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Magnetic Induction Phenomena

5.1 Fundamental Equations

The fundamental laws governing magnetic induction problems are those in (PIII.3)⎧⎪⎪⎨⎪⎪⎩
curl E = −�B

�t
div B = 0

curl H ≈ J

(5.1)

together with the constitutive relations concerning B(H) and J(E).
In order to spur on your interest in this new topic, we will point out just two very

simple situations that cannot be justified in the framework of stationary fields, and that
require the above equations for their correct interpretation. Here, you will find cases where
closed circuits, containing no generators whatsoever, can have currents flowing in them.
Conversely, you also will find cases where open circuits can display voltages across their
terminals despite the absence of generators.

5.2 Gradient and Induction Electric Fields, Potential Vector

As you know, for purely stationary phenomena, the electric field vector is a gradient field
originated by electric charges. From Part II, we found E = Eg, with

curl Eg = 0 → Eg = −grad V

div Eg = �/�
(5.2)

For time-varying phenomena we necessarily have E �= Eg. Yet, it may be useful to consider
the electric field vector to be broken down into two different contributions, the first of
which is the gradient electric field, and the second is a new contribution, termed the electric
induction field Ei:

E = Eg +Ei (5.3)
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The properties of Ei can be obtained simply by substituting (5.3) into Maxwell’s equations
for homogeneous media:

curl E = curl Eg + curl Ei = −�B/�t

div E = div Eg +div Ei = �/�

By taking (5.2) into account we obtain for the electric induction field{
curl Ei = −�B/�t

div Ei = 0
(5.4)

from which we can see that the field lines of Ei are closed, embracing field lines of time-
varying B – see Figure 5.1. If B happens to be a stationary field then Ei no longer exists.

Figure 5.1 Time-varying B fields give rise to electric induction Ei fields

At this point, we recommend that you look again at div B = 0. From vector calculus we
know that div curl ≡ 0, and therefore we are allowed to define B as the curl of an auxiliary
vector function A (with the same degree of arbitrariness mentioned earlier when the potential
function V was introduced in Chapter 2):

B = curl A (5.5)

Function A, just introduced, is known by the name of potential vector (units: Wb/m, weber
per meter). Substituting (5.5) into (5.4), you readily get Ei = −�A/�t. This allows you to
express the electric field vector as the sum of two contributions where both the old scalar
potential and the new potential vector appear:

E = −
(

grad V + �A
�t

)
(5.6)

5.3 Revisiting the Voltage Concept

The aspect we are now going to address is new and critical, because it goes against your
intuition. So, please pay attention. If you have two ideal voltmeters V1 and V2 connected
between the same pair of terminals a and b – see Figure 5.2 – and if you are asked about
the relationship between their readings, what will your answer be?
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Figure 5.2 For time-varying regimes, u1�t� �= u2�t� �= �Va −Vb�

Most of you will say that the readings are the same. But that may be well wrong!
Let us go back to the original definition of voltage in (1.7) and replace E with its new

definition in (5.6):

u =
∫
−→
ab

E ·ds = −
∫
−→
ab

grad V ·ds− d

dt

∫
−→
ab

A ·ds = �Va −Vb�− d

dt

∫
−→
ab

A ·ds (5.7)

Since A is not a conservative field �curl A �= 0�, the evaluation of∫
−→
ab

A ·ds

depends, in general, on the particular path going from a to b. This shows not only that
voltage and potential difference are quite different things, u �= Va − Vb, but also that the
evaluation of u requires a clear specification of the integration path between the two points
a and b. Then, from (5.7), considering the voltages in Figure 5.2, we have

u1 = �Va −Vb�− d

dt

∫
−−−→
�ab�s1

A ·ds� u2 = �Va −Vb�+ d

dt

∫
−−−→
�ba�s2

A ·ds

By subtracting the preceding results we obtain the difference of the two voltmeters’
readings:

u1 −u2 = − d

dt

⎛⎜⎜⎝ ∫
−−−→
�ab�s1

A ·ds+
∫

−−−→
�ba�s2

A ·ds

⎞⎟⎟⎠ = − d

dt

∫

�

S

A ·ds (5.8)

where s, the reunion of the subpaths s1 and s2, is a closed clockwise-oriented path.
If A is null �B = 0� or time invariant then we will get u1 = u2.
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5.4 Induction Law

The cornerstone of magnetic induction phenomena, which allows us to evaluate voltages
arising from time-varying B-fields, is the Maxwell–Faraday induction law.

From curl E = −�B/�t, using the already familiar Stokes theorem, we get∫
�

S

E ·ds = − d

dt

∫
ss

B ·nS dS or
∫

�

S

E ·ds = −d�S

dt
(5.9)

where, as defined in (4.28), �S is the magnetic flux linked with the circulation path s. In
(5.9), the unit vector nS normal to Ss is oriented according to the Stokes rule (right-hand
screw rule).

The induction law in (5.9) simply states that the electromotive force induced along a
closed path is equal to the negative derivative of the magnetic flux linked with that path.

The question posed in Figure 5.2, concerning the voltmeters’ readings, can be reanswered
(avoiding the use of the potential vector A) by making use of the induction law:

u1 −u2 = − d

dt

∫
Ss

B ·nS dS = −d�S

dt

As long as the open surface Ss having the path s as its bounding edge is traversed by a
time-varying magnetic field, voltages u1 and u2 will be different.

