
 

PART 1 

General Physics Phenomena 
 

 
 
 
 



Chapter 1  

Physics of Dielectrics 

1.1. Definitions 

A dielectric material is a more or less insulating material (with high resistivity 
and with a band gap of a few eV), that is polarizable, i.e. in which electrostatic 
dipoles exist or form under the influence of an electric field. 

Like any material, it is an assembly of ions with positive and negative charges 
which balance, for a supposedly perfect solid, so as to ensure electrical neutrality. 
This neutrality is observed at the scale of the elementary structural motifs which 
constitute solids with ionocovalent bonding (ceramics, for example) and on the 
molecular scale in molecular solids (polymers and organic solids). 

The action of an electric field at the level of these element constituent of solids 
manifests itself by dielectric polarization effects. Let us remember that the dipole 
moment of a charge q with respect to a fixed system of reference centered in O is: 

m t (0) =q r   [1.1] 

where r  is the vector which connects the point O to the charge’s position. 

If due to a force (caused, for example, by a magnetic field), the charge moves 
δ r , then the variation of the moment will be: 

δ m t(0) = q δ r  [1.2] 
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δ m t represents the polarization effect of the field on the charge. The 
generalization of expressions [1.1] and [1.2] to a collection of charges occurs by 
vectorial summation of the moments of each charge. An important case is that of a 
set of two charges ± q, whose positions are defined by r 1and r 2 (see Figure 1.1). 
The application of [1.1] to the two charges gives: 

m t(0) = q r 1- q r 2 

Setting r 1= r 2+ , we get: 

m t(0) = q = p  [1.3] 

p  is called the dipole moment formed by the two charges, oriented from the 
negative charge to the positive charge (see Figure1.1). 

The dipole moment appearing in a solid, during the application of a field E , is 
(to a first approximation) proportional to it. We can then write: 

p=ε0α E  [1.4] 

In this equation, α characterizes the polarisability of the species which gave the 
dipole and ε0 the vacuum permittivity. 

 
 
 
 
 
 
 
 
 
 

Figure 1.1. Calculation of the dipole moment formed by 2 charges +q and –q  

1.2. Different types of polarization 

To study dielectrics, it is necessary to first of all describe the different types of 
polarization. In order to do so, we must distinguish two types of solids: polar solids 
and non-polar solids. 
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1.2.1. Non-polar solids 

In the case of non-polar solids, the centers of gravity of positive and negative 
charges coincide, and the dipole moment is therefore null (in the absence of a field). 
This is the case for solids with metallic bonding, or of numerous ionocovalent solids 
(ceramic Al2O3, ZrO2, ZnO, SiO2, etc.). Thus, the tetrahedron SiO4 which constitutes 
the motif of quartz has a null dipole moment. It is the distortion of this tetrahedron, 
under the effect of a mechanical stress, which will make a polarization and the 
piezoelectric effect appear (see Figure 1.2). 

(a) (b)
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Figure 1.2. (a) Quartz cristal at rest; it posesses a symmetry axis of order 3. The arrows 
represent the dipole moments whose resultant is null. (b) Subject to a mechanical stress  

according to the direction indicated, the network is distorted and the resulting dipole moment 
(small vertical arrow), is no longer null: an electric field appears 

1.2.2. Polar solids 

Polar solids are composed of polar molecules for which the centers of gravity of 
the positive and negative charges do not coincide (for example a water molecule); 
this is molecular polarization. This is the case for most molecular solids and 
ferroelectric solids, which present a spontaneous polarization. Figure 1.3 gives, for 
example, the structure of barium titanate, a typical case of a ferroelectric body (and 
therefore also piezoelectric). 

1.2.3. Electronic polarization 

Let us consider the spherical orbital of an electron. Under the influence of an 
external electric field E , the electrons are subject to a force –e E  and the orbital gets 
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distorted (see Figure 1.4). Consequently, the centers of gravity of the positive and 
negative charges which were initially merged, no longer are: this is electric 
polarization, and this leads to the formation of an electrostatic dipole; therefore, a 
dipole moment internal to the atom is characterized by: 

p elect = ε0αelect E  [1.5] 

which opposes itself to the field E . αelect is called the electronic polarisability. The 
polarization disappears if the field is removed. 
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Figure 1.3. Non-centrosymmetric crystalline structure of barium titanate BaTiO3 
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Figure 1.4. (a) Orbital in the absence of electric field; (b) distortion of the orbital and 

appearance of electronic polarization p elect in the presence of a field E  
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1.2.4. Ionic polarization 

In the case of ionic crystals, the average position of positive and negative ions 
changes under the influence of a field E . Suppose the ion is perfectly rigid from 
every angle. The action of the field will be to move it a quantity  with respect to a 
fixed mark centered in O; hence a variation of the polar moment: 

p ion= q  = ε0αion E  [1.6] 

This is the induced ionic polarization, proportional to the field (elastic 
distortions); where αion is the ionic polarisability. 

