
Chapter 4  

Dielectric Relaxation 
in Polymeric Materials 

4.1. Introduction 

Over this last decade, the technological development of dielectric spectroscopy 
on the one hand [MCC 67], [BLY 79], [KRE 02], and dielectric thermal analysis on 
the other [VAN 75], [HED 77], [RUN 97], have allowed the development of 
dielectric relaxation studies in a wide frequency (from 10-6 to 10+11 Hz) and 
temperature range, thus leading to a new approach of behavior laws of dielectric 
relaxation in polymeric materials. In the same way, the development of physico-
chemistry and polymer physics [CAR 99], [FON 02], [RAU 02], [HAL 06], 
[PER 92], [STR 97] has improved the interpretation of the mechanisms observed at 
a molecular scale. 

4.2. Dynamics of polarization mechanisms 

The polarization mechanisms are of different origins: (1) from the modification 
of spatial distributions of electronic and ionic elementary particles and (2) from the 
reorientation of dipolar entities. These mechanisms are multi-scale and the kinetics 
to establish the polarization exists at very different time and frequency ranges. We 
are going to cite them in order of increasing establishment time. 
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4.2.1. Electronic and ionic polarization 

Under the influence of an external electric field, the electronic orbits are 
distorted with very fast kinetics (10-15 s) causing electronic polarization (see Figure 
4.1). The ionic displacements will be made with slower kinetics (10-13 s): they are 
responsible for the ionic polarization (see Figure 4.1). 

Considering the establishment time of all of these mechanisms, they behave as 
instantaneous phenomena in the time domain, and are observed at much higher 
frequencies than those of electric fields used in dynamical dielectric spectroscopy. 
This polarization will be designated by P∞ and is related to the permittivity at infinite 
frequency ε ∞ by the equation: 

( ) EP 01 εε −∞=∞    [4.1] 

 
Figure 4.1. Schematic representation of polarization mechanisms.  

From top to bottom: electronic, ionic, dipolar, 
 Maxwell–Wagner–Sillars, and inter-facial polarizations 

4.2.2. Dipolar polarization 

Polymeric materials are made of more or less polar entities, of different (sub- or 
super-nanometric) scales. Their reorientation, which tends to align them in the 
direction of the electric field, is the cause of the dipolar orientation polarization Pd. 
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The time/frequency scale is now of the order of that covered by dielectric 
spectrometries. This dipolar polarization Pd is associated with the permittivity εd by 
the relation: 

EddP 0εε=    [4.2] 

Ps is the total aquired polarization, in established regime: 

( ) EssP 01 εε −=    [4.3] 

where εs is the static permittivity. 

The variation amplitude of the dipolar polarization is then: 

( ) EsP
s

P
0

εεε ∞−=
∞

−    [4.4] 

4.2.3. Maxwell–Wagner–Sillars polarization 

Any heterogeneity of the dielectric can lead to the accumulation of charges at the 
interfaces if the structural entities (amorphous and crystalline phases in the semi-
crystalline polymers) or morphological (polymer matrix and reinforcement in the 
composites) have different conductivities (see Figure 4.1). It is then made of 
relaxing entities likely to turn towards long/low frequency times. 

4.2.4. Interfacial polarization 

The charges trapped on the surface of the sample make a macro dipole whose 
characteristic dimension corresponds to the thickness of the sample (see Figure 4.1). 
For small thicknesses, the relaxation of this macro dipole takes place at very 
long/very low frequency times, with a very strong intensity. Like the Maxwell–
Wagner–Sillars polarization, the inter-facial polarization is distinguished from the 
orientation polarization by a much stronger intensity. 

4.3. Orientation polarization in the time domain 

To have a simple qualitative description of the establishment of the orientation 
polarization, the hypothesis of first order kinetics is widely used. After recalling the 
basic equation of this analogical modeling, the principal analytical equations will 
allow a quantitative description of the experimental results [BOT 78]. 
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4.3.1. Single relaxation time model  

τ is the relaxation time characteristic of the polarization kinetics establishment. 
The dipolar polarization is defined by the first order differential equation: 

( ) Est
d

P

dt

tddP

0
)(

)(
εεετ ∞−=+    [4.5] 

Under static field E = Eo, considering the boundary conditions on Pd, the solution 
is written: 
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In this model, the dielectric permittivity is given by: 
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τ

εεεε t
s

t −−
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−+
∞

=    [4.7] 

This variation is generally represented as a function of log t. It is a sigmoid 
which presents no element of symmetry. The description of the experimental results 
is correct qualitatively and not quantitatively. 