5.5 Application Example (Magnetic Noise Effects)

Figure 5.3 shows an indoor electrical socket where a two-wire line is plugged in; the line is
left open �i = 0� at the opposite end.
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Figure 5.3 The relationship between voltages u0 and u depends on the magnetic noise interference
produced by externally produced B fields in the region under analysis

Assume that the two-wire line is longitudinally stretched so as to define a rectangular
path of length l and width w, lying in the zx plane. Assume also that the socket voltage
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is u0�t� = U0 cos�	0t� and consider electronic equipment placed somewhere in the
neighborhood that gives rise, in the region of the line, to a uniform magnetic field noise
described by B�t� = BM cos�	Bt�.

Questions

Q1 Determine u�t� assuming that B = B�t��ex.

Q2 Determine u�t� assuming that B = B�t��ey.

Q3 Describe a simple solution to mitigate the magnetic noise effects.

Solutions

Q1 By applying the induction law to the closed path
−−−−−→
aa0b0ba we find, noting that B⊥nS,∫

�

S

E ·ds

︸ ︷︷ ︸
u0−u

= − d

dt

∫
Ss

B · �eydS

︸ ︷︷ ︸
0

from which we obtain u�t� = u0�t� = U0 cos�	0t�.

Q2 By applying the induction law to the closed path
−−−−−→
aa0b0ba we find, noting that B � nS,∫

�

S

E ·ds

︸ ︷︷ ︸
u0−u

= − d

dt

∫
Ss

B · �eydS

︸ ︷︷ ︸
Bwl

from which we obtain u�t� = U0 cos�	0t�−wl	BBM sin�	Bt�.

Q3 If the two-wire line is twisted at regular intervals the Stokes normal nS concomitantly
switches from +�ey to −�ey. If an odd number of twists are used then we will find u ≈ u0

provided that the perturbing magnetic field remains uniform in the region of the line.

5.6 Voltages and Currents in Magnetically Multicoupled Systems

We have already introduced in Section 4.12 the problem of magnetically coupled linear
circuits, where self- and mutual inductances were defined. Here we elaborate on that problem
considering time-varying currents.

In Figure 5.4 we show a ferromagnetic core provided with two coils. One is connected
to a generator and the other is left open. Coil 1, with N1 turns, has an internal resistance
R1; likewise coil 2, with N2 turns, has an internal resistance R2. Magnetic coupling between
the coils is ensured through the magnetic field lines in the core that simultaneously embrace
both coils. Current i1�t� flowing in coil 1 is given in the form of a triangular impulse
(Figure 5.5(a)) of peak amplitude IM .

To simplify matters let us assume that dispersion phenomena are negligible; that is, the
magnetic flux in the core 
�t� is the same at every cross-section.
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Figure 5.4 Circulation paths s1 and s2 used for the application of the induction law in order to
evaluate the voltages u1 and u2 at the terminals of two magnetically coupled coils

Figure 5.5 (a) Generator current (triangular pulse). (b) Stylized nonlinear magnetic characteristic

�i1� of the ferromagnetic core

Irrespective of the linear or nonlinear character of the core, the determination of 
 as a
function of i1 is done by application of Ampère’s law examined in Chapter 4.

Let us consider that the magnetic characteristic 
 = 
�i1� is nonlinear, as stylized in
Figure 5.5(b). The knee point �IS� 
S� defines an abrupt transition between the linear zone
and the saturation zone.

In order to determine the generator voltage u1 we apply the induction law to the closed
circulation path s1, passing inside the coil conducting turns and through the generator. The
path is oriented according to the prescribed reference direction of i1.

For the sake of clarity, let us determine separately the left- and right-hand sides of the
induction law, ∫

�

S1

E ·ds =
∫
âb

coil

1
�1

J1 ·ds+
∫
b̂a

�G�

E ·ds = +R1i1 −u1 (5.10a)

− d

dt

∫
Ss1

B ·nS1
dS = − d

dt
�1 = −N1

d


dt
(5.10b)

Equating the results in (5.10), we find

u1�t� = R1i1�t�+N1

d
�t�

dt
(5.11)
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Now, let us turn our attention to coil 2 which, remember, carries no current. Nevertheless,
as you will see, a voltage u2 is going to appear across its terminals!

To determine voltage u2 at the open terminals of coil 2 we reapply the induction law
to the closed circulation path s2, passing inside the coil conducting turns and through the
air. The path is oriented according to the prescribed reference direction of i2. Following the
same procedure as before, we find∫

�

S2

E ·ds =
∫
ĉd

coil

1
�2

J2 ·ds+
∫
d̂c

air

E ·ds = 0+u2 (5.12a)

− d

dt

∫
Ss2

B ·nS2
dS = − d

dt
�2 = −N2

d


dt
(5.12b)

Note that, in (5.12a), the integration ĉd along the coil’s conductor gives zero because we
have assumed i2 = 0, otherwise we would obtain R2i2.

Equating the results in (5.12), we find

u2�t� = −N2

d
�t�

dt
(5.13)

from which you can see that, although coil 2 carries no current, a voltage will appear at its
terminals, as a result of induction phenomena.

Next, we analyze the results in (5.11) and (5.13), presenting some pertinent graphics and
interpreting from a physical point of view the reason why u2 exists (despite i2 = 0).

To start with, consider the simple case where the core behaves linearly (that is, i1�t� ≤ IS).
Take for instance IM = IS . Combining the information conveyed in Figure 5.5, you will
obtain for 
�t� a triangular function, with peak value 
S , similar to the one describing i1�t�.