The total dipole moment attached to the displacement of the ion and to the 
distortion of the electronic orbitals is, to a first approximation, the sum of [1.5] and 
[1.6], that is to say: 

p t =  p ion + p elect [1.7] 

1.2.5. Orientation polarization 

When we subject a polar molecule, carrier of a permanent dipole moment p 0, to 

an electric field E , its dipole tends to turn towards the direction of the field, which 
leads to a distortion of the molecule related to a torque: this is orientation 
polarization. This distortion is not instantaneous. There is the appearance of a 
hysteresis, on the one hand because the molecular forces tend to block its motion 
and, on the other hand, the thermal agitation will tend to disorient the molecules 
with respect to one another. 

If p 0 makes an angle θ with the direction of the field, the torque is: 

Γ  = p 0 ∧ E  

The application of a field will have the effect on each molecule of producing a 
polar component in the direction of the field, whose first-order expression is: 

p or = ε0αor E  [1.8] 

αor is called orientational polarisability. In general, p or << p o. 
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1.2.6. Interfacial or space-charge polarization 

This type of polarization plays a part when the material possesses different 
phases or permittivity zones. Subject to a low-frequency electric field (from 10-1 to 
102 Hz), this material will behave as though it contains electric charges with 
interfaces separating the zones. However, these charges are not real charges, but 
known as “polarization” charges (see section 1.3.3). 

1.2.7. Comments 

Units: a dipole moment is the product of a charge by a distance; it is therefore 
measured in C.m. A commonly used unit is the Debye: 

1 Debye=
3
110-29 C.m= e x 2.08 10-11 m (e charge of the electron). 

A dipole moment is measurable, unlike q and l. The dipole moment must be 
taken as an entity, in the same way as an electric charge. 

Polarization vector: this is the dipole moment per unit volume. By analogy with 
a capacitor, we can write: 

P = ε0 (εr -1)  E  = ε0 χ  E  [1.9] 

where ε0 is the vacuum permittivity, εr is the dielectric constant of the material and 
χ =(εr -1)  is its dielectric susceptibility. 

1.3. Macroscopic aspects of the polarization 

1.3.1. Polarization of solids with metallic bonding 

Rather than address non-conductive materials, it is interesting first of all to 
describe the polarization phenomena appearing in a metal. In this case, each ion of 
the solid is neutralized on the scale of the atomic volume by “free” electrons. The 
ions do not move under the action of the field and subsequently do not introduce any 
dipole moment. On the other hand, the conduction electrons go up the field 
(polarisability α ∞→ ) until they reach the limit of the solid: the electrons 
accumulate on the surface of the solid by which the field enters, leaving an excess of 
positive charges on the surface by which it comes out (see Figure 1.5). This giant 
dipole creates an internal field E ch within the solid which opposes itself to the 
applied field E a. The motion of charges takes place until the total field is null: 
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E internal = E ch + E a= 0  [1.10] 

We say that the free charges come to screen the applied field. The total charge of 
the solid is null but its surface is positively charged on one side and negatively on 
the other. 

1.3.2. Polarization of iono-covalent solids 

Unlike metals, there are no free charges in a perfect iono-covalent solid: there is 
therefore no screen with the applied field. Each ion of the elementary structural 
motif is subject to a polarization, such that the solid presents a dipolar structure at 
the atomic or molecular scale (see Figure 1.6). The solid being neutral, the internal 
field at a point is the sum of the applied field and the field created by all of the 
dipoles. 

E internal = E dip + E a 0≠  [1.11] 
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Figure 1.5. Polarization of a solid with metallic bonding 

 

Figure 1.6. Polarization of an iono-covalent solid 
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This internal field is called the local field (E internal = E loc). It is this field which is 
responsible for the polarization of the medium whose description was given in 
section 1.2. 

If each atom, i, of a solid with a cubic lattice of parameter, a, carries a dipolar 
moment, p i, the polarization vector is defined by: 

P i= 
3a

Na p i [1.12] 

where N is the number of atoms per cell. 