4.3.2. Discrete distribution of relaxation times 

The dielectric polymers are heterogenous, at different scales, both nanometric 
and micronic. To refine the description of experimental results, a discrete 
distribution of relaxation time (τj) with a dispersion (εs - ε∞)j represents an interesting 
approach. The dielectric permittivity is then written: 
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4.3.3. Continuous distribution of relaxation times 

If an homogenization of the medium at a certain scale is realistic, the use of a 
continuous distribution function ϕ (lnτ) is relevant; it allows us to work with global 
responses. The dielectric permittivity is given by: 

( ) τ
τ

τϕεεεε ln)exp1(
0

ln)()( d
t

s
t −−

∞

∞
−+

∞
= ∫    [4.9] 

with: 
0

(ln ) ln 1dφ τ τ
∞

=∫   

4.3.4. Stretched exponential: Kohlrausch–Williams–Watts equation 

In the same way as the homogenous medium, the use of the stretched 
exponential is interesting because it is analytically simpler: 
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with: 10 ≤< KWWβ  

4.4. Orientation polarization in the frequency domain 

The description of the dynamic orientation polarization is made with the same 
methodology as for the transitory polarization since they are related by the Laplace 
transformation. 

4.4.1. Single relaxation time model: the Debye equation 

In the presence of a dynamic electric field E = Eo cos ωt, represented by the 
complex expression E* = Eo exp(iωt), the solution, in an established regime, of 
differential equation [4.5] is: 
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The total complex permittivity: 

)('')(')(* ωεωεωε i−≡    [4.12] 

is then defined by: 

( ) ( )
221

1'
τω

εωε εε
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×+
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= ∞−s    [4.13] 
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221

''
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ωτωε εε
+

×= ∞−s            [4.14] 

 
Figure 4.2. Complex permittivity predicted by the Debye equation: 

 ε’ (logω) and ε’’ (logω) 

These expressions are designated in the literature by the Debye equations. The 
variation laws of ε’ and  ε’’ as a function of log ω are represented in Figure 4.2. 
They present elements of symmetry which are not observed in the experimental 
variations. 

4.4.2. Discrete distribution of relaxation times 

For heterogenous materials, the complex permittivity is well described by: 
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By using fractional polarizations, the analysis of thermo-stimulated currents 
allows the parameters (εs -  ε∞ )j and  τj  to be accessed. 

4.4.3. Continuous distribution of relaxation times 

For homogenous materials, the approach using a continuous distribution of 
relaxation times is interesting: 
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4.4.4. Parametric analytical expressions 

To describe the experimental results, numerous parametric expressions have been 
proposed [JON 83]. To take a didactic approach, we shall only cite those resulting in 
the Havriliak and Negami equation, which is currently the most widely used. 

4.4.4.1. Cole–Cole equation 

The equation proposed by Cole–Cole allows a widening of the relaxation zone 
and thus permits a better description of the experimental results. 

( )
( ) cci
s

βωτ

εε
εωε

+
∞−

+∞=
1

)(*    [4.17] 

with: 10 ≤< ccβ  

4.4.4.2. Havriliak and Negami equation 

The experimental results show an asymmetry of the variation law which is not 
taken into account by equation [4.17]. The Havriliak and Negami equation allows 
the description to be optimized by the introduction of an additional parameter [HAV 
67], [HAV 97]: 
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with: 10 ≤< HNβ and 10 ≤< HNγ  
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4.4.4.3. Cole–Cole representation 

By eliminating the frequency between the two Debye equations, [4.13] and 
[4.14], a relation between ε’ and ε’’ is obtained. It can be written as [COL 41]: 
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This variation law which corresponds to the model of a single relaxation time is 
represented in the complex plan in Figure 4.3. We have also reported, for 
comparison, the variation law ε’’ (ε’) corresponding to the Havriliak and Negami 
equation with the parameters βHN = 0.6 and γHN = 0.4. The advantage of this 
representation is to give an estimation of the parameters from the geometric 
construction. 