The derivative d
/dt appearing in (5.11) and (5.13) is evaluated as

d


dt
=

{
+2
S/T� for 0 < t < T/2

−2
S/T� for T/2 < t < T

The evolution of u1�t� is obtained by summing the resistive voltage component
uR�t� = R1i1�t� with the inductive voltage component uL�t� = N1 d
/dt. The graphical
construction leading to u1�t� is illustrated in Figure 5.6.

Things are a bit simpler for u2�t� since the resistive component is absent – see Figure 5.7.
Let us now interpret the results obtained for u2�t�. For this purpose it is helpful to visualize

a cross-section of the core leg where coil 2 is wound around (Figure 5.8).
In the time interval 0 to T/2 the field B�t� = 
�t�/S is time increasing. The associated

field lines of the electric induction field Ei are circumferences oriented anticlockwise; this
field actuates on the free charged particles of coil 2 �Fe = qEi� giving rise to a distribution
of positive charges at terminal c and negative charges at terminal d. A gradient electric field
Eg oriented from c to d appears and a negative pulse voltage is revealed in u2�t�.

A similar rationale applies to the time interval from T/2 to T during which the field
B�t� is time decreasing. The associated field lines of the electric induction field Ei are
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Figure 5.6 Graphical representation of the generator voltage against time, u1�t�, showing its
decomposition into resistive and inductive components uR and uL, respectively

Figure 5.7 Graphical representation of coil 2 voltage against time, u2�t�

circumferences oriented clockwise; this field actuates on the free charged particles of coil
2 giving rise to a distribution of positive charges at terminal d and negative charges at
terminal c. A gradient electric field Eg oriented from d to c appears and a positive pulse
voltage is revealed in u2�t�.
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Figure 5.8 Interpretation of the positive and negative pulses appearing in u2�t�. (a) Time-increasing
B originates an induction electric field Ei that drives the positive charges to terminal c and negative
charges to terminal d. (b) Time-decreasing B reverses the orientation of the induction electric field Ei;
positive charges are driven to terminal d and negative charges to terminal c

Let us now complicate things a little, allowing the ferromagnetic core to saturate due to
imposed higher current intensity.

Make IM = 2IS . Combining the information conveyed in Figure 5.5, we obtain for 
�t� a
trapezoidal function as shown in Figure 5.9.

Figure 5.9 Trapezoidal function 
�t� originated by an intense triangular current pulse i1�t� that
brings the core into saturation

The derivative d
/dt shown in (5.11) and (5.13) is evaluated as

d


dt
=

⎧⎪⎨⎪⎩
+4
S/T� for 0 < t < T/4

0� for T/4 < t < 3T/4

−4
S/T� for 3T/4 < t < T

We strongly recommend that you try to redraw new graphs for

ut�t� = R1i1�t�+N1

d
�t�

dt
and u2�t� = −N2

d
�t�

dt

Omitting any details, we present the final results in Figure 5.10. Note that in the time interval
from T/4 to 3T/4 the B field remains constant with time, induction phenomena are absent,
and therefore you get u2 = 0.
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Figure 5.10 Voltage plots against time for the case of a saturated core. (a) Generator voltage
(compare Figure 5.6). (b) Voltage of coil 2 (compare Figure 5.7)

The first part of the problem we have just finished solving (linear case) could have been
handled more easily if the inductance coefficients characterizing the two-coupled coils were
known beforehand. In fact, by using the results of Chapter 4, we could have put

�1 = L11i1 +LMi2 and �2 = LMi1 +L22i2

Substituting �1 and �2 above into (5.10b) and (5.12b), and making i2 = 0, we would obtain,
as an alternative, the following results:

u1 = R1i1 +L11

di1

dt
and u2 = −LM

di1

dt
(5.14)

Note, however, that you cannot use this alternative when dealing with nonlinear problems
(where the concept of inductance does not apply).
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In the more general case of a system of N -coupled coils, characterized by their internal
resistances Rk (with k = 1 to N ) and inductance matrix L�, (4.41), the application of the
induction law to every coil (using circulation paths coinciding with the reference directions
of coil currents) permits coil voltages to be compactly determined from coil currents by
making use of the following matrix equation:

u�t�� = R�i�t��+ L�
d

dt
i�t�� (5.15)

where the resistance matrix R� is diagonal, the column matrix i�t�� gathers the coil currents,
and the column matrix u�t�� gathers the coil voltages.

A word of caution: depending on how you choose the arbitrary reference directions for
the coil voltages, u1� � � � � uk� � � � � uN , both positive and negative algebraic signs need to
be included in the elements of the column matrix u�t�� in (5.15). If all coil voltages uk are
marked so as to oppose the orientation of the circulation paths sk then only positive algebraic
signs will appear.

5.7 Application Example (Magnetic Coupling in Printed Circuit
Boards)

A printed circuit board consisting of three conducting lands on the surface of a dielectric
board above a reference conducting ground plane is shown in Figure 5.11. To simplify
things, let’s assume that all conductor resistances are negligibly small.

Figure 5.11 Printed circuit board (PCB) with three lands and a ground plane. (a) Cross-sectional
view. (b) Enforced boundary conditions at the near and far ends of the PCB lands
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All lands are short-circuited to ground at the far end. As for the near end, the situation is
described as follows: land 1 is driven by a voltage u1, land 2 is left open �i2 = 0� and land 3
is short-circuited to ground �u3 = 0�. The conductor system is characterized by a symmetric
inductance matrix

L� =
⎡⎣L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤⎦
Voltage u1 is a low-frequency sinusoidal function, u1�t� = U1 cos�	t�.