If P ( r ) d3r is the dipole moment at point r of an element with continuous 
volume d3r, the potential dV(R ) created by this dipole moment at a point R  (see 
Figure 1.7) is: 

dV(R ) = 
04

1
πε

P ( r ) dagr  
Rr −

1 d3r [1.13] 

Let us consider a continuous solid of volume V and surface S, totally neutral 
(with no excess charges in the medium), subject to an external field E a (see 
Figure 1.7). It presents a polarization P ( r ). The potential V(R ) created at point R  
by the dipole moment P ( r ) d3r is (from [1.13]): 

V(R ) = 
04

1
πε rR

grad
−∫∫∫
1

v

)r(P  d3r  [1.14] 

and the created field has a value of: 

E  (R ) = - dagr  V(R ) [1.15] 

Using mathematical operations (Ostrogradski and Green), we get: 

V(R ) = 
04

1
πε rR −∫∫∫

Pdiv-

v

 d3r + 
04

1
πε rRs −∫∫

sdP  [1.16] 
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Figure 1.7. Representation of a solid (V), of surface (S) subject to an external field E a 

1.3.3. Notion of polarization charges 

The two integrals of [1.16] are interpreted as being Coulomb integrals. Indeed, 
we can write the second integral of [1.16] as: sdP = Pnds, with Pn being the 
projection of P  following the direction of the surface element, directed towards the 
outside (see Figure 1.7). Pn has the dimension of a surface charge density σp. 
Similarly for the first integral ρp= Pdiv-  represents a density per unit volume of 
charges. The densities σp and ρp are known as polarization charge densities. 

These polarization charges, in a neutral medium (without excess charges) are not 
real electric charges; it is a convenient equivalence. 

1.3.4. Average field in a neutral medium 

To the potential V(R ) given by [1.16], due to the polarization, we must add the 
potential Va(R ) due to the applied electric field. The potential in R is therefore: 

VM(R ) = V(R ) + Va(R )              [1.17] 

And the field in R  is given, by using the polarization charges, by: 

E M (R ) = E a (R ) + E dep (R ) + pρE  (R )              [1.18] 
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E dep(R ) is the field due to surface polarization charges whose effect within the 
dielectric is to oppose itself to the applied field E a . As a result of this, it is called 
the depolarization field. pρE (R ) is the field created by the volume polarization 
charges. 

E M (R ) is the average field. It is the usual macroscopic field defined at all 
points of the medium and the one that we measure (for capacities, for example). By 
analogy with [1.9] we can write: 

P = ε0 (εr -1)  E M = ε0 χ E M [1.19] 

where χ is the dielectric susceptibility. 

The volume polarization charges ensuing from [1.19] have a density of: 

ρp = -divP = -div(ε0 χ E M) = -ε0 χ divE M   - ε0 E M  grad χ  [1.20] 
 
with, from [1.18], divE M   = div E a + divE dep + div pρE  

The sources of the fields E a and E dep are either outside, or at the periphery of the 
medium, subsequently: div E a = divE dep= 0. 

As for the field, pρE , due to the polarization charges, its divergence has the 

expression: div pρE = ρp /ε0 and, subsequently: 

divE M   = ρp/ε0 [1.21] 

Plugging [1.21] into [1.20], the polarization charge is written: 

ρp = - ε0 χ+1
ME dagr χ  [1.22] 

Subsequently, in a neutral medium, the polarization charges are due to the 
gradient of dielectric susceptibility. In other words, a medium in which 
susceptibility varies presents volume polarization charges. 

The electric induction is defined by: 

D = ε0 E M + P  [1.23] 
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So, taking into account [1.19]: D = ε0 (1+ χ )E M , and setting ε=ε0 (1+ χ ): 

D = ε E M [1.24] 

where ε is the dielectric permittivity of the material, sometimes called the dielectric 
constant. 

From [1.21] and [1.23], it follows: 

divD = ε◊ divE M + divP = ρp-ρp =0 

In a neutral medium the divergence of the induction is null (D is at conservative 
flux). Equally, we can theorize the proportionality between P  and the 
depolarization field: 

P = -ε0/λ E dep [1.25] 

The minus sign indicates that E dep has an opposite effect to that of E a on the 
polarization, i.e. it has a depolarizing effect. The fact that E dep reduces the 
polarization produced by E a implies that E M <. E a. 

1.3.5. Medium containing excess charges 

Let ρa be the charge density of charges and aρE , the field they produce. This 
field must be added to the expression [1.18], so: 

E M (R ) = E a (R ) + E dep (R ) + pρE  (R )+ aρE  (R ) [1.26] 

The presence of charges in the medium imposes div 0D ≠ . 

