
Chapter 8 

Observation of the Rotor Position to Control  
the Synchronous Machine without  

Mechanical Sensor  

8.1. State of the art  

Intense industrialization has resulted in a large proliferation of electromechanical 
actuators in an increasing number of industries (home automation, transportation, 
heavy industry, etc.). More recently, this phenomenon has greatly affected 
embedded systems in which the electrical solution is preferred over the traditional 
hydraulic solution. This is due to the specificities of the electrical actuator, 
characterized by gains in power and mass volume, as well as to the many diagnosis 
and monitoring possibilities that this type of actuator facilitates. The embedded 
devices reveal a large number of actuators necessary for the movement control of 
different objects (servo-cylinders, electric pumps, windages, etc.). Specifications 
involve speed systems to follow and positioning trajectories to satisfy, paving the 
way for different and varied actuators obtaining different power and quality in the 
function finally obtained. We often find trapezoid electromotive force magnetic 
machines for speed control as well as sinusoidal electromotive force machines to 
ensure position control. Other combinations are clearly possible and thus a machine, 
developing trapezoid electromotive forces, can be fed by sinusoidal currents and 
vice versa.  
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Because of the increase in speed, often dictated by the goal of volume reduction, 
controlling these actuators creates new challenges directly affecting the nature of the 
algorithms used and organs necessary to the calculation. The switch frequency, often 
set in order to control switching losses and electromagnetic disturbances, should be 
great enough to impose correct waveshapes for currents, without penalizing real-
time calculation devices. At this level, the low value of cyclic inductance creates 
serious problems. The correction chain is the subject of interest for the choice of 
modulator (Space Vector Modulation (SVM), regular symmetrical Pulse Width 
Modulation (PWM), etc.) for widening the zone of linearity of the inverter, as well 
as for the quality of measures where the accumulation of delays and/or the presence 
of noises can turn out to be harmful for accurate torque control. Global optimization 
of this methodology often goes through a reduction in the number of electric sensors 
(current, voltage). A significant evolution in terms of cost, volume, and reliability 
should obviously be obtained to get rid of the position sensor, that is, rebuilding the 
position from measured electric variables. We can witness here a reversal of the 
situation because even though the synchronous machine was highly developed, it is 
in large part because of the systematic use of the position sensor, ensuring a control 
of the rotor evolution and avoiding a machine stall. This constituted a challenge for 
many years, and the new challenge today consists of suppressing this sensor. 
Observation techniques are now operational, and this observation, associated with a 
startup procedure, can replace the collection device [VAS 01]. The reasons for 
which we want to get rid of the position sensor can be listed as follows:  

– difficult atmosphere, not desirable for the sensor (drilling machine, embedded 
system, etc.);  

– reduction of infinitely variable induction transmission cost (mass channel 
product, etc.);  

– improvement of availability (limit the possibilities of mechanical failures, 
etc.);  

– deletion of generally long operators in order to facilitate assembly (that is often 
the case for embedded systems in cars, etc.);  

– reliable liberation of signal transmission problems between the sensor and 
control, especially over long distances.  

Knowing the position of the rotor is vital to the self-piloted machine, that is, for 
the establishment of a link between the frequency of rotation and the feed frequency. 
However, following the structure of the machine, this position should be known in  
a continuous way, that is, with high resolution for sinusoidal current or discrete  
feed, with low resolution, for powering rectangular currents. These two objec- 
tives determine specific methods to observe the position, leading to different  
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developments [GAS 02]. Globally, and regardless of the type of machine, we can 
observe two approaches:  

– the first approach by using electromotive forces (Figure 8.1). It has several 
solutions depending on the nature of the machine and its power supply type. With a 
machine fed by rectangular wave (Figure 8.1a), a phase is cyclically not connected 
and it becomes possible to measure the electromotive force produced by the 
machine. By combination, it is possible to build a synchronized signal on 
electromotive force harmonic 3 and guide the inverter switches. It is also possible to 
access electromotive forces with the help of an observer based on the measures of 
line currents and phase to ground or phase-to-phase voltage (Figure 8.1b). Following 
the nature of the machine used, we then have access to the position in a continuous 
way in one mechanical round or with synchronization signals spaced at electric 60°.  

– the second approach, based on the reconstruction of position directly with the 
help of a looped model (Figure 8.2), considering or not the noises of measurements 
and using electric measures. There are many solutions for this course depending on 
the model of the machine used (abc, dq, αβ, ba-ca), accessible measurements 
(phase-to-ground voltage, phase-to-phase voltage, line currents, direct inverter 
voltage, etc.) or to the nature of the observer (Kalman filter, Luenberger observer, 
sliding mode observer, analytical redundancy observer, etc.).  

These methods are generally powerful depending on operation zones (very slow 
speed, very high speed) as well as on the nature of parametric variations being 
undergone by the machine (evolution of mechanical or electric parameters). In fact, 
at high speed, it becomes difficult to make a lot of calculations because of increasing 
temporal constraints, and on the other hand, at low speed, the electromotive forces 
are very low and the information becomes difficult to extract.  

Nevertheless, we should provide the method chosen with a device ensuring the 
startup of the machine. In fact, during startup, the rotor position is not known and 
the application of a voltage sequence can lead to a rotation in any axis. Although this 
phenomenon is not always a problem (cooling fan type application, etc.), it is often 
imperative to avoid it, and thus we should add to the method of position 
reconstruction a rotor blocking device or a localization procedure. 

This last problem was the subject of a large number of publications in the last 
few years, notably in the case of smooth pole synchronous machines for which the 
solution is not necessarily trivial [KIM 03, SCH 03]. 
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Figure 8.1. Temporal feed signals (a) by rectangular currents;  
(b) by sinusoidal currents 
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Figure 8.2. Observation with the help of a reference model 

In fact, for salient pole machines, the structure of the rotor and especially the 
variation of cyclical inductances based on the rotor position can give us information. 
Through measurements of this inductance, or by the injection of signals and the 
analysis of corresponding harmonics, or by generating two-phase voltage sequences 
not generating a rotating field but generating position information, carrier currents 
are linked to these currents and positions of magnets [BOU 06, SCH 03]. 

The smooth pole synchronous machines, as the name indicates, do not have 
inductance variation, and values in direct axis and in quadrature are equal and 
constant. With blocked rotor, on the other hand, it is possible to inject voltage 
vectors to excite the saturation of the magnetic circuit that will be maximal or 
minimal in relation to magnets axis direction, for example [JEO 03]. Even though 
the application tolerates movement in pre-startup phase, the simplest solution 
consists of imposing a fixed voltage vector, and thus forcing a set magnetic vector 
during a certain duration. Time enough for the free rotor and its mechanic to be put 
in place and go from unknown startup to imposed position. The detection problem  
of the initial position would deserve a complete chapter and will no longer be 
discussed here.  

8.2. Reconstruction of the low-resolution position 

This procedure mainly involves the trapezoid electromotive force machines used 
in speed variation applications. In this case, the idea is to impose rectangular 
currents in phases (Figure 8.3). At every 60 electric degrees, we have to change the 
configuration of inverter switches to ensure the correct evolution of the machine. 
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Figure 8.3. (a) Variable synchronous speed drive; (b) semiconductors 
 conduction intervals 

We should note that if electromotive forces are not sinusoidal, their sum is not 
zero and contribute to order 3. In this way, harmonic 3 is present and can be used to 
synchronize control orders. Several methods are thus based on the generation of the 
sum of electromotive forces [CAR 90].  

8.2.1. Equivalent electromotive force measure  

For trapezoid machines, where periodic knowledge of the position is sufficient, 
we can imagine devices generating a synchronization signal for the cyclical  
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imposition of appropriate currents with the rotor position. For each phase, we can 
write:  

1
1

111 ).(. Edt
dIMLIRV sssss +−+=

 
[8.1]  

The reconstruction of electromotive force E1 then involves the derivative of the 
stator current, which can be evaluated by placing a serial transformer (Figure 8.4). In 
fact, the secondary voltage of a transformer is linked to the derivative of the primary 
current.  