Questions

Q1 By application of the induction law obtain the governing equations of the system.

Q2 Determine i1�t�� i3�t� and u2�t�.

Solutions

Q1 Taking into account that i2 = 0, from (5.15), we write⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u1 = L11

di1

dt
+L13

di3

dt

u2 = L21

di1

dt
+L23

di3

dt

0 = L31

di1

dt
+L33

di3

dt

Q2 From the third equation we get

i3 = −L31

L33

i1

Substituting this information into the first equation we find

u1 =
(

L11 − L2
13

L33

)
︸ ︷︷ ︸

L1

di1

dt
→ i1�t� = 1

L1

∫
u1�t�dt = U1

	L1

cos�	t −�/2�

Using the already established relationship between i3 and i1 we find

i3�t� = L31U1

	L33L1

cos�	t +�/2�

From the second equation in Q1 we obtain

u2�t� = U1

(
L21

L1

− L23L31

L1L33

)
cos�	t�
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5.8 Eddy Currents

We have already mentioned in Section 4.11 that ferromagnetic cores, subjected to periodic
magnetization–demagnetization processes, dissipate energy because of hysteresis phenomena.
There is another physical mechanism that can also cause additional core losses (heating).

You may still remember that in the preceding section (Figure 5.8) voltage u2 was created by
the action of an electric induction field Ei with closed field lines embracing lines of B�t�. Such
a field Ei exists not only outside the core, but also in its interior. Since ferromagnetic materials
are also conductors (conductivity �Fe) this implies necessarily that electric currents with density
Ji = �FeEi are allowed to circulate in planes transversal to B, that is in the core cross-sections
(see Figure 5.12). These currents are called eddy currents, or Foucault currents.

B(t)

B(t)

Ji

Ji = σFe 
Ei

Part of a
ferromagnetic core

Figure 5.12 Eddy currents in conducting ferromagnetic materials originated by time-varying B fields

From (3.14) in Chapter 3, the power losses (Joule effect) associated with these currents
are evaluated through

PFoucault =
∫

Core

p̂J dV� p̂J = Ji ·Ei = �FeE
2
i ∝

(
dB

dt

)2

(5.16)

This shows that Foucault losses depend on the squared intensity of the electric induction
field, which, in turn, depends on the time derivative of B�t�. In conclusion, the faster the
variation of B, the more important the losses.

Another problem created by eddy currents is their own magnetic field which can
significantly perturb the original field existing in the ferromagnetic core.

There are two known techniques that can be employed to mitigate eddy current effects.
One consists of using laminated cores where each ferromagnetic sheet is electrically insulated
from the others using a non-conducting varnish. This technique is relatively effective for
time-varying B fields up to 20 kHz. For higher frequencies, ferrites should rather be used.
Ferrites are electrically non-conductive ceramic compound materials consisting of a mix of
iron, zinc and manganese oxides.
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5.9 Generalization of the Induction Law to Moving Circuit Systems

This important topic deals with induction phenomena not originated by time-varying B
fields, but by circuits (subjected to stationary B fields) whose geometrical configuration is
time dependent.

Even if the velocity of the moving circuits is much smaller than the speed of light, for a
rigorous and sound interpretation of the problem a contribution from the theory of relativity
would be required. The introductory nature of this textbook prevents us from following such
an approach here.

In any case, imagine the following Gedanken (thought) experiment. In a certain region of
space an electromagnetic field exists. An observer O′ at rest characterizes the electromagnetic
field in the region by a pair of vectors E′ and B′. O′ also observes that a particle with electric
charge Q moves across the region with velocity v, its trajectory changing according to the
exerted Lorentz force F = QE′ +Qv ×B′. A second observer O seated on the particle looks
at the region where the particle travels and characterizes the same electromagnetic field by
a different pair of vectors E and B. Since the charged particle is at rest �v = 0� with respect
to O, this observer interprets its trajectory change as the result of a purely electric force
F = QE.

In order to make both observations agree we have to conclude that

E = E′ +v ×B′︸ ︷︷ ︸
Ev

(5.17)

where Ev is the so-called dynamic electric field.
Although we are not going to prove it, B could be obtained as B = B′ − v × E′/c2.

Therefore, for typical applications �� � c�� B = B′.
The induction law, for bodies at rest subjected to time-varying magnetic fields, has been

formulated in (5.9) as ∫

�

S

�Eg +Ei� ·ds = − d

dt

∫
Ss

B�t� ·nS dS

For moving bodies subjected to stationary magnetic fields, the above equation should be
modified to ∫

�

S�t�

�Eg +Ev� ·ds = − d

dt

∫
Ss�t�

B ·nS�t� dS (5.18)

where the circulation path moves with the moving parts of the circuit, s = s�t�.
In the most general case of moving bodies subjected to time-varying magnetic fields, the

generalization of the Maxwell–Faraday induction law takes the form∫

�

S�t�

�Eg +Ei +Ev�︸ ︷︷ ︸
E

·ds = − d

dt

∫
Ss�t�

B�t� ·nS�t� dS

︸ ︷︷ ︸
�s�t�

(5.19)

where, it should be stressed, the E field on the left-hand side refers to the electric field as
observed in the moving reference frame.
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5.10 Application Example (Electromechanical Energy Conversion)

We now present an example that illustrates the principle of conversion of mechanical energy
into electric energy and the conversion of electric energy into mechanical energy.