 

 

Figure 4.3. Complex permittivity predicted by the Havriliak and Negami equation with  
βHN = 0.6 and γHN = 0.4:ε’ (logω); ε’’ (logω); ε’’ (ε’) in the continuous line – the 

 dotted line corresponds to the Debye equation 
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4.4.5. Kramers–Kronig relations 

ε’ and ε’’ are related by the Kramers–Kronig relationships: 
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These equations were first used in the optical frequency domain. For dielectric 
relaxation, they are very useful to identify the dielectric energy loss of dipolar origin 
which can be hidden by electrical conduction. 

4.5. Temperature dependence 

The temperature dependence of the relaxation time is always exponential; the 
variation and dispersion (εs - ε∞) is a powerful law. For a first approximation, we 
shall uniquely consider the temperature variation of the relaxation time. 

4.5.1. Shift factor 

In this approximation, temperature causes a simple translation of spectra along 
the axis logt/logω. The shift factor aT defines this geometric operation which 
transforms the isotherm To into isotherm T [FER 70]. 

4.5.1.1. Time domain 

The shift factor will be designed by aTt in the time domain. This is: 

( )
( )0log

loglog T
TaTt τ

τ=      [4.22] 

4.5.1.2. Frequency domain 

The shift factor will be designated by aTω in the frequency domain. We can easily 
verify that: 

ωTTt aa loglog −=     [4.23] 
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4.5.2. Crystalline or vitreous phases: Arrhenius equation 

For the crystalline or vitreous phases, the temperature dependence of the 
relaxation time has the same phenomenological behavior. It can be described by the 
barrier theories already used by Fröhlich [FRO 58] to describe the dielectric 
relaxation in the crystals. They have been adjusted to molecular crystals by Hoffman 
[MCC 67]. 

4.5.2.1. Thermal activation mechanism 

In the barrier theories, the environment of the relaxing entity is represented by 
the variation of the Gibbs free enthalpy G. The orientation of the relaxing entities 
corresponds to the crossing of energetic barriers separating the different minima of 
G, by thermal activation. A classical description by Boltzmann equations gives, for 
the transition probability p, a variation as: 

RT
G

p
Δ−

∝ exp    [4.24] 

where ∆G represents the height of the enthalpic barrier which separates the two sites 
and R the ideal gas constant.  

The relaxation time, which varies in the opposite direction to the probability, is 
in the form: 

RT
GΔ

= exp0ττ    [4.25] 

To obtain an explicit equation as a function of temperature, we must express ∆G 
as a function of the activation enthalpy ∆H and of the activation entropy ∆S: 

RT
H

R
S ΔΔ

−= expexp0ττ    [4.26] 

So: 
R
S

a
Δ

−= exp00 ττ  

RT
H

a
Δ

= exp0ττ    [4.27] 

This is the Arrhenius equation. The corresponding variation of logτ as a function 
of T-1 is represented in Figure 4.4. 
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4.5.2.2. Interpretation of the activation parameters 

The activation enthalpy is directly related to the cohesion of the phase in which 
the relaxation is done: in a crystalline phase it will be higher than in a vitreous 
phase. It also depends on the size of the relaxing entity. The activation entropy 
comes from the Boltzmann equation: 

Ω=Δ lnRS    [4.28] 

if Ω is the number of sites accessible to the relaxing entity. τo can be deduced from 
Eyring’s chemical activation theory [EYR 36]: 

kT
h

=0τ  [4.29] 

In the crystalline phases, Ω is near unity; τoa will then be of the order of time 
constants associated with infrared frequencies. In the vitreous phases, Ω is very high 
so τoa very low. This permits the observed relaxation phenomena in semi-crystalline 
polymers to be localized in one or other of these phases. 