This solution is certainly not in line with mass decrease, but it proposes a 
solution of integration and reliability that we should generally use for simple 
applications.  

8.2.2. Reconstruction of the sum of electromotive forces using the machine 
neutral  

By considering the three phases, we have:  

321321 EEEVVV sss ++=++  
[8.2]  
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Figure 8.4. Estimation of electromotive forces by current derivation 
by using a transformer  
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Since the sum is not zero, the resulting signal can be used for controlling the 
synchronous machine.  

If we can access the neutral point of the machine, we can control the machine 
with this signal (Figure 8.5).  

 

Figure 8.5. Reconstruction of the sum of electromotive forces  
using the machine neutral  

We are in the field of specifically designed machines involving extra cost 
because of the need for an additional conductor. However, the efficiency and 
simplicity are present. It is necessary to be careful with filtering this signal, 
however, as it remains quite tainted by the commutations of the inverter  
(Figure 8.6). 

8.2.3. Use of the extended Park reference  

Trapezoid electromotive forces are part of non-sinusoidal electromotive force 
machines for which reference (d, q) modeling has very little interest. There  
is, however, a reference inwhich modeling retains its properties similar to the  
Park reference. This transformation [8.3] consists of rotating reference (α, β) not 
from the electric angle θ but from angle θ + μ (θ ), where μ (θ ) aligns one of the   
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axes of the new reference with the vector representing the stator flux induced by the 
rotor [GRE 95].  
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Figure 8.6. Electromotive force sum and drive pulses 

In this extended Park reference, the model retains a certain number of properties 
identical to the traditional Park reference for sinusoidal electromotive force 
machines. For example, torque only depends on a component of the stator current. 
This can be used in control in order to minimize the losses because of Joule effect. 
The properties of this model make it possible to apply a few observation methods 
that will be seen in the case of sinusoidal electromotive force machines, such as the 
principle of analytical redundancy [CAU 02, MAT 96]. 

8.2.4. Use of a two-phase reference  

The use of reference (α, β) and associated observation methods can still be 
applied, but electromotive forces can no longer be expressed with the help of simple 
analytical functions. This reference therefore has no great advantage in this case and 
can be replaced by a two-phase reference, requiring a transformation that is less 
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calculation intensive, for example, the reference linked to composites called (ba-ca). 
The model used is written in the following form:  
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[8.4]   

For the representation in the state space, we assume that the dynamic of the 
electromotive force is zero. This hypothesis can only be verified if the sampling of 
frequencies is much higher than the real electromotive force dynamic. If this 
hypothesis is not verified, representation in reference (ba-ca), or extended Park 
reference, requires the use of variables that depends on the position and structure of 
the machine such as Eba(θ). This requires the tabulation of these variables or their 
representation by complex analytical functions.  

The adaptation of observation methods used for sinusoidal electromotive force 
machines leads to the finite reconstruction of the position. Even if those generally 
heavy techniques are not necessary for trapezoid electromotive force machines, they 
certainly should not be excluded.  

8.3. Exact reconstruction by redundant observer  

Electromechanical equations of the synchronous machine enable the modeling of 
its dynamic behavior. The use of the Park transformation reduces the complexity of 
the model and leads to a model in a simplified electric reference of the machine 
rotating with the rotor. This model, in reference (d, q), for a smooth pole machine 
(Ls = Ld = Lq) is as follows:  
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[8.5]   

where IqIdVqVd ,,,  are the voltage/current dimensions in the stator reference:  

).
2
3(,, ifMsrKeLR ss

 

and represent stator resistance, stator inductance, and flux produced by the 
permanent magnets (or the equivalent in the case of an excitation separated, made by 
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a current if through a mutual inductance Msr), respectively, which are the parameters 
of the machine model:  

–  ωr  is the electric angular speed;  

–  p the Laplace operator. 

For sensorless control (position/speed), we only have the value of estimated 
position .θ  

The two real and estimated angles are linked by the following relation: 
Δθθθr +=

~ . Term Δθ  is the estimation position error.  

8.3.1. Principle and implementation of analytical redundancy 

According to this diagram (Figure 8.7), electric equations expressed in the 
estimated rotating reference frame ( d

~
, q~ ) ( d

~
, q~ ) are written as:  
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[8.6]   
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Figure 8.7. Spatiotemporal diagram 
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Based on the second line of the above equation, the rotor position and speed can 
be estimated in the following way:  

– by assuming condition Δθ ≅ 0 (and ωr ≅ ω ) after estimator convergence, the 
equation can be rearranged by taking cos (Δθ ) = 1.  

The estimation of the estimated speed, according to axis q equations, can be 
obtained by the following relation:  

dILsKe
qIpLsRsqV

q ~.

~).(~
ω~

+

+−
=

 
[8.7]   

– in transitory conditions 0≠Δθ  and ωωr ~≠ , a correction of the estimation of 
the previous speed is necessary. The correction is done by using the information 
redundancy reported by axis d (1st line of equation [8.6]).  

In fact, voltage dV~ , under ideal conditions ( 0, )rΔθ = ω ω=  is equal to Vd:  

qILsdIpLsRsVd ~.ω~.~).( −+=  [8.8]   

Taking sin (Δθ ) = Δθ, this same voltage can be obtained in case of position 
estimation error by: 

θΔ+−+= .ω~~.ω~.~).(~
eKqILsdIpLsRsdV  [8.9]   

We can thus generate a voltage error in axis d that is a function of the position 
error committed:  

dVVddV ~~Δ −=  and thus Δθ.ω~.~Δ KedV −≅   [8.10]   

We can notice that if the error made with V (according to d ) cancels out 
( 0),VdΔ =  then we correctly estimate angle θ ( 0),Δθ =  and the speed used is just 
as correct. We then obtain a complete position, speed, and electromotive force 
reconstruction of the machine.  

Without a speed sensor, canceling this voltage error according to axis d comes 
down to calculating the electromotive force (emfd):  

– on one hand, by using electric parameters dIpLsRsdVfemd
~).(~1 +−=  

– on the other hand, by using rotor speed qILsfemd
~.ω~.2 −=  
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By using the estimated values, these two electromotive force calculations are 
including errors but not correlated, that is, the difference between both calculations 
can only come from an error of projection caused by an error of position injected in 
the Park transform (Figure 8.8). Or the expression in axis d of calculation error 

dfemε :  

)~..ω~()~.~.~(21ε qILsdIpLsdIRsdVfemfemfem ddd −−−−=−=  [8.11]  

 

ΔωIdΔθpIdpIqqIp

ΔωIqΔθpIqpIddIp

ΔθIdIqqI

ΔθIqIddI

ΔθVdVqqV

ΔθVqVddV

Δωr
Δθr

est

..~

..~

.~
.~
.~
.~

~

~

++=

++=

+=

+=

+=

+=

−=
−=
ωω

θθ

  

Figure 8.8. General diagram of the MATSUI method principle  

This equation needs speed information. It uses estimated speed according to  
axis q.  

We only need to ensure a zero dfemε . By using a PI in this axis, the speed will  
be corrected and then integrated to give the position. If the system is stable in closed  
loop, then the PI will ensure that εemfd = 0 (εemfq = 0), resulting in θθ

~
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[8.12]   
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In different books, it is noted that this method does not work very well in 
practice. In fact, it involves a derivative on currents (Id, Iq) to estimate the position 
from electric equations in axes (d, q), which can be penalizing in the case where 
measurements are noisy. To overcome this problem, a solution can be developed 
involving a state and disturbance observer avoiding the use of derivatives in currents 
[SIC 97]. In our case, we directly implemented three filters:  

– a filter for voltage (d, q) eliminating the switching frequency; 
– a filter for current derivatives; 
– a filter for εemfd ensuring good convergence. 

