( ) ( ) Ω ( ) ( )θ ′ ′=tX k k k X k k C k  [7.77] 

The variables observed are not components of glob ( )X k , contrary to the complete 
observer. 
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Output matrix Cglob, deducted from [7.73], helps to determine the transfer 
functions: 

glob

1

r 2 glob

Ω̂( ) 0 0 1 0
ˆ( ) ( ) 0 0 0 1 ( )
Ω( ) 1 0 0 0 0

⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎢ ⎥⎜ ⎟= = ⋅⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
C

k l
y k C k l X k

k
 [7.78] 

The z transform of y(k), expressed according to Cglob, Fglob, and Hglob, is linked to 
input variables by transfer functions.  

1 ref
glob glob glob

r

( )
( ) 1

( )
θ− ⎛ ⎞

⎡ ⎤= ⋅ ⋅ − ⋅ ⋅⎜ ⎟⎣ ⎦
⎝ ⎠

z
y z C z F H

C z
 [7.79] 

But matrices Fglob and Hglob have different factors than [7.62] and [7.63]. As 
before, this calculation was carried out with the help of the Mathematica software 
package. The second line of y(z) gives the expression of the observed torque 
expressed as:  
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 [7.80] 

As with the complete observer, the observed torque depends only on load torque, 
zero 0Z  at the numerator is the same, and static gain equals 1. If the zero is not 
compensated, the minimal observer response time will be of two sampling periods 
with an exact response if we put a double pole at the base. If mechanical parameters 
(J and f) are correctly identified, the compensation of 0Z  by one of the 02Δ ( )z  poles 
improves the behavior of the observer, because the transfer function between the 
load torque and its estimate is of the first order. If the second pole is placed at zero, 
the response is done in one sampling period. As before (section 7.4.3.3.), in the case 
of incorrect identification of the actuator, the zero is no longer compensated, and the 
observer consequently presents a negative pole that can cause an alternation of the 
observed torque. This alternation can then affect inverter control and be harmful to 
the actuator. To compensate the zero (p1 = Z0), observer gains are:  

v1 2
1 2

v2 v2

1
and

−
= =

H p
l l

H H
 [7.81] 
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The transfer function linking the observed torque to the disruption torque is: 

( )
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r ref r
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 [7.82]  

The observed torque is an image of the load torque seen through a filter of the 
first order of adjustable dynamics. From [7.79], the gap between the real speed and 
the observed speed is written as: 

( )( )v1 v2 1
ref r

02

1ˆΩ( ) Ω( ) 0 ( )
Δ ( )

θ
− −

− = ⋅ +
z H H l

z z C z
z

 [7.83]  

The error on speed is zero regardless of the position reference but depends on 
load torque. Because of the term (z − 1), it is canceled after a certain period of time 
when the load torque remains constant. The Z0 compensation cancels the speed 
observation error even when the load torque varies, because the term (Hv1 − Hv2⋅l1) 
in [7.83] is canceled because of the l1 sizing in [7.81]. If there is compensation of 
zero and simple pole placement at 0, the response of the reduced order two observer 
is of one sampling period. It also gives an unbiased image of speed, regardless of the 
load torque variations. The reduced order two observer offers better performances 
than the observer. 

7.4.4.3. Experimental tests 

The tests consist of maintaining the actuator position constant when its axis is 
disrupted by a load torque step. The behavior of the actuator with reduced order two 
observer is compared with or without torque compensation. The tests are done 
consecutively with a double pole and with a single pole by compensating the zero in 
the transfer function. The speed state feedback is done with observed speed. The 
dynamic of the state feedback is chosen slow enough, so that the modal control 
alone can present bad behavior in terms of disturbance rejection. The observer can 
then increase the dynamic of the disturbance rejection. The observation dynamic is 
higher than that of the state feedback because the compensation of the load torque 
occurs on the control variable.  

We have not chosen an exact response, mentioned in the previous sections, of 
infinite observation dynamic (pobs = 0 ⇒ ωobs → ∞), because, as the measures are not  
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perfect, the noise considered by the observer would disrupt the operation of the 
actuator. The poles are chosen higher than 0.5 in a sample: 

– Choice of a double pole: The parameters of the control law used for this test 
are as follows: 

Kθ: compensation of pole ωbf = 8 rad/s; 

Te = 5 ms, pobs = p1 = p2 = 0.55 ⇒ ωobs ~ 120 rad/s; 

(double pole – behavior of the second order). 

The observation error (Figure 7.22) depends on the measured position from a 
differentiating unit ( )1 θ− ⋅ ( )z z . This measure of position must be exempt of any 
noise implying the implementation of a digital filter. The digital position encoder is 
less sensitive to disruptions than an analog encoder. The parasites in speed and 
torque analog measures (Figure 7.23) are more important than in the measure of 
position. However, digital encoding has quantification. 

 

Figure 7.23. Disturbance rejection behavior of reduced order two observer with double poles 
(experimental results)  
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Figure 7.24. Consideration of these effects of quantification  
of position encoder (experimental results)  

A too raw quantification, due to an insufficient resolution of the position 
encoder, results in quantification noise [MAR 65]. Here, the noise is not 
insignificant because the position is only encoded on 512 points per revolution  
(9 bits), or in other words, an encoder resolution of 0.7°. The measured position 
quantification (Figure 7.24) corresponds to disturbing steps, especially at slow 
speed. If this measure is injected as in the observer, the observed variables (torque 
and speed) show non-physical noises because of diversion. 

A second-order digital filter reduces this quantification noise [SEV 82,  
MAX 88]. The characteristics of the equivalent continuous filter are: 

– inherent angular frequency = 150 rad/s;   

– damping factor = 0.61.  
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The inherent angular frequency of 150 rad/s minimizes phase shifting, caused by 
the filter at low frequencies. This filter provides a “smooth” image of the position 
measure (Figure 7.24) and decreases the harmful effects of quantification and results 
in a non-disrupted load torque and speed. In order to guarantee actuator stability, we 
must reduce dynamic performances of the control law because of the phase shift on 
the position caused by the filter. The sizing of this filter is the result of a 
compromise between the phase shift introduced and its ability to eliminate noises. 
The frequency of filter break is placed at least a decade beyond the control dynamic. 
The increase in the number of encoder bits decreases the quantification step and 
avoids the use of a filter. As an example, we can cite some publications that mention 
the use of 4,096-point (12 bit) encoders [CER 95], or with a larger number of points 
[MUR 93].  