 
Figure 4.4. Temperature dependence of relaxation times  

in the three indicated temperature zones 
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4.5.3. Vitreous phases in the transition zone: the Hoffman–Williams–Passaglia 
equation 

To describe the dielectric relaxations in a series of paraffins with different 
lengths, Hoffman–Williams–Passaglia (HWP) [HOF 66] have made the following 
hypothesis: the activation enthalpies ∆Hj and the activation entropies ∆Sj of the 
paraffin composed of j constitutive units are linear functions of the activation 
enthalpies ∆Ho and entropies ∆So for each constitutive unit. ∆Hj and ∆Sj are 
therefore expressed by: 

10 HHjH j Δ+Δ=Δ    [4.30] 

10 SSjS j Δ+Δ=Δ    [4.31] 

∆H1 and ∆S1 represent the activation enthalpies and entropies of the chain 
extremities. ∆H j is therefore a linear function of ∆Sj. 

with Tc ≡ ∆Ho/∆So, equation [4.2] is now written: 
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⎧
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Δ

= −− 11exp c
j

cj TT
R
H

ττ    [4.32] 

where the constant τc represents the relaxation time at temperature Tc. This 
“compensation law” which has been established for the relaxation times of paraffins 
made up of j constitutive units, also describes the different relaxation times isolated 
in a polymer in the vitreous transition zone. In this case, they reflect the relaxation 
of entities with different lengths of polymer chain sequences. The behavior of these 
relaxation times is represented in Figure 4.4. 

4.5.4. Liquid phases: Vogel–Fulcher–Tammann equation (VFT) 

For liquid phases, the dielectric relaxation time has the same temperature 
dependence as the viscosity. It is described by the free volume theories proposed by 
Cohen Turnbull [COH 59] for inorganic amorphous materials as well as by the 
thermodynamic theory of Adam and Gibbs [ADA 65]. We shall content ourselves 
here with presenting the free volume concept. 
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4.5.4.1. Free volume concept 

The specific volume vs of a polymer is composed of two terms: 

– the volume occupied by the constitutive groups of the macromolecule vo, due to 
steric hindrance and thermal agitation; and  

– the free volume vf  

The basic hypothesis of volume theories is the following: the molecular mobility 
is liberated when the free volume is greater than a critical value v*. The relaxation 
time is then dependent on the fraction of free volume f ≡ vf / v*. From the free 
volume theory, we obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

fV
1

exp0ττ    [4.33] 

where τov is independent of the temperature. 

To explain the dependence on temperature, another hypothesis is necessary; 
above the critical temperature T∞, the fraction of free volume is expanded according 
to the relation: 

( )∞−= TTf fα    [4.34] 

where αf  represents the expansion coefficient of the free volume fraction. 

The explicit equation of the relaxation time is then: 

( )⎪⎭
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⎪
⎨
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−
=

∞TTf
v α

ττ 1
exp0    [4.35] 

Figure 4.4 shows this variation law on an Arrhenius diagram. This equation has 
been widely used in the literature [VOG 21], [FUL 52], [TAM 26] and is known by 
as the Vogel–Fulcher–Tammann equation. Let us note that T∞ is then the 
temperature under which the molecular mobility is fixed. In the thermodynamic 
theory of Gibbs and Di Marzio, it is the temperature at which the activation entropy 
is null. Analytically, it is defined as the temperature T∞ which linearizes the 
variation of lnτ as a function of 1/(T- T∞). 

4.5.4.2. Williams–Landel–Ferry empirical expression (WLF)  

The shift factor has been widely used in this temperature zone to describe 
molecular mobility, in particular by Williams–Landel–Ferry [FER 70] who have 
proposed an empirical equation: 
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( )
( )020

010log TTc
TTcaTt −+

−−=    [4.36] 

c10 is a dimensionless constant; c20 has the same dimension as temperature. 
Considering the definition of the displacement factor (see equation [4.23]), this 
empirical equation is equivalent to the Vogel–Fulcher–Tammann equation. For 
amorphous polymers having a vitreous transition temperature of less than 100°C, for 
a reference temperature To = Tg, universal values are obtained for both constants: 
c1g= 17.44 and c2g = 51.6°. The corresponding values of the VFT equation are  
αf = 4.84 10-4 (°)-1and T∞= Tg – 51.6°. 

4.6. Relaxation modes of amorphous polymers 

The dielectric relaxations associated with the dipolar reorientation reflect the 
different organization levels of the polymer. We shall consider them in the order of 
increasing frequencies on an isochronous spectrum: the primary relaxation mode, 
thus designated because generally the most intense, is often called relaxation α; the 
secondary relaxation modes are multiple (β, γ, δ). To simplify, we shall adopt the 
same nomenclature for amorphous and semi-crystalline polymers, which is not 
necessarily the case in the literature. The monophasic amorphous polymers present 
the simplest relaxation spectra. 