We can see in [8.12] the emergence of the estimated speed signal in axis q to add 
or subtract information received from the PI. This equation only involves estimated 
variables, only available in the absence of mechanical sensors. In addition, estimated 
variables can be expressed according to Δθ and Δω (presumed small) based on the 
following relations between the estimated reference system and the real (d, q) 
reference system: if Id = 0 (maximum torque control principle) and Δω = 0, we can 
find equation:  

θ.Δωr.Kεfem ed −≅  [8.13]   

The correction of the obtained speed from corrector PI fed by the electromotive 
force estimation error makes it possible to force the estimate to evolve toward the 
true value (and vice versa) by using this estimation with errors in the machine 
control loop.  

However, the convergence can be total and stable or partial (therefore, 
temporarily unstable), that is, either the position or speed is estimated but not both. 
Three cases appear: 

– case no. 1: if the position estimation error Δθ = 0, and if estimated speed is 
correct (ωr = ω~  or Δω = 0), the redundancy error can only be zero εemfd = 0, 
resulting in a stable estimation of θ and ω ;  

– case no. 2: if the error of position cancels Δθ = 0, but if speed estimation  
ωr ≠ ω  (or Δω ≠ 0), then εemfd = +2Ls⋅Iq. Δω will force a speed correction that will 
immediately increase the error of position, distancing it from the true value, so the 
estimated speed can catch up to the true speed (case no. 1);  

– case no. 3: if the error of position is not zero (Δθ ≠ 0), but the speed is 
correctly estimated (ωr = ω ), then εemfd = ωr ⋅ Ke. Δθ  will force the speed to move 
away from an otherwise correct estimation so that the estimated position can reach 
the true position (case no. 1).  
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The correction needed is not only a function of its sign alone, but also a function 
of the rotation sense of the machine. In fact, if an error of position is positive, this 
may mean a late or early rotation of reference d, q, since this reference turns with the 
machine rotor. If the machine turns:  

– in the trigonometric direction (ω > 0):  
- εemfd > 0 (Δθ < 0), then ω~  should be incremented because we should 

accelerate to reach true θ ; 
- εemfd < 0 (Δθ < 0), then ω~  should be decremented because we should slow 

down to reach true θ ; 
– in the reverse trigonometric direction (ω < 0):  

- εemfd > 0 (Δθ < 0), then ω~  should be incremented because we should 
accelerate to reach true θ ; 

- εemfd < 0 (Δθ > 0), then ω~  should be decremented because we should slow 
down to reach true θ. 

In Figure 8.9, the complete representation of the observation method by 
analytical redundancy is shown.  

As shown above, this method leads to focus on problems relating to the physical 
constraints of the system, such as: 

– the adjustment of gains kp, ki, and filters; 
– the determination of the initial position; 
– sensitivity in relation to the machine’s electric parameters. 

8.3.2. Adjustment of correction gains 

The observer convergence and stability can not be described by analytical 
method or Lyapunov approach, there is no way to compute the controller values to 
insure performance. Below, we will make a few assumptions on εemfd and εemfq 
expressions, in order to deduce two major relations bringing out rules for choosing 
factors (kp, ki) according to electric parameters and current Iq. This method is mostly 
based on a vector approach of the behavior of the sensorless self-guided machine 
and will help us quickly bring out intervals according to criteria of performance.  

After the establishment of the representation of the different pieces of 
information required for the method, we should determine the factors of corrector PI 
for canceling and linking the error of position to the error of voltage (εemfd). In order 
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to do this, we recall the following parities linked to the block diagram of the 
observer:  

qωΔωcωωωrΔω ~~~ +=−=  and d
kiΔωc kp . fem
p

ε
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 [8.14]  

 

Figure 8.9. Block diagram representation of the method used 

Knowing that dI~ ≅ 0, then:  
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[8.15]   

Or the expression of speed error Δω:  
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[8.16]   

We then obtain an expression of (kp, ki) according to εemf (d, q). Now, we need to 
find a formulation for the electromotive force error εemf (d, q) in order to easily 
obtain solvable equations significant of the convergence obtained.  
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8.3.2.1. First expression of εemfd , εemfq 

In the previous section, we calculated the expression of electromotive force error 
in axis (d): ΔθrKefemd .ω.ε −≅  with 0≅Δθ  as hypothesis.  

In terms of the expression of εemfq, we can apply the same methodology, that is, 
that from the equations of the two matrix lines in d, q, and from the figure presenting 
the projections, we can deduce the electromotive force error in axis q:  

)~..(~)~.~.~(2
~

1
~

ε KedILsqIpLsqIRsqVemfemffem qqq −+−−=−= ω  [8.17]   

Or, by replacing the expressions of all estimated values by their projection, we 
get the expression of electromotive force in axis (q):  

ΔθΔω.IqLsIfMsrΔωΔθIqrLsfemq ......ω.2ε −+−=
 [8.18]   

As Id ≅ 0 and Δω ≅ 0 in the convergence hypothesis, we obtain 

Δθωr.IqLsfemq ..2ε −=  

Finally, the expressions of εemfd and εemfq are  
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[8.19]   

If we now use these expressions in the speed equation error in order to cancel it, 
we have:  

ωr.Δθ
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[8.20]   

If we calculate the derivative in this last equation, then  
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and according to 
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=
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U
U ln , we have rteAΔ .=θ  [8.22]   
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We can notice that error of position (Δθ ) will converge over time according to an 
exponential function in the transitory phase where the hypotheses are respected (the 
speed already converged).  

Thus 

IqLskpKe
kiKer

..2².
².

+
−=

 

By assuming that we can make one of the two terms of the denominator 
predominant:  

kpKeIqLs ²...2 << , then 
kp
kir −=  [8.23]   

This disparate relation can then be written as  

)ω(..2. r
Ke

IqLsKekp ≅≥
 

This expression is equivalent to the conditions found by N. Matsui [MAT 96] and 
B. Mobarakeh [MOB 00]:  
 

0>ki  and )ω~(. qsign
Ke
bkp −=  with 0>b   [8.24]   

We can now simulate, in order to validate this parity, with the parameters of a 
1.5 kW synchronous machine available on machine builder catalog:  

Ls = 0.0533 H; Ke = 0.907 Wb; Iq = 1.25 A 

The exponential convergence is only possible after the startup phase in which the 
speed is established (hypothesis Δω ≅ 0). In addition, during this first transitory 
when speed evolves, the hypotheses are not yet verified and gains quickly contribute 
to the error of position and make it temporarily lose significant value (Figure 8.10). 
During the second transitory mode, once the speed is almost established, we notice 
that if the condition is verified (i.e. that kp >> 0, 26 in this case, gradient a does not 
respect this case), then Δθ will converge with a not well-defined response time.  
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Figure 8.10. Estimation error with different kp, ki with (a) kp = 1; ki = 20 (ki/kp = 20);  
(b) kp = 5; ki = 10 (ki/kp = 2); (c) kp = 2; ki = 10 (ki/kp = 5); 

 (d) kp = 5; ki = 20 (ki/kp = 4)  
 

The greater ki, the quicker the convergence, but performance depends on the 
maximum value obtained and uncontrolled in the transitory (very quick gradient for 
a-curve but turns around 0), finally c is the best convergence gradient with large 
factors, but with a ki/kp ratio that is not too excessive. In addition, we can see that if 
kp is great, the amplitude linked to the first transitory tends to decrease, but noise 
appears (curve d). In terms of gain ki, the greater it is, the more risks of noise and 
over shoots (curves d and a).  

In conclusion, we have found a first relation, only helping in “limiting” gain kp. 
Nevertheless, we saw that the value of factor ki plays a role in response time. 
Consequently, an additional study is necessary to determine gain ki. We can, 
however, note the performance of the observer since a simple proportional gain 
ensures zero error in sinusoidal mode.  