In Figure 7.23, the behavior of the actuator experiencing a torque step of 5 Nm 
(or ~ 0.5⋅Cnom) is presented. The first gradient shows the influence of disruption 
rejection on the position; the position gap and response time are lower when the 
disruption torque is compensated. 

The position without compensation (in dotted line) reveals the slot torque 
resulting in a rise in levels [MTS 93, VOR 96]. The two following reports (speed 
and load torque) correspond exclusively to the behavior of the actuator with 
compensation of load torque. The torque is not constant during transient mode, 
hindering the observation of speed [7.83]. These variations of torque are caused by 
the slot torque, function of position. In transient mode, a gap between measured 
torque and observed torque emerges and is linked to the effects of the filter on the 
measure of position and pole placement of the observer. In addition, the torque 
sensor has a second-order Butterworth filter with a bandwidth of 126 rad/s. 

The observed torque has a slight sawtooth angular backlash around the measured 
torque when the position is not stabilized. It is caused by mechanical non-linearities, 
static friction torque, and dry friction torque [BRA 87]. This very low-frequency 
angular backlash is explained by the fact that the observed torque is built from the 
current set point, which is developed from torque observation. If the system was 
perfectly linear, an increase in the current set point would cause movement and the 
evolution of the observed torque. The position only varies when the motor torque 
exceeds a certain value because of static friction torque. An angular backlash of  
the position is then created around a steady state angle position. This limit cycle 
phenomenon is the subject of one of the experimental results presented later. 

This angular backlash is made worse by the delay in detecting the variation of 
position because of the quantification of measure of position. It is visible at 
moments close to 3 s (Figure 7.23), and its amplitude is 0.7°, which is equal to the 
quantification step of the position encoder. The amplitude reduction of this angular 



368     Electrical Actuators 

backlash is linked to a better encoder resolution. The speed observed (Figure 7.23) 
shows no parasites, contrary to the measured speed, which, with the suppression of 
the speed sensor, is a significant advantage. In Figure 7.24, there is a gap between 
the observed speed and the measured speed, during the torque step (between 1 and 
1.1 s), caused by the phase shift of the filter on the measure of position, and on the 
other hand, by the error of observation of the observer. For very low speeds  
(<0.5 rad/s), the quality of speed observation decreases. This decrease has two 
reasons: 

– The first reason is that at low speeds, the measure is tainted with errors caused 
by noises that are no longer insignificant on the low-weight bit of the analog digital 
speed converter (0.1 rad/s) (Figure 7.23 between moments 0.5 and 1 s). 

– The second reason is linked to the effects of the quantification of the position 
measure and to those of the filter used to decrease it. During very slow movements 
(Figure 7.24), the speed observed is the derivative of the step response of this filter 
(between moments 1.34 and 1.37 s). The same applies to torque observation. 

 

Figure 7.25. Disturbance rejection behavior of reduced order two observer  
with single pole and zero compensation (experimental results)  
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This filter is vital, however, except if a better-resolution position encoder is used. 
In Figure 7.25, the speed observed shows good correspondence in mean value with 
the real speed. Observed speed ripples are caused by quantification and the filter. 

The quantification noise must be decreased by an appropriate filter so as not to 
destabilize the control law. This filtering deteriorates information, leading to a 
decrease in the performance of the control algorithm. 

– Choice of a single pole and zero compensation: the control law and 
experimental tests (5 Nm torque step) are the same as in the previous case, but the 
observer pole is single: p

obs
 = p

2
 = 0.55 ⇒ ω

obs
 ~ 120 rad/s (single pole – first-order 

behavior). 

The characteristics of the filter in the position measure are identical to the 
previous one (second-order cell with 150 rad/s angular frequency and damping 
factor 0.61). In Figure 7.25, the disturbance rejection behavior of the reduced order 
two observer with zero compensation is illustrated. We can verify better behavior; 
the position gap during the torque step is less than that without zero compensation 
(Figure 7.23). But the torque angular backlash (Figure 7.23) does not appear in 
Figure 7.25. The position and speed oscillations at the end of the transient mode 
(between 2 and 2.7 s) and similar in the test presented in Figure 7.23 are caused by the 
filters placed in the observed variables (torque and speed), introducing additional 
phase shifting. Since the observer with zero compensation is very sensitive to the 
quantification of the position encoder despite measure filtering, it is necessary to 
filter the observed variables, twice alternating the sampling period, such as observed 
speed (Figure 7.26). The observed speed (Figure 7.26) shows very low phase shift in 
relation to the speed measured, when zero is compensated [7.83]. The position 
quantification disrupts the observation, however, and requires filtering to be usable 
by modal control. This filtering introduces a phase shift liable to trigger the 
oscillations mentioned in the preceding text.  

– Conclusion: in conclusion for these two tests, we can observe that the 
disturbance rejection is very efficient, compared with tests on the reduced order one 
observer (following section). These tests validate the use of observed speed for 
modal control and thus suppression of the speed sensor. The insufficient resolution 
of the position encoder does not make it possible to bring out all the possibilities of 
the observer. The quantification noise must be decreased by an appropriate filter so 
as not to destabilize control law. This filtering deteriorates information, leading to a 
decrease in the performance of the control algorithm. 
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Figure 7.26. Illustration of sensitivity to the quantification of reduced order two 
 observer with zero compensation (experimental results)  

7.4.5. Reduced order one observer based on speed measure 

It is possible (section 7.4.3) to observe the resistant torque only from the measure 
of speed. This justifies the study of the reduced order one observer to reconstitute 
the load torque from the measure of speed and current set point.  