4.6.1. Primary relaxation mode 

4.6.1.1. Complex relaxation in an homogenous liquid medium 

When it is observed after the vitreous transition, this relaxation mode can be 
treated like a complex relaxational event in an homogenous medium. As shown in 
the example in Figure 4.5 for an amorphous PET [MEN 99], the Havriliak and 
Negami equation allows the variation of the dissipative component of the 
permittivity  ε’’ (logω) to be described correctly. 

The relaxation time τHN obeys a VFT equation with a critical temperature of Tg – 
40°C, not very far from WLF values. This result is coherent with the fact that, 
considering the frequency range covered in dielectric spectrometry; this relaxation 
mode is observed in the liquid state. This temperature behavior of the relaxation 
time is typical of “weak” liquids [ANG 95] i.e. those whose cohesion in the 
amorphous phase implies weak physical bonding. In the opposite case, the 
relaxation time obeys an Arrhenius equation: the poly(methyl methacrylate) PMMA 
has the typical behavior of “strong” liquids. 
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Figure 4.5. Isothermal dynamic spectra of dielectric loss: the primary relaxation mode  

of an amorphous polymer (PET) 

4.6.1.2. Discrete spectrum of simple relaxations in a heterogenous vitreous medium 

This mode has also been studied in thermo-stimulated currents: by the weak 
equivalent frequency of this technique (10-2 Hz), the relaxation is then produced in 
the vitreous state. This mode can then be resolved by fractional polarizations, in a 
discrete series of elementary relaxational phenomena represented in Figure 4.6; the 
activation parameters of each one are reported in Figure 4.7. 
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Figure 4.6. Elementary thermograms of thermo-stimulated current for a primary relaxation 

mode: example of an amorphous polymer (PET) 
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The observation of a compensation law (equation [4.32]) indicates the 
cooperativity of this molecular mobility. It is important to note that the 
compensation temperature is of the order of the vitreous transition temperature, and 
the compensation time τc is about 10 seconds, i.e. the time constant values 
associated with the vitreous transition. By analogy with the Hoffmann–Williams–
Passaglia model, the elementary mechanisms have been associated with the mobility 
of chain sequences (of the order of nanometres) with different lengths which are 
liberated by the gradual rupture of the physical bonding in the vitreous transition 
mechanism. 

It is important to note the universality of this behavior, independently of the 
structure and, in particular, the architecture of the polymer chain. Moreover, the 
activation parameter values reflect the cohesion of the amorphous phase. 
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Figure 4.7. Compensation diagram deduced from analysis of thermo-stimulated current  

for an amorphous polymer (PET) 

4.6.2. Secondary relaxation modes 

4.6.2.1. Specific mobility of the chemical structure 

The polymers which have a polar lateral chain present a relaxation mode specific 
to this lateral chain. As the dielectric surface of the atactic PMMA reported in 
Figure 4.8 shows, it is sometimes more intense than the primary relaxation. This is 
produced in the vitreous phase and is then associated with a localized mobility. 
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Figure 4.8. Dielectric surface deduced from dynamic spectroscopy  

for an amorphous polymer with lateral chain (PMMA) 

4.6.2.2. Mobility of the main chain 

The vitreous phase presents a localized molecular mobility of the main chain 
responsible for a generic secondary relaxation, which is illustrated in Figure 4.9 by 
the isochrone ε’’ (T) recorded for an amorphous PET. This is a mobility of sub-
micronic sequences which is the cause of this relaxation mode. 
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Figure 4.9. Isochronous dynamic spectroscopy of the secondary relaxation of  

an amorphous polymer (PET)
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4.7. Relaxation modes of semi-crystalline polymers 

In general, semi-crystalline polymers present a primary relaxation which is the 
most intense, as shown by the dielectric surface of the PVDF represented in 
Figure 4.10 [MEN 99]. 
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Figure 4.10. Dielectric surface deduced from dynamic spectroscopy  

for a semi-crystalline polymer (PVDF) 

These results were obtained from dielectric spectroscopy. The increase of 
energy losses towards high temperatures is explained by the existence of a 
significant electrical conduction brought to the fore because the measurements are 
taken under an electric field. As for amorphous polymers, a secondary relaxation β 
is observed. In the zone where the amorphous phase is liquid, an additional 
relaxation αu is produced. 