8.3.2.2. Second expression of εemfd, εemfq 

We recall the expression of εemfd: ΔθrKefemd sin.ω.ε −= . By projection in axis 
(q), we have ΔθrKeωrKefemq cos.ω..ε −+= . 

From here, we use equation [8.16], and by using these values, we have  

ΔθωrωrΔθdtωrKekiΔθrKekpΔω cos.sin...sin.ω.. +∫ −++=  
[8.25]  
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hence a condition for canceling the speed error, and if we assume that speed 
variations are small in the integration time interval, we get: 

)1-coscos..sin...(0 ΔθΔθKekiΔθKekpr +−= ω   [8.26]   

And now, if we say:  

⎩
⎨
⎧

−=
=

).1(
.

kiKeβ
Kekpα

 we have 1cos.sin. =+ ΔθΔθ βα   
[8.27]   

To use this last equation, we will limit the allowable position error:  

4
π

4
π

<<− Δθ   or 1cos
2

1
<< Δθ  and 1sin.1

2
1

<
−

<
β

Δθα  [8.28]   

In fact, to have a rotation in the desired direction (given by the sign of reference 
current), it is necessary to apply a current that is not “opposed” to the closest 
magnet, which would result in turning the machine in the opposite direction if it can 
follow the field created (possibility of stalling). 

Because of this, the prior initialization value of the estimation program for the 
position of the rotor should be known by detection methods of the initial position at 
idle, or by pre-positioning of the rotor. For a two poles pair machine in our case, 
±π /4 is the angular limit of the operation zone not requiring the involvement of the 
step called “initial positioning”.  

For the parameters of the machine chosen: Δθkpki 2sin.35,0 +>>  

From this expression, we can notice once more that if the parameters of 
equations are known, and if the initial position error is zero, then gain ki can be low, 
without hindering the convergence. On the other hand, if Δθ is involved (0.8 rad in 
initial value in the following simulations), then ki is involved. We will now simulate 
this last equation.  

In figure 8.11, we notice that if the choice of coefficient ki verifies the equation 
(curves (b) and (c), at the limit for (d )), the error of position converges toward zero. 
Nevertheless, if gain ki is too significant, Δθ tends to be disturbed by current noise 
(current providing torque and thus a certain motor speed). In fact, the amplitude of 
current Iq sets the machine’s rotation speed for a given load.  
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Figure 8.11. Determination of operation zones with (a) kp = 5; ki = 0.2 (ki/kp = 0.04);  
(b) kp = 0.3; ki = 5 (ki/kp = 17); (c) kp = 0.2: ki = 3 (ki/kp = 15);  

(d) kp = 0.2; ki = 2 (ki/kp = 20) 

In conclusion, if we combine the expressions of kp and ki verified in simulation, 
we can determine in Figure 8.12 an operation zone in relation to “acceptable” values 
of kp and ki, for a correct system behavior.  

Operation should be stable and convergent without too much noise in sinusoidal 
mode estimations, limiting that gains not be too high.  

(b) 

(a) 
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In addition, we should be able to control transitory behavior, and notably, that 
linked to sometimes significant errors of position. This mandates that rating gains 
(Iq) should be adapted and should take adequate values in relation to the kp/k i ratio.  
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Figure 8.12. Choice of gains (kp, ki ). The lined zone corresponds to the zone 
of large gains and very noisy signals 

8.3.2.3. Adjustment of the analytical redundancy observer with filters 

Because of the relation between electromotive force error and the error of 
position estimation, we know intuitively that an increase in gains will lead to a 
quicker or stronger correction of estimation errors. However, the filters should have 
a cut-off frequency that is high enough to let information go through while 
eliminating noise, which would cause a modification of the estimation linked to 
noise, and not to an actual error.  

First of all, the speed estimate is very noisy see Figure 8.13. In fact, the 
predominant term in the estimated speed expression is voltage Vq. We then find 
noises from the division of the switched-supply voltage of the machine in the speed 
observed. 
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Figure 8.13. Position error for different kp gains and with filtering 

However, this high noise does not prevent the convergence of the position error. 
On the other hand, this mandates a correction of the effect of dead times in order to 
calculate d, q voltage from control orders. The integration between speed and 
position estimates makes it possible to efficiently smooth the position calculated. 
The convergence of the position estimation is rapidly effective with an accuracy of 
about one mechanical degree.  

(a) 

(b) 
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Figure 8.14. Maximum kp according to Iref rms value of the line current 

The dynamic imposed by the regulation of currents (amplitude Iref and desired 
response time in the current), placed before the observer, causes a clear increase in 
the position estimate, whereas the machine has not started turning yet. But the 
effects of the correction are quickly felt and bring the estimate back to the real value. 
Other tests also show that this peak of the position error increases when the 
reference current increases (hyperbolic relation between gain kp and the current to 
impose Iq, Figure 8.14).  

In order to accelerate the convergence of the position estimate, we increased kp, 
which involves a quicker consideration of position errors and a stronger correction.  

The lower the cut-off frequency of the filter, the lower the limit speed. In fact, 
the electromotive force error and corrective action are linked to the rotation speed 
and position error. As the speed increases, the correction gets faster and noise levels 
become more significant. The voltage filter then cuts off information necessary to 
the correction. The filter creates a delay that is significant enough for errors to 
greatly increase, and when the corrective action detects them, it is even stronger and 
the phenomenon can happen again. 

On the other hand, for lower gains kp, the filter plays a role and decreases noises 
on the estimate regardless of the rotation speed. In addition, cutting noises linked to 
the switch frequency clearly improves convergence time (very small overshoot). 
Voltage filtering also reduces noises in speed estimation, which is useful in 
implementing a loop that controls the speed of the synchronous machine.  
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8.3.2.4. Adjustment of gains and filter in relation to the reference current 

As we have seen before, current reference Iref has an influence on the position 
error at startup and generates significant noises if proportional gain kp is too high. In 
addition, Iref, current amplitude Iq, is therefore directly linked to the electromagnetic 
torque of the machine. A rotation speed in sinusoidal mode is also deducted from the 
mechanical equation of the machine for a given load.  

The dependence between kp and the rotation speed image of Iq appears in 
relation: 

Ke
r

Ke
IqLskp ω

≥≥
)²(
..2

  

but with condition: 

Iq
ckp 1≤

 

thus reducing the influence of gain ki.  

For a given choice of voltage filter, there is a law linking maximum gain kp and 
the rms value of the reference current with the help of coefficient c1, which we 
cannot calculate in an analytical way. We determine, by simulation, maximum gains 
kp ensuring convergence for a filter placed at 10 kHz.  

We prefer to use gains close to this limit for quick convergence. We should also 
avoid gains that are too small for low currents because convergence is then very 
slow. If we place the voltage filter at a lower frequency, the gain limitation would be 
greater. 

Because of the efficiency with which the estimated position converges with its 
real value when gain kp is well calibrated with the chosen voltage filter, gain ki 
usefulness is minor (Figure 8.15). In fact, in order for gain ki to have a significant 
effect, we should set it up at a very high value. In addition, it does not improve 
convergence time and even creates additional oscillations caused by resulting noises. 
We should therefore choose a proportional regulator.  

Knowledge of this function linking proportional gain to the reference current 
enables the use of an adaptive gain for a constant optimal estimate. However, these 
gains are also linked to the machine’s rotation speed. Strong reference current 
variation with strong gain and high speed can lead to a disruption such that the 
observer cannot ensure continuity of convergence. In order to see the effect and  
importance of gains and the different filter cut-off frequencies, a study from 
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experimental designs approach confirmed the importance of gain kp, and the 
influence the reference current (motor rotation) has on observer performances  
[CAU 06]. 
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Figure 8.15. Addition of an integral gain disrupting performance 

We should place a saturation or a filter on the basis information from the digital 
derivation of currents. In fact, a derivation of the sampling period on noisy 
measurements provides erroneous values that disturb the convergence of the 
algorithm. By calculating the maximum derivative of possible currents (a function of 
the available bus voltage and value of the motor winding self), a limitation in 
magnitude takes away the absurd calculated values and lets necessary information 
go through. A first-order low-pass filter, placed at the switch frequency, also ensures 
this function without introducing too much phase shifting if the cut-off frequency is 
high enough.  