7.4.5.1. Construction 

The construction of this observer is similar to that of reduced order two observer 
[7.54]. Since the speed is measured, it is no longer state variable but output variable. 
The state vector only has one component, the resistant torque, and observer output is 
a combination of the current set point and speed measured at different moments: 

( )r r

m11 m1 v1 r

1 ( )
Ω( 1) Ω( ) ( ) ( )

+ =

+ − ⋅ − ⋅ = ⋅

C k C k
k F k H I k H C k

 [7.84]  

The observer equations are written as: 
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= − ⋅ ⋅ + ⋅ + − ⋅ ⋅ − ⋅ ⋅
  [7.85] 
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Figure 7.27. Structure of the reduced order one observer 

The observer diagram is illustrated in Figure 7.27. Since Ω(k + 1) is not known 
at moment k, a change in variable is done: 

( ) ( )r r
ˆ ˆ1 1 Ω( 1)′+ = + + ⋅ +C k C k l k  [7.86]  

Finally, the reduced order one observer has the following equations: 

( ) ( ) ( ) ( ) ( )
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p
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 [7.87] 

Gain l is sized from the choice of observation dynamic defined by p
obs

: 

obs

v1

1
 

p
l

H
−

=  [7.88] 
 

If p
obs

 = 0, we have an observer with exact response in one sampling period. The 
observation structure is very simple (Figure 7.28). Observer l gain is still negative 
because H

v1
 is negative and p

obs
 is between 0 and 1.
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7.4.5.2. Analytical study 

This study is similar to that done for the reduced order two observer, and the 
transfer function between the observed torque and inputs is:  

obs

v1
r ref r
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ˆ ( ) 0 ( ) ( )

z (1 )
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⋅

= ⋅ + ⋅
⎛ ⎞
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l H
C z z C z

l H

 [7.89] 

The observed torque depends only on the load torque and the observer behaves 
as a first-order filter with a bandwidth that is set by gain l. This transfer function is 
comparable to the one defined in [7.82]. The reduced order one observer, therefore, 
has the same behavior as the reduced order two observer with zero compensation, 
but the latter also estimates the actuator speed without bias.  

 

Figure 7.28. Structure of the reduced order one exact response observer 

7.4.5.3. Experimental results of the reduced order one observer 

As with reduced order two observer, we show here the role of the reduced order 
one observer in disturbance rejection. We compare the behavior of the actuator with 
or without load torque compensation.  
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The control law parameters in this test are determined as with the reduced order 
two observer (section 7.4.4.3):  

– K
θ
: compensation of pole, ω

bf
 = 8 rad/s; 

– T
e
 = 5 ms,  p

obs
 = 0.9 ⇒ ω

obs
 ~ 21 rad/s (first-order behavior). 

Since the analog measure is noisy, it is necessary to filter it with a second-order 
digital filter [MAX 88]. The angular frequency inherent to the equivalent continuous 
filter equals 100 rad/s and its damping factor equals 0.6. This filter cannot 
completely support noises in speed measure. We must make sure that the filter does 
not introduce a phase shift in the speed measure, which would destabilize the control 
law. The torque sensor bandwidth is set at 126 rad/s by its second Butterworth filter 
(damping factor = 0.707). In Figure 7.29, the behavior of the actuator experiencing a 
torque step of 5 Nm or (~ 0.5⋅C

nom
) is illustrated.  

 

Figure 7.29. Disturbance rejection behavior of reduced order one  
observer (experimental results) 
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In the first gradient, the position gap and response time are lower when the load 
torque is compensated. As with the reduced order two observer, the slot torque 
results in a rise in levels in position without compensation (dotted line) [MTS 93, 
VOR 96]. But the reduced order two observer offers better rejection of the  
disturbance torque. The performances of the reduced order one observer had to be 
limited because of the speed measure noises. The two following gradients 
correspond to the actuator behavior with compensation of the load torque. Measured 
speed contains parasites that must be filtered without affecting the control law too 
much so it is not destabilized. The frequency of the filter break is placed at least a 
decade beyond the dynamic of state feedback, but the measure noises cannot be 
completely eliminated. Their effects are on the observed torque and position. The 
influence of these noises is minimized by reducing the control law and observer 
dynamics. 

The difference between observed torque and measured torque is linked to this 
reduction of the observation dynamic. The measured torque peak is caused by the 
combined action of the slot torque (internal to the induction machine) and the effect 
of elasticity introduced by the torque sensor (installed between the two inertias). 
These phenomena result in ripples on the observed and measured torques (between  
t = 1 and 1.7 s). In a state of equilibrium (t = 1.9 s), the observed torque is higher 
than the measured torque, because of an incorrect identification of inverter gain or 
motor torque constant. If the observation error becomes too important, the behavior 
of the actuator then becomes disrupted (Figure 7.30).  

The test (Figure 7.30) corresponds to a zero position set point and disturbance 
torque. The sensitivity of the observer to measure parasites (t = 0.17 s) and 
mechanical noise on the low-weight bit of the speed digital analog converter is 
brought out. The average non-zero filtered speed (between t = 0.22 and 0.45 s) 
triggers slow growth (in absolute value) of the observed torque and current set point 
to a threshold corresponding to the static friction torque. The position does not 
stabilize and shows oscillations caused by non-linear friction torques and the phase 
shift caused by speed filtering. 

In conclusion, the presence of noises on the speed measure forces the reduction 
of control law performances. This is because of the filter in the speed measure on the 
one hand and the reduction of state feedback and observer dynamics on the other 
hand. The reduced order two observer enables the deletion of the speed sensor and 
gets rid of noise problems discussed previously. 
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Figure 7.30. Influence of noise on torque observation (experimental results) 

7.4.6. Comparative study of different types of observers 

The different observation structures differ from the number of variables observed 
and the variable used to ensure observer convergence. Comparison Table 7.2 
highlights the fact that the dynamic behavior of the observer depends on the number 
of variables observed. The observer response can be accelerated when zero is 
compensated by one of the poles and the observation dynamic is reduced by one 
order. In this way, reduced order two observer with zero compensated has the same 
dynamic behavior as the reduced order one observer and makes it possible to 
observe the speed without bias from the measure of position. This is only true with a 
good identification of mechanical parameters; otherwise, robustness of the control 
law is affected. The complete observer always has the worst dynamic. In this table, 
the noise problems linked to implementation do not appear. 

The reduced order one observer requires the measure of speed, which is very 
sensitive to electromagnetic disturbances created by static converters that are hard to 
filter unless the measured speed is noticeably deteriorated by a significant phase 
shift. Since filtering does not eliminate all the noises, the dynamic of the order one 
observer must be reduced. This observer is, therefore, not an exact response, and a 
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compromise between the observation dynamic and influence of noises must be 
reached. If the measure of speed is very good, this structure, the simplest to 
implement, has the best response time (first-order dynamic), and the greatest 
robustness (see the following text). 