Take the situation depicted in Figure 5.13 where a moving bar, of mass M and internal
resistance R, slides (frictionless) with velocity v = v�t��ex over two conducting rails.
Perpendicular to the plane defined by the two rails, a uniform time-invariant B field is
enforced. Neglect the internal resistances of the rails as well as the magnetic field produced
by the circulating current.

x

a
a′

b
b′

Fmag

Fmag

FM

v
BB

nS

u

Ss

s(t)

s(t)

l

(rail)

(rail)

bar

i

Load 

(a)

(b)

a

b

v
BB

u l

bar 

i

Generator
nS

Ss

Figure 5.13 Illustration of the principles of electromechanical energy conversion using, as an
example, a bar–rail system. (a) An external mechanical force FM drives the bar into movement giving
rise to an induced emf, electric energy being delivered to the load. (b) An electric power supply
(generator) produces a current flow that in conjunction with the B field originates a magnetic force
Fmag, the latter driving the bar into movement (production of mechanical kinetic energy)

Questions

Q1 In Figure 5.13(a) a passive electric load is connected between terminals a and b where
a voltage u appears as a consequence of induction phenomena. The bar is driven by an
externally applied mechanical force FM which causes the bar to move with velocity v.
Determine the voltage u and establish the energy balance equation of the system.

Q2 Now consider the reverse problem in Figure 5.13(b), where an electric generator provides
a voltage u between terminals a and b. The bar is free from any mechanical external
force; however, due to the interaction between the B field and the current i in the bar, the
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latter undergoes the action of a magnetic force Fmag which drives the bar into movement
with velocity v. Determine the voltage u and establish the energy balance equation of
the system.

Solutions

Q1 In addition to the external mechanical force FM the bar is also actuated by an opposite
magnetic force Fmag originating from the interaction of the B field with the current i
flowing in the bar.

Let us first apply the induction law to the closed path s�t� passing by the load, rails
and moving bar. The path s is oriented according to the reference direction assigned
to i: ∫

�

S�t�

E ·ds = u+Ri (5.20a)

− d

dt

∫
ss�t�

B ·nS dS = +B
d

dt
Ss�t� = B

d

dt
�lx� = Bl

dx

dt
= Bl� (5.20b)

Equating the results in (5.20) we obtain

u = Bl� −Ri (5.21)

The equation describing the movement of the bar along x is

FM +Fmag = M
dv
dt

(5.22)

Taking into account that the magnetic force (Lorentz force) exerted along the length of
the bar is

Fmag =
∫

−−→
b′a′

i ds×B = −ilB�ex

we can write from (5.22)

FM = M
dv
dt

+ iBl�ex

The mechanical power PM = FM ·v associated with the external driving force FM is next
determined as

PM = Mv · dv
dt

+ iBl� = d

dt

(
1
2

M�2

)
+ i�u+Ri� = d

dt

(
1
2

M�2

)
+ui+Ri2 (5.23)

The term M�2/2 is the kinetic energy of the bar WK, the term ui is the electric power
available to the load PL, and Ri2 is the power losses (Joule effect) in the bar PJ. Thus,
we conclude for the power balance

PM = dWK/dt +PL +PJ
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Integration over time gives WM = WK +WL +WJ.
This result illustrates the conversion of external mechanical energy into electric

energy.

Q2 Reapplying the induction law to path s�t� oriented according to the reference direction
assigned to i, we obtain (see Figure 5.13(b))∫

�

S�t�

E ·ds = −u+Ri (5.24a)

− d

dt

∫
Ss�t�

B ·nS dS = −B
d

dt
Ss�t� = −Bl� (5.24b)

Equating the results in (5.24) we obtain u = Bl� +Ri.
The equation describing the movement of the bar along x is

Fmag = M
dv
dt

or iBl�ex = M
dv
dt

The inner product with v on both sides of the above equation yields

iBl� = d

dt

(
1
2

M�2

)
or i�u−Ri� = d

dt

(
1
2

M�2

)
Rearranging terms

ui = d

dt

(
1
2

M�2

)
+Ri2 or PG = dWK/dt +PJ

where PG is the electric power delivered by the generator.
Integrating over time we get the energy balance, WG = WK +WJ.
This result illustrates the conversion of electric energy into mechanical kinetic energy.

5.11 DC Voltage Generation

This section deals only with the functioning principle of the simplest DC generator.
Consider, as shown in Figure 5.14, a rotating disk (Faraday’s disk) of radius R

illuminated perpendicularly by a uniform time-invariant B field. Brush-type conducting
contacts are established with the disk shaft and with the disk periphery, allowing a voltage
U to be collected at the accessible open terminals a and b. The angular velocity of the
rotating disk is 	.