8.3.3. Sensitivity and robustness 

System performances are generally sensitive to the variations of parameters and 
precision of measurements. The structure of the position observer with analytical 
redundancy requires precise knowledge of resistance Rs, and inductance Ls and Ke.  

From the vector representation (Figure 8.16), we notice that not only an initial 
position error can cause incorrect rotation, but a generally large error on an electric 
parameter (Rs in this case) can also contribute to incorrect behavior. In fact, a 
significant gap in this factor distorts speed, and estimated position is very far from 
the real position. The justification of correct operation sectors has already been 
given in the comment in equation [8.28].  
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Figure 8.16. Vector representation of a two pair pole machine 

In order to correct a hypothetical error of position, caused by an excessive 
variation in an electric parameter, we developed a “calibration” method to find out 
and correct the variation of the parameter in the algorithm in order to cancel the 
error of position. 

The consequence of the parameter error in the final position value is easily 
determined with the help of the vector diagram. If ratio (ΔR⋅Iq)/Vd is small, we 
obtain the final expression:  

)²..()²(
..

.atan
KeωrIqRsVd

ΔRIqVd
ΔθR −+

=
 

[8.29]   

In what follows, we generalize the precise methodology of evaluation of the 
error made on the position and electric parameters followed by the study of 
robustness in relation to Rs. If, for example, we accept a significant variation of Rs, 
the electric equations in reference frame (d, q) are: 
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[8.30]   

The equation based on axis (d ) gives the electromotive force error (proportional 
to Δθ ), and the one based on axis q is used to extract a speed estimation using 
estimated voltage and currents (the Park transform involves the estimated position)  
([8.7] and [8.13]).  
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Since Δθ (Δθ  = θ − θreal) is not known because θreal is not measured (no position 
sensor), information on qω~  alone remains in order to find a relation expressing the 
variation of the parameter.  

According to the equation including a variation of Rs, an incorrect estimation of 
permanent speed (with ( 0)pIq Id= =  is expressed as follows:  

Ke
qIΔRsRsqVω

~).(~
~ +−

=  and by observer Δωcωω q += ~~  [8.31]   

According to these equations, the expression of Δωc based on variation ΔRs is: 

.Iq
Ke
ΔRsΔωc −=

 
[8.32]   

This last equation gives the exact error on Rs using the corrector output. The 
correction of this variation in the algorithm now makes it possible to cancel the error 
of position. The position gap, caused by a variation in Rs, can also be quantified by a 
written formula with the help of electric equations. This formula, based on an error 
of position, in practice, cannot help with the correction because there is no measure 
of position.  

Finally, the calibration method occurs in the following way: in the first step, we 
estimate speed and position with incorrect parameters. When the speed has reached 
its nominal mode, we know value Δωc and correct parameter Rs. In order to do this, 
we add a speed test at two different moments, and when this speed is identical, we 
update parameters Rs (Rs = Rs + ΔRs) to obtain a representative value of the machine. 
In this way, after this calibration step, the algorithm calculates with the real 
parameter value.  

Stator resistance mainly evolves according to temperature variations triggered by 
the evolution of current and rotation frequency of the machine. 

We deduce the expression of ΔRs according to Δωc:  

Iq
Δωc.KeΔRs =

 
[8.33]   
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As Δωc is the correction used for velocity, we use the PI output of the Matsui 
structure to calculate ΔRs. After a calibration phase, we correct .Rs Rs Rs= − Δ  In 
Figure 8.17, the correction of Rs is shown during complete simulation of speed 
driving of a synchronous machine without mechanical sensor and the convergence 
of estimated velocity in two phases. After the initial positioning phase of 4 s, the 
synchronous machine reaches its sinusoidal mode at t = 6 s. During the transitory 
mode, stator resistance equals Rs + ΔRs. When velocity reaches its nominal mode, 
we digitally calculate the value of ΔRs from electric variables at moment 6 s + Δt. 
During period Δt set at 0.25 s, we calculate the mean value of electric variables 
making it possible to calculate ΔRs. Then, we re-inject the new stator resistance 
value in the algorithm. Since Rs is correct, the estimations are also correct  
(Figure 8.17 – speed and resistance, Figure 8.18 emf). 
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Figure 8.17. Visualization of real velocity and Rs correction with (a) ((a) estimated velocity; 
(b) real velocity); (b) ((a) shifting phase; (b) calibration phase; (c) Rs correction) 
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Figure 8.18. Variation of electromotive force with (a) shifting phase; (b) calibration phase 
(convergence to an interrupted non-zero error); (c) correct operation (initial disruption 
because of change in Rs value in equations, then convergence to a zero estimation error) 

8.3.4. Experimental results  

The algorithm was implemented for obtaining the first experimental tests given 
below. 

The synchronous machine used is an industrial grade motor1 with the following 
characteristics: 

Nn = 3,000 rpm In = 8.5 A 
Fn = 150 Hz Rs = 0.55 Ω 
emf = 80 V/1,000 rpm Lsd = Lsq = 8.5 mH 

In Figure 8.19a, the rotor positioning is obtained by injecting a current of 2 A in 
axis (d ), followed by a startup of 0 to 300 rpm. This test makes it possible to 
visualize the correct observer behavior.  

In Figure 8.19b, a startup of 0 to 1,000 rpm is shown. The estimated velocity 
follows the real velocity on the basis of the imposed cycle, even though the PI 
corrector of the observer was not adjusted more precisely. There is only a 
proportional gain, and because of initial positioning step, the ki effect is minimal. 

                                 
1 With thanks to LEROY-SOMMER. 
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Figure 8.19. Experimental tests (a) validation of the initial step ((a) real position,  
(b) estimated position, (c) real velocity, (d) estimated velocity); (b) response to a reference  

in speed ramp + 1,000 rpm ((a) reference velocity, (b) real velocity, (c) estimated  
velocity, (d) εemfd ) 

Experimentally, the voltage is rebuilt using the DC-bus voltage and IGBT orders 
with compensation of dead times to delete as many sensors as possible. For low-
duty-cycle relations, it is necessary to compensate the effect of converter dead times 
in order to feed the observer equations with voltage that is the closest to reality. This 
makes it possible to have information on additional sensorless voltage by avoiding 
filtering problems.  

(a) 

(b) 



436     Electrical Actuators 

 

Current regulation achieved continuously in the rotating reference frame (d, q), 
controls current components d and q and thus torque. PI-type current regulators are 
easily defined from parameters R, L of the machine. This is implemented in an 
industrial variable speed drive ready to be commercialized.  

8.4. Exact reconstruction by Kalman filter 

8.4.1. Overview 

The Kalman filter is a reference method of the state reconstruction and one of the 
great discoveries in the field of systems control and estimation. It plays a vital role 
in automatic and signal processing world.  

Using the state representation of linear systems, the Kalman observer provides, 
in recursive form and all the time, the optimal estimate and variation of the 
estimation error (Figure 8.20). Its formulation is particularly adapted to discrete 
systems and to the implementation by using computer for real-time processing.  