  Complete 
observer 

Reduced order 2 
observer 

Reduced order 1 
observer 

Measure used to ensure the 
observer convergence θ θ Ω 

θ̂  Yes No No 

Ω̂  Yes Yes No Observed 
variables 

rĈ  Yes Yes Yes 

Dynamic behavior  
of the observer 3rd order 2nd order 1st order 

Presence of zero in the numerator 
of the transfer function Yes Yes 

Dynamic behavior of the  
observer with zero compensation 2nd order 1st order 

No 
 

Without zero 
compensation ≠ 0 Transient error 

of position 
observation With zero 

compensation ≠ 0 

The position 
is not observed 

Without zero 
compensation ≠ 0 ≠ 0 Transient error 

of speed  
observation With zero 

compensation ≠ 0 = 0 

The speed 
is not observed 

Table 7.2. Comparison of the different observers 

With the reduced order two observer, based on the measure of position, the speed 
sensor and related problems are deleted. The digital position measure, which is less 
sensitive to electromagnetic disturbances, depends on the resolution of the encoder. 
If it is too low, a quantification noise filtering will be necessary, which may have a 
greater bandwidth and interfere less with the control law. In this way, the reduced 
order two observer bandwidth is greater and ensures better disturbance rejection 
than the reduced order one observer. The reduced order two observer has a second-
order dynamic, therefore slower than the reduced order one observer, but it is  
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possible to make it faster with zero compensation. This zero compensation is very 
sensitive to the quantification of the measure of position (section 7.4.4.3) and 
requires good identification of parameters. 

7.5. Robustness of control law by state feedback with observation of the 
resistant torque 

7.5.1. Introduction 

This part addresses the robustness of the control law when the actuator 
experiences parametric variations, that is, inertia, friction factor, and torque constant. 
The effect of these variations is quantified by the resulting position error and by the 
speed observation error when the observer evaluates the speed of the actuator. We 
first present the protocol of simulation used to evaluate robustness as well as the 
criterion of evaluation for position or speed errors. Then, we study the regulation 
robustness of the actuator through position error. For each parametric variation, the 
influence of the observation dynamic is evaluated. Finally, the influence of 
parametric variations on speed observation error is studied with the same approach 
as for the position error.  

7.5.2. Context of the study 

The protocol of the robustness study (Figure 7.31) is done on a machine with the 
characteristics indicated at the end of the chapter:  

– a position step of 90°  at no load; 
– then a load torque step of 5 Nm (approximately half of the nominal torque) 

applied to the actuator.  

Speed and position sensors are presumed to be perfect. In Figure 7.31, the real 
position, its set point, the real load torque, and that given by the reduced order one 
observer are represented: 

( )obs obs0.7 and 18rad/sθ= ≅p  

The characteristics of control law are:    

Te = 20 ms, θ
bf

 = 15 rad/s, K
θ
: zero compensation 
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The criterion of evaluation for position and speed errors is the integral of its 
absolute value: 

( ) ( ) ( )
( ) ( ) ( )

refIAE error( ) d with error

ˆerror Ω Ω

t t t t t

t t t

θ θ= ⋅ = −

= −

∫    [7.90]  

In the case of the position error, the Integral Absolute Error criterion  
(Figure 7.31) represents the surface (rad/s) between the position and its set point. In 
the case of the speed observation error, the unit is the radian. 

 

Figure 7.31. Simulation profile 

Simulation results are presented in the form of graphics. For a parametric 
variation (moment of inertia, friction factor, or torque constant), we compare the 
error obtained with the following control laws:  

– (reso) state feedback without observer; 
– (o1) state feedback with torque compensation by the reduced order one 

observer; 
– (o2cz) state feedback with speed observation and torque compensation by the 

reduced order two observer with zero compensation;  
– (o2p2) state feedback with speed observation and torque compensation by 

double pole reduced order two observer;  
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– (o3cz) state feedback with position and speed observation, and torque 
compensation by complete observer with zero compensation;  

– (o3p3) state feedback with position and speed observation, and torque 
compensation by triple pole complete observer.  

The simulations are done with two observation dynamics:  

– pobs = 0 (deadbeat response observer);  
– pobs = 0.7 (ω

obs
 ~ 18 rad/s). 

In the reduced order two observer and complete observer, the state feedback is 
built with observed state variables (speed and position), knowing that the position 
observation is only available with the complete observer. The unstable cases are not 
represented in the graphics. The parametric variations (inertia, friction factor, and 
torque constant) are represented in the following way:  

[ ]
[ ]

( ) [ ]

n

n

em em n

with 0.5;1;2

with 0.1;0.5;1;2;10
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7.5.3. Robustness of actuator position 

We present here the robustness simulation results of the regulation actuator 
during the application of a torque step. We study the influence of the variations of 
inertia, friction factor, and torque constant for two observer dynamics.  

7.5.3.1. Variations of inertia 

The variations of inertia considered correspond to a doubling and a division by 
two of nominal inertia. The results are presented in Figure 7.32. 

Robustness deteriorates with a quick observation dynamic and when the inertia 
decreases. In this case, the actuator becomes unstable with an observation structure. 

To determine the control algorithm, it is therefore better to underestimate inertia 
if it is likely to change. 
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Figure 7.32. Regulation robustness when inertia changes with  

(a) p
obs

 = 0.7 and (b) p
obs

 = 0 

When inertia increases, and with a quick observation dynamic, complete observers 
((o3cz) and (o3p3)) are not robust, they can even be unstable.  

For a slower observation dynamic, the risks of instability decrease but the 
position error caused by the torque step is, in certain cases, greater than the error 
obtained without the addition of the observation structure ((o3p3), (o3cz),  
and (o2p2)).  

Here, only structures (o1) and (o2cz) remain competitive. In addition, structure 
(o1) remains stable when inertia decreases, which is not the case with structure 
(o2cz).  

7.5.3.2. Friction factor variations 

Robustness results are presented in Figure 7.33. It is affected very little by a 
decrease in friction factor, and overestimating the friction factor thus retains its 
advantage. As before, the observation structures with zero compensation ((o2cz) and 
(o3cz)) have increased instability risks. They are less significant, however, when the 
dynamic of observation is slow, but the disturbance rejection is less efficient.  

In the case of structures (o3p3), (o3cz), and (o2p2), the disruption rejection error 
is even more significant than that without load torque compensation (reso). High 
observation structures do not have as good robustness as reduced structures. This is 
particularly visible in the case where p

obs
 = 0.7.  
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Figure 7.33. Regulation robustness when the friction factor changes  

with (a) p
obs

 = 0.7 and (b) p
obs

 = 0 

In addition, structures (o1) and (o2cz) offer the same error when they are stable. 
Reduced order two and one observers with zero compensation [7.82, 7.89] behave as 
first-order systems for the observation of the resistant torque. 

Observation dynamic being equal, the behavior is identical. Risks of structure 
(o2cz) instability can be attributed to the observation of speed in addition to the 
observation of the torque.  