Consider the application of the induction law to the closed path s (accompanying the disk
movement). Since currents are absent we find∫

�

S

E ·ds =
∫

−−→
ab

air

E ·ds = U (5.25a)



224 Electromagnetic Foundations of Electrical Engineering

Figure 5.14 Illustration of DC voltage generation principles using, as an example, Faraday’s rotating
disk. Voltage U is proportional to both B and 	

As for the right-hand side of the induction law equation, concerning the time derivative of
the linkage flux, you may evaluate it as

−d�s�t�

dt
= − d

dt

⎛⎝ ∫
S��

B ·nS dS +
∫

�S�t�

B ·nS dS

⎞⎠ (5.25b)

Noting that the flux across the rectangular surface S�� is null and time invariant, the first
contribution on the right-hand side of (5.25b) is zero. As for the second contribution,
noting that B ↑↓ nS and that the area �S�t� steadily increases with time, �S�t� = 1

2 R2	t,
we get

�s�t� = −B�S = − 1
2 BR2	t and −d�s/dt = 1

2 BR2	

Finally, equating the results from (5.25), we obtain a DC voltage given by

U = BR2	

2
(5.26)

Taking into account that 	 = 2�Nrps (where Nrps is the number of rotations per second),
and that the magnetic flux through the whole disk is 
 = B�R2, the result in (5.26) can be
rewritten in the more insightful form U = Nrps
.

5.12 AC Voltage Generation

Similar to the above, this section deals only with the functioning principle of the simplest
AC generator.

Consider, as shown in Figure 5.15, a rectangular single-turn coil of area A rotating with
angular velocity 	 around its own axis in a region where a uniform time-invariant B field
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s(t)

ns(t)

ns(t)

B 

rotation
axis 

rotation
axis b

au

A B 

θ = ωt + θ0

π/2

(a) (b)

ω

α

Figure 5.15 Illustration of AC voltage generation principles using, as an example, a rotating
rectangular coil immersed in a uniform B field. (a) Perspective view and circulation path for the
application of the induction law. (b) Side view, showing that the angle between B and the Stokes
normal changes with time

exists perpendicular to the axis of rotation. A voltage u�t� is collected at the coil’s accessible
terminals a and b which are left open.

Consider the application of the induction law to the closed path s�t� (accompanying the
coil rotation). Since currents are absent we find∫

�

S

E ·ds =
∫

−−→
ba

air

E ·ds = −u (5.27a)

As for the right-hand side of the induction law equation, concerning the time derivative of
the linkage flux, we may evaluate it as

−d�s

dt
= − d

dt

∫
A

B ·nS�t� dS

Noting that the angle � between B and nS changes with time, � = �/2 − ��t�, where
��t� = 	t +�0 (with arbitrary �0), we have

B ·nS�t� = B cos � = B sin�	t +�0�

and therefore

−d�s

dt
= − d

dt

∫
A

B ·nS�t�dS = −AB	 cos�	t +�0� (5.27b)

Equating the results from (5.27), we obtain an AC voltage given by u�t� = AB	 cos�	t+�0�.
If the coil contains N turns tightly packed, the above result is modified to

u�t� = UM cos�	t +�0�� with UM = AB	N (5.28)
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5.13 Proposed Homework Problems

Problem 5.13.1

An overhead line conductor at height hL above ground carries a sinusoidal current
iL�t� = I sin�	t�. As shown in Figure 5.16, a fence of length l is situated just beneath the
line and parallel to it. The fence has two horizontal supporting conducting wires, one at the
soil level and the other at height hF . Both wires are connected at one end of the fence by a
conducting post, whereas at the opposite end a wooden post is used.

Figure 5.16 Induced voltage in a wire fence placed near to an overhead line

Assume that the return current in the poorly conducting soil contributes negligibly to the
evaluation of the B field in air.

Data: I = 5 kA� 	 = 2�f� f = 50 Hz� hL = 12 m� hF = 3 m� l = 200 m.

Q1 From Chapter 4, determine the B field originated by the overhead line conductor in the
fence region �x = 0�.

Q2 Determine the fence voltage uF �t� between the two supporting wires at the end where
the wooden post has been placed.

Answers

Q1

B�y� t� = �0

iL�t�

2��hL −y�
�ex� for 0 < y < hF

Q2 Application of the induction law to the closed path s along the fence wires and wooden
post gives

∫

�

S

E ·ds

︸ ︷︷ ︸
−uF

= −d�F

dt
� with �F =

∫
Ss

B ·nS dS =
y=hF∫

y=0

B�y� t� l dy
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�F �t� =
(

�0l

2�
ln

hL

hL −hF

)
︸ ︷︷ ︸

LM

iL�t�� LM = 11�5 �H

uF �t� = LM

diL�t�

dt
= LMI	︸ ︷︷ ︸

U

cos�	t�� U = 18�1 V

Problem 5.13.2

A coil with N1 turns and a conducting ring are placed in a transformer core – see Figure 5.17.
The coil, with resistance R1, is driven by a voltage generator. The ring can be left open
or short-circuited depending on the switch position. The transformer core has a uniform
cross-section S. The self-inductance of the coil is L11. Neglect dispersion phenomena and
the resistance of the ring.

Data: N1 = 10� R1 = 10 �� S = 1 cm2� L11 = 10 mH.

Figure 5.17 A transformer core with a coil of N1 turns and one ring. (a) General view. (b) Generator
current

Q1 Using your knowledge from Chapter 4, determine the self-inductance of the ring L22 as
well as the mutual inductance LM .

Q2 With the switch open �i2 = 0� the generator current i1�t� is described by an asymmetrical
triangular pulse of duration T = 3 ms and peak value I = 0�1 A.

Using the induction law, determine the voltages u1�t� and u2�t�.
Using your knowledge from Chapter 4, determine the time evolution of B�t� in the

core.

Q3 Now consider that the switch is closed �u2 = 0� and that the generator voltage u1 is the
same as you determined in Q2.