The Kalman filter is a stochastic observer for the reconstruction of state Xk of the 
system from:  

– input signals represented by input vector Uk; 
– measures represented by vector of measure Yk; 
– its sampled model defined by matrices Ak, Bk, and Ck; 
– noises: state noise Wk representing the non-deterministic part such as modeling 

errors or external disruptions and measure noise Vk including sensor imperfections.  
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Figure 8.20. Principle of the state observer  
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The noisy linear system is described by the following state equations:  

⎩
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⎧
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++=+

kkkk

kkkkkk

VXCY
WUBXAX

.
..1

 
[8.34]  

However, we suppose that disturbance vectors Wk and Vk are non-correlated 
Gaussian white noises characterized by: 

– zero mean values: ( ) 0=kWE  and ( ) 0;kE V =  
– the independence of measure and state noises: ( ) 0;T

k jE W V =  
– covariance matrices such as:  

( )
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⎨
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=
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≠
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Even though the Kalman filter is optimal, leading to a minimum error variance, 
the determination of matrices Qk and Rk represents the main problem when using the 
Kalman filter. In fact, noise characteristics are generally not well known.  

We will note )/1(
ˆ

kkX +  the prior estimation of vector )1(
ˆ

+kX  from information 
that we have at moment k. The implementation of the discrete Kalman filter is split 
into three steps.  

An initialization phase, a prediction phase during which the state at moment 
(k+1)Te is estimated according to the state and measures taken at moment kTe 
followed by an actual correction phase. The recurring equations used for the 
prediction are those from the deterministic model [8.34].  

)/1(
ˆ

kkX +  is the prior estimation of the dimension n state, since at calculation 
moment (kTe), measurement y(k + 1) is not yet known. Vector )/(

ˆ
kkX  represents the 

estimation of X at moment (kTe) following the consideration of measures at the same 
moment. It is therefore a later estimation of the state.  

We also define the covariance matrices of observation errors, associated with 
vectors )/1(

ˆ
kkX +  and )/(

ˆ
kkX by:  

{ }T
kkkkkkkk XXXXEP )ˆ).(ˆ( )()1/()()1/()1/( −−= −−−  

{ }T
kkkkkkkk XXXXEP )ˆ).(ˆ( )()/()()/()/( −−=  

[8.35]   



438     Electrical Actuators 

 

where )1/(P −kk  and )(P k  are defined as positive. They give an indication on the 

precision of estimations. The projection of matrix )/1(P kk+  is: 

)(Q)(A)(P)(A)/1(P kkkkkk T +⋅⋅=+  

These recursive equations are done at each sampling period. The covariance 
matrices can lose their symmetry and lead to filter instability. This problem can be 
avoided if we only use their upper or lower triangular part in the calculations.  

The correction phase consists of updating the estimation of state )/(
ˆ

kkX  from 

the measure at that moment and prior estimation )1/(
ˆ

−kkX :  

)X̂.C.(KX̂X̂ )1/()()()()1/()/( −− −+= kkkkkkkkk y
 

[8.36]  

Optimal gain K (k) in the sense of prior variance minimization of the estimation 
error is calculated as follows.  

The covariance matrix should also be updated and we therefore find:  

)k(k(k)(k)nxnk)(k 1// P)CK(P −⋅⋅−Ι=
 [8.37]  

where )/( kkP  is the covariance matrix a posteriori and:  

1
1/1 )RCPC(CPK −

− +⋅⋅⋅⋅= (k)
T

(k))k(k(k)
T

(k))(k/k-(k)  
[8.38]  

In traditional deterministic observers, inverse feedback gains are determined in 
order to impose the desired convergence dynamic (Luenberger). In the Kalman 
filter, matrix K is determined to minimize the average of the quadratic estimation 
error. The correction phase consists in updating prior estimations )1/(

ˆ
−kkX  and the 

corresponding estimation error covariance )1/( −kkP  from the new measurement at 

that moment. This correction is based on the calculation of )(kK  that should be done 

first. From updated state variables and covariance matrix at moment k, the prediction 
phase consists of projecting them at moment k + 1 using the system knowledge 
model.  
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The Kalman filter algorithm is split into three phases:  

– an initialization phase, from the estimated state 000
ˆ XX = , and the covariance 

matrix of observation errors 000
ˆ PP = ; 

– a prediction phase, where we make a prior estimation of:  

- state kkX 1
ˆ

+  at moment (k + 1) Te, without knowledge of measures Yk + 1, and 

from estimation kkX̂  at moment k ⋅ Te:  

kkkkkkk UBXAX .ˆ.ˆ
1 +=+  

[8.39]   

- the covariance error matrix:  

k
T

kkkkkk QAPAP +=+ ..1  
[8.40]   

– a correction phase, where an update is executed: the estimation of state 

11
ˆ

++ kkX  taking into consideration prior state 1
ˆ ,k kX +  measures Yk + 1, and Kalman 

gain Kk + 1 weighing the error between measures and their estimations a priori:  

)ˆ.(ˆˆ
111111 kkkkkkkk YYKXX ++++++ −+=

 
[8.41]   

with kkkkk XCY 11
ˆ.ˆ

++ =  we obtain:  

)ˆ..(ˆˆ
1111111 kkkkkkkkk XCYKXX +++++++ −+=

 
[8.42]   

the covariance matrix:  

kkkkkk PCKIP 11111 )..( +++++ −=
 [8.43]   

and the Kalman gain:  

1
1111111 )...(. −

+++++++ += k
T

kkkk
T

kkkk RCPCCPK
 

[8.44]   

We then obtain the standard Kalman algorithm where the correction and prediction 
phases are detailed in Figure 8.21. 
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Figure 8.21. Discrete Kalman algorithm  

8.4.2. Using the Kalman filter for the synchronous machine without mechanical 
sensor 

The application of the standard Kalman algorithm is restricted because the linear 
representation is only rarely verified for physical systems. In this case, we will use 
another formulation of the Kalman filter, consisting of first executing a limited serial 
of Taylor order 1 development to be able to linearize the system, and apply the 
standard Kalman filter.  

The noisy linear system is described by the following state equations:  
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In the necessary derivability hypotheses, we obtain with the limited order 1 
development approximately e

kX  for state equation and m
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[8.45]   

    1 -  
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or:  
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We then obtain the new equations making up the Kalman algorithm: for the 
prediction phase:  

e
kkkkkk UXFX +=+

ˆ.ˆ
1   

linearized around kk
e

k XX ˆ= , or:  

)0,,ˆ,(ˆ
1 kkkkk UXkfX =+  

[8.47]   

T
kkk

T
kkkkkk DQDFPFP ....1 +=+  [8.48]   

For the correction phase:  

m
kkkkkk UXHY 1111

ˆ.ˆ
++++ +=   

 
linearized around: kk

m
k XX 1

ˆ.ˆ
+= , or, ( )0,ˆ,1ˆ

11 kkkk XkhY ++ +=  hence:  

( ))0,ˆ,1(.ˆˆ
111111 kkkkkkkk XkhYKXX ++++++ +−+=

 
[8.49]   

with:  

1
111111111 ).....(. −

+++++++++ += T
kkk

T
kkkk

T
kkkk EREHPHHPK

 
[8.50]   

kkkkkk PHKIP 11111 )..( +++++ −=
 [8.51]   
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8.4.3. Application for the synchronous machine 

By considering the smooth pole synchronous machine model developed 
previously in rotating reference frame d, q (section 8.3) with the Park transform, we 
have:  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−=

+−=

ωω

ω

Ls
KeIdIq

Ls
Rs

Ls
Vq

dt
dIq

IqId
Ls
Rs

Ls
Vd

dt
dId

.

.

 

[8.52]   

We then add the mechanical equation of the machine, linking the torque to the 
rotation speed:  

CrCemf
dt
dJ −=Ω+

Ω ..
 

[8.53]   

with: IqKeNpCem ..=  and .Npω = Ω  where Ω is the mechanical speed, ω the 
electric angular frequency, Cem the electromagnetic torque, Cr the resistive torque, J 
the rotor inertia (or all turning parts, load included), ƒ the friction factor, and Np the 
number of poles.  

Or,  

Cr
J

Np
J
fIq

J
KeNp

dt
d ....2

−−= ωω

 
[8.54]  

We then have an order 3 state representation with Id, Iq, ω as state variables. The 
reconstruction of the position can then be done in two ways:  

By directly applying the Kalman filter to this state representation, then 
integrating the estimated speed from a known initial position.  