7.5.3.3. Torque constant variations (Figure 7.34) 

Since these two observed variables are used by the control law, the actuator is 
more sensitive to parametric variations than with structure (o1), only giving torque 
observation.  

The positioning error is almost doubled when the torque constant is divided by 2. 
For a quick observation dynamic, observation structures based on the complete 
observer are not robust or unstable ((o3p3) and (o3cz)).  

The other structures provide good compensation of the torque step; but for a given 
structure, the variation of error remains relatively significant.  

For slow observation dynamic, all the structures remain stable, but structures 
based on the complete observer and structure (o2p2) result in a more important 
regulation error than control law without torque compensation. 
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7.5.4. Robustness of actuator rotation speed 

As before, this study is based on the use of criterion IAE applied at speed 
observation error, for observation structures also resulting in observed speed in 
addition to observed load torque ((o2cz), (o2p2), (o3cz), and (o3p3)). 

We focus on regulation robustness, and on the influence of each parameter 
(moment of inertia, friction factor, and torque constant), for two observation 
dynamics.  

7.5.4.1. Variations of inertia 

Complete observation structures are not robust, a phenomenon that is more 
obvious as the observation dynamics are slow.  

For quick observation dynamics, the speed observation error is less, but 
robustness is damaged. 

The use of structure (o2p2), because of the relatively low observation error, 
seems to be the best solution as long as we choose an appropriate observation 
dynamic: a dynamic that is too quick makes this structure unstable when the inertia 
decreases (Figure 7.35).  
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Figure 7.34. Regulation robustness when torque constant changes with 
(a) p

obs
 = 0.7  and (b) p

obs
 = 0  
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Figure 7.35. Speed observation error in regulation when inertia changes with  
(a) p

obs
 = 0.7 and (b) p

obs
 = 0  

7.5.4.2. Friction factor variations 

As in previous cases, it appears that the speed observation error is more 
significant when the observation dynamic is slow. This comment must be nuanced 
in the case of structure (o2cz), which can maintain a low observation error, even if 
the observation dynamic is slow. A quick observation dynamic decreases 
observation error, but zero compensation structures ((o2cz) and (o3cz)) can become 
unstable depending on the evolution of the friction factor. Structure (o2p2), with a 
quick observation dynamic, then seems to be a good compromise between 
robustness and precision when friction factor varies. This structure remains stable 
regardless of the variation of the friction factor. As in the previous cases, the 
complete structures are the weaker ones. Figure 7.36 illustrates these results. 

 

Figure 7.36. Speed observation error in regulation when friction factor changes with  
(a) p = 0.7 and (b) p

obs
 = 0 
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Figure 7.37. Speed observation error in regulation with (a) p
obs

 = 0.7 and (b) p
obs

 = 0 

7.5.4.3. Torque constant variations 

In regulation and tracking, the observation of speed by structure (o2cz) is 
completely insensitive to the variations of torque constant (Figure 7.37). 

Complete structures also present an observation error quickly increasing when 
torque constant decreases. This error is all the more important as the observation 
dynamic is slow. 

7.5.5. Conclusions 

The results of simulations done previously are summarized in Table 7.3.  

This table shows that the complete observer is the least advantageous. Its 
performances compared with reduced observers are globally worse in position error 
and speed observation as well as robustness.  

If we have a speed sensor, the reduced order one observer has the best 
performance in terms of positioning error and robustness to parametric variations. 
This structure, contrary to the others, maintains a certain level of robustness when 
inertia decreases, as long as we do not use an observation dynamic that is too high. 
But the chain of speed measure must be exempt from any disturbance (section 7.4).  

a) b) 
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I:  the actuator is unstable 
E:  the actuator remains stable, but the error of position is more significant than 
 without the use of observation structure (reso) 
R:  the observation structure improves actuator robustness. The error 
 of position is reduced in relation to control without observer (reso) 

Table 7.3. Comparison of robustness for parametric variations with different observation 
structures and according to the observation dynamic  

If we have a position sensor, the reduced order two observer has the advantage of 
being able to observe the disruption torque and speed from the measure of position 
only. There are two methods of placing the poles of this observer, which give a zero 
to the numerator. The first one (o2cz) consists of compensating zero by a pole and 
has similar performance as with the reduced order one observer but is more sensitive 
to variations of inertia and friction factor.  

This drawback disappears by applying the second method (o2p2), consisting of 
placing a double pole (preferably at the origin), instead of compensating the zero. 
The control law is then more robust but its performances turn out to be lower in 
terms of torque rejection.  
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For the observer dynamic, the placement of p
obs

 at zero offers the best 
performance in disturbance rejection but has increased instability risks during 
parametric variations. These risks are lessened with a slower observation dynamic, by 
placing p

obs
 in 0.7, for example. In this case, the disturbance rejection is less efficient 

and robustness is not guaranteed for order two and three structures. It is then necessary 
to choose an appropriate observation dynamic (not too slow and not too quick), which 
does not make the actuator unstable, while maintaining good robustness during 
parametric variations.  

Additional simulations have shown that this compromise is easier to find  
when the sampling period is shorter. The use of structure (o2p2) can then be 
interesting because it remains stable when inertia decreases and observation 
dynamic is not too quick. It must nevertheless be quick enough to maintain a good 
level of robustness. 

The study carried out for reduced order one and two observers also shows that it 
is better to underestimate inertia and overestimate the friction factor during gains 
calculation of the control law; it enables us to be more efficiently protected against 
risks of instability linked to the variations of these two parameters. These risks are 
sensitive when the real mechanical time constant (J/f) is lower than the time constant 
used to determine control law. We must not underestimate the electromagnetic 
constant, however, because its increase in relation to the value used to size the 
control law makes the actuator unstable.  

7.6. Experimental results 

7.6.1. Introduction 

To conclude this chapter, we present a few experimental results obtained in a 
benchmark (Figure 7.38). These results illustrate the behavior of the actuator 
according to the implemented control law.  

We first study control law behavior by state feedback associated with a resistant 
torque observer, with mass hoisting tests involving parametric variations, and tests 
illustrating non-linear friction phenomena. 

The actuator is made up of a self-guided synchronous machine powered by a soft 
switching PWM inverter, coupled with a direct current machine powered by a four-
quadrant clipper configured as current source, resulting in a variable torque 
generator.  
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Figure 7.38. Overview diagram of the experimental platform 

The bench is also equipped with a pulley (r = 44 mm) associated with a crane to 
enable mass hoisting operations that can reach 20 kg. A torque sensor, a tachometer 
generator, and absolute digital position encoder are coupled to machines. 