Evaluate i1�t� and i2�t�.
Determine the magnetic induction field in the transformer core. Comment on the

result.
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Answers

Q1

L11 = N 2
1

Rm

→ Rm = 104 H−1� L22 = N 2
2

Rm

= 0�1 mH� LM = N1N2

Rm

= 1�0 mH

Q2

u1 = R1i1 +L11

di1

dt
� u2 = −LM

di1

dt

(see the illustrative plots in Figure 5.18)

�1 =
{

L11i1

N1
 = N1BS
→ B�t� = L11

N1S
i1�t�

B�t� is a triangular pulse as i1�t�, with peak value of 1 T.

Q3

u2 = 0 = −d�2

dt
→ �2�t� = 0 → B�t� = 0 → �1�t� = 0

u1 = R1i1 + d�1

dt
= R1i1 → i1�t� = u1�t�

R1

u1 (V) u2 (mV)

t (ms)

1.5

0.5

–1.0

0

1

(a) 

t (ms)

100

–50

0

1

3

(b)

3

Figure 5.18 Voltage plots against time when the switch is open. (a) Coil voltage. (b) Ring voltage

Current i1�t� has the shape of the voltage u1�t� established in Figure 5.18 apart from a
scale factor determined by the value of R1.

Since the magnetic flux in the core is zero, then, from Ampère’s law (Chapter 4),
you will have Rm
 = 0 = N1i1 +N2i2 (with N2 = 1), and, consequently,

i2�t� = −N1i1�t� = −N1

u1�t�

R1

Current i2�t� has the shape of i1�t�, but with opposite sign, and scaled by a factor of
ten �N1 = 10�.
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When the switch is closed, the new current i2 creates its own magnetic field which
opposes the original one existing in the core (this is known in the literature as Lenz’s
‘law’). In our case, because the ring is a perfect conductor, the ring’s magnetic field
has exactly the same magnitude as the one previously existing in the core due to the
excitation coil. Therefore, their sum is zero for the resultant field, B1 +B2 = 0.

Firstly, and most important to note, the idea that current i2�t� always reacts against
the induction action of i1�t� – something equivalent to the action/reaction principle you
have heard about in physics – is a false concept.

The reaction of i2�t� is critically dependent on the type of load connected to the
second coil (ring). If, for instance, a capacitor is connected to the terminals of the
second coil it may well happen that the total B field in the core may actually increase
as compared to B1 (we will come back to this topic in Section 7.3.2).

Secondly, the problem treated here exemplifies a technological application of induction
phenomena, namely induction heating. You saw that the current in the ring is N1 times
bigger than the one in the excitation coil. In reality, the ring has an internal resistance
and because of that, energy dissipation due to the Joule effect will take place there:

WJ =
T∫

0

Rring i2
2�t� dt

Depending on the system’s design parameters, the structure in Figure 5.17 may be
engineered so as to ensure that the heat generated in the metallic ring melts it down.

Problem 5.13.3

A ferromagnetic core (see Figure 5.19) is excited by a sinusoidal current flowing in an
inductor (not shown) which gives rise to a magnetic flux 
�t� = 
M sin�	t� circulating in
the core. As shown in the figure, a single-turn coil is wound around the core. The coil is
left open �i = 0�, but due to induction phenomena a voltage u�t� appears across its terminals
a and b. In order to visualize the coil voltage, two oscilloscopes O1 and O2 are connected
between a and b.

Figure 5.19 The single-turn coil voltage u�t� is read differently by the oscilloscopes O1 and O2,
both connected between a and b
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Q1 Determine u�t�.

Q2 Determine the voltages u′�t� and u′′�t� retrieved by both oscilloscopes.

Q3 Repeat the problem for the case of a two-turn coil.

Q4 Generalize the above result for an N -turn coil.

Answers

Q1

u�t� = d


dt
= U cos�	t�� with U = 	
M

Q2

u′�t� = u�t�� u′′�t� = 0

Q3

u′�t� = u�t� = 2
d


dt
= 2U cos�	t�� u′′�t� = d


dt
= U cos�	t�

Q4

u′�t� = u�t� = N
d


dt
= NU cos�	t�� u′′�t� = �N −1�

d


dt
= �N −1� U cos�	t�

Only for N � 1 will you have similar oscilloscope readings, u′ ≈ u′′.

Problem 5.13.4

Two inductors are connected in series as shown in Figure 5.20. Inductors are characterized
by internal resistances R1 and R2 and self-inductances L11 and L22. The magnetic coupling
factor between the inductors is k = 0�75.

Figure 5.20 Two series-connected magnetically coupled inductors

The current common to both inductors is i�t� = I cos�	t�.
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Q1 Determine the mutual inductance LM between the inductors.

Q2 Write an analytical expression for the applied voltage u�t� between terminals a and b.

Q3 Considering that R1 = 60 �� R2 = 140 �� L11 = 0�1 H� L22 = 0�4 H� I = 0�25 A� and
	 = 1 krad/s, determine u�t� numerically.

Answers

Q1 LM = −150 mH

Q2 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

�

S

E ·ds = −u+R1i+R2i

−d�S

dt
= − d

dt
��1 +�2� = − d

dt
��L11 +LM�i+ �LM +L22�i�

u = Ri+L
di

dt
� where R = R1 +R2 and L = L11 +L22 +2LM

u�t� = RI cos�	t�−	LI sin�	t�

Q3 R = 200 �� L = 200 mH� 	L = 200 �:

u�t� = 50 cos�	t�−50 sin�	t� V

u�t� = 50
√

2 cos�	t +�/4� V

Problem 5.13.5

Consider the three-legged transformer shown in Figure 5.21, where the three vertical legs
share the same geometrical and magnetic properties. For simplification purposes assume that
the reluctances of the upper and lower yokes are negligibly small. The inductor placed on the
left leg, with N1 turns and self-inductance L11, is driven by a sinusoidal voltage generator.
The inductor placed on the right leg, with N2 turns, is left open. Around the central leg a
perfectly conducting ring can be switched from open state to short-circuit state depending
on the switch position.