Or by increasing the order of the representation by adding the position as state 
variable, then applying Kalman to this new representation, which is 4th order  
this time. 

Since the previous order 3 state representation showed weaknesses in the 
position estimation in previous studies [PEY 03], we will only focus on the second  
 



Observation of the Rotor Position     443 

 

alternative. We then obtain the following order 4 state representation (by writing  
τ  = Ls/Rs as the electric time constant):  
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[8.55] 

The state system is non-linear in ω. In fact, dynamic matrix A contains speed ω, 
which is a state variable itself. We then use the expression of the Kalman algorithm in 
discrete form considering that, in a time interval of Te, the speed is slow variable but 
updated at each moment k.  

By carrying out discretization in the first order according to Euler, we obtain: 

),,(.1 kkkk UXkfTeXX +=+  

with Te the sampling period. And thus:  

kkkkkk WUBXAX ++=+ ..1   

By adding the state noise random vector, we obtain: 
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 [8.56]   
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We should then calculate variables necessary to the implementation of the 
Kalman algorithm: 
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∂
∂

= g
W

Ek  [8.59]  

In order to implement the Kalman filter in the self-guided synchronous machine, 
we have to choose the matrix values of initialization P0, state noise Qk = Q, and 
measurement noise Rk = R. This is major in ensuring the correct estimation of 
position and speed.  

8.4.4. Gain adjustment 

The goal of this part is to efficiently adjust the covariance error matrix to initial 
state and state and measurement noise matrices in order to obtain correct 
convergence of velocity and measurement estimates with their real values. We 
should reiterate that these parameters are linked to the variance of random noises 
difficult to quantify. However, we can ignore the influence of correlation between 
the different noises as a first simplification and thus have symmetrical matrices 
defined as positive.  
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Adjusting matrix factors:  
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8.4.4.1. First tests 

As we have noted, the simulation involving a system that is not very noisy 
compared to a real system, we first chose low adjustment of covariance matrices:  
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[8.60]  

Since the machine is initially considered when idle, initial state X0 is zero (in 
addition, we assume that the error of position at startup is zero). In these conditions 
and with the rms value of reference current Iref set, the Kalman filter satisfies its  
role of observation. We can simultaneously see the accurate reconstruction of 
velocity and position. Position and velocity errors between estimated and real 
variables are very low (Figure 8.22). We should also note that the signals in fact 
have very little noise.  

For these same P0, Q, and R adjustments, we also obtain convergence toward 0 
of position and speed errors when current reference Iref is modified. On the other 
hand, for low currents, the system diverges regardless of P0, Q, and R matrices 
tested. In fact, measurement and state noise matrices should theoretically be sized 
according to stochastic noises (Figure 8.23). However, weak noises existing in the 
system mainly come from digital division, so they do not satisfy the characteristics 
defined previously. The influence of adjustment parameters is highlighted by 
deteriorating the conditions of simulation:  

– by adding random noise in current measurements; 
– by having an incorrect position initialization. 
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Figure 8.22. Position and velocity estimation errors 

8.4.4.2. Addition of Gaussian noise in current measures 

Because of the dynamic chosen for controlling currents, Id and Iq reach their 
reference values very quickly (in approximately 0.5 ms in this case). If we focus  
on the previous currents, where all diagonal terms of adjustment matrices were  
set at 0.01, and waiting established currents, we have AId 08.00 ±=  and 

3.45 0.08 .Iq A= − ±  If we assimilate these slight current variations to standard 
deviation σ = 0.08, the variance is of v = σ² = 0.0064. The choice of variances in the 
noises of measurement matrix R to 0.01 is therefore coherent.  

 

(a) 

(b) 
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Figure 8.23. Position and velocity estimation errors 

We will then insert random noise in currents to see the reaction of the observer 
and to see if the modification of matrix R can overcome this additional noise  
(Figure 8.24). By adding noise between ±1 A, the observer becomes incorrect. State 
variables Idkk and Iqkk are noisier and deteriorate velocity and position estimations. 
We then see the importance of identifying measurement noises and corresponding 
adjustment of matrix R. 

(a) 

(b) 



448     Electrical Actuators 

 

Time (s)

S
pe

ed
 e

rro
r(

rd
/s

)

Time (s)

S
pe

ed
 e

rro
r(

rd
/s

)

 

 

Figure 8.24. Position and velocity estimation errors: adapted R 

To manage this level of noise, we should adapt the factors of the measurement 
noise matrix: noise 1A≈ ⇒ 1≈σ  ⇒  1² ≈= σv ⇒  coefficients of 1=R . 

We then find the same behavior as before, except that the estimated speed has 
more noise, but has the same instantaneous mean value as before. In addition, by 
increasing R (R = 10), we get closer to the initial case. We can then conclude that 

(a) 

(b) 
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diagonal R factors should be set at a minimum value that is equal to the square of the 
maximum noises observed beforehand. Adjustment factors can be grouped 
according to the nature of information that they use. In our case, we will apply the 
same factors on current information (a = b, i = j, e = f ) and other weights on the 
position (d, h) and velocity (c, g).  

8.4.4.3. Initial matrix of P0 errors of estimation 

An incorrect estimation, not only at initial moments, can be caused by an 
incorrect initialization of P. We first look for the influence of the covariance terms 
of initialization P0 matrix. There are two different pieces of information which can 
be distinguished; the two terms linked to Id, Iq, and the terms linked to speed ω (the 
term linked to position θ does not seem to have an influence).  

Regardless of the value of the two variance terms linked to currents in P0, there 
is no visible influence on the convergence of the estimator. In fact, as with both 
currents, Id and Iq reach their references in 0.5 ms, the two variance terms associated 
with matrix kkP  also reach sinusoidal mode at the same time. It is therefore useless 

to try to initialize these two terms, because at the end of five division periods, they 
reach a value depending on other variables. On the other hand, the initialization of 
the factor linked to velocity leads to certain performance modifications. We modify 
the Kalman gain, and consequently the weighing of measurement coefficients. 
However, we cannot easily improve the time of convergence of the position. Since 
the covariance matrix of estimation errors at initial moment has little influence, or 
for a short period of time, we focus on the matrix of state noise Q.  

8.4.4.4. Matrix of state noise Q 

The matrix of state noise Q also has an influence on the covariance matrix of 
estimation errors P. Since P0 makes it easy to set the variance of errors at initial 
state, the sinusoidal mode reached by P is a function of Q. We make the same 
distinction for the matrix of state noise as for P0. In fact, the coefficients linked to 
the currents and positions have very little influence. The speed term is the only one 
significantly modifying the observer behavior.  

If we set all the diagonal terms of matrices P0, Q, and R at 0.01 and vary the term 
linked to speed in Q (0.1 or 0.001), we greatly modify the performances of the 
Kalman filter.  

The modification of matrix Q deteriorated the estimation of speed (and position). 
Figure 8.25 a decrease of Q creates an outburst of speed and position estimates; the 
machine turns more than it does in reality. 
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Figure 8.25. Velocity estimation error according to Q 

On the other hand, an increase of Q slows down the estimation; even if the 
convergence in speed and position is efficient from 0.8 s, a complete rotation was 
missed and the estimation is therefore incorrect.  

Inserting an error of position at startup confirmed the importance of the Q 
adjustment at state noise level. State noises have their origin in modeling errors of 
the system and voltage measure (inputs). 

By increasing Q, we lose information necessary for the correct operation of the 
estimation. On the other hand, by decreasing Q, we take into consideration noises 
distorting estimation. Unfortunately, the adjustment of Q that is satisfactory for  
Iref = 2 A is no longer suitable for 1 A, so the adjustment of Q should be decreased.  

8.4.5. Assessment on the adjustment of Kalman filter factors 

If the coefficients of matrix Q are much greater than those of R, the value of 
corrections K increases quickly and transitory performance is better. That is the case 
for a device with model uncertainties.  