A calculator monitors the operation in real time. It controls the position of the 
synchronous actuator and calculation of the current set point dedicated to the 
variable torque generator. 

A photograph of the test platform is shown in Figure 7.39. 

7.6.2. Results of modal control with resistant torque observer 

All the tests were obtained with the reduced order two observer with double 
pole, based on a measure of position (section 7.4.5). This structure makes it possible 
to observe speed, used for state feedback, and results in greater robustness than the 
reduced order two structure with zero compensation (section 7.5).  
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Figure 7.39. Overview of the experimental platform 

Complete observation structures were not implemented because they showed 
worse performances than reduced structures (sections 7.4 and 7.5). Experimental 
results of the reduced order one structure were the subject of publications [VOR 95, 
VOR 96]. The tests were done with a 5 ms sampling period, or a sampling frequency 
of 200 Hz. The position is filtered by a second order digital filter with angular 
frequency of 150 rad/s and damping factor of 0.61. This filter lessens the effects of 
position measure quantification [MAX 88, SEV 82]. The direct intervention factor 
of set point Kθ is chosen to compensate a closed-loop pole and thus avoid 
overshoots. We then have a triple pole (section 7.3.4.2). 

Observer poles were not placed at zero, and the observer is, therefore, not exact 
response, contrary to what theoretical developments recommended for a good 
restitution of the load torque (section 7.4.5). This observation dynamic reduction is 
due to insufficient resolution of the position encoder, as it creates problems of 
quantification (section 7.4.5.3), resulting in measuring noises, too disruptive for the 
observer if it has the exact response. The pole placement of the observer then 
depends on an acceptable noise level in the observation procedure. Despite this 
practical restriction, the results presented show good observer behavior. In the 
robustness study (section 7.5.5), the risks of actuator instability, for parametric 
variations, are reduced for a dynamic that is too quick.  

7.6.2.1. Mass lifting 

These tests consist of quickly elevating a 20-kg mass with the help of a pulley 
and crane (Figure 7.38), and then very slowly depositing it to show the disrupting 
effects of the slot torque of the synchronous machine. The load torque 
corresponding to this mass is approximately 8.6 Nm, since the pulley radius equals 
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44 mm. This 20-kg mass corresponds to a radial force of 196 N soliciting group 
steps.  

The dynamics chosen for state feedback and observer correspond to:  

ω
bf

 = 3 rad/s, p
obs

 = p
1
 = p

2
 = 0.7 ⇒ ω

obs
 ~ 71 rad/s   (double pole)  

The dynamic of state feedback is placed at a very low value in order to show the 
addition of the observer in terms of load torque compensation. We compare two 
tests: 

– the first one is done without load torque compensation (K
v
 = 0); 

– the second one is done with load torque compensation (Kv = 1/ (Kem)n).  

In both cases, the speed observed is used for state feedback. Figure 7.40 shows 
the advantage of compensating the disturbance torque, because the position with 
compensation is much closer than the position without compensation. State feedback 
control without compensation requires more time to hoist the mass.  

During the descending phase, control without compensation is penalized by the 
cogging torque blocking the rotor in preferential positions in relation to the stator, 
blocking phenomenon heightened by stiction and static friction. These phenomena 
are not insignificant because of the radial force applied to the steps of the machine 
when the mass is suspended. The cogging torque is visible during the descending 
phase with compensation, by the small ripples on the position every 10° (spatial 
period of the cogging torque) (section 7.2.2.2). This last statement is illustrated in 
Figure 7.41 showing the torque observed according to position.  

The tracking error, approximately 13.4°  with torque compensation, reflects the 
theoretical predictions [7.39], resulting in an error of 13.7° with the control law 
parameters:  

b = 0.349 rad/s;  K
s2

 = 0.3504;  K
r
 = 0.0017; K

θ
 = 0.1171 

The torque observed is “parasited” when the position moves (Figure 7.40) 
because of the harmful effects of quantification on position measure (section 
7.4.5.3). During the descending phase, the torque observed is lower than the torque 
created by the mass because of dry friction facing the movement created by the 
mass. The braking torque, generated by the motor, is thus lower than torque created 
by the mass, which explains the observation gap.  
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Figure 7.40. Hoisting and descending of a 20-kg mass lifting 

During the set point step, torque peak, at power up, is caused by the mass 
acceleration torque, added to the torque created by the mass weight. 

The observed torque decreases when the position is close to the set point, 
because the mass has a tendency to continue its momentum. Since the position does 
not reach the reference position, the set point and the observed torque increase to 
defeat friction and cogging torque. A small overshoot and decreasing of integral action 
occur. The latter acts on the set point and causes a decrease in the observed torque 
during the immobilization of the rotor. 

In Figure 7.41, we note the fluctuations caused by the cogging torque, 
superimposed to the torque generated by the mass. They present a spatial period of 
10°, according to the distribution of slots. The disruptions linked to the 
quantification of the measure of position also appear (Figure 7.41), based on the 
resolution of the encoder (approximately 0.7°). These two tests show the aptitude of 
the observer to compensate phenomena external and internal to the actuator. The 
load torque is external, independent from the actuator. But the cogging torque is a 
phenomenon strictly internal to the actuator. The observer is very efficient in 
“absorbing” torque effects (Figure 7.40). 
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Figure 7.41. Torque observed according to position 

7.6.2.2. Variation of the friction factor 

The tests described in the following text illustrate the behavior of the actuator 
when it experiences friction factor variations. The modification of this factor is 
obtained by cabling the direct current machine to the brake generator with resistive 
load equaling 2.3 Ω; the excitation current of the direct current machine is equal to 
0.45 A.  

In these conditions, the friction factor is multiplied by a factor of 5. The state 
feedback and observer dynamics are characterized by:  

ω
bf

 = 5 rad/s, p
obs

 = p
1
 = p

2
 = 0.65, 7 ⇒ ω

obs
 ~ 86 rad/s   (double pole)  

The results, obtained with position set point steps of different amplitudes (1, 4, 
and 5 tours) are presented in Figure 7.42. They show the efficiency of the observer 
to ensure robustness of the actuator. When the disruption torque is compensated, the 
position has no overshoot, contrary to the case without compensation. 

We can, however, observe a gap between observed torque and measured torque 
for the important steps of the set point. This gap can be due to the saturation of the 
synchronous machine.  