Assume that the internal resistance of inductor 1 is negligible, and that dispersion
phenomena are absent.

Data: L11 = 1 H� u1�t� = U1 cos�	t + �/2�� U1 = 325 V� 	 = 100� rad/s� N1 = 100�
N2 = 400.
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i1

u1 N2N1 u2S

φ1 φ2φR

Rm ≈ 0

Rm ≈ 0

Figure 5.21 A three-legged magnetic circuit containing a ring in the center leg which can be switched
on or off

Q1 Find the magnetic flux 
1�t� in the transformer’s left leg.

Q2 Consider that the ring is in the open state. Determine 
2�t� and u2�t�.

Q3 Consider that the ring is in the short-circuit state. Determine 
2�t� and u2�t�.

Answers

Q1

u1�t� = N1

d
1�t�

dt
→ 
1�t� = 1

N1

∫
u1�t� dt = �1 cos�	t�� �1 = U1

	N1

= 10�35 mWb

Q2 
1 = 
R +
2� 
R = 
2 (due to symmetry reasons); 
2 = 
1/2.

u2�t� = N2

d
2�t�

dt
= N2

2
d
1�t�

dt
= N2

2N1

u1�t� = U2 cos�	t +�/2�� with U2 = 650 V

Q3 Because the ring is short-circuited, 
R = 0 → 
2 = 
1:

u2�t� = N2

d
2�t�

dt
= N2

d
1�t�

dt
= N2

N1

u1�t� = U2 cos�	t +�/2�� with U2 = 1�3 kV

Problem 5.13.6

Consider the situation analyzed in Section 5.12 (AC voltage generation) but where, instead
of a single rotating rectangular coil, you have three rotating rectangular coils making angles
of 2�/3 to each other – see Figure 5.22 (three-phase AC generator).

Q1 Write the equations for the voltages u1�t�� u2�t� and u3�t� at the coil terminals.

Q2 Determine u1�t�+u2�t�+u3�t�.
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Figure 5.22 Operating principle of a three-phase AC generator. Three identical coils synchronously
rotate in the space between the north and south poles of a magnet

Answers

Q1

u1�t� = UM cos�	t +�0�� with UM = AB	N

u2�t� = UM cos�	t +�0 −2�/3�

u3�t� = UM cos�	t +�0 −4�/3�

Q2

u1�t�+u2�t�+u3�t� = 0

Problem 5.13.7

Figure 5.23 illustrates the functioning principle of the moving-coil microphone. The coil is
attached to a diaphragm (not shown) on which sound waves impinge. When the diaphragm
vibrates, the coil is set in motion. The coil moves in a region where a radial stationary
magnetic field, produced by a magnet, exists. The terminals of the coil are left open �i = 0�.
Due to magnetic induction, a voltage signal at the moving-coil terminals appears.

To simplify matters, assume that the coil is a single-turn coil and that the magnetic
induction field in the (very small) air gap between the north and south poles of the magnet
is approximately uniform, B = 0�5 T.

Also assume that the coil movement is described by x�t� = l/2+X sin�	t�, with X < l/2.

Q1 Find the magnetic flux 
�x� across the single-turn coil positioned at x.

Q2 By applying the generalized induction law, determine the voltage u�t� between the
terminals a and b of the moving coil.

Q3 Consider that the coil contains N turns tightly packed.
Take N = 5� X = 10 �m� R = 5 mm� 	 = 2�f and f = 3 kHz.
Determine u�t� numerically.
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Figure 5.23 Moving-coil microphone. (a) Front view. (b) Transverse cross-section

Answers

Q1 From div B = 0, and noting that the radial B field in the air gap is redirected and
transformed into an x-oriented field along the south pole piece, you find 
�x� = 2�RBx.

Q2 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

�

S�t�

E ·ds = −u

− d

dt

∫
Ss�t�

B ·nS dS = −d


dt
= −d


dx

dx

dt
= −2�RB v = −2�RBX	 cos�	t�

where � = dx/dt is the coil’s instantaneous velocity along x,

u�t� = 2�RBX	 cos�	t�

Q3

u�t� = U cos�	t�� with U = �2��2RNBXf = 14�8 mV

Problem 5.13.8

Figure 5.23 illustrating the functioning principle of the moving-coil microphone can also be
used to explain the functioning principle of the loudspeaker.

Assume that a sinusoidal current i�t� = I cos�	t� is made to flow in the coil, with
I = 100 mA.
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Q1 Determine the magnetic Lorentz force F = F�ex that puts the loudspeaker membrane into
motion (producing sound waves).

Q2 Evaluate the force numerically, considering the data specified in Problem 5.13.7.

Answers

Q1

F =
∫

�

S

i ds×B = i

2�N∫
0

(−R d� �e�

)× (−B �er

) = 2�NBRI cos�	t�︸ ︷︷ ︸
F�t�

�ex

Q2

F�t� = Fmax cos�	t�� Fmax = 2�NBRI = 7�85 mN