The problem can be tackled in two ways: 

– we can treat these excess charges as charges external to the dielectric and 
associate their field with the applied field E a whose sources are outside the medium. 
We will therefore set: 'E a = E a + aρE and subsequently div 'E a = ρa /ε0, 
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– we can also integrate these charges to the medium because, as we will see, 
these excess charges are generally trapped charges, which affect the physical 
characteristics of the medium considerably. We then set: 

'E ch = aρE + pρE et  div 'E ch = (ρp+ρa)/ε0 

The final result is identical according to both approaches with: 

div 'E M  (R)= (ρp+ρa)+/ε0 =  ρ/ε0 

where ρ is the total density of charges (polarization charges plus excess charges). 

The application of [1.23] gives the expression for the induction: 

divD = ε0 divE M +div P = ρp+ρa-ρp= ρa 

Thus, in a charged medium, the divergence of the induction is equal to the 
density of excess charges. 

1.3.6. Local field 

We have seen (in equation [1.11]) that, within a dielectric subject to an applied 
field E a, an internal field (known as a local field) prevails, such as: 

E loc= E dip + E a 0≠  

where E dip is the field created by all of the dipoles. 

Each ion of a solid is therefore solicited by this local field different to the applied 
field. The dipole moment which appears on a site j of the lattice is therefore 
expressed by: 

P j= ε0αj E loc (j) 

where αj is the induced or orientational polarisability, depending on the material. 
The field created by all of the dipoles in j is the vectorial sum of the fields of each 
dipole, that is to say: 

E loc (j) =∑
≠ ji

E i(j) 
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Each dipole i will create a potential at the point j whose expression is similar to 
equation [1.13]. 

1.3.7. Frequency response of a dielectric 

When the applied field varies over time (harmonic field E(ω,t)), this field 
induces a polarization P(ω,t), defined from the expression [1.19]:  

P(ω,t) = ε0 χ (ω) E (ω,t). 

This polarization is the sum of each type of polarization. But the reaction of a 
material to a type of polarization is not instantaneous. Thus, there is a phase 
difference δ between an alternative electric field (E= E0sinωt) and the polarization 
P=P0 sin(ωt-δ). In complex notation, we can write P*= P0 exp(i(ωt-δ)) and E*= E0 
exp(iωt). The values of the polarization and of the dielectric constant depend on the 
ease with which the dipole moments reorient themselves when the direction of the 
field varies. The time required for this reorientation to take place is called relaxation 
time, τ, and its inverse the relaxation frequency, f. 

Given that the relaxations are related to thermal agitation, the frequency, f, of the 
material is a function of the temperature (f increases with T). When the frequency 
electric field is much stronger than the relaxation frequency of a type of polarization, 
this polarization cannot be produced. Conversely, if the frequency of a field is much 
less than the relaxation frequency, the polarization is produced instantaneously and 
the phase difference between P and E is null. But if the frequency of the field and 
the relaxation frequency are close, the phase difference, δ, increases to reach a 
maximum value. In this case, the curves D=f(E) or P=f(E) form a hysteresis buckle. 
The area of this buckle represents the energy loss per cycle and per unit volume of 
the material. 

Let a solicitation S= S’+ iS’’, in complex notation. The relationship S’’/S’ = tgδ 
allows us to find δ, the “loss angle” or “dissipation coefficient”. This coefficient 
corresponds to all of the energy dissipations in the material during its solicitation. 

The most classical solicitations are mechanical or electrical. In the first case, we 
find the anelasticity phenomenon encountered for the mechanical properties of the 
materials. We note G’ and G’’ the real and complex modules which lead to the 
mechanical loss angle δm. For a dielectric, we consider the real permittivity ε’ and 
the complex permittivity ε’’ and the dielectric loss angle δe.  

Electronic and ionic polarizations, which bring about short-distance 
rearrangements, persist in a large range of frequencies. On the other hand, for 
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molecular materials, the orientation polarization imposes reorientations of the 
dipoles at the molecular scale. It can’t take place above a certain frequency, 
determined by the size of the molecules and by the molecular dipole moments. We 
must then take into account the variations of the dielectric constant and the loss 
factor according to the frequency. 

From an experimental point of view, the mechanical solicitations have 
frequencies in the range 10-6 and 107 hertz, which permits them to act especially on 
the molecular chains in polymers. The electrical solicitations can have larger ranges 
of frequencies, up to 1015 hertz, which allows ionic and electronic vibrations to be 
analyzed. 
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