For large-amplitude steps, current control reaches values equal to over four times 
the rated current. If the nominal operation is in the saturation elbow, saturation 
appears for the current values applied. Because of this saturation, the flux and  
torque are no longer proportional to currents. Saturation leads to a decrease in the 
machine’s torque constant. The control algorithm, feeling the effects of this decrease 
on the output variables, increases the current set point consequently in order for  
the motor to provide the corresponding torque to the dynamic imposed. 
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Figure 7.42. Consideration of friction factor variation 

This increase of the current set point is taken into consideration by the observer; 
it  provides a higher observed torque than the measured torque. The observer factors 
have not been modified and correspond to the nominal parameters of the 
synchronous machine. 

This saturation problem does not exist on magnet machines where the flux is 
imposed and the equivalent air gap is important. In a transitory way, torque peaks 
can be very important. 

In this way, the torque constant of the synchronous machine decreases because 
of the saturation of its magnetic circuit. 

Another cause can be the deterioration of the behavior in current source of the 
inverter during excessive actuator speed, thus generating too large counter 
electromotive forces affecting the gain of the current source. In order to avoid this 
situation, the speed of the actuator was limited to 500 rev/min in these tests.  
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Since the angle position is reached, the torque experiences oscillations caused by 
the combined effects of position measure quantification and observation dynamic. 
These oscillations are especially present with zero load torque.  

These tests show the ability of the observer to maintain actuator robustness 
during variations of friction factor and torque constant.  

7.6.2.3. Influence of the inertia variation 

As before, control law is state feedback with resistant torque observation. We 
compare the behavior of the actuator with or without load torque compensation. The 
dynamics for the state feedback and observer are characterized by:  

ω
bf

  = 5 rad/s, p
obs

 = p
1
 = p

2
 = 0.75 ⇒ ω

obs
 ~ 58 rad/s  (double pole)  

Simulation of inertia is obtained with the help of the four quadrant chopper 
(Figure 7.43), where current set point is proportional to the derivative of the  
measured speed, since the factor of proportionality is the inertia to simulate. This 
derivation must be done with care to avoid adding excessive noises in the current set 
point. A second-order digital low-pass filter in the measured speed lessens the noises 
before derivation. The tests are done with additional inertia (Figure 7.44) of 0.055 
kg m² (Jsup), and total inertia represents 2.7 times the nominal inertia. Jsup is canceled 
in the interval: t ∈ [8.25 s; 12.15 s]. 

 

Figure 7.43. Experimental simulation of additional inertia 
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Figure 7.44. Effects of a load torque inertia variation (a) without compensation 
and  (b) with compensation  

In order to facilitate comparing tests, we present the position where the actuator 
works in nominal conditions (without additional inertia). The effect of load torque 
compensation clearly appears in the position reports. The overshoots (~50°) reduced, 
and the position report (Figure 7.44b) shows that the actuator with load torque 
compensation behaves almost in the same way, with no load, as with additional 
inertia. The abrupt variations of additional inertia are also well compensated. 

During the cancelation of additional inertia (at 12.15 s), the position without 
compensation of load torque presents a small overshoot attributed to the excess  
of integration of the modal control reset action but does not exist when the torque  
is compensated. When the additional inertia is applied once more, the actuator without 
compensation shows abrupt slowdown, which is not the case with compensation.  

(a) (b) 



Observation of the Load Torque of an Electrical Machine     395 

 

The observed torque reports illustrate the effect of inertial load that is resisting in 
the phase of acceleration and driving in the braking phase. These effects are visible 
(Figure 7.44a) when additional inertia is applied.  

The report (Figure 7.44b) presents the same characteristics in the first approxi-
mation, but the observed torque becomes oscillatory when the actuator reaches the 
set point position. These oscillations, due to the bandwidth limitations of the four-
quadrant clipper, and the observer do not appear in simulation with perfect elements.  

The observed torque is non-zero when the position no longer evolves. In this 
case, the torque should be zero, since the inertial torque is zero, when the angle 
steady state position is reached. This phenomenon is caused by static friction (see 
the next section). 

7.6.3. Non-linear friction influence 

In this section, the effects of non-linear friction on the actuator are studied. In the 
first part, a test highlights static friction at group steps level. It was done without 
compensating the load torque. In the second part, the same test is done by 
compensating the load torque. 

7.6.3.1. Static friction 

Static friction exists in group steps and is brought out in mass hoisting, which is 
then maintained in suspension. We then compare the observed and measured torques 
with the torque corresponding to the mass weight (Cpds ~ 8.6 Nm).  

 
In this test, the load torque is not compensated and the observed speed is used for 

state feedback. The dynamics of the state feedback and observer are characterized 
by:  

ω
bf  = 15 rad/s, p

obs
 = p

1
 = p

2
 = 0.7 ⇒ ω

obs
 ~ 71 rad/s (double pole)  

In Figure 7.45, static friction effects are emphasized. The observed and measured 
torques are not equal to the torque created by mass (Cpds) because the friction can  
be added to or deducted from Cpds. The static friction and dry friction torques  
are important for the radial forces at step level, located close to the pulley holding 
the mass. 

Static friction is responsible for the gaps between real, measured, and observed 
torques when the actuator is stopped. By simulating Cpds with the direct current 
machine, the steps are not requested as much at the radial level and static friction is 



396     Electrical Actuators 

insignificant. The existence of static friction is confirmed by an experiment where 
the conditions of adhesion internal to steps are modified when the position set point 
is reached. This modification is obtained by a mallet strike triggering a radial shock 
wave in the step most solicited by the hoisting forces, that of the direct current 
machine, closest to the hoisting pulley. The shock wave modifies the conditions of 
adhesion and reduces static friction, as the observed and measured torques converge 
with Cpds. The gap between measured torque and observed torque can be attributed 
to friction internal to the synchronous machine, not measured by torque sensor, 
placed after this friction. An analysis explains the gap signal between Cpds and 
measured torque.  

It is based on the mechanical equation of the actuator: 

em pds frot

acceleration

dΩ
d

⋅ = − −J C C C
t

 [7.91] 

The term Cfrot groups all the friction forces that can be considered, and the sign of 
this term is equal to the sign of speed. 