The shift kinetics of the different relaxation modes is reported in Figure 4.11. 
To illustrate relaxation kinetics characteristic of a polymer, the figure shows the 
Arrhenius diagram of the relaxation times for the PVDF. The experimental points 
corresponding to the relaxation times shorter than 10 seconds come from 
measurements in dielectric spectrometry; those corresponding to the relaxation 
times longer than 10 seconds come from measurements in TSC. The elementary 
processes are spotted by indices, in order of increasing temperatures, as in Figure 
4.12. 
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Figure 4.11. Arrhenius diagram of the relaxation times for a  

semi-crystalline polymer (PVDF) 

4.7.1. Complex relaxation in an homogenous medium 

For the relaxation mode β, the constitutive processes always behave in a way 
which obeys an Arhenius equation: this molecular mobility localized at the sub 
micronic scale is thermally activated in semi-crystalline polymers, as in amorphous 
polymers. 

4.7.2. Discrete spectrum of elementary relaxations in a heterogenous medium 

The results of the TSC analysis, in terms of the discrete distribution of relaxation 
time, for the PVDF are reported on a compensation diagram (see Figure 4.12).  
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Figure 4.12. Compensation diagram deduced from analysis of thermo-stimulated current for 

a semi-crystalline polymer (PVDF)
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Three types of behaviors appear. For the processes of weaker enthalpy, the 
activation entropy remains pratically null. Following Starkweather’s nomenclature 
[STA 83], these constitutive processes of the β mode are due to a non-cooperative 
localized molecular mobility. The processes which follow the compensation law 
with linearly dependent enthalpy/entropy activation parameters correspond to the 
cooperative molecular mobility liberated at the vitreous transition. They correspond 
to the primary relaxation. The processes which are characterized by activation 
parameters of the same order have been localized in the para crystalline phase: the 
processes are initiated by the conformational defects. 

4.7.3. Universality of the behavior laws in semi-crystalline polymers 

In semi-crystalline polymers, the molecular motions can be made either in the 
amorphous phase, or in the crystalline phase. From this fact, the relaxation modes 
are in general more complex than in amorphous polymers. This complexity affects, 
in particular, the secondary relaxation modes. Thus the β mode of the amorphous 
PET cleaves into two components in the semi-crystalline PET [MEN 99]. Whatever 
the localization of secondary relaxations, the constitutive processes are always 
thermally activated with energetic barriers of less than 50 kJoules/mole. 

The primary relaxation has the same phenomenological behavior in semi-
crystalline polymers as in amorphous polymers. It is obviously very sensitive to 
physical ageing [STR 75]. For “weak” liquid polymers, like the PVDF, a 
discontinuity of the behavior law is observed with cooperative thermally activated 
processes below Tg and a complex mode governed by the free volume above Tg. 
For semi-crystalline polymers with “strong” liquid-like polyamids, the behavior 
above Tg remains thermally activated. 

Complementary relaxation modes are observed above Tg in most semi-
crystalline polymers. For polymers with a semi-rigid chain whose crystallization 
kinetic is slow, like the PET and the PEEK, the primary relaxation mode has an 
additional high temperature component around Tg +20°C. It corresponds to a 
thermally activated molecular mobility of the “rigid” amorphous phase [BOT 75]. 
For polymers with a flexible chain like the PVDF or the PEBD, it is the thermally 
activated molecular mobility of the para-crystalline zones which is observed above 
vitreous transition. 

4.8. Conclusion  

In polymeric materials, the localized molecular mobility at the origin of the 
secondary relaxations is obviously conditioned by the chemical structure 
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(polar/apolar, flexible/rigid, etc.) of the constitutive unit. The delocalized molecular 
mobility at the origin of the primary relaxation is directly related to the evolution of 
the physical structure (glass/liquid) and has, therefore, a kinetic character. To control 
this phenomenon, we have to take into account the thermodynamic history of this 
material. As for the structural heterogeneities, they obviously have an essential role 
at low frequency. In the future, studies will allow dielectric relaxations in polymeric 
materials to be predicted and controlled. 
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