If matrix R is large (significant measurement noises) K is lower and the 
observation has a hard time converging and mediocre transitory performance.  
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In addition, if we take large matrix Q (reliable to the model) and very small 
matrix R (good reliability in measurements), an instability is created because of the 
measures taken on a device with an incorrect model. The coefficients should be 
evaluated by a trial and error method in order to adjust them to the device and tolerated 
performance [VAS 98]. However, methods for understanding these values exist (fuzzy 
rules, neural network, etc.) or, in this case, the experimental design method can help, 
to determine the optimal clearance of factors by a minimum number of tests on the real 
device. 

The equations from modeling and their electric and mechanical parameters are 
therefore very important in obtaining a correct estimation. On the other hand, in 
reality, these factors also have a lot of errors known with x% of accuracy and 
variable during operation.  

We do not use the form of extended Kalman filter for the estimation of 
parameters that have even larger matrices. In fact, the implementation of a four-
dimensional algorithm (as presented) requires a large number of calculations and 
often creates a problem for the implementation in electrotechnical devices controlled 
by a small sampling period (200, 100, or even 50 μs) linked to the performance of 
converters.  

8.5. Comparison of reconstructions by Kalman filter or analytical redundancy 
observer  

We saw in the previous section that adjustment parameters for the two observers 
are very different. We will now try to compare them in terms of performance on the 
basis of rating, initialization error in the rotor position, or an identification error of the 
machine’s electric parameters.  

To get different comparison criteria, we use the two observers in the variable speed 
chain of control of a synchronous machine. This control requires the precise control 
of currents (using the estimation of the rotor position) and a correct adjustment of 
current regulators in the converter (PWM) (Figure 8.26).  

The speed estimation is used for first generating the speed error for the speed 
controller.  

The control of machine currents needs to be as quick as possible to add velocity 
control in cascade. We chose a PI regulator for good dynamic response with zero 
static error. 



452     Electrical Actuators 

 

Without trying to optimize the quality of control, we chose speed regulator gains 
by compensating the pole for both observers. The mechanical time constant τΩ was 
defined at 0.3 s.  

 

Figure 8.26. Sensorless speed control diagram  

8.5.1. Influence of rating 

At high and average speeds, both observers respond really well and identically. 
Velocity and position estimations converge rapidly and both systems respond at the 
same time to speed control. 

We should note, however, that the velocity estimate calculated by analytical 
redundancy is clearly noisier Figure 8.27.  

On the other hand, at slow speeds, the analytical redundancy observer is the only 
one ensuring correct estimation. The Kalman filter works incorrectly. We saw  
earlier that the Kalman algorithm can diverge for low currents and not work at low  
speed. Lower levels can also trigger problems in the analytical redundancy observer 
and would require another adjustment factor case. An adaptation or commutation of 
factors can therefore be considered (for the two observer structures) [FUR 92]. 
However, the coefficients used in the redundant observer turn out to be globally 
satisfying. In fact, other adjustment factors can be defined to improve (not much) 
low (respectively high) speed performance, but by deteriorating the other case, for a 
small gain in performance.  

We simulated a velocity step of +200 at 0 rad/s. Both algorithms show the same 
weakness at the machine’s stop. In fact, position estimates continue to evolve during 
a short time, whereas the machine is already stopped. The final position errors are 
similar for both estimators and exceed one mechanical degree.  
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Figure 8.27. Sensorless speed response with a step of  ± 200 rad/s 

8.5.2. Influence of the initial rotor position 

As seen earlier, the Kalman algorithm is sensitive to an initialization error. What 
about the analytical redundancy algorithm? Position errors (Figure 8.28) are 
indicated for an initial mechanical error of 30°. The errors are much better controlled 
by analytical redundancy than with the Kalman filter. The Kalman algorithm only 
optimizes the variances of estimation errors and does not accelerate the convergence 
as the analytical redundancy observer does.  

However, the Kalman observer is able to make the estimation successful 
regardless of the initial error of mechanical angle if the device does not require too 
much torque at startup (idle machine, etc.). If the angle exceeds 45° mechanical, the 
redundancy algorithm converges well, but the estimate is completely wrong because 
the machine starts turning in the other direction from the direction imposed by the 
current sign.  

8.5.3. Sensitivity to electric parameters 

We test the behavior of both algorithms, without exactly knowing the model of 
the synchronous machine simulated, and evaluate the robustness of observers in 
relation to an error on stator resistance. The value of this stator resistance evolves 
according to temperature and we should consider these variations.  
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Figure 8.28. Position error of both observer structures 

Assume an error of −25% compared to the real value of Rs. The estimation of 
position (Figure 8.29) is disturbed for both algorithms, but in a lesser measure for 
analytical redundancy (section 8.4.2). The Rs error is a source of static error, 
preventing the convergence toward 0. Although the static error for the Kalman filter 
is approximately 1° mechanical, for the analytical redundancy observer, it is very 
close to 0°.  
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Figure 8.29. Position error with error in resistance Rs 
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The analytical redundancy algorithm is also more robust than the Kalman filter 
for other variations of electric parameters, stator inductance Ls, or the factor of Ke 
flux. We do not present results here; these parameters are generally well known.  

The analytical redundancy algorithm has an additional advantage: finding 
information on knowledge errors of Rs and Ke via the corrective term cωΔ  (not in 
the inductance because the structure loses information linked to Ls). We can update 
the value of these parameters and obtain convergence to 0 of estimates. The 
calculations are altogether on a different scale to those necessary for the estimation 
of parameters with the Kalman filter [CAU 05].  

The equations of the analytical redundancy algorithm are easier than four-
dimensional discrete equations of the Kalman filter. Adjustment factors are in both 
cases not easy to define and should go through a phase of trial and error with an 
advantage to the redundancy observer where proportional gain Kp is enough to 
converge information.  

Both algorithms are sensitive to the factors of the system model, with a “simple” 
correction possibility for the analytical redundancy observation. The volume of 
calculation to do is quite reduced for the redundancy observer and even if in both 
cases rotor initial position (or estimation of initial position) is necessary, good 
performance is obtained for the control of a synchronous actuator without any 
mechanical sensor.  

8.5.4. Influence and management of load torque 

For the convergence of an observer included in a control loop (position, velocity 
loop), the consideration of the load torque is often necessary. It is often possible to 
add a load torque estimation in order to increase the quality of the speed, torque, and 
current response. This estimation is re-injected to obtain a compensation (dealt with 
in other chapter in this volume). In a sensorless control, a load torque observation 
can be introduced. This observation is either expressed by an additional state in the 
Kalman filter, or by a separate observer dedicated to the load torque. There are 
techniques based on the adaptation of reference models (MRAS, see other chapters).  

Control diagram (Figure 8.30) is slightly more complex because of hierarchization. 
State variables are “independently” observed from the reconstruction of the load 
torque. The desired dynamics and complexity of algorithms are adapted according to 
necessary information.  

This estimated load torque (Figure 8.31) is used as compensation in order to 
improve the global actuator performance and obtain torques, currents, and 
electromotive forces that are less disturbed and easily rebuilt.  
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Figure 8.31. Sensorless torque and velocity response, with and  
without compensation of estimated load torque 

 

(a) 

(b) 
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This control diagram has all the components of the variable speed control of a 
sensorless synchronous actuator. The voltage inverter operating in Pulse Width 
Modulation is current-controlled. In fact, the torque control is done by current 
regulation in axes d, q (Idref = 0 and Iqref  output of prior regulator). 

For each transformation of three-phase/two-phase coordinates, the position 
estimated is provided by the Kalman filter (the redundancy observer provides the 
same basic performance). 

By using currents and estimated speed, a reduced order observer makes it 
possible to estimate the load torque and thus the modification of current to use to 
compensate its effects [TAT 98]. 
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