In the following reasoning, the position reaches its set point without overshoot; 
this consideration is validated by the measure of error (Figure 7.45). The 
acceleration is positive in the final lifting phase (t ~ 1.2 s) so that the actuator is able 
to reach the position set point. The result then is: 

em pds frot≥ +C C C  [7.92] 

Since there is no overshoot, the speed is positive in the final hoisting phase. 
Friction torque Cfrot is then positive at that moment. When the position leans toward 
its set point, the motor torque and speed decrease. Stiction occurs here causing the 
actuator to block, and blocking occurs before the motor torque is equal to the torque 
created by mass (Cpds). If this blocking occurs when the set point position is reached, 
the motor torque no longer evolves but is then greater than Cpds. The actuator must 
defeat dry and viscous friction in hoisting phase. 

Because of blocking, speed and acceleration are zero and 

em pds frot pds= + >C C C C  [7.93] 

The friction torque is different from zero because of static friction (at zero speed) 
confronting the motor torque excess in relation to Cpds. Static friction makes it 
possible to explain the motor torque excess influencing measured and observed 
torques. 
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Figure 7.45. Emphasis on static friction (experimental results) 

The shock wave modifies the conditions of adhesion, and consequently, reduces 
the maximum value of static friction. Relation [7.92] is once more verified, and the 
actuator moves as shown in error (Figure 7.45 at t ~ 6.25 s). 

The error occurs in the low-weight encoder bit and is negative (overshoot), thus 
confirming the excessive value of the motor torque and triggering a decrease in 
control reset action. This decrease affects the motor torque, and the position comes 
back to its set point level. The observed and measured torques then converge to Cpds. 
In a symmetrical way, when the mass is partially down (t > 9 s), the Cpds under-
estimation is justified. Static friction then compensates a part of Cpds and the braking 
torque of the actuator is reduced.  

7.6.3.2. Influence of static friction on control law with resistant torque 
compensation 

We carry out mass hoisting by compensating the load torque. Then a limit cycle 
appears (Figure 7.46). This limit cycle is represented by a low-frequency angular 
backlash (0.6 Hz) on position. We show that the frequency of angular backlash and  
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the amplitude of observed torque variations depend on the hoisted mass. The heavier 
the mass, the more the frequency of angular backlash decreases and the more the 
amplitude of observed torque variations increases.  

 

Figure 7.46. Effect of non-linear friction, in the case of load torque compensation  

This angular backlash in the low-weight bit of the position encoder is linked to 
the observer. When the position is equal to the set point, the control variable 
changes, whereas the reset action, set point, position, and speed are constant. This 
control variation comes from the variation of the observed torque (Figure 7.46).  

The variation of the control variable results from a drift of observation because 
of the non-linearity of friction. Static friction is at the basis of non-linearity. The 
observers previously studied are based on a linear actuator model; a variation of  
the control variable is affected without delay on the actuator output variables. 
Because of static friction, the actuator rotor, submitted to torque variations, remains 
blocked as long as these variations are lower than the maximum value of the static 
friction torque.  
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The observation structures use two variables, control and one of the actuator 
outputs (speed or position). With static friction, the control variable can vary without 
affecting the constant output variables. Variations of the observed variables are the 
images of those of control variables, as long as the actuator remains blocked. 
According to the study of observers, the observed torque changes as the control 
variable when the actuator is stopped. The control variable and observed torque 
(with blocked rotor) vary in the same way because of the load torque compensation. 
We are witnessing a drift by cumulative effect. It is a physical reality. When the sum 
of torques applied to the actuator rotor exceeds the maximum friction value, then the 
rotor leaves its attitude angle. The control law, by its reset action, brings the rotor 
back to its set point position.  

The ability of the control law depends on the resolution of the position encoder 
to reduce the amplitude of the limit cycle (Figure 7.46).  

Static friction makes the windage of observed torque possible when the actuator 
is immobile, at the origin of a low-frequency limit cycle [BRA]. 

In order to stop this limit cycle, we must get involved in the drift of torque 
observation. By blocking the observer recurrence in the equation, the observed 
torque remains constant. This torque is different from the external load torque 
because of static friction at step level but remains constant (Figure 7.47).  
The blocking of the recurrent equation is done with care so as not to distort torque 
observation. Observation drift, at the origin of the limit cycle, occurs when  
the error of position and speed are zero. Observation and recurrence in the case of 
the reduced order two observer are blocked [7.94]:  

( )0.012 rd encoder resolutionθε <  

and 

( )ˆΩ Ω 0.1 rd/s arbitrary choice− ≤  

7.7. Conclusion 

The mechanical load drive, with the help of an electromechanical actuator, 
requires a rigorous control of electromagnetic torque. The quality of this control 
conditions the characteristics of the variable induction transmission all the more so 
that the load powered is complex in the sense of a certain uncertainty, and all the 
more so that rotation speed is low, or even zero. The work presented in this chapter 
proposes solutions for this problem, by implementing control structures based on the 
association of a powerful control law and a disturbance observer.  
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Figure 7.47. Inhibition of the limit cycle (experimental results) 

The major contribution is linked to the design and development of a load torque 
observer to rebuild the disruptions affecting the axis of rotation. These disturbances 
can be internal to the actuator, as the cogging torque, the distortion of electromotive 
forces, or the modification of characteristics of friction between the moving part and 
the fixed part. But these disturbances can also be external or exogenous linked to 
useful torque impact or a specific characteristic of the load, for example, the 
presence of non-linear imbalance or clearance, or still a particular speed effort link. 
Nevertheless, the load observer imagined here must rebuild the efforts experienced 
by the axis in rotation independently from their nature and original causes. This 
quantity is then used in a correction loop to eliminate or at least reduce the effect of 
disruptions on measurable variables such as speed and/or position. 

Different observers are studied here, different in terms of variables used in input 
and output, according to the volume of possible calculation (complete or reduced-
order observer), and the dynamic imposed in relation to the parameter dynamic and 
sampling period. Sections 7.2.7 and 7.5.5 provide  some elements for the choices 
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with respect to the candidate solutions that must be chosen according to parametric 
invariance and that measure quantification and the presence of measuring noises. In 
fact, the development elements become predominant on the structures proposed also 
involving the extent of parametric variations.  

This last element also conditions sizing of control laws through nominal 
calculation parameters. Because of this, overestimating the friction factor and 
underestimating inertia play a beneficial role in the instability of the series.  

In conclusion, we should note that at very slow speed, and even at the end, 
rigorous control of the axis is difficult because the information collection is altered, 
and it is necessary to settle for low evolutions ensuring observation and 
compensation. This is all the more difficult as the models of load representation are 
at the limit of their validity.